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Abstract

The inverse Galois problem is a major question in mathematics. For a given base field F' and
a given finite group G, one would like to list all Galois extensions L/F such that the Galois
group of L/F is G.

In this work we shall solve this problem for all fields F, and for group G of unipotent 4 X 4
matrices over [F,. We also list all 16 U4(IF,)-extensions of Q. The importance of these results

is that they answer the inverse Galois problem in some specific cases.

This is joint work with Jan Mina¢ and Nguyen Duy Tan.

Keywords: Galois Theory, Class Field Theory, Massey Products, Galois Extensions of
Local Fields.
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Introduction

Let G be a finite group, and let F' be an arbitrary field. A fundamental problem in Ga-
lois theory is to describe all Galois extensions L/F whose Galois groups are isomorphic
to group G. It is desirable to describe such families of extensions using invariants of L/F
which depend only on the base field F. If G is abelian then this is possible by the theo-
ries of Kummer and Artin-Schreier extension, and classical work of A. Albert and D. J. Salt-
man. Moreover this description is elegant, simple and useful. It is known that there are some
other very interesting and useful explicit constructions of Galois extensions L/F with pre-
scribed Galois group G. See for example, [Jarll], [JLY02, Chapters 5-6], [Led05, Chapters
2,5-7], [Mas87], [MNQD77], [MZ11], [Sal82]. However the simplicity and generality of the
descriptions of Kummer and Artin-Schreier extension seem to be unmatched.

Recall that for each natural number n, U,(IF ) is the group of upper triangular n X n-matrices
with entries in [F, and diagonal entries 1. In a recent development of Massey products in Ga-
lois cohomology, it was recognized that Galois extensions L/F with Gal(L/F) = U,(F,) play
a very special role in Galois theory of p-extensions. (See [Efr14], [EM14], [HW15], [Dwy75],
[LMSO03], [MT13,MT15a, MT14b, MT15b]). Moreover the works above reveal some surpris-
ing depth and simplicity of analysis of these extensions.

In this thesis we show that there exists a very simple description of the families of Galois
extensions L/F with Gal(L/F) ~ U4(IF,) over any given field F. The key difference from the
results in [MT15a] is that in this thesis we describe all Galois extensions with Gal(L/F) ~
U,(IF,). We also show that a similar description is valid for Galois U;(IF;)-extensions over an
arbitrary field.

Beside of their intrinsic value, these simple descriptions of Galois extensions L/F with
Gal(L/F) ~ U4(F,) are expected to play a significant role in an induction approach to the
construction of Galois extensions L/F with Gal(L/F) ~ U,(IF,) for n > 2, and for a possible
proof of the Vanishing n-Massey Conjecture for absolute Galois groups of fields (see [MT13,
MT15b]). Also this description should be useful for establishing the Kernel n-Unipotent Con-
jecture for absolute Galois groups of fields and p = 2. This would be a very interesting exten-
sion of the work of [MS96], [Vil]. (See also [EM11], [MT15a].) Further possible applications
of this work can be related to an extension of the study of Redei symbols (see [Amal4]) and
also the study of 2-Hilbert towers (see [McLO08]).

Main results in this thesis are in: Theorem 3.1.1, Theorem 3.1.2, Theorem 2.3.1 and Theo-
rem 2.3.2.

In Chapter 1, I start with a definition of Massey products especially triple Massey products
and explain the connection between Massey products and some embedding problems. Specifi-
cally, I will discuss the Heisenberg extensions and U4(IF,)—Galois extensions.
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In Chapter 2, we recover the result of Hirotada Naito [Nai95] on dihedral extensions of Q.
We will separately discuss the cases p # 2 and p = 2 of dihedral extensions of Q,. In the
case p # 2, there is only one D,—extension for p = 3(mod4) and there is no D,—extension for
p = 1(mod4) over Q,. In the case p = 2, there is a constructive method to build up all 18
D,—extensions of Q,, which are listed at the end of this chapter.

Chapter 3 contains my results with Professor Jan Mina¢ and Dr Nguyén Duy Tan. We
provide a description of Galois U4(IF,)-extensions over any given field [AMT15]. We then
use this description to count the number of Galois U,(IF,)-extensions over a field which is a
finite extension of Q,. For this result, we used the construction method of Mina¢ and Tan for
U4(IF,)—extensions, which is explained in Chapter 1, and the construction method of Naito for
D,—extensions, which is explained in Chapter 2, to make a list of all 16 distinct U4(F,) Galois
extensions over (9,. This list is provided in this chapter.

I quote results and preliminary material from available sources with precise references.

viii



Chapter 1

Massey Products

1.1 Introduction

Massey products have a lot of influence on several rather distinct parts of mathematics. Here
I would like to point out some of these aspects. Massey products originated from topology
in an effort to produce finer topological invariants than those which existed before. W. S.
Massey [Mas58] introduced this product which generalizes the usual cup product.

The complement of Borromean rings gives an example where triple Massey product is de-
fined and non-zero.

In the complement of Borromean rings the linking number of any two rings is zero while
all three are linked, showing Borromean rings are an example of a non-trivial Massey product.

In the middle of the 1970s, it was recognized that the non-vanishing of Massey products
could be viewed as an obstruction to determination of the homotopy type of some topolog-
ical spaces from their cohomology rings. P. Deligne, P. Griffiths, J. Morgan and D. Sulli-
van [DGMS75] in their paper on “Real homotopy theory of Kidhler manifolds" using the con-
cept of vanishing Massey products showed real homotopy type of Kihler manifolds follows
from its real cohomology ring. Given two spaces X and Y it is said they are homotopy equiva-
lent or of the same homotopy type, if there exist continuous maps f: X — Yandg:Y — X
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such that g o f is homotopic to the idy and f o g is homotopic to idy. For more information,
please go to [DGMST75].

In 1975, W. G. Dwyer [Dwy75] discovered a crucial link between unipotent representations
of groups and a certain vanishing of Massey product. Let Gg(p) be the maximal pro-p-quotient
of an absolute Galois group G of a field K, and let U4(IF,,) be upper triangular unipotent 4 by
4 matrices with entries in [F,. By Dwyer’s work, every surjective homomorphism from Gg(p)
to U4(IF,,) determines a defined triple Massey product which in fact contains zero. This will be
discussed in details later.

1.2 Massey products

Let G be a profinite group and p a prime number. Consider the finite field IF,, as a trivial dis-
crete G-module. Let C* = (C*(G, F,), 6, U) be the differential graded algebra of inhomogenous
continuous cochain of G with coefficients in IF, [NSW13, Chapter I, Section 2] .

Assume H*(G,F,) be the corresponding cohomology groups, and Z'(G, F,) the subgroup
of C'(G,F,) consisting of all 1-cocycles. Because we use the trivial action on the coefficients
F,, Z'(G, F, = H'(G, F,) = Hom(G,F,). In this section we review Massey products in
H'(G,F,) and their relations to certain types of embedding problems, which will be needed in
the sequel. (See [MT13] and [MT15a])).

Let n > 3 be an integer. Let ay, - - - , a, be elements in H'(G,F,) = Z' € C'(G,F,).

Definition 1.2.1. A collection M = {a;j|]l <i < j<n+1,G,)) # (1,n+ 1)} of elements
a;; of C(G,F)) is called a defining system for the n—fold Massey product {ay,--- ,a,) if the
following conditions are fulfilled:

(1) @iy = a;foralli=1,2,---n.
(2) 6a; =Y\ ayUayforalli+ 1< j.

Then Y7_, ayx U agpey is a 2-cycle. Its cohomology class in H* is called the value of the

product relative to the defining system M and it is denoted by {a\,--- ,a,)m. The product
(a, -+ ,ayy itself is the subset of H*(G,F,) consisting of all elements which can be written in
the form {ay, - - - , a,) m for some defining system M.

As observed by Dwyer [Dwy75] in the discrete context (see also [Efr14, Section 8] in the
profinite case), a defining system for Massey products can be interpreted in terms of upper-
triangular unipotent representations of G, as follows.

Let U,+1(IF,) be a group of all upper-triangular unipotent (n+ 1) X (n + 1)—matrices with en-
tries in IF,,. Let Z be the subgroup of all such a matrices with all off-diagonal entries being zero
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except at position (1,7 + 1). We may identify U, (F,)/Z with the group ﬁ,m (IF,) of all upper
triangular unipotent (n + 1) X (n + 1)—matrices with entries over I, with the (1, n + 1)— entries
omitted. For any representationp : G — U, (IF,))and 1 <i< j<n+1,letp;;: G — F, be
the composition of p with the projection from U,,(IF,) to its (i, j)—coordinate. We use similar
notation for representations p : G — @Ml(IF,,).

Assume that
M=lall <i<j<n+1,Gj)#0n+1)

is a defining system for an n—fold Massey product {a,--- ,a,). We denote a map p,, : G —
U,+1(F,) by (o) = —a;j. Then one can check that p ,, is a (continuous) group homomorphism.

Moreover, (a;,--- ,a,) = 0 if and only if p,, can be lifted to the group homomorphism
G — U,41(F,). On the other hand, if p : G — U,;1(IF,)) is a group homomorphism, then

(Bl <i<js<n+1.G.))#0n+1)

is defining system for
<_[_)]2’ T ll_)n,n+l>'
(See [Dwy75, Theorem 2.4].)

1.3 Embedding problem
A weak embedding problem & for a profinite group G is a diagram
&= G
¥
U——U

which consists of profinite groups U and U and homomorphisms ¢ : G —» U, f : U — U
with f being surjective. If in addition ¢ is also surjective, we call & an embedding problem.

A weak solution of & is a homomorphism ¢ : G — U such that fyy = ¢. We call & a finite
weak embedding problem if group U is finite. The kernel of & is defined to be M := ker(f).
We denote by S 0l(E) the set of weak solutions of &E.

Assume now the kernel M is abelian. The conjugation action of U on M is trivial while
restricting to M C . Hence this induces an T/—module structure on M. We consider M as a
G-module via ¢ and the conjugation action of U on M. we denote by M, this G—module. The
following result is well known:
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Lemma 1.3.1. Let E(G, f, ) be a weak embedding problem with a finite abelian kernel M
which has a weak solution. Then Sol(E) is a principal homogeneous space over the group of
1-cycles Z'(G, M,).

In particular, any weak solution 6 of & induces an bijection
Sol(&) = Z'(G, M,).

Proof. See [NSW13, Proof of 3.5.11]

1.4 Heisenberg extensions

Let F be a field containing a primitive p—th root of unity {. For any element a € F*, we write
X for the character corresponding to a via the Kummer map [CF67, Chapter 3]

F* — H'(Gr,Z/pZ) = Hom(Gr, 7| pZ)

where G is the absolute Galois group of the field F. Assume a ¢ (F*)?. So the exten-
sion F({/a)/F is a Galois extension with the Galois group {(o,) = Z/pZ, where o, satisfies

oo(Ya) = {{a.

The character y, defines a homomorphism y* € Hom(Gp, I—lyZ/Z) C Hom(Gr,Q/Z) by the

formula 1

a —_—

X = —Xa-
p
Let b be any element in F*. Then norm residue symbol may be defined as
(a,b) := (x*,b) := b U 5y“.

Here 6 is a coboundary homomorphism 6 : H'(G,Q/Z) — H?*(G,Z) associated to the short
exact sequence of trivial G-modules

0-Z-Q->Q/Z—-0

The cup product y, U x,» € H*(Gr, Z/pZ) can be interpreted as the norm residue symbol (a, b).
More precisely, we consider the exact sequence

0 Z/pZ — F< 25 px 1,

where Z/pZ has been identified with the group of p—th roots of unity u, via the choice of {.
As H' (G, FY) = 0, we obtain

0 = HXGr, Z/pZ) > HXGr, FX) 25 HXGr, FY).

Then one has i(y, U x») = (a,b) € H*(Gy, F7). (See [Ser13, Chapter XIV, Proposition 5].)
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Assume that a, b are elements in F*, which are linearly independent modulo (F*)”. Let
K = F(K/a, {/b). Then K/F is a Galois extension whose Galois group is generated by o, and
o,. Here

7u(¥b) = Vb, 0 (Na) = £ a. o(Ra) = {fa, o (Vb) = £ b,
We consider a map Us(Z/pZ) — (Z]pZ)* which sends

1 x z
[O 1 y]|—>(x,y).

0 01
Then we have the following embedding problem

Gr

e

0 —— Z/pZ

Us(Z/pZ) —— (Z] pZ)* — 1,
where p is the map
(XasX») : Gr — Gal(K/F) = (Z/pZy*

and the last isomorphism is the one which sends o, to (1,0) and o, to (0, 1).

Assume that y, U x;, = 0. Then the norm residue symbol (a, b) is trivial. Hence there exists
a € F(</a) such that N r( %@ F(@) = b, (see [Serl3, Chapter XIV, Proposition 4(iii)]). We set

p-2
Ag = "' oy(@ )P (a) = ]—[ o (@’ € F(Rfa).
i=0

Lemma 1.4.1. Let f, be an element in F*. Let A = f,Aq. Then we have
go(A)  Nmpgar(@) b
A B aP N aP ’

Proof. [IMT15b] Observe that "“T(A) = %’:0). The lemma then follows from the identity

p-1

(s — 1)pz_%‘(p—i— l)s"=Z:s"—psO
i=0

i=0
We may use multiplicative version of above equality to prove this lemma.

TulA) Tl No2(er )b (@)
A arlo ) ol @)

_ Ol @)o(@)- - AN

aP-1
_ Nmpg gz, (@) b
B aP Car’
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Proposition 1.4.2. Assume that y, U x, = 0. Let f, be an element in F*. Let A = f,Aq be
defined as above. Then the homomorphism p := (xu,X») : G — Z]pZ X Z]pZ lifts to a
Heisenberg extension p : G — Us(Z/ pZ).

Sketch of Proof. [IMT15b] Let L := K( {/A)/F. Then L/F is Galois extension. Let &, €
Gal(L/K) (resp. ¢, € Gal(L/K)) be an extension of o, (resp. o). Since 0,(A) = A, we have
G»(VA) = ¢/ /A, for some j € Z. Hence &Z(VX) = {/A. This implies that &, is of order p.

On the other hand, we have &,((YVA)) = o,(A) = Aa%. Hence ,(VA) = I VZ%E, for
some i € Z. Then 62({/A) = {/A. Thus &, is of order p.

If we set o7 := [64, 0] then o4 (VA) = £ {/A. This implies that o4 is of order p. Also one
can check that
(6o, 0a]l = [0p,04] =1

We can define an isomorphism ¢ : Gal(L/F) — U;(Z/pZ) by letting

1 10 1 00 1 0 1
o, x:=0 1 0f, o,—>y:=|0 1 1|, oarz:=|0 1 0].
0 01 0 01 0 01

Then the composition p : Gr — Gal(L/F) 4 Us(Z/ pZ) is the desired lifting of p.

Note that [L : F] = p’. Hence there are exactly p extensions of o, € Gal(E/F) to the
automorphism in Gal(L/F) since [L : E] = p?/p*> = p. Therefore for later use, we can
choose an extension, still denoted by o, € Gal(L/F), of 0, € Gal(K/F) in such a way that

o (VA) = {/Zf/—f G

1.5 Triple Massey product

When n = 3, in the last section, we will speak about a triple Massey product. Note that in this
case, the triple Massey product {a;, a», az) is defined if and only if a; Ua, = a Uaz; = 0 in
H*(G, [F,). Then there exist cochains a;, and a3 in C "G, IF,) such that

oa;; =xUyanddaxy; =yuUz,

in C*(G,F,). Then we say that D := {x,y,z,a12,a} is a defining system for triple Massey
product (x,y, z). Observe that
5()C Uayy +app U Z) =0.

Hence, xUays +aj, Uz is a 2-cocycle. We define the value (x, y, 7)p of the triple Massey product
(x,y, z) with respect to the defining system D to be the cohomology class [x U a3 + a;; U z] in
H'(G,F,). The set of all values (x,y,z)p when D runs over the set of all defining systems, is
called the triple Massey product (x,y,z) € H'(G,F,). Note that we always have

(x,y,2) =(x,y,20p + xUH'(G,F,) + U H'(G,F)).
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We also have the following result.

Lemma 1.5.1. If the triple Massey products {x,y,z) and {x,y’, z) are defined then the triple
Massey product {x,y + Y, z) is defined too, and

X,y +y,2) =(,y,2 +(x,y, 2.

Proof. [MT15b] Let {x,y,z, a2, axs} (respectively, {x,y’,z,a},,a),}) be a defining system
for (x,y, z) (respectively (x,y’,z)). Then {x,y + ), z, a2 + a},, a» + a};} is a defining system for
(x,y +Y',2). We also have

oy, +{(y,2) =[xVUaxn+apUz]l+xU HI(G,IFP) +zUH'(G, F,)

+[xUdb; +aj, Uzl +xUH'(G,F,) +zUH'G,F,)
=[x U (ay + dy3) + (ain + d}p) Uzl + x U H'(G,F,) + zU H'(G,F,)
=(xy+y,2).

]

For the following proposition, I assume the Theorem 1.6.4 which is originally from [MT15b,
Theorem 3.6]and [MT15b, Theorems 3.8 and 4.2].

Proposition 1.5.2. Let F' be an arbitrary field. Let x1, x», x3 be elements in Hom(Gr,F,). We
assume that x1, x2, x3 are I ,-linearly independent. If the triple Massey product (x1,x2,X3) is
defined then it contains 0.

Proof. [MT15b] Let F* be a separable closure of F and L be the fixed field of F* under the
kernel of the surjection (y1, x2, x3) : Gr — (IFp)3. Then the Theorems 3.6, 3.8 and 4.2 [MT15b]
imply that L/F can be embedded in a Galois Uy(FF,)-extension M/F. More over there exist
01,07,03 € Gal(M/F) such that they generate Gal(M/F), and

xi1(01) =1,x1(02) =0,x1(03) =0;

Xx2(01) = 0, x2(02) = 1, x2(03) = 0;
x3(01) = 0, x3(02) = 0, xy3(03) = 1.

(Note that for each i = 1,2, 3, y; is trivial on Gal(M/M,), hence y;i(o ;) make sense for every
Jj =1,2,3.) An explicit isomorphism ¢ : Gal(M/F) — U4(IF,) can be defined as

1 100 1 100 1 100
O_“_)OIOO o-2+—>0100 o—+—>0100

0 01 of 0 01 of 3 0 01 o

0 001 0001 0 001

Let p be the composite homomorphism p : Gr — Gal(M/F) = U4(IF,). Then one can check
that

P12 = X1-P23 = X2,P34 = X3.
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(Since all the maps p, x1, x2, x3 factor through Gal(M/F), it is enough to check these equalities
on the elements o7, 0, 073.) This implies that (—y, —x2, —x3) contains 0 by [Dwy75, Theorem
2.4]. Hence (x1, x2, x3) also contains 0. L]

For each x in Field F, denote [x]r be the image of x in F/F”.

Proposition 1.5.3. Assume that dimg ([alF, [D]r,[clr) < 2. If the triple Massey product
(ar X Xe) 1S defined, then it contains 0.

Proof. For char(F) = 2 see [MT13] and for char(F) # 2 [MT15b]. ]

Theorem 1.5.4. Let p be an arbitrary prime and F any field. Then the following statements
are equivalent.

(1) There exists x1,x2,x3 in Hom(Gp,F,) such that they are ¥ ,—linearly independent and if
char(F) # p then y1 U x> = x2 U x3 = 0.

(2) There exists a Galois extension M/ F such that Gal(M/F) = U4(F,).

Moreover, assume that (1) holds, and let L be a fixed field of (F)* under the kernel of the sur-
jection (x1,x2,x3) : G — (]Fp)3. Then in (2) we can construct M| F explicitly such that L is
embedded in M.

If F contains a primitive p—th root of unity, then the two above conditions are also eqivalent
to the following condition.

(3) There exist a,b,c € F* such that [F({/a, b, ffc): F1 = p*and (a,b) = (b,c) = 0.

If F be of characteristic p then conditions (1),(2) above are also equivalent to the following
condition.

(3’) There exist a,b, c € F* such that [F(6,,6,,0,) : F] = p°.

Proof. See [MT15b]. L]

Definition 1.5.5. We say G has the triple Massey product property with respect to I, if every
defined triple Massey product {a,, a», a3), where a,, a,,a; € H'(G, ), necessarily contains 0.

1.6 Us(IF,)—Extensions

Assume F is a field containing a primitive p-th root £ of unity, and let a, b, c € F* such that a, b
and c are linearly independent modulo (F*)? and that (a,b) = (b,c) = 0. We shall construct
that Galois Uy(FF,)-extension M/F such that M contains F({/a, /b, <fc).
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First note that F(</a, b, {/c)/F is a Galois extension with Gal(F(X/a, /b, {/c)/F) gener-
ate by o, 07, 0. Here

ocu(Na)=¢a, o, (Vb)) = Vb, () = e

op(fa) = fa, (V) =¢b,  op(He) = e
o(Va)= a, o.(¥b)= b, o) =K

Let E = F(</a, {/c). Since (a,b) = (b,c) = 0, there are @ € F({/a) and vy € F(X/c)
(see [Ser13, Chapter XIV, Proposition 4(iii)]) such that

NmE/F( %)(CY) =b= NmE/F( %)()’)

Let G be the Galois group Gal(E/F). Then G = {0, 0.) where o, € G (respectively 0. € G)
is the restriction of o, € Gal(F(</a, /b, {/c)/F) (respectively o. € Gal(F(X/a, /b, {/c)/F)).

Our goal is to find an element 6 € E* such that the Galois closure of E( /) is our desired
U4(IF,)-extension of F. We define

p—2
Co=| | oy e F(Ro),
i=0

and define B := y/a. Then we have the following result which follow from Lemma 1.4.1.
Lemma 1.6.1. We have
(1) 2422 = Nm,, (B).
(2) g% = Nimg,(B)™".
Proof. [MT15b] Using the Lemma 1.4.1, we have

O-u(AO) b Nma'()’)
_— = = T = N, o B
A Nmg () VmedB)

and
o(Co) _ b _ Nmg (@) — Nmy, (B)!
Co Y’ Nmg,(y)

Lemma 1.6.2. Assume that there exist C,,C, € E* such that

o.(Cy) G
Cl O-C(C2)

B =

Then Nm, (C1)/Ao and Nm, (C,)/Cy are in F*. Moreover, if we let

A = Nm, (Cy) € F({a)*
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and

C = Nm,,(Cy) € F({c)

then there exists 6 € E* such that

o.(0) _
5 = ACP

o,(09) _
5 CC,”

CHAPTER 1. MASSEY PRODUCTS

X
s

Proof. [MT15b] By lemma 1.6.1, and the fact that Nm,, (C,) = Nm, (0.(C;)), we have

Ta(Ao) (%(Cl)) ( G ) 0o(Nmy (Cy))
= Nmy (B) = Nm,, Nm,, = - .
Ao ® G \o(C2) Nm, (Cy)
This implies that
Nm, (Cy) (ngxcl))
A =0y, A, .

Because Nm‘;;'o(cl) is fixed by both o, and o, we have

Nm(rc (Cl)
A

€ F({e)* N F({lay* = F*.

Using the same procedure, by the same lemma (lemma 1.6.1), we have

0 (Co) 1 Ci 0(Cr)\ o(Nmy, (Cy))
Co  NmeB) = Nm““(aa(cl))N m"a( C ) = Nmy (Cy)
This implies that
Ny (C») Ny (C»)
Co ‘T”( Co )
Hence
e € Py 0 ey = P

Clearly, one has

Nm, (CC,") = Nmy,(C2)’Nm,, (C2)? = 1

Nmy (AC|") = Nm, (C1)’Nm,,

We also have

=1

p

C G

oJ(AC") cCt aa(A)(cra(Cl))‘
ACT? oJCCP) A C,
by’
Ay
a? b

Hence, we have

)

T(C)\o(Cr)

TJAC") o (CCyY
AC?  CCYP

)
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From [Con65, Page 756] (a variant of Hilbert’s Theorem 90) we see that there exists 6 € E*

such that
o.(0)

= AC,
T4(6) .
— =ccy”.

]

The next lemma is used in order to apply lemma 1.6.2 in theorem 1.6.4. Furthermore, this

lemma is used in Section 1.7.

Lemma 1.6.3. There exists e € E* such that B = %(6) Furthermore, the following statements

are true.
1 x — TuC)_C
€ E*, then B = G

(1) If we set Cy :=o.(e) € EX, Cy =€~
O’a(cl) CZ

(2) If we set Cy := e € E*, C, := (eB)o.(eB)- -0 (eB) € EX, then B = o ey

Proof. [IMT15b] We have
Nmgo (@) Nmg,(@) b _
Nmg, s (y)  Nms(y) b

Nm(ra(rf (B) =
Hence by Hilbert’s Theorem 90, there exists e € E* such that B = %@

In the first case, we have
g (C)) Co ouo(e) e _Ta0e) _ g
Ci 0C)  ole) ole e

%"‘(6), we have eB = 0,0 .(¢). Therefore o’ ' (eB) = o ,(e).

And in the second case, from B =

Hence
B = O-a(e) eB _ O-a(cl) C2

e o7'eB) Ci 0dCy)
(]

Theorem 1.6.4. Let the notation and assumption be as in Lemma 1.6.2. Let M := E( /s, VA, A/C, %).
Then M/F is a Galois extension, M contains F({/a, \/b, {/c) and Gal(M/F) = U,(F,).

Proof. [MT15b] Let W be a I ,-vector space in E*/(E*)? generated by [b]g, [Alg, [Clg and
[6]g. Here for any x # 0 in a field L, we denote [x]; the image of x in L*/L*. Since

0.(8) = 6AC,”,
T4(8) = 6CC57,

b
o,(A) = A—p (by lemma 1.4.1),
a

b
g.(C) = C—p (by lemma 1.4.1),
Y
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we see that W is in fact an IF ,[G]-module where G = Gal(E/F). Hence M/F is a Galois exten-
sion by Kummer theory.

Claim: dimy, (W) = 4. Hence [L: F]1 = [L: E][E : F] = p*p* = p°.

Proof of Claim: From our hypothesis that dimy ([alFr, [D]F, [c]r) = 3, we see that ([D]g) =
F

e
Clearly ([b]g) € WC. From the relation
[ou(A)]e = [Ale[b]E
we see that [A]g is not in W7«. Hence dimy ([b]g, [Alg) = 2.
From the relation
[0(O)]e = [Cle[D]E,
we see that [C]g is not in W7¢. But we have ([b]g, [A]g) € W7-. Hence
dimg ([D]E, [AlE, [ClE) = 3.
Observe that the element (o7, — 1)(0. — 1) annihilates the IF,[G]— module ([D]g, [Alg, [ClEg),

while (AL
(0 = Do = D[6]g = "[ATE = [blE,

we see that
dimz, W = dimg ([b)g, [Alg, [Cls, [6]5) = 4.

Let H** = F(Xfa, YA, {b) and H"* = F(X/c, /C, \/b). Let
N := H*"H"* = F({fa, {c, {b, YA, {C) = E(Vb, VA, Y/O).

Then N/F is a Galois extension of order p°. This is because Gal(N/E) is dual to the F,[G]-submodule
([P]Ee, [AlE, [Clg) via Kummer theory, and the proof of the claim above shows that

dimg ([D]e, [Alg, [Cle) = 3.

We have the following commutative diagram

Gal(N/F) Gal(H** | F)

Gal(H"*|F)

Gal(F(\b)/F)

So we have a homomorphism 7 from Gal(N/F) to the pull-back Gal(H”¢/F) X GalF(By/ )
Gal(H* | F):
12 Gal(N/F) = Gal(H"* | F) X gy 5y ) Gal(H*" | F)

which makes the following diagram commute.
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Gal(N/F)

Gal(Hb’c/F) XGal(F( KB/ F) Gal(Ha’b/F) — Gal(H“’b/F)

Gal(H"“|F)

Gal(F(\b)/F)

We claim that 7 is injective. Indeed, let o be an element in ker(n). Then oy = 1 in
Gal(H**/F) and |y = 1 in Gal(H”¢/F). Since N is the compositum of H*’ and H",
this implies that o = 1.

Since |Gal(H" | F) X oy 455 Gal(H* [F)| = p> = |Gal(N/F)|, we see then 7 is an iso-
morphism. As in proof of Proposition 1.4.2 we can choose an extension o, € Gal(H*" | F) of
o, € Gal(F(Rfa, A/b)/F) in such a way that

O-u({/z) = VK?

Since the commutative diagram above is a pull-back, we can choose an extension o, € Gal(N/F)
of o, € Gal(H*"/F) in such a way that

O'ale,c = 1

Now we can choose any extension o, € Gal(M/F) of o, € Gal(N/F). Then we have

a.(Va) = YA £ and & | yre = 1.

Similarly, we can choose an extension o, € Gal(M/F) of o, € Gal(F( /b, {/c)/F) in such a
way that

D D b
o () = VE% and o |y = 1.

Claim: The order of o, is p.

Proof of claim. As in the proof of Proposmon 1.4.2, we see that o/ (YA) = YA. Since
04(0) = 6CC, P we have o, (/6) = [ {/_V_C for some i € Z. This implies that

72(V6) = fo (Vo) (VO)ou(Cy)
= Ys(VO?C oG5,

Inductively we obtain

ol (V8) = (" Is(CY Ny, (Cy) ™!
= V65 (C) - Nmy, (Cy)™!
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Therefore, we can conclude that o = 1 and o, is of order p.
Claim: The order of o is p.

Proof of claim. As in the proof of Proposition 1.4.2, we see that o%(%/C) = {/C. Since
o.(0) = 6AC1_”, we have o ( %) =7 %%Cl‘l for some j € Z. This implies that

o2(V8) = o (V8)or (VAo (CT)
= (s(VAYC o).

Inductively we obtain

a?(V6) = P ls(VA)Y Nm,, (C1)”!
= 5 (4) - Nm, (Cy)™!
= Al

Therefore, we can conclude that o/, = 1 and o, is of order p.
Claim: oy, 0.] = 1.

Proof of claim: 1t is enough to check that 0,0 ( 6) = o.0,(V/5). We have

oao(V6) = oo Vs VACT"
= o (V8)r (VAo (C))™!

=7 VV_CZW/_E%(Q)—
= s cH/A i(o'a(Cl)Cz)‘
:W%%%fﬁmww
= s cH/A £(C10£(C2))_.

On the other hand, we have:

oo o(V6) = o' Vs ey
= Lo (V6)o (C)o(Cy) ™!

= s VACT IV_£UC(C2)_
=W%%%%@mwﬂ
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Hence o,0.(V5) = 0.0 ,(V5).
We define o, € Gal(M/K) to be the element which is dual to [b]g via Kummer theory. In

other words, we require that
ou(Vb) = ¢ b,

and o, acts trivially on /A, {/C and {/5. We consider 0, as an element in Gal(M/ F) then it is
clear that o, is an extension of o, € Gal(F(</a, /b, {/c)/F).

Let W* = Gal(M/E), and let H = Gal(M/F) then we have the following exact sequence
l->W ->H->G- 1.
By Kummer theory, W* is dual to W, hence W = (Z/pZ)*. In particular, we have |H| = p®.
Claim: [0y, 04, 0p]] = [Op, 00, 05]] = 1.
Proof of claim. Since G is abelian, it follows that [0, 0] is in W*. Hence
[0, [0, 011 = 1.

To see [0, [074,05]] = 1, observe Heisenberg group Us(IF),) is a nilpotent group of nilpo-
tent length 2, we see that [0, [0, 05]] = 1 on H*" and H"*. So it is enough to check that

[0, [0a, 76]1(5) = {5
By definition of o,, we see that
o0 (V6) = 0o (V6) = ouo, (V).

Hence [0, 05]( </(_S) = {/5. Since o, and o, act trivially on {/C, and o acts trivially on E, we
see that
(074, 53 )(VC) = VC, and [0, 7 1(C5") = 5.

Hence,

[0 1T o(V6) = [0, o1 V5V CC
= {00 ) (V)[04 71 (VO) T4 7 1(Ca) ™!
FsVccy!
oo (V5)
o uloa, o 1(V6).

Thus [0, [074, T ]1(V6) = 6.

Clalm [O-ba [O'b, O-c]] = [O'C, [O'b, O-c]] = 1
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Proof of claim. Since G is abelian, it follows that [0, 0] is in W*. Hence
[0, [oh, 07c]] = 1.

To see [0, [0}, 0c]] = 1, observe that the Heisenberg group U;(IF,) is a nilpotent group of
nilpotent length 2, we see that [0, [0, 0.]] = 1 on H*® and H"*. So it is enough to check that

CACAEAIQDERTS
By definition of o7, we see that
70 (V8) = 0 (V5) = ooy (Vo).

Hence [0, 0. ](V/6) = V5. Since o, and o, act trivially on {/A, and o acts trivially on E, we
see that

[0, 0 J(VA) = VA, and [0, 0. )(CTY) = CT.

Hence,

[0, o (V6) = [0, o 1 V6 VACT
= {'oy, o (Vo) oy, o J(VA) [0y, o 1(C)) !
=/ sAcT!
= o(V5)
= oc[op, o ) (V).
Thus [0, [0, o J1(V6) = /6.

Claim: [|loy, 0], [0, 07.]] = 1.

Proof of claim. Since G is abelian, [0, 0] and [0, 0] are in W*. Hence [[07, 03], [0, 0¢]] =
1 because W* is abelian.

Since o, 0, and o, generate Gal(M/F) and |Gal(M/F)| = p%, we see that Gal(M/F) =
U4(F,) by [BDO1, Theorem 1].

An explicit isomorphism ¢ : Gal(M/F) — U4(IF,) may be defined as

1100 1000 1000
b 0100 J [ S B J (U O
a0 1o “"7loo1 ol "cloo 11

0001 0001 000 1
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1.7 Explicit form of U,(IF,)—Extensions

Let the notation and assumption be as in Lemma 1.6.2. Let us consider the case p = 2 [MT15b].
In Lemma 1.6.3, we can choose e = # (Observe that @ +y # 0.) Since aa = yy = b where
a = o,(a) andy = o.(y), we have

a a
00 ( )= ——
a+y a+y
1
1+y/a
1
1+aly
Y
a+y
v o«
aa+y

If we choose C; = o.(e) and C, = ¢!, then by Lemma 1.6.3 part (1), we have

Qz’y

A = N (C1) = Ny (0(€) = N () = s

(@ +y)ay +b)
ba '

In Lemma 1.6.2, we can choose § = ¢™' = X In fact, we have

C = Nm, (C;) = Nmy (') =

o(6)
5

04(0)
5

=o.(e) e = o.(e)eo.(e) = C;2Nm,. (e) = AC;?,

=oe) e =elo,(e) e = Nm(,ﬂ(e_l) = CC2_2.
Therefore

M = F(Vb, VA, VC, Vo)

(a+y)(ay+b) a/+y
=F
(Vb. \/(0/+)/)(0/)/+b) \/ )
= F(Vb, 1/T, Vi@y +b), Nay).

Now by Lemma 1.6.3 part (2), if we choose C; = e = % and C, = eB = (ZLW then we have

oy
(@ +y)ay+b)

CZ)/2

(@ +7y)ay+b)

A = Nm,.(Cy) = Nmy.(e) =

C = Nmo.a(Cz) = Nmaa(eB) =
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In Lemma 1.6.2, we choose 6 = (a + y)~". In fact, we have

o.(6)  yl@+y)

= = AC?,
o ay+b !
7uld) _ ety _ on
0 ay+b

Therefore

a,2y ayZ
M = F(Vb, VA, VC, V5) = F(Vb, : N EE))
ay+b \ay+b

Observe also that M is the Galois closure of E( Vo) = F(+a, \c, V@ + 7).

1.8 Kummer theory and local class field theory

1.8.1 Abelian Kummer theory

Let K be a field containing an n—th root of unity. Let L/K be a Galois extension which is
abelian of exponent n i.e. for all o € Gal(L/K) we have 0" = id; then L = K( W) for some
subgroup K*" ¢ W c K*. In particular Kummer theory tells us that within a fixed algebraic
closure there is a bijection

{(WIK* ¢ W c K*} = {L/K abelian of exponent 7 inside K}
where the bijection is given by
W K(VW)

and
(LX)n N KX — L
In this case if W is a subgroup of K* corresponding to L/K by above correspondence, we
have a perfect pairing

Gal(L/K) x W/ K*" — ()

(o,a) — o(Ya)
b % .
To see the proof of the above facts, see [Jac64, Chapter III, Theorem 7 and Theorem 8]
or [Lan13, Theorem 8.1 and Theorem 8.2].

When we deal with abelian extensions of exponent p equal to the characteristic, then we
have to develop an additive theory.

If K is a field, we define an operator ¢ by

P(x) =xP —x



1.8. KUMMER THEORY AND LOCAL CLASS FIELD THEORY 19

for x € K. Then g is an additive homomorphism of K into itself. The subgroup ¢(K) plays the
same role as the subgroup K*? in multiplicative theory, whenever p is a prime number.

Now we assume K has characteristic p. A root of polynomial X” — X —a with a € K will be
denoted by p~'(a). If B is a subgroup of K containing p(K) we let Ly = K(p~'(B)) be the field
obtained by adjoining p~'(a) to K for all @ € B. We emphasize the fact that B is an additive
subgroup of K.

In this case, the map B — K(p~!(B)) is a bijection between the subgroups of K containing
@(K) and abelian extensions of K of exponent p. Let L = Lz = K(p~'(B)), and let G be its
Galois group. If o € G and a € B and ¢(a) = a, let {0, a) = o(a) — @. Then we have a bilinear
map

G X B — 7] pZ

given by
(0,a) = (0, a).

The kernel on the left is 1 and the kernel on the right is ¢(K). The extension L/K is finite if
and only if [B : ¢(K)] is finite and if that is the case then

[L:K]=[B:pK)

For proof see [Lan13, Theorem 8.3].

1.8.2 Local class field theory

In characteristic zero, a local field is either C or R or a complete discrete valued field with a
finite residue field. In characteristic p > 0, they are formal power series in one variable with
coefficient in a finite field.

Now Let K be a local field and K% be the maximal abelian extensions of K in a fixed
separable closure of K. Local class field theory says that there is a homomorphism
0: K* — Gal(K/K)
called the local Artin homomorphism that induces an isomorphism of topological groups
K* - Gal(K™|K)

where
KX =limK*/U

with U ranges over the finite index open normal subgroups of the group K*.

Let L be a finite extension of K. Let Nmyx : L — K* be the norm map. Let 6, and 0k be
the local Artin homomorphism associated to L and K, respectively. Let

res : Gal(L* /L) — Gal(K®/K)

be the homomorphism mapping an automorphism o of L% to its restriction o|gw. Then the
following diagram commutes.
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0

L = Gal(L* /L)
N mp g res

K> Gal(K® | K)

Now let L be a finite abelian extension of K in a fixed separable closure of K. The subgroup
Nmyk of the group K* corresponds to the subgroup Gal(L/K) of the group Gal(K* /K). Also
the composition

K* > Gal(K”/K) 5 Gal(L/K)
is surjective with kernel Nmy  x(L>).

The precise definition of € and the proof of the above facts can be found in [Sha72, Chapter
V] and [CF67, Chapter VI].



Chapter 2

Dihedral Extensions over Rational p-adic
Fields

Let Q, be the rational p-adic field for a prime p. It is well-known that there exist only finitely
many extensions of a fixed degree over Q, in a fixed algebraic closure of Q, [Wei95, p. 208].
Yamagishi [Yam95] computed the number of extensions K over a finite extension k/Q, whose
Galois group Gal(K/k) is isomorphic to a fixed finite p-group.

In this chapter, I will exhibit all extensions M over QQ, whose Galois group is isomorphic
to the dihedral group D, of order 8 [Nai95]. We will see that there exists no such extension for
p =1 (mod 4), one extension for p = 3 (mod 4) and 18 extensions for p = 2.

Definition 2.0.1. Let K be a field of characteristic not 2, and let a,b € K*. We define quater-
nion algebra (a, b) to be the K—algebra on two generators i, j with defining relations
2

P=a?=b,andij=—ji

2.1 Non-dyadic fields

It is known that there is a D4s—extension of field K with char(K) # 2 if and only if there
are a,b € K, which are independent modulo squares, such that quaternion algebra (a, b) is
split [MS90, Theorem 1.6]. When p = 3 (mod 4), then —1 is not square and by [LamO05, The-
orem 2.2], the only split quaternion algebra, in the form (a,b) where a and b are linearly
independent, is (p, —p). Hence for p = 3 (mod 4) there is just one dihedral extension of Q,,.

When p =1 (mod 4), again by [Lam05, Theorem 2.2], there is a u € Z, such that u is not
square and (u, p) is non-split quaternion algebra and there is no split quaternion algebra (a, b)
where a and b are linearly independent module squares in this case. Hence for p = 1 (mod 4)
there is no dihedral extension of Q,,.

Also the following is an alternative proof for p # 2 using W-groups. Let K be a field with

char(K) # 2. Define
K? = K(Va:aeK"),

21
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also define
E={ye K?: K?(y)/K is Galois}

and

K® =K(\y:y€é).
It is known that Gal(K® /K) = [];; Z/2Z, where I is smallest index set with {a; € K : i € I},
is a basis of K*/K>?. The field K is called the Witt Closure of K and the group Gal(K®/K)
is called the W-group. Observe that all D4-extensions of K are subfields of K® and by [MS96,
Example 4.2 and 4.3], we have

Gal(QY'/Q,) = Z/AZ X Z/4Z  when  p = 1(mod 4)

and
Gal(QY/Q,) = Z/AZ x Z/4Z ~ when  p = 3(mod4)

where o007 = 0! is the action in the latter case. Observe that there is no subgroup of
Gal(QS) /Q),) that is isomorphic to D4 for p = 1(mod 4) and there is exactly one subgroup for
p = 3(mod 4).

And second alternative proof from [Nai95] is the following. Let M/Q, be a D4-extension.
M/Q, has four intermediate fields N;, N{, N, and N, of degree 4 which are not Galois exten-
sions over Q,,.

We see they are totally and tamely ramified: totally ramified because || - ||, = INm(-)Ill,/ 4
which corresponds to decomposition of p in these degree 4 extensions as p = p* and tamely
ramified because p is an odd prime. We see by Serre [Ser78] that Q,, has four totally and tamely
ramified extensions of degree 4. Therefore we see that Q, has at most one D,-extension.

In the case p = 1 (mod 4), then —1 is square in Q,. So we see that Q, has no D,-
extension, because Q,(/p)/Q, is a totally and tamely ramified Galois extension of degree
4. Also Gal(Q,(+/p)/Q)) is a cyclic group of order 4. Because there is no cyclic quotient of
order 4 in dihedral group of order 8, therefore, there is no Dy4-extension like M/Q, such that
Q,(+/p) € M. In the case p = 3 (mod 4), we see that Q,( V-1, {/p) 1s the only Dy-extension
over Q,.

2.2 Dyadic fields

Let M/QQ, be Galois extension of degree 8. We know that the Galois group of M/Q; is iso-
morphic to Dy if and only if M contains an intermediate field of degree 4 which is not a Galois
extension over QQ,.

Let K be a quadratic extension over Q, such that M/K is a cyclic extension of degree 4.
Also assume K; and K are two other quadratic extensions over QQ,,. It is sufficient to construct
all quadratic extensions over K; and K, which are not Galois extensions over Q.
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2.2.1 Construction method

For every K; with i = 1,2 we can generate two quadratic extensions N; and N/ such that N;/Q,
and N;/Q, are non-Galois extensions of Q, as follows:

We get N; = Ki(Ve) and N] = Ki( Ve) for an € € K such that €7 /€ ¢ Kl.><2 where o is the
generator of the Galois group K;/Q,.

So M = Ki(+e, Ve”). Now examine a representative system of KX/K>*. Take all pairs
(€,€7) of the system such that € # €” mod K**>. By putting M = K;(Ve, Ve7), we get all Dy-

AN
\/ \/

.

Lemma 2.2.1. (/) 2-adic unit x is square in Q, if and only if x = 1 mod 8§,
(2) The set {—1,2,5} forms a F,-basis for Q;/Q;Z.
(3) The unique quaternion division algebra is (—1,—-1) = (2,5).
Proof. [LamO05, Corollary 2.24] O

So by the above Lemma, all quadratic extensions over (Q, are

Qa(V=1), Qa( V5), Qa( V=5), Qa( V2), Qx( V=2), Q2( V10), Qx( V-10)

Part One: m = +2 and +10:

Let K; = Q,(+/m) for m = +2 or +10. In this case, we have p = (y/m) is the prime ideal
of K; which lies over 2 . Also observe p° = 4p and by [LamO5, Theorem 2.19], all elements of
1 + p° are squares in K;. Therefore we get

(\/_) %
KX2 (m) (1 +m+2+m, 1+ pd)

1

IR
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where 1 + m + 2+/m = (1 + 4/m)?. Observe there is a natural isomorphism K; = (/m) x O*
and we have KX/ K>* = (y/m)/(m) x O*/O*2. On the other hand there is a surjective map

0k R 0
02  (1+m+2+ym,1+p%

and since the size of the left hand side is equal to the size of the right hand side (by following
lemma), we have

0e 0

02~ (1+m+2vm,1+pS)

Lemma 2.2.2. If K is a finite extension of degree n over Q,, then |[K*/K*?| = 2"*2,

Proof. [LamO05, Corollary 2.23]. |
So,
K= X
|—51=2" and I(\%)x o |=2x2x4=2%
K (m)  (1+m+2+m, 1+ p%)

Also for any x € O%, write x™! = a’ + b’ \/m, and choose a = a’(mod8) and b = b’(mod4).
Then it is easy to see that x(a + b\m) € 1 + 80 + 4p C O (since 1 + 80 C (0*)?). So

x+yVm=x+y Vm (modp’) & x=x (mod8)andy=y (mod4)

Hence, for constructing D4-extensions, it is sufficient to examine elements € and € \/m where
e=a+bmfora=1,2,3,4,56,7,8 and b = 0, 1,2, 3. But when a is even we can replace €
by €/m/2; therefore it is enough to check fora = 1,3,5,7 and b = 0, 1,2, 3. We take € such
that

1)e
2) e”
3) e(l +m+2+m)
4) e (1 +m+2+m)

are different modulo p° from each other and take € v/m, such that

1) e

2) —¢”

3) e(l +m+2+m)
4) —€"(1 + m + 2 \m)

are different modulo p° from each other, for number 2) and 4) we use the fact that (e /m)” =
—€” y/m. Then we get D4-extensions as follows:
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Ar ={Q m x/—_l),@xm, V-1),
@2(M, x/—_l),@z(\/:ﬁ, V-1
Ay ={Qx( \/\/3 \/—_1),@2(\/@, V-1
By ={Qx( m V=5), Qu \/5+7\/—_2 V-5),)
Cy ={Qx( \/ V=21 + V=2), V5), Qx( \/ V=21 +3V=2), V5),}
C, ={Qx( \/ V=101 + V=10), V5), Qz(\/ V=10(1 + 3V=10), V5),}
D ={Qx( m x/—_l),@z(m, V-1,
@2(\/\/?), V=1),Qs( \/ﬁ V-1
D ={Qx( \/\/?10 V—_l),@zm/ﬁ, V-1

Ei ={Qx(\1 + V=10, V=5),Q,(Y/5 + V=10, V=5),}

To check that the above method (Naito’s method) gives us distinct D4-extensions in each
set, we can use the following method.

We begin with a biquadratic extension Q,( va, \/E) of order 4 over Q. Let M| = Qx(+/ay, \/Z)
and M, = Q,(+/az, \/l;) be two extensions in the above list where a; and a» are in Q,(+/a) and

Nmq,(ya)o, (a_z) € Q3.

We will show that @; and @, are not in the same square class, i.e. @;/a@, is not square in
E := Qs(+a, Vb). Hence M, and M, are distinct.

Inset Ay, let My = Qy(A/1 + V2, V=1)and M, = Qz(\/3 + V2, V-1). Since Nmgy, ()0, (1+
\/5) =—1and Nsz(ﬁ)/@z(S + \/z) =7, we have

V=7(1 + \5)) _

Nm (————— 1.
Q2(V2)/Q2 34 \/E

Note that =7 = 1 (mod 8) and so —7 is square in (Q,. Now, by an explicit version of Hilbert
90 for quadratic extensions we can find a relation between 1 + V2 and 3“'—_‘? modulo squares in

\/7
E =Qx V=1, V2).
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(R
3+ V2

B+ V-D+U+ V-D)V2
- 3+ V2 '

l=t+1

Now assume 1 # o € Gal(Q»( \/i)/@z), so we have

Therefore

ol)=0c(+1)
=0 +1
o(t) + to(t)
=+ Do(t) = lo(2).

2.1

a())

=W

and by applying o on both sides we have

Hence

12

f=—
Nmg, 30,

So in the above case,

and since

V=I(1 + «/i)_[(3+ V=T) + (1 + «/—_7)\/5]2 1
3+ 42 3+ 12 2+

i

ﬁ:2_3+2_2+1+2+23+~~-€@2,Wehave

)

1
NETy——— E*nQ, =Qu@Q; U (-HQ; U (-2)Q;.
\/j

Hence 1 + V2 and 3 + V2 are not in the same square class of E, and M, # M,.

Let M5 = @2(\/ V2, V—1) and My = Q,(+/3 V2, V-1). For M5 and M4 we have E as

above and

Nm@z( V2)/ Qz( \/E) 2
2‘
Nmg, 30,3 V2)

So,3V2/V2 =3 ¢ E? implies M5 # M,.
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For the last step in A;, we need to check M| and M, ¢ {M5, M,}. Nsz(ﬁ)/Qz(l + \/z) and
Nmg, 5 /@2(3 + V?2) are in the square class of —1 denoted by [—1] in Q,, and Nmg, 5 /Qz( V2)

and Nmg, 30,3 V2) are in the square class of [-2] in Q,. Also since [—1] # [-2] in Q,, we
have M| and M, ¢ {M5, M,}.

For A,, we have Nsz(@)/Qz( V-2) =2 and Nsz( @)/Qz(:)’ V=2) =18, and [2] = [18] in
Q>. S0 3V-2/V-2=3¢ E? = Q,(V-2, V-1)? implies

Qa \/E V1) # Qu(43 V=2, V=),

In By, we have E = Q2( V=2, V=5)and Nmg,y=,,q,(1+ V=2) = 3as well as Nmg, 0,5+

V-2) = 27. Also we have [3] = [27] = [-5] in (Q,. So we need to use the explicit version of
Hilbert 90 for quadratic extensions to find a relation between 1 + V=2 and 5 + V-2.

Let
3(1+ V=2) 8+4vV-2
t=—————— and I=t+1=——\
5+ V-2 5+ V-2
Therefore )
3+N-2) __ F _[8+4\/—_2)2
5+ V-2 Nml) \5++v=2) 9

This concludes (1 + V=2)/(5 + V=2) = 6¢> where e € E. Since 6 ¢ E2NQ,, 1 + V-2 and
5 + V-2 are in different square classes of E. Hence

Qx(V1 + V=2, V=5) # Qs(5 + V=2, V=5).

In C;, we have E = Qy(V-2, \/5) and Nsz(ﬁ)/Qz(\/—Z(l + V=2)) = 6 as well as

Nmg,y=),0,( V=2(1 + 3V=2)) = 38. Also we have [6] = [38] = [-10] = [-2][5] in Q».
So we need to use the explicit version of Hilbert 90 for quadratic extensions to find a relation

between V-2(1 + V=2) and V-2(1 + 3 V-2).

Let
_ /9(1“/—_2) ind  [—141o A+ VI3 + G+ VIOB)V-2
3 1+3v=2 1+3V-2 '
Therefore
/Q(H\/—_zJ_t_ 2 _((1+\/19/3)+(3+\/19/3)\/—_2)2 1
3(1+3vV=2 Nm(l) 1+3vV-2 241 ?
This concludes
V=2(1+ V=2) _ 1 )

V=21 +3V=2) \/§(2+ﬂ Q)

19 3
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where e € E. Since

1

in Q, and since -5 ¢ E*> N Q,, V=-2(1 + V=2) and V-2(1 + 3 V-2) are in different square
classes of E. Hence

Qo V221 + V720, V5) % Qa(y V22(1 + 3V72), V3).

In Cy, we have E = Qy(V-10, V5) and Nmg, y=55,0,( V-10(1 + V=10)) = 110 as well

as Nmg, y=15)/0,( V=10(1 + 3 ¥=10)) = 910. Also we have [110] = [910] = [-2] = [-10][5]
in Q,. So we need to use the explicit version of Hilbert 90 for quadratic extensions to find a

relation between V—10(1 + V-10) and V-10(1 + 3 V-10).

=[-5]

Let

_\/g[l+\/—10) nd =412 (L NOITD + 3+ OT/TT) V=10
- V111 +3v=10 o 1+3v=10 '

Therefore

\/i( 1+ V=10 ] L P ((1 +\OT/TDH) + (3 + \/91/11)x/—10)2 1
1r+3v=10) B 1+3V-10 54

62 [91

91 11

This concludes

V-10(1 + V-10) _ 1 2
V=10(1 + 3 V-10) ﬂ(2+ 62 \/%)

11 91

where e € E. Since

1
91 62 (91
\/;(2 *or ﬁ)

in Q, and since —5 ¢ E>NQ,, we have V-10(1+ V-10) and V-10(1+3 V—-10) are in different
square classes of E. Hence

= [-5]

Qz(\/\/—l()(l + V=10), V5) # Q \/\/—10(1 +3V-10), V5).

For D, assume

My = Qa(A/1 + V10, V=1), M, = Qy(\3 + V10, V=1),

M; = Q,(y V10, V=1), My = Qx(\3 V10, V=1).
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In this case, we have E = Q»( V10, V-1). We want to show M, # M,. We have
Nmg, 5,0, (1 + V10) = =9 and Nmg 50,3 + V10) = —1. Since [-9] = [-1] in Q,,
we can find a relation between 1 + V10 and 3 + V10 using Hilbert 90.

Let
3(1 + V10) 6+ 410
t=——" "7 and I=t+1=—"—.
3+ V10) 3+ V10
Therefore 5
31+ V10) _ P _(6+4x/ﬁ) (4)(49)
3+ V10 Nm() \ 3+ 10 -1

This concludes (1 + V10)/(3+ V10) = —e? where ¢ € E. Since —1 ¢ E2NQ,, we have 1+ V10
and 3 + V10 are in different square classes of E. Hence M| # M,.

To see M5 # M,, observe

3V10
Nmg,(vioye, [— To ):9
and
3V10
| =131=[-5
[\/ﬁl sl

in Q,. Also observe =5 ¢ E? N Q,. Therefore V10 and 3 V10 are in different classes of E.
Hence M5 # M,.

For the last step in Dy, we need to check M, and M, ¢ {M3, M,}. We have Nsz(M)/Qz(l +
V10) and Nmg,yio)0, 3+ V10) are in the square class of —1 in (@, and Nmg, yi5)/0,( V10) and

Nsz(m)/QZG \/E) are in the square class of [-10] = [10][—1] in Q,. Also since [—1] # [—10]
in Q,, we have M| and M, ¢ {M5, M.}.

For D,, we have Nmg, y=16)/0,( V-10) = 10 and Nsz(m)/@z(?’ V-10) = 90, and [10] =
[90] in Q,. So 3V-10/ V=10 = 3 ¢ E? = Q,( V-10, V-1)? implies

Q,( V=10, V=1) # Q(\/3 V=10, V-1).

In E;, we have E = Q,(V-10, V=5) and Nsz(m)/@z(l + V=10) = 11 as well as
Nsz(m)/Qz(S + V=10) = 35. Also we have [11] = [35] = [-5] in Q,. So we need to
use explicit version of Hilbert 90 for quadratic extensions to find a relation between 1 + V—-10

and 5 + V-10.
Let
35(1+ v-10 5+ V35/11) + (1 + v35/11) V-10
t=A\=|—7—F7— and [=t+1= .
115+ V=10 5+ V=10
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Therefore
§(1 + \/—10] s ? 3 ((5 + V35/11) + (1 + v35/11) \/—10)2 1
V11154 V=10 Nm(l) 5+ V-10 b6 [3
7V11
This concludes
1+ v-10 1 5
= e
5+ V—IO \/%(24_%\/%)

where e € E. Since

1
3 6 |35
JE(2+syR)

in Q, and since -2 ¢ E> N Q,, we have 1 + V=10 and 5 + V-10 are in different square classes

of E. Hence
Qu(y1+ V=10, V=5) # Q,(y/5 + V=10, V=5).

Part Two: m = -1, -5:

=[-2]

Let K; = Q,(+/m) for m = —1,-5. In this case, p = (1 + +/m) is the prime ideal of K;
which lies over p. We see that all elements of 1 + p° are square in K; (same as part one for any
x € 1 + p> we have Nm(x) = 1(mod3)).

For K; = Q,(V—-1), we have

K (1+ V-1 O~

K27 Vo )

since 7 = (V—1)? (mod p°). We examine elements € and €(1 + V—1) where € = a+b(1 + V-1)
fora=1,3,5,7and b =0, 1,2, 3. We take € such that

1) e
2) e”
3) 7€
4) 7e”

are different modulo p° from each other and take €(1 + V—1), such that

e

2) —V-1¢e”
3) 7€

4) V-1e”
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are different modulo p° from each other. Then we get Dy-extensions as follows:

(Qa(N1+ V=1, V2),Qa(+/3(1 + V=1), V2)}

Ay =
Dy = {Qu(A/1+3V=1, V10),Q,(\1 +5V~=1, V10)}
Fr = {Qu(3+2V=1, V5),Qx(\2+ V=1, V5),)

Next, consider K; = Q,( V-5). We get:
K (1+ V=5) o 0
K?  (-4+2V-5) G, 1+p9)

since 3 = (V=5)> (mod p°). We examine element € and e(1 + V—5) where € = a + b(1 + V-5)
fora=1,3,5,7and b =0, 1, 2, 3. We take € such that

IR

e
2) €”
3) 3¢
4) 3¢”

are different modulo p> from each other and take (1 + V-5), such that
1)e

2) €72 +5V-5)

3) 3¢

4)3e”(2+5V-5)

are different modulo p> from each other. Then we get D4-extensions as follow:

(Qa(\ =1 +5V=5, V=2), Qs( /3 + 5 V=5, V=2)}

Bz =
E; = {Qu1+ V=5, V2),Q,(~/5(1 + V=3), V2)}
Fy = {Qx(A\3+2V=5, V=1),Qx(V4 + V=5, V=1),}

Now we are going to check the distinction of the extensions in each set using the explicit
version of Hilbert 90 for quadratic extensions.

For A;, we have Nmg, —,0,(1 + V=1) = 2 and Nmg, =,,0,(3(1 + ¥=1)) = 18, and
[2] = [18]in Q,. So 3(1 + V=-1)/(1 + V=1) = 3 ¢ E? = Q,( V-1, V2)? implies

Qu(\1+ V=1, V2) # Q,(~/3(1 + V=1), V2).
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In D5, we have E = Q,( V10, V-1)and Nsz(ﬁ)/Q2(1+3 V—1) = 10 as well as Nsz(\/jl)/Qz(l‘f‘

5vV-1) = 26. Also we have [10] = [26] in Q,. So we need to use the explicit version of Hilbert
90 for quadratic extensions to find a relation between 1 + 3 V=1 and 1 + 5 V-1.

Let
_\/7(1+3x/_] wd l— el (1+\/13/)+(5+3\/13/)\/_
1+5vV-1 1+5vV-1
Therefore
\/§(1+3«/—_1)_t P ((1+\/13/)+(5+3\/W)«/_] 1
1+5V=1 Nm(l) 1+5v=1 2410 15
This concludes
1+3\/_ 2
1+5vV=1 \/’( \/’)

where e € E. Since
1
13 16 |13
JE(2+ %)

in Q, and since -2 ¢ E*> N Q,, we have 1 + 3 V-1 and 1 + 5 V-1 are in different square classes

of E. Hence
Qx(V1+ V=1, VI0) # Qx(1 + 5 V=1, V10).

In F», we have E = Qo( V5, V=1) and Nmg,\,,0,(3+2 V=1) = 13 as well as Nimg, =, 0, (2+

V—1) = 5. Also we have [13] = [5] in Q,. So we need to use the explicit version of Hilbert 90
for quadratic extensions to find a relation between 3 + 2 V-1 and 2 + V-1.

=[-2]

Let
\/7(3+2\/_) nd  Ierele (2+3\/5/1)+(1+2\/5/1)x/_
2+ V-1 2+ V-1
Therefore
\/E[3+2x/—_1):t: & :((2+3\/5/13)+(1+2\/5/13)\/—_1)2 1
2+ V=1 Nm(l) 2+ V-1 2418 %
This concludes
3+2\/_ 1 2

T )
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where e € E. Since

1

in Q, and since —10 ¢ E2 N Q,, 3 +2 V-1 and 2 + V-1 are in different square classes of E.

Hence
Qx(V3+2V=1, V5) = Qx(\2 + V=1, V5).

In B,, we have £ = @2(\/_ V-2) and NmQ (V) (-1 +5vV-5) = 126 as well as
Nmg, y=3)0, (3+5vV-5) = 134. Also we have [126] = [-2] and [134] = [-10] = [-2][5] in

Qz. So 5 is square in Q (/3 + 5v=5, VY=2) but not in Qa(~/-1+ 5v=5, VY=2). Hence they

are distinct.

= [-10]

For E>, we have Nmg, \,0,(1 + V=5) = 6 and Nmg, y=50,(5(1 + V=5)) = 6(5)%, and
[6] = [-10] in Q,. So 5(1 + V=3)/(1 + V=5) =5 ¢ E? = Q»( V-5, V2)? implies

»(V1+ V=5, V2) # Qa(4/5(1 + V=5), V2).

In F5, we have E = Q,( V-5, V-1)and Nsz( \/S)/QZ(3+2 V-=5) = 29 as well as Nsz(ﬁ)/Q2(4+

V-=5) = 21. Also we have [29] = [21] = [5] in Q,. So we need to use the explicit version of
Hilbert 90 for quadratic extensions to find a relation between 3 + 2 V-5 and 4 + V-5.

Let
t:\/§[3+2x/—_5) od el (4+3\/29/2)+(1+2\/29/2)\/_
4+ V-5 4+ V=5
Therefore
\/@(uzx/—_s]_t P [(4+3\/21/2)+(1+2\/21/2)«/_) 1
4+V=5)  Nm) 4+ V=5 24 s [
This concludes
3+2V-5 _ 2
NN |

where e € E. Since

1

21 44 (21
Vo (2 o @)

in Q, and since 2 ¢ E> N Q,, we have 3 +2 V-5 and 4 + V-5 are in different square classes of

E. Hence
Qa(\3 +2V=5, V=1) £ Qx(V4 + V=5, V=1).

= [2]
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Part Three: m = 5:

By [Coh08, Lemma 4.4.26], we have K; = Qx( V3) is the only unramified extension of Q.
Take p = (2) which is the prime ideal of K;. We see that all elements of 1 + p? are square in K;
since they are congruent to 1 modulo 8.

Letd=(1+ \/5)/2, we see that
1+6,2+360,5,5(1 +6),52 + 30)

are square in K; since Nm(1+6) = Nm(“T‘B) =1, Nm(2+30) = Nm(%g) =land5 = (\/5)2.
We examine elements € and 2e where €e = a + b8 for 0 < a < 7and 0 < b < 7 such that
either a or b is odd. We take € or 2€ such that

D) en
2)e’n

are different modulo p? each other where 7 runs over
{1,1+6,2+36,5,5(1 +6),2 + 76}.

Then we get D4-extensions over (9, as follow:

Fi o= {Q(\2+ V5, V=1),Qx(V4 + V5, V=1),
Qo422 + V5), V=1),Qx(y/2(4 + V5), V=1))

Now we would like to check that the extensions in set F'; are distinct.

M, = Q)(N2+ V5, V=1) M, = Q,(\J4 + V5, V=1)
My = Q(A/22 + V5), V=1) M, = Qy(A2(4 + V5), V=1)

Since 22+ V5)/2+ V5) =2 ¢ E*> = Q,(V5, V=1)?, we conclude M; # M5. Also for the
same reason, M, # M,. In addition we have Nmg, 50,2 + V5) = =1 and Nmg, 50,4 +

V35) = 11. Also we know [11] = [-5] # [-1] in Q,, hence M, M5 ¢ {M,, M,}.

Let

Part Four: Removing extra counted extensions:

We get all D,-extensions over Q, as above. But we doubly counted the number of dihedral
extensions L, because K;( Ve, Ve”) coincides with K>( V€, V&) for a suitable ¢ € K where 7
is the generator of the Galois group of K,/Q,. Therefore N = K;( Vee?) are other quadratic ex-
tensions K of (Q, in D4-extensions other than K; and K,. Thus we have the following equalities.
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A, = Ay U Ay where E = Q( V=1, V2) and K = Q2(V-1) in A, and K = Q,( V=2) in A4

respectively.
B, = B, where E = Q,( V-2, V=5) and K = Q,(V10).
C; = C, where E = Q,(V-2, V5) and K = Qx(V5).
D, = D, U D; where E = Q,( V=1, ¥Y10) and K = Q2( V=1) in D, and K = Q,(V=10) in

D5 respectively.
E, = E, where E = Qz(\/i, V=5) and K = Q( ‘/5)-
F, = F, U F3 where E = Q,( V=1, V5) and K = Q,(V=5) in F, and K = Q,(V=1) in F;

respectively.

Hence, all 18 distinct D4-extensions are as follows:

QN1+ V2, V=1) Qx(V1+ V=2, V=5)
Qu(3 + V2, V=1) Qx(V5+ V=2, V=5)

0y V2. VD) Q21 + V2), ¥5)
Qu(y3V2, V=1) @2<\/ V=2(1 +3V-2), V5)

Qa( m V-1) @xm, V-1)

Qa m V-1) @xm, V-1)
Qz(\/\/T_Oa V-1) Qx(42Q2 + V5), V=1)
(Y3 V10, V1) Qu(24 + V5), V=)

Qa1 + V=10, V-5),
Q2(4/5 + V-10, V-5),

2.3 Description of Galois D,-extensions

In this section, we describe all dihedral extensions over all fields.
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2.3.1 The case of characteristic not 2

Let F be a field of characteristic not 2.

Definition 2.3.1. An unordered pair {[blr,[alr}, where a and b are in F* is admissible if
(b,a) = 0 and dimg,({[a]F, [P]F)) = 2.

Lemma 2.3.2. Assume that {[blr, [alr} is admissible. Let E = F(+/a, \/E). Then there exists
01 € F(~\a) such that

[NmF( \/E)/F(él)]F = [b]F.

Furthermore for any such 9, there exists 6, in F( \/l_)) such that [61]g = [02]g and
[NmF( \/E)/F(62)]F = [a]F.
Proof. As (a,b) = 0 there exists 6; € F(+/a) ( [Ser13, Chapter XIV, Proposition 4]) such that

[NmF( \/&)/F((s] )N = [b]F.

Now let 6 be any element in F(+/a) such that [Nmpz,7(6)1r = [b]r. We write 6§ = x + y Va,
where x,y € F*. Then x> = y>a + bd?, for some d € F*. Hence

(x + yVa +dVb)* = 2(x + yVa)(x + d Vb).

Set 6, = 2(x + d Vb) € F(Vb). Then [6,]p = [6:2]¢ and [Nmy, 5, p(62)]F = [4(x* — bd®)]F =
[4y*alF = [alF. O

The above lemma shows that the following definition is well-defined.

Definition 2.3.3. Ler P = {[b]r, [alr} be an admissible unordered pair. Let E = F(+/a, \/E). A
one dimensional Fy-subspace W of E* |(E*)? is said to be compatible with P if W is generated
by a § € F(\a) with [Nmpg\z,r(0)]F = [b]r. In this case we say that (P, W) is admissible.

The construction of Galois D4-extensions over fields of characteristic not 2 is known. See
for example [JLY02, Theorem 2.2.7]. Here we make a description of all Galois D4-extensions
over a given field, which is similar to the description of Galois U(IF,) extensions in Theo-
rem 3.1.1.

Theorem 2.3.1. Let F be a field of characteristic not 2. There is a natural one-one correspon-
dence between the set of admissible pairs ({[alr, [b]r}, W) and the set of Galois D, extensions
L/F.

Proof. Let ({[blr, [alr}, W) be admissible. Let E = F(+a, Vb). Let L = E(YW). Then L/F
is a Galois Dy-extension. (See for example [MT14a, Subsection 2.2].)

Now let L/F be a Galois D,-extension. We identify D, with U3(IF,). Let p: Gal(L/F) —
U;(IF,) be any isomorphism. Set o; = p!(E},), and 0, = p~'(E»3). Then the commutator
subgroup ® = [Gal(L/F),Gal(L/F)] is {[o1, 02]).
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Let M be the fixed field of ®. Then M/F is a 2-elementary abelian extension of F, and
Gal(M/F) is the internal direct sum

Gal(M[F) = (oi|u) ®{0alu) = (Z/27)".

Let [a]r, [b]r be elements in F*/(F*)? which are dual to |y, 0|y respectively via the Kum-
mer theory. Explicitly we require that

o1 (Va) = —Va, o (Vb) = Vb;
o2(Va) = Va,o(Vb) = — Vb.

Claim: {[b]F, [a]Fr} does not depend on the choice of p.

Proof of Claim: Suppose that p’: Gal(L/F) — U;(IF,) is another isomorphism. We define
o = p"""(En), and 0, = p’"'(E3). We need to show that {oi |y, oalu} = {07, 0lu}. We
first note that @ is the centre of Gal(L/F).

Because o7y is in Gal(M/F) = (o 1|y) ® {02|m), we have that modulo the subgroup @, o7,
is equal to one of the following elements o, 0, or o1 07.

If o, = 070, modulo @, then 0"22 = (0103)* # 1, a contradiction. Similarly o7 cannot be
010 modulo ®.

Case 1: 0, = 0y modulo ®. In this case o] cannot be oy modulo ®. Otherwise it would
lead to a contradiction that 1 # [¢07], 0] = [0, 0] = 1. Hence o7} = 0, modulo ©.

Case 2: 0, = 0, modulo ®. In this case o7 cannot be o, modulo ®. Otherwise it would
lead to a contradiction that 1 # [0}, 07,] = [0, 03] = 1. Hence o] = 0y modulo ©.

In both cases we have {o71|y, 02|y} = {07, 0|}, as desired.

We have an exact sequence
1 = Gal(L/F(~a)) = Gal(L/F) — Gal(F(Va)/F) — 1.

Then Gal(L/F(+a) is an F,[Gal(F(+/a)/F)]-module where the action is by conjugation. We
also have the Gal(F(+/a)/F)-equivariant Kummer pairing

F(+a) n (L)

(F(Na)<? x Gal(L/F(Va)) — F,.

As an F,-vector space Gal(L/F(+/a)) has a basis consisting of o, [0}, 03]. Let & be the el-
ement dual to [o7,02]. Then Nmpg(z),r(6) = b mod (F( \a)*)?. Hence Nmpgyzr(6) 1s in
b(F*)? U ba(F*)?.
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Suppose that Nmp(a),r(6) = baf?, for some f € F*. From 0(6)/6 = ba(f/6)*, we see

that
o1(V6) = (£) V5 Vbaf/s.
Hence
oH(V8) = (£)or 1 (V&)1 (Vba)(f/1(6))
= (+)2 V6 Vba(f/6) Vb(— Na)(f [o1(6))
This implies that o7 is not of order 2, a contradiction. Hence we have [Nmg,r(6)]r = [b]Fr. Let

W be the one dimensional F»-subspace of M*/(M*)? generated by [6]),. Then W is compatible
with {[a]F, [b]r}. Also since L = M( VW ), we see that W does not depend on the choice of

0. o

Lemma 2.3.4. Assume that F is a finite extension of Q, of degree n. Let q be the highest
power of 2 such that F contains a primitive g-th root of unity. Then the number N of admissible
unordered pairs {[a]F, [D]F} is

@72 -D@' -1 fq#2
@' -1y ifg="2.

Proof. Let N’ be the number of ([a]r, [D]F) such that (a, b) = 0 and that dimg,{[a]F, [P]F) = 2.
Then N = N’/2. On the other hand, by [MT15a, Remark 3.9], we have

N Q" -1 -2) ifg#2,
202" — 1)? if g =2.

The result then follows. |

Lemma 2.3.5. Assume that F is a finite extension of Q, of degree n. Let us fix an unordered
admissible pair {[a]F, [b]r}. Then the number of admissible pairs ({[alr, [P]r}, W) is 2".

Proof. By local class field theory we have an isomorphism
FX

~ Gal(F(Va)/F) = 7]27.
Ninm e (Fyay . A ENaIb = 21

FX
Nmg oy, r(F(Na)<)

Since G := Gal(F(+/a)/F) is of exponent 2, we see that is also of exponent

2. Hence
(F*)* € Nmp(ayr(F(Va)*) € F*.

Since |G| = 2, we have

5 Fx ‘ 3 [ o Nmp(a,r(F( Va)*)
- Nmp(yzr(F(Na)<) RGO (F>)?
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By [Neu99, Chapter II, §5, Corollary 5.8], one has |[F*/(F*)?| = 2"*2. Hence

NmF(\/E)/F(EX) B ‘ F*
(F2 (P2

/2 — 2n+1 ]

F X F* N E*
(V) — . Then im(Nm) = mE/—F()
(F( \/E)X)Z (Fx)z (Fx)z
By [Neu99, Chapter II, §5, Corollary 5.8], one has |F(+/a)*/(F(+a)*)?| = 2*"*2. Hence we

Consider the homomorphism Nm::

have
| ker Nm| = PV JAim(Nm)| = 222 /2m+t = on+l,
(F(Va)y<)?
Hence
U681 rym: [Nmp (o r(O)]F = [blp}l = | ker Nm| = 27!,
Therefore the number of W such that ({[b]F, [a]r}, W) is admissible, is 2"+!/2 = 2. O

We recover the following result, which was also obtained in [Yam95, Theorem 2.2] (see
also [MNQD77, Theorem 11], [MT14a, Remark 3.9]).

Corollary 2.3.6. Assume that F is a finite extension of Q, of degree n. Let q be the highest
power of 2 such that F contains a primitive g-th root of unity. Then the number of Galois
Dy-extensions of F is

2122 1)2"—1)  ifg#2,
2n(2n+1 _ 1)2 lfq =2.

Proof. This follows from Theorem 2.3.1, Lemma 2.3.4 and Lemma 2.3.5. O

2.3.2 The case of characteristic 2

Let F be a field of characteristic 2. We define the class of a € F* in F*/p(F™") as [a]F.

Definition 2.3.7. An unordered pair {[blr,alr}, where a and b are in F* is admissible if
dimy,({[alF, [b]F)) = 2.

Lemma 2.3.8. Assume that {[b]r, [alr)} is admissible. Let E = F(0,,0,) where 6, € p~'(a) and
0, € 9~'(b). Then there exists 5, € F(6,) such that

[Tre,)r(00)]F = [b]F.

Furthermore for any such 6., there exists 6, in F(0,) such that [01]g = [02]g and

[Trr,)r(02)]F = [alF.

Proof. As the trace map Trr,),r 1s surjective, there exists 6; € F(6,) such that

[Tre,)r(0D]F = [D]F.
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Now let §; be any element in F(6,) such that [Trz,),7(61)]F = [b]r. We write 6 = x + y6,,
where x,y € F. Theny = b + ¢(d), for some d € F. We have

81+ x+aby, +ab +ad* = x + (b + p(d))0, + x + aby, + ab + ad”
= [bB, + ab), + ab] + [p(d)6, + ad”]
= [(6a6)” = 0ubp] + [(d6,)* = d6,].
Setd, = x +ab, +ab + ad* € F(6,). Then [0,]g = [02]¢ and [Trp(gb)/p((sz)]p = [a]F. O
The above lemma shows that the following definition is well-defined.

Definition 2.3.9. Let P = {[b]r, [alr} be an admissible unordered pair. Let E = F(6,,6,).
A one dimensional ,-subspace W of E/p(E) is said to be compatible with P if W is gen-
erated by a 6 € F(0,) with [Trpg,)r(6)]r = [D]r. In this case we say that (P, W) is admissible.

Lemma 2.3.10. Let {[alr, [b]r} be an admissible unordered pair Let E = F(6,,6),). Let 6 €
F(6,) with [Trpg,)r(0)]F = [D]r. Then E(5)/F is a Galois Ds-extension.

Proof. The extension E/F is Galois with Galois group generated by o, 0, where o, and o7,
are defined by the conditions:

O-a(ea) = ga + 1’0-a(9b) = 917’
0(0,) = 04,00,) =6, + 1,

Since Trr,),r(0) = b + p(d) for some d € F, we have
0,00)=0+b+p().
Clearly we have
0(0) = 0.

Then [MT14a, Proof of Proposition 4.1] shows that L = E(6s)/F is Galois and its Galois
group is isomorphic to D4. Furthermore, we can choose an extension, still denoted o, in
Gal(L/F), of o, such that o,(05) = 05 + 0, + d. O

Theorem 2.3.2. Let F be a field of characteristic 2. There is a natural one-one correspondence
between the set of admissible pairs ({[a]r, [b]r}, W) and the set of Galois D, extensions L/ F.

Proof. Let ({{b]r, [alr}, W) be admissible. Let E = F(+a, Vb). Let L = E(VW). Then L/F
is a Galois D4-extension. (See [MT14a, Subsection 4.2].)

Now let L/F be a Galois Ds-extension. We identify D, with Us(IF,). Let p: Gal(L/F) —
U;(IF,) be any isomorphism. Set o; = p~!(E},), and 0, = p~!(E»3). Then the commutator
subgroup ® = [Gal(L/F),Gal(L/F)] is {[o1, 02]).

Let M be the fixed field of ®. Then M/F is an 2-elementary abelian extension of F, and
Gal(M/F) is the internal direct sum

Gal(M[F) = (oilu) ® {0l = (Z/27)*.
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Let [a]r, [b]r be elements in F/p(F)* which are dual to o]y, 02|y respectively via the Artin-
Schreier theory. Explicitly we require that

016,) =60, +1,01(6) = 6;
02(6,) = 04,02(6,) = —0).

Claim: {[b]F, [a]r} does not depend on the choice of p.

Proof of Claim: Suppose that p’: Gal(L/F) — Uy(F,) is another isomorphism. We define
o = p""(En), and 0, = p’"'(E3). We need to show that {oi |y, oalu} = {07 m. 0lu}. We
first note that @ is the center of Gal(L/F).

Because 07|y 1s in Gal(M/F) = {o{|y) ® {02|u), we have that modulo the subgroup @, o
is equal to one of the following elements oy, 07, or o;07.

If o}, = 070, modulo @, then 0"22 = (0103)* # 1, a contradiction. Similarly o} cannot be
0105 modulo ®.

Case 1: 0, = 0y modulo ®. In this case o cannot be o modulo ®. Otherwise it would
lead to a contradiction that 1 # [0}, 07] = [0}, 0] = 1. Hence o] = 0, modulo ©.

Case 2: 0, = 0, modulo ®. In this case o7 cannot be o, modulo ®. Otherwise it would
lead to a contradiction that 1 # [0}, 07,] = [0, 03] = 1. Hence o] = 07 modulo ©.

In both cases we have {o1|y, 02|u} = {07, 0| u}, as desired.

We have an exact sequence
1 - Gal(L/F(6,)) — Gal(L/F) — Gal(F(6,)/F) — 1.
Then Gal(L/F(6,) is an F,[Gal(F(6,)/F)]-module where the action is by conjugation. We also
have the Gal(F(6,)/ F)-equivariant Artin-Schreier pairing
F(0,) N p(L)
P(F(6,))
As an F,-vector space Gal(L/F(6,)) has a basis consisting of o, [01,03,]. Let 6 be the

element dual to [07y,0:]. Then Trpg,)r(6) = b mod (p(F(6,)). Hence Nmpy,,r(d) is in
b+p(F)Ub+a+ p(F).

X Gal(L/F(6,)) — F.

Suppose that Trr,),r(6) = b+ a + p(f), for some f € F. Then 01(6) =6 + b + a + p(f).
Thus
010s) =0;+60b+6,+ f+1,

for some i € {0, 1}. Hence
01(65) = 01(05) + 01(6p) + 01(6,) + f +1i
=0;+6,+0+a+f+i0,+6,+1+f+i
=05+ 1.



42 CHAPTER 2. DIHEDRAL EXTENSIONS OVER RATIONAL p-ADIC FIELDS

This implies that o is not of order 2, a contradiction. Hence we have [Trg,r(6)]r = [b]r. Let
W be the one dimensional IF,-subspace of M*/(M*)* generated by [6]y,. Then W is compatible
with {[a]F, [b]F}. Also since L = M(fy ), we see that W does not depend on the choice of p. O

Using the correspondence in Theorem 2.3.1, we can rearrange Naito’s list of D4—extensions
in the following table.

{[a], [b]} Naito’s list of D,—extensions

{-11,121} Qu(+/1 + V2, V=1 Qu(/3+ V2, V=1)

Nmg,(y2y0,(1 + V2) = -1 Nmg, \3yq,(3 + V2)=7

{[-11,[51} Qa(~2+ V5, V=1 Q422+ V3), V=)

Ningy, 50,2+ V5) = -1 Nmg, (50,22 + V5)) = —4

{[-11,[10]} Qa(+/1 + V10, V=1) Qu(4/3 + VIO, V=1)

N, yigq,(1 + V10) = =9 N, yioy0,3 + V2) = =1

{[-21. 2]} @2<\/x72, V=1 Qu(4/3V2, V7))

Nmg,5)/0,( V2) = -2 Nmg, \E)/QZG V2)=-18

{[-51,[51} Q4+ V5, V=) Q424+ V5), V=1)

Nmg,sg,(4 + V5) = 11 Nmgy, (50,24 + V5)) = 44
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(21, [-10]) DYV + VD NE) GV +3VD)

Nsz(\/TQ)/QQ( \/—_2(1 + \/—_2)) =6 Nsz(ﬁ)/Qz( \/—_2(1 +3 \/—_2)) =38

{[-10],[10]} Qa(+/ V10, V=T) Q2(~/3 V10, V=1)

Ny, i5)0,( V10) = -10 Nmg, yi6)0,(3 V10) = -90

{[-51,[-101} Qu(y1+ V=10, V=5)  Qu(+/5+ V=10, V=5

{[-21,[-51) Q(y1+ V=2, V=5) Qu(y5+ V=2, V=5

Nmg, o1+ V=20 =3 Nimg,(ymy0,(5 + V=2) = 27




Chapter 3

U4(IF>)-Extensions

In the last chapter we saw the list of all Ds—extensions of rational 2-adic fields. In this chapter,
we use the technique of Mina¢ and Tan [MT15b], which is introduced in chapter 1, to write the
list of all U4(IF,)—extensions of QQ,.

3.1 Description of Galois U,(IF;)-extensions over fields

For any field F of characteristic not 2 and for any element a € F*, we denote [a]r the image
of a in F*/(F*)?. For any field L of characteristic 2 and for any element a € L, we denote [a];
the image of a in L/p(L).

For 1 < i, j < n, let ¢;; denote the n-by-n matrix with the 1 of I, in the position (i, j) and 0
elsewhere, and let E;; = I + ¢;; where [ is identity matrix of order n.

3.1.1 The case of characteristic not 2

Let F be a field of characteristic different from 2.

Definition 3.1.1. A pair ([blg, V), where b is in F* and V. C F*/(F*)?, is admissible if
dimg, (V) = 2, dimg, KV, [b]F)) = 3 and (b,v) = 0 for every [v]Fr € V.

Lemma 3.1.2. Assume that ([blr, V) is admissible. Let E = F(\V). Then there exists § € E
such that [NI’I’LE/F((S)]F = [b]F.

Proof. We have V = ([a]F, [c]F) for some a,c € F*. Then (a,b) = (b,c) = 0. By [MT13,
Section 5], there exists 6 € E such that Nmg,r(0) = bd? for some d € F*. O

Definition 3.1.3. Assume that ([b]y, V) is admissible. Let E = F(\V). Then a triple ([b]z, V, W),
where W is a free F»[Gal(E | F)]-submodule of E*|(EX)?, is admissible if W is generated by an
element [0]g with [Nmg,p(0)]r = [b]F.

Lemma 3.1.4. Let K be a field of characteristic p > 0. Let G be a finite p-group. Then every
non-zero left ideal in the group ring K|G] contains the element ), . 0.

44
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Proof. Let I be any non-zero left ideal in K[G]. Then I contains a minimal non-zero left ideal
J. As a K[G]-module, J is simple. We know that over K[G] there is up to isomorphism only
one simple module, which is K with trivial action. Let n be any element in J which generates
J as a K[G]-module. Then n is fixed under all elements of G. Hence n = a ), ; o, for some
a € K*. This implies that ) ;o isin J. O

Lemma 3.1.5. Let ([b]r, V, W) be an admissible triple. Assume that V = {[a]F,[c]F). Let
E = F(\V). Assume that W is generated by [0g as a free F2[Gal(E/F)]-module with
(Nmgip(0)lr = [Dlp. Let A = Nmgpyz)(6) and C = Nmgp;(0). Then every generator
of W as a free F,|Gal(E | F)]-module is of the form

[6']e = [0ACb? ],
where €4, €c, €, € {0, 1}.
Furthermore for any generator [6' | of W as a free F,[Gal(E [ F)]-module, we have [Nmgp(6')]r =
[b]r. In particular, this implies that the pair (V, W) uniquely determines [b]r.

Proof. Let G = Gal(E/F). As an [F,-vector space, W is generated by [0]g, [Alg, [ClE, [P]e. Let
[0"]¢ be an arbitrary generator of the free F,[G]-module. Then

[0']r = [69A C<b? ],

for some €;, €4, €c, €, € {0, 1}. Suppose that €5 = 0, then we see that (3, 0)([0’]E) is trivial in
E*/((E*)?), a contradiction. Hence €; = 1. Furthermore, we have

[Nmgp(6')]F = [D]F.

This implies that [b]r is uniquely determined by V and W.

Conversely, assume that [0']g = [0A“C<b?]g, for some &4, €c, €, € {0, 1}. Let W’ be the
[F,[G]-module generated by [0"]g. Then we have W’ C W. It is then enough to show that
W’ is a free F,[G]-module. Suppose that W’ is not free. Then there would exist a non-zero
ideal I C [F,[G] such that I would annihilate ¢’. By Lemma 3.1.4 any non-zero ideal of F,[G]
contains the element ), .; 0 =: N. Therefore N would annihilate [6"]g. This contradicts the
fact that

N([6'1p)] = [Nmgp(8)]g = [blg # 1 € EX/(E*)*. o

Proposition 3.1.6. Let ([b]r, V, W) be an admissible triple. Let E = F( V). Let L = E(NW).
Then L/ F is a Galois U,(IFy)-extension.

Proof. Suppose that V = ([a]r, [c]F) and that W is generated by ¢ with Nmg,r(6) = bd?*. Let
A = Nmpgpya(0) and C = Nmpgpys(6). We first note that F(+/a, Vb, \/c)/F is an abelian
2-elementary extension with Galois group generated by o, 07, 0, Where

To(Va) = = Va,0u(Vb) = Vb, (Ne) = Ve

op(Va) = Va,op(Vb) = = Vb,0(Ve) = Ve;

oo(Na) = Va,o(Vb) = Vb,o(Ve) = —e.
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Clearly we have

o.(8) = 6A572,
o,(6) = 6C572,
bd?
oa(A) = AF’
bd?
O-C(C) = CF,
and
C_0u0) ¢
A 6§ o)

Then [MT14a, Section 3] implies that L/ F is a Galois U4([F,)-extension. Moreover an explicit
isomorphism p: Gal(L/F) — U4(IF,) is given by

1 100 1 000 1 0 00
L 01 00 L 0110 L 01 00
a1l 0 10”00 1 0% o0 1 1]
0 0 01 00 01 0 0 01
for suitable extensions o, 0, 0. € Gal(L/F) of o, 0, 0. O

Proposition 3.1.7. There is a natural way to associate an admissible triple ([b]r, V, W) to any
given Galois Uy (F,)-extension L] F.

Proof. Assume that L/F is a Galois Uy(IF,)-extension. Let p: Gal(L/F) — U4(F,) be any
isomorphism. Set oy = p~Y(E}»), 05 = p~'(Ex), and 03 = p~'(E34). Then the commutator
subgroup ® = [Gal(L/F),Gal(L/F)] is the internal direct sum

O = ([0, 02]) ® (02, T3]) @ ([[071, 021, 073]) = (Z/2Z)°.

Let M be the fixed field of ®. Then M/F is an abelian 2-elementary extension of F, and
Gal(M/F) is the (internal) direct sum

Gal(M[F) = (01|u) & (0alu) @ (omslm) = (Z/2Z)’.

Let [a]r, [P]F, [c]F be elements in F* /(F*)* which are dual to 0|y, 0|4, 03| Tespectively via
Kummer theory. Explicitly we require that

o(Va) = =Va,o(Vb) = Vb, o (Vo) = Ve
o2(Va) = Va,o2(Vb) = = Vb, (Vo) = Ve
o3(Va) = Va,o3(Vb) = Vb,o5(Ve) = — Ve
Let E = F(+/a, vc). Then E is fixed under o, [0}, 03], [0, 03] and [[o71, 0], 03]. Hence

E is fixed under a subgroup H of Gal(L/F) which is generated by o, [0, 0], [02,03] and
[[o1, 0], 03]. We have [L : F] = |Gal(L/F)|/|H| = 4, and [E : F] = 4. Therefore E = L.
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Claim: E does not depend on the choice of p.

Proof of Claim: Suppose that p’: Gal(L/F) — U (IF,) is another isomorphism. We define
o) = p"l(Elz), o, = p’_l(E23), and oy = p"l(E34). Let H' be the group generated by o7,
[0, 03], [0, 0%] and [[07], 0], 0% ]. We need to show that H = H’. We first note that o, and
o, commute with every element in ®.

We have 07|y is in Gal(M/F) = {o1|u) ® {02lm) ® {T3|m)-

Hence modulo the subgroup @, o, is equal to one of the following element o, 0, 073,
0102,0103,02073, 0102073.

If o, = 07y, or 07107, Or 07y 073, Or 071072073 modulo @, then
[[02, 03], 03] = [[02, 03], 071 ],
which is impossible since [[0, 03], 0] is nontrivial but [[o, 03], 07] is trivial.
If o, = 03, or 0,03 modulo @, then
[[o1,02], 03] = [[o71, 02, 0731,
which is impossible since [[071, 02], 03] is nontrivial but [[o7, 03], 07] is trivial.

From the above discussion we see that 0, = 0, mod ®. This implies that H* = H. Thus E
does not depend on the choice of p.

We have an exact sequence
1 = Gal(L/E) = Gal(L/F) — Gal(E/F) =G — 1.

Then Gal(L/E) is an F,[G]-module where the action is by conjugation. We also have the

G-equivariant Kummer pairing ( [Wat94, Section 1])
E N (LX)?
W X Gal(L/E) — IF,.

As an [F,-vector space, Gal(L/E) has a basis consisting of 0, [071, 021, [0, 03] and [[071, 03], 073].
Let [6]g be an element dual to [[o7, 0], 073]. Then Nmgr(6) = b mod (EX)*. Hence Nmgr(6)
is in b(F*)? U ba(F*)? U be(F*)? U bac(F*)?.

Let A = Nmgpyz(6) and C = Nmg,p(;(6). Suppose that Nmg,r(6) = ba mod (F*)2.
Then Nmp(a),r(A) = baf? for some f € F*. From o-{(A)/A = ba(f/A)?, we see that

o1(VA) = (£) VA Vbaf/A.
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Hence

a2(VA) = (£)o (VAT ((Vba)(f [o1(A))
= (£)> VA Vba(f /A) Vb(~ Va)(f /o1 (A))
= —VA.

This implies that o is not of order 2, a contradiction. Hence we have Nmg r(5) is not in
ba(F*)?.

Similarly we can show that Nmg,r(5) is not in be(F*)* U ba(F*)?. Therefore
Nmgp(6) = b mod (F*)*.
We set V = ([a]F, [c]F). Then V does not depend on the choice of p. Since
NmF( x/&)/F(A) = Nmgp(6) = b mod (FX)Z,

we have (a,b) = 0. Similarly, we have (b,c) = 0. Therefore (b,v) = 0 for every v € V, and
the pair ([b]r, V) is admissible. Let W be the F,[G]-submodule of EX/(E*)? which is dual via
the Kummer theory to Gal(L/E). Then W does not depend on choice of p, and W is free and
generated by 6. Since [Nmg/r(6)lr = [b]r, we see that the triple ([b]r, V, W) is admissible.
Since V and W determine [b]r uniquely, we see that [b]r does not depend on the choice of

0. i

Theorem 3.1.1. Let F be a field of characteristic not 2. There is a natural one-one correspon-
dence between the set of admissible triples ([b]r, V, W) and the set of Galois U,(IF,)-extensions
L/F.

Proof. By Proposition 3.1.6 we have a map u from the set of admissible triples ([b]r, V, W) to
the set of Galois U4(IF;)-extensions L/ F. By Proposition 3.1.7 we have a map 7 from the set of
Galois U4(IF,)-extensions L/ F to the set of admissible triples ([b]r, V, W). We show that y and
n are inverses of each other.

Let ([b]F, V, W) be an admissible triple. Via the map u we obtain a U4(F,)-extension L/F.
Explicitly, if V = ([alr, [c]F) and E = F(~/a, \/c), then L = E(VW) and there is an isomor-
phism p: Gal(L/F) =~ U4(F,) such that p~'(E}») = 04, p ' (Ex3) = 0, p ' (E34) = 0. (Here
o, 0p, 0. are defined as in Proposition 3.1.6.) We apply the construction in Proposition 3.1.7
with this isomorphism p. Then we obtain back the admissible triple ([b]r, V, W).

Now let L/F be a U4([F,)-extension. Then via the map 1 we obtain an admissible triple
([b]F, V,W). Since L = F( V) (W), we see that u sends the triple ([b]r, V, W) back to the
extension L/F. O

We apply the theorem above to count the number of Galois U4(IF,)-extensions over a 2-adic
field.
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Lemma 3.1.8. Assume that F is a finite extension of Q, of degree n. Let q be the highest power
of 2 such that F contains a primitive g-th root of unity. Then the number N of admissible pairs

([b]F, V) is
422 - 12" - DR - 1)

3 ifqg#2,
4(2n+1 _ 1)(2n _ 1)2 )
3 ifg=2.

Proof. Let N’ be the number of ([a]r, [D]F, [c]F) such that (a, b) = (b, ¢) = 0 and that dimg,{[a]F, [D]F, [c]F) =
3. Then N = N’/6. This is because for each given V such that ([b]r, V) is admissible, since

there are 3 possibilities for [a]r and 2 possibilities [b]r, there are precisely 6 choices of choos-

ing ([alF, [c]F) with V = ([a]F, [c]F). On the other hand, by [MT15a, Lemma 3.6 and Proposi-

tion 3.4], we have

- Q" - DR -2 —4) ifg=2.

The result then follows. |

) {(2n+2 _ 1)(2n+1 _ 2)(2n+1 _ 4) lfq + 2,

Lemma 3.1.9. Assume that F is a finite extension of Q, of degree n. Let us fix an admissible
pair ([blg, V). Then the number of admissible triples ([b]r, V, W) is 231,

Proof. Let E = F(\V). By local class field theory we have an isomorphism

FX
——— ~Gal(E/F) =G.
N mE/F(EX)
X
Since G is of exponent 2, we see that ————— is also of exponent 2. Hence
Nmg p(EX)

(F*)* € Nmgp(EX) C F*.
Since |G| = 4, we have
FX
Nmgp(EX)

F? - (F)

_ [ F~ . NmE/F(EX)]

By [Neu99, Chapter II, §5, Corollary 5.8], one has |[F*/(F*)?| = 2"*2. Hence
FX

N E*
(F>)? (F*)?
E* F* N E~
Consider the homomorphism Nm: (E)? - TR Then im(Nm) = an};—:)(Z) By
[Neu99, Chapter II, §5, Corollary 5.8], one has |E*/(E*)?| = 2***2, Hence we have

EX

(EX)Z /Ilm(Nm)l = 24"+2/2n — 23n+2.

| ker Nm| = ‘

Hence
{[6]e: [Nmgip(6)]F = [b]F}l = |ker Nm| = 2342,

Therefore by Lemma 3.1.5 the number of W such that ([b]z, V, W) is admissible, is 2%*2/8 =
23n—1‘ 0
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We recover the following result, which was also obtained in [MT15a, Theorem 3.8].

Corollary 3.1.10. Assume that F is a finite extension of Q, of degree n. Let q be the highest
power of 2 such that F contains a primitive q-th root of unity. Then the number of Galois
U,(IF,)-extensions of F is

(2n+2 _ 1)(2n _ 1)(2n—1 _ 1)23n+1

3 ifq+2,
(2n+1 _ 1)(2n _ 1)223n+1 )
ifq=2.
3
Proof. This follows from Theorem 3.1.1, Lemma 3.1.8 and Lemma 3.1.9. O

3.1.2 The case of characteristic 2

Let F be a field of characteristic 2.

Definition 3.1.11. A pair ([b]r, V) where bisin F and V C F/p(F) is admissible if dimp,(V) =
2 and dimg, ((V, [b]F)) = 3.

Lemma 3.1.12. Assume that ([b]p, V) is admissible. Let E = F(p~'(V)). Then there exists
0 € E such that [Trg;r(6)]F = [b]F.

Proof. 1tis clear since we know that the trace map T'rg,r is surjective. O

Definition 3.1.13. Assume that ([b]p,V) is admissible. Let E = F(p~'(V)). Then a triple
([P)r, V, W) where W is a free F2[Gal(E | F)]-submodule of E/9(E), is admissible if W is gen-
erated by an element [0]g with [Trg,;p(0)]r = [b]F.

Lemma 3.1.14. Let ([b]r,V, W) be an admissible triple. Assume that V = ([alr,[c]F). Let
E = F(p~'(V)). Assume that W is generated by [5]g as a free F,[Gal(E/F)]-module with
[Tre/pr(0)]r = [blr. Let A = Trg/p@,)(0) and C = Trgpq,)(0). Then every generator of W as a
free B[ Gal(E | F)]-module is of the form

[6']e = [0]e + &alAlg + €c[Cle + €[b]E,

where €4, €c, €, € {0, 1}.

Furthermore for any generator [6'|g of W as a free F»[Gal(E | F)]-module, we have [Trg p(0")]r =
[b)r. In particular, this implies that the pair (V, W) determines uniquely [b]r.

Proof. Let G = Gal(E/F). As an [F,-vector space, W is generated by [0]g, [Alg, [ClE, [P]e. Let
[0"]g be an arbitrary generator of the free F,[G]-module. Then

[6']e = &[0]e + €alAlg + ec[Cle + &[blE,

for some €, €4, €c, €, € {0, 1}. Suppose that €5 = 0, then we see that (3, 0)([0"]E) is trivial in
E/9((E)), a contradiction. Hence ¢ = 1.
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Conversely, assume that [0"]g = [0]g + €alAle + ec[Clg + € [P]E, for some &4, €c, €, € {0, 1}.
Let W’ be the F,[G]-module generated by [¢']g. Then we have W’ € W. It is then enough to
show that W’ is a free [F,[G]-module. Suppose that W’ is not free. Then there exists a non-zero
ideal I C F,[G] such that I annihilates ¢’. But it is known that any non-zero ideal of F,[G]
contains the element )’ .; o =: N. Therefore N annihilates [¢"]g. This contradicts the fact that

N([6'1p)] = [Trgr(6")]e = [ble # 0 € E/p(E). i

Proposition 3.1.15. Let ([blr, V, W) be an admissible triple. Let E = F(p~'V). Let L =
E(p~'W). Then L/F is a Galois U4(IF,)-extension.

Proof. Suppose that V = ([a]r, [c]r) and that W is generated by ¢ with Trg,r(0) = b + p(d),
for some d € F. Let A = Trgp@,)(0) and C = Trgpe,(6). We first note that F(6,,6,,6,)/F is
an abelian 2-elementary extension with Galois group generated by o, 07, 0, where

O—a(ea) = Oa + 1, O_a(eh) = 0}7, O_a(ec) = ec;
0p(04) = 04, 0p(0p) = Op + 1,0(6:) = 0,5
O-c(ea) = eaao-c(eb) = ebao-c(ec) = ec + 1.

Clearly we have
o.(0) =0 +A,

0,0 =6+C,
0.(A) = A+ b+ p(d),
c(C)=C+b+ ¢d.

Then [MT14a, Proof of Theorem 4.2] show that L/F is a Galois U4(F,)-extension. Moreover
an explicit isomorphism p: Gal(L/F) — U4(FF,) is given by

1 100 1 00O 1 0 0O
. 0100 . 0110 . 0100
a0 0 10" " loo 1ol %001 1]
0 001 0001 0 001
for suitable extensions o, 0, 0. € Gal(L/F) of o, 0y, 0. O

Proposition 3.1.16. There is a natural way to associate an admissible triple ([b]r, V, W) to any
given Galois Uy(IFy)-extension L/ F.

Proof. Let p: Gal(L/F) — U4(F,) be any isomorphism. Set oy = p™'(E},), 0 = p ' (En),
and o3 = p~'(E34). Then the commutator subgroup ® = [Gal(L/F),Gal(L/F)] is the internal
direct sum

O = ([o1, 02)) & ([02, 03]) ® ([[01, 021, 03]) = (Z/2Z)’.

Let M be the fixed field of ®. Then M/F is an abelian 2-elementary extension of F, and
Gal(M/F) is the (internal) direct sum

Gal(M/F) = (o 1lu) & (oalm) ® (T3lm) = (Z/2Z)’.
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Let [a]F, [P]F, [c]F be elements in F/p(F) which is dual to 0|y, 02|y, 03l respectively via
the Artin-Schreier theory. Explicitly we require that

0-1(011) = ga + 1’ O-I(Hb) = 91)’ O-l(gc) = ec;
02(0,) = 04, 026,) = 60, + 1,02(6,) = 6,5
0-3(061) = Gaa 0-3(9})) = 0179 0-3(90) = 90 + 1;

Let E = F(0,,6.). Then E is fixed under o, [01,03], [02,03] and [[o1, 03], 03]. Hence
E is fixed under a subgroup H of Gal(L/F) which is generated by o, [0, 03], [02,03] and
[[o1, 0], 03]. We have [L : F] = |Gal(L/F)|/|H| = 4, and [E : F] = 4. Therefore E = L.

Claim: E does not depend on the choice of p.

Proof of Claim: Suppose that p’: Gal(L/F) — U(F,) is another isomorphism. We define
o, = p’_l(Elz), o, = p’_l(Ezg), and o7 = p’_l(E34). Let H' be the group generated by o7,
[0, 03], [0, 0%] and [[07], 07,], 04 ]. We need to show that H = H’. We first note that o, and
o, commute with every element in ©.

We have 07|y is in Gal(M/F) = (o 1) ® {02lm) ® {T3|p)-

Hence modulo the subgroup @, o is equal to one of the following element oy, 0, 073,
0102,0103,02073, 010203.

If 0, = oy, or 071073, Or 071073, Or 07102073 modulo @, then
[[02, 03], 051 = [[02, 03], 01 ],
which is impossible since [[0, 03], 0] is non trivial but [[0, 03], 0] is trivial.
If 0, = 03, or 003 modulo @, then
[[o1, 02], 051 = [[o71, 021, 03],
which is impossible since [[o7}, 0], 073] is non trivial but [[o71, 03], 0% ] is trivial.

From the above discussion we see that o) = 0, mod ®. This implies that [b]r does not
depend on the choice of p and that H” = H. Thus E does not depend on the choice of p also.

We have an exact sequence
1 = Gal(L/E) = Gal(L/F) — Gal(E/F) =G — 1.

Then Gal(L/E) is an F,[G] module where the action is by conjugation. We also have the
G-equivariant Artin-Schreier pairing

EnpL)

oE) X Gal(L/E) — TF,.
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As an [F,-vector space Gal(L/E) has a basis consisting of 0, [071, 03], [0, 03] and [[071, 02], 073].
Let [0]¢ be an element dual to [0}, 0], 073]. Then T'rgr(6) = b mod p(E). Hence Trg/r(6) is
inb+pF)Ub+a+eF))UB+c+o(F)Ub+a+c+p(F)>).

LetA = Trg/pp,)(0) and C = Trg pe,(0). Suppose that Trg,r(0) = b +a mod o(F). Then
Trpe,)r(A) =b+a+ o(f) forsome f € F. Hence 071(A) = A+ b+ a+ ¢(f). Thus

O'](HA) :QA +9b+9a+f+i,
for some i € {0, 1}. Therefore

01(04) = T1(04) + T1(6p) + 01(6,) + f +1i
=04 +0,+0,+f+i+0,+0,+1+f+1i
=04+ 1.

This implies that o is not of order 2, a contradiction. Hence we have Nmg/r(5) is not in
b+ a+ ¢(F).

Similarly we can show that Nmg,r(6) is notin (b + ¢ + p(F)) U (b + a + 9(F). Therefore
TI"E/F(6) = b mod g{)(F)

We set V = ([a]F, [c]F). Then V does not depend on the choice of p, and the pair ([b]r, V)
is admissible. Let W be the [F,[G]-submodule of E/@(E) which is dual via the Artin-Schreier
theory to Gal(L/E). Then W is does not depend on choice of p, and W is free and generated
by 6. Since [Trg/r(0)]lr = [P]r, we see that the triple ([b]F, V, W) is admissible. Since [b]F is
uniquely determined by (V, W), we see that [b] does not depend on the choice of p.

O

Theorem 3.1.2. Let F be a field of characteristic 2. There is a natural one-one correspondence
between the set of admissible triples ([b]r, V, W) and the set of Galois U4(IF;,) extensions L/ F.

Proof. By Proposition 3.1.15 we have a map u from the set of admissible triples ([b]r, V, W) to
the set of Galois U4(IF;)-extensions L/F. By Proposition 3.1.7 we have a map n from the set of
Galois U4(IF,)-extensions L/ F to the set of admissible triples ([b]r, V, W). We show that y and
n are the inverses of each other.

Let ([b]F, V, W) be an admissible triple. Via the map u we obtain a U4(F,)-extension L/F.
Explicitly, if V = ([al, [c]F) and E = F(~/a, \/c), then L = E(VW) and there is an isomor-
phism p: Gal(L/F) =~ Uy(F,) such that p~'(E}») = 04, p "' (Ex3) = 0, p ' (E34) = 0. (Here
04, 0, 0 are defined as in Proposition 3.1.6.) We apply the construction in Proposition 3.1.16
with this isomorphism p. Then we obtain back the admissible triple ([b]r, V, W).

Now let L/F be a U4(F,)-extension. Then via the map 1 we obtain an admissible triple
([b]F, V,W). Since L = F(\V)(W), we see that u sends the triple ([b]f, V, W) back to the
extension L/F O
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Lemma 3.1.17. Assume that dimy, (F/@(F)) = n < oo. Then the number N of admissible pairs
4= DR -
([blF, V) is 3 .

Proof. Recall that the Gaussian binomial coefficients are defined by

. ("= D@ ' =D (@™ -1
(r) = (@-D@ =D (g -1
q

0 if r > n.

ifr<n

Every admissible pair ([b]r, V) can be obtained as follows. First, we choose a three dimen-
sional [F,-subspace V'’ of F/@(F). The number of choices of such V’ is (’;)2 Then we choose

a two dimensional [,-subspace V of V’. The number of choices of such V is (;) . Finally, we
choose a vector [b]r in V' \ V. The number of choices of such b is 8 — 4 = 4. Therefore we

have n n—-1 n-2
N:(n) ><(3) wd = 42" - DHR - 12 —1)- g
3 2 2

2 3

Lemma 3.1.18. Assume that dimg,(F/9(F)) = n < co. Let ([b]r, V) be a fixed admissible pair.
Then n > 3 and the number of admissible triples ([br, V, W) is 2375,

Proof. Since there exists at least one admissible pair, namely ([b]r, V), we see that n > 3.

It is known that for a field L of characteristic 2, then the maximal pro-2-quotient G (2) of
the absolute Galois group of L is free of rank dimg,(L/¢(L)). (See [Koc02, Theorem 9.1].)

Let E = F(p~'(V)). Then Gg(2) is a (closed) subgroup of index 4 in the free pro-2-group
Gr(2) of rank n. Thus Gg(2) is also free and of rank 4n — 3.

E F
— ——. We have
P(E)  p(F)

Consider the surjective homomorphism 7'r:

E F
| ker(Tr)| = '—' / '—‘ = =3 pn = 933,
PE) " [p(F)
Hence
{[olg: [Trer(0)lr = [DlF}l = |ker Tr| = 23173,
Therefore the number of W such that ([b]f, V, W) is admissible, is 2°"73/8 = 2376, O

Corollary 3.1.19. Assume that dimy,(F/9(F)) = n < oo. Then the number of Galois U4(IF5)-
(2n _ 1)(211—1 _ 1)(2n—2 _ 1)23n—4
3 .

In the next proposition we show in particular that for each natural number n there exists a
field satisfying the hypothesis of the above corollary.

extensions L/ F is

Proposition 3.1.20. Let p a prime number. Then for each cardinal number C there exists a
field K of characteristic p such that [K : p(K)] = C.
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Proof. Consider any F,-vector space V such that dimg, (V) is C. Let V* = Hom(G,Q/Z)
be the Pontrjagin dual of V. Then V* is a profinite (abelian) group. By [Wat74, Theorem
2] there exists a field F' of characteristic p such that F' admits a Galois extension L/F with
Gal(L/F) = V*. By the Artin-Schreier theory we conclude that Hom,,(V*,F,) = H v, T )
which is isomorphic canonically with V via Pontrjagin duality, is isomorphic to A/p(F) ,where
A is some subgroup of F containing ¢(F). Hence the F,-dimension of A/p(F) is C.

Now consider a maximal Galois extension K/F in the maximal p-extension F(p) of F such
that: (*) the natural map A/p(F) — K/p(K) is an injection.

Claim 1: Such an extension K/F exists.

Proof: Let S be the set of all field extensions K over F in F(p) satisfying the condition (¥).
Then S is not empty since it contains at least . This set is partially ordered by set inclusion.
We shall apply apply Zorn’s lemma. We take a non-empty totally ordered subset 7~ of S. Let
K be the union of all fields K; in 7. Clearly K/F is a field extension and K C F(p). Consider
the natural map Ap(K) — K/p(K). Suppose that this map is not injective. Then A N p(K)
is strictly larger than p(F). However A N p(K) = Ug.er(A N 9(K;)). Thus there exists a field
K; € 7 such that A N p(K;) is strictly larger than @(F). This implies that the natural map
A/p(F) — K;/9(K;) is not injective, which contradicts to the condition that K; satisfies (*).
Therefore the map Ap(K) — K/p(K) is injective and K is in 7. Clearly K is greater than every
element in 7. The Claim then follows from Zorn’s lemma.

Claim 2: The above injection A/p(F) — K/p(K) is an isomorphism.

Proof: If the injection is not an isomorphism, then there exists an element « in K such that
u # a mod p(K) for every a € A. We have A N (iu + p(K)) = O foreveryi = 1,2...,p— 1. Let
T = K(8,). Then T is strictly larger than K and T C F(p). We have

p-1
ANe(T) =An(Knp(T)) =AN [U(iu +p(K)] =ANp(K) = p(F).
i=0

ANo(T
We consider the natural map n: A/p(F) — T /o(T). Then ker(n) = KJ(;S;()) = 0. Thus

is injective. This contradicts the maximality of K. O

3.2 Thecase F = (Q,

In this section we consider some fixed algebraic separable closure of (, and all following Ga-
lois extensions live inside this separable closure.

There are exactly 16 U4(IF,)-extensions of Q, [MT14a, Theorem 3.7]. By [MT15b],

Q. (Va, Vb, Ve, VA, VC, Vo)
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is a U4(IF,)—extension of Y, with a, b and c in the field Q, such that (a, b) = (b,c) = 0 (norm
residue symbol, Section 1.4), also a € Q,(va) and y € Q,(+/c) such that

Nmaq,(yay0,(@) = b = Nmg,(ye0,(¥)-

In addition A, C and ¢ are as follows. By section 1.7, assume e = ﬁ and B = y/a, so we
have

a*y
A=Nm,(e) = ,
(@ +y)ay + D)
2
ay
C =Nm, (eB) = ,
(@ +y)ay + D)
and
o0=a+p.
Lemma 3.2.1. There is an f € Q, such that
A =N (e) = fa
and
C =N, (eB) = fy.
In particular,

oy
I = @iy +n S

Proof: Since a,y # 0, we have
a 1 1
f = 7 = = — — e @2_
(a+y)ay+b) (a/y+1)(y+bla) a+a+y+Yy
Also, because all elements of (Q, are square in QQ, ( va, Vb, \/E), we have

Qg(\/a, Vb, ve, VA, VC, \/;5):@2(\/5, Vb, Ve, Va, VY, \/oz+y)

L]

By lemma 2.2.1 (or similarly [LamO5, Corollary 2.24]), {-1, 2, 5} is an [F,—basis of Q5 / Q;z,

SO
Q/Q? =1{1,-1,2,5,-2,-5,10,-10}.

The unique quaternion division algebra corresponds to (—1,—1) = (2,5) = 1 (see lemma 2.2.1),
so the rest of the following possibilities correspond to (Z/27Z)*—extensions of Q,.

A ={2,-1)=(-1,5=0,2,-1)=(-1,10) = 0,(5,-1) = (-1, 10) = 0}
A ={(2,-2)=(-2,-10)=0,(2,-2) = (-2,-5) = 0,(-10,-2) = (-2,-5) = 0}
A3 ={(5,-5) =(-5,-10) =0,(5,-5) = (-5,-2) = 0,(-10,-5) = (-5, -2) = 0}
Ay ={(-2,-10) = (-10,10) =0, (-2,-10) = (-10,-5) = 0,(10,-10) = (-10,-5) = 0}

Since each set A; for i = 1,2, 3,4 generates the same (Z/ 27)—extensions of Q,, by The-
orem 3.1.1, they generate the same U,(IF,)—extensions. Hence, there are four cases for b;
b=-1,-2,-5and —10.
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321 b=-1

For b = —1, a and ¢ can be as follows: (¢ = 2,¢ = 10), (a = 2,¢ = 5) or (a = 10,c = 5).
These three possibilities for a and ¢ generate the same U,(IF;)-extensions of Q,. Assume
(a=2,b=-1,c=10).

Lete, =1+ V2,6=3+ V2,6 =1+ V10 and ¢ = 3 + V10. We have:

Nm@z(‘/i)/(@z(el) = -1
Nmg, 3y 0,(€) =T = (=1(=1)
Nmg, yio)0,(63) = =9 = 9)(=1)

Nm@z(‘/ﬁ)/(@z(e“) =-L
Note: —7 and 9 are squares in QQ,. Set

2
a=1+ V2, a'=3+\/_'

V=7’
1 10
’y:3+ m, ’y,: +3\/_,

where V=7 =1+22+2*+2° + ... € Q,. We define
O:=a+y;, :=a+y; d:=ad+y, d:=a +v;

and

M, == Qu(V2, V-1, V10, Va, vy, Vo),
M, = Qx( V2, V=1, V10, Va, \ly’, Y62),
Ms = Qx(V2, V=1, V10, Vo', \fy, V/63),
My = Qu(V2, V=1, V10, Vo', \fy', v6s).

Ml M2 M3 M4
1+ 2 By L+ V0 3+ VI0
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Distinction of M, M,, M; and M,

Notation: Denote by [a], the square class of a in Q7 / Qf and by [a]r, the square class of a in
F*/F*? (unless specified).

We have the following diagram for each M;:

E; = Qy(+a, Vo)
Q2(Va) Q2(Vo)

. \ /

for some w € W; with W; = ([5;], [a;], [v:], [P]) is a F2(Gal(E;/Q,))—module in El.X/EfZ. By
[MT15b], we have M; = E;(\/W;). Also by Kummer theory and Theorem 3.1.1, we have
MX* N E; = W;; therefore

Mi=M;=> W, =W,

Now if W; = W; then we can write ¢; as follows:
6 — 651 52 e3b5462
where €,--- € € {0,1} and e € E*.

The strategy to show M; # M for i # jis to assume W; = W; and to find a contradiction
using norm of the last equality.

Claim: M| # M,

For My, we have b = =1, a; = 1 + V2, v =1+ V10)/3 and 6, = (4 + 3V2 + V10)/3,
therefore

Wi = ([6:1.[1 + V21, [(1 + V10)/3],[-1]).
For M,, wehave b = -1, a, =1 + \/E, v2 =3+ V10 and 0, =4+ V2 + \/ﬁ, therefore

Wy = ([62], [1 + V21,3 + V10], [-1]).

We assume W, = W,, then we can write §; = 65 oz?y?lf“e2 for some €,---¢ € {0,1} and
e € E*. Therefore

N q,(y2)(61) = N, 3 (62)  Nmp g, o) (@2)* N, ) (v2) N, 5 (D) Nim @(62)
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On the other hand, we have Ny, y3,(61) = 8/3(1 + V2) and Nmy,¢, 5(52) = 8(1 + V2),
also Nmy o, vz (@2) = (1 + V2)2, Nmyg o, v3(¥2) = =1 and Nmy ¢, 5 (b) = b*. Therefore

8/3(1 + V2)
(1 + V2)a(-1)=
For € = 0 from the last equation, we have +1/3(1+ «/i) € Qy( \/Q)XZ, but this is a contradiction.

Also, for €, = 1 from the last equation, we have +1/3 € Q,( \/E)XZ, but this is a contradiction
too. Hence W, # W,, and we conclude M, # M,.

e Qu( V2.

Claim: M, # M;

W, is as above. For M3, we have b = -1, a3 = 3 + \/5)/ V=7,y; = (1 + \/E)/i% and
83 = 33 + V2) + V=7(1 + V10), therefore

Wi = ([6:1,[3 + V2)/ V=T1,[(1 + V10)/3], [-1]).

€1 €2

If we assume W, = W3 then we can write 6, = 05 aj yf‘bf“e for some €;,---¢ €{0,1}and ¢ €

E*. Now take norms, NmE/Q (\F)(éZ) =83+ \/_) and NmE/Q (r)(&) = ISF_M ”;F also

Nmg o, (vio)(@3) = =1, Nmg,o yi5,(v3) = (1 + V10)2/9 and Nmy, o, y16,(b) = . Thercfore

8(3 + V10) "
(lSﬁ_14 ) m)a (_1)62 € @2( \/E) .

-21 3

For €, = 0 from the last equation, we have +8(3+ V10) € Q,(V10)*2, but this is a contradiction.
Also, for €, = 1 from the last equation, we have
1 18 V-7 - 14 1+
+ ‘/_ € Qu(V10y°.
83 + VI0) —21

On the other hand, because

1+ V10
N@z(@)/@z(3(3 \/—)) L

we know that

1+ V10
= f-k* forsome fe€Q,andkeQyV10).
33 + VI0) i ’
Let us find f and k as above. Set
1+ V10 10 + 410
ti= ——— and l'=t+1=———.
33 + V10) 33 + V10)

Therefore o(l) = lo(¢) for some 1 # o € Gal(Q,( V10)/Q,). So we have o(l)/l = o(¢) and
l/o(l) = I, therefore

l+vio __ P _(10+4x/ﬁ)2 9
33+ V10)  Nm()  \33+ Vi), 60°
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Therefore,

18\/_—14 9 +9\/—_7—7 1
+ T 8(=21) 60 5

2
— V102,
4\/—_7) € ROVI0

but with the choice of V=7 = 1+22+2*+2%--- wehave Y77 = 1 +2423 425 +... ¢
(=1)Qx( \/ﬁ)xz, and this is a contradiction too. Hence W, # W3, and we conclude M, # Mj.

Claim: M; # M,

Ws is as above. For Ms, we have b = -1, au = 3 + V2)/ V-7, 4 = 3 + V10 and
84 =3+ V2 + V=7(1 + V10), therefore

Wy = ([64],[(3 + ¥2)/ V=T1,[3 + V10],[-1])

we assume W3 = Wy, then we can write 65 = & afy;b%e” for some €,---€ € {0,1} and e €
E*. Now take norms, Nmg 0, vio)(03) = IS‘F‘M ”‘F and Nmy,o, (\/7)((54) = 6+("F(3+ V10),

also Nmy, o, yig)(@3) = =1, Nmyo. 15, (v3) = G + \/_)2 and Nmy ¢ yi5,(b) = b*. Therefore

18V=7-14 1+V10

-21 361 c @ (\/E)XZ.
(26 +VI0) -he

For ¢, = 0, from the last equation, we have ilgg‘” - “3‘@ e Q,(V10)*?, but this is a

contradiction. Also, for €; = 1, from the last equation, we have

V=7 18Y=7-14 1+ 10

: . VIO
“orov 21 3+ v 2V
Therefore,
V=7 18V-T-14 9
: . Vioy?,
“erovs 2 & (V10
S0,

%(—7 + V=7) € Q) V10)2,

but 1/3(=7+ V=7) = 2+23+2* + ... ¢ (=1)Q,( V10)*2 and this is a contradiction too. Hence
W5 # Wy, and we conclude M5 # M,.

Claim: M, # M,

Assume W; = Wj then we can write §; = &5 a7 y;b“e* for some €,---€ € {0,1} and
e € E*. Now take norms, Ny o v3(61) = 8/3(1 + V3) and Nimgo,v3)(63) = —“‘tl—;lﬁ 3
also Ny, 3, (3) = =1, Nmg,o y3(v3) = (1 + V10)2/9 and Nmy, ¢ y3,(b) = b

Since
3+1V2
Nmg,q,v3) s o)
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we have
3+ 2
— —~ __=—f.k* forsome feQ andke@(\/i).
V=21 + V2) ’ ’
Let us find f and k as above. Set
3+ 12 3+ V=-7T+(+ V=-1)V2
t = — and [:=t+1= .
V=11 + V2) V=11 + V2)

Therefore o(I) = lo(¢) for some 1 £ o € Gal(Q2(V2)/Q,). So we have o(1)/] = o(¢) and
[/o(l) = I, therefore

3«V2_ P _(3+\/__7+(1+\/__7)\/§)2. 7
V=11 + V2) Nm(l) V=11 + V2) 14 +2V=7
Therefore
(=1/21) (=14 + 18 V=7)(1/ V=13 + V2) € OV,

(8/3(1 + V2))a(=1)

For €, = 0, from the last equation, we have i—14t1231ﬁ . 33_‘/75 € Q,(V2)*2, but this is a contra-

diction. Also, for €, = 1, from the last equation, we have

+—14+18\/—_7 3+42 3

V2)<.,
=21 V=7 81+ V2) <@V

Therefore,

+ V=7 =2 € Qy(V2)%

but V=7-2 = 1+42+2%*+--- ¢ (+1)Q,( V2)? and this is a contradiction too. Hence W, # W,
and we conclude M; # M.

Claim: M, # M,

Assume W; = W, then we can write 6; = 6jlajzyj3b€4ez for some €,---& € {0,1} and e €
E*. Now take norms, Ny o, i (61) = 8/9(1+ V10) and N, g, yr5,(84) = S5ET-(3+ V10),
also Nmy o vio(@s) = =1, Nmp,o, 15 (¥4) = (3 + V10)? and Nmy ¢, 5,(b) = b2
Therefore

8/9(1 + V10)
((1/V=D)(6 + 6 V=13 + V10))” (-1)=

For € = 0, from the last equation, we have +8/9(1 + V10) € Qy( V10)2, but this is a contra-
diction. Also, for €, = 1, from the last equation and

e Qx(V10)?.

1+ V10 (10+4\/ﬁ)2 9
60"

3(3 + V10) B 33 + V10)
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we have

+6+6\/—_7

9
3+ VI0) ————
V=7 G : 8(1

V10)*2.
N \/E) € Qx( )

Therefore,

+3/2(V=7=7) € Qo( V102

but3/2(V=7-7)=1+22+28 + ... ¢ (1)Q,( V10)* and this is a contradiction too. Hence
W; # Wy, and we conclude M; # M,.

Claim: M, +# M,

Assume W, = W, then we can write 5, = &, afy;b%“e* for some €, €& € {0,1} and

e € E*. Now take norm, NmE/Qz(ﬁ)(éz) =8(1 + \/Q) and NmE/Qz(sz)(&t) = % . 3:;%5, also

NmE/Qz(\ﬁ)(a4) = (3 + \/5)2’ NmE/Qz(\/i)(74) = —1 and NmE/Qz(\E)(b) — b2‘
Therefore

8(1+ V2)

g € Qa(V2)?
((~1/7)6 +6 V=13 + V2)) (-1 ’

For € = 0, from the last equation, we have +8(1 + V2) € Q,(V2)?, but this is a contradiction.
Also, for €, = 1, from the last equation and

3+ 42 [3+v_—7+<1+v_—7>ﬁ)2 7

VI + VD) V=I(1+ V2) 1442V
we have
i(6+6\/—_7)(3+ V2) 1 € Qu( VY2
-7 8(1 + V2)
Therefore,
+3 € Qy( V2)2.

and this is a contradiction too. Hence W, # W,, and we conclude M, # M,.

322 b=-5

For b = -5, a and c can be 2 and —10 respectively. Assume ¢, = 1 + V-2, & = -1 + V-2,
&g =—-1+ V-10and & =5 + V-10, we have

Nm@z( V2)/Q2 (e) =3

N, \ayq,(€2) = 3,
Nmg, y=10)/0,(€3) = 11

Nimg,y=r5),/0,(€) = 35
Note: =5/3 = 1+0(2*) = 1 (mod 8), =5/11 = 1+0(2*) = 1 (mod 8) and —5/35 = 1+0(2*) = 1
(mod 8), so 3, 11 and 35 are in the same square class as —5.
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@ = \/%5<1+ V-2), o= \/‘?5(-1 + V=2
y= \/I—f(—l + V=10,  ¥'= \/;—2(5+ V-10);

V-5/3=1+2+2 422420427427 1+...€Q,,
V=5/11=1+22 4204274210422+ .. e Q,

Set

where

and
V-5/35=1+2+2"+204+2° 422 4+ ... € Q,.

We define
or:=a+vy; & ::a/+y’; 03 1= a"+7; 04 := (y'+7';

and

M, = Qu(V=2, V=5, V=10, Va. V7. Vo)),
M, = Qu(V=2, V=5, V=10, Va, ', V62).
M; = Qy(V-2, V=5, V=10, Vo', \/y, /63),
M, = Qz(\/—_Z, V=5, V=10, Ve, \/77 \/a).

M M M; My

\/%1 + V=2) \/%_1 + V=2) \/%(—1 + V-10) \/§(5+ V-10)

\\//

Q(V-5)

Distinction of M5, My, M, and My
Claim: M5 # Mg

For M5, we have

b==5as= V=5/3(1+ V=2),y5s = Y=5/11(~1 + V=10)
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and

§s = V=5/3(1 + V=2) + \/-5/11(-1 + V-10),
Ws = ([65], [V-5/3(1 + V=2)I,[V=5/11(~1 + V=10)], [-5]).

For Mg, we have

b==-5as= V-5/3(1+ V=2, = y/-5/35(5 + V-10)

therefore

and

= \=5/3(1 + V=2) + 4/=5/35(5 + V=10),

therefore

We = ([86), [V=5/3(1 + V=2)1,[Y-5/35(5 + V=10)],[-5]).

Assume W5 = Wy, we can write
ds5 = O gzy?bf“ (3.1
for some €,---€ € {0,1} and e € E* where E = Q,( V=2, \/—_10). Let
fs=2N=5/3-V-5/1D) e Q

and
Jfo =2(-5/3+5+-5/35) € Q>.
Now we take the norm of both sides. So, we have
N, y=2)(0s) = fss
and
Nmg q,v=2)06) = foats.
Also we have
N, y=2)(@) = ag, N Mgy (¥e) = =S and Nmy,q, y=,(b) = b*

Therefore from (3.1) we have

fsas X2
—2)<2. 3.2
Goan (=5 € @2 G:2)
But for ¢, =0, p
55 T A\X2
oy ¢ (VD)
because

f2(=5) ¢ QP U (-2)Q.

N fSCVS _
Mq,(V=2)/Q, (=5)& 552

For ¢, = 1, from (3.2), we have

o S ROFD?
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Using the fact that @s = a¢ and by multiplying 1 to above, we need to check whether
(—5)® f5 fs 1s square in Q,( V—-2). By fixed choice of

V-5/3=1+42+42"42°420427+2°+... € Q,,

N=5/11=14+22 4204274204224 ... Q,

and
V=5/35=1+2+2"+20+2°+2"2 +... € Q,,
we have
fifo=2"A+22+20 428427 +...) ¢ QF

and

(-2 fsfs =2'Q+22+2* +22+2°+ 2% +...) ¢ QF,
as well as

(=5)fsfs =2'A+2+27+2°+27 +2 +..) ¢ Q
and

(=2)(=5)fsfs = 2*Q2+2* +2° + 27 + 2! +...) ¢ Q.

So this is a contradiction. Hence W5 # W, and we conclude M5 # M.
Claim: M; # Mg

For M;, we have

b=-5a = J-5/3(-1+ V=2),y; = \-5/11(-1 + V-10)

and

07 = V=5/3(-1 + \/—_2)+ \/—5/11(—1 + V-10),
W = ([67], [V=5/3(=1 + V=2)I,[ V=5/11(~=1 + V=10)],[-5]).

For Mg, we have

b=-5a5 = \-5/3(-1+ V=2),y5 = Y=5/35(5 + V-10)

therefore

and

§s = V=5/3(=1 + V=2) + \/=5/35(5 + V-10),

therefore

Wy = ([85), [V=5/3(=1 + V=2)I,[=5/35(5 + V=10)], [-5]).

Assume W; = Wy, we can write
§7 = &g afgzy;be“ez (3.3)
for some €,--- € € {0,1} and e € E*. Let

fr =2(=v-5/3 - /-5/11) € @,
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and
fs =2(—+-5/3+5+/-5/35) € Q,.

Now we take the norm of both sides. So, we have

NmE/Qz( \/3)(67) = fraq

and
Ny q,v=)(0s) = fsas.

Also we have

NmE/Qz( @)(ag) = a/%’NmE/QZ(\/Z)(VS) = -5 and NmE/QZ(\/Z)(b) = b’

Therefore from (3.3) we have

f7a/7 \/_—2 2 34
Grag) () © V=2 (3-4)
But for ¢, = 0, ;
797 —H\X2
Toys ¢ @(V-2)
because .
Nmg,v=)0, (%) = 754 FA(=5) ¢ Q2 U (-2)Q2.

For ¢, = 1, from (3.4), we have

fg—a]; 7(0175)@ e Q(V=2)2.

Using the fact that @; = ag, we have

f7 X2
=2)*“.
=5 € Qx(V-2)

So, we need to check whether (—=5)% f; f; is square in Q,( V-2)*. By fixed choice of v-5/3,
vV=5/11 and v-5/35 we have

fifi =220 +2+22+2° +2° + 2" +...) ¢ QF

and

(=S)fifs =2°0 +22+2* +28 +2° + 210+ ...) ¢ QF,
as well as

(-2 frfs =2°Q+2°+27 +28 +2° + 2! +...) ¢ QF
and

(2)(=9fifs =20+ 22 +2* +2° + 27+ 28 + ... ) ¢ Q.

So this is a contradiction. Hence W; # Wg, and we conclude M; # Ms.
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Claim: My + M,
Assume Wy = W5, we can write
86 = 65 a2y b%e? (3.5)

for some €;,---€ € {0, 1} and e € E*. we have

fo = 2(v/-5/3 +5+/-5/35) € Q..

and

fr=2(-+-5/3-+-5/1) eQ,
Now we take the norm of both sides. So, we have
NmE/Qz(m)(56) = foYe
and
NmE/Qz( \/_To)(67) = fivr-
Also we have

Nmg,q,yv=10)(@7) = =5, Nmg,q, y=16,(y7) = y7 and Nm,q, —15,(b) = b,

Therefore from (3.5) we have

f676 \/__10 NG 3 6
T e (3-6)
But for ¢, = 0,
Jeve ¢ Qs /—_10)X2
(=5)°
because .
N, (V=161 (%) = 554 f3(=5) ¢ Q2 U (-10)Q5>.

For ¢, = 1, from (3.6), we have

JeVe X2
_— V-=10)*“.
fryi(=5)= € & )

Now we need to find a relation between vy, and y; modulo squares in Q,( V—-10). Since
Yo
NmE/@z(mﬂ;) =1

we can follow the same method we used in section 3.2.1. So take

+
tzﬁ and l:t+1:u.

Y7 Y7
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Therefore

_:t: =

o 2
Ys ! (76 +77) (2 +2~/-5/11/-5/35). (3.7

Y7

So, we have

(2 +2+-5/11 \/—5/35)f6 € Qx \/—_IO)XZ.
f1(=5)=

So, we need to check whether (2 + 2 v-5/11vV-=5/35)(=5)% fs f7 is square in Q,( V-10)*. By
fixed choice of v-5/3, V=5/11 and v-5/35 we have

2 +2=-5/11-5/35)fsfy =280 +2+ 22+ 23 + 22+ 20 + ... ) ¢ QP

and

(2 +2+/-5/11/=5/35)(=5)fefr = 251 + 22+ 2* + 20 + 27 + 210 4 ...) ¢ QF2,
as well as

(—10)2 +2=5/11=-5/35)fs fr =282 +2° + 22 + 27 + 28 + 2! 4 ... ) ¢ QF°
and

(—10)2 +2=5/11/=5/35)(=5)fs fy = 2852+ 22 + 2% + 22 + 27 + 28 + 27 + ... ) ¢ Q2.
So this is a contradiction. Hence Wg # W5, and we conclude My # M;.
Claim: M5 # M,
Assume W5 = W5, we can write
85 = 05 aZySbee’ (3.8)

for some €,--- € € {0,1} and e € E*. Let

fs=2(N=5/3-V-5/11) € Q,

and

fr=2(-+-5/3-+-5/11) e @,
Now we take the norm of both sides. So, we have
Nimg,q,v=)(05) = fsas

and
Nimy,q,yv=2)(67) = frar.

Also we have

Nmg,q, y=)(@7) = a/%’NmE/Qz( v (y7) = =5 and Nmy ), y=,(D) = b
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Therefore from (3.8) we have

__fes Vo2) 3.9
Grana(—s)y & BV G2
But for ¢, =0, f
55 x2
S5 ¢ Qx(V-2)
because

fsas )

Nm@z( V=2)/Q2 (( 5)5z fs( 5) ¢ Q U (—2)(@;2

258

For ¢, = 1, from (3.9), we have

ﬁcf(ass)ﬁ € (V-2

Now we need to find a relation between a5 and @7 module squares in Q,( V-2). Since

as

NmE/@(xF)( ) L,

we can follow the same method we used in section 3.2.1. So take

t:Cﬁ and l:t+1:a5+a7.
a7 az
Therefore 5
2 + 3
B = LTH) 2 (3.10)
a Nm(l) 2a7 2

So, we need to check whether 3/2(-5)% f5 f; is square in (Q;( V—2). By fixed choice of
V-=5/3, v/=5/11 and v-5/35 we have

(é)fsﬁ=24(1+2+22+23+25+29+...)¢@x2
2 2

and
3
=S fsfi=2"A+2+22+22+27+28+..) ¢ QF
2 2
as well as 3
(D)D) fsfi=2"Q+22+2° +22 420428 +..) ¢ QF
2 2
and

(—2)(%)(—5)fo7 =202+ 28+ 22+ 27+ 2 2P 4 ) ¢ QF?

So this is a contradiction. Hence W5 # W5, and we conclude M5 # M;.

Claim: M5 # My
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Assume W5 = Wy, we can write
‘ 2
§s = 05 agyg b%e
for some €;,---€;, € {0,1} and e € E*. Let

fs =2(y-5/3 - V=-5/11) € Q;

and
fs =2(—+-5/3+5+/-5/35) € Q,.

Now we take the norm of both sides. So, we have

Nimg)q,v=15)(05) = fs7s

and
NmE/@z( m)(68) = fsys.
Also we have

Nimg g, v=io(@s) = =5, Ny o, \=15,(¥s) = ¥s and Nimp g =5,(b) = b*.

Therefore from (3.11) we have

f575 x2
_— vV—-10)"“.
Gvey(—sya © @(V-10)

But for ¢, = 0,
fS'yS \/_ x2
_— -10
(5) ¢ Qa( )
because
f5vs 1

N, vio0:(Zaya) = 25259 £ Q37U (1005

For ¢, = 1, from (3.12) we have

Jsvs € Qy( V=102,

Jsys(=5)
Using the fact that ys = y7, by (3.7) we have
2
Ys _ (75 + yg) 1
Vs ¥s ) 2+2+v=5/11y=5/35

(3.11)

(3.12)

So, we need to check whether (2 + 2v-5/11 V=5/35)(=5)%fs fg is square in Q,( V-10)*. By

fixed choice of V=5/3, vY=5/11 and v-5/35 we have

(2 +2+/-5/11y-5/35)fsfs =251 + 22 +2° + 28 + 210 1 ...y ¢ QP

and

(2 +2+/=5/11y=5/35)(=5)fsfs = 2851 +2+ 22 + 20+ 2° + 210+ ...y ¢ Q2
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as well as

(—10)2 +2+/=5/11/=5/35)fs fs =282+ 22+ 2° + 27 + 210 + ...y ¢ QF°

and

(—10)2 +2/=5/11/=5/35)(=5)fs fs = 2852+ 22 + 2* + 25 + 28 + .. ) ¢ QF?
So this is a contradiction. Hence W5 # Wg, and we conclude M5 # Mj.
Claim: Mg # My
Assume Wg = Wg, we can write
86 = 05 agygbe’ (3.13)

for some €, -- € € {0, 1} and e € E*. We have

fo =2(A/=5/3 +54/-5/35) € Q.

and

fs = 2(=vV-5/3 + 54/-5/35) € Q,.
Now we take the norm of both sides. So, we have
NmE/QZ(\/E)(66) = fos

and
N, g, v=2)(9s) = fsas.

Also we have

N, v=(@s) = ag, Ny o, y=(vs) = =5 and Ny, y=,(b) = b”.

Therefore from (3.13) we have

Jee )
L — ) NV ) (3.14)
Graw (-3 © 2
But for ¢, = 0, P
66 )
—2)%
oy ¢ Q(V-2)
because p .
66
Nm@z(ﬁ)/@z ((_5)53) = 256 f62(_5) ¢ @;2 U (_2)@30.
For ¢, = 1, from (3.14) and the fact that ¢ = a5 and ag = @7, we have
3
s,V

2fs(=5)
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So, we need to check whether (3/2)(—5) fsfs is square in Q,. By fixed choice of v-5/3,
v=5/11 and v-5/35 we have

G2 fefs =2'A+22+2°+27+20+..) ¢ Q2

and
B2 fefs =2'A+2+22 + 22 +2* +2° +-..) ¢ Q.
as well as
(2B 2)fsfs =2'Q+ 27 +2°+28 + 2 + ..y g Q3
and

(-2)(3/2) (=5 fsfs =2'2 +2°+2° + 22 + 2P + .. ) ¢ Q.

So this is a contradiction. Hence Wg # Wg, and we conclude My # Ms.

323 b=-2
For b = -2, a and c can be 2 and —10. Assume € = V2, 6 =4+ \/5, &g =2+ V=10 and
& =2+3V-10.

Nm@z( \/—TO)/Qz(el) =-2

Nmg, v=oyq,(€) = 14

Nm@z(ﬁ)/@z(a) =14

Nm@z(ﬁ)/@z(&l) =94

(Note: —=2/14 =1+ 0(2%) = 1 (mod 8) and —2/94 = 1 + O(2*) = 1 (mod 8), so 14 and 94 are
in the same square class as —2)

Set
-2
a= V2, o = [T+ V2
] , )
Y =4/ 772+ V-10), Y = 1/ =2 +3V-10);
14 94
where
V-2/14=1+22+22 42 +27+ 254210 1 ... € Q,,
and
V=2/94=1+22+2+2° 420421420+ ... € Q,,
We define
Sii=aty Gi=a+y 6i=d +y; 6=d Y
and

M, = Qu(V2, V=2, V=10, Va, VY \/5_1),
M> = Qx( V2, V=2, V=10, Va, \/77, \/5_2),
M = Qa(V2, V=2, V=10, Vo', vy, /6y),
M = Qo(VB, VT3, VIO, N, 5, B



3.2. THE CASE F = Q, 73

\/;(4+ V2) 22 + V=10) \/%(24,3\/_10)

T

Q(V-2)

Distinction of Mgy, Mo, M;; and M,
Claim: My # M,

For My, we have

b=-2,a9 = V2,79 = /=2/142 + V-10)

and

So = V2 + /=2/142 + V-10),

therefore

Wo = ([66], [ V21, [ V=2/142 + V=10)].[-2]).

For M;,, we have
b=-2,a10= V2,710 = V=2/94(2 + 3V-10)

and

S10= V2 + /=2/94(2 + 3V-10),

therefore
Wio = ([610], J[V=2/94(2 + 3V-10)], [-2]).

Assume Wy = W, then we can write
89 = 85,0510 b e? (3.15)
for some €, -+ & € {0, 1} and e € E* where E = Q,( V2, V=10). Let
fo=4+-2/14

and
fio = 4+/-2/94.
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Now we take the norm of both sides. So, we have

N g, y3)(09) = foarg

and
Nmg 0, v3(010) = fio@io.

Also we have

Nimg o, va(@10) = @ig, Ny o, 5, (v10) = =2 and Ny g, 5,(b) = b

Therefore from (3.15) we have

Joaro 2
e Qx(V2). 3.16
(froa10)9(=2)® Q2(V2) (3.16)
But for ¢, =0,
foaxo o
2
s ¢ @(V2)
because .
99 1
Nsz(‘@)/@z (W) = Efgz(—2) ¢ Q;Z U 2@;2
For ¢, = 1, from (3.16) and the fact that ay = ao, we have
Jo .
— 2 e Qy(V2)2
Fo(—2e < &V

So, we need to check whether (—=2)© f; fi is square in Q,( V2). By fixed choice of

V-2/14=1+422+23+24 427+ 2842104+ ... € Q,,

and
V=2/94=1+25+2* 4254204214 4210 4 ... € Q,,
we have
fofio=2"A+22+2* +2°+2% +...) ¢ QF

and

(-2)fofio=2'Q+22+2* +27+ 28 +..) ¢ QF,
as well as

Q) fofio=2'Q+23+2°+2°+2° +...) ¢ QF?
and

Q)= fofio =220 +2+2° +2°+27 +--.) ¢ Q.

So this is a contradiction. Hence Wy # W, and we conclude My # M.

Claim: Mo # My,
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Let W; be as above. For M;;, we have

b=-2,a11 = V-2/14(4 + V2),y11 = V-2/142 + V-10)

and

S11 = V-2/14(4 + V2) + \/-2/142 + V-10),

therefore

Wi = ([611], [V=2/14(4 + V2)1,[V-2/142 + V=10)], [-2]).

Assume W;, = Wj; then we can write

S0 = 07y a Ty b%e’ (3.17)
for some €,--- € € {0,1} and e € E*. Let
fio =4+-2/94

and
fu = 124/-2/14.
Now we take the norm of both sides. So, we have

Nmyg,0,v=15)(610) = fi0Y10

and
Nmg,0,v=10)(011) = furyn
Also we have
Ny, y-io)(@n) = =2, Nmg,q, y—6/(yn) = 71 and Nmg,q,yv=15)(b) = b*.

Therefore from (3.17) we have

SioY10 x2
€ V-=10)*". 3.18
Grya(—e © 2OV G-18)
But for ¢, = 0,
fioY10 ¢ Qs \/__10)><2
(-2)°
because r .
Y % x
N, (v=1o)/0, (%) = 4—52f120(—2) ¢ QU (-100Q;”.

For ¢, = 1, from (3.18), we have

ﬂ _g\x2
f11711(—2)ez €Q2(‘/_5) .

Now we need to find a relation between vy, and y;; module squares in Q,( V—10). Since

Y10
Y11

Nmg g,y ) =1,
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we can follow the same method we used in section 3.2.1. So take

+
t:m and l:t+1:M.
Y11 Y11
Therefore )
Y10 P (710 + 711)
— =t= = (2—=34+/-2/14~-2/94). (3.19)
Vi1 Nm(l) Y11 \/ \/

So, we need to check whether (2 — 34 V=2/14 V=2/94)(—2)2 f5 f1o is square in Q,( V—-10).
By fixed choice of vV-2/14 and +-2/94, we have

(2= 34=2/14=2/90) fiofir = 252 +2° +210 + 21 422 4 .. ) ¢ QF

and

(2= 34V=2/14-2/94) (-2 fiofi1 =281 +2+ 22 + 22 + 2 + 20 + ) ¢ QF,
as well as

(—10)(2 = 34 =2/14~/=2/9) fio fir = 2°5(1 + 2+ 22 +2* + 22+ 2° + .- ) ¢ Q7
and

(—10)(2 = 34 /=2/14/=2/94)(=2) fio i1 = 282 +2° +2° + 210+ 212 + ...y ¢ Q.
So this is a contradiction. Hence Wy # W;;, and we conclude M,y # M.
Claim: M11 * M12

Let Wy, be as above. For M;,, we have

b==-2,a;,=+-2/144 + \/5),’}/12 = -2/94(2 +3V-10)

and

512 = \=2/14(4 + V2) + \[=2/94(2 + 3V-10),
Wip = ([012], [V—2/14(4 + V2)I.1 V=2/94(2 + 3V=-10)], [-2]).

Assume W;; = W), then we can write

therefore

o1 = 0 aybee’ (3.20)
for some €;,--- €, € {0,1}and e € E*. Let
fir = 124/-2/14

and

fi2 = 2(4+/-2/14 +2+/-2/94).
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Now we take the norm of both sides. So, we have

NmE/Qz(ﬁ)(éll) = fuan

and
Nmg,0,(v3)(012) = froaa.

Also we have

Nmyg,o z(@n) = aty, Nmy 10u(v2(¥12) = =2 and Nmy . 5,(b) = b

Therefore from (3.20) we have

fuan 2
€ Qa(V2)<. 3.21
(fraap)a(=2)= Q2(V2) ( )
But for ¢, =0,
flla/u 2
o £ QYD)
because
fuen)_ 1 T
Nmg,vore, (ﬁ = 473f121(—2) ¢ Q2 U2Q3.

For ¢, = 1, from (3.21) and the fact that a;; = a;,, we have

I Ve

S2(=2)s

So, we need to check whether (—2)© fi; fi, is square in Q,( V2). By fixed choice of v-2/14
and V-2/94 we have

fufio=2"A+22+2 +2°+28 + .. ) ¢ QF

and

(=2 fi1fin=2'Q@+22+2* +2°+ 28 + .. ) 2 QF,
as well as

=10 fiifio=2'Q+2° +2°+27+2° +...) ¢ Q*
and

10)(=2)firfio =220 +2+ 22 +2° + 27 + 20+ .. ) ¢ Q.

So this is a contradiction. Hence W;; # Wj,, and we conclude M,; # M,,.
Claim: My # My,
Assume Wy = W, then we can write

S9 = 67\t yr e (3.22)



78 CHAPTER 3. Uy(IF,)-EXTENSIONS

for some €;,--- € € {0,1} and e € E*. We have
fo=4+-2/14
and
fir = 124/-2/94.

Now we take the norm of both sides. So, we have

Nmg,q,v=10)(09) = foyo
and
Nmg,0,v=10)(011) = fuyn.
Also we have
Nimgo, = (@n) = =2, Nmpyo, =5, (y11) = yi and Ny y=5,(b) = b

Therefore from (3.22) we have

f979 \/_—10 %2 393
Gy 2y © OV (3.23)
But for ¢, = 0, P
9Y9 <2
—2)° ¢ Q(V-10)
because .
Nma,v=1o: ((%9) = 5/ € Q7 U(-1005

For ¢ = 1, from (3.23), we have

f979 X2
_Jors — |
f11711(—2)62 € QZ( \/_0)

Using the fact y9 = 1, we need to check whether (—2)2 fo f1; is square in Q,( V—10). By fixed
choice of v—2/14 and v-2/94 we have

fofii=2"A+2+2° +2* +2°427 +...) ¢ QF

and

() fofir =2'Q+2° +20+2° + 22+ 2P + ..y ¢ QF,
as well as

(-10)fofii =2*Q+2* +2° + 20+ 28 + 27 +...) ¢ QF°
and

(-10)(=2)fofi1 =2°(1 +2+ 22 + 20+ 2° + 212 +...) ¢ QF°.

So this is a contradiction. Hence Wy # Wy, and we conclude My # M,;.
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Claim: My # M,

Assume Wy = W), then we can write

o = Ohafybe’ (3.24)
for some €, -- € € {0,1} and e € E*. We have
fo=4+/-2/14

and

fia = 2(4+/-2/14 + 2/-2/94).
Now we take the norm of both sides. So, we have
NmE/Qz(m)(dg) = f979

and
Nmg,0,v=10)(012) = fi2Y12-
Also we have

Nmg,q,yv=10)(@12) = =2, Nmgq, y=15/(r12) = 71, and Nmgq,y=i0)(b) = b,

Therefore from (3.24) we have

f9'}’9 \/_ %2
—-10)*“. 3.25
Gy 2y © 2OV10 (325
But for ¢, = 0, P
9Y9 <2
(—2)° ¢ Q(V-10)
because .
Nm@z(m)/(@z (%) = 42]32(_2) ¢ Q;Z U (_10)(@;2

For €, = 1, from (3.25), we have

ﬂ _&8\X2
f12712(—2)63 € Q2( ‘/_5) .

Using the fact that y9 = y; and y1» = y19, by (3.19) we have

Yo _ ( Y1 )2 1
yioo \yio+yn) 2-34=2/14~=2/94

So, we need to check whether (2 — 34 V=2/14 V=2/94)(—2)2 fy f15 is square in Q,( V—-10).
By fixed choice of v-2/14 and v-2/94 we have

(2= 34V-2/14~/=2/90) fo fir = 22+ 2* + 25+ 27 + 28 + 20 + .- -) ¢ QP
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and

(2= 344/-2/14y-2/90)(-2) fofi = 25 (1 + 2+ 22 + 27+ 2P +-.) ¢ @7,

as well as

(—10)(2 — 34 /-2/14~/=2/94) fofir = 28(1 + 2+ 2° + 27 + 2B 4+ ... ) ¢ QF?

and

(—10)(2 = 34/=2/14/=2/94)(=2) fofi = 282+ 22 + 2* + 25 + 20 + 2% + .. ) ¢ Q%

So this is a contradiction. Hence Wy # W),, and we conclude My # M.
Claim: Mo # M,

Assume W;, = W, then we can write

Si0 = 0hay b’ (3.26)
for some €,--- € € {0, 1} and e € E*. We have
fio =4+/-2/94

and

fiz = 2(4~/=2/14 + 2+/-2/94).
Now we take the norm of both sides. So, we have
Nmg,0,v=i6)(610) = f10Y10
and
NmE/Qz( \/E)((SIZ) = fi2Y12.
Also we have
Nmg g, y1o(@12) = =2, Nmy g, y16/(¥12) = i, and N M 0,(v-10) (D) = b*.
Therefore from (3.26) we have

fiovo x2
€ V-10)*-. 3.27
Gy (2 © BV10 G:27)
But for ¢, = 0,
fioYo ¢ Qy(V=10)
(-2)°
because s .
Y x x

For €, = 1, from (3.27) and the fact that v,y = y;», we have

flO N x2
(e © @O0
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So, we need to check whether (—2)2 fiofi> is square in Q,( V—10). By fixed choice of
V-2/14 and v-2/94 we have

fiofiz =20 +2+2° +2*+27+28 +...) ¢ QF

and
(-2 fiofiz=2'Q+ 23+ 20+ 27+ 212 42" + ..y ¢ QF,
as well as
(=10)fiofia = 2°Q2+ 28 +2° + 20+ 27 + 28 + 27 + ... ) ¢ QF?
and

(=10)(=2) fiofia = 2°(1 + 2+ 22 + 22 + 210 + 212 4+ .. ) ¢ Q.

So this is a contradiction. Hence Wy # Wi,, and we conclude M,y # M,,.

324 b=-10

Forb=-10,aandccanbe -2 and -5. Leteg =6+ V-2, =2+ V-2, &s=-1+ V-5and
€ =5+3V-5.

Nmg, y=)q,(€1) = 38
Nmg, y7)0,(€2) = 6
Nmg, y5)0,(€) = 6
Nmg, y=5q,(€2) =70

Note: —10/38 = 1 + O(2%*) = 1 (mod 8), —=10/6 = 1 + O(2*) = 1 (mod 8) and —10/70 =
1 +0(2% =1 (mod 8), so 38, 6 and 70 are in the same square class as —10.

Set
-10 — [-10
38 6
-10 -10
Y=g CIH V-5 ¥ =5 G +3V-5:
6 70
where
V-10/38 =1+2+2°+27+28 422+ 2" 4+ ... € Q,,
V=10/6 =14+2+2*+25 42042742 +... € Q,
and
V=-10/70=1+2+2°+20+2° + 22 4+ 21 4+ ... € Q,.
We define

dp:i=a+y, i=a+y; 6:=ad+y; d4:=a +7;



82 CHAPTER 3. Uy(IF,)-EXTENSIONS

and

M, = Qx(V=2, V=10, V=5, Va, v7. Vo)),
M := Qu(V=2, V=10, V=5, va. \}y'. V52).
My == Qu(V=2, V=10, V=5, Vo', 7, /63),
M, = Qy( \/—_2, V=10, \/—_5, 2 \/77» \/5_4)-

M13 M14 MlS M16

VeV (e Vo) VRV 2265 +3353)

\\//

Q(v-10)

Distinction of M13, M14, M15 and M16
Claim: M5 # M4

For M5, we have

b=-10,a15 = \V—10/38(6 + V=2),y15 = v/-10/6(-1 + V=5)

and
513 = /—10/38(6 + V=2) + \/—=10/6(-1 + V=5),

therefore

Wis = ([615], [V=10/38(6 + V=2)],[V=10/6(=1 + V=5)],[~10]).

For M4, we have

b=-10,a1, = V-10/38(6 + V=2),y14 = Y—-10/70(5 + 3 V-5)

and
514 = \—10/38(6 + V=2) + \/—=10/70(5 + 3 V-5),

therefore

Wis = ([614], [V-10/38(6 + V=2)1,[/-10/70(5 + 3 V=5)], [~ 10]).
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Assume W;; = Wi, then we can write
613 = Sy ybee (3.28)

for some €;,--- € € {0,1} and e € EX where E = Q,( V-2, V-5). Let

fiz = 2(6+/-10/38 — 4/-10/6

and

fia = 2(64/-10/38 + 5/-10/70).
Now we take the norm of both sides. So, we have
NmE/Qz( \/Tz)(513) = fis@13

and
NmE/Qz(\/Z)((SM) = fla@ia.

Also we have
Nimgo,(y=2)\(@14) = @iy N g,y (71a) = =10 and Nimg g, y=,(b) = b*.

Therefore from (3.28) we have

Sfizais —5 2
(fra1a)(=2)" € (V-2 (3.29)

But for ¢, = 0,

Sfizai3 A2
Tl ¢ @2

because
f 1313

1 X X
Nm@z( V=2)/Q> ((_10)53) = 100e f123(_10) ¢ @22 U (_2)@22.

For ¢, = 1, from (3.29) and the fact that a3 = a4, we have

fl3 X2
e e Qu(V=-2y.

So, we need to check whether (—2)© fi3 f14 is square in Q,. By fixed choice of
V=10/38=1+2+2+27+28 420 4214 4 ... € Q,,

V=10/6 =14+2+2*+25 42042742 +... € Q,

and
V=10/70 =142+ 22 420422 422 4 21 4 ... € Qy,

we have
fiafis=22A+2+22+2° +2* +...) ¢ QF?
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and

(=10)fisfia = 22+ 22 +2°+ 27+ 2° + - -) ¢ QF2,
as well as

(-2)fisfia =22°Q+2°+27+ 28 +2° +..) ¢ QF?
and

(-2)(=10)fisfia = 2° (1 +2+ 2> +2* + 27 + .- ) ¢ QF.

So this is a contradiction. Hence W3 # W4, and we conclude M3 # M,.
Claim: M4 # M5

Let W4 be as above. For M;s, we have

b=-10,a15 = \—10/6(2 + V=2),y15 = \/-10/6(-1 + V=5)

and
Sis = V—=10/6(2 + V=2) + /=10/6(-1 + V=5),

therefore

Wis = ([615], [ V=10/6(2 + Y=2)1,[ Y=10/6(=1 + V=5)],[-10]).

Assume Wi, = Wis then we can write
_ €1 € €16 2
014 = 0y5a 5y 5b%e
for some €,--- € € {0,1} and e € E*. Let

Sfia =2(64/-10/38 + 5+/-10/6)

and
fis =2+-10/6.

Now we take the norm of both sides. So, we have
Nmg,o,yv=5014) = fiayia

and
Nmg,0,(v=35)(015) = fisy1s

Also we have

NmE/QZ(\/S)(Q’lﬁ) =-10, NmE/Qz(\/S)(’YIS) = 'y%s and NmE/QQ(\/S)(b) — b2_

Therefore from (3.30) we have

S1ay1a -
_5 .
(fisyi5)9(=10)= e Q(V-5)

(3.30)

(3.31)
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But for ¢, = 0, P
14714 o2
iy ® @(V-S)
because s |
14714 % %
Nm@z( V=5)/Q> ((_10)52) = 100 f124(_10) ¢ @22 U (_S)sz.

For ¢, = 1, from (3.31), we have

fiaY1a %2
_— V=5)*°.
Frays-10y © 2V

Now we need to find a relation between y4 and y;5 module squares in Q,( V-5). Since

Y14
Yis

Nimgq,v=5(--) = L,

we can follow the same method we used in section 3.2.1. So take

+
t:m and l:t+1:—y14 715.
Y15 Y15
Therefore 5
Y14 I (714 + 715)
— =t= = (2 +2+/-10/6+4/-10/70). (3.32)
Yis Nm(l) Yis v v

So, we need to check whether (2 +2 v=10/6 v=10/70)(—=10)® f14 fi5 is square in Q,( V-5).
By fixed choice of v-10/38, v/—10/6 and v—10/70, we have

(2+2+/-10/64/=10/70) fiafis = 2° (A + 2+ 22 +2* + 25+ 26 + ... ) ¢ QF°

and
(2 +2+/-10/64/=10/70)(=10) fisfis = 2*Q + 2> +2* + 20 + 28 + .. ) ¢ Q%
as well as
(=2)(2 +2+/-10/6/=10/70) fiafis = 2*(1 + 22 + 22 + 25+ 27 +---) ¢ QF°
and

(=2)(2 + 2/-10/6 /=10/70)(—=10) fia fis = 2*(2 + 22 + 2> + 2* + 25 + .. -) ¢ QF°.
So this is a contradiction. Hence W4 # W5, and we conclude M4 # Ms.
Claim: M5 + My

Let Wi5 be as above. For M4, we have

b=-10,a15 = V-10/6(2 + V=2),y16 = V-10/70(5 + 3 V-5)
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and
516 = V—=10/6(2 + V=2) + +/=10/70(5 + 3 V-5),

therefore

Wie = ([616], [V-10/6(2 + V=2)1,[ V-10/70(5 + 3 V=5)1,[-10]).

Assume W5 = W then we can write

815 = Sjgaliynb®e (3.33)
for some €,--- € € {0,1} and e € E*. Let
fis =2+4-10/6

and

fie = 2(24/—10/6 + 5/-10/70).
Now we take the norm of both sides. So, we have
Nmgo,y=)(015) = fisais

and
Nmpg,0,v=2(616) = fie@is.

Also we have

2 2
NmE/Qz(@)(a/lé) = 0'16’NmE/Q2(\/§)(716) = —10and NmE/QZ(@)(b) =b".

Therefore from (3.33) we have

Sisais %2
€ V=2)"“. 3.34
Growgya(-10ye = 2V (334
But for ¢, = 0, 5
1515 2
V-2
(—10) ¢ Qa( )
because s .
a X X
Nmg, =5q, ((_1510;3) = To0s f5(=10) ¢ Q3% U (-3)Q5%.

For ¢, = 1, from (3.34), we have

f16(]—€1i0)€3 € (V=2

So, we need to check whether (—10)® fis fi¢ is square in Q,( V-2). By fixed choice of
v-10/6, Y/-10/70 and v-10/38 we have

fisfie =221 +2+27 +2° +2°+ 28 +...) ¢ QF
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and
(-10)fisfie = 222+ 2> +2° + 2B + 217 4+ ...y ¢ QF7,
as well as
(-2)fisfie =22°Q+2° +27+ 28 + 2! +...) ¢ QF
and

(-2)(=10)fisfie = 2°(1 +2+2° + 22 +2° + 27 +--.) ¢ Q.

So this is a contradiction. Hence W5 # Wi, and we conclude M5 # M.
Claim: Mz # M5

Assume W3 = W5 then we can write

613 = Oj5akyibe’ (3.35)

for some €;,--- € € {0,1} and e € E*. We have

fis = 2(64/-10/38 — 4/-10/6

and
fis =2+/-10/6.

Now we take the norm of both sides. So, we have
N, v=2(013) = fizais

and
Nmg o,v=)(015) = fisais.

Also we have

1 2
Nmyg o, y=)(@is) = ajs, Nmgq, vz (v1s) = =10 and Nmy, ¢, =,(b) = b”.

Therefore from (3.35) we have

Si3a13 <2
€ V-=2)*“. 3.36
G 10y © BV2) (336)
But for ¢, = 0, 4
13%13 <2
V-2
(—10)% ¢ Qo )
because s .
10 N y
Nsz( V=2)/Q, ((_1310;3) = 1005 f123(—10) ¢ Q22 U (—2)@22.

Now we need to find a relation between a3 and @5 module squares in Q,( V-2). Since

a3
Nm —) =1,
E/Qz(‘/_z)(a,ls)
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we can follow the same method we used in section 3.2.1. So take

t:% and l:t+1:w.
a5 s
Therefore )
a3 I a3 +ais
o Nm(l)(als )( (14/5)y/-10/6 /-10/38) (3.37)

So, we need to check whether (2 — (14/5) V=10/6 V—=10/38)(—10)% fi3 fi5 is square in
Q,(V=2). By fixed choice of v-10/6, vY—=10/70 and v-10/38 we have

(2 — (14/5)4/-10/6 /=10/38) fisfis = 2*(1 + 2+ 22 + 23 + 2* + .. ) ¢ QF°

and

(2 — (14/5)4/=10/6 4/-10/38)(=10) fis fis = 2*Q + 2> + 26 + 210 + 212 4 ...) ¢ Q2.

as well as

(=2)(2 — (14/5)/=10/6 /=10/38) fis fis = 2*(2 + 26 + 28 + 22 + 210 1+ ...y ¢ QF?

and

(=2)(2 = (14/5) V=10/6 /—10/38)(=10) fis fis = 2°(1 + 2+ 23 +2* + 26 + 27 + ... ) ¢ Q%

So this is a contradiction. Hence W, # Wi,, and we conclude M,; # M,,.
Claim: M3 # M,

Assume W3 = W4 then we can write

613 = OLalyibee’ (3.38)

for some €;,--- € € {0, 1} and e € E*. we have

fi3 = 2(64/-10/38 — 4/-10/6

and

fie = 2(2+/-10/6 + 5+/—10/70).
Now we take the norm of both sides. So, we have
N, v=5(613) = fi3713

and
Nmy,q,y=5,(016) = fi6Y16-

Also we have

NmE/QZ( ‘/3)(“16) = _10, NmE/Qz(\S)(‘YIG) = ')’%6 and NmE/QQ( ﬁ)(b) = bz_
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Therefore from (3.38) we have

S13713 <2

e Qy (V-5 3.39
Greroy(—1oye & @V (3.39)

But for ¢, = 0, P
13713 o \x2
oy ¢ @(V-5)
because s |
3Y « y
Nm@z( V=5)/Q> ((_110;2) = 100e f123(_10) ¢ sz U (_S)sz.

For ¢, = 1, from (3.39), we have

Si3713 -
Formioe € @OV

Using the fact that y3 = y;5 and y16 = 14, also by (3.32), we have

Y3 _ (713 + V16 )2 1
Yi6 Y16 2 +24/=10/6 V=10/70

So, we need to check whether (2 +2 v=10/6 v=10/70)(—=10) f13 fi6 is square in Q,( V-5).
By fixed choice of v-10/6, Y—10/70 and v—10/38 we have

(2+2+/-10/6/=10/70) fisfis = 221 +2+ 22 + 22 + 26+ 27 + ... ) ¢ QF°

and
(2 +2+/-10/6/=10/70)(—=10) fisfis = 2*(2 + 2> + 25 + 26 + 27 + 28 + ... ) ¢ Q2%,
as well as
(=5)(2 +2/=10/6/=10/70) fis fie = 2*(1 + 22 + 2* + 25 + 26 4 27 4+ ... ) ¢ QF°
and

(=5)(2 + 2/-10/6 /=10/70)(=10) fis fis = 2*(2 + 2> + 2° + 25 + 26 +...) ¢ Q}°.
So this is a contradiction. Hence Wy # Wi,, and we conclude My # Mi,.
Claim: M4 # M5
Assume Wi, = Wig then we can write
S1a = OLalyrib®e’ (3.40)

for some €, -- € € {0,1} and e € E*. Let

fia = 2(6/-10/38 + 5+/-10/6)
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and

fie = 2(24/-10/6 + 5/-10/70).
Now we take the norm of both sides. So, we have
Nmg,0,v=5)(014) = fiayia

and

NmE/Qz(«B)(‘Slé) = fi6Y16-

Also we have

Nmyg,q, v (@16) = =10, Nmy o, y=5(Y16) = yis and Nmy,q. =5, b) = b2

Therefore from (3.40) we have

f1avia %2
—5)<2, 3.41
Gy < @(V-9 G4l

But for ¢, = 0,

Sf1av14 o \x2
Ciop € @09

because

Siay1a 1
Nmg, (v, ((_IO)Q = Toga (10 € Q7 U (-5)Q5”.

For € = 1, from (3.41) and the fact that y;4 = ¥4, we have

fm{fz)fz € Qa(V=5)".

So, we need to check whether (—10)®f4fi¢ is square in Q,( V-5). By fixed choice of
V-10/6, V/-10/70 and v-10/38 we have

flafis=22A+22+2° 427+ 2 + .. ) ¢ QF

and
(=5)fiafie =221 +2+22 +2° + 29 + 210 +...) ¢ Q.
as well as
(=10) fiafie = 222+ 22 + 23 + 20+ 210 4+ ..y g QF°
and

(=5)(=10) fiafis = 222+ 2> +2* +2° + 20 + .. ) ¢ Q.

So this is a contradiction. Hence W4 # Wi, and we conclude M4 # M.
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3.2.5 Conclusion

Theorem 3.2.2. M, M,,--- , M are all U4(IF,)-Galois extensions of Q,.

Proof. By [MT14a, Theorem 3.7], we know that there are only 16 U,(IF,)-Galois extensions of
Q5. Also by [MT15b] all of the extensions M, --- , My are Galois extensions of Q, and their
Galois groups are isomorphic to U4(IF,).

The only part remaining is to show M, --- , M ¢ are distinct. In the sections 3.2.1, 3.2.2,
3.2.3 and 3.2.4, we already showed that [{M;, M;,|, M;;», M;3}| = 4 fori = 1,5,9,13. So now,
we need to show, for a fixed i, j = 1,5,9, 13 and i # j, we have

{Mi,Mis1,Mis, Mis} N {M;, M1, M2, M3} = ¢.

All dihedral extensions of M, --- , M4 contain V—1, but there are some dihedral extensions
in Ms, - -+, My such that they don’t contain V—1. So

Ms,--- ,Ms & {M,, M, M3, M,}.

Similarly, all dihedral extensions of Ms,---, Mg contain V-5, but there are some dihedral
extensions in My, -- , M4 and My, - - - , M6 such that they don’t contain V-5. So

M, - My, My, , Mg & {Ms5, Mg, M7, Ms}.

Also, all dihedral extensions of My, -- , M, contain V-2, but there are some dihedral exten-
sions in My, -+, Mg and M3, - - - , M¢ such that they don’t contain V-2. So

Ml’ L ,Mg, M13, s ,M16 ¢ {M9, MIO, MII’MIZ}'

Finally, all dihedral extensions of M3, -, Mi¢ contain V—10, but there are some dihedral
extensions in My, --- , My, such that they don’t contain V—10. So

M, My & (M3, M4, M5, M}

Theorem 3.2.3. There is no U,(IF,)—extension of Q, forn > 5.

Proof. Let M be a U,(FF,)—extension of Q,. Let ker(y) be the kernel of the surjective map
¢ : Uy(F2) - F3 ! where ¢([a;;]) = (a12,a23, "+, An-1,,)- Also assume K to be the fixed field
of ker(¢), so Gal(K/Q,) = U, (IF,)/ker(p) = Fg‘l.

To generate K, we need exactly n — 1 F,—linearly independent elements of Q}/Q5*. But
Q5/Q3? has only three linearly independent elements. Therefore, for n > 5, there are not
enough linearly independent elements to generate K. Hence, there is no U,(IF,)—extension of

Q, forn > 5. O
Corollary 3.2.4. Number of U,(IF,)—extensions of Q, is as follows:
7 ifn=2
} _ ) 18 ifn=3
#{U,(IF,) — extensions of Q,} = 16 ifn=4 (3.42)
0 ifn=5

Proof. Chapter 2 and Theorems 3.2.2 and 3.2.3. L]



Summary

In this thesis we classify all U4(IF,)—Galois extensions L/F. Using the same method, we clas-
sify all Us(IF,)—Galois extensions which are isomorphic to the dihedral extensions over any
fields. Also, as an example, we list all U,(IF,)—Galois extensions of Q.

An open question is extending the results to all U,(IF,)—Galois extensions for all natural
numbers n and prime numbers p. Another interesting problem is to replace I, by any finite

fields.

These problems are part of a major problem in Galois theory which is the classification of
all Galois extensions over any fields.

92



Bibliography

[Amal4]

[AMTI5]

[BDO1]

[CF67]

[Coh08]

[Con65]

[DGMS75]

[Dwy75]

[Efr14]

[EM11]

[EM14]

[HW15]

[Jac64]

Fumiya Amano. On a certain nilpotent extension over QQ of degree 64 and the 4-th
multiple residue symbol. Tohoku Mathematical Journal, 66(4):501-522, 2014.

Masoud Ataei, Jan Mina¢, and Nguyén Duy Tan. Description of Galois unipotent
extensions. arXiv preprint arXiv:1508.05540, 2015.

Daniel K Biss and Samit Dasgupta. A presentation for the unipotent group over
rings with identity. Journal of Algebra, 237(2):691-707, 2001.

John W.S. Cassels and Albrecht Frohlich. Algebraic number theory. Academic
Press, London, 1967.

Henri Cohen. Number theory: Volume I: Tools and diophantine equations, volume
239. Springer-Verlag, 2008.

Ian G Connell. Elementary generalizations of Hilbert’s Theorem 90. Canad.
Math. Bull, 8(6), 1965.

Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan. Real ho-
motopy theory of Kéhler manifolds. Inventiones mathematicae, 29(3):245-274,
1975.

William G Dwyer. Homology, Massey products and maps between groups. Jour-
nal of Pure and Applied Algebra, 6(2):177-190, 1975.

Ido Efrat. The Zassenhaus filtration, Massey products, and representations of
profinite groups. Advances in Mathematics, 263:389—411, 2014.

Ido Efrat and Jan Minac. On the descending central sequence of absolute Galois
groups. American journal of mathematics, 133(6):1503-1532, 2011.

Ido Efrat and Eliyahu Matzri. Triple Massey products and absolute Galois groups.
arXiv preprint arXiv:1412.7265, 2014.

Michael J Hopkins and Kirsten G Wickelgren. Splitting varieties for triple Massey
products. Journal of Pure and Applied Algebra, 219(5):1304-1319, 2015.

Nathan Jacobson. Lectures in abstract algebra. Vol. 3, Theory of fields and Galois
theory. Springer-Verlag, 1964.

93



94

[Jarll]

[JLYO02]

[Koc02]

[LamO5]

[Lan13]

[LedO5]

[LMSO03]

[Mas58]

[Mas87]

[McLO8]

[MNQD77]

[MS90]

[MS96]

[MT13]

[MT14a]

[MT14b]

BIBLIOGRAPHY

Moshe Jarden. Algebraic patching. Springer-Verlag, 2011.

Christian U Jensen, Arne Ledet, and Noriko Yui. Generic polynomials: construc-
tive aspects of the inverse Galois problem, volume 45. Cambridge University
Press, 2002.

Helmut Koch. Galois theory of p-extensions. Springer-Verlag, 2002.

Tsit-Yuen Lam. Introduction to quadratic forms over fields. American Mathemat-
ical Soc., 2005.

Serge Lang. Algebraic number theory, volume 110. Springer-Verlag, 2013.

Arne Ledet. Brauer type embedding problems, volume 21. American Mathemat-
ical Soc., 2005.

David B Leep, Jan Minac, and Tara L Smith. Galois groups over nonrigid fields.
Valuation Theory and its Applications, 33:61-77, 2003.

William S Massey. Some higher order cohomology operations. In Symposium in-
ternacional de topologia algebraica International symposium on algebraic topol-
0gy, pages 145-154, 1958.

Richard Massy. Construction de p-extensions galoisiennes d’un corps de carac-
téristique différente de p. Journal of Algebra, 109(2):508-535, 1987.

Cam McLeman. p-Tower groups over quadratic imaginary number fields. Ann.
Sci. Math. Québec, 32(2):199-209, 2008.

Richard Massy and Thong Nguyén -Quang-Do. Plongement d’une extension de
degré p? dans une surextension non abélienne de degré p*: étude locale-globale.
J. Reine Angew. Math., 291:149-161, 1977.

Jan Mina¢ and Michel Spira. Formally real fields, Pythagorean fields, C-fields
and W-groups. Mathematische Zeitschrift, 205(4):519-530, 1990.

Jan Minac and Michel Spira. Witt rings and Galois groups. Annals of mathematics
(2), 144(1):35-60, 1996.

Jan Minac¢ and Nguyén Duy Tan. Triple Massey products and Galois theory. arXiv
preprint arXiv:1307.6624 - It will appear in Journal of European Mathematical
Society, 2013.

Jan Mina¢ and Nguyén Duy Tan. Counting Galois Uy(F,)—extensions using
Massey products. arXiv preprint arXiv:1408.2586, 2014.

Jan Mina¢ and Nguyén Duy Tan. Triple Massey products vanish over all fields.
arXiv preprint arXiv:1412.7611, 2014.



BIBLIOGRAPHY 95

[MT15a]

[MT15b]

[MZ11]

[Nai95]

[Neu99]

[NSW13]

[Sal82]

[Ser78]

[Ser13]

[Sha72]

[Vil]

[Wat74]

[Wat94]

[Wei95]

[Yam95]

Jan Mina¢ and Nguyén Duy Tan. The kernel unipotent conjecture and the vanish-
ing of Massey products for odd rigid fields. Advances in Mathematics, 273:242—
270, 2015.

Jan Mina¢ and Nguyén Duy Tan. Construction of unipotent Galois extensions
and Massey products. arXiv preprint arXiv:1501.01346, 2015.

Ivo M Michailov and Nikola P Ziapkov. On realizability of p-groups as Galois
groups. arXiv preprint arXiv:1112.1522, 2011.

Hirotada Naito. Dihedral extensions of degree 8 over the rational p-adic fields.
Proceedings of the Japan Academy, Series A, Mathematical Sciences, 71(1):17—
18, 1995.

Jiirgen Neukirch. Algebraic number theory. Springer-Verlag, 1999.

Jiirgen Neukirch, Alexander Schmidt, and Kay Wingberg. Cohomology of number
fields, volume 323. Springer-Verlag, 2013.

David J Saltman. Generic Galois extensions and problems in field theory. Ad-
vances in Mathematics, 43(3):250-283, 1982.

Jean-Pierre Serre. Une "formule de masse" pour les extensions totalement
ramifiées de degré donné d’un corps local. C. R. Acad. Sci. Paris Sér. A-B,
286(22):A1031-A1036, 1978.

Jean-Pierre Serre. Local fields, volume 67. Springer-Verlag, 2013.

Stephen S Shatz. Profinite groups, arithmetic, and geometry. Number 67. Prince-
ton university press, 1972.

Fernando R. Villegas. Relations between quadratic forms and certain Galois ex-
tensions, a manuscript, Ohio State University, 1988.

William C Waterhouse. Profinite groups are Galois groups. Proceedings of the
American Mathematical Society, 42(2):639-640, 1974.

William C Waterhouse. The normal closures of certain Kummer extensions.
Canad. Math. Bull, 37(1):133-139, 1994.

André Weil. Basic number theory, reprint of the second (1973) edition, Classics
in Mathematics, 1995.

Masakazu Yamagishi. On the number of Galois p-extensions of a local field.
Proceedings of the American Mathematical Society, 123(8):2373-2380, 1995.



Curriculum Vitae

Name: Masoud Ataei Jaliseh

Education
University of Western Ontario
London, ON
2011 - 2015 Ph.D. in Mathematics

Institute for Advanced Studies in Basic Sciences (IASBS)
Zanjan, Iran
2009-2011 MSc in Mathematics

Related Work Teaching Assistant
Experience: The University of Western Ontario
2011 - 2015

Publications:

e Masoud Ataei, Jdn Mina¢ and Nguyén Duy Tan, Description of Galois unipotent exten-
sions arXiv preprint arXiv:1508.05540, 2015.

e Masoud Ataei, A new good Galois tower of function fields over finite fields (In Progress).

e Masoud Ataei, Michael Bush, Jan Mina¢ and Nguyén Duy Tan, Constructions of Galois
extensions with restricted ramification (In Progress).

96



	Galois 2-Extensions
	Recommended Citation

	tmp.1450290678.pdf.GQ2tm

