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Abstract 

The detective quantum efficiency (DQE) is a characteristic of x-ray imaging systems 

describing how well a system can produce high signal-to-noise ratio images compared to 

an ideal detector.  In medical radiography, increases in DQE result directly in increases in 

image SNR for a given x-ray exposure, and improved SNR has been shown to improve 

breast cancer detection rates in screening programs.  Typically, modern x-ray detectors 

have DQE values about 0.6 to 0.7 at low spatial frequencies and 0.2 to 0.3 or less at high 

spatial frequencies.  We describe a method to improve the high frequency DQE by 

developing a novel apodized-aperture pixel (AAP) design that can be implemented with 

detectors having very small elements.  We show theoretically that the high-frequency DQE 

can be doubled using this approach.   Experimental validation shows an increase from 0.2 

to 0.4 at the sampling cut-off frequency (2.5 cycles/mm) for a laboratory CMOS/CsI 

detector.  It is predicted the high-frequency DQE of a Se-based detector for mammography 

could be increased from 0.35 to 0.7.  Such increases would improve visualization of small 

objects and fine detail in x-ray imaging by a factor of two. 
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Chapter 1 

1 Introduction 

Radiographic images are formed by the transmission of x rays (electromagnetic radiation 

in the energy range of approximately 20 eV – 120 keV) through patients, and radiography 

is the most widely used medical-imaging procedure with over 20 million diagnostic x-ray 

procedures performed each year in Canada [1] [2].  Image contrast results from differences 

in x-ray transmission through different tissues.  Since x-ray interactions and detection are 

random processes, there is a statistical uncertainty in the number of x-ray quanta that 

interact in the imaging detector.  This results in image “noise” that reduces image quality 

and can obscure visualization of small or low-contrast structures.  Image quality can 

normally be improved by using higher radiation exposures.  However, radiation exposure 

to patients is associated with a risk of developing radiation-induced cancers, cataracts, and 

other consequences [2].  About one case out of 2000 cancer cases is associated with 

diagnostic radiation [3].  The linear hypothesis [4] is normally adopted in which we assume 

there is no threshold for cancer risk, even at low exposures, and risk is proportional to dose.  

It is therefore important that x-ray imaging systems be designed to produce images with 

adequate quality for the medical task while minimizing patient exposure. 

The ability of an x-ray system to produce high-quality images is described by the system’s 

detective quantum efficiency (DQE).  The DQE describes image SNR relative to that of an 

ideal (photon-counting) detector for a specified detector exposure.  It is expressed as a 

function of spatial frequency (cycles/mm) where low frequencies correspond to the 

visualization of large image structures and high frequencies describe visualization of small 

structures and fine image detail.  An improved DQE will improve image SNR.  The DQE 

of modern imaging systems can be relatively good (close to unity) at low spatial 

frequencies, but generally decreases substantially with increasing frequency.  There are 

several reasons for this decrease.  My goal in this thesis is to develop a novel x-ray detector 

design to achieve improved high-frequency DQE by reducing noise aliasing. 
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1.1 Basic Technology of Digital Radiography Detectors 

Digital radiography is a form of x-ray imaging, in which traditional photographic films are 

replaced with digital x-ray sensors and digital image capture devices.  These improvements 

over film-screen systems permitted immediate image preview and the possibility of image 

processing [5].  In addition, some studies have shown that less radiation exposure is 

required for creating digital images in contrast to film radiographs by up to 70 % [6].  Many 

modern radiography departments now rely exclusively on digital technologies. 

The first digital radiographs for medical applications were obtained in the 1980s [7]. They 

implemented optical-lens assemblies to focus x-ray-generated light quanta from an x-ray 

phosphor (generally Gd2O2S based) onto a small-area charge-coupled device (CCD) 

photodetector [8].  In the late 1990s, active-matrix flat panel imaging (AMFPI) systems 

appeared, making use of x-ray to light converters (generally Gd2O2S or CsI based) with 

large-area photodiode arrays converting incident x-ray quanta into an image signal.  Both 

CCD and flat-panel detectors use active readout of detector data to generate a digital image. 

Flat panel detectors (FPD) are subdivided as direct (photoconductor based) and indirect 

(scintillator based) types depending on how x-ray energy is converted to a measureable 

signal.  Indirect FPDs (Fig. 1.1 A) use a scintillator converter layer (generally CsI or 

Gd2O2S) to convert interacting x-ray quanta into emitted light that is coupled to a photo-

sensor array generally made from amorphous silicon (a-Si) thin-film transistors (TFT).  The 

output signals from all detector elements are converted into digital values (proportional to 

absorbed x-ray energy) that can be displayed as a digital image.  Direct FPDs (Fig. 1.1 B) 

differ because x-rays are used to liberate charges directly in the converter layer (generally 

amorphous selenium, a-Se) between layered electrodes and a TFT array is used to measure 

the liberated charge collected by high-voltage bias electrodes in each detector element.  

Direct detectors can have superior spatial resolution because optical scatter of quanta in the 

converter layer blurs the image more than charge migration in the photo-conductor 

converter layer [7].  
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1.2 Common modern technologies 

A brief summary of detectors often found in modern x-ray imaging facilities is presented 

here. 

1.2.1 Photostimulable storage phosphor detectors 

This type of detector uses cassette-based storage phosphors that retain absorbed x-ray 

energy as a two-dimensional distribution of electrons trapped in semistable energy wells 

[9, 10].  A scanning laser beam activates trapped electrons to liberate luminiscence quanta 

of a different wavelength.  A photomultiplier system reads out the luminiscense light as 

the phosphor is scanned to create a digital image, followed by a clearing of any residual 

signal to prepare for the next exposure. Cassette reading requires individual loading of 

cassettes in small batches in a reader by staff, which increases the cost as each cassette 

reading may take several minutes.  Recent technological developments of storage phosphor 

detectors include development of components with low intrinsic lag for shorter read-out 

time, “dual-side” phosphor deposition on a transparent material for improvement of x-ray 

detection efficiency, improved stimilated luminescence efficiency for higher SNR, and 

structured PSP materials such as CsBr that allow improved spatial resolution and detection 

efficiency.  Cassette-based CR detectors are used for digital mammography with special 

adjustments to read-out electronics and laser beam.  The zero-frequency DQE values of 

CR systems are typically 0.3 to 0.45  [10, 11] 

1.2.2 Scintillator with charge coupled device systems  

Charge-coupled device (CCD) systems consist of a scintillator converter that converts 

absorbed x-ray energy into light quanta which are then focussed on to a small-area CCD 

[12].  The CCD typically has very low readout noise, but the number of optical quanta per 

interacting x-ray photon focussed onto the CCD may not be large enough to prevent a 

secondary quantum sink, resulting in reduced image SNR and DQE [13]. 

One potential reason for low light collection is the wide angle of light emission from most 

scintillators.  A non-structured phosphor, such as Gd2O2S, has high light dispersion 

properties and, therefore, only a small fraction of light can be focused onto the CCD [14].  
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A structured phosphor, such as CsI, generates more focused light output, and thus higher 

light collection efficiency and potentially higher SNR of output image for a given incident 

x-ray exposure.  However, direct x-ray exposure of the CCD can intruduce noise and device 

deterioration, requiring a relatively large enclosure to locate the CCD out of direct x-ray 

beam exposure and mirror optics to reflect light to the CCD.  CCD imaging systems based 

on slot scan image acquisition demonstarted very good clinical results for chest and whole 

body imaging [15] [16].  

1.2.3 Active-matrix flat panel image detectors 

AMFPI technologies are based on thin-film transistor (TFT) arrays created using 

amorphous silicon (a-Si) with lithographic etching [17, 18].  They consist of  a matrix of 

detector elements arranged with a centre-to-centre spacing of 100 – 200 μm [19]. 

Components of each AMFPI detector include a thin-film transistor, a charge collection 

electrode and a storage capacitor.  After exposure to x-rays, the active matrix array is read 

out, one row at a time, by activating gate lines that turn on the corresponding thin-film 

transistors and allows stored charges to reach the amplifier.  The measured charge is 

converted to a proportional voltage and digitized to create a digital image matrix.  Detector 

readout time is determined by the relatively low-performance of TFT electronics and the 

number of amplifiers used.  Sensitivity is influenced by the detector element fill factor, 

describing the fraction of each element that is sensitive to secondary quanta relative to the 

centre-to-centre spacings of the elements.  The ideal case of 100% fill factor corresponds 

to the most efficient collection of x-ray information.  Collection efficiency is degraded by 

electronic components and connection lines of the TFT.  These detectors often have faulty 

or disfunctional detector elements caused by mulfunctioning detector elements or 

electronics gates.  The damaged response is corrected by interpolation to the nearby 

detector elements filling expected information. 

AMFPI detectors are divided into “indirect” and “direct” x-ray systems as illustrated in 

Fig. 1-1 [17].  Indirect systems use a-Si TFT technology to create a photodiode array to 

measure light emitted from a phosphor converter material.  Each light photon liberates a 

charge carrier that is collected in a capacitor in each detector element.  Both Gd2O2S and 

structured CsI converters are widely used, but CsI has superior x-ray detection efficiency 
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and light production properties, and good spatial resolution [20].  Indirect systems use TFT 

technology to measure charges liberated directly by x-ray interactions in a photoconductor 

converter, generally amorphous selenium.   Charges are collected by electric fields created 

by a bias voltage to prevent recombination and charge spreading in the a-Se layer [21].  

The fill factor can be close to unity as electrode design can funnel charges along electric 

field lines.  At present, indirect AMFPIs have shown good performance in conventional 

radiography applications and high-speed (dynamic) applications such as fluoroscopy due 

to high speed of image acquisition and read-out.  Direct AMFPIs have wide 

implementation in digital mammography due to their higher spatial resolution properties 

[22].  

 

Figure 1-1. Illustration of x-ray interaction and charge collection for “indirect” (A) 

and “direct” (B) x-ray detectors. 

The term DR (digital radiography) is often used to describe both direct and indirect 

systems, in contrast with CR systems.  DR detectors can achieve DQE values of 0.5 to 0.7 

at zero spatial frequency in modern imaging systems.  This is generally superior to CR 

systems which implies that superior image quality (in terms of image SNR) can be achieved 

for the same patient exposures.  
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1.2.4 Complimentary metal-oxide semiconductor detectors 

Complimentary metal-oxide semiconductor (CMOS) detectors are based on crystalline 

silicon matrix with built-in photodiodes, storage capacitors and active electronics operating 

at low voltage for image acquisition and readout processes [23].   CMOS can be used to 

create extremely high performance circuits for use in both direct and indirect detector 

designs.  They have extremenly low electronic noise, very fast readout performance, and 

can be used to create extremely small detector elements (~25 μm) in comparison to TFT 

arrays.  However, until recently it has not been possible to manufacture large area CMOS 

arrays.  In the past few years, prototype CMOS systems have been available with 

dimensions of 12 x 15 cm, and can be assembled together (typically on three sides only) to 

create larger arrays.  While not available for general radiographic applications, CMOS-

based systems have been used in special prototype applications [24], [25]. 

1.3 Background on DQE and why it is important 

The detective quantum efficiency (DQE) is a metric describing image quality in terms of 

SNR relative to that obtained by an ideal (photon-counting) x-ray detector (Fig. 1-2).   

 

Figure 1-2. Representative image from a system with high DQE (purple) and 

simulated low DQE (green) illustrating the impact of DQE on image quality. 
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The importance of image SNR was highlighted recently in a study [26] that showed 

superior breast cancer detection rates improvement with DR compared to CR (34%, 

corresponding to 25% patient dose increase) in a screening mammography program in 

Ontario (Ontario Breast Screening Program, OBSP).  They attributed the difference to the 

superior image SNR.  As a result of this finding, CR systems are no longer accepted by 

the OBSP for mammography screening.  Similar decisions have been made elsewhere.  

The implication is that further improvements in image SNR, resulting from improved 

DQE values, will further improve cancer detection rates in screening programs, and 

improve image quality in general in all of radiography. 

Defined as the ratio of the squared image SNR to the number of incident x-ray photons, 

the DQE describes how efficiently a system preserves the Poisson statistics associated with 

incident x-ray photons to produce a high SNR image [27] (Fig. 1-3).   

   

Figure 1-3. Image quality vs exposure for 0.16 uR, 45 q/mm2 (fluoroscopy); 16 uR, 

4500 q/mm2 (radiography) and 24 uR, 6700 q/mm2 (radiography). 

The DQE can be evaluated as: 

 
ሻݑሺܧܳܦ ൌ

ሻݑ²ሺܨܶܯ²̅݀
ሻݑതܰܲܵሺݍ

 
(1.1) 

where q describes a distribution of incident x-ray quanta [quanta/mm2], d is the 

corresponding detector average digital output signal (assuming a linear detector), MTF(u) 

is the system modulation transfer function (MTF) describing spatial resolution as a function 

of spatial frequency u (Fourier conjugate of spatial coordinate x), and NPS(u) is the Wiener 

noise power spectrum describing image noise. 
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High DQE values indicate less radiation is required to obtain a certain image quality.  

Similarly, increased DQE at the same radiation exposure leads to improved image quality.  

High DQE values at low spatial frequencies indicate high SNR for visualizing large image 

structures.  High DQE at high spatial frequencies indicate high SNR for visualizing small 

structures and fine details.  An ideal detector would have a DQE equal to 1 at any spatial 

frequency, resulting in an image SNR equal to that of the Poisson-distributed incident x-

ray photons.  In practice, many factors can degrade image SNR and therefore the DQE, 

particularly at high spatial frequencies.  DQE was initially introduced as a measure of 

system performance to the medical imaging community by Shaw and Wagner [28] [29].  

The effect of DQE on image quality is illustrated in Fig. 1-2.  The left side illustrates an 

image from a system with a good DQE (purple curve). The right side illustrates the same 

image degraded (by blurring and adding noise) to correspond to the poor DQE (green 

curve). The difference between these systems is greatest at high spatial frequencies, 

resulting in very poor visualization of fine details in the right-hand image. 

The DQE is closely related to a measure of image SNR called the noise-equivalent number 

of quanta (NEQ).  The NEQ describes measured image SNR in terms of a number of 

Poisson-distributed incident x-ray quanta (per unit area) required by an ideal imaging 

system to give the same SNR.  This gives and absolute scale on which to specify image 

SNR [28].  The NEQ is given by: 

 
,ݍሺܳܧܰ ሻݑ ൌ

ሻ|ଶݑሺܶݍ|

ܰܲܵሺݑሻ
 

      (1.2) 

An ideal imaging system will produce images with SNR2 = NEQ = ݍ. 

Spatial resolution of a linear and shift-invariant (LSI) imaging system is described by the 

modulation transfer function (MTF), understood by considering an impulse input impulse 

described by delta-function δ(x-xₒ) located at xₒ.  For a system described by the operator 

S[ ], the corresponding output d(x) will be S[δ(x-xₒ)] determined with the convolution 

integral of impulse response function with eigenvalues of the operator S:	

݀ሺݔሻ ൌ 	 ᇱሻ݁ଶగ௨൫௫ି௫ݔሺ݂ݎ݅
ᇲ൯݀ݔᇱ ൌ 	 ݁ଶగ௨௫   (1.3)                        ′ݔᇱሻ݁ିଶగ௨௫ᇱ݀ݔሺ݂ݎ݅
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where irf(x) is the impulse response function (IRF) of the system.  The last integral is the 

Fourier transform of irf(x), which we denote as the system characteristic function T(u): 

                                                           ܶሺݑሻ ൌ  ሻ                                        (1.4)ݔሺ݂ݎ݅ܨ

which is equal to the system input scaled by the frequency-dependent factor T(u). 

Modulation transfer function, MTF is given by the ration of the absolute value of the 

characteristic function and its and zero-frequency value: 

 
ሻݑሺܨܶܯ ൌ

|ܶሺݑሻ|
ܶሺ0ሻ

 
        (1.5) 

and, by definition, has unity value at zero frequency.  The MTF does not describe an 

imaging system as completely as the characteristic function T(u) because phase and scaling 

information are removed.  Due to the magnitude operator, the MTF is a real-only function 

[30]. 

Fourier methods can be used to describe image noise, but only for LSI systems with wide-

sense stationary (WSS) random noise processes, meaning the expected value (mean) and 

autocorrelation function are invariant to a shift in x (the image plane).  Noise is then 

described by the Wiener noise power spectrum, equal to the Fourier transform of the 

autocovariance function, describing the spectral decomposition of noise variance [30].  

Thus: 

 
DQEሺݍ, uሻ ൌ

MTF²ሺuሻܩ²̅ݍ
ܰܲܵሺݑሻ

ൌ
݀̅²MTF²ሺuሻ
ሻݑሺܵܲܰݍ

 
(1.6) 

where G is a gain factor relating ݀̅ to ݍത. 

1.4 Cascaded system analysis to model DQE   

The relationship between the design of an x-ray system and its DQE can be determined 

using a “cascaded systems analysis” in which a system is represented as a cascade of 

operators that describe simple physical processes.  Relationships describing transfer of 

signal and noise through each process are known, and can be cascaded to predict the overall 
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signal and noise performance (DQE) of an imaging system.  Cascaded systems analysis 

(CSA) is based on linear systems theory developed in electrical engineering and 

communications theory and adapted to describe quantum-based imaging systems [31].  

This approach was initiated by Rabbani, Shaw and Van Metter [32-34] who introduced the 

idea of a quantum-based amplification stage to describe conversion of x-ray quanta into 

light quanta to study signal and noise transfer in film-screen systems.  It is assumed systems 

are mean-linear (meaning the mean system output is proportional to the mean input) and 

shift invariant.  The CSA approach was generalized to include other physical processes 

including multiple parallel cascades by Yao and Cunningham [35] and spatiotemporal 

processes including lag [36]  for more comprehensive models of DQE of x-ray imaging 

systems [37].  It is used in this project to predict the DQE improvement that will be 

achieved with the apodized-aperture pixel (AAP) structure. 

The input to our CSA model is a spatial distribution of quanta described as a superposition 

of delta-functions with coordinates corresponding to quantum locations: 

 
ሻݔሺݍ ൌߜሺݔ െ ᵢሻ̃࢞

ே෩

ୀଵ

 
(1.7) 

where ݔi  is a random variable specifying location of the ith quantum and ෩ܰ is a random 

variable equal to the total number of quanta.  Output of a digital imaging system is a matrix 

of digital values that characterize an image, proportional to the x-ray energy deposited in 

each detector element.  The relationship between input x-ray quanta and output image data 

is represented as a serial cascade of elementary physical processes in the CSA model. 

In the following subsections, elementary processes used in this work, and their signal and 

noise transfer characteristics, are described. 

1.4.1 Quantum Gain 

Quantum gain is a process in which each input quantum (x-ray photon) is replaced by a 

random number of secondary quanta at the same location [38] as illustrated in Fig. 1-2.  

Examples include the conversion of interacting x-ray photons to a random number of 
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secondary quanta (light photons in a phosphor or liberated charge carriers in a 

photoconductor).  The process is defined in terms of random variable g̃ (gain) with a 

specified mean ḡ and variance σg
2.  Multiple quanta will normally overlap in the output 

distribution when g > 0.  Relationships describing output distribution of quanta, mean, 

modulation transfer function and Wiener noise power spectrum between input and output 

are given by: 

q̃out(x)  =  g̃ q̃in (x) (1.8) 

 തin   (1.9)ݍ തout = gݍ

തܳ  out(u) = ݃̅ തܳ in(u) 

where Q(u) is the Fourier transform of q(x), and 

(1.10) 

 

NPSout(u) = ḡ2
 NPSin(u) + σ2

g ݍതin (1.11) 

1.4.2 Quantum Selection 

A special case of quantum gain is the random selection of quanta from a distribution of 

incident quanta (a quantum gain state where the gain sample value can be 1 or 0 only). 

 

Figure 1-4. Illustration of quantum gain in 1-D, characterized by gain mean and 

variance.  Every point (quantum) in the input is replaced with g secondary quanta 



12 

 

 

in the output at the same location.  Bold vectors represent overlapping delta 

functions. 

1.4.3 Collecting quanta in detector elements 

The process of collecting secondary quanta in detector elements and producing an output 

signal proportional to the number collected is represented by this operation.  The input is a 

spatial distribution of quanta (points), while the output is the signal from a detector element 

with size a located at position x for all x, giving:  

 ሚ݀
௨௧ሺݔሻ ൌ ݇ q ሺݔሻ ∗ ሺߎ

ݔ
ܽ
ሻ 

(1.12) 

 ݀̅௨௧ ൌ ݇ ܽ qത  (1.13) 

 ܶ௨௧ሺݑሻ ൌ ሻݑሺܽܿ݊݅ݏ ܶሺݑሻ (1.14) 

 ܰܲܵ௨௧ሺݑሻ ൌ ݇ଶܽܰܲ ܵሺݑሻ  ሻ|² (1.15)ݑሺܽܿ݊݅ݏ|

Here k is a scaling factor and Π(x/a) is a rectangle of width a and unity height.  The function 

sinc(au) is called the “aperture MTF”.  The	 aperture	 MTF	 describes	 how	 spatial	

frequencies	are	passed	through	detector	elements.	 	When	quanta	are	integrated	in	

elements	 of	 width	 a,	 the	 aperture	 MTF	 could	 be	 evaluated	 in	 terms	 of	 the	

characteristic	function	Tₐ,	where	a	is	the	size	of	a	detector	element:	

	
ሻݑₐሺܨܶܯ ൌ

|ܶₐሺݑሻ|
ܶₐሺ0ሻ

ൌ |ሻݑܽߨሺܿ݊݅ݏ|
ሺ1.16ሻ

If the size of a detector element decreases, the passband of the aperture MTF increases. 

The output dout(x) is a continuous function of x, and is sometimes called the detector 

“presampling” signal.  It has physical meaning only at the positions of x corresponding to 

the centers of physical detector elements. 
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Figure 1-5. Summation of secondary quanta, represented as a convolution with a 

rectangle function in the spatial domain with a width equal to that of detector 

elements, a. 

1.4.4 Evaluating signal at discrete positions and noise aliasing 

The process of evaluating sample values of a function at uniform spacings xo is described 

by formulas 1.17 – 1.20, where superscript † indicates a scaled delta function representing 

a discrete value and d⁺(x) describes the detector output signal as a series of uniformly 

spaced scaled delta functions: 

 

 ሚ݀
௨௧
ା ሺݔሻ ൌ ݀̅ሺݔሻ∑ߜሺݔ െ  ሻݔ݅

(1.17) 
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 ݀ାതതതത ൌ   (1.18)ݔ/̅݀

 
ܶ௨௧ሺݑሻ ൌ ܶሺݑሻ  ܶሺݑ േ

݅
ݔ
ሻ 

(1.19) 

 
ܹାሺݑሻ ൌ ଶሾߝ/1 ఌܹሺݑሻ  ఌܹሺݑ േ  ሻሿߝ/݊

 

(1.20) 

 

Figure 1-6. Signal evaluation from discrete detector elements is represented by 

multiplication with a set of delta-functions, resulting in d.  The superscript dagger is 

used to indicate a discrete signal represented as a sequence of scaled delta functions.  

The maximum spatial frequency that can be represented by discrete samples on uniform 

spacings xo is given by the Nyquist sampling cut-off frequency as UNq = 1/2xo.  The 

frequency components exceeding UNq are subjected to sampling in the output image, which 
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leads to folding of these components back into a region below UNq.  This phenomenon is 

called aliasing.  Noise components folded back below UNq are considered as noise aliasing 

that can degrade low-contrast detectability [39].  Noise is stochastic variation in image 

signal.  System noise can be evaluated in terms of variance in measurements of image 

signal.  Output detector signal d(x) is represented by discrete values dn, where each value 

corresponds to d(nx₀) = d(x)|x=nx₀.	 	 The	 process	 of	 evaluating	 the	 values	 is	 called	

sampling.	

Evaluating d(x) at positions x=ixₒ corresponding to the centers of all detector elements can 

be represented as multiplication with the comb function: 

	
ሚ݀ାሺݔሻ ൌ ݀ሺݔሻ  ݔሺߜ െ ₀ሻݔ݅ ൌ

ஶ

ୀିஶ

 ݀ᵢߜሺݔ െ ₀ሻݔ݅

ஶ

ୀିஶ

	
ሺ1.21ሻ

which consists of an infinite train of ߜ functions scaled by the detector values di. 

Multiplication with ∑ ݔሺߜ െ ₀ሻஶݔ݅
ୀିஶ  in the spatial domain corresponds to convolution 

with ሺ1/x₀ሻ∑ ݑሺߜ െ ₀ሻஶݔ݅/1
ୀିஶ  in the spatial-frequency domain: 

ሻሽݔሼ݀ାሺܨ ൌ ሻݑሺܦ ∗
1
₀ݔ

 ݑሺߜ െ
1
₀ݔ݅

ሻ

ஶ

ୀିஶ

ሺ1.22ሻ

Sampling d(x) at uniform spacing of xₒ therefore corresponds to production of aliases of 

D(u) at spacings u=1/xₒ.  Overlapped aliases produce signal aliasing that caused image 

distortion at spatial frequencies below the sampling cut-off frequency, uc  = 1/(2xₒ).   

Digital detector values are generated as a two-step process: integration of interacting input 

x-ray quanta in each detector element to produce a presampling detector signal and 

evaluation (sampling) of the presampling signal to generate the individual detector element 

values dn.  In the spatial frequency domain these two steps are described by presampling 

MTFpre(u) and aliasing determined by the sample spacing xₒ.  
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Figure 1-7. Sampling a function at uniform spacings xo causes spectral aliasing of the 

presampling signal if it contains frequency components above the sampling cut-off 

frequency u=1/xo. We donote Wiener NPS as W(u) on CSA illustrations. 

A digital image consists of an array of discreet values dn, which are samples of the detector 

presampling signal d(x).  The noise power spectrum of the process is given by: 

ܰܲܵ௨௧ሺݑሻ ൌ 	
1
₀²ݔ

ܰܲ ܵሺݑሻ ∗ߜ ൬ݑ െ
݊
₀ݔ
൰ ൌ

1
₀²ݔ

ஶ

ିஶ

ሾܰܲܵ௨௧ሺݑሻ

ܰܲܵ௨௧ሺݑ േ
݊
₀ݔ
ሻሿ

ஶ

ୀଵ

 

(1.23) 

As can be seen from Eq. (1.20), the NPS of d⁺(x) consists of a fundamental presampling 

NPS(u) as well as aliases centered at the frequencies u=n/x₀, scaled by the factor 1/x₀².  If 

the aliases overlap, noise aliasing increases image noise at frequencies below the sampling 



17 

 

 

cut-off frequency.  According to the sampling theorem the frequencies above the cut-off 

frequencies uc = 1/(2x₀ሻ	 are	 not	 represented	 with	 samples	 of	 uniform	 sampling	

frequency	us	ൌ1/x₀.			The	NEQ	is	a	measure	of	the	noise	equivalent	number	of	quanta	

and	is	affected	by	noise	aliasing.		Signal	aliasing	adds	artifacts	that	are	not	included	in	

NEQ.		The	digital	NEQ	is	defined	only	for	frequencies	less	than	the	sampling	cut‐off	

frequency,	uc	ൌ	1/2x₀. 

1.5 DQE improvement addressed in previous works 

Improvements in image quality that can be obtained by reducing noise aliasing have been 

studied previously.  For example, W.G. Ji et.al. [40] looked at reduction of aliasing in 

digital x-ray imaging for an amorphous selenium detector. They considered an “equivalent 

presampling filter” by digital image post-processing algorithms to attenuate frequency 

components at which noise aliasing was expected.  They showed this reduced aliasing 

artifacts in images, but this approach also removed image structures at those same 

frequencies.  Thus, while reducing image noise, their approach did not increase image SNR 

and therefore did not improve the DQE. 

Another approach by the same authors [40] used an insulating layer between a-Se and the 

active matrix to introduce presampling image blurring.  This modified imager was 

evaluated in terms of MTF, NPS and DQE to compare results with theoretical predictions.  

They concluded that noise aliasing can be reduced, or even eliminated, by physical blurring 

of image signals prior to collecting secondary quanta in the discrete detector elements, but 

at the expense of reduced MTF and decreased SNR caused by electronic noise due to a 

reduction in the measured signal.  Even though presampling filtration makes an imaging 

system more susceptible to electronic noise, this approach could be used if detector 

sensitivity could be improved as long as the number of secondary quanta detected remains 

large to prevent introducing a secondary quantum sink. 

In another study [41], imaging performance of a-Se based flat-panel detectors for digital 

mammography was considered using a small area prototype detector.  They investigated 

DQE of a-Se flat panel detectors in theoretical and experimental ways.  Theoretical model 

based on the cascaded linear system analysis with parallel processes in order to account for 
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fluorescence effect at the K-edge of a-Se (12.66 keV) within mammographic energy range.  

Their calculation showed that K fluorescence accounted for about 15% reduction of MTF 

at Nyquist frequency, while system NPS was reduced to 89% at zero spatial frequency.  

MTF evaluation showed additive blurring associated with charge trapping in a-Se layer 

that degraded presampling MTF and NPS at high spatial frequency and reduced noise 

aliasing.  Accordingly, DQE approached 40% at zero spatial frequency. 

Photon-counting detectors are currently under development as another approach to 

improving DQE.  For example, a study on theoretical analysis of DQE of charge-sharing 

single-photon counting segmented silicon detectors [42] considered detector performance 

parameters, such as large area gain factor, presampling MTF, noise power spectra and DQE 

as functions of energy detection threshold.  In his model of x-ray detector liberated charges 

could be shared between adjacent detector elements (pixels).  Determining detective 

quantum efficiency of a monochromatic spectrum in terms of mean signal ݀̅, presampling 

MTF and digital NPS using linear system analysis, DQE could be obtained as a 

combination: 

 
ሻݑሺܧܳܦ ൌ

݀̅²|MTFpreሺuሻ|²
ഥoݍ ܰܲܵ݀݅݃ሺݑሻ

 
(1.24) 

Therefore, DQE of a photon-counting detector can be expressed as a function of energy 

detection threshold and energy of incident x-ray quanta distribution.  Transmission of 

detector signal and noise characteristics in entire x-ray detector is obtained through 

information from individual cascaded stages.  The first stage of any x-ray imaging detector 

is an interaction of incident quanta with sensor material. Dimension of active portion of a 

detector element defines a detector aperture.  Charge sharing effect was included in 

cascaded stages, which was expressed as a threshold energy dependency of an effective 

sampling aperture.  The model was developed for a simple one-dimensional detector with 

the possibility for charge sharing events between adjacent detector elements.  Proposed 

approach can be used to study charge-sharing effects on image quality for single photon 

counting x-ray detectors with small semiconductor pixels.  It was noticed that charge 
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sharing degrades output detector characteristics and results in increased image noise in 

proposed x-ray detector model.  

Cascaded approach evaluation of DQE for photon counting detectors was described 

previously by J. Tanguay et. al. [43] in order to improve image quality in implementation 

of an advanced energy-dependent x-ray imaging.  Cascaded system analysis was used to 

define DQE of proposed direct-conversion selenium (Se) and cadmium zinc telluride 

(CdZnTe) detectors including different effects of poly-energetic spectra. In their work they 

found that single photon counting DQE was 5-20% greater than that of conventional 

energy-integrating detectors for any given x-ray energy range and convertor thickness. 

Nevertheless, DQE of single-phonon counting models as well as energy-integrating x-ray 

detectors is decreased due to negative factors, e.g. weak collection efficiency and 

significant additive noise. 

In another study [44] on design and optimization of imaging detector with radiotherapy 

application, the authors investigate performance of thin-film cadmium telluride large-area 

x-ray detector in photovoltaic application to develop optimal parameters of detector model 

with high DQE at energy reabsorption and signal-to-noise spatial spreading.  In indirect 

detection detectors, thin-film semiconductor compliments scintillator converting incoming 

x-ray quanta into optical photons, registered in amorphous silicon photodiodes that 

generate a digital output detector signal.  The problem arises with poor absorption of x-

rays leading to low quantum efficiency.  They propose to increase by improving x-ray 

absorption with very thick (>10 mm) detection material.  It can be implemented by 

segmentation with crystalline scintillator coupled with a-Si photodiode array or by x-ray 

focusing with fiber matrix or microstructured plates with purpose to mitigate signal 

spreading.  These systems are considered to be very expensive for practical 

implementation.  An alternative cost-effective approach is a use of high electron density 

semiconductor thin layer in a direct detection design.  Recently, CdTe and CdZnTe 

structures with thickness 200 – 300 μm were implemented for kV imaging overgrowing 

common a-Si structures.  Authors proposed a simple direct conversion model, combining 

thin-film CdTe with a metal plate that enhances x-ray energy absorption.  In terms of 
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theoretical analysis of signal and noise propagation, an imaging system described with 

CSA approach consists of the following stages: 

1) X-ray interaction in metal converter (CdTe), which outcomes in energy deposition 

by scattered charges (Compton scattering) 

2) Stochastic blurring in metal converter (CdTe) 

3) Quantum gain due to formation of e-h pairs 

4) Addition noise, attributable to dark current in semiconductor 

5) Integration of charges in discrete pixel elements; deterministic blur is introduced 

into system on this stage due to geometrical difference of pixel aperture size 

6) Readout of imaging signal by acquisition electronics 

Detector performance is evaluated in terms of the DQE.  Stochastic processes of each 

process in the CSA model result in random noise in the generated image.  Ratio of squared 

output signal-to-noise to input squared signal-to-noise determines DQE of an imaging 

system [45]. DQE(0) is a component associated with quantum absorption process, the rest 

non-zero frequency components DQE(u) are associated with signal spreading in the 

detector.  Quantum absorption and therefore energy deposition in detector materials are 

characterized in terms of quantum gain in conversion layer of a detector, which can be 

evaluated with Monte Carlo simulation as a ratio of number of photons depositing energy 

in convertor layer to the total number of incident quanta.  As the stochastic blurring in 

metal converter starts to contribute on the next stage, frequency-dependent DEQ(u) was 

evaluated in terms of average deposited energy E, spatial distribution of incident quanta, 

modulation transfer function MTF(u) and noise power spectrum of absorbed quanta within 

a thin-film CdTe layer of detector.  X-rays interacting in a metal layer produce ionizing 

electrons and positrons, which liberate electron-hole pairs in CdTe layer through numerous 

individual reactions along trajectory of each ionizing particle.  Energy deposition locations 

associated with these interactions contribute to correlated quantum noise.  This will 

determine the following gain stage, which is associated with convertion of deposited x-ray 
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energy into charge carrier pairs in a convertor layer.  Quantum amplification is evaluated 

based on ionization energy W of convertor material, its thickness and amount of energy 

deposited by incoming quanta in a convertor, Ed: 

 
݃ ൌ

Ed
ܹ

 
                               (1.25) 

In a nutshell, considered thin-film CdTe based detector systems were claimed to have the 

following advantages: 1) CdTe-based systems provide higher efficiencies due to high 

atomic number and direct detection design in comparison with the parameters of 

commercial phosphor/amorphous silicon or selenium based detectors; 2) it’s technically 

easier to implement a large-area device by means of continuous thin-film deposition; 3) 

shorter development time and lower cost. The authors concluded that large-area CdTe film-

based detector have a promising application for radiation therapy imaging.  

Finally, a study by El-Mohri, et. al. considered optimization of segmented scintillators 

performance by a binning technique [46].  Misalignment in current segmented scintillators 

creates difficulties in optimal registration with active matrix flat-panel imaging arrays, 

which result in degradation of image spatial resolution.  As a solution, it was proposed high 

resolution active flat-panel matrix array in combination with the binning technique, 

described in that paper.  An array, consisting of 0.127 mm pixels, is coupled to a segmented 

scintillators based on BGO, LYSO and CsI:Tl materials of thickness about 10 mm.  For 

every proposed prototype, 8x8 pixel binning was performed to achieve a sampling pattern 

of 1.016 mm size optimized by alignment metric, which reduces misregistration and 

therefore improve spatial resolution.  Such approach resulted in improving of spatial 

resolution for BGO and LYSO prototypes, but not for CsI prototype due to significant cross 

talk resulting from light quanta scattering between scintillator elements.  The efficacy of 

binning techniques in terms of improving spatial resolution was proved for scintillator 

materials with high density, mechanical hardness and high reflective index, such as BGO 

scintillator. Materials exhibiting these properties as well as high quanta output, such as 

CdWO4, are suggested to provide additional preserving of DQE performance.  However, 

at high spatial frequencies DQE degrades and the problem remains unresolved.  
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While these approaches have helped improve our understanding of detector performance 

and DQE improvements, they have not reduced the overall effect of noise aliasing while 

maintaining the aperture MTF.  As a result, the damaging effect of noise aliasing on high-

frequency values of the DQE remains unsolved.  

1.6 Description of proposed solution (AAP) 

The target of this research project is to address the problem of improving DQE of an x-ray 

detector at high spatial frequencies by developing a detector design with improved 

performance using cascaded systems analysis.  In order to achieve this goal, an apodized 

aperture pixel (AAP) x-ray detector design is proposed and validated.  We considered 

signal and noise propagation in AAP x-ray detector at each stage AAP-design 

(development of cascaded model) to study system characteristics contributing to DQE of 

imaging system to ensure improvement.  AAP model was developed based on idea of very 

small detector elements (CMOS coupled with a-Se), which permits high spatial resolution 

and therefore fine image details conservation in a detector output (i.e. resultant x-ray 

image) [25].  

1.7 Brief overview of the thesis 

This thesis consists of four chapters.  The above Introduction briefly summarizes 

theoretical framework and short overview of previous studies associated with efforts to 

improve the DQE of imaging detectors.  

Chapter 2 is based on the published article “Apodized-Aperture Pixel Design to Increase 

High-Frequency DQE and Reduce Noise Aliasing in X-Ray Detectors”, Elina Ismailova, 

Karim Karim and Ian A. Cunningham, Proc. SPIE Medical Imaging, The Physics of 

Medical Imaging, 9412-12 (2015).  It describes development of our proposed AAP x-ray 

detector with improved high frequency DQE component including an experimental proof-

of-concept validation on a laboratory CMOS/CSI detector. 

Chapter 3 describes a numerical approach to optimizing the AAP design in an iterative 

approach to obtain an optimal linear filter used to synthesis image pixels. 
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Finally, Chapter 4 is devoted to discussion and conclusions of performed study to address 

the achievements with the developed AAP x-ray detector and to draw future directions with 

AAP detector design.  
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Chapter 2 

2 AAP detector design  

This material was presented in the SPIE conference proceedings article “Apodized-

Aperture Pixel Design to Increase High-Frequency DQE and Reduce Noise Aliasing in X-

Ray Detectors”, Elina Ismailova, Karim Karim and Ian A. Cunningham, Proc. SPIE 

Medical Imaging, The Physics of Medical Imaging, 9412-12 (2015). 

2.1 Introduction 

The known risks associated with exposure to radiation [1-3] is a key motivator for the 

development of new detector technologies with the goal of producing better images for 

lower patient exposures. In diagnostic radiology, reducing patient exposures generally 

results in reduced image signal-to-noise ratio (SNR). The ability to see structures in a noise-

limited image is described by the detectability index [4, 5] defined as the product of the 

image noise-equivalent number of quanta (NEQ) [6, 7] and the squared Fourier transform 

of the image structure to be visualized, integrated over spatial frequencies. For a given task, 

therefore, detectors must be designed to optimize the NEQ over spatial frequencies of 

importance.  

The NEQ describes the effective number of x-ray quanta used by the detector to generate 

an image, and low noise images correspond to high NEQ values. The NEQ is determined 

by the number of x-ray quanta incident on a detector and the detective quantum efficiency 

(DQE), where the DQE is the effective quantum efficiency of the detector [6]. Thus, 

improvements in image quality and/or reductions of radiation exposure require maximizing 

the DQE over all spatial frequencies of importance for the task.  

A great deal of effort has been devoted to increasing the zero-frequency DQE value of new 

detectors. For example, zero-frequency DQE values of mammography systems have 

increased from 0.3-0.5 for film-screen systems [8-10] to ∼0.8 for new high-performance 

flat-panel digital detectors. We therefore suggest there is little room for further 

improvements in the zero-frequency DQE value and future research efforts should now 



29 

 

 

focus on improving high-frequency values of the DQE (anticipated benefits from photon-

counting detectors are not included in this comment [11].  

Digital detectors generally consist of a converter layer (e.g. scintillator such as CsI or 

semiconductor such as Se) coupled to an electronic sensor array. The sensor array produces 

a signal from each element that is proportional to the number of secondary quanta incident 

on the element. Signal and noise properties of these detectors, including the DQE, can be 

described using cascaded-systems theory [12, 13-17]. At mammographic energies where 

all x-ray photons have energies below the K-edge energy of the converter, the DQE 

frequency response is determined primarily by scatter of secondary quanta and noise 

aliasing [14]. The best spatial resolution is obtained with selenium-based systems where 

secondary scatter is negligible. In this study, we propose a novel method for improving the 

high-frequency DQE of all x-ray detectors, and in particular for Se-based detectors for 

mammography.  

 

Figure 2-1. Schematic illustration of a conventional detector, consisting of a 

conversion layer where interacting x-ray quanta are converted to secondary quanta, 

such as light from a scintillator or liberated charges from a photoconductor, and a 

sensor array to collect secondary quanta.  The sensor array consists of a two-

dimensional array of elements having dimension a. The corresponding cascaded 

model consists of: 0) spatial distribution of incident x-ray quanta ෦x(x); 1) conversion 
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to secondary quanta ෦x(x); 2) integration of secondary quanta in sensor elements 

giving detector presampling signal ࢊ෩(x); 3) sampling at centers of elements giving a 

sequence of Dirac δ-functions scaled by detectors output signals, ࢊ෩⁺ሺ࢞ሻ. 

 

2.2 Methods 

The DQE of digital detectors is normally expressed as a function of spatial frequency up 

to the sampling cutoff frequency uc where uc =0 .5/a [cycles/mm] and a [mm] is the width 

of one sensor element. When spatial spreading of secondary scatter is negligible and the 

modulation transfer function (MTF) is determined primarily by the pixel aperture size 

(such as with selenium-based detectors), the DQE can be described using the cascaded 

systems approach as 

ሻݑሺܧܳܦ                     ൌ 	 ള்ሺ௨ሻള²

	ொₒ	ௐሺ௨ሻോௗ²
ൌ  ሻ                                          (2.1)ݑ²ሺܽܿ݊݅ݏሺ0ሻܧܳܦ

where detector readout noise is assumed small, the MTF is equal to |T(u)| = |sinc(au)|, X is 

the x-ray exposure incident on the detector, Q0 is the number of x-ray quanta/mm2 per unit 

exposure, d is the average dark subtracted pixel value in uniform images having Wiener 

noise power spectrum (NPS)W(u) which is proportional to sinc²(au). In this example, the 

DQE value falls to the fraction sinc²(auc) = sinc²(0.5) = 4/π² ≈ 0.41 relative to the zero-

frequency value due to noise aliasing alone. This results in additional high-frequency noise 

that gives images from selenium-based detectors their characteristic high-frequency noise 

structure. 

2.2.1 Conventional Detector Design 

A simple illustration of a “conventional” Se-based detector is shown in Fig. 2-1. X-ray 

photons interact in a converter layer to produce secondary quanta (liberated charge 

carriers). The secondary quanta are accumulated in discrete sensor elements of width a in 

a sensor array and there is a direct correspondence of sensor elements to image pixels. 
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Figure 2-2. Illustration of signal and noise transfer through a conventional detector 

in spatial and spatial-frequency domains.  Conversion to secondary quanta in step 1 

has been omitted for brevity. The input, ₓሺ࢞ሻ ൌ 	∑ ࢞ሺࢾ െ ᵢሻᵢ࢞ ,	is a random 

distribution of x-ray quanta incident on the detector input, represented as a 

distribution of Dirac δ-functions.  The output is ࢊ෩ₐሺ࢞ሻ, ܡܔܚ܉ܔܝ܍ܚ	ܗ	ܜ܍ܛ	܉ െ

  .δ-functions on spacing a, scaled by the corresponding image pixel values	܌܍܋܉ܘܛ

The signal and noise properties of this detector are illustrated (in one dimension for 

simplicity) in Fig. 2-2.  In this model, a random spatial distribution of x-ray quanta ݍₓሺݔሻ 

(the overhead ˜ is used to indicate a random variable) is incident on the converter layer 

xݍ                                          ሺݔሻ ൌ 	∑ ݔሺߜ െ ᵢሻ෪ݔ                                                            (2.2)  
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and ݔi  is a random variable describing the position of the ith incident photon. It is assumed 

each photon interacts to produce a fixed number of secondary quanta (deterministic gain), 

resulting in a distribution of secondary quanta ݍx ሺݔሻ. Deterministic gain does not affect the 

DQE, so we assume unity gain with no subsequent scatter of secondary quanta in Fig. 2-2 

for simplicity. All secondary quanta are collected by the sensor array in elements of width 

a. This is represented as a convolution of ݍx ሺݔሻ with the rectangle function Π(x/a), scaled 

by the factor k that relates detector output signal to the average number of incident x-ray 

quanta per unit area ݍതሺݔሻ, resulting in the detector presampling signal ݀෪aሺݔሻ. While not 

physical, ݀෪aሺݔሻ is a function that, when evaluated at positions corresponding to the centres 

of physical sensor elements, gives the physical sensor output values. Thus, the resulting 

detector signal is described as  

݀෪aାሺݔሻ ൌ 	∑ ቂݍx ሺݔሻ ∗ ߎ݇ ቀ௫

ቁቃ ݔሺߜ െ ݊ܽሻ ൌ 	∑ ሚ݀

 ܽ, ݔሺߜ	݊ െ ݊ܽሻ                     (2.3) 

where ሚ݀ାₐሺݔሻ ൌ ሻݔₓሺݍ	 ∗  ሻ da,n is the signal from the nth sensor element, andܽ/ݔሺߎ݇

ሚ݀⁺ₐሺݔሻ is a series of δ-functions on spacing a scaled by ሚ݀a,n. 
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Figure 2-3. Schematic illustration of an apodized-aperture pixel structure.  It differs 

from the conventional detector by using very small sensor elements of dimension ε 

and filter f(x) to synthesize the detector presampling signal ࢌࢊ෪  (x).  The sinc-shaped 

filter prevents noise aliasing while preserving the superior frequency response of the 

small elements, resulting in improved DQE. 

The frequency response of the detector is illustrated in the center column. In the bottom 

row, ܦ෩ₐ⁺ሺݑሻ consists of the fundamental frequency spectrum and overlapping aliases 

resulting from sampling in step 3. The fundamental has a sinc2 shape. Overlap of aliases is 

responsible for signal aliasing and appears as a complicated overlap of lines close to the 

frequency axis. It is seen from Fig. 2-2 that while the Wiener NPS of ሚ݀ₐሺݔሻ, Wₐ(u), is 

proportional to sinc2 at step 2, aliasing results in a frequency-independent NPS and as a 

result the DQE is proportional to sinc2. 
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2.2.2 Apodized Aperture Pixel (AAP) design 

We propose a method of creating apodized apertures with the goal of increasing high-

frequency DQE values as illustrated in Fig.2-3. The method requires the use of sensor 

arrays having sensor elements of size ε much smaller than the desired pixels of size a. This 

could be achieved, for example, using a CMOS sensor array that can have elements as 

small as 10 - 25 µm [16]. While this corresponds to a sampling cut-off frequency of 20 - 

50 cycles/mm, it is unlikely this high resolution will have any clinical significance and the 

patient exposure required to achieve high SNR in such images would likely be prohibitive 

in most applications. In addition, the workloads in radiology departments would make the 

archival, transmission and display (if that were even possible) of such large image files 

prohibitive. We propose digitizing and processing sensor-element data either directly on 

the sensors or as post-processing within the imaging system, to synthesize larger image 

pixels using an algorithm that will reduce noise aliasing and thereby increase the DQE. 

This approach will be most effective if the converter layer has very high spatial resolution 

(no spatial spreading of secondary quanta) such that resolution is largely determined by 

element size, even with the small elements. Thus, selenium may be a preferable converter, 

although some benefit may be achieved with other converters as well.  

Simple binning of small sensor elements does not increase the DQE at the sampling cut-

off	 frequency in our cascaded model. Regardless of the number of elements binned or 

element size, the DQE at uc remains less than half of the zero-frequency value due to the 

sinc2 shape.  
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Figure 2-4. Illustration of signal and noise transfer through the apodized-aperture 

pixel design in spatial and spatial frequency domains. Step 1, conversion to secondary 

quanta in the converter, has been omitted for brevity. The output ࢊ෩⁺A(x) is similar to 
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that of the conventional detector except pixel values are synthesized from detector 

element signals as a convolution with f(x) at step 4).  By choosing f(x) = sinc(au), the 

effect of noise aliasing on the DQE is greatly reduced as illustrated here. 

To improve the DQE we propose an apodized-aperture pixel (AAP) design in which data 

is acquired in sensor elements of size ε and then processed to synthesize image pixels of 

size a. The sensors must have extremely low readout noise to ensure a high DQE value, 

something else that can be achieved with CMOS sensors. The signal and noise 

characteristics in both spatial and spatial frequency domains are illustrated in Fig. 2-4. 

Steps 1 and 2 are the same as the conventional detector except for the use of very small 

sensor elements having dimension e. In the AAP design, data from the small elements, 

݀ା෪ఌሺݔሻ, is subsequently convolved with a filter kernel ݂ሺݔሻ to generate a presampling 

function ሚ݀ሺݔሻ, which is subsequently evaluated at spacings a to generate the output signal 

consisting of a sequence of Dirac δ functions on spacings a scaled by the discrete detector 

output values. In practice, the discrete values are synthesized by a numerical convolution 

of the discrete values from each small element with a discrete vector f ᵢ.  

 

Figure 2-5. Comparison of conventional and apodized DQE as determined for ideal 

x-ray converter using the CSA model with physical elements of width ε = 0.05 mm 

and image pixels of width a = 0.2 mm. The DQE is almost independent of spatial 

frequency and is doubled at the sampling cut-off frequency. 

The AAP approach was validated experimentally using a high-resolution CMOS-based 

detector with a CsI converter (Xmaru, Rayence Co. Ltd., Seoul Korea). Using data from 
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physical sensor elements with dimension e = 0.050 mm, images required to measure the 

detector DQE were generated by: a) binning 4x4 elements to simulate a conventional 

detector with elements, having width a = 0.20 mm; and b) synthesizing image pixels on 

spacing of a=0.20 mm using the AAP approach with 256 x 256 sinc-shapped kernel f. 

Exposure data was acquired on a lab-based x-ray system using an RQA-5 spectrum with 

0.66 mR (5.8 μGy air KERMA) incident on the detector. The DQE test instrument DQEPro 

was used for data acquisition and analysis.  

2.3 Results 

The utility of the illustrations in Figs. 2-2 and 2-4 is they provide the frequency response 

of both signal and noise that can be obtained with each method, including the DQE. The 

benefits of the AAP approach can be determined by comparing these two figures as they 

are plotted with the same spatial and spatial-frequency scales. The left column in each 

figure shows propagation of the same random distribution of incident x-ray quanta. The 

frequency response of the small elements is much broader than that of larger elements, seen 

by comparing ܦ෩ఌሺݑሻ at step 2 in Fig. 2-4 with ܦ෪aሺݑሻ at step 2 in Fig. 2-2. By choosing the 

sinc-shaped kernel f(x) = sinc(x/a) shown in Fig. 2-4, we obtain a low-pass filter that passes 

frequencies below the image cut-off frequency u =0 .5/a with equal weighting while 

blocking all frequencies above. This increases the DQE by preserving the superior 

frequency response of the small elements (aperture MTF) and reducing noise aliasing.  

The output image signal and noise are illustrated in the bottom row. While both detector 

designs have the same number of image pixels, and on the same spacings, pixel values of 

the AAP detector ሚ݀⁺	Aሺxሻ differ to those of the conventional detector ݀⁺෪a  in subtle ways 

due to differences in frequency response and the reduction of signal aliasing. The frequency 

response of each is seen in the central column where ܦ෩⁺A(x) has a more uniform 

fundamental spectral component compared to the conventional detector. In addition, there 

is less overlap of higher-order aliases which is responsible for the reduced signal aliasing. 

Similar to the conventional detector, the Wiener NPS is also independent of frequency. 

Thus, the appearance of noise in a selenium-based AAP image would be unchanged, even 
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though aliasing is largely reduced. Rather, the MTF is improved, resulting in a DQE 

improvement.  

Figure 2-5 shows a comparison of the DQE obtained using the AAP approach (ε=0.05mm) 

with a conventional detector (a=0.2 mm). There is no difference in the zero-frequency DQE 

value while the high-frequency DQE value is increased by a factor of almost 2.5. 

 

Figure 2-6. Experimental validation of the AAP concept using a CMOS/CsI-based 

detector (Xmaru, Rayence Co.) with physical sensor elements of 0.05 mm (RQA-5 

spectrum, 0.66 mR detector exposure). Left: Presampling MTF and DQE obtained 

using images constructed by 4x4 binning of detector data to simulate a conventional 

detector with 0.2-mm elements. Right: Presampling MTF and DQE obtained using 

images synthesized using the AAP approach to create 0.2-mm pixels. The MTF is 

increased at frequencies above 1.5 cycles/mm and all frequencies above 2.5 cycles/mm 

MTF(u) vs u(cy/mm) 
conventional design       

DQE(u) vs u(cy/mm) 
AAP design                  

DQE(u) vs u(cy/mm) 
conventional design       

MTF(u) vs u(cy/mm) 
AAP design                  
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are removed from the image. The high-frequency DQE is increased from 0.2 to 0.4. 

Blue curves – experimental data, red points – estimates at spacing 0.25 cy/mm. 

Figure 2-6 shows the results of the experimental validation of the AAP concept on a 

CMOS/CsI-based detector.  The left column shows MTF and DQE curves measured using 

images in which 0.05-mm sensor elements were binned 4x4 to simulate a conventional 

detector with 0.2-mm elements.  The right column shows the MTF and DQE obtained using 

the AAP approach to synthesize 0.2-mm image pixels from 0.05-mm physical sensor 

elements.  The MTF is raised at frequencies above 1.5 cycles/mm (approximately) due to 

the broader MTF of the smaller elements.  Also, the MTF is truncated at the cut-off	

frequency of 2.5 cycles/mm as anticipated.  The DQE is unchanged at low frequencies, and 

increased from approximately 0.2 to 0.4 at the cut-off frequency. 

2.4 Conclusions 

A method of improving the high-frequency DQE is proposed making use of sensor arrays 

with very small physical elements to synthesize larger image pixels. Called an “apodized-

aperture pixel” (AAP) approach, will be most effective by combining high-resolution 

converters such as selenium with high-resolution sensors such as CMOS systems with 25 

µm or smaller sensor elements. A cascaded-systems analysis of signal and noise properties 

shows that: 

1) The presampling MTF is improved due to the superior frequency response of the 

small sensor elements;  

2) Use of a sinc-shaped kernel when synthesizing larger image pixels preserves the 

improved MTF and blocks frequencies above the image sampling cut-off 

frequency of uc =0 .5/a for images with pixel size a. As a result, the presampling 

MTF does not extend beyond this frequency.  

3) Noise aliasing is largely removed from the image although the Wiener NPS 

remains flat over all spatial frequencies.  
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4) Low-frequency DQE values are not affected by the AAP algorithm, however 

DQE values at the cut-off frequency are increased by a factor of up to 2.5x.  

5) The AAP concept was validated experimentally on a CMOS/CsI-based detector 

with 0.05-mm elements by comparing 4x4 binning to simulate a 0.2-mm detector 

with using the AAP approach to synthesize images with the same pixel size. The 

high-frequency DQE was increased from 0.2 to 0.4.  
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Chapter 3 

3 Optimization 

The AAP method introduces a process to create images with pixels that no longer 

correspond directly to physical detector-element measurements.  Rather, image pixels are 

created from a two-dimensional convolution of detector data from very small detector 

elements.  This process is represented both as a convolution in the spatial domain and as 

multiplication by the filter ܨሺݑሻ in the spatial-frequency domain as illustrated in Fig. 2-4.  

Two iterative approaches were used to determine an optimal filter shape that will maximize 
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the area under the DQE curve.  Those two ways are shrinking and expanding algorithms 

of the Matlab AAP detector model simulation.   

3.1 Methods 

For the purpose of optimization, the Filter was represented as a 1024-element vector in the 

Fourier domain extending from u=-4uc to u=4uc where uc=0.5/ε is the sampling cut-off 

frequency associated with the very small detector elements of width ε.  The DQE was 

calculated using the CSA model up to the image cut-off frequency uc=0.5/a where a is the 

image pixel spacing after implanting the AAP method.  The shape of the filter vector was 

adjusted to maximize the area under the DQE curve. 

In the first (shrinking) approach, the filter vector F was initially set to a value of one at all 

frequencies.  The DQE was determined using the CSA model in Fig. 2-4 and the area under 

the DQE curve calculated.  In the second iteration, the highest two non-zero frequency 

values in the vector F were set to zero and the DQE area recalculated.  In this way, the filter 

was kept as a simple rectangle (low-pass filter) with a passband (rectangle half width) that 

was decreased with each iteration.  This process was repeated until the DQE area stopped 

increasing to determine the maximum filter bandwidth that gives a maximal DQE area. 

In the second (expanding) approach, the filter vector F was initially set to zeros in all 

elements except the single element corresponding to u=0 where it was set to one.  The DQE 

was determined using the CSA model in Fig. 2-4 and the area under the DQE curve 

calculated.  In the second iteration the first element in F beside the u=0 element on both 

positive and negative frequencies was increased from 0 to 0.1 and the DQE area 

recalculated.  If the area increased from the previous iteration, those same elements in F 

were increased from 0.1 to 0.2.  This process was repeated until the element of F reached 

a value of 1, when the next element in F on both positive and negative sides was increased.  

The iterations were continued until the DQE area stopped increasing to determine the 

lowest filter values and minimal filter bandwidth that gives a maximal DQE area. 
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3.2 Results 

Results from the shrinking approach as shown in Fig. 3-1. The DQE area is shown as a 

function of iteration number.  As the filter bandwidth was reduced with each iteration, the 

NPS bandwidth was reduced.  As a result, the total aliased noise power in the image was 

decreased by decreasing aliased noise into the image frequencies below uc=0.5/a.  The  

filter also has an effect on the presampling MTF by zeroing the MTF at frequencies above 

the filter bandwidth.  However, since it does not affect the presampling MTF at frequencies 

passed by the filter, only aliased noise power is affected by the decreasing filter width.  The 

DQE and therefore DQE area were therefore increased with the first iterations. 

The DQE area reached a maximum when the filter bandwidth equaled the image sampling 

cut-off frequency uc=0.5/a.  As the filter bandwidth was decreased further, both 

presampling MTF and NPS were truncated by the filter bandwidth.  This did not affect 

DQE values passed by the filter, but it did reduce the DQE area. 

 

Figure 3-1. Illustration of the shrinking mechanism of the AAP approach. 

Results from the expanding optimization are shown in Fig. 3-2.  When the filter was 

initially very narrow, passing only the zero-frequency value, the DQE area was very small.  

As the filter bandwidth was increased by setting the first non-zero-frequency value in F to 
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0.1, there was a small increase in DQE area.  As the filter vector values were increased 

from 0.1 to 1, there were no further increases in the DQE area until the next frequency 

value was increased from 0 to 0.1. 

 

Figure 3-2. Illustration of the expanding algorithm of AAP detector design. 

3.3 Conclusions 

Both shrinking and expanding approaches to determining the optimal filter to use for the 

AAP method showed that the optimal filter width corresponded to the image sampling cut-

off frequency of uc=0.5/a for image pixels with centre-to-centre spacings a.  In addition, 

the expanding approach showed that the actual shape of the filter is not important as long 

as the filter contains non-zero element values up to the frequency uc.  This is seen by noting 

the filter shape will affect the system MTF as illustrated in Fig. 3-2, scaling the ܨܶܯ		by 

 ሻ  below uc,.  As a consequence, the DQE is not affected byݑ²ሺܨ by		ሻ and the ܰܲܵݑሺܨ

filter shape as long as the filter does not contain zero values for |u|<uc and only zero values 

for |u|>uc.  The optimal filter shape can be any shape subject to this condition, within the 

assumptions used for the CSA model (no detector additive noise, ideal photon counting 

detector response with no energy dependence or x-ray scatter). 
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Figure 3-3. MatLab simulation of an AAP filter optimization. Left plot: evaluation of 

the DQE area as an optimization criterion that determines the AAP filter aperture 

(right plot). 
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Chapter 4 

4 Overview and Conclusions 

4.1 Limitations 

The apodized-aperture pixel (AAP) design is proposed as a method of increasing the 

detective quantum efficiency (DQE) of x-ray detectors for medical imaging.  The method 

requires the use of detectors with small physical sensor elements, ¼ the size of the final 

image pixels or less, to synthesis final image pixels.  It separates the pixel size from the 

detector sensor element size and improves the DQE by reducing noise aliasing and other 

benefits.  The method could be implemented using a CMOS sensor coupled to a selenium 

converter layer. 

The AAP method results in a DQE improvement by increasing the MTF and decreasing 

the NPS.  The aperture MTF obtained using a detector with elements of width a is given 

by Ta(u) = |sinc(au)|.  By using micro-elements of width e, the aperture MTF is increased 

to Te(u) = |sinc(εu)|.  Use of a sinc-shaped kernel to pass frequencies |u|<0.5/a (the sampling 

cut-off frequency for pixels of size a) when synthesizing larger image pixels preserves the 

improved aperture MTF and blocks frequencies above the cut-off frequency, 

corresponding to an increase in MTF by the factor M(u), where: 

ሻݑሺܯ ൌ ቐ
ሻݑߝሺܿ݊݅ݏ
ሻݑሺܽܿ݊݅ݏ

|ݑ|			, ൏ 2/ߝݑ

|ݑ|																			,0  2/ߝݑ
 

As a result, while the presampling MTF of a conventional detector can extend to very high 

frequencies (potentially unlimited), the presampling MTF of the AAP detector is truncated 

to the Nyquit sampling cut-off frequency [1]. 

4.2 Conclusions 

Noise aliasing is largely removed from images although the Wiener NPS remains flat over 

all spatial frequencies in our simulations.  Low-frequency DQE values are not affected by 
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the AAP algorithm, however DQE values at cut-off frequency are increased by a factor of 

up to 2.5x. 

The AAP concept was validated experimentally on a CMOS/CsI-based detector with 0.05-

mm elements by comparing 4x4 binning to simulate a 0.2-mm detector with using the AAP 

approach to synthesize images with the same pixel size.  The measured DQE at high spatial 

frequency increased from 0.2 to 0.4, which provided experimental proof of concept.  The 

AAP approach could be realized even more effectively with an amorphous selenium 

convert detector due to negligible scatter of charges liberated in the selenium compared to 

optical scatter of light in CsI.   

The following points summarize the specific conclusions from this work. 

1. The AAP method preserves the aperture MTF associated with the size of the 

physical sensor elements ε, rather than the lessor aperture MTF associated with the 

size of the image pixels a. 

2. The method reduces image noise by implementing an anti-aliasing filter to remove 

noise frequency components above the image cut-off frequency uc=0.5/a. 

3. It is determined the combination of improved MTF and reduced NPS can double 

the DQE at the cut-off frequency.   For a selenium-based mammographic detector, 

this could increase the high-frequency DQE from 0.35 to 0.70. 

4. Experimental validation on a CMOS/CsI prototype detector showed a doubling of 

the high-frequency DQE from 0.2 to 0.4 for physical sensors ε=50um and image 

pixels a=200um. 

An alternative to synthesizing image pixels of size a might be to retain the full resolution 

in images with pixels of size ε.  However, there are practical problems with this suggestion 

when applied to a busy radiology department.  Images are typically acquired with 

approximately 2 bytes/pixel and 2k x 2k pixels/image.  A typical image is therefore 

approximately 8 Mbytes/image.  Increasing this to 8k x 8k pixels/image results in 



48 

 

 

128 Mbytes/image.  This increase by a factor of 64x of image size would place a severe 

demand on departmental resources at a time when fiscal restraint is critical.  For example, 

a busy department that performs 100,000 x-ray procedures per year might acquire 2000 

images per day.  These images must be transmitted from an acquisition workstation to an 

archival system and usually multiple review workstations.  Transmitting each image a 

minimum of 3 times corresponds to transmitting 2000 x 3 x 128 Mbytes/day = 800 

GBytes/day.  At a maximum achievable capacity of 10 Mbytes/sec for a modern 1 Gbit/sec 

network, this would saturate the network for 22 hours each day.  Since images are normally 

acquired and reviewed only during working hours, this is not possible.  Displaying images 

on 8k x 8k monitors is not practical for routine work.  The AAP approach makes it possible 

to improve image quality without increasing patient exposures or placing prohibitive 

demands on institutional infrastructure.  

4.3 Future work 

As a future work the following directions could be considered: 

1) Expand the theoretical CSA model to account for additive noise, quanta scattering 

and reabsorption in the conversion layer of the detector array; 

2) Implement AAP detector in mammography at low energies (below 30 keV) to avoid 

scattering of characteristic radiation; 

3) Implement AAP detector with direct detection x-ray detectors (a-Se). 

Those directions could provide more efficient use of the AAP detector making its 

implementation much more beneficial for medical screening and therefore diagnostics. 
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