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Abstract 

Auditory cortex is involved in the perception, attention, memory and imagery of sounds. 

Neuroimaging has been a rich source of information on which cortical areas are recruited for 

different tasks. However, a more detailed understanding has been confined to animal studies 

using invasive imaging modalities, and high-resolution functional descriptions of auditory 

cortex, including columnar/laminar specific activity, topographical organization within 

layers, and the way these representations transfer between processing structures remain 

poorly understood in humans. We present 7T fMRI as a non-invasive tool for high-resolution 

functional imaging of human auditory cortex on the laminar scale. We describe MATLAB 

tools for optimizing a segmentation pipeline in BrainVoyager, and an analysis pipeline using 

an SPM to examine functional differences between cortical layers of auditory cortex. These 

differences are measured within the context of auditory memory maintenance, imagery, and 

tonotopy. 
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1 Chapter 1: Introduction 

 We live in a world where we’re surrounded by sound. Our ability to process the 

sounds around us is fundamental to our interactions with the environment and other 

people. Our ability to communicate by speech with others is key to the human 

experience. But beyond speech we also depend on sound to navigate through our world, 

enjoy music, recognize other people, animals, or objects by the noises they make, and to 

predict and avoid dangers. The general pathways and processing areas of the auditory 

system are understood, but the method of processing at a finer level, nearer the neurons, 

the way our brain extracts and handles different fundamental characteristics of sound, and 

the process by which semantics of speech and nonverbal sounds are extracted are still 

being explored.  

1.1 The Auditory System 

 Sound at its most fundamental level is a vibration conveyed through a medium, 

such as air, as an oscillatory pressure wave. It can be generated by any vibrating object in 

contact with the medium, and likewise has the potential to be received and interpreted by 

other objects in contact with the medium. These waveforms at their simplest can be 

thought of as sinusoidal waves in which amplitude corresponds to volume, frequency to 

pitch, and phase determines their interaction with other waves. A single of these 

sinusoidal waves is a pure tone with a single pitch. Most naturally occurring sounds we 

hear are complex waves combining many of these simple waves, creating sounds like a 

dog's bark or a speech sound. Humans have evolved complex auditory systems to receive 

and decode the many complex sounds we are exposed to on a regular basis. 

 This section will give an overview of the human auditory system, and motivate 

the elements of this system being probed by this project. 

1.1.1 Auditory Pathways 

Sound waves reaching the human ear vibrate the eardrum. As illustrated in Figure 

1.1.1.1, the eardrum in turn conveys this vibration through a series of three tiny bones 

(malleus, incus, stapes) collectively known as the ossicles, which subsequently vibrate 
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the fluid filled inner ear via the oval window. This system allows impedance matching 

between the air filled outer ear and fluid filled inner ear. The fluid of the inner ear fills 

the cochlea, and when vibrating, causes vibrations of the basilar membrane. The basilar 

membrane, a stiff boundary, subsequently vibrates the organ of Corti. Hair cells on the 

organ of Corti are each tuned to a specific frequency, which has important consequences 

for the organization of the rest of the auditory system, and implications for the design of 

this study. They receive this vibration through stereocilia and transmit a signal via 

neurotransmitter release to nerve dendrites of the auditory nerve. 

 

Figure 1.1.1.1 - Illustration of the structures from the ear canal to the auditory nerve. 

(Reused with permission from Posit Science, see 1.7 References) 

Importantly for our project, the arrangement of hair cells along the length of the 

cochlea is in order of their preferred frequency (tonotopic). Hair cells nearest the entrance 

of the cochlea transduce high frequency vibrations while those towards the apex of the 

cochlea transduce low frequency vibrations as visualized in Figure 1.1.1.2. 
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Figure 1.1.1.2 - Illustration of an unrolled basilar membrane to demonstrate the concept 

of tonotopy at this stage. From the base to the apex of the basilar membrane, as it bisects 

the cochlea, a change from narrow width and thick membrane to wide width and loose 

membrane occur, leading to changes in resonant frequency, and corresponding to the 

frequency gradient from high frequency to low frequency with which hair cells along the 

basilar membrane will be activated. (Reused with permission from Posit Science, see 1.7 

References) 

As illustrated in figure 1.1.1.3, the auditory nerve joins the vestibular nerve to 

form the vestibulocochlear nerve and enters the brainstem at the cochlear nuclei. From 

there, signals are transmitted through several subcortical structures/regions (trapezoid 

body, superior olivary complex, lateral lemniscus) which parcel streams into multiple 

parallel pathways converging in the inferior colliculus (IC) [1]. These then project to the 

auditory thalamus, the medial geniculate body (MGB, divided into three regions; dorsal 

(MGBd), ventral (MGBv), and medial (MGBm)), which has multiple connections 

reaching to the auditory cortex (AC), the first cortical region to process sound, and the 

area of study for this project. 
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Figure 1.1.1.3 - An illustration of the auditory signal pathway originating from the 

auditory nerve exiting the cochlea and terminating in the auditory cortex. (Reused with 

permission from Posit Science, see 1.7 References) 

1.1.2 Auditory Cortex and Cortical Laminae 

 The human auditory cortex lies within the Sylvian fissure, on the superior 

temporal gyrus (STG), and is broadly encompassed by Brodmann’s areas (BA) 22, 41, 

42, and 52. Connections from auditory cortex reach many other regions of the brain, but 

auditory cortex is the primary region receiving direct input from MGB. It is usually 

subdivided into three regions; primary auditory cortex (core region, BA41), secondary 

auditory cortex (belt regions, BA42), and auditory association cortex (parabelt regions, 

BA22 and BA52) [2]. These regions are most often determined by cytoarchitectonic 
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mapping, and distinguished by which regions of MGB they receive signals from. Primary 

auditory cortex is usually landmarked as the posterior two thirds of Heschl’s Gyrus, with 

the secondary regions surrounding it, and the association cortex covering more anterior or 

lateral areas of the STG [3]. 

The cortical grey matter comprises six layers. In auditory cortex, these have been 

distinguished by cytoarchitectonic mapping, leveraging each of their characteristic 

distribution of neuronal cell types. The figure below from Lee, C 2013 [1] shows and 

describes the connections between MGB and each layer of auditory cortex.  

 

Figure 1.1.2.1 - Thalamocortical connections between MGB and AI and AII. The bulk of 

auditory information [4] ascends from MGBv to layer IV of AI, and MGBd to layer IV of 

AII (ascending red lines). Communication between AI and AII is created by feedforward 
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projections from layer V AI to MGBd (descending red line) [5]. Feedback circuits from 

layer VI of AI and AII modulates MGBv and MGBd activity respectively [6] (green 

lines), but is not a major conduit of information flow. Projections from MGBm connect 

broadly to all auditory cortex, primarily layer I [7], and are thought to potentially 

synchronize activity across all of auditory cortex. Light grey areas indicate regions 

demonstrating tonotopic organization, while dark grey are non-tonotopic. (Reused with 

permission from Elsevier, see 1.7 References) 

The neocortex, in general, has inputs and outputs described by the below figure 

from Purves et al. 2004 [8]. Note that this figure is generalized across cortex, so for 

example, although the figure shows inputs to layer IV from both the thalamus and other 

cortical regions, we know that in primary auditory cortex, almost all of the layer IV input 

is from the thalamus, while is secondary and association auditory regions, much of the 

input to layer IV will be from the primary auditory cortex itself (i.e. “other cortical 

regions”). Note that the cortex receives input from other cortical regions to layers II and 

V (in certain regions of cortex, layers II and III become less distinguishable and share 

function [8]). These then, would be regions we expect to be more affected by top down 

processing feedback than layers like IV, which we would expect to mainly fluctuate with 

direct sensory input from the thalamus.  
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Figure 1.1.2.2 - A generalized depiction of the inputs and outputs of each layer of the 

neocortex. (Reused with permission from Sinauer, see 1.7 References) 

1.1.3 Tonotopy 

 The tonotopy seen in neural tuning in the organ of Corti continues through the 

subcortical structures, with some tonotopy detectable even with fMRI in the human IC 

[9]. Tonotopic representations continue through portions of the thalamic MGB. The 

ventral portion of MGB receives tonotopically organized signal and projects it to layer IV 

primary auditory cortex (AI), while other portions deal with non-tonotopic signals. With 

the bulk of information transfer coming through MGBv to layer IV AI, and layer IV 

feeding out to other layers of AI, all layers of AI demonstrate some degree of tonotopy. 

Further specific findings related to tonotopy will be discussed in section 1.3, specifically 

the “rodents” subsection. 
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1.1.4 Next Steps in Understanding the Auditory System.  

 Important variations in neural tuning exist at fine spatial scales. Layer-specific 

inputs are likely to mediate function differently between layers, and topographical 

organization is likely to vary in turn. Visualizing these interactions will provide the next 

phase of understanding auditory processing in humans. In the next section, the benefits of 

ultra-high-fields for noninvasive imaging at fine spatial scales will be explored, before in 

the following section returning to a survey of the current state of the art in animal and 

human imaging at high resolutions, with a focus on what has been learned about auditory 

cortex.  

1.2 Ultra High Field Imaging 

 The advent of ultra high field MRI (fields stronger than 3T, in our case 7T), has 

allowed imaging at finer resolutions while maintaining image contrast. While there are 

new challenges, such as decreased field homogeneity, leading to increased susceptibility 

artifacts and image distortion, there are particular benefits for some lines of research, 

such as laminar imaging. This section will briefly highlight some of the benefits of 7T 

MRI as they are relevant to this project. 

1.2.1 Signal to Noise Ratio 

 At its most fundamental level, an increased B0 field strength of an MRI will, by 

the Boltzmann Distribution, accentuate the difference in parallel and antiparallel spins 

within the field, increasing the raw signal produced by the sample. While the signal 

increases with the square of the field strength, signal noise also increases linearly, and so 

from this factor alone an approximate linear one-to-one increase in SNR would be 

expected. Once changes in T1 and T2 times are factored in, if the sequence is not 

modified, a doubling of field strength yields an increase in SNR of only 60-90% [10]. 

However, with proper application of optimal sequence design and the use of modern 

receive coil arrays, according to some measures it’s actually found that the relation 

between B0 field strength and SNR is supralinear (SNR~B01.65) [11]. This benefit does 

not apply to all acquisitions, such as fMRI, as there are additional challenges faced in 
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deteriorating field homogeneity and decreasing T2*. 

 

Figure 1.2.1.1 - SNR values calculated for four brain compartments at field strengths of 

3T, 7T, and 9.4T. The red line is fitted to SNR values over the entire cerebrum. [11] 

(Reused with permission from Elsevier, see 1.7 References)  

1.2.2  Functional Contrast and Image Resolution 

 To achieve laminar specific imaging, we require high resolution with sufficient 

SNR. The benefits from raw image SNR at high field also translate into temporal SNR 

benefits for functional imaging. The figure below from Triantafyllou et al. 2005 [12] 

shows the average temporal SNR (SNR of a time series of functional data) from five 

subjects calculated from 60 time points for a spectrum of voxel volumes at 1.5T, 3T, and 

7T. The tSNR advantage at 7T is clear at all voxel volumes, growing larger at small voxel 

volumes.  
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Figure 1.2.2.1 - Temporal SNR as a function of voxel volume for 1.5T, 3T, and 7T, given 

as ratios. [12] 

 Furthermore, Triantafyllou et al. distinguished the ratio of physiological “BOLD-

like” noise to thermal noise by measurements with multiple TE values. The figure below 

from Triantafyllou et al. 2005 [12] shows the average ratio of physiological noise to 

thermal noise from five subjects for a spectrum of voxel volumes and TE times at 3T and 

7T.  



11 

 

 

Figure 1.2.2.2 - Ratio of physiological “BOLD-like” noise to thermal noise as a function 

of voxel volume and TE at 3T and 7T. [12] 

 Triantafyllou et al. concluded that high resolution experiments in particular would 

benefit from 7T, and that at high resolutions when the image noise was dominated by 

thermal noise, exploration into RF coil design and exploitation of enhanced contrast to 

noise benefits would further improve upon their findings.  

 Additionally van der Zwaag et al. [13], expanding on work by Gati et al. [14] and 

Yacoub et al. [15] also found that BOLD contrast was found to increase with field 

strength, as well as finding evidence for reduced venous contribution to the BOLD signal 

at higher field strengths. 

1.3 Laminar Functional Imaging 

 Prior to the advent of ultra-high-field MRI (>3T) it was difficult to resolve 

activity from different cortical layers in the human brain. This means a lot of our 

knowledge of functional processing at fine scales comes from work in animals utilizing 

invasive imaging techniques. This section summarizes work done to date studying 

laminar specific function, with foci on the auditory system, laminar fMRI, and human 7T 

fMRI. 
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1.3.1 Rodents 

 The highest resolution functional studies of auditory cortex have been in rodents. 

In particular recent work from Bandyopadhyay et al. [16] and Winkowski et al. [17] 

developed a much more detailed understanding of laminar specific activation and 

topography than was previously available. Several of the hypotheses of this project 

extend these findings from rodents to the human cortex. 

Prior to the advent of sufficiently high resolution imaging modalities, many 

studies have used electrophysiological recording to distinguish laminar differences in AI. 

For example, Wallace et al. 2008 [18] used electrodes inserted orthogonally to the 

cortical surface in guinea pigs. They found laminar differences in frequency tuning 

bandwidth, response latencies, response threshold, and response to contrasted 

vocalizations. These were consistent with existing structural models of auditory cortex 

including the ordered flow of information from thalamus to particular layers of AI, 

descending outputs from layers V and VI, and ascending outputs from layers II and III. 

This study was an excellent demonstration of functional response differences between 

layers, but was only able to look at responses in a single column of AI, not look at 

differences between and across laminae. 

 Bandyopadhyay et al. 2010 [16] used in vivo two-photon Ca2+ imaging to probe 

for topographic organization of the mouse auditory cortex at the single cell level. This 

technique allowed data to be collected for neurons in patches up to 300µm2 in size, 

yielding information about how specific response properties of neurons were organized 

across the cortex. It however, is limited to collecting data from one layer at a time, with 

data being collected primarily from layers II and III for this study. They were able to 

confirm that while tonotopy was the dominant organizational topography in primary 

auditory cortex and the anterior auditory field, it was present only on a broad scale across 

the cortex, while at small scales neighboring neurons could have substantially different 

characteristic response frequencies. Individual neurons also exhibited bandwidth and 

intensity tuning properties, but at the scale examined in this study, these were not 

topographically organized. Lastly, they found by examining subthreshold responses of 
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neurons, that it is likely that clusters of nearby neurons share input and are able to 

perform computations independently and in parallel using the same input.  

 Winkowski et al. 2013 [17] elaborated on work by Bandyopadhyay et al., by 

extending the use of in vivo two-photon Ca2+ imaging to probe for laminar differences in 

fine scale topographical organization of auditory cortex in mice. They used the same 

methods to look for the same measures in paired imaging fields in both layer II/III 

neurons and layer IV neurons. They find that frequency tuning is more precisely 

tontopically organized in layer IV, the thalamorecipient layer, than layers II/III. Clusters 

of neurons in layer IV showed identical or near identical best frequencies (frequencies 

showing the strongest response), while neurons in layers II/III in the same paired imaging 

field showed a greater distribution of best frequencies around the same best frequency 

focused on in layer IV. This pairing of medians in paired imaging fields supports the 

broad existence of tonotopy as an organizing topography in non-layer IV layers despite 

their increased heterogeneity. As well, Layer IV neurons were found to respond more 

strongly to tones than layer III neurons. They point to this evidence as being in line with 

the model of common stimulus-related input (from the thalamus) to layer IV, and a more 

diverse input (either from an array of thalamorecipient neurons, or intralaminar 

connections) to layers II/III. They conclude that between their evidence and past studies, 

it is suggested the representation of sound frequency in undergoing a transformation 

between layer IV and layers II/III.  

1.3.2 Non-human Primates 

 Some of the earliest studies using very-high-resolution ultra-high-field fMRI to 

resolve laminar specific functions were completed with non-human primates. Monkeys 

are often the subjects for new MRI technologies, when human certified hardware 

technologies and SAR monitoring are not available.  

 Goense et al. 2006 [19] studied primary visual cortex (V1) in the macaque 

monkey with 4.7T MRI. Their purpose was to see if the use of spin echo EPI sequences 

would reduce the large vein dependence of the BOLD effect as present in gradient echo 

EPI sequences. All the sequences they investigated were multi-shot EPI sequences with 
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between 2 and 16 segments. By using the macaque monkeys as subjects, with relatively 

small heads, and a field of view which covered solely visual cortex, they were able to 

obtain images of very high spatial and temporal resolution (500µm2 in plane resolution, 

2mm slice thickness, 2 second TR). With this accuracy they were able to clearly visualize 

layer IV (which is very prominent in the highly ordered visual cortex) and see that the 

majority of their functional signal presented as distinguished peaks concentrated in layer 

IV and the surface layer I. They were able to further increase signal specificity in the mid 

layers by decreasing the readout window length, suggesting the T2* weighting was 

primarily in the large veins, with T2 weighting dominating in the capillaries. This window 

based benefit came at the cost of scan time. This contrasted with the GE-EPI sequence 

which, while showing an equivalent overall percent signal change, showed signal 

predominantly at the surface layers.  

 Goense et al. 2012 [20] continued the study of macaque V1 at 4.7T, examining 

laminar differences in neurovascular coupling. By measuring BOLD contrast, cerebral 

blood volume (CBV), and cerebral blood flow (CBF), they were able to look at laminar 

specificity in the relations between CBF and CBV between positive and negative BOLD 

responses. They found for positive BOLD responses, parallel increases in both CBV and 

CBF in the centre of cortex, while for negative BOLD responses CBF decreased 

superficially while CBV increased in the centre of cortex. The importance of these 

findings lay in the suggestion that there are unique neurovascular coupling mechanisms 

between cortical laminae, as well as between positive and negative BOLD responses.  

 Chen et al. 2012 [21] looked at V1 in the macaque brain at 4.7T. Using very high 

in-plane spatial resolution (200µm2, 1 mm slice thickness) multi-shot (4 or 8) GE-EPI, 

and optimally placed FOVs derived from optical imaging, they found layer IV to be the 

most activated layer (30% more than superficial layers) after removing the influence of 

large veins. The results suggest that the point spread function (PSF) of GE-EPI is finer 

than previously thought, and sufficient for mapping sub-millimeter functional activity, 

lending itself to the study of laminar activation. 



15 

 

1.3.3 Humans 

Studies in humans have lagged several years behind their animal counterparts and 

have been limited mostly to non-invasive imaging or postmortem techniques. The studies 

of auditory cortex similarly lag behind studies of visual cortex, which has better 

understood organizational principles underlying it, and less between subject anatomical 

variability.  

 Knowledge of cortical laminae in the neocortex has existed for a long time, and 

some of our earliest examples of functional organization (Brodmann's areas) were 

derived from laminar profiles of cytoarchitecture. This field has advanced with 

increasingly complex methods, and continues to be used to try to define functionally 

boundaries of cortex. There continues to be controversy on the subdivision of auditory 

cortex [3,22], with many arrangements of core, belt, and parabelt boundaries proposed. 

Chance et al. 2004 [23] studied post-mortem auditory cortex tissue samples from control 

and schizophrenia patients, finding thickness relationships between specific cortical 

laminae and gyral/sulcal combinations implicating highly localized cortical laminae in 

specific brain functions. The manual, and subjective nature of making decisions based on 

visual differentiations of microscopy images, was also recently improved upon by 

Schleicher et al. 2005 [24], who presented an automated, modality independent, intensity 

line profile based method for parcellation of the cortex. They present their method as 

applied to cytoarchitectural parcellation of the human auditory cortex. 

 Earlier studies attempted to use 3T MRI to examine laminar activity in the human 

brain. Ress et al. 2007 [25] used sub-millimeter imaging with custom surface receive 

coils and custom multi-shot sequences to successfully obtain functional activation results 

in human primary visual cortex (V1). This study was one of the first to prove the 

feasibility of laminar fMRI in humans, and the results matched expectations of laminar 

response profiles, thickness, and agreement between structural and functional images. 

Koopmans et al. 2010 [26] sacrificed temporal resolution (TR=60 seconds) in a 3D Flash 

sequence to achieve submillimeter resolutions with standard hardware. They found a 

significantly higher signal change in layer IV of human VI, and determined the GE-
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BOLD contrast to have submillimeter intrinsic spatial resolution in human cortex, high 

enough to differentiate cortical laminae.  

 7T MRI allows for a higher resolution at the same signal to noise ratio (SNR), 

making laminar fMRI much more feasible. Polimeni et al. 2010 [27] used 1 mm isotropic 

single shot EPI to image human VI. They showed highly accelerated EPI limited image 

distortion enough to allow boundary based registration to accurately align EPI images to 

structurally derived surface reconstructions. They also limited selection of laminar voxels 

to central and deep layers to avoid the signal bias at surface layers. Olman et al. 2012 

[28] used the 3D-GRASE sequence to avoid the surface vein bias of GE-EPI, and 

successfully characterized laminar profiles for known phenomena in human V1.  

 Further studies at 7T optimized the most sensitive fMRI sequence, GE-EPI 

BOLD, for submillimeter use in humans [29], and by investigating and optimizing less 

biased CBV based fMRI sequences [30], as well as comparing the less biased 3D-

GRASE sequence to the 2D SE-EPI sequence [31] as well as the GE-EPI sequence [32]. 

Siero et al. 2014 [33] used implanted high density electrocorticography (ECoG) grids in 

human motor cortex in tandem with GE-EPI to assess the spatial correlation of the 

neuronal activity we’re truly interested in to the correlate hemodynamic based BOLD 

contrast we measure with fMRI. It found excellent agreement in activation foci between 

the two modalities and successfully used both to identify a topographical layout for the 

movement of each finger.  

 Laminar fMRI imaging in auditory cortex has been very limited to date. De 

Martino et al. 2014 [34] used 7T MRI to localize auditory areas in the human brain. They 

collected structural images at 0.6mm isotropic resolutions, with T1, T2*, and proton 

density (PD) contrasts. They used a ratio T1/PD image as an inhomogeneity reduced 

image for segmentation, a ratio T2*/PD image to obtain venograms, and a ratio T1/T2* 

image to obtain an image related to local myelin content. Using segmentation-generated, 

depth-specific cortical laminae grids to sample from the venous masked myelin content 

image, they obtained column depth profiles of myelin content across auditory cortex. 

These profiles were submitted to a clustering algorithm to obtain parcellation of auditory 
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areas which they then labelled based on anatomical region, including a region with the 

most consistently high myelin profile in the area of Heschl’s gyrus associated with AI. 

They validated these parcellated areas by sampling functional responses to auditory 

stimuli within each. They found a classic tonotopic gradient as well as more narrow 

frequency tuning for each subject within the area, concluding it may correspond to human 

AI. While the structural data were sampled by laminae, the functional data were only 

sampled by parcellated area, and no functional laminar results were presented.   

1.4 Motivation for the Current Study 

1.4.1 What’s next in Laminar Auditory Imaging 

 Tonotopy has been found to be an important organizing principle of the auditory 

system in animals and humans. Work by Bandyopadhyay et al. [16] and Winkowski et al. 

[17] in rodents has suggested that there are laminar specific differences in tonotopy, and 

that this will have important implications for how auditory cortex operates. Given the 

many parallels between laminar architecture in rodents and humans, we expected that 

similar laminar specific differences in tonotopy would be seen in humans. However, their 

methods are invasive and cannot be used in humans. A noninvasive method of 

distinguishing functional responses from different layers, and ideally within layers as 

well, was required. 

Laminar fMRI has been shown to be possible in humans, using 7T MRI, but no 

study to date has looked at laminar specific functional activation in auditory cortex. 

Furthermore, it has been shown that tonotopy can be measured in humans at 7T. We 

aimed to bring these together, and improve understanding the fine spatial function in 

human auditory cortex. The goal of this study was to address the challenges to make this 

possible, and evaluate the efficacy of these methods.  

1.4.2 Summary of the Best Methods for Auditory Laminar fMRI 

With regards to the best methods for laminar fMRI, studies to date have come to 

consensus on some items and not others. Ultra-high-field MRI, 7T, seems to be a 

requirement for laminar scale resolution, if large sacrifices are to be avoided in signal-to-
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noise. While some studies performed “high resolution mapping” with resolutions coarser 

than 1 mm, all studies reporting “laminar specific” results utilized a 1 mm2 in-plane 

resolution or higher, which seems to be a minimum for differentiating laminar effects. 

There is no consensus on what sequence is best for collecting functional data. Several 

studies have concluded that alternatives to GE-EPI such as SE-EPI and 3D GRASE have 

higher spatial specificity which warrants their use, while several other studies continue to 

use the GE-EPI sequence based on its high sensitivity and attempt to correct for its 

specificity issues with other methods. Nearly all studies utilize sequence acceleration, and 

several used reduced FOVs.  

Based on these precedents, we chose to use a 7T scanner for maximized SNR at 

high resolutions, a GE-EPI sequence to maximize BOLD sensitivity, and a 1 mm 

isotropic resolution to differentiate laminar effects while still allowing coverage of one 

entire hemisphere. 

1.4.3 Segmenting the Grey Matter 

 A key challenge for laminar imaging is segmenting of the anatomical boundaries 

of the grey matter from the cerebral spinal fluid on the superficial surface, and the white 

matter on the deep surface. T1-weighted images provide the highest contrast and 

resolution for this segmentation. However, there are then many challenges inherent in the 

image processing required to perform the segmentation. Chapter 3 will elaborate on these 

challenges, and the methods we used to address them, and to evaluate the performance of 

the algorithms. 

1.5 Specific Goals and Framework of Thesis 

 The objectives of this project were: 

1. Obtain high resolution structural and functional data in auditory cortex at 7T. 

2. Create an optimized segmentation pipeline for specifying the locations of cortical 

laminae by depth. 

3. Create a pipeline for analysing the functional data as a function of cortical depth. 

4. Identify differences in functional activation at varying cortical depths. 
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2 Chapter 2: Protocols 

 This chapter will cover image acquisition parameters and the motivations behind 

their choice, and the experiment design.  

2.1 Scanner 

 All of the images for this experiment were acquired on a Varian/Agilent 7T 680 

actively shielded, horizontal bore, human neuro system with a Siemens AC84 head coil 

operating at SR350. The system was equipped with 16 independent RF transmitters and 

32 receivers, and imaging was done with a 16 channel Tx, 31 channel Rx head coil. 

2.2 Structural Images 

 The requirements for our structural scans were sufficient resolution to reduce 

partial volume effects (discussed in 3.1.3), and strong enough tissue contrast to provide 

cleanly delineable boundaries between white and grey matter. Further discussion of 

segmentation requirements occurs in section 3.1. 

2.2.1 Resolution 

 As localization of the cortical sheet was critical to this project, it was decided to 

devote an entire scanning session to structural imaging, so that multiple averages of a 

high resolution protocol could be used to obtain sufficient signal-to-noise. Based on pilot 

work by Joe Gati at the Centre for Functional and Metabolic Mapping, a protocol was 

selected that balanced resolution and signal-to-noise, with 0.6 mm isotropic voxels. 

2.2.2 Acquisition Parameters 

 Structural images were acquired with a T1-weighted 3D magnetization-prepared 

rapid acquisition gradient echo (3D-MPRAGE) sequence (FOV = 150x220x172mm, 

matrix = 250x366x286 voxels, voxel size = 0.6x0.6x0.6mm, Grappa = 2x2, TE = 2.75ms, 

TR = 8.88ms, TI = 1200ms, flip angle = 11 degrees). 
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2.3 Functional Images 

 The requirements for our functional scans were a sufficiently high resolution to 

distinguish BOLD signal from varying depths of the cortical grey matter, and a 

sufficiently short repetition time (TR) to reliably model changes in brain activity between 

different phases of our tasks.  

2.3.1 Functional Resolution 

 The resolution required for laminar functional imaging was discussed in section 

1.3 and summarized in 1.4.2. Our goal was a resolution of 1 mm isotropic or higher. In 

pilot work, we found scans of over 10 minutes could be acquired at 1 mm isotropic 

resolutions without problems. Due to limitations of the scanner gradient cooling, attempts 

to scan at higher resolutions (0.75 mm isotropic) were met with unpredictable maximum 

scan termination at times as short as 2 minutes. Thus, 1 mm isotropic resolution was 

chosen. 

2.3.2 Other parameters 

 To resolve brain responses to the different phases of our task, we chose TR=2 s, 

as this has been shown to be effective in similar previous studies [1,2]. This and the 

resolution constrained the field-of-view (FOV), parallel acceleration, and other 

optimizations. With advice from Joe Gati, we used a GRAPPA parallel acceleration 

factor of 3 and a ¾ fractional k-space. This still restricted the FOV, and whole brain 

coverage was not possible. As a compromise, we chose to just acquire a single 

hemisphere, with 34 sagittal slices.  

2.3.3 B1 Shimming 

 Shimming in general refers to the process of increasing the homogeneity of the 

magnetic field inside the scanner by manipulation of the various coils. Active B1 

shimming involves adjusting the current passing through each channel of multi-channel 

transmit coil to achieve optimal homogeneity in the transmitted field. Manual B1 field 

shimming was applied before image acquisitions each session. Manual shimming 

presents a challenge, as the resulting field will be slightly different each scanning session, 
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but allows for a particular focus to be made in the process. Because of the single 

hemisphere FOV used, manual shimming allowed for the field homogeneity to be 

maximized over just one hemisphere without worrying about the surrounding tissues.  

2.3.4 Acquisition Parameters 

 Functional images were acquired with a T2*-weighted gradient-echo echo planar 

imaging (GE-EPI) sequence (34 Slices, FOV = 192x96mm, Matrix = 192x96 voxels, 

voxel size = 1x1x1 mm, Grappa = 2, TE = 20ms, TR = 2000ms, flip angle = 60 degrees).  

 Also acquired were even higher resolution GE-EPI images (30 Slices, FOV = 

96x192mm, Matrix = 128x256 voxels, voxel size = 0.75x0.75x0.75mm, Grappa = 3, ¾ 

fractional k-space TE = 23.61ms, TR = 2000ms, flip angle = 60 degrees). 

2.4 Field Maps 

2.4.1 EPI Distortion 

 EPI spatial distortion is an artifact inherent to the EPI sequence. The EPI 

sequence (all of its variations) utilizes a single excitation RF pulse, and then a train of 

signal echo collection, allowing an entire k-space plane to be collected in tens of 

milliseconds (and a whole brain volume to be acquired in seconds). However, because 

signal is being received so long after the excitation pulse (most sequences acquire only 

one echo immediately following the excitation pulse) the image reconstruction is more 

susceptible to field inhomogeneities. This manifests as nonlinear compressions and 

extensions of spatial location along the phase encode dimension of the image. While 

there are several methods of reducing this artifact by fine tuning the EPI sequence, they 

are usually at odds with the sensitivity to the BOLD signal, meaning retrospective 

correction is often required. One popular method of retrospective correction involves 

acquiring field map images, which measure the voxelwise field strength, and can allow 

for the calculation of expected spatial distortion at each voxel.  
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2.4.2 Acquisition Parameters 

 Field Maps were collected with the following parameters (FOV = 

200x180x180mm, matrix = 64x64x48 voxels, TR = 8ms, TE1 = 0.75ms, echo spacing = 

0.92ms, echo increment = 0.2ms, number of echoes = 5). 

2.5 Experiment Design 

 The goal of our experiment was to probe for laminar specificity and tonotopic 

representations in auditory processing. To that end we presented a series of pure tone 

auditory stimuli with two tasks (change detection and imagery) to probe for laminar 

specificity, and two conditions (high and low frequencies) to probe for tonotopy. This 

section will break down the details of the auditory stimuli and the experiments design. 

2.5.1 Stimulus Details 

 Stimuli for the experiment were short pure tone melodies. Each melody was 

comprised of a series of 6 pure tones. The tones were always one of three tones from two 

frequency ranges, specifically 0, 1 or 2 semitones above the note A4 (440 Hz, 466 Hz, 

and 494 Hz) for the “low range”, and one octave higher (880 Hz, 932 Hz, and 988 Hz) 

for the “high range”. Thus a melody consisted of the three tones from one of these ranges 

repeated twice each in a random order. Each tone was 0.4 seconds long with sound gaps 

of 0.12 seconds for melodies that were 3 seconds long in total. These frequencies were 

intended to evoke a clear tonotopic distinction between the low and high ranges. 

2.5.2 Design Details 

Participants performed two different tasks while in the scanner; a change 

detection task and an imagery task. In both tasks, sounds were presented using Matlab 

with Psychtoolbox [3] and played through Sensimetrics MRI compatible in-ear 

headphones at a comfortable listening volume.  

During the change detection task, one melody was played followed by a silent 

maintenance/delay period. Participants then heard the same melody again. In 50% of the 

trials, one tone within the melody was changed. Participants were instructed to respond as 
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soon as the second sound had finished playing by pressing one of two buttons to indicate 

a “same” or “different” response. The maintenance period and the intertrial interval (ITI) 

were jittered (4-11 sec) to ensure that the different phases of the task could be modeled 

separately in the fMRI analysis. 

During the imagery task, participants again heard one melody during the encoding 

period. Like in the change detection task, the following delay period was jittered (4–11 

sec) and participants were instructed to imagine, as vividly as possible, the melody they 

had just heard, repeating it in their head for the duration of the delay. Participants then 

heard the same melody again. Participants were instructed to respond as soon as the 

second sound had finished playing by pressing one of two buttons to indicate a “vivid” or 

“weak” response depending on how well their imagined melody matched the second 

playing. Like for the change detection task, the response phase was followed by a 

variable ITI (4–11 sec). 

Each block, for both tasks, consisted of 6 subblocks with 4 trials each and took 

approximately 8.6 min. Each of 4 delay/ITI jitter times (4, 6.33, 8.66, and 11 seconds) 

was presented once per subblock. Similarly, two melodies from each frequency range 

were played in each subblock in a randomized order. The particular melodies presented 

during the encoding period of each trial were randomized.  

2.5.3 Participant Details and Scanning Sessions 

 It was decided to focus on a proof-of-principle, by acquiring a large quantity of 

data in a single volunteer. One healthy female participant, age 23, took part in the 

experiment as a paid volunteer. She reported normal hearing and had no intensive 

musical training or perfect pitch. She completed a session of structural scans, and sixteen 

blocks of functional scans over five sessions. One other participant completed the task 

previously using older scanning sequences and hardware, and a second participant was 

scanned for structural images only; thus neither of their data were used in the final 

pipeline. Ethical approval was obtained from the Western University Health Sciences 

Research Ethics Board and subjects gave informed, written consent prior to participating. 
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3 Chapter 3: Segmentation 

 A core challenge of this project lay in segmenting the cortical sheet in the 

structural images. Without accurate segmentation the location and cortical depth 

specificity would be unattainable. This chapter covers the underlying challenges facing 

MRI segmentation, the tools available for use, the pipeline used in this project, the 

optimization of the pipeline for our data, and evaluations of the resulting accuracy 

estimates of the segmentation.  

3.1 Complications in MRI Segmentation 

 The challenge inherent in image segmentation in any modality usually boils down 

to several sources of noise. In MRI images these are usually categorized into three 

difficulties [1]; Image noise (machine or physiological contributions), the bias field (low 

frequency signal variation across the tissue stemming from field inhomogeneity), and the 

partial volume effect (multiple tissue types being sampled for a single voxel signal). This 

section will briefly address these with relation to this project’s structural image 

segmentation, as well as the additional challenges faced using the resulting segmentation 

data in conjunction with functional scans. 

3.1.1 Signal Noise 

 As in any imaging modality, MRI is subject to noise polluting the real signal 

being measured. Some of this noise is inherent to the scanner; electronic interference due 

to thermal constraints or inductive coupling between receive coils. This is usually 

considered to be random noise of a Rician (or Gaussian at high SNR) distribution [2]. 

Several methods of “de-noising” exist [1], but most make a compromise between having 

noise in the image and losing detailed features in the image. Other noise comes from 

physiological sources; fluctuations in metabolic linked brain physiology, and blood 

pressure fluctuations in large arteries [3]. This noise is non-random and affects certain 

brain structures more than others. Physiological noise predominantly affects low TR 

image sequences used in functional MRI and less so the long TR structural sequences due 

to the relatively high frequency of physiological processes.  
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This study used multiple scan averaging to deal with noise in the structural 

images. By collecting multiple structural scans, aligning them to one another, and 

averaging them together, the contribution of noise is reduced, and SNR is increased 

approximately by a factor of N, where N is the number of averaged scans. The below 

figures show a single scan, and an average of four scans, both after brain extraction and 

bias field removal. Figures after this section will depict the four scan average structural 

unless noted otherwise. 

 

Figure 3.1.1.1 - Slices through a single scan structural image. Noise in the image is 

evident in the grainy texture of the homogeneous regions, and the blurred boundaries in 

some regions. 

 

Figure 3.1.1.2 - Slices through a four-scan average structural image. Noise reduction in 

comparison with Figure 3.1.1.1 is evident in the smoother texture of the homogeneous 

regions and the more cleanly delineated boundaries.  
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3.1.2 Bias Field 

 Although a well-designed MRI scanner will have a homogeneous magnetic field 

while the bore is empty, the introduction of a person into the scanning field corrupts 

homogeneity. Inhomogeneous magnetic susceptibility in the person being scanned (e.g., 

in a human head with several borders between solid, liquid, and gas spaces) changes the 

strength of the field in and around the person. Additionally, sensitivity variations in the 

receive coil, especially multichannel coils can affect the homogeneity of the resulting 

image [4]. While clinical scanner software does an excellent job correcting for this with 

B1 shimming [5], the higher field strength in our study, and use of multichannel coils, 

both exacerbate this problem. This means the resulting images are often affected by a low 

frequency signal variation spanning the FOV of the image. While the human eye is 

relatively insensitive to this kind of signal variation, many methods of image 

segmentation (especially those involving a thresholding technique) are heavily corrupted. 

The below figures show a structural MRI before and after bias field removal using a 

surface fitting approach [6] as implemented in BrainVoyager. Also shown is the first 

removed bias field (BrainVoyager fits and removes two bias fields by default). 

 

Figure 3.1.2.1 - Slices through the raw structural image following only brain extraction 

and optimal windowing and leveling. The effect of the bias field is evident in the brighter 

intensities in the anterior and left lateral regions compared to the frontal and right lateral 

regions. 
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Figure 3.1.2.2 - Slices through the first removed bias field. The regions of high intensity 

previously noted can be seen in the bias field. One additional rounds of bias field removal 

was done, but the first bias field corresponds most obviously with the raw image.  

 

Figure 3.1.2.3 - Slices through the structural image post bias field removal. Compared to 

Figure 3.1.2.1 it can be seen that the intensity values for grey matter regions and white 

matter regions are more consistent across the brain. 

3.1.3 Partial Volume Effect 

 The partial volume effect is a phenomenon that occurs when sampling voxels near 

a boundary between different tissue types. Some voxels will span the boundary, and will 

sample both tissue types resulting in a signal value in between the two. This results in a 

loss of contrast between the tissues and the blurring of the boundary.  
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 Primarily, the partial volume effect is combatted with higher resolutions (smaller 

voxel sizes). As voxel sizes decrease, the number of voxels overlapping a boundary will 

decrease. Also, very few physiological tissue boundaries are perfectly, sharply delineated, 

instead having thin regions of transition (true of the grey matter, white matter boundary 

of the human brain). This means that as voxel sizes approach the size of the physiological 

boundary region, the closer the boundary shown by the MRI will get to matching the 

histological boundary. 

 Structural scans acquired for this project were obtained at an isotropic resolution 

of 0.6 mm (compared to a commonly used 1 mm isotropic resolution). The below figure 

from Lüsebrink et al. 2012 [7] (reused with permission from Elsevier, see 3.6 References) 

shows two images, one acquired at 0.5 mm isotropic resolution and one acquired at 1 mm 

isotropic resolution. White matter - grey matter boundaries generated from each differ 

locally. In many of the regions where they differ, each contour looks reasonable against 

its respective raw image. This is due to the partial volume effect at larger voxel sizes 

blending the boundary, particularly in regions where the boundary shifts directions 

multiple times in a small distance (finer anatomical structures). 
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Figure 3.1.3.1 - Axial slices from two scans, of a single subject, both acquired at 7T. The 

left image has an isotropic resolution of 1 mm and the right image of 0.5mm.The red and 

yellow contours represent, respectively, the white matter–grey matter boundary derived 

from the isotropic 1 mm data and the isotropic 0.5 mm data. [7] 

3.1.4 EPI Distortion Artifacts 

 The three previously discussed complications impact the segmentation of the 

structural images. However, in our project segmented tissue is an intermediate goal. We 

must also apply this segmentation data to sample information from our functional images. 

The critical factor to consider here is that registration between the structural and 

functional images must be good for the segmentation data to sample from the correct 

location in the functional images. Unfortunately the Echo Planar Imaging (EPI) sequence 

most commonly used to collect functional MRI data has spatial distortion, as discussed in 

section 2.4.1. 

 There are prospective and retrospective methods of minimizing this distortion. 

Echo spacing can be minimized, but this is in balance with the desired resolution and the 

BOLD sensitivity of the sequence. In this project we relied on B1 shimming to create as 

homogeneous a field as possible across the brain. This was done manually and uniquely 

for each session. Also, the choice to image only one hemisphere of the brain for the 

functional imaging meant that manual shimming could do an even more accurate job 

within our FOV. We evaluated the use of field map based undistortion for retrospective 

correction of the EPIs but found it unnecessary. While some small degree of distortion 

does exist, particularly around the frontal sinuses, the figures below show that this 

distortion is not an issue in the region of interest where our resampling occurs. 
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Figure 3.1.4.1 - Slices through a structural image with the vertices of ten structurally 

derived segmentation grids plotted in white. As the vertices were derived from this 

image, they are where intended spatially. 

 

Figure 3.1.4.1 - Slices through a mean functional image showing vertices of ten 

structurally derived segmentation grids plotted in white. Although being derived from a 

structural image and transformed to functional space, the vertices still have excellent 

coverage of the intended regions of grey matter. While some EPI distortion can be seen 

(frontal region of the axial slice), it has not affected the EPI in the region where the 

segmentation grids are generated. 
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3.2 Software Options 

 Current papers exploring laminar fMRI in humans have utilized different 

techniques for obtaining laminar specific functional results. All methods must eventually 

bin or label all grey matter voxels of interest by layer, depth, or some distance measure. 

One attempted this by manually segmenting only the WM-GM boundary and binning 

grey matter voxels by minimum Euclidian distance from this boundary [8]. Another 

manually defined both WM-GM and GM-CSF boundaries repeatedly in 2D and 

automatically generated fixed distance spaced profiles between the two profiles [9]. 

Others used automated tools for defining both WM_GM and GM-CSF surfaces and 

automatically generating thickness maps of a section of cortex. Methods of calculating 

thickness maps have been explored [10] and while a new “equi-volume” model has been 

used recently (and most interestingly can be applied directly to EPI images) [11], many 

papers utilize the “Laplace equation” for determining distance [12,13,14] as implemented 

in BrainVoyager. 

3.2.1 Available Software 

Few MRI image analysis software packages include the tools necessary to achieve 

this project's goal; sampling functional data with structurally derived cortical laminar 

maps.  Several popular packages (SPM, Freesurfer, FSL, and BrainVoyager included) are 

capable of doing basic cortical segmentation (mapping white matter, grey matter, and 

CSF), but few take the last steps of generating cortical thickness maps, and generating 

depth maps based on this data. Other specific problems prevented the use of specific 

software packages. For example, FreeSurfer has an excellent reputation for segmentation, 

but it has an outdated problem in that it scales all images to 1 mm isotropic resolutions, 

even if they’re already of a higher resolution. For this reason, BrainVoyager was selected 

for this project. BrainVoyager has a pipeline of processing tools which include automated 

cortical segmentation, automated cortical thickness measurements, and automated 

generation of any number of vertex maps at specified relative depths. This appears to 

currently be the most comprehensive single tool for this type of analysis.  
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3.2.2 Contrasts 

 BrainVoyager’s pipeline is designed to work with high resolution T1-weighted 

structural images. It is interesting to note however, that while EPI images often have 

weak white/grey contrast in comparison, the high resolution EPIs collected for this 

project produced mean EPI volumes with very prominent boundaries. Although not 

investigated in this thesis, future adaptation of BrainVoyager’s tools, or new tools could 

allow segmentation of EPI images directly [11]. 

3.2.3 Outputs 

 From the outset of the project it was established that functional analysis would be 

completed with SPM and the automatic analysis (aa) pipeline [15]. Therefore, the 

segmentation portion of the analysis needed to result in data which could be integrated 

into the existing pipeline. While BrainVoyager outputs its depth maps in a proprietary 

format by default, it can be made to output the data in text format instead, which is well 

formatted, and easily read into matlab with minimal code. 

 It should be noted that while BrainVoyager does contain all the tools necessary 

for completing the functional analysis as well as the segmentation, however it is not 

easily automated. As the development of the pipeline for this project was a highly 

iterative process, the fully automated nature of aa was highly desirable. 

3.3 BrainVoyager Pipeline 

 This section will briefly describe each of the steps performed with BrainVoyager 

to obtain our cortical laminae grids. Further details can be found in the BrainVoyager QX 

User’s Guide. 

3.3.1 Raw Data Conversion 

Raw Data collected from scanning sessions is in NifTI (.nii) format. 

BrainVoyager utilizes proprietary file formats for each common type of MRI image. Our 

structural NifTI images are converted to BrainVoyager’s 3D Anatomical (.vmr) files with 

BrainVoyager’s NifTI Conversion Plug-In. 
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Figure 3.3.1.1 - Slices through a raw structural image after conversion to a .vmr file. No 

windowing/leveling has been applied.  

3.3.2 Intensity Inhomogeneity Correction and Brain Extraction 

 BrainVoyager begins by “cleaning” the image background, setting all low signal 

voxels values outside the head to zero. Brain extraction is completed using a combination 

of binary representations of the image and component analysis, removing the skull and 

tissues surrounding the brain. Low frequency 3D variations across the brain are then 

detected and subtracted from the image to correct for local field inhomogeneities as 

discussed in 3.1.2. This is especially important at high field and with a phased coil array. 

BrainVoyager then performs a histogram shift to match grey matter and white matter 

peak values to default values of 100 and 160 respectively. This step is fully automatic and 

requires no user input. 
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Figure 3.3.2.1 - Slices through a structural image after brain extraction and intensity 

inhomogeneity correction. Histogram has been shifted to conform with default 

BrainVoyager values, and the image is thus implicitly windowed and leveled.  

3.3.3 Maximum Gradient Maps 

 Maximum Gradient Maps are calculated. These maps are a first approximation of 

the boundaries throughout the brain based on non-directional maximum gradient 

boundaries. This step is fully automatic and requires no user input. 

 

Figure 3.3.3.1 - Slices through a gradient image generated, from a structural image, as an 

input for the subsequent white matter identification step.  

3.3.4 White Matter: Adaptive Region Growing 

An adaptive region growing process is then used to identify the white matter in 

the brain. This process begins by analysing a global histogram of the entire brain to 

identify peak signal values for grey matter and white matter. It then uses a user inputted 

Global White Matter Threshold value to pick a threshold value between the two peaks. 

Voxels above this threshold are then labeled as white matter.  
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Figure 3.3.4.1 - Slices through a structural image. The blue region indicates voxels 

identified by BrainVoyager to be white matter by use of the global white matter threshold 

value.  

BrainVoyager then traces the outline of the identified white matter regions and 

calculates smaller local histograms. It then uses a user inputted Local White Matter 

Threshold value to pick a threshold value between the two peaks. Within this local 

region, additional voxels above the new local threshold are added to the white matter 

mask.  

 

Figure 3.3.4.2 - Slices through a structural image. The blue regions are the same as the 

previous figure. The green regions are those voxels identified to be white matter by 

application of a local white matter threshold value. 
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A polishing step merges the voxels identified by the global and local threshold 

steps and, using a magnitude map based on computed gradients, smooths the edges of the 

resulting white matter mask.  

 

Figure 3.3.4.3 - Slices through a structural image. The blue region is a combination of the 

blue and green regions from the previous figure, with edge smoothing applied. Note that 

although many white matter voxels have not been labelled, the threshold values we are 

using have been specifically identified to optimize labelling in the auditory areas 

(explained in section 3.4). 

3.3.5 Grey Matter: Dilation 

To identify the outer grey matter border, BrainVoyager performs a dilation from 

the previously identified WM-GM border. User inputted parameters at this step include 

“Number of Dilation Steps”, “Stop Crit Left From GM Peak”, and “Local Stop 

Criterion”. These parameters lack explanation in the BrainVoyager documentation, but 

the following assumptions seem reasonable. The “Number of Dilation Steps” dictates 

how many steps (voxelwise) are taken outwards from the WM-GM border. This should 

only be important when the background signal values are close to the grey matter values, 

or extremely noisy. The “Stop Crit Left From GM Peak” will dictate a global histogram 

defined threshold used to separate Grey Matter voxels from CSF voxels. The “Local Stop 

Criterion” will dictate a regional histogram derived threshold to allow additional voxels 

to be included in the grey matter mask.  
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Figure 3.3.5.1 - Slices through a structural image. Blue regions indicate the final selection 

of white matter voxels from the previous steps. Green regions indicate those voxels 

identified to be grey matter voxels by the dilation process.  

A polishing step similar to that used in the white matter identification uses 

magnitude maps based on gradient maps to smooths the edges of the grey matter mask.  

 

Figure 3.3.5.2 - Slices through a structural image. Light grey regions indicate the final 

selection of white matter voxels from the previous steps. Dark grey regions indicate the 

grey matter voxels identified in the previous figure after edge smoothing. 

3.3.6 Cortical Thickness Measurement 

 Cortical Thickness throughout the grey matter is then calculated automatically. 

BrainVoyager performs these calculations using the Laplace Method as described in 

[16]. 
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Figure 3.3.6.1 - Slices through a structural image. Grey regions indicate white matter 

voxels. The colored regions indicate grey matter voxels where the local cortical thickness 

is specified by the color as referenced from the color bar on the right in voxels.  

3.3.7 High Resolution Cortex Grid Sampling 

 BrainVoyager’s “High Resolution Cortex Grid Sampling” tool is then used to 

create regularly sampled grids at specified depths in the grey matter. The grid sampling 

tool first creates a regular spaced grid at the middle layer of the cortex and then creates 

subsequent grids by moving up or down grid points along streamlines to get 

corresponding grid points for other relative depth levels.  This means the grids at all 

layers cover the same regions of cortex, and have one-to-one correspondence between 

points. It does however mean that the exact distance between points for all grids other 

than the middle layer will be slightly larger or smaller depending on local cortex 

curvature. While it is possible to instead constrain point spacing, having corresponding 

grids across layers is more important for later functional analysis and visualization. Any 

number of grids up to 10, with any degree of spacing between them, is user inputted. 

These grids can be generated within a VOI or centered on a particular point. Our pipeline 

generated 10 grids evenly spaced between 0 (the WM-GM border) and 1 (the GM-CSF 

border) centered on a predetermined voxel. The resulting grids can be viewed in 2D on 

any previously created image, or in 3D using openGL tools with cross sections of any 

previously generated image. 
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Figure 3.3.7.1 - Sagittal and axial slices through a structural image. In the auditory region 

on each slice are three beige grids that correspond to surfaces 0%, 50%, and 100% of the 

distance between the WM-GM boundary and the GM-CSF boundary.  

 

Figure 3.3.7.2 - The same three grids as in the previous figure rendered in 3D with a 2D 

coronal slice for reference.  
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Figure 3.3.7.3 - A close-up of the three grids mentioned in previous figures visually 

demonstrates their alignment with particular depths of grey matter.  

3.4 Pipeline Optimization 

 As mentioned previously, the BrainVoyager pipeline for generating cortical 

laminae grids has several steps which require user input. Specifically, values for global 

white matter threshold, local white matter threshold, global grey matter threshold, and 

local grey matter threshold can have large impacts on the resulting cortical laminae grids. 

While BrainVoyager provides default values for these inputs, we wished to investigate 

whether modifying them improved accuracy. To do this we developed optimization tools 

and methods to quantitatively determine the best choices for these inputs. 

3.4.1 Custom MtA Matlab Tool 

To quantify the accuracy of the BV grids, a Manual to Automatic (MtA) 

comparison tool was created. This MATLAB tool allows the manual selection of any 

number of points along the White Matter - Grey Matter (WM-GM) boundary and the pial 
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surface (Grey Matter - Cerebral Spinal Fluid (GM-CSF)) in a number of slices 

overlapping the region covered by the BV grid. The tool then determines the nearest 

neighboring vertex from the BV grid to each of the manually inputted points. The 

distances between these points are calculated, both as a single Euclidean distance, as well 

as a set of Cartesian unit vectors.  

The measures the MtA tool extracts are described as follows.  

Absolute distance between manually selected WM-GM points and corresponding 

nearest neighbor points on the BV WM-GM grid are found. The median of these 

distances quantifies the error in the grid, and the standard deviation of these distances 

quantifies how variable grid errors are. The same values are shown for the GM-CSF grid. 

The objective for optimization was created by taking the root mean square (rms) of the 

resulting median and standard deviation of the distance measure, √
1

2
(𝑚𝑒𝑑2 + 𝑠𝑡𝑑2) ,as 

both are values we want to minimize in parameter selection 

The Cartesian bias vector was found by taking the median x, y, and z 

displacements between the manual points and the BrainVoyager grid. Because the x, y, 

and z vectors could be positive or negative, the spread of these values can centre on zero. 

This allows us to get an idea of whether our BrainVoyager grid is very close to the 

manually selected points with error on both sides of this surface (in which case the value 

will be closer to zero than the absolute distance value) or whether our BrainVoyager grid 

is entirely positioned on one side of our manually selected points (in which case the value 

will be similar to the absolute distance value). The median of these three vectors is found 

to give a sense of the error in the grid in each direction. The standard deviation of these 

values is also found to get a sense of the variability of this measurement. A summary 

optimization value is found by first taking the rms of the median and standard deviation 
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number sensitive to both the error in the grid in each direction and the spread of that data 

in each direction. 

By running the same scan through BrainVoyager using a spectrum of input 

parameters to create a set of grids, and running all of these grids through the MtA tool, 

we were able to plot MtA measures against a range of inputs for a particular parameter, 

and thus find an optimal choice for that parameter. For example, while leaving all other 

parameters the same, one could choose six different values for global white matter 

threshold. The same scan is run through BrainVoyager with each of these values yielding 

six different grids. These grids are run through the MtA tool, with points being manually 

selected from several evenly spaced planes through the region covered by BrainVoyager 

cortex grids. The following figure is an example of one of these slices from the MtA tool. 

 

 

Figure 3.4.1.1 - An example image as would be worked with using the MtA tool. White 

pixels indicate vertices from the BrainVoyager generated cortical grids, while the 

blue/red crosses indicate points manually selected by the user to correspond to the WM-

GM boundary. 

The figure shows a sagittal cross section through the Heschl’s Gyrus of one of our 

scans. The original data have been sinc interpolated by a factor of 10 to produce the 
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image as shown. The white points correspond to points from all six of the grids produced 

by BrainVoyager using the spectrum of white matter global threshold values. It is 

possible to get a sense from this figure of the effect on the WM-GM grids of changing 

input parameters - note the thicker band of cortex which each grid takes up. You can see 

that the white matter threshold values also have an effect on the mid-cortex surface, as 

it’s relative to the two outer surfaces. It does not however seem to have a significant 

effect on the GM-CSF border, as expected given the default grey matter threshold values 

are being maintained. The colored points on the image are user selected points 

corresponding to the WM-GM boundary. This is a sample of a selection which would 

ideally cover the length of the border within the boundaries of the BrainVoyager Grid 

points. This selection process is repeated for many slices and both the WM-GM and GM-

CSF boundary to provide a distribution of manually segmented points across the whole of 

the BrainVoyager grids. 

We first used this tool to assess the accuracy of the BrainVoyager grids created 

using default input parameters (white matter global threshold 0.6, white matter local 

threshold 0.5, grey matter local threshold 0.2, grey matter local threshold 0.2, each 

explained in next section). 

Distance (voxels) Boundary Median Standard 

Deviation 

Optimization 

Absolute Distance WM-GM 0.75 0.51 0.64 

GM-CSF 0.79 0.84 0.82 

Unit Vector Distance 

(x/y/z) 

WM-GM -0.35 / -0.15 / 

0.17 

0.59 / 0.45 / 0.50 0.40 

GM-CSF -0.40 / -0.17 / -

0.16 

0.84 / 0.60 / 0.65 0.53 
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Table 3.4.1.1 - Measures generated by the MtA tool to assess the accuracy of the 

BrainVoyager generated cortical maps using default parameters.  

3.4.2 Number of Averages 

 With the MtA tool developed, we were first interested in using it to assess the 

effect of our scan averaging on image noise in the structural volume. To compensate for 

image noise (discussed in 3.1.1), increased by our use of very small voxel volumes, 

multiple scans were acquired, realigned, and averaged to produce one structural image to 

run segmentation on. In theory, image averaging increases SNR by a factor of √N where 

N is the number of images being averaged. In practice this doesn’t hold perfectly true. 

While the thermal noise in the system is accurately approximated by a Gaussian 

distribution, and thus random, our images also contain nonrandom physiological noise, 

and may contain very small shifts in anatomy between individual scans due to subject 

movement. Thus our resulting increase in SNR will be slightly less than ideal.  

 Four structural scans were acquired. To assess the benefit of averaging them 

together, it was decided to examine the impact on segmentation directly, as the precise 

relationship between image SNR and segmentation is unclear. By averaging together the 

scans in different numbers and orders, four examples of each of one-scan, two-scan, and 

three-scan averaged images were created. These twelve scans, along with the single 

possible four-scan average image were fed through our segmentation pipeline to create 

surface grids for the white matter - grey matter (WM-GM) boundary and grey matter - 

cerebral spinal fluid (GM-CSF) boundary. The MtA tool is then used to compare all 13 

surfaces. 



51 

 

 

Figure 3.4.2.1 - Results from the MtA tool for differing numbers of averaged scans. The 

top row is results from the WM-GM boundary, and the bottom row from the GM-CSF 

boundary. The first column shows the median distance between automatically determined 

vertices and manually identified vertices. The second column shows the standard 

deviation of the distances between automatically determined vertices and manually 

identified vertices. The third column shows an optimization value of the last two (RMS 

of median value and standard deviation value). All units are in voxels. The points shown 

for 1, 2, and 3 averaged images are an average from four different images run through 

segmentation. The point shown for 4 averaged images is from a single image run through 

segmentation. Manual points selected from a four-scan average image. 

 The above figure shows a steady improvement (as measured by an optimization 

value in the third column) in automatic segmentation accuracy for the WM-GM boundary 

as more scans are averaged together, and a rather sharp improvement at 4 averaged scans 

for the GM-CSF boundary. 

 One concern regarding the above measurements was that the manually chosen 

points were selected from the four-scan average image. This could mean that the 

automated measures were only improving with more averaged scans because the image 
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was approaching the image used to define the manually selected points. To make sure 

that this wasn't the case, the process was repeated using manually selected points selected 

from a single scan average image. 

 

Figure 3.4.2.2 - Results from the MtA tool for differing numbers of averaged scans. The 

top row is results from the WM-GM boundary, and the bottom row from the GM-CSF 

boundary. The first column shows the median distance between automatically determined 

vertices and manually identified vertices. The second column shows the standard 

deviation of the distances between automatically determined vertices and manually 

identified vertices. The third column shows an optimization value of the last two (RMS 

of median value and standard deviation value). All units are in voxels. The points shown 

for 1, 2, and 3 averaged images are an average from four different images run through 

segmentation. The point shown for 4 averaged images is from a single image run through 

segmentation. Manual points selected from a one-scan average image. 

 Comparing the two above figures, there are no visible differences (although it was 

confirmed individual data points did differ by very small amounts in the raw data, the 

differences are not noticeable after averaging). This implies that when manually 

delineating the two boundaries, the benefit from averaging scans together is negligible, 
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but the algorithm used for automated segmentation is much more dependent on the image 

noise reduced through scan averaging. 

Some time was spent trying to determine where in the automated segmentation 

pipeline the effect of averaging was having the largest effect. Two steps stood out. 

During the histogram shift (see section 3.3.2) noisier images (particularly some of the 

one-scan images) were sometimes observed to map to peak grey matter and white matter 

values slightly incorrectly. As subsequent steps seem to assume these peak values, this 

can shift the location of the tissue boundaries by small amounts. Secondly, during the 

white matter and grey matter identification steps (see sections 3.3.4 and 3.3.5), more salt 

& pepper like noise (single voxels of particularly lower or higher signal from the 

surrounding tissue, more prevalent in the single scan images) was sometimes able to shift 

the boundaries around one or more particular voxels. More noise impervious histogram 

shifting methods could be valuable to examine in the future.  

3.4.3 Optimizing White Matter Global Threshold Values 

We followed this procedure to optimize first the Global White Matter Threshold 

(WMG) used in the region growing procedure which creates identifies and creates a 

white matter mask of the brain. This threshold represents a proportional value between 

the GM peak value and the WM peak value as determined by a histogram of the entire 

brain. Therefore a threshold value of 0 would match the grey matter peak value, and a 

threshold value of 1 would match the white matter value. BrainVoyager specifies a 

default value of 0.6 for this parameter; an intuitively slightly conservative choice nearly 

halfway between the two peaks.  

Values between 0.5 and 1.0 were used to generate 6 BrainVoyager cortex grids. 

These grids were run through the MtA tool, with points manually selected from 31 evenly 

spaced planes through the region covered by BrainVoyager cortex grids. The Local 

White Matter Threshold (WML) was set to 1.5 for this set, which is such a conservative 

value that the second round of local thresholding will add no additional voxels to the 

mask and therefore will not obscure the optimization of the WMG Threshold. All other 

user inputted values were left at the BrainVoyager defaults. To demonstrate the MtA data 
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for 6 grids, rather than tabulating all the data, we can graph the median MtA distances 

and their standard deviations for each grid. 

 

Figure 3.4.3.1 - Median distance in voxels from BrainVoyager generated WM-GM 

vertices to manually selected vertices using a spectrum of global white matter threshold 

values. Error bars show standard deviations. 

As expected we get an optimization curve in which values at either extreme are 

less accurate than a moderate value. It can be seen that our lowest MtA distance offers a 

decrease in MtA distance of 25% compared to the default value. By taking the rms of the 

median and standard deviation we can obtain an optimization measure for each. 
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Figure 3.4.3.2 - WM-GM grid optimization measure using a spectrum of global white 

matter threshold values. 

This graph shows, as could likely be predicted from the previous figure, that a 

GMG of 0.9 provides the most accurate results.  

The absolute distance measure shown in Figure 3.4.3.1 does not separate biased 

(i.e., points clustered systematically on one side of the real boundary) from unbiased 

noise (i.e., points positioned close to real boundary with error on both sides) of whether 

each grid is. To capture this we also calculated Cartesian bias vector MtA distance 

measurements. Plotting these values as histograms allows us to visualize whether the 

spread of data is centred on zero, as opposed to mostly to the positive or negative side.  
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Figure 3.4.3.3 - Histograms of distances in the x, y, and z directions between 

BrainVoyager generated WM-GM vertices to manually selected vertices using a 

spectrum of global white matter threshold values. 

This series of Histograms shows a few things. For some of the weaker performing 

values (i.e. wmg=0.5 to wmg=0.7), individual direction histograms are centred on non-

zero values, showing the boundary estimation is biased and not just noisy. However, for 

the better performing threshold values (i.e. wmg=0.8 to wmg=1.0), all three Cartesian 

directions are centred on zero. This implies that our grids for these thresholds are in fact 

very close to our manually delineated border, and the median error is due mostly to 

unbiased noise.  

To summarize these histograms without losing the subtlety of separating the 

directions, we can break the data down into medians and standard deviation for each 

direction for each grid. 
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Figure 3.4.3.4 - Median distance in voxels in the x, y, and z directions from 

BrainVoyager generated WM-GM vertices to manually selected vertices using a 

spectrum of global white matter threshold values. Error bars show standard deviations. 

It can be seen that for the optimized threshold (0.9), we see individual medians 

closer to zero than any other thresholds. While there are individual standard deviations 

smaller for some other thresholds, the incredibly accurate medians and relatively small 

standard deviations make 0.9 the dominant GMG threshold. Taking these optimization 

measures into account, a Global White Matter Threshold value of 0.9 was chosen for 

subsequent analyses. 

3.4.4 Optimizing White Matter Local Threshold Values 

The MtA optimization method was next used to optimize Local White Matter 

Threshold (WML) value, which was used subsequently to the Global White Matter 

threshold value to create white matter mask of the brain. BrainVoyager traces the borders 

defined by the global thresholding, and using smaller locally generated histograms, finds 

new peak values and uses the local threshold to include additional voxels in the white 
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matter mask. BrainVoyager uses a default value of 0.5 for this parameter (0.1 lower than 

the 0.6 used for the global threshold), providing a slightly more liberal inclusion of 

voxels on a smaller scale in regions determined more conservatively by the global 

thresholding.  

Maintaining the previously determined Global White Matter Threshold of 0.9, and 

all other parameters with default values, grids were generated using local thresholds with 

values from 0.6 to 1.1. These grids were run through the MtA tool, with points manually 

selected from 31 evenly spaced planes through the region covered by BrainVoyager 

cortex grids. To demonstrate the MtA data for 6 grids we can graph the median MtA 

distances and their standard deviations for each grid. 

 

Figure 3.4.4.1 - Median distance in voxels from BrainVoyager generated WM-GM 

vertices to manually selected vertices using a spectrum of local white matter threshold 

values. Error bars show standard deviations. 

Unlike the global threshold, we do not see a traditional optimization curve, with 

optimal values in the middle. This is due to the nature of the interaction between global 

threshold and local threshold. Any local threshold larger than our global threshold (0.9) is 
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unlikely to add more than a few voxels to the white matter mask, as it represents a more 

conservative threshold than that already used. A small number of voxels may be added as 

it is using a local histogram which may differ from the whole volume histogram, but not 

by a large amount. Therefore we see a plateau begin just after the global threshold. 

By taking the rms of the median and standard deviation we can obtain an 

optimization measure for each. 

 

Figure 3.4.4.2 - WM-GM grid optimization measure using a spectrum of local white 

matter threshold values. 

This graph shows, as could likely be predicted from figure 3.4.4.1, that a Global 

White Matter Threshold of 0.9 provides the most accurate results.  

As done for the global threshold, we can examine the MtA distance values 

looking at each Cartesian direction. 
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Figure 3.4.4.3 - Median distance in voxels in the x, y, and z directions from 

BrainVoyager generated WM-GM vertices to manually selected vertices using a 

spectrum of local white matter threshold values. Error bars show standard deviations. 

This graph shows the increase in accuracy and decrease in variation leading up to 

a value of 0.9. It can also be seen that there is little variation in any individual direction 

past a threshold of 0.9.  

3.4.5 Checking for Interaction in White Matter Thresholds 

A concern in finding an optimal local threshold of 0.9 was that the local threshold 

was optimized using a global thresh of 0.9. To look at this a little more, a spectrum of 

global threshold values from 0.7 to 1.0 and local threshold values from 0.7 to 1.0 were all 

run with one another. The optimization values for all 16 resulting grids are plotted below. 
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Figure 3.4.5.1 - WM-GM grid optimization measure using a spectrum of global (x-axis) 

and local (colored lines) white matter threshold values. 

The apparent interaction between global and local thresholds can be explained as 

follows as follows. At a high global threshold some white matter voxels will be missed, 

and the lower local thresholds will find these voxels and add them to the mask. At lower 

global thresholds, the border will already be detected quite accurately, or with the 

inclusion of a few grey matter voxels. Here, high local thresholds which add few or no 

extra voxels will be best. The above graph realized this spectrum with some noise.  

Importantly, at wmg=0.9, the optimization curve minimum can be seen in the 

local values with a local threshold of 0.7, 0.8, and 1.0 yielding worse results than 0.9. 

Thus, a Global White Matter threshold of 0.9 and a Local White Matter threshold of 0.9 

were chosen. 

3.4.6 Optimizing Global Grey Matter Values  

The Grey Matter masking parameters were optimized next. The first parameter, 

while lacking detailed description in the documentation, is labeled as “Stop crit left from 
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GM peak”, implying that it acts in a similar way to the WMG threshold to globally 

identify all grey matter voxels. The BV default for this value is 0.2. Grids were generated 

using values from 0 to 0.3 in steps of 0.05, and a fixed local grey matter threshold of 0. 

The resulting grids were run through the MtA tool. 

 

 

Figure 3.4.6.1 - Median distance in voxels from BrainVoyager generated GM-CSF 

vertices to manually selected vertices using a spectrum of global grey matter threshold 

values. Error bars show standard deviations. 

Unexpectedly, the global grey matter threshold value was observed to have no 

effect. We see no change in MtA distance with this variable.  

3.4.7 Optimizing Local Grey Matter Values  

The second parameter, while lacking detailed description in the documentation, is 

labeled as “Local Stop Criterion”, implying that it acts in a similar way to the WML 

threshold to identify additional grey matter voxels near the previously defined grey 

matter border. As there’s a possibility that an interaction exists between the two 

parameters controlling the grey matter masking (and the GMG threshold does in fact 
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have an effect), we moved directly to a mixed optimization of a spectrum of both 

parameters. 12 grids were generated using global grey matter thresholds of 0, 0.15, and 

0.3 and local grey matter thresholds of 0, 0.15, 0.30, and 0.45. 

 

Figure 3.4.7.1 - Median distance in voxels from BrainVoyager generated GM-CSF 

vertices to manually selected vertices using a spectrum of global (x-axis) and local 

(colored lines) grey matter threshold values. Error bars show standard deviations. 

The above figure confirms that the global grey matter threshold has no effect on 

MtA distance regardless of local grey matter threshold. We also see an improving MtA 

distance with increasing local grey matter threshold. To find an optimal local grey matter 

threshold, the range of values used was extended. 
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Figure 3.4.7.2 - Median distance in voxels from BrainVoyager generated GM-CSF 

vertices to manually selected vertices using a spectrum of local grey matter threshold 

values. Error bars show standard deviations. 

Local grey matter thresholds between 0 and 0.6 (including the BrainVoyager 

default 0.2) were run. An optimization curve was obtained for which a local grey matter 

threshold of 0.45 returned the lowest MtA value, 22% lower than the default threshold. 

3.4.8 Final BrainVoyager Input Values 

 Final user inputted BrainVoyager parameters are as follows: 

Global White Matter Threshold = 0.9 

Local White Matter Threshold = 0.9 

Global Grey Matter Threshold = 0.45 

Local Grey Matter Threshold = 0.45 
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 These are the values found to optimize identification of white and grey matter 

voxels, and subsequent cortical laminae grid generation for the auditory region of our 

structural image. 

 It should be noted that there are a couple of additional optional steps and 

parameters (described below) that were examined in pilot work, but determined to not be 

necessary to optimize in this detail.  

BrainVoyager recommends a sigma filter “enhance” step prior to mask 

generation. A mixed set of multiple WMG values and WML values were all created with 

and without the smoothing step. Results were systematically worse with the smoothing 

applied. Therefore it was not used in our pipeline. 

The grey matter mask generation step also has a “number of dilation steps” 

parameter. Experimentation suggested that at its default value of 14, there were more 

than enough steps to reach the pial surface, and the thresholds alone did an excellent job 

defining this surface. This value would likely be more important in lower quality data 

where values beyond the grey matter might still be confused for grey matter and a hard 

stop is desired to prevent this. 

3.5 Segmentation Outcome 

3.5.1 Final Accuracy Measures 

To compare to table 3.4.1.1, the following table provides a summary of all yielded 

MtA measurements using the final selection of BrainVoyager inputs. 

Distance (Voxels) Boundary Median Standard 

Deviation 

Optimization 

Absolute Distance WM-GM 0.54 0.48 0.48 

GM-CSF 0.64 0.68 0.66 
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Unit Vector Distance 

(x/y/z) 

WM-GM -0.048 / -0.038 / 

-0.026 

0.47 / 0.42 / 0.51 0.33 

GM-CSF -0.25 / -0.13 / 

0.087 

0.70 / 0.57 / 0.58 0.45 

Table 3.5.1.1 - Measures generated by the MtA tool to assess the accuracy of the 

BrainVoyager generated cortical maps using optimized parameters.  

To emphasize the improvements granted by the MtA tool, the same table is shown 

with percent improvements from the default BrainVoyager Inputs to the optimized inputs.  

Percentage Improvement Boundary Median Standard Deviation Optimization 

Absolute Distance WM-GM 28 6 25 

GM-CSF 19 19 20 

Unit Vector Distance (x/y/z) WM-GM 86 / 75 / 85 20 / 7 / -2 17 

GM-CSF 37 / 24 / 54 17 / 5 / 11 15 

Table 3.5.1.2 - Percentage improvements in measures generated by the MtA tool to assess 

the accuracy of the BrainVoyager generated cortical maps between default and optimized 

parameters.  

3.5.2 Pipeline Complications 

Several observations were made while optimizing the pipeline related to the 

performance of certain BrainVoyager tools. A second participant was scanned, with only 

structural data being collected. This data was intended for evaluation of the segmentation 

pipeline. When this image was run through the brain extraction and intensity 
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homogeneity processing step, the remapping of peak grey and white histogram values to 

100 and 160 was done incorrectly, instead mapping peak values to approximately 130 

and 200. Although the documentation suggests that each step using histogram peak 

values recalculates histogram peak values, this was found to be incorrect. The white 

matter and grey matter identification tools were found to calculate their threshold values 

always relative to peak values of 100 and 160, even when these values did not correspond 

to the true histogram of the images. The cause of this remapping error was not 

determined, although the accuracy of brain extraction and the number of iterations of 

intensity inhomogeneity correction were observed to impact it when performing the work 

in 3.4.2. No combination of preprocessing was found to allow proper remapping, and the 

data could not be processed with BrainVoyager. 

The actual histograms displayed by BrainVoyager also appear to be inaccurate. 

Histograms do appear to correspond to BrainVoyager documentation when calculated 

outside of BrainVoyager, but the histograms generated while using tools in the pipeline 

have incorrect range of values, and peak values relative to the image itself. Despite this, 

the values BrainVoyager pulls from the image are correct, and do not match the incorrect 

histogram. 

Our final recommendations when using this BrainVoyager pipeline are to pay special 

attention to the remapping of values in the first steps, and to optimize user inputted 

parameters specific to the region of interest. It is likely based on our experience with a 

second subject that optimal parameters will vary between subjects.  
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4 Chapter 4: Functional Results 

 An analysis pipeline was created to process the functional data. We then required 

a method of integrating the results of this, which were voxels in a volume, with the 

meshes that came from segmentation. This chapter first outlines the functional analysis 

pipeline, including an explanation of the module written to integrate the BrainVoyager 

cortical laminae meshes in a resampling process. It will then look at functional activation 

maps in the form of 3D rendered contrast maps, and finally discuss the findings, and 

possible future directions.  

4.1 Analysis Pipeline 

Functional analysis for this project was completed using SPM8 and Automatic 

Analysis (aa) [1]. aa is a framework for MRI analysis that allows for efficient workflow. 

It allows for thorough tracking and repetition of complicated pipelines without the need 

for tedious manual analyses. 

4.1.1 Raw Data Conversion 

 Functional data from the scanner is provided in 4D NIfTI files; a single file for 

each timecourse of functional scans. These 4D files are first split into a single NIfTI file 

for each 3D volume in the timecourse. This was the format aa modules were written to 

expect (although since this project began, support for 4D files has been incorporated into 

aa). 

4.1.2 Slice Timing Correction 

 As our functional data were collected using a 2D EPI sequence, slices are 

acquired sequentially, distributed throughout our 2 second TR. The BOLD signal for 

different slices was therefore sampled at slightly different times. SPM’s slice timing 

correction takes into account the slice acquisition order (Interleaved) and a chosen 

reference slice (slice 1), interpolating the time-course for each voxel in time to match all 

voxels across each volume in time. 
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4.1.3 Image Realignment 

 To compensate for subject movement during the scan, SPM’s realign function 

estimates, for each time series volume, the rigid body movement parameters in three 

translational axes and three rotational axes required to align each volume with the first in 

the series. These alignment parameters are updates in each volume’s header, but we do 

not reslice (resample and interpolate the volumes so each voxel in each volume 

represents the same point in real space) the EPI volumes as one normally might in this 

type of analysis. This is because later, in our laminar resampling step, we will sample and 

interpolate these volumes using structurally derived coordinates. By leaving them in their 

original space, some volumes will have data coordinates closer to some of our sampling 

coordinates (by nature of the slight subject movements over time), and we will gain some 

degree of super-resolution.  

 The realignment module also creates a mean EPI volume for the first EPI session. 

This is used in later steps, and is helpful for visualization of the functional volumes. 

4.1.4 EPI Undistortion 

We evaluated an EPI undistortion module written for automatic analysis (aa) 

[2].  This module requires both a phase and magnitude image from the field mapping 

sequence. The phase image was processed by a robust 3D phase unwrapping algorithm 

[3]. The magnitude image was fed to a brain extraction tool (BET) to create a brain mask. 

The masked phase data were dilated and smoothed, and the sequence parameters are used 

to calculate a forward distortion map, which can be used to remove distortions from each 

EPI volume. This module was not applied in the final pipeline as it was deemed 

unnecessary (as explained in 3.1.4). 

4.1.5 Image Coregistration 

 To make associations between the structural and functional images, we must first 

ensure they are properly aligned with one another. The SPM coregistration function co-

registers the structural image to the mean EPI image by optimizing a rigid-body 

transformation to minimize an objective function from information theory, mutual 
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information. The structural alignment parameters were updated, and the EPI’s weren’t 

changed.  

4.1.6 Laminar Resampling 

 A custom aa module was written to perform the resampling necessary for the 

laminar analysis, based around SPM’s resampling function. The module operates on a 

one-instance-per-session level, running once for each session and for each subject. It is 

passed, as inputs, the functional images, the structural images, the BrainVoyager 

generated cortical maps, and a smoothing parameter.  

The module begins by parsing the BrainVoyager text output and reformatting the 

vertices into usable matrices.  

The module then loads the structural image and, using SPM’s resampling function 

and the list of vertices from BrainVoyager, creates a resampled structural volume in “BV 

space”. This volume is the width and length of the grid size, and as deep as the number of 

grids generated, each plane representing the flattened surface of one cortical depth grid. 

This volume is written to file. 

The module then loops over the number of EPI volumes. For each, it loads the 

volume and, using the alignment parameters from this EPI and the alignment parameters 

from the structural volume, calculates the transformation matrix to convert coordinates 

from structural space to EPI space. It then uses this transformation matrix to convert the 

BrainVoyager vertices from structural space to EPI space. Then, looping over the number 

of BrainVoyager grids, it resamples the EPI volume with the transformed vertices and 

performs 2D Gaussian smoothing (FWHM=2 voxels) over the sampled surface. It then 

combines these resampled and smoothed surfaces into one 3D volume in “BV space”, 

and writes it to file. 

The module then creates a resampled mean EPI volume in “BV space” in the 

same way as previously described for the structural, except using the transformed 

BrainVoyager vertices in EPI space. 
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Lastly, using the structural volume, and mean EPI volume, it creates two “vertex 

maps”, with the vertices from all of the BrainVoyager grids indicated in white atop the 

standard volume. These are written to file. This allows for easy confirmation that the 

transformation is occurring correctly and that the coregistration is adequate for properly 

resampling the intended grey matter of the EPI volumes. 

4.1.7 Modeling 

 A modelling module was used to perform conventional univariate analysis. Each 

combination of the two conditions (low and high frequency), and two tasks (change 

detection and imagery) were modeled separately, along with the maintenance period and 

intertrial interval. A contrast module was used to produce a variety of contrast maps. 

4.2 Visualization of Functional Activation 

 To visualize the functional results, the vertices generated by BrainVoyager were 

used to create 3D renders of each layer, onto which the contrast maps were visualized. 

Below is an example of a single rendered grid to provide a frame of reference for looking 

at the subsequent renders. It is important to note that our subject presents with a split 

Heschl's Gyrus in the hemisphere acquired (the right). The primary gyrus is labelled HG1 

and the smaller secondary gyrus is labelled HG2 in the figure below. 
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Figure 4.2.0.1 - An example of a rendered cortical layer grid. Directions are indicated by 

the black text (A - anterior, P - posterior, M - medial, L - lateral). Important structures are 

indicated by the white text (HG1 - Heschl’s gyrus, HG2 - Heschl’s Gyrus, PT - Planum 

Temporale). 

4.2.1 Contrast Maps 

 The first activation we wanted to look for was a simple sound against ITI contrast, 

to show that we could detect auditory activation. This contrasted activity present during 

the first and second sound of both tasks and both conditions against the ITI of both tasks 

and both conditions. Figure 4.2.1.1 shows that activation was present in all auditory 

layers with more activation in the superficial layers near the pial surface. Much of that 

activity lay on or between the two Heschl’s gyri where we would expect AI to be located. 

As well we can see spatially distinct activation across layers, for example the large active 

region on posteromedial HG2 at the pial surface appears to shift towards HG1 in the 

middle layers, and disappear in the deep layers.  
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Figure 4.2.1.1 - Activation by layer maps for a contrast of all sounds against all 

maintenance intervals.  

 A previous study [4] of a similar auditory stimulation paradigm (change 

detection) showed a suppression of activity in auditory cortex during the maintenance 

period of the task. Two hypotheses were put forwards by these authors. One was that this 

suppression was in the same neurons that encoded the stimulus, and it protects short-term 

memory representations from being replaced by the encoding of new sounds. Another 

was that there is a centre-surround patch of inhibition, so that the remembered frequency 

is actually positively activated during the maintenance period, but it suppresses neurons 

representing neighboring frequencies. However, at the coarse scale of the voxels in [4] 

(2.4 mm isotropic, with 10 mm FWHM 3D smoothing) only a patch of inhibition is seen. 

It is possible that the higher resolution in our study will distinguish this. We therefore 

performed a negative maintenance contrast, searching for suppression during the 

maintenance periods of both tasks and both conditions. Figure 4.2.1.2 shows suppression 

during the maintenance period across middle and shallow layers. The suppression 

residing along HG2 overlaps with activation during the sound portion of the task as 

reported by Linke et al. [4]. No excitatory voxels were seen: the positive maintenance 

contrast was blank, and even at the higher resolution of our study no support was found 

for the centre-surround hypothesis. 

 

 

Figure 4.2.1.2 - Suppression by layer maps for a contrast of negative maintenance against 

the ITI. 
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In a subsequent study, Linke et al. [5] found that while there was suppression 

during the maintenance period of a change detection task, the maintenance period during 

an imagery task showed positive activation in the same regions as during the sound 

phase. We first performed contrasts looking for activation during the maintenance period 

of either task but found no activated regions. We therefore performed negative 

maintenance contrasts for imagery and change detection against ITI separately, as well as 

contrast of the maintenance period of one task against the other. Figure 4.2.1.3 shows 

suppression during the imagery task in a similar pattern to the above suppression shown 

for all maintenance periods, but very little suppression during the change detection task. 

Contrasts of the maintenance periods of each task against each other showed no activity 

or suppression unique to either task. 

 

Figure 4.2.1.3 - Activation by layer maps for a contrast of sound against ITI for the 

imagery and change detection tasks separately.   

Next, we examined differences in activation between the key conditions of 

interest. For the low- and high- frequency stimuli separately, we contrasted activation 

evoked by sound against the ITI. Figure 4.2.1.4 shows areas activated by high- and low- 

frequency sounds. While both conditions elicited activity in similar areas across all 

layers, certain regions of activation (e.g. the active regions on posteromedial HG2) 

appear to show spatial shifts in activation, suggesting detection of tonotopic gradients. As 

with the first sound contrast, we see spatially distinct activation patterns across layers for 

the low and high frequency conditions.  
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Figure 4.2.1.4 - Activation by layer maps for a contrast of sounds against ITI for the high 

frequency and low frequency conditions separately.  

 To evaluate the consistency of these responses, we ran contrasts of the low 

frequency and high frequency sounds against ITI separately for the imagery and change 

detection tasks.  Even for these entirely independent datasets, Figure 4.2.1.5 shows that 

there was a remarkable degree of consistency in the layer-specific patterns of activation 

across the replications. Specifically, the “Low CD” and “Low IM” contrasts evoked very 

similar activation patterns, while the “High CD” and “High IM” contrasts evoked very 

similar patterns that were both distinct from the low frequency contrasts.  

 

Figure 4.2.1.5 - Activation by layer maps for a contrast of sounds against ITI for the high 

frequency and low frequency conditions, and imagery and change detection, separately. 

 To evaluate the significance of the spatial shift between low- and high- frequency 

sounds we ran contrasts of high-frequency sound against low-frequency sound and vice 

versa. Figure 4.2.1.6 shows that while the activation due to high frequency sounds does 
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cover some areas (medial HG1, and PT) which aren’t evoked by the low frequency 

sounds, the low frequency sounds do not evoke activation significantly stronger than the 

high frequency sounds in any region. This implies that the low frequency sounds may be 

activating a subset of regions that the high frequency sounds activate, and we cannot 

claim there are specific regions that activate preferentially each condition.  

 

Figure 4.2.1.6 – Activation by layer maps for a contrast of high frequency sound against 

low frequency sound, and of low frequency sound against high frequency sound. 

Lastly, we wanted to look for a difference in activation between the imagery and 

change detection tasks. We ran independent sound against ITI contrasts for the two tasks. 

Figure 4.2.1.7 shows very similar activation patterns between the two with very similar 

overall activation levels, and only small spatial shifts in activation locations.  

 

Figure 4.2.1.7 - Activation by layer maps for a contrast of sound against ITI for the 

imagery and change detection tasks separately.  
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4.3 Discussion 

 The responses observed to sound validated the protocol choices in Chapter 

2.  Extensive activation was found in the regions of auditory cortex where auditory 

activation would be most expected (Heschl’s gyrus and nearby cortex). Furthermore, 

evidence was found of different activation patterns across layers between the white 

matter and pial surface boundaries. This has exciting potential for future neuroscientific 

studies. It is important to remember that the BrainVoyager grids were vertex matched. 

That is, vertex (xi,yi) came from the same cortical column across layers. This means that 

the shifting spatial location of activation was not due to an improper alignment of cortical 

sampling grids, but to locally spatially varying activation in the cortex.  

 We found suppression in auditory regions during the maintenance period, 

mirroring the findings of Linke et al [4]. Furthermore, even at the high resolution of our 

data, suppression during the maintenance period was found in the same regions as 

activation to sound during the task. This suggests that its cause is suppression of the same 

neurons involved in perception, rather than a centre-surround suppression effect. 

Interestingly the spatial correlation between these patterns appears strongest in the middle 

and deep layers, with good spatial overlap in activation/suppression while there is slightly 

more variability in shallow layers. This could possibly indicate suppression in layer IV, 

the thalamorecipient layer, where suppression of sound would have the greatest effect.  

 When probing for task specific activity or suppression during the maintenance 

period of the task, we were unable to show activation during the imagery maintenance as 

reported in Linke et al 2015 [5]. Given that signal in the maintenance period, is harder to 

detect than positive activation due to the presentation of sound, it is possible that the lack 

of evidence here stems from a lack of power. This is also data from a single subject, 

whereas Linke et al reported group data in twenty-five subjects. Data collection in more 

subjects is needed to make more robust conclusions in this area. 

 For both high and low frequency conditions, highly similar activation patterns 

were seen when comparing sound presentation in the replications in the imagery and 

change detection tasks. These tasks represent completely independent sets of data, and 
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reveal remarkable consistency in 7T functional activation patterns even at high 

resolution.  

Contrasts of high- and low- frequency sounds against one another indicated only 

that regions activated by low frequency sounds may be a subset of regions activated by 

high frequency sounds. However, there are some spatial shifts in the exact location of 

regions activated by the two conditions visible on the contrast of each against the ITI. 

Although difficult to resolve by eye in the figure, there is a trend in the direction of shift 

the activated regions from lateral to medial from high to low frequencies. This is evident 

in all of the activation on HG2. Furthermore, the activation for high frequencies is nearly 

evenly distributed across HG1, HG2, and PT, while activation for low frequencies is 

more isolated to HG2 and the sulcus between the two Heschl’s gyri. This is consistent 

with previous mappings of tonotopic gradients which show low frequency preference 

along Heschl's gyrus, and high frequency preference extending away from it 

anteromedially and posterolaterally [6].   

 We theorized that the imagery task, being an inherently top-down process 

involving higher order areas of the brain, would increase input to superficial layers of the 

brain and increase activation in layers other than layer IV. Figure 4.2.1.5 shows a 

comparison of activation between the imagery and change detection tasks collapsed 

across conditions. We saw very similar overall patterns of activation. The two tasks 

shared activation in most regions, with small shifts in some activations, and some small 

additional regions of activation for both tasks. Overall degree of activation did not seem 

to differ between the tasks across layers. It is possible that this is due to a task order 

effect. As our data came from a single subject across several scan sessions (with both 

tasks occurring in every session), it is possible that a similar “rehearsal strategy” as 

employed in the imagery task became utilized in the change detection task as well. 

Performing all change detection blocks before imagery blocks might help minimize this.  

4.4 Conclusions 

 With reference to our earlier stated goals we:  
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1. Obtained high resolution structural and functional data in auditory cortex at 7T 

utilizing the protocols described in Chapter 2.  

2. Created and optimized a segmentation pipeline for specifying the locations of 

cortical laminae by depth using BrainVoyager and the methods and tools 

described in Chapter 3. 

3. Created a pipeline for analysing the functional data as a function of cortical depth, 

using aa and a custom resampling module described in section 4.1. 

4. Identified functional activation differences at varying cortical depths, as 

demonstrated by the results presented in section 4.2. 

 We were able to differentiate spatially varying activation to sound across depths 

of auditory cortex. We found previously described suppression in auditory cortex during 

a memory maintenance period, with good spatial correlation to sound activation. We 

detected spatial shifts in activation between high and low frequency sounds, in agreement 

with previously described tonotopic gradients. We did not see evidence for laminar 

activation differences between change detection and imagery tasks. 

4.5 Future Directions 

 This work represents an early validation of methods for laminar imaging of 

auditory cortex. Possible improvements and next steps will be covered by chapter. 

4.5.1 Future Protocols 

The protocols used in this study allowed us to achieve our objectives, but 

alterations would allow for slightly different types of studies. In all of our results we saw 

a bias in activation levels towards the pial surface, similar to what has been previously 

documented with regards to GE-EPI sequences. With this bias in place, we were limited 

to making laminar specific claims based on comparisons between contrasts. If adequate 

sensitivity could be achieved with other, more spatially sensitive sequences (SE-EPI or 

3D-GRACE) it might be possible to make laminar claims based on absolute activation in 

single contrasts.  
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Also, our protocols’ FOV allowed for the collection of nearly an entire 

hemisphere of data. This was excellent for the early stages of this project, where signal 

localization was required, and the analysis stages, where alignment of volumes would be 

much more difficult with a smaller FOV. For future studies with singular premeditated 

focus, FOV might be sacrificed to gain an even higher functional resolution, allowing 

further distinction of activation by depth, perhaps with confidence down to the level of 

individual layers.  

Alternate methods might also be used in tandem. Incredibly detailed work was 

recently done in rats with line-scanning fMRI [7] that might be replicated in humans 

which might give insight into why we see the laminar differences we do in this study. As 

well, very interesting work matching the BOLD signal to neuronal activity using 

combines 7T fMRI and ECoG has been done at a fine, but not laminar scale [8]. 

Extension of this work using laminar fMRI would validate the source of the BOLD signal 

at a laminar level.  

4.5.2 Segmentation possibilities 

The segmentation pipeline developed using BrainVoyager and optimized with 

custom MATLAB tools produced precise cortical laminar grids used in this project. This 

method is limited to a small subsection of cortex as a trade-off for the grids regularity and 

vertex correspondence. These are very important for assessing laminar differences. If 

these principles could be maintained while segmenting the entire hemisphere, laminar 

differences across brain regions could be compared. However, our optimization work 

showed that optimal segmentation parameters for one brain region often performed 

poorly in others. This might be solved with improved inhomogeneity correction methods, 

or alternate thresholding approaches. The current methods, fortunately, are perfectly 

suited to the single region approach our project required.  

The BrainVoyager tools are built to work with T1-weighted anatomical images. 

With ultra-high-field fMRI however, the mean images obtained from our EPI sequences 

might have sharply enough delineable boundaries for segmentation to be performed 

directly on them. This would eliminate the error possibly introduced in the transformation 



83 

 

from structural to functional coordinates due to image coregistration or EPI distortion. 

Although our project found these problems to not be significant or require special 

attention to deal with, other studies and other sequences might struggle more to correct 

for these.  

4.5.3 Next steps for understanding auditory processing 

 Our project chose two dimensions on which to examine laminar auditory 

processing. We differentiated stimuli based on low and high frequency to look for 

topographical representations, and used tasks with different levels of cognitive effort to 

control input to different cortical layers. While we were able to see some small sensible 

shift in activation between low and high frequencies, a task with a greater range of 

frequencies should be able to produce a more detailed best frequency map. This would 

allow better visualization of tonotopic gradients, possibly allowing differences between 

layers to be identified. Our two tasks didn’t seem to generate different levels of activation 

at any layer. This might be due to the way subjects approach the two tasks and the order 

they’re completed in. It might also be that the differences do exist, but they’re masked by 

a GE-BOLD pial surface bias. Controlling for either of these possibilities in future work 

will be telling.  

4.6 References 

1. Cusack, R., Vicente-Grabovetsky, A., Mitchell, D. J., Wild, C. J., Auer, T., Linke, 

A. C., & Peelle, J. E. (2015). Automatic analysis (aa): efficient neuroimaging 

workflows and parallel processing using Matlab and XML. Frontiers in 

Neuroinformatics, 8(January), 1–13. doi:10.3389/fninf.2014.00090 

2. Cusack, R., Brett, M., & Osswald, K. (2003). An evaluation of the use of 

magnetic field maps to undistort echo-planar images. NeuroImage, 18(1), 127–

142. http://doi.org/10.1006/nimg.2002.1281 

3. Cusack, R., & Papadakis, N. (2002). New robust 3-D phase unwrapping 

algorithms: application to magnetic field mapping and undistorting echoplanar 

images. NeuroImage, 16(3 Pt 1), 754–764. http://doi.org/10.1006/nimg.2002.1092 

http://doi.org/10.1006/nimg.2002.1281
http://doi.org/10.1006/nimg.2002.1092


84 

 

4. Linke, A. C., Vicente-Grabovetsky, A., & Cusack, R. (2011). Stimulus-specific 

suppression preserves information in auditory short-term memory. Proceedings of 

the National Academy of Sciences of the United States of America, 2–7. 

doi:10.1073/pnas.1102118108 

5. Linke, A. C., & Cusack, R. (2015). Flexible information coding in human 

auditory cortex during perception, imagery, and STM of complex sounds. Journal 

of Cognitive Neuroscience, 7(27), 1322–1333. doi:10.1162/jocn_a_00780 

6. Moerel, M., De Martino, F., & Formisano, E. (2014). An anatomical and 

functional topography of human auditory cortical areas. Frontiers in 

Neuroscience, 8(8 JUL), 1–14. doi:10.3389/fnins.2014.00225 

7. Yu, X., Qian, C., Chen, D., Dodd, S. J., & Koretsky, A. P. (2014). Deciphering 

laminar-specific neural inputs with line-scanning fMRI. Nature Methods, 11(1), 

55–8. doi:10.1038/nmeth.2730 

8. Siero, J. C. W., Hermes, D., Hoogduin, H., Luijten, P. R., Ramsey, N. F., & 

Petridou, N. (2014). BOLD matches neuronal activity at the mm scale: A 

combined 7T fMRI and ECoG study in human sensorimotor cortex. NeuroImage, 

101, 177–184. doi:10.1016/j.neuroimage.2014.07.002 

  



85 

 

Curriculum Vitae 

 

Name:   Jacob Matthews 
 
Post-secondary  University of Western Ontario 
Education and  London, Ontario, Canada 
Degrees:   2009-2013  
   BMSc Medical Biophysics 
 
Honours and  The Maurice and Myrtle Reinhart Scholarship for honesty and 
Awards:  integrity in the pursuit of high achievement (Competitive Cash 

Award) 

 

The Marceline Allendorf Gibson Scholarship (Competitive Cash 

Award) 
 

Related Work  Graduate Teaching Assistant 
Experience   University of Western Ontario 

2013-2015 
 
Research Assistant 
Cusack Lab, BMI, UWO 
2013  
 

Volunteer Activities Dental Assistant, Speroway – Accompanied a team of 

approximately 40 Physicians, Dentists, and assorted Medical 

Assistants on Medical/Dental aid trip to El Salvador. Primarily 

worked as first assistant with one of the team's Dentists, assisting 

in extraction and filling procedures. Also assisted with the 

Pharmacy team, and administrative organization. In our five field 

days, the team assisted just under 6000 local people; a record for 

Speroway. 
 

 
Publications: 
Linke A, Matthews J, Wild C, Cusack R. (2014). Multiband-EPI acquisitions preserve 
BOLD SNR in the presence of head motion. NeuroImage. Submitted 
 
Linke A, Matthews J, Gati J, Cusack R. (2013). Using high-field fMRI and multivariate 

methods to study neural representations of complex sounds in human auditory cortex. 

Association for Research in Otolaryngology MidWinter Meeting, Baltimore, United 

States, 2013-02-16, Invited Talk, Published Abstract 


	Laminar fMRI in Auditory Cortex at 7T
	Recommended Citation

	ETD word template

