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Abstract 

This report documents the compilation of a high-quality catalog of earthquakes in Alberta 

and the surrounding region: the Composite Alberta Seismicity Catalog (CASC). It 

currently includes events through July 2015. The catalog and its documentation are 

available for download at www.inducedseismicity.ca. For the determination of the 

magnitude of completeness (Mc) of the catalog, we map Mc (xi, yi, Δt) across a grid of the 

region, where xi and yi represent the longitude and latitude of center nodes in the grid and 

Δt indicates time period. The empirical relation determined from the catalog and station 

data is of the form Mc (D4) = aD4+c, where D4 is the distance from (xi, yi) to the fourth-

nearest station. Seven Mc maps are created to represent spatial variations of Mc from 1985 

to 2015. Based on the derived Mc maps, we estimate the equivalent rate of occurrences of 

M ≥3 earthquakes in various grids. 
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Chapter 1 

 Introduction and Study Motivation  

1.1 Study Motivation 

The occurrence of earthquakes that are triggered by industrial processes including 

mining, oil and gas productions, dams and other energy technologies is called induced 

seismicity (Ellsworth, 2013; Atkinson et al., 2013). It has become a pressing and timely 

problem in western Canada including Alberta and British Columbia, especially due to 

increasing gas and oil production, wastewater disposal and hydraulic fracturing operation 

(Baranova et al., 1999; BC Oil and Gas Commission, 2012, 2014; Farahbod et al., 2015; 

Horner et al., 1994; Milne, 1970; Schultz et al., 2014, 2015b). The potential earthquake 

sources, the magnitudes of earthquakes, rates of occurrences and resulting ground 

motions are the key parameters that determine the relative hazard from earthquakes 

(McGuire, 2004). In this study, I focus on issues that are key to assessing the rates of 

induced seismicity in and around Alberta. 

1.1.1 Injection-Induced Earthquakes 

Various anthropogenic applications induce seismicity and introduce new challenges for 

the study of hazard from earthquakes. In the Horn River Basin of British Columbia,  a 

sequence of earthquakes with maximum moment magnitude (M) 3.0 and larger was 

reported to be caused by fluid injection during hydraulic fracturing in proximity of pre-

existing faults in 2009 (BC Oil and Gas Commission, 2012). Other instances of induced 

seismicity, sometimes including events of M >4, have also been observed in recent years 

(Ellsworth, 2013; Holland, 2013; Schultz et al., 2015). Besides hydraulic fracturing, the 

disposal of wastewater into deep strata is another major cause of injection-induced 

earthquakes (Healy et al., 1968). Events as large as M 5.7 in 2011 have been associated 

with wastewater-injection wells in Oklahoma (Keranen et al., 2013; Ellsworth, 2013). 

The M 5.7 Oklahoma earthquake damaged buildings in the epicentral area and could be 

felt 1000 km away.  
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 The aforementioned examples of induced seismicity noted that various anthropogenic 

activities can cause micro to moderate earthquakes in different locations. Besides 

hydraulic fracturing and wastewater disposal, dam impoundment, fluid extraction, 

enhanced geothermal systems can also trigger earthquakes (Davies et al., 2013; Schulz et 

al., 2015b). The assessment of the potential hazard from induced seismicity has become a 

critical task, particularly because seismicity rates have increased in some locations. For 

example, Ellsworth (2013) showed that the earthquake count increased dramatically over 

the past few years (Figure1-1) in the central and eastern United States. He observed more 

than 100 M ≥3 earthquakes per year from 2010 through 2012, compared with an average 

rate of 21 events/year from 1967 to 2000.  

1.1.2 Induced Seismicity in Alberta 

Unlike the clear observation of the rapid rise in seismicity rates in the central United 

States, in Alberta, it is harder to see a well-defined long-term seismic rate change. This is 

because of the prevalent data clustering in time and space, with clusters turning on and 

off over time, the sparse seismicity data until very recently, the presence of quiescent 

seismic zones, and lack of a homogeneous baseline catalogue. The appearance of several 

seismically active clusters (Figure1-2) in western Alberta have been noted over the years, 

including Fort St. John (Horner et al., 1994), Turner Valley (Ellis and Chandra, 1981), 

Snipe Lake (Milne, 1970), the Rocky Mountain House (RMH) (Rebollar et al., 1982, 

1984; Wetmiller, 1986; Baranova et al., 1999), the Brazeau River (Schultz et al., 2014) 

and the Crooked Lake (CL) near Fox Creek (Schulz et al., 2015). These aforementioned 

clusters have been identified as potentially-induced seismicity, and include seismicity 

from production, wastewater injection and hydraulic fracturing. 
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Figure 1-1: Cumulative number of earthquakes with M ≥3 in the central and eastern 

United States during 1967-2012. The dashed line is the long-term rate of 21.2 

earthquakes/year. The insert is the distribution of epicenters in the study region 

(from Ellsworth, 2013). 

Alberta is a transition zone from a relatively low-seismicity intraplate region to a more 

active foreland belt, the Rocky Mountains region, in the southwest of the province 

(Milne, 1970; Milne et al., 1978; Stern et al., 2011, 2013; Schultz et al., 2015). There are 

no historical records of any large (M >6) earthquakes occurring in Alberta to date, but 

thousands of  micro to moderate earthquakes have been recorded, especially during the 

last five to ten years with the decreasing threshold of the  magnitude of detection.  As a 

main source of oil and gas production, thousands of shallow and deep injection and 

extraction wells are located in Alberta. Seismicity triggered by oil and gas operations, 

including hydraulic fracturing, wastewater disposal and production are of increasing 

concern, and the subject of much current research in western Canada like the 
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NSERC/TransAlta/Nanometrics Industrial Research Chair in Hazards from Induced 

Seismicity (IRC) Project (Atkinson et al., 2013).  

 

Figure 1-2: Seismic clusters in Alberta and its surrounding area. Circles represent 

seismic events (1957-1997); triangles represent seismograph stations (from 

Baranova et al., 1999). 
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1.2 Review of Recent Induced Seismicity Studies for Alberta 

A recent issue of Seismological Research Letters (SRL, May 2015 issue) focused on 

various aspects of induced seismicity, including basic seismological and ground motion 

observations, seismic cluster studies, numerical simulation of fault activation and risk 

mitigation (Eaton and Rubinstein, 2015). Some of these papers demonstrate the observed 

changes of seismic event counts in specific areas such as RMH, which highlights the 

importance of having a baseline catalog that quantifies the spatial and temporal 

variabilities of the magnitude of completeness.  

Eaton and Babaie Mahani (2015) focus on two clusters in Alberta: the RMH cluster and 

the CL seismicity sequence in the Fox Creek area.  They re-evaluate the results of 

Baranova et al. (1999) and infer that in the RMH area, where seismicity has been inferred 

to result from volumetric changes due to gas extraction, there is ~5 years delay between 

the onset of production and the start of seismicity (Figure1-3). Before an M 3.8 event 

occurred in 9 August 2014, the rate of seismic activity was declining near RMH, 

synchronous with the decreasing rate of gas production but delayed ~ 5 years. This 

statistical correlation between seismic rate and gas production rate is a good example of 

temporal seismic rate changes. 
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Figure 1-3: Number of earthquakes per year (blue bars) in RMH compared with gas 

production [m3/yr] from the Strachan D3-A pool (red curve). (from Eaton and 

Babaie Mahani, 2015 (modified from Stern et al., 2013)). 

 

Schulz et al. (2015) compare the seismicity patterns with the hydraulic fracturing (HF) 

operations for the Crooked Lake (CL) earthquake sequence in 2014 (Figure1-4). The 

consistency between HF schedules and timing of seismic activity is apparent in Figure1-

4. The correlation for the timing of all subsequences of CL and suspected HF stimulations 

has a confidence level greater than 99.99% (Schulz et al., 2015).   
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Figure 1-4: Timing of the CL earthquake sequence and hydraulic fracturing (HF) 

completions. The colored background with labeled subsequence and well represent 

HF schedules. (a) Histogram of located seismic events (red bars) and extended 

seismicity from cross correlation (blue bars). (b) & (c) Moment magnitudes of 

located (red circles) and detected (blue circles) events and average injection pressure 

in MPa (gray bars) during HF operation (from Schultz et al., 2015). 

1.3 Motivation and Organization of Work 

A prerequisite for many analyses of induced seismicity in Alberta is a comprehensive 

composite seismicity catalog for Alberta and its surrounding area, allowing special 

characterization of seismicity rates and how they have changed with time. Compilation of 

this catalog, the Composite Alberta Seismicity Catalog (CASC), was a key aim of this 
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study, and is described in Chapter 2, which documents the seismic networks in the study 

area, the main contributing agencies and the construction of the CASC. The CASC covers 

the area 48°- 60° N, 110°- 124° W (Figure 2-3 and Figure 2-4). This compiled catalog 

provides a useful baseline for studying earthquake hazard due to induced seismicity in 

Alberta.  

In Chapter 3, we review four methods to estimate the magnitude of completeness (Mc) 

and illustrate their limits for the Mc estimation in Alberta. Mc is the magnitude above 

which the catalog is believed to be complete, with no events missing due to sparse 

instrumentation (Rydelek and Sacks, 1989). A reliable estimation of Mc is required in 

order to assess seismic rate changes, compute magnitude recurrence parameters, and for 

purposes of earthquake forecasting (Mignan et al., 2011; Mignan and Woessner, 2012). It 

is because of the importance of Mc that a number of techniques to evaluate or map Mc 

have been developed.  

Chapter 4 examines the spatiotemporal variations in the completeness magnitude of the 

CASC (Cui et al., 2015) and maps the occurrences of M >3 earthquakes in several 

relatively active areas across space and time. In this study, we employ a catalog-network-

based method to map the spatiotemporal variations of Mc in Alberta. In Chapter 5, I 

provide a summary, discussion of the research work and suggestions for further 

investigation in future works. 
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Chapter 2 

  Compilation of Composite Alberta Seismicity Catalog 

(CASC) with application to induced-seismicity hazard in 

Alberta1  

2.1 Introduction 

The province of Alberta, Canada, is a transition zone from a relatively low-seismicity 

intraplate region to a more active foreland belt, the Rocky Mountains region, in the 

southwest of the province (Milne, 1970; Milne et al., 1978; Stern et al., 2011, 2013; 

Schultz et al., 2015). While there is no historical record of any large (M >6) earthquakes 

occurring in Alberta to date (Lamontagne et al., 2007; Stern et al., 2013), there are 

thousands of recorded micro to moderate earthquakes. In the past decade, recorded 

seismicity in Alberta has increased dramatically due to both improved monitoring and an 

increase in seismicity rates due to induced seismicity (Stern et al., 2011; Atkinson et al., 

2015).  Induced seismicity is a particularly pressing issue in Alberta. Many effective 

practices related to oil and gas production, including hydraulic fracturing and wastewater 

injection, are likely to result in more earthquakes (Ellsworth 2013; Stern et al, 2013).  In 

Alberta, significant seismic activity has been associated with hydraulic fracturing 

operations, particularly near Fox Creek, Alberta (Shultz et al., 2015).   

A critical prerequisite for scientific analyses related to the induced seismicity in Alberta 

is to provide a comprehensive and homogenous seismicity catalog for the region. 

Currently, the seismicity data of Alberta is dispersed in different sources from several 

reporting agencies, including the Geological Survey of Canada (GSC), the Alberta 

Geological Survey (AGS) and the U.S. Advanced National Seismographic System 

                                                 
1 A version of this chapter has been published online at www.inducedseismicity.ca. Cui, L., Fereidoni, A., 

Atkinson, G.M. (2015). Compilation of Composite Alberta Seismicity Catalog (CASC) with application to 

induced-seismicity hazard in Alberta, unpublished report. 

http://www.inducedseismicity.ca/
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(ANSS). None of these catalogs are complete, and they employ a variety of magnitude 

types and formats. For instance, the GSC catalog reports events in various magnitude 

scales including local magnitude (ML), Nuttli magnitude (MN) and moment magnitude 

(M), and these measures are not necessarily equivalent.  The ANSS catalog often uses 

duration magnitude (Md). Since 2006, the AGS, in collaboration with the University of 

Alberta and the University of Calgary, has been adding stations and thus coverage has 

improved significantly in the last decade. The AGS also is compiling a catalog, from 

2006 onwards, but their published information currently is available only through 2010 

(Stern et al., 2011). The AGS catalog is more complete than the GSC catalog as they use 

more stations, but because different stations are used, the GSC and AGS solutions often 

differ significantly in both location and magnitude for the same event. A new network, 

the TD network of TransAlta/Nanometrics, began operation in 2013, adding another 29 

stations. A catalog of events from this network (since 2013) is compiled in real time by 

Nanometrics Inc. In this study, we compile a comprehensive, high-quality and easy-to-

use catalog that covers the period of historical record from 1906 to 2013, by combining 

information from available catalogs.  We refer to this as the Composite Alberta 

Seismicity Catalog (CASC).  The CASC provides an essential reference database for the 

investigation of seismicity changes due to oil and gas activities in Alberta.  

The CASC contains information on felt and instrumental seismic events from 1906 to the 

present in the study area of 48°- 60° N, 110°- 124° W (Figure2-3 and Figure2-4). There 

are two time spans for the CASC: 1906-2013 and after 2014; we document the two parts 

as CASC13 and CASC14x.  The CASC13 is a reference database compiled to the end of 

2013, and is intended to be a document that does not change with time (unless new 

information on older events becomes available). By contrast, the CASC14x will be 

updated a few days after the end of each month. The CASC13 and CASC14x are in the 

same format and follow the same conventions, allowing users to merge their information 

easily. The output files for the CASC13.txt and CASC14x.txt are available for download 

at www.inducedseismicity.ca. The CASC is expected to contribute to the study of seismic 

hazard in Alberta and its surrounding area due to induced seismicity.  

http://www.inducedseismicity.ca/
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There are five original sources for the CASC compilation: the catalog from the 

TransAlta/Nanometrics (TD) seismographic network (NMX catalog), the Geological 

Survey of Canada (GSC) catalog (Earthquakes Canada, 2015), the Alberta Geological 

Survey (AGS) catalog (Stern et al., 2013; Schultz et al., 2015), the Canadian Composite 

Seismicity Catalog (CCSC) (Fereidoni et al., 2012), and the Advanced National Seismic 

System (ANSS) comprehensive catalog (NCEDC, 2014). These agencies use information 

from the following seismic networks (AGS, 2015; Earthquakes Canada, 2015; Eaton, 

2014; Stern et al., 2013): the Canadian National Seismograph Network (CNSN), the 

Alberta Telemetered Seismograph Network (ATSN), the Canadian Rockies and Alberta 

Network (CRANE), the Montana Regional Seismic Network (MRSN), the United States 

Reference Network (US-REF), the Regional Alberta Observatory for Earthquake Studies 

(RV: RAVEN) Network and the TransAlta Dam Monitoring (TD) Network. We assign 

priority of information from each of these input catalogs based on the network properties 

and the number of seismic stations used in event locations and magnitudes in the area of 

study.   

2.2 Contributing Agencies and Seismic Network stations 

In the past six decades, the seismic networks of Alberta and its surrounding area have 

gradually improved, with a significant jump in coverage in 2006 and then again in 2013 

(Stern et al., 2011, 2013). There are now over 50 stations in Alberta. Here is a brief 

summary of all the expected seismic network stations contributing to the CASC, which 

are shown in Figure 2-1. Appendix A is a list of all stations and their dates of operation. 

The Geological Survey of Canada (GSC) has monitored earthquakes in Alberta since 

1906, with a gradually improving network since the 1960s (Stern et al., 2011 and 2013). 

The GSC’s Canadian National Seismographic Network (CNSN) currently has 19 CNSN 

stations in and near Alberta (Figure 2-1). Regional CNSN stations also contribute to 

solutions for larger events. Moreover, many CNSN stations are contributing to the GSC, 

the NMX, the ANSS and the AGS catalog simultaneously, as other agencies also use this 

information.  
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The CRANE stations, located in central Alberta, are semi-permanent non-telemetered 

seismic stations installed by the University of Alberta since 2006 (Gu et al., 2011). There 

are 19 CRANE stations (green triangles), as shown in Figure 2-1, though not all are 

currently operational. The AGS catalog merged the CRANE data with real-time data 

from CNSC and IRIS (Stern et al., 2013) to improve the accuracy of hypocentres and 

magnitudes of earthquakes in Alberta for the time period starting in 2006. 

The density of seismic stations in Alberta  increased further from 2009-2012 when nine 

broadband seismograph stations were installed by the University of Calgary (Eaton, 

2014; Stern et al., 2011 and 2013); these are the ATSN stations (blue circles in Figure    

2-1). Some ATSN stations are also affiliated to the Portable Observatories for 

Lithospheric Analysis and Research Investigation Seismicity (POLARIS) Network 

(Murphy and Eaton, 2005), and contributed to the GSC catalog. The eight RAVEN (RV) 

stations (orange plus sign in Figure 2-1) of the AGS are widely used to export waveform 

data and are shared by different agencies. 

Since 2013, Nanometrics Inc. has installed and operated 29 TD stations, shown in Figure 

2-2, concentrating in the areas near the Brazeau River, Strachan field, Keep Hills, and 

areas west of Calgary, on behalf of TransAlta. The aim is to support the induced 

seismicity hazard (IRC) project in Alberta and monitor seismicity in the vicinity of the 

TransAlta dams. Nanometrics Inc. maintains an online catalog of events for use by 

TransAlta and their research partners, including the University of Western Ontario, 

University of Calgary and the AGS. With the denser network now in place, seismologists 

are able to better study and identify the characteristics of induced earthquakes. 

The AGS, ANSS and NMX catalogs also collect data from a subset of the US-REF 

stations (grey 4-point stars) operated by the United States Geological Survey (USGS) and 

a subset of the MRSN stations (pink diamonds) (Figure 2-1). There are three US-REF 

stations and six MRSN stations routinely used in the AGS and NMX networks.  
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2.3 Contributing Earthquake Catalogs 

The CASC incorporates information from five local, national and international 

earthquake catalogs: the NMX catalog, the GSC catalog, the AGS catalog, the CCSC 

catalog and the ANSS catalog. Their properties and contributed time span are different 

but overlap in some cases, resulting in the need to consider priority of information, 

conversion of diverse magnitude scales and compilation of alternative locations and 

magnitudes.  

The TD seismic network operated by Nanometrics Inc. (www.nanometrics.ca; last 

accessed May 2015) began operation in Alberta in August 2013, with 29 seismic stations 

added over a period of two years. Besides the 29 TD stations, another 25 stations from 

RV, CNSN, US-REF, ATSN and CRANE networks constitute the complete NMX 

network (Figure 2-2). The NMX catalog reports the occurrence time, the focal depth, the 

epicenter in latitude and longitude, the event magnitude, and some comments. In total, 93 

events from the NMX catalog are included in the CASC13. Since 2014, the NMX catalog 

is the primary source of information, but it is only a secondary source in CASC13 as it 

began operation only near the end of 2013. 

http://www.nanometrics.ca/
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Figure 2-1: Map of Seismic Network Stations employed by different Agencies: 29 

TransAlta/Nanometrics seismic network (TD) stations (red squares), 19 Canadian 

National Seismic Network (CNSN) stations (purple stars), 19 Canadian Rockies and 

Alberta Network (CRANE) stations (green triangles), nine Alberta Telemetered 

Seismic Network stations (blue circles), eight Regional Alberta Seismic Network 

(RV) stations (orange plus signs), six Montana Regional Seismic Network (MRSN) 

stations (pink diamonds), and three US Array seismic stations (US-REF) (grey 4-

point stars). The CNSN stations (YKW3, FCC, and ULM) and the US-REF station 

DGMT are not shown in this figure. The CNSN station SES, ATSN station MEDA 

and CRANE stations (JOF, REC and DOR) have been closed (dash-line black 

square). 
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GSC’s catalog forms the National Earthquake Database 

(www.earthquakescanada.nrcan.gc.ca/stndon/NEDB-BNDS/bull-eng.php ) and contains 

information for all Canadian earthquakes since 1985. The earthquake parameters arise 

from the seismograph data recorded by the CNSN and other regional and local 

cooperating networks. GSC has a backbone network of stations distributed widely in 

Canada. However, there were less than four seismic stations in Alberta up to 1985, and as 

of today, only eight CNSN stations in the province. GSC also operates stations  in other 

nearby provinces, which increases the number of effective stations for monitoring the 

seismicity in Alberta. The current distribution of CNSN seismic stations ensures that all 

the earthquakes with magnitude greater than 3.5 located in Alberta are detected and 

recorded in the GSC catalog (Adams and Halchuk, 2003). The GSC catalog includes 

earthquake date, time (to nearest second in UTC), location, magnitude, depth, a depth 

designation (whether determined or fixed) and comments. GSC provides the seismicity 

data prior to 1985 in separate documentations such as the Seismic Hazard Earthquake 

Epicentre File (SHEEF) (Halchuk, 2009). These additional GSC sources were used by 

Fereidoni et al. (2012) in the compilation of the Composite Canadian Seismicity Catalog 

(CCSC), which is described in more detail below. 

The CASC contains all the reported events from GSC in the region of 48°- 60° N, 110°- 

124° W, except for events in the westernmost areas of B.C.  (Figure 2-3 and Figure 2-4); 

it includes all reported event types: earthquakes, induced events, and blasts. It should be 

noted that the information to designate events as mining-related-events and quarry blasts 

in the GSC and other catalogs may not be complete. Moreover, not all earthquakes have 

been categorized as natural or induced. In total, more than 2000 earthquakes and more 

than 1300 blasts are reported during the period from 1985 to 2013 in the GSC catalog, in 

the study area.  Note that many of these events are located in southwestern B.C. due to 

the large size included in the study area. The magnitudes of events are mostly reported in 

the local magnitude scale (ML) or Nuttli magnitude (MN); a few of the larger events have 

moment magnitude (M) and/or body wave magnitude (mb) types. 

http://www.earthquakescanada.nrcan.gc.ca/stndon/NEDB-BNDS/bull-eng.php
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Figure 2-2: Seismic Stations contributing to NMX catalog. 29 TD stations and other 

25 stations from CNSN, CRANE, ATSN, RV, and US-REF. 

The Alberta Geologic Survey (AGS) Catalog (Stern et al., 2013) is available in the 

AER/AGS Open File Report 2013-15. The AGS catalog lists the earthquakes in the 

province of Alberta (or within 10 km of its borders) from September 2006 through 

December 2010. It differs from the GSC catalog because they included, in addition to 

CNSN stations, the data from campaign-mode stations, in particular the stations of the 

Canadian Rockies and Alberta Network (CRANE), which includes several semi-

permanent non-telemetered seismic stations by University of Alberta starting in 2006 (Gu 

et al., 2009). The additional CRANE data enables the detection of more events and 



21 

 

improves location accuracy. There are 171 events in the AGS catalog; mining-related-

events are removed from the catalog by AGS (thus not included). The depth type 

includes: ‘g’ when the depth was fixed and ‘f’ when calculated by the location algorithm.  

The AGS catalog is more complete than the GSC catalog in Alberta, but contains fewer 

events as it does not go more than 10 km beyond Alberta’s borders. 

The CCSC_west Catalog (Fereidoni et al, 2012) is a composite western Canadian 

Seismicity Catalog compiled by Fereidoni et al (2012) using eight local and international 

earthquake catalogs. The CCSC contains historical and modern seismicity data to 2013 

and is available for download at http://www.seismotoolbox.ca/Catalogs.html.  We use the 

CCSC as the source document for all seismicity data before 1985 in Alberta. In the CCSC 

catalog, all earthquake duplicates have been removed and different magnitude scales 

converted to moment magnitude (M). The Alberta Composite Catalog is based loosely on 

the CCSC format. There are 574 events from the CCSC included in the CASC13.  

The ANSS comprehensive catalog ( http://earthquake.usgs.gov/earthquakes/search/),  

hosted by the U.S. Geological Survey, provides a beneficial supplement for the CASC, in 

particular for the southern part of Alberta near the U.S. border . The ANSS 

comprehensive catalog specifies the type of the events (Earthquake vs Quarry blast) in 

the catalog.  

2.4 Overview of the CASC Catalog 

The CASC is a composite earthquake database for the region of  48°- 60° N, 110°- 124° 

W, excluding the offshore area of BC  (Figure 2-3 and Figure 2-4); it includes 

information of all seismic events located in the province of Alberta and its vicinity. It not 

only reports date, time, epicentral locations, and depths for the events, but also contains 

the alternative locations and magnitudes for events that are reported by multiple sources. 

The CASC contains flags for the original information source and the event type 

(earthquake vs blast) so that users can manipulate the catalog more easily. The 

magnitudes of seismic events are  homogenized in terms of  moment magnitude (M) for 

all reported events, while all original magnitude types, such as MS, ML, MN, MD, MB 

http://www.seismotoolbox.ca/Catalogs.html
http://earthquake.usgs.gov/earthquakes/search/
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and M are retained to provide the most complete event characterization. Moreover, the 

preferred magnitude type is documented based on the information in the primary dataset. 

Table 2-1 provides the complete list of the parameter entries in the CASC13 and 

CASCf14x; it should be noted that both datasets are formatted in the same way.  

The period of the CASC13 is from 1906 to 2013 and the CASC14x is prepared from the 

beginning of 2014 up to the last updated date (e.g. June 2015). Figure 2-3 and Figure 2-4 

are maps of all the reported seismic events (earthquakes and blasts) in CASC13 and 

CASC14x, respectively. 4258 events are reported in the CASC13 and 2120 events 

through June 30th, 2015 in the CASC14x. In the CASC13, more than 2700 events are 

reported as earthquakes; the others are designated as blasts or mine events.  An important 

note is that not all blasts have been designated in the NMX catalog. The identification of 

quarry blasts in the NMX catalog is an ongoing task, as discussed by Fereidoni and 

Atkinson (2015). Figure 2-4 also shows the reported seismicity clusters: clusters of note 

are those near Fort St. John, Fox Creek, Brazeau River, Rocky Mountain House, Turner 

Valley and Del Bonita. For example, hundreds of small events between magnitude 1.0 

and 4.0 occurred in the Turner Valley cluster from January, 2014 to May, 2015.  

2.5 Identifying Duplicates from Catalogs 

Because there are multiple sources of information, a challenge in the compilation of a 

composite catalog is the identification and treatment of duplicates. With the development 

of seismic instruments and measuring methodologies, and the expansion of networks, the 

estimation of the earthquake size and location is expected to be more accurate. Hence, the 

latest NMX catalog should have the highest priority, representing the best information in 

the CASC comprehensive catalog. The next is the AGS catalog, which uses both GSC 

stations and the supplementary stations provided by the CRANE, ATSN and US-REF 

networks. The GSC catalog has the third priority, being based on the national backbone 

network. The final two catalogs are the ANSS and the CCSC catalogs. If we find an event 

that appears in multiple catalogs, we report the location, occurrence time and magnitude 

of the event in the priority catalog as the primary solution, and  retain the duplicate 
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solutions in the alternative fields to ensure that  the users have access to all the 

information available  (See Table2-1).  The alternative locations and magnitudes reported 

by different agencies are a useful guide for assessment of uncertainties and for the 

development of conversion relations between magnitude scales. 

Handling duplicates is an essential process to generate an accurate composite catalog. 

After we routinely input all the sources and merged them together chronologically, we 

identify each set of potential duplicate pairs or triplets. The criteria for identifying 

duplicates are not entirely straightforward and some manual checking is required. By 

inspection, we find that almost all the potential duplicates occurred within two seconds in 

origin time, and are separated by less than 30 km in distance in their locations. Their 

magnitude difference, however, could be as large as one magnitude unit depending on the 

reported magnitude scales. Therefore, we use these time, location, and magnitude limits 

to automatically identify the duplicates in our compilation scripts (e.g. 2s, 30 km, 1M).  

We manually check all events that occur within ten seconds of each other (if also close in 

space) as there are some time differences between catalogs that exceed two seconds. We 

also manually check all events within two seconds over a broader space and magnitude 

window to subjectively identify any duplicates missed in the automatic script criteria.  

For example, there were seven potential event pairs from AGS and GSC in close 

proximity in time and space, but having magnitude discrepancy >1 unit. In these cases, 

the seven events from AGS are considered as duplicates. These duplicates are tabulated 

in Appendix B. 

2.6 Moment Magnitude Conversion 

The magnitudes have been reported in various scales including local magnitude (ML), 

surface magnitude (MS), duration magnitude (Md) and Nuttli magnitude (MN). These 

multiple magnitude types are the results of various measuring methods by different 

agencies. Moment magnitude (M) is preferred for most seismological applications as this 

magnitude relates well to the total energy released by the earthquake. We therefore 
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convert all event magnitudes to an equivalent moment magnitude value, so that the 

CASC is homogenous in magnitude type.  

Ideally, we should find a series of seismic events with two magnitude types reported, for 

example ML and M, to build the relationship between ML and M. Usually, empirical 

relations for such conversions can be described by a first order linear equation with slope 

close to one (Fereidoni et al., 2012). However, in practice, all the events in the 

contributing catalogs are reported by only one magnitude type, and the use of scales is 

inconsistent. For this version of CASC13, we used the relationship of magnitude 

conversion from the CCSC catalog (Fereidoni et al., 2012). Therefore, all the magnitude 

types are converted to M consistently from 1906 to 2013 by the following empirical 

equations: 

(1) Mb-0.06=M, 

(2) MN+0.05=M, 

(3) ML+0.12=M. 

For CASC14x, the M of all events from NMX catalog has been computed using a 

ground-motion based algorithm (Atkinson, Greig and Yenier, 2014), as described in 

Novakovic and Atkinson (2015). For the remaining events in CASC14x, empirical 

relationships are used to convert the instrumental magnitude scales to moment 

magnitude.  
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Table 2-1 List of Fields in the Composite Alberta Seismicity Catalog (CASC) 

Field No. Field Names Comments 

1,2,3,4,5,6 
[yr mo dy hr min 

sec] 
  date and  time of earthquake events (UTC) 

7,8 [lat lon]   location of earthquake events in latitude and longitude 

9,10,11,12,13,14,15 
[ML MN MB MW 

MS MC MD] 
  different magnitude scale, -9.99 if not available 

16 MZ   record events with unknown magnitude type, -9.99 if not available 

17,18 [Mpf Tmpf]    preferred magnitude value and preferred magnitude type 

19,20,21 
[Depth Depth_error 

dd] 

  Depth is in kilometer. Depth_error is not available in GSC, CCSC 

and AGS, documented as -9.99. dd means depth designation. 

22 cf   catalog flag: 1=NMX; 2=GSC; 3=AGS; 4=CCSC; 5=ANSS 

23 mf   moment magnitude conversion factor (Fereidoni et al., 2012) 

24 M   Moment magnitude after conversion applied 

25 tf   event type: 1= quakes, 2 = blasts, 3 = no information available 

26,27,28,29 

Alternative location 

and magnitude from 

GSC 

  Latitude, longitude of alternative location in GSC, if available (-

9.99 means no alternative location). Magnitude and its type if 

available. 

30,31,32,33 

Alternative location 

and magnitude from 

ANSS 

  Latitude, longitude of alternative location in ANSS, if available (-

9.99 means no alternative location). Magnitude and its type if 

available. 

34,35,36,37 

Alternative location 

and magnitude from 

AGS 

  Latitude, longitude of alternative location in AGS, if available (-

9.99 means no alternative location). Magnitude and its type if 

available. 

38 Comments Any comments provided by original sources. 
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Figure 2-3: Distribution of seismicity in the CASC13 from 1906 to 2013. The colored 

circles represent magnitude levels. The squares are two major cities. Fort St. John, 

Fox Creek, Brazeau River, Rocky Mountain House, Turner Valley and Del Bonita 

are the six main areas of seismicity clusters. RMH means Rocky Mountain House. 
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Figure 2-4: Distribution of seismicity in the CASC14x, from January 2014 to May 

2015. The colored circles represent magnitude levels. Edmonton and Calgary are  

two major cities. Fort St. John, Fox Creek, Brazeau River, Rocky Mountain House, 

Turner Valley and Del Bonita are the six main areas of seismicity clusters. 

2.7 Procedures of Data Processing  

The compilation of the catalog shown in Figure 2-5 is implemented in a semi-automatic 

procedure using a computer script written in MATLAB, provided in Appendix C. After 

obtaining the original source catalogs, we sort event magnitudes into different columns 

by their corresponding magnitude types and use -9.99 to fill out non-reported values. For 
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each event, we flag it based on its source catalog and event type and calculate the 

corresponding moment magnitude. Next, we identify duplicate events and document the 

alternative locations and magnitudes in the alternative fields. The procedure is finalized 

by generating the two output catalogs: CASC13 and CASC14x. The output format 

described in Table 2-1 is consistent for the both catalogs; the CASC14x catalog, however, 

is a living document that is updated monthly. More detailed information on the 

compilation procedure can be found in the online documentations at 

www.inducedseismicity.ca. It should be noted that there are many events without 

magnitude assigned, particularly in the AGS catalog; in these cases, we give priority to 

the duplicate solutions in other sources. However, a few events without any reported 

magnitude still exist in the catalog. We retain these events in the final catalog for 

completeness. Users should pay attention to filter these events if they want to use 

magnitude information. 

2.8 Distinguishing Event Types 

In the CASC13 and CASC14x, we flag events types as: 1=quakes and induced quakes; 

2= blasts; and 3 =unknown type, where the flags are derived from their original catalog 

sources. It should be noted that the information about the mining-related-events and 

blasts may not be complete in the original source catalog. In the NMX catalog, for which 

the event types are not explicitly identified, we label the events that occurred at a location 

of known blasting areas during daytime hours as blasts (Fereidoni and Atkinson, 2015).  

The users should be aware that some events that flagged as earthquakes may have been 

blasts that were poorly located.  

 

http://www.inducedseismicity.ca/
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Figure 2-5: Flowchart of the processing procedures. 
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2.9 Magnitude Completeness in Alberta 

The CASC is developed with the aim to provide a comprehensive database of seismicity 

in and around the province of Alberta from all available sources. The spatiotemporal 

variations of the magnitude of completeness of the catalog are described in the following 

chapters. In general, the seismicity of Alberta should be complete above magnitude 3.0 to 

3.5 since 1985 (Adams and Halchuk, 2003).  

2.10 Summary 

The Composite Alberta Seismicity Catalog (CASC) is compiled from multiple sources, 

with the aim to contribute to the study of induced seismicity hazard assessment in 

Alberta. It has two subsets: CASC13 covers the period 1906-2013; CASC14x from 2014 

to date.  These catalogs are available online at www.inducedseismicity.ca along with 

more detailed documentation. The CASC14x will be updated monthly as agency sources 

update information products. The CASC is easy to use, modify and manipulate  for 

various seismological purposes. We acknowledge that the CASC may contain incomplete 

and uncertain information, as do all earthquake catalogs. Users should be aware of these 

inherent limitations.  
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Chapter 3  

 Overview of Approaches to Mc Estimation 

3.1 Introduction 

Magnitude of completeness (Mc) is defined as the lowest-magnitude detection threshold 

at which 100% of earthquakes in that time and space are able to be detected (Rydelek and 

Sacks, 1989; Wiemer and Wyss, 2000). It is the detection capability of a seismic network, 

and thus is influenced by the density and distribution of seismic stations, site conditions 

and data processing capabilities of individual stations (Kvaerna and Ringdal, 1999; 

Schorlemmer and Woessner, 2008; Mignan and Woessner, 2012). Assessing the 

completeness of instrumental earthquake catalogs is an essential step for further 

seismicity analysis. For instance, the Gutenberg-Richter (G-R) relation (equation [3.1]) 

(Gutenberg and Richter, 1944) is valid above Mc. Knowledge of Mc is crucial for 

understanding the limitations of an earthquake catalog. For example, an overestimate of 

Mc leads to under-sampling by removing usable data, while underestimate of it causes 

biased analysis by using incomplete data.  

Multiple methods are available for estimation of Mc. Mignan and Woessner (2012) 

classify them as catalog-based methods and network-based methods. The catalog-based 

methods are mostly based on the assumption of self-similarity of the earthquake process 

(Wiemer and Wyss, 2000; Woessner and Wiemer, 2005; Mignan et al., 2011), implying 

that Mc is the minimum magnitude at which the observed cumulative frequency 

magnitude distribution (FMD) departs from the Gutenberg-Richter (G-R) law (equation 

[3.1]) (Gutenberg and Richter, 1944)                                       

                          log10 N= a- b (m-Mc),                                                         [3.1] 

where N is the number of events with magnitude above m, the a-value expresses the 

earthquake productivity and the b-value controls the relative distribution of small and 

large earthquakes. Network-based methods use the network distribution to estimate Mc in 
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space based on the proximity to seismic stations (Mignan et al., 2011; Nanjo et al., 2010; 

Schorlemmer et al., 2010; Plenker et al., 2011). In this chapter, we review  the following 

four representative G-R law-based methods: 1) maximum curvature method (MAXC) 

(Wiemer and Wyss, 2000), 2) Goodness-of-Fit test (GFT) (Wiemer and Wyss, 2000), 3) 

Mc for the entire magnitude range (EMR) (Ogata and Katsura, 1993), and 4) Mc by b-

value stability (MBS) (Cao and Gao, 2002). 

3.2 Maximum Curvature (MAXC) Method 

The maximum curvature (MAXC) method (Wyss et al., 1999; Wiemer and Wyss, 2000) 

defines Mc as the point of the maximum curvature in the cumulative FMD. In practice, it 

is also the point of the highest frequency in the non-cumulative FMD (Figure3-2).  We 

illustrate the concept for a large region of our study area (see Figure3-1). We downloaded 

all the 1985 to 2014 earthquakes that occurred in 110° - 121° W longitude, 48°- 60° N 

latitude from Earthquakes Canada (http://earthquakescanada.nrcan.gc.ca/stndon/NEDB-

BNDS/bull-eng.php). Within a magnitude range [0, 6], we count the number of events in 

0.1 magnitude intervals and then count the cumulative number of events above each 

binned magnitude. Then the non-cumulative counts and the cumulative counts are 

converted to a yearly rateby dividing by the total of 30 years.  

Figure 3-2 is the plot of both non-cumulative and cumulative frequency-magnitude 

relations.  The highest point (~2 magnitude) in the non-cumulative FMD does not match 

the first departure of the observed data (~ 3 magnitude) from the linear trend of the 

cumulative distribution. There appears to be large uncertainty in  Mc, with it lying 

somewhere in the range from ~2 to ~3. 

Although the MAXC method is the fastest and most straightforward technique to estimate 

Mc, it often underestimates the true Mc in bulk data (Woessner and Wiemer, 2005; 

Mignan and Woessner, 2012). It is hard to determine the departure point if there is a 

gradual curvature in the FMD. Moreover, a large number of events ( >100) is needed to 

determine Mc reliably (Wyss et al., 1999), so it is not well-suited to mapping the 

http://earthquakescanada.nrcan.gc.ca/stndon/NEDB-BNDS/bull-eng.php
http://earthquakescanada.nrcan.gc.ca/stndon/NEDB-BNDS/bull-eng.php
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variations in Mc over a region of sparse seismicity. We also want a map of spatial 

variation in Mc (xi, yi, Δt), so this method is not generally suitable. 

 

Figure 3-1: Earthquakes during 1985 – 2014 in Alberta and its surrounding area 

(source: http://earthquakescanada.nrcan.gc.ca/stndon/NEDB-BNDS/bull-eng.php 

(NRcan, 2015)). The colored circles represent magnitudes. 

http://earthquakescanada.nrcan.gc.ca/stndon/NEDB-BNDS/bull-eng.php


36 

 

 

Figure 3-2: Frequency-magnitude distribution (FMD) of the subset of GSC catalog 

(see Figure3-1). The magnitude types are not homogeneous here, and include local 

magnitude (ML), Nuttli magnitude (MN) and moment magnitude (M). We assume 

they are equivalent. The triangles are the non-cumulative counts and the circles are 

the cumulative frequency. The solid line plots a G-R relation. 

3.3 Goodness-of-fit (GFT) Method 

As its name implies, the Goodness-of-Fit method (GFT) estimates Mc by finding the 

departure point M (i), at which a power law can model 90% or more of the data in the 

frequency magnitude distribution (FMD) (Wiemer and Wyss, 2000). It employss a 

maximum likelihood method to estimate the b- and a-values based on assumed minimum 

magnitudes M (i). Next, one computes synthetic FMDs for each (b-, a-, M (i)) 

combination thatfits a G-R law. Then, the goodness-of-fit R is the absolute difference 

between the observed and the synthetic sets of the number of events in each magnitude 

bin. If 90% or more of data (R ≥90%) can be fitted by the synthetic model, the lower 
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magnitude cut-off M (i) is equal to Mc (Figure3-3). However, this method is not adequate 

for areas of low seismicity such as Alberta due to insufficient data (Wiemer and Wyss, 

2000; Woessner and Wiemer, 2005). In addition, although it can map the spatial 

heterogeneity of Mc, it fails to react to  temporal changes due to changes of seismic 

networks. The seismic network in and around Alberta has been changed several times 

over the last few decades. Therefore, it is not feasible to apply the GFT method to the 

study of Mc in Alberta .  

 

Figure 3-3: Illustration of the GFT method to define magnitude of completeness Mc 

(Wiemer and Wyss, 2000). With MI approaching to Mc, Goodness of Fit increases. 

 

3.4 The Entire Magnitude Range (EMR) Method 

The entire magnitude range (EMR) method separates two parts from the entire FMD 

relationship: the G-R law for the complete part (magnitude ≥ assumed Mc), and the 

cumulative normal distribution for the incomplete part of the non-cumulative FMD 

(Woessner and Wiemer, 2005, Mignan and Woessner, 2012). The idea is derived from 
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Ogata and Katsura (1993) (hereafter referred to as OK1993), who proposed a 

probabilistic mechanism of the FMD of detected earthquakes (Figure 3-4). In OK1993, 

they have postulated that the detection-rate function is the cumulative of the normal 

distribution, and used maximum likelihood methods to compute Mc. In 2005, Woessner 

and Wiemer defined this method as the EMR technique. They rewrote the function 

(equation [3.2]) for the detection probability of a seismic network q (M|µ, σ) as:  

𝑞 (𝑀|µ, 𝜎)                                                                                                                   

= {
1

𝜎√2𝜋
∫ exp (−

(𝑀−𝜇)2

2𝜎2

𝑀𝑐

−∞
)𝑑𝑀

   1                                                        ,    𝑀 ≥ 𝑀𝑐 
,     𝑀 < 𝑀𝑐                                       [3.2] 

In equation [3.2], µ denotes the magnitude at which 50% of the earthquakes can be 

detected and σ indicates the standard deviation. This function shows that, for data above 

an assumed Mc, the detection probability equals one; for data below the assumed Mc, the 

normal distribution form fits the observed data. This method needs four parameters to 

estimate Mc: a- and b- of the G-R law, as well as µ and σ. The required sample size is 

greater than 200 events (Woessner and Wiemer, 2005), which renders the method 

unsuitable for low seismicity areas such as Alberta. The increasing detection capability of 

the seismic networks with time is another neglected element.  
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Figure 3-4: Schematic diagram to show the probabilistic mechanism of the FMD of 

detected earthquakes. The straight line represents the power law in logarithmic 

scale. The solid thick line with reversed ‘z’ type indicates the detection-rate 

probability of events in each magnitude bin in [0.0 1.0]. The dot-line is the non-

cumulative FMD (OK1993). 

3.5 Method of b-value Stability (MBS)  

Using the stability of the b-value as a function of cut-off magnitude Mco to estimate Mc 

(Cao and Gao, 2002) is referred to as the MBS method by Woessner and Wiemer (2005).  

This method obeys the following conditions: 

a) If Mco < Mc, b-value ascends and approaches its true value; 

b) If Mco ≥ Mc, b-value remains constant; 

c) If Mco >> Mc, b-value ascends again. 

This method usually overestimates Mc and has high uncertainties. Woessner and Wiemer 

(2005) conclude that for mapping purposes, the MBS method is unstable, as the 

frequency of events in single magnitude bin can be strongly variable.  
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3.6 Summary 

We focus on these four methods (MAXC, GFT, EMR and MBS) because they are the 

most commonly used methods for estimation of Mc, theoretically similar but with 

different strengths in application. However, for the reasons provided in the following, we 

ultimately conclude that GR-based methods will not work well in most parts of Alberta. 

The seismicity is too sparse, and the Mc is too variable in space and time. In addition, 

Amorese (2007) proposed the Median-based Analysis of the Segment Slope method to 

estimate Mc based on an iterative technique to search multiple change points of a non-

cumulative FMD. The other catalog-based method is called day-to-night noise 

modulation (Rydelek and Sacks, 1989), which assumes that the detection threshold due to 

noise is greater at day but decreases at night because of the cultural activity and wind 

noise. This method has another assumption, namely that earthquakes follow a Poisson 

distribution. The advantage of this method is that it does not assume self-similarity of the 

earthquake process (i.e. the G-R law); however, the catalog used for this method has to be 

declustered first (Mignan and Woessner, 2012), and would thus not be suitable for 

application to Alberta, where much of the seismicity of interest is in fact highly clustered.  
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Chapter 4 

 Spatiotemporal variations in the Completeness Magnitude 

of the Composite Alberta Seismicity Catalog (CASC) 2 

4.1 Introduction 

Alberta is an area of relatively-low seismic activity (Milne, 1970; Milne et al., 1978; 

Stern et al., 2013; Schultz et al., 2015a), but there has been growing concern over 

increasing seismicity levels due to oil and gas activities including hydraulic fracturing 

operations (BC Oil and Gas Commission, 2012; Atkinson et al., 2015; Eaton et al., 2015; 

Farahbod et al., 2015; Schultz et al., 2015b), waste water disposal (Horner et al., 1994; 

Schultz et al., 2014), and gas extraction (Baranova et al., 1999). Over the last decade 

there has been a significant growth in the seismographic network density (e.g. Stern et al., 

2013; Cui et al., 2015), making it difficult to distinguish between rate increases due to oil 

and gas and rate increases due to improving detection levels. There has also been a 

proliferation of agencies reporting seismicity (including the Geological Survey of 

Canada, the Alberta Geological Survey, the U.S. Geological Survey and Nanometrics 

Inc.). Cui et al. (2015) have compiled all of the contributed public catalogs into a 

Composite Alberta Seismicity Catalog (CASC), available for download at 

www.inducedseismicity.ca. This catalog contains all available information on events 

from these sources, including the alternative estimates of magnitudes and locations.  An 

important aspect of the CASC is that the magnitude of completeness varies greatly in 

time and space. In this article, we aim to estimate the completeness of the information in 

the CASC regionally, and map its variability in time and space. This is a challenging 

exercise because the levels of seismicity are too low in most parts of the study area to 

                                                 

2 Cui, L., Atkinson, G.M. (2015). Spatiotemporal variations in the Completeness Magnitude of the 

Composite Alberta Seismicity Catalog (CASC), manuscript for submission to Seismological Research 

Letters. 
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enable statistical methods to be employed. Moreover, the rates of seismicity may be 

changing in time due to anthropogenic activities. We note that the approach taken here is 

also applicable to other similar regions (such as the central U.S.) for which we may need 

to understand the spatiotemporal variation of the magnitude of completeness. 

The detection capability of a seismic network depends on many factors, including the 

station density, the geographic distribution of stations, site conditions, recording 

characteristics and signal processing methods (Schorlemmer and Woessner, 2008). The 

magnitude of completeness (Mc) is an oft-cited measure of this capability. Mc is defined 

as the lowest magnitude, for a specific spatial area during a specific time period, for 

which one hundred percent of the earthquakes that occurred are detected (Rydelek and 

Sacks, 1989). In general, the development of seismic networks significantly improves the 

detection threshold Mc; however, this also means that Mc changes in time and space as 

new seismic stations are added, complicating its determination. An accurate assessment 

of Mc is important because underestimation or overestimation of Mc in statistical analysis 

may lead to biased estimates. In particular, a reliable estimation of Mc is required in order 

to assess seismicity rate changes, compute magnitude recurrence parameters, and for 

purposes of earthquake forecasting (Mignan et al., 2011; Mignan and Woessner, 2012). It 

is because of the importance of Mc that a number of techniques to evaluate or map Mc 

have been developed.  

Mignan and Woessner (2012) provide a comprehensive overview of approaches to Mc 

estimation, which can in general be classed as catalog-based methods and network-based 

methods. The catalog-based methods are mostly based on the assumption of self-

similarity of the earthquake process (Wiemer and Wyss, 2000; Woessner and Wiemer, 

2005; Mignan et al., 2011); specifically, Mc is taken as the minimum magnitude at which 

the observed cumulative frequency magnitude distribution (FMD) departs from the 

Gutenberg-Richter (G-R) relation (Gutenberg and Richter, 1944). Network-based 

methods use the network distribution to estimate Mc based on the proximity to seismic 

stations (Mignan et al., 2011; Nanjo et al., 2010; Schorlemmer et al., 2010; Plenker et al., 
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2011). Here we focus on a network-based approach because it is most suitable given the 

data constraints in this region. 

4.2 Methodology for Estimating and Mapping Mc 

In this study, we employ a network-based method to map the spatiotemporal variations of 

Mc in Alberta and its surrounding area. This method is applied to compute the 

completeness of the CASC catalog from 1985-2015 across a grid of sites covering the 

study area. The underlying principle is that we expect events to be located and catalogued 

if they are detected on four or more seismic stations. Thus, we can use the locations and 

magnitudes of events in the catalog, in combination with the station distribution, to infer 

the required conditions for detectability, and map their variations in time and space. We 

model the function Mc (xi, yi, Δt):  

Mc (xi, yi, Δt) = c1 D4 (Δt) + c2 ,                                                             [4.1] 

where Mc (xi, yi, Δt) is the minimum magnitude that can be detected at a node point 

located in the center of a cell on the grid (at longitude xi, latitude yi) in time period Δt, and 

D4 (Δt) is the distance from the epicenter of an earthquake to its 4th nearest recording 

station in the same time period (arc length between the coordinates). Note that c2 is the 

distance within which we would require four stations to locate an event of M=0, while c1 

denotes the increase in D4 per magnitude unit.We determine the coefficients c1 and c2 

using the CASC catalog (Cui et al., 2015) and a list of stations (including on-off dates) to 

find what events have been reported in the catalog, at what station distances. We choose 

the 4th nearest station because network practice in Alberta has been to locate and catalog 

earthquakes if they were detected on four or more stations. Note that when considered as 

a prior estimate, the estimate of Mc based on station distribution can be updated in areas 

where there are sufficient events to make a statistical estimate (about 200; see Mignan et 

al., 2011).An advantage of the approach is that once the conditions for detectability have 

been defined in the region, one can map Mc and its uncertainties in both time and space 

over a grid of sites, including grid points where the seismicity rate may be too low to 

examine statistically.  
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 Figure 4-1 provides an overview of the station coverage and M>1.5 events in different 

time periods considered in this study. The time periods of 1985 to 1989 and 1990 to 1999 

are merged into one map (Fig.4-1 (a)) due to having only minor changes of stations. 

When modeling the relation between Mc and D4, all events reported above zero 

magnitude are plotted (Fig. 4-2). The stations and their operational dates  are summarized 

from Natural Resources Canada (NRcan) (2015), Stern et al. (2013), and Nanometrics 

Inc. (2015) in Table 4-1. We compute D4 (Δt) for every event in the catalog and plot it 

against magnitude to draw conclusions regarding Mc. We recognize that some temporary 

stations (such as those deployed for aftershock studies) may not appear in our regional 

lists and may have increased the magnitude of completeness relative to that mapped here 

for short periods of time in specific regions. The Rocky Mountain House (RMH) region 

is a good example of this, as it has been active for decades and hosted several temporary 

networks that have contributed events to the literature. 
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Figure 4-1: Operational seismic stations and earthquake events in different time 

periods: (a) 1985 – 1989 and 1990 – 1999, (b) 2000 – 2006, (c) 2007 – 2009, (d) 2010, 

(e) 2011 – 2013, and (f) 2014 – 2015. The black triangles represent operational 

stations during specific time periods, the circles in various sizes represent 

earthquake events and their preferred magnitudes. Note that stations beyond the 

map area are not shown here but listed in Table 4-1. 
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Table 4-1 Operational Time of Each Seismic Station for the CASC 

Time Period 
Number of 

Stations 
Added Stations 

Shut-down 

Stations 

1985-1989 8 
EDM, DOWB, FSB, MNB, PNT, FCC, 

ULM, and SES (NRCan., 2015) 
 

1990-1999 9 YKW3 and WALA (NRCan, 2015) SES 

2000-2006 14 
SLEB, LLLB, FNBB, BMBC, BLBC 

(NRCan., 2015) 
 

2007-2009 (AGS) 36 

YKR1,YKR2,YKR4,YKR9, DGMT, 

EGMT, NEW, YKB3, YKB6, BSMT, 

JTMT, OVMT, SWMT, YBMT, BLMT, 

NOR, PER, BRU, CLA, LYA, HON, and 

DOR (Stern et al., 2013) 

 

2010 (AGS) 43 

CZA, FMC, HLO, MHB, MEDA, 

WAPA, MANA, and HILA (Stern et al., 

2013) 

DOR 

2011-2013 

19* (continuous 

with time 2000 

– 2006) 

HILA, MANA, PRDA, WAPA and 

UBRB (NRCan., 2015) 
 

2014 - 2015 54 

TransAlta/Nanometrics stations and some 

national stations (TD 001 – TD013, 

TD022 – TD029, TD016, TD06A, 

TD07A, TD08A, TD09A, TD13A,  

TD.CRF, US.EGMT, US.NEW, LGPLA, 

TD.COP01, Y5.PER, BDMTA, BRLDA, 

HSPGA, MKRVA, STPRA, SWHSA, 

WTMTA, ATHA, HILA, RDEA, 

MANA, WAPA, CN.LLLB, CN.PNT, 

CN.WALA, CN.MNB, CN.BLBC, 

CN.SLEB, CN.NBC4, CN.NBC5, 

CN.NBC6) (NRCan., 2015; Nanometrics 

Inc., 2015) 

 

* Note: there are 43 operational stations used by the Alberta Geological Survey (AGS) in 

this time period, but there is no real-time cataloguing of events;  the AGS catalog using 

these stations is at present complete only to 2010.  
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4.3 Results 

4.3.1 Mc function 

To derive a function Mc=f (D4), we need to consider a catalog dataset for which the 

underlying seismic network distribution experienced a minimal number of changes; this 

allows a robust relationship between station locations and catalog events to be defined. 

For this purpose, we focus on the events contained in the CASC from Aug. 2013 to Jan. 

2015, located by Nanometrics Inc. (2015) using a consistent number of stations (Fig. 4-1 

(f)). Figure 4-2  shows the computed distance to the 4th nearest station (D4) for these 

events, considering their moment magnitudes (M) and local magnitudes (ML) (see the 

catalog documentation at www.inducedseismicity.ca (Cui et al., 2015) for information on 

magnitude determinations and conversions for the CASC); the locations of the events in 

space is also illustrated. We note that events are spread along the Alberta/B.C. border 

region, and contain events during both daytime and nightime hours (thus representing 

both high and low background noise conditions). Events with M< 2 are reported as ML, 

and have generally been reported in areas where a number of stations are concentrated, 

with D4 < 25 km. Larger events (M >2) spread from small D4 (~ 30 km) to large D4 (~ 

300 km) as magnitude increases. From M 2.0 to 3.6, there is an obvious trend if we link 

all the highest points together, which marks the smallest magnitude that can be located 

for a given value of D4. If events are smaller than this, the stations are too far apart to 

provide the required four-station detection. 

http://www.inducedseismicity.ca/
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Figure 4-2: Earthquakes in NMX catalog (Aug. 2013-Jan. 2015) used to derive 

function Mc=f (D4). (a) Map of spatiotemporal distribution of  events (squares show 

events having maximum D4, as highlighted in b. (b) Distance to the 4th nearest 

station (D4) versus moment magnitude (M) of NMX catalogue events, with 

maximum D4 values denoted by squares. 

To better describe the D4 versus M variation, Figure 4-3 provides a percentile plot. The 

lower, inner and upper lines of the boxes are the 25%, 50% and 75% quartiles of the 

typical distance distribution for the 4th closest station at each magnitude level. It is 

important to recognize that the points near the upper range of the distribution are not 

outliers. Rather, these points are highly significant as they characterize the farthest 

distance that an earthquake in each magnitude level can be detected by at least four 

seismic stations - though we recognize that in some cases this may also represent ideal 
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observational conditions, such as low noise. The upper ranges of the plotted points form a 

straight line: 

                      D4 =132.16Mc -82.398                                                                    [4.2]. 

The lack of points along this line for intermediate magnitudes may simply indicate of a 

lack of applicable observations, and might be filled in over a longer time period.  

 

Figure 4-3: Percentile plot for 2013-2015 NMX catalog. The circles represent 

earthquake events. The lower, inner and upper lines of the boxes represent the 25%, 

50% and 75% quartiles of the total number of events in each bin.  

We re-arrange Eqn. [4-2] to express the minimum magnitude of events that can be 

detected by at least four stations:  

 Mc (xi, yi, Δt) = (D4 (Δt) +82.398) /132.16,                                                       [4.3] 
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with (xi, yi) indicating the longitude and latitude of grid cells, for each of which we 

calculate D4 based on the station distribution at time period Δt. 

4.3.2 Spatiotemporal Evaluation of Mc in the CASC 

We subdivide the CASC into several time periods during which the network 

configuration was relatively stable (i.e. few changes in stations in Fig.4-1). Until about a 

decade ago, all the stations were national network stations operated by the Geological 

Survey of Canada, with stations being gradually added in time (there were only 8 stations 

in 1985, increasing to 21 stations in 2013) (NRCan, 2015).  The Alberta Geological 

Survey (AGS) and universities in Alberta added stations over the years from 2006-2010 

(Stern et al., 2013), then the TransAlta/Nanometrics network added multiple stations in 

2013/2014 (Nanometrics Inc., 2015). By looking at the distribution of station additions 

over time we decided on the following time periods (inclusive): 1985-1989, 1990-1999, 

2000-2006, 2007-2009, 2010, 2011-2013, and 2014-2015. We consider the stations 

which have been operating since the beginning of each time period (and which are 

generally operational for the entire period) in calculating the Mc values.  

We represent the study area by a uniform spatial grid with 110 by 55 center nodes spaced 

at 0.1° latitude and 0.2° longitude (11 km by 13 km). The value of D4 at each node is 

calculated from Eqn. [4.2], using the station configuration for the applicable time period. 

Eqn. [4.3] is then used to compute Mc values for all nodes. Our method works well in 

areas of good coverage but is poorly-constrained for areas lacking stations, and as the 

edges of the map are approached. Hence we need to impose an upper bound on Mc. 

According to Adams and Halchuk (2003), Mc should not exceed 3.5 in the area of interest 

in the timeframe of our study, and we therefore impose a maximum value of Mc =3.5. By 

constraining the maximum value of Mc as equal to 3.5, the largest distance D4 should be 

not greater than 380km (Eqn. 4.2). Moreover, since  D4 must be greater than zero, Mc 

should be not smaller than 0.62 (Eqn. 4.3).  In our study,  D4 is always greater than 10km, 

even for the densest distribution of stations that we have since 2014.Thus, our estimation 

of Mc should be greater than 0.7. The range of distance D4 istherefore limited to the range 

[10km, 380km]. Figure 4-4 maps the spatiotemporal variations of Mc in six contour maps 
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for different time periods: 1985-1989, 1990-1999, 2000-2006, 2007-2009, 2010 and 

2011- 2013. Figure 4-5 provides equivalent information for the most recent and complete 

time period, from mid-2014 to 2015. As the number of seismograph stations increases, 

smaller Mc values are estimated, especially for the time period 2007 to 2010 with the 

addition of AGS  network stations, and since mid-2014 to 2015 with the addition of the 

TransAlta/ Nanometrics array. 
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Figure 4-4: Contour maps of estimated Mc for the CASC: (a) 1985-1989; (b) 1990 - 

1999; (c) 2000 - 2006; (d) 2007 - 2009; (e) 2010; (f) 2011-2013. 
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Figure 4-5: Estimated Mc for the CASC for the time period mid-2014 to 2015. The 

black triangles represent the operating seismic stations.  

Note that the minimum value of Mc in the most recent catalogs is <1.0, significantly 

smaller than the minimum Mc (~ 2.0) available in the catalog provided by the GSC, 

which does not use all of the stations. Investigating the temporal behavior of Mc for both 

the AGS and GSC catalogs is useful as the CASC uses both of these sources, and thus the 

lower of the two Mc values will govern. The recent addition of the 

TransAlta/Nanometrics stations strongly enhances the detection capability in western 

Alberta.  

 

(b) 
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4.4 Discussion 

4.4.1 Comparison of Results with other Studies 

Statistical seismology relies on robust and comprehensive knowledge of the magnitude of 

completeness of earthquake catalogs and its variability in time and space. This is 

particularly important for the study of induced seismicity, as we need to be able to 

distinguish real rate changes from those that may be a consequence of improving station 

coverage. The method used in this study is advantageous because it is suitable for use 

with a sparse catalog and a station distribution that changes frequently over time, for 

which statistical methods are not applicable, and it enables the mapping of Mc in a 

systematic way in both time and space.  

Our method is based on a linear relationship between Mc and D4 that is derived from the 

station distribution and catalog observations (Fig. 4-2 & 4-3). Such a relationship has 

been exhibited in previous studies (Wiemer and Wyss, 2000; Mignan et al., 2011; Schultz 

et al., 2015a) in slightly-different forms. For example, for a California catalog and an 

Alaska catalog, Wiemer and Wyss (2000) determined the magnitude of completeness 

from a study of the statistics of events (Gutenberg-Richter b-values across a grid of sites, 

using 250 events for each b-value). They showed that their determined Mc values are 

closely correlated with the distance to the fourth-closest station. In Figure 4-6, we 

compare our estimate of Mc based on D4 with their observations of fitted Mc versus D4. 

Wiemer and Wyss use a linear relationship between log10D4 and Mc whereas our 

observations suggested a simple linear relation between D4 and Mc. Our relation is very 

similar to the Wiemer and Wyss relation for Alaska. 
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Figure 4-6: Distance to the 4th nearest station as a function of Mc for A) California 

and B) Alaska (modified from Wiemer and Wyss, 2000), compared to the estimation 

of Mc for the WCSB from this study, for 2013-2014 (curved lines with circle 

markers). 

In our study, there are no areas with sufficient seismicity to allow meaningful Bayesian 

updating of Mc based on further statistical analyses, as was performed by Mignan et al. 

(2011).  Similarly, departures from a Gutenberg-Richter relation as employed by Wiemer 

and Wyss (2000) are not feasible with the sparse seismicity. Moreover, we do not wish to 

assume stationarity of seismicity or a Gutenberg-Richter relation a priori. Therefore, we 

have concentrated on use of the catalog to define Mc, assuming that Mc will increase 

steadily with D4. This was the rationale for drawing a linear relationship between D4 and 
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Mc, though an alternative logarithmic form could also be used, and would provide similar 

results in the magnitude range of interest (e.g. at M ≥ 2) .   

The results of our method for Alberta may be compared with the results of Schultz et al. 

(2015a). Schultz et al. (2015a) investigated Mc by combining an analysis of noise levels 

in waveform data with the simulation of earthquake spectra to quantify station and 

network performance. They define Mc as the minimum magnitude that should allow for 

detection and picking of four P phases, which they compute on a grid approximately 5 x 5 

km2 (for a fixed focal depth of 5 km). The Mc of Schultz et al. should be more precise in 

picking the first four detectable stations and estimating D4. However, their method is 

theoretical rather than empirical, and thus the calculated Mc may not always be realized in 

practice. Moreover, they do not address changes in Mc over time; their study applies to 

the station distribution used by the AGS as of 2010. We compare our results with those of 

Schultz et al. (2015a) for 2010 on Figure 4-7. The results are consistent, with both studies 

suggesting that Mc is close to 2.0 in southern Alberta and increases to 3.0 or above in the 

north.  
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Figure 4-7: Comparison of the estimated magnitude of completeness (Mc) in 2010. 

(Left) based on Schultz et al. (2015a) and (Right) based on our method. The colored 

contours indicate spatial variations of Mc. The dark circles depict seismic stations 

used for computing Mc (left), while the blue rectangle shows our study area (with its 

Mc plotted at right); our study area is smaller than Schultz’s mapping area. 

 

4.4.2 Preliminary Statistical Analysis of Seismicity Rates 

With completeness thresholds determined since 1985, and magnitudes converted 

uniformly to moment magnitude M in the CASC, average seismicity rates and their 
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variability can now be examined. For this exercise, we use a grid of cells that are 0.5° in 

latitude and 1° in longitude, as shown in Figure 4-8. The detection threshold Mc for each 

center node is computed using Eqns. [4.2] and [4.3]. The numbers plotted in Figure 4-8 

are simple counts of the total number of events that pass the Mc threshold, from 1985-

2013, in each grid of the study area. It also shows the names of the clusters of seismicity 

for which there are a significant number of events to examine. 

 

Figure 4-8: Number of earthquakes in the CASC of M ≥Mc from 1985 through 2013 

in each grid cell. Eight cells are named by location. RMH stands for Rocky 

Mountain House. 
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We use a very simple methodology, based on counting, to take a preliminary look at 

seismicity rates in the eight named clusters shown in Figure 4-8. To normalize the count 

to a common basis, as Mc is changing in time and space, we assume that a Gutenberg-

Richter relation is applicable, with a nominal b-value of 1.0. The assumed value of b is a 

typical value for this region, as shown by Adams and Halchuk (2003) and Schultz et al. 

(2015). As a further check on the assumed b-value, we compare the observed rates to that 

for a Gutenberg-Richter relation with b=1.0, considering a relatively-active part of the 

study region, in a time period of relatively-good station coverage.  This area, shown in 

Figure 4-9, has Mc values that range from 1.7 to 2.3 from 2007 to 2010. It is apparent in 

Figure 4-9 that b~1.0 for this sample. 

 

Figure 4-9: Comparison of (a) selected seismicity sample (Area A, 2007-2010) with  

(b) Gutenburg-Richter relation with b=1.0. The dashed lines in (b) represent the 

range of our Mc estimations for all cells in Area A. 
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 We use the number of events above Mc to compute the equivalent count (in each year, 

for each cell) that should be obtained for M ≥3, assuming b=1. We refer to this equivalent 

rate of events as NM3:  

NM3 = NMc * 10(𝑀𝑐−3)                                                     [4.4]. 

Figure 4-10 shows the equivalent number of M ≥3 earthquakes per year from 1985 to 

2014 for the eight cluster areas. Note that in most of these clusters, there have clearly 

been changes in rate over time, with some areas tending to turn on then off. Areas such as 

Fox Creek have turned on very recently, due to the recent hydraulic fracturing in that area 

(Schultz et al., 2015b). Further study of rate changes will be enabled by richer catalogs as 

additional seismicity continues to be recorded. 
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Figure 4-10: Histograms of equivalent number of occurrences of M ≥3 earthquakes 

per year from 1985 to 2014 for eight clusters identified in Figure 4-8.  
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Chapter 5 

  Conclusions and future work 

5.1 Summary 

Induced earthquakes, those triggered by manmade-activities, have become a pressing and 

timely problem in Alberta. The aim of this thesis was to do foundational work to assess 

the problem, such as compilation of various earthquake databases, estimation of 

magnitude of completeness, and observation of apparent rate changes of seismicity for 

some seismic clusters. 

In Chapter 1, several major reasons for induced seismicity are reviewed: gas and oil 

production, wastewater disposal and hydraulic fracturing operations (Baranova et al., 

1999; BC Oil and Gas Commission, 2012, 2014; Farahbod et al., 2015; Horner et al., 

1994; Milne, 1970; Schultz et al., 2014, 2015b). Chapter 2 describes the development of a 

Composite Alberta Seismicity Catalog (CASC) to provide a useful baseline for studying 

earthquake hazards due to induced earthquakes in Alberta. The estimation of the 

completeness of an earthquake catalog is necessary for statistical seismicity analysis. In 

Chapter 3, various methods to estimate the magnitude of completeness are reviewed. A 

new catalog-network-based method has been illustrated in Chapter 4. Our method can 

map the variations of the magnitude of completeness in time and space. 

5.2 Results 

A prerequisite for many analyses of induced seismicity in Alberta is a comprehensive 

composite seismicity catalog for Alberta and its surrounding area, allowing 

characterization of seismicity. Compilation of this catalog, and an estimation of the 

magnitude of completeness for this catalog and the study area, was the focus of this 

research. In order to facilitate study of the seismicity induced by hydraulic fracturing and 

wastewater disposal (Atkinson et al., 2015; Eaton et al., 2015; Farahbod et al., 2015; 
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Schultz et al., 2014; Schultz et al., 2015a and 2015b), we provide the following valuable 

products and analysis: 

(1) A comprehensive composite seismicity catalog for Alberta and its surrounding 

area CASC (Cui et al., 2015) is compiled and available for download at 

www.inducedseismicity.ca, along with its documentation (Chapter 2). It covers 

the area 48°- 60° N, 110°- 124° W from 1906 to present, combining the 

information from various earthquake data sources: TransAlta/ Nanometrics 

Network (NMX catalog), the Geological Survey of Canada (GSC catalog), the 

Alberta Geological Survey (AGS catalog), the Canadian Composite Seismicity 

Catalog (CCSC), and the Advanced National Seismic System catalog from the US 

Geological Survey (ANSS catalog). For each event, the CASC lists the occurrence 

time in Universal Coordinate Time (UTC), hypocentral location, the set of all 

available magnitude types, and an assigned preferred magnitude. 

(2) A table of spatial magnitude of completeness of the CASC in seven time 

subdivisions: 1985-1989, 1990-1999, 2000-2006, 2007-2009, 2010, 2011-2013, 

2014-2015 based on a longitude of 1° by latitude of 0.5°grid (Appendix E). The 

estimation method we developed is a catalog-network-based method. We model 

the relationship between the distribution of seismic stations and the events 

recorded in the catalog over time, to map Mc (xi, yi, Δt) across a grid of the region, 

where xi and yi represent the longitude and latitude of center nodes in the grid and 

Δt indicates various time periods. The empirical relation determined from the 

catalog and station data is of the form Mc (D4) = (D4+82.398)/132.16, where D4 is 

the distance from (xi, yi) to the fourth nearest station and in the range [10km, 

380km]. With this simple relation, it is easy to derive the Mc value for any 

location in the study area. The script for calculating Mc is available in Appendix 

D. 

(3) A tabulated summary of the entire seismic stations employed by different 

agencies in the study area (Appendix A), including station names, station 

locations, on and off dates, status, assigned networks and served catalogs. 

http://www.inducedseismicity.ca/
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(4) A preliminary look at seismicity rate in eight clusters based on simple counting of 

the total number of events that pass the Mc threshold, from 1985-2013, in each 

grid cell of the study area. The equivalent number of M ≥ 3 earthquakes per year 

from 1985 to 2014 for the. eight clusters suggest significant changes in seismic 

rate over time in those areas.  

5.3 Future Work 

The Composite Alberta Seismicity Catalog (CASC)  updates monthly and provides 

comprehensive information for users. The process of converting various magnitude scales 

into moment magnitude (M) will be improved in future. In addition, the relationship 

between distance to stations and magnitude of completeness may change its form, as 

more catalog data become available.  
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Appendixes 

Appendix A.  Station List 

Station Latitude Longitude   On Date Off Date Status Network NMXcat AGScat GSCcat ANSScat 

PNT 49.32241 -119.62536  1960-01-01  OPEN CNSN NMX AGS GSC ANSS 

EDM 53.2217 -113.35  1963-04-19  OPEN CNSN  AGS GSC ANSS 

FCC 58.7616 -94.0866  1967-06-24  OPEN CNSN  AGS GSC  

FSB 54.4767 -124.3283  1979-04-30  OPEN CNSN  AGS GSC  

MNB 52.19764 -118.38873  1981-09-29  OPEN CNSN NMX AGS GSC ANSS 

DOWB 51.518 -118.517  1982-12-01  OPEN CNSN  AGS GSC  

ULM 50.250261 -95.874956  1984-09-04  OPEN CNSN  AGS GSC  

YKW3 62.49322 -114.60528  1989-01-25  OPEN CNSN  AGS GSC  

WALA 49.0595 -113.91116  1992-06-01  OPEN CNSN NMX AGS GSC  

BSMT 47.8513 -114.787  1995-11-01  OPEN MRSN  AGS  ANSS 

JTMT 47.7467 -114.283  1995-11-01  OPEN 

MRSN/M

B  AGS  ANSS 

OVMT 47.06433 -112.997  1996-10-14  OPEN MRSN  AGS   

BLBC 52.04401 -119.24386  1997-06-17  OPEN CNSN NMX AGS GSC  

SLEB 51.1685 -118.1326  1997-12-05  OPEN CNSN NMX AGS GSC  
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BMBC 56.04493 -122.13358  1998-01-30  OPEN CNSN  AGS GSC  

LLLB 50.609 -121.8815  1998-11-17  OPEN CNSN NMX  GSC  

FNBB 58.89035 -123.00986  1999-10-24  OPEN CNSN  AGS GSC  

SWMT 47.5093 -113.999  2001-09-15  OPEN MRSN  AGS   

YBMT 47.8633 -114.012  2001-09-15  OPEN MRSN  AGS   

BLMT 48.0108 -114.363  2004-03-11  OPEN MRSN  AGS  ANSS 

JOF 52.34 -113.51  2006-09-18 

2007-05-

24 CLOSED CRANE  AGS   

NOR 52.49143 -116.052  2006-09-18  OPEN CRANE  AGS   

PER 53.68 -116.04  2006-09-28  OPEN 

CRANE/Y

5 NMX AGS   

BRU 53.32 -117.87  2006-10-02  OPEN CRANE  AGS   

CLA 50.01 -113.52  2006-10-02  OPEN CRANE  AGS   

LYA 51.1551 -113.473  2006-10-02  OPEN CRANE  AGS   

REC 56.55 -115.28  2006-10-13 

2007-06-

01 CLOSED CRANE  AGS   

HON 55.08 -114.05  2006-10-14  OPEN CRANE  AGS   

CZA 52.49 -110.86  2007-08-31  OPEN CRANE  AGS   

UBRB 52.89179 -124.08318  2007-10-16  OPEN CNSN   GSC  

DOR 54.22 -108.57  2007-10-26 

2010-04-

05 CLOSED CRANE  AGS   
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FMC 56.65 -111.5  2007-11-16  OPEN CRANE  AGS   

HLO 54.7 -112.28  2009-05-05  OPEN CRANE  AGS   

MHB 50.32 -110.16  2009-05-10  OPEN CRANE  AGS   

MEDA 49.98148 -110.742  2009-10-09 

2011-08-

09 CLOSED ATSN  AGS   

MANA 56.85538 -117.63672  2009-10-18  OPEN 

POLARIS/

RV/ATSN NMX AGS GSC  

HILA 58.55608 -117.02029  2009-10-19  OPEN 

POLARIS/

RV/ATSN NMX AGS GSC  

WAPA 55.18333 -119.25361  2009-10-20  OPEN 

POLARIS/

RV/ATSN NMX AGS GSC  

PRDA 50.8674 -114.29185  2009-11-13  OPEN 

POLARIS/

ATSN  AGS GSC  

RAYA 49.38627 -112.687  2010-08-09  OPEN ATSN  AGS   

FSMA 59.9862 -111.822  2010-09-12  OPEN ATSN  AGS   

RW2 53.3493 -111.746  2010-09-17  OPEN CRANE  AGS   

RW5 54.2043 -111.578  2010-10-01  OPEN CRANE  AGS   

RW4 53.8006 -114.552  2010-10-13  OPEN CRANE  AGS   

RW1 53.8529 -113.176  2010-10-15  OPEN CRANE  AGS   

RW3 54.4415 -113.651  2010-10-15  OPEN CRANE  AGS   

RDEA 56.55125 -115.3179  2011-06-08  OPEN 

POLARIS/

RV/ATSN NMX AGS GSC  
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RDR 52.2658 -114  2011-09-14  OPEN CRANE  AGS   

CLK 54.3848 -110.507  2011-09-23  OPEN CRANE  AGS   

ATHA 54.7137 -113.3137  2012-10-19  OPEN 

POLARIS/

RV/ATSN NMX AGS GSC  

TD001 53.54727 -114.40394  2013-01-01  OPEN TD NMX    

NBC4 55.68733 -120.66168  2013-03-01  OPEN CNSN NMX    

NBC5 57.52314 -122.67767  2013-03-01  OPEN CNSN NMX    

NBC6 58.58388 -122.33392  2013-03-01  OPEN CNSN NMX    

CRF 45.3428 -75.9007  2013-07-29  OPEN TD NMX   ANSS 

TD007 52.907 -115.6161  2013-07-31  OPEN TD NMX    

TD07A 52.98373 -115.74477  2013-08-01  OPEN TD NMX    

TD006 53.00128 -115.62221  2013-08-02  OPEN TD NMX    

TD06A 52.94987 -115.52061  2013-08-02  OPEN TD NMX    

TD005 53.01361 -115.41135  2013-08-03  OPEN TD NMX    

TD08A 52.94756 -115.27764  2013-08-03  OPEN TD NMX    

TD09A 52.92497 -116.38973  2013-08-03  OPEN TD NMX    

LGPLA 53.11654 -115.35514  2013-10-27  OPEN RV NMX    

TD002 53.4394 -114.38764  2013-10-28  OPEN TD NMX    

TD004 53.4686 -114.6265  2013-10-30  OPEN TD NMX    
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TD003 53.38668 -114.50594  2013-10-31  OPEN TD NMX    

COP01 52.9039 -115.3398  2013-11-01  OPEN TD NMX    

TD008 52.80409 -115.43176  2013-12-13  OPEN TD NMX    

TD13A 52.00769 -114.76824  2013-12-19  OPEN TD NMX    

TD009 52.32058 -116.32337  2013-12-22  OPEN TD NMX    

TD010 52.63863 -116.33301  2013-12-22  OPEN TD NMX    

TD011 52.54942 -115.5157  2013-12-23  OPEN TD NMX    

TD013 52.51791 -115.02345  2013-12-23  OPEN TD NMX    

TD012 52.13135 -115.39685  2014-01-17  OPEN TD NMX    

TD024 51.04789 -114.36208  2014-05-04  OPEN TD NMX    

TD023 51.11063 -114.30516  2014-05-05  OPEN TD NMX    

TD025 51.16141 -114.67631  2014-05-05  OPEN TD NMX    

TD027 51.05079 -114.23182  2014-07-06  OPEN TD NMX    

TD022 51.17701 -114.2288  2014-07-07  OPEN TD NMX    

TD026 51.29277 -114.70697  2014-07-08  OPEN TD NMX    

BDMTA 54.81291 -118.9149  2014-08-15  OPEN RV NMX    

BRLDA 54.09199 -117.40384  2014-08-15  OPEN RV NMX    

HSPGA 49.3527 -113.65233  2014-08-15  OPEN RV NMX    

MKRVA 49.143 -111.77547  2014-08-15  OPEN RV NMX    
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STPRA 55.66063 -115.83232  2014-08-15  OPEN RV NMX    

SWHSA 54.89944 -116.75179  2014-08-15  OPEN RV NMX    

WTMTA 55.69422 -119.23975  2014-08-15  OPEN RV NMX    

TD029 52.21709 -115.20005  2014-10-23  OPEN TD NMX    

TD016 51.21033 -114.83547  2014-10-24  OPEN TD NMX    

TD028 51.24942 -114.58781  2014-10-24  OPEN TD NMX    

SES 50.396 -111.042  1966-00-00 

1993-03-

31 Closed CNSN  AGS GSC  

DGMT 48.47 -104.196  1972-00-00  OPEN US-REF  AGS   

EGMT 48.024 -109.755  1972-00-00  OPEN US-REF NMX AGS   

NEW 48.263 -117.12  1972-00-00  OPEN US-REF NMX AGS  ANSS 
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Appendix B. Duplicates from AGS catalog 

yea
r 

mont
h 

da
y 

hou
r 

minut
e 

secon
d 

latitud
e 

longitu
de ML 

Dept
h 

d
d mf 

Mw_R
ev 

t
f comments 

200
6 10 21 6 51 56 52.717 

-
116.120 

0.5
1 1 'f' 

0.1
2 0.63 1 

'26 km NNW of 
Harlech  ' 

200
6 10 21 9 26 55 52.676 

-
116.150 

0.4
1 6 'f' 

0.1
2 0.53 1 

'23 km NW of 
Harlech  ' 

200
6 12 5 8 0 34 52.689 

-
115.960 

0.7
7 1 'g' 

0.1
2 0.89 1 '21 km N of Harlech  ' 

200
7 2 26 15 14 60 52.618 

-
116.100 

0.5
8 2 'f' 

0.1
2 0.7 1 

'15 km NW of 
Harlech  ' 

200
7 10 16 11 33 47 52.714 

-
116.150 

0.8
0 3 'f' 

0.1
2 0.92 1 

'26 km NW of 
Harlech  ' 

200
7 11 23 12 48 36 52.721 

-
116.170 

0.6
1 1 'g' 

0.1
2 0.73 1 

'27 km NNW of 
Harlech  ' 

200
8 3 23 7 57 48 52.667 

-
116.110 

0.5
2 1 'g' 

0.1
2 0.64 1 

'19 km NNW of 
Harlech  ' 

Note: Additional events in AGS Catalog that we assume are duplicates; the GSC ML values have been preferred for these 

events. 
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Appendix C. Matlab Script for the semi-automated processing of CASC 2013 

% Input earthquake catalogs: 

% 1) GSC.csv - Earthquake Canada download (1985 year to 2013-12-31) 

% 2) AGSformatted.csv - includes Alberta earthquake data from 2006 to 

2010 year (Stern, 2010) 

% 3) CCSC11west.txt - (Fereidoni et al., 2012) 

  

%%%%%processing ccsc11west.txt%%%%%%% 

%truncate data in time window 1906-1984end, after 1984, GSC data started 

to 

%apply. 

%truncate data in Alberta area polygon latitude between 48degree to 

%59degree north, -110~-121 degree in longitude 

  

% Output earthquake catalog: 

  

% The Composite Alberta Seismicity Catalog2013.csv(CASC13 earthquake 

% catalog) 

% this catalog has been sorted by time but includes duplicates which 

% will be verified and removed lately in excel manually. 

  

%CASC13 format: 

%We want to keep the same format with CCSC (A composite Canadian  

%seismicity catalog) so that it is easier to compare with each other in 

future. 

  

% [year month day hour minute second latitude longitude ML MN MB MW MS 

MC MD MZ Mpf Tmpf Depth Dth_or dd cf zf mf Mw_Rev tf comments].  
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%var        col           Name [unit] 

%yr         1               year  

%mo         2               month 

%dy         3               day 

%hr         4               hour 

%min        5               minute 

%sec        6               second 

%lat        7               latitude 

%lon        8               longitude 

%ML         9               local magnitude  

%MN        10               Nuttli magnitude 

%MB        11               body wave magnitude 

%MW        12               moment magnitude    

%MS        13               surface wave magnitude 

%MC        14               coda magnitude   

%MD        15               Duration magnitude 

%MZ        16               unknwon magnitude type 

%Mpf       17               preferred magnitude  

%Tmpf      18               type of the preferred magnitude 

%Depth     19               depth 

%Dth_or    20               depth error 

%dd        21               depth designation 

%cf        22               Catalogue flag (1:GSC 2:AGS 3:CCSC) 

%zf        23               Seismic source zone flag (unavailable for  

%now,keep zero) 

%mf        24               Mw additive conversion factor 

%Mw_Rev    25               Updated moment magnitude 
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%tf        26               event type:  1=earthquake 2=blast 3=not  

%avaliable 

%comments  27               statements of regions, locations or comments 

clear all 

clc 

disp('                                                        '); 

disp('-----   Compilation of CASC13 earthquake catalog   -----'); 

disp('Current path 

is:C:\Users\luqi\Documents\MATLAB\CASC13\newboundaryCASC2'); 

  

%%  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%Section1:CCSC_west_data_processing%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

disp('section1: processing ccsc_west_data'); 

  

%%%%%%read ccsc11west.txt%%%%% 

%ccsc11wesst catalog includes all the data in West Canada from 1906 to 

%2010, first step should be to truncate ccsc_west into specific time 

window 

%and location window; because after 1985, Earthquake Canada started to 

have more  

%accurate data for Alberta area, we will only choose data of ccsc_west 

from 1906 to 1984 

  

[yr1,mo1,dy1,hr1,min1,lat1,lon1,Mb1,MN1,Ml1,Ms1,Mc1,Md1,Mw1,Mm1,Mz1,Mpf1

,Tm1,Depth1,dd1,~,~,mf1,new_Mw1] = ... 

    

textread('C:\Users\luqi\Documents\MATLAB\CASC13\newboundaryCASC2\ccsc11w

est.txt',... 
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'%4d %02d %02d %02d %02d  %7.3f  %9.3f  %5.2f %5.2f %5.2f %5.2f %5.2f %5

.2f %5.2f %5.2f %5.2f %5.2f %s  %06.2f %s  %1d  %3d  %5.2f  %5.2f','head

erlines',50); 

  

%%%%%%specify time window%%%%% 

ts=1905; 

te=1985; 

itw=(yr1>ts)&(yr1<te); 

  

%%%%%%specify polygon region in the vectors xv and yv%%%%% 

  

xv = [-121 -121 -124 -124 -110 -110]'; % longitude of Alberta area 

yv = [48 53 53 60 60 48]';% latitude of Alberta area 

  

x=lon1; y=lat1; 

xv=[xv;xv(1)]; yv=[yv;yv(1)]; 

in=inpolygon(x,y,xv,yv); 

  

yr  = yr1(in&itw);   mo = mo1(in&itw);  dy = dy1(in&itw); 

hr  = hr1(in&itw);   min = min1(in&itw); 

lat = lat1(in&itw); lon = lon1(in&itw);  

ML=Ml1(in&itw); MN=MN1(in&itw); MB=Mb1(in&itw); 

MW=Mw1(in&itw); MS=Ms1(in&itw); MC=Mc1(in&itw); MD=Md1(in&itw); 

MZ=Mz1(in&itw); Mm=Mm1(in&itw); Mpf=Mpf1(in&itw); Tmpf=Tm1(in&itw); 

Depth=Depth1(in&itw); 

dd=dd1(in&itw); mf=mf1(in&itw); Mw=new_Mw1(in&itw); 
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clear yr1 mo1 dy1 hr1 min1 lat1 lon1 Ml1 MN1 Mb1 Mw1 Ms1 Mc1 Md1 Mz1 Mm1 

Mpf1 Tm1 Depth1 dd1 mf1 new_Mw1 x y xv yv te ts itw; 

  

%%%%%write ccsc_Alberta catalog%%%%% 

sec=zeros(length(yr),1); 

cf=4*ones(length(yr),1); 

Dth_or=zeros(length(yr),1); 

%zf=zeros(length(yr),1); 

tf=3*ones(length(yr),1); 

comments=cell(length(yr),1); 

  

disp('generate dataset data_ccsc'); 

data_ccsc11=dataset(yr,mo,dy,hr,min,sec,lat,lon,ML,MN,MB,MW,MS,MC,MD,MZ,

Mpf,Tmpf,Depth,Dth_or,dd,cf,mf,Mw,tf,comments);     

  

clear yr mo dy hr min sec lat lon ML MN MB Mw Ms Mc Md Mz Mpf Tmpf Depth 

Dth_or dd mf Mnew Mm in MC MD MS MW MZ tf; 

clear comments cf; 

export(data_ccsc11,'file','ccsc11.csv','Delimiter',','); 

  

  

%%  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%Section2:GSC_data_processing%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%%%%%read GSC catalog%%%%% 

fid=fopen('C:\Users\luqi\Documents\MATLAB\CASC13\newboundaryCASC2\GSC198

5to2010newboundaryformatlab.csv'); 
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%depth is numberwith 'g', for example 1.0g or 1.0*. Here, we exclude 

'g'or 

%'*'from the original data to generate the new catalog 

format='%4d %02d %02d %02d %02d %02d %f %f %f %s %f %2s %d %s %*[^\n]'; 

  

data=textscan(fid,format,'delimiter',{',','/',':'},'headerlines',1); 

fclose(fid) 

  

%%%%%process GSC data%%%%% 

yr1=cell2mat(data(1)); 

mo1=cell2mat(data(2)); 

dy1=cell2mat(data(3)); 

hr1=cell2mat(data(4)); 

min1=cell2mat(data(5)); 

sec1=cell2mat(data(6)); 

lat1=cell2mat(data(7)); 

lon1=cell2mat(data(8)); 

mag1=cell2mat(data(11)); 

magt1=data{1,12}; 

Depth1=cell2mat(data(9)); 

dd1=data{1,10}; 

tf1=cell2mat(data(13)); 

comments1=data{1,14}; 

%%%%%%specify polygon region in the vectors xv and yv%%%%% 

%2866 out of9808 left 

xv = [-121 -121 -124 -124 -110 -110]'; % longitude of Alberta area 

yv = [48 53 53 60 60 48]';% latitude of Alberta area 
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x=lon1; y=lat1; 

xv=[xv;xv(1)]; yv=[yv;yv(1)]; 

in=inpolygon(x,y,xv,yv); 

yr  = yr1(in);   mo = mo1(in);  dy = dy1(in); 

hr  = hr1(in);   min = min1(in); sec=sec1(in); 

lat = lat1(in); lon = lon1(in);  

Depth=Depth1(in); 

dd=dd1(in);  

mag=mag1(in); 

magt=magt1(in); 

tf=tf1(in); 

comments=comments1(in); 

%%%%%%specify time window%%%%% 

ts=2006; 

itw=yr<ts; 

%%%%%remove previous region%%%%% 

%2416 out of 2866 

xv1 = [-121 -121 -110 -110]'; % longitude of Alberta area 

yv1 = [48 59 59 48]';% latitude of Alberta area 

xv1=[xv1;xv1(1)]; yv1=[yv1;yv1(1)]; 

in1=inpolygon(lon,lat,xv1,yv1); 

in1=~in1; 

yr  = yr(itw|in1);   mo = mo(itw|in1);  dy = dy(itw|in1); 

hr  = hr(itw|in1);   min = min(itw|in1); sec=sec(itw|in1); 

lat = lat(itw|in1); lon = lon(itw|in1);  

Depth=Depth(itw|in1); 

dd=dd(itw|in1);  
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mag=mag(itw|in1); 

magt=magt(itw|in1); 

tf=tf(itw|in1); 

comments=comments(itw|in1); 

[ML MN MB MW MS MC MD MZ Mpf Tmpf mf Mw] = compare_magt(mag,magt); 

Dth_or=zeros(length(yr),1); 

cf=2.0*ones(length(yr),1); 

disp('generate dataset data_GSC'); 

data_GSC=dataset(yr,mo,dy,hr,min,sec,lat,lon,ML,MN,MB,MW,MS,MC,MD,MZ,Mpf

,Tmpf,Depth,Dth_or,dd,cf,mf,Mw,tf,comments);    

clear dd dy hr j lat location lon Depth Dth_or MB ML MN MC MD Mw Mpf MS 

MW MZ Tmpf mag magt mf min mo sec zf time_array yr; 

clear tf comments fid format cf ; 

clear data format ; 

clear ans comments1 dd1 Depth1 dy1 hr1 in in1 itw lat1 lon1 mag1 magt1 

min1 mo1 sec1 tf1 ts x xv xv1 y yr1 yv yv1 

export(data_GSC,'file','GSC1985to2010.csv','Delimiter',','); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%updated_CCSC13westEq%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

format='%4d %02d %02d %02d %02d  %7.3f  %9.3f  %5.2f %5.2f %5.2f %5.2f %

5.2f %5.2f %5.2f %5.2f %5.2f %5.2f %s  %06.2f %s  %1d  %3d  %5.2f  %5.2f

'; 

[yr1,mo1,dy1,hr1,min1,lat1,lon1,Mb1,MN1,Ml1,Ms1,Mc1,Md1,Mw1,Mm1,Mz1,Mpf1

,Tm1,Depth1,dd1,cf1,~,mf1,new_Mw1]=... 

    

textread('C:\Users\luqi\Documents\MATLAB\CASC13\newboundaryCASC2\CCSC201

3_west_earthquake.txt',format,'headerlines',3); 

%%%%%%specify polygon region in the vectors xv and yv%%%%% 

xv = [-121 -121 -124 -124 -110 -110]'; % longitude of Alberta area 

yv = [48 53 53 60 60 48]';% latitude of Alberta area 
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x=lon1; y=lat1; 

xv=[xv;xv(1)]; yv=[yv;yv(1)]; 

in=inpolygon(x,y,xv,yv); 

yr  = yr1(in);   mo = mo1(in);  dy = dy1(in); 

hr  = hr1(in);   min = min1(in); 

lat = lat1(in); lon = lon1(in);  

ML=Ml1(in); MN=MN1(in); MB=Mb1(in); 

MW=Mw1(in); MS=Ms1(in); MC=Mc1(in); MD=Md1(in); 

MZ=Mz1(in); Mm=Mm1(in); Mpf=Mpf1(in); Tmpf=Tm1(in); Depth=Depth1(in); 

dd=dd1(in); mf=mf1(in); Mw=new_Mw1(in); cf=cf1(in); 

clear cf1 zf1 yr1 mo1 dy1 hr1 min1 lat1 lon1 Ml1 MN1 Mb1 Mw1 Ms1 Mc1 Md1 

Mz1 Mm1 Mpf1 Tm1 Depth1 dd1 mf1 new_Mw1 x y xv yv te ts itw; 

%%%%%write ccsc_Alberta catalog%%%%% 

sec=zeros(length(yr),1); 

Dth_or=zeros(length(yr),1); 

tf=ones(length(yr),1); 

disp('generate dataset data_ccsc13'); 

data_ccsc13eq=dataset(yr,mo,dy,hr,min,sec,lat,lon,ML,MN,MB,MW,MS,MC,MD,M

Z,Mpf,Tmpf,Depth,Dth_or,dd,cf,mf,Mw,tf);     

clear yr mo dy hr min sec lat lon ML MN MB Mw Ms Mc Md Mz Mpf Tmpf Depth 

Dth_or dd mf Mnew Mm in MC MD MS MW MZ; 

clear cf; 

export(data_ccsc13eq,'file','ccsc13forcascEq.csv','Delimiter',','); 

%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%updated_CCSC13westBlast%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

format='%4d %02d %02d %02d %02d  %7.3f  %9.3f  %5.2f %5.2f %5.2f %5.2f %

5.2f %5.2f %5.2f %5.2f %5.2f %5.2f %s  %06.2f %s  %1d  %3d  %5.2f  %5.2f

'; 
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[yr1,mo1,dy1,hr1,min1,lat1,lon1,Mb1,MN1,Ml1,Ms1,Mc1,Md1,Mw1,Mm1,Mz1,Mpf1

,Tm1,Depth1,dd1,cf1,~,mf1,new_Mw1]=... 

    

textread('C:\Users\luqi\Documents\MATLAB\CASC13\newboundaryCASC2\CCSC201

3_west_blast.txt',format,'headerlines',3); 

%%%%%%specify polygon region in the vectors xv and yv%%%%% 

xv = [-121 -121 -124 -124 -110 -110]'; % longitude of Alberta area 

yv = [48 53 53 60 60 48]';% latitude of Alberta area 

x=lon1; y=lat1; 

xv=[xv;xv(1)]; yv=[yv;yv(1)]; 

in=inpolygon(x,y,xv,yv); 

yr  = yr1(in);   mo = mo1(in);  dy = dy1(in); 

hr  = hr1(in);   min = min1(in); 

lat = lat1(in); lon = lon1(in);  

ML=Ml1(in); MN=MN1(in); MB=Mb1(in); 

MW=Mw1(in); MS=Ms1(in); MC=Mc1(in); MD=Md1(in); 

MZ=Mz1(in); Mm=Mm1(in); Mpf=Mpf1(in); Tmpf=Tm1(in); Depth=Depth1(in); 

dd=dd1(in); mf=mf1(in); Mw=new_Mw1(in); cf=cf1(in); 

clear cf1 zf1 yr1 mo1 dy1 hr1 min1 lat1 lon1 Ml1 MN1 Mb1 Mw1 Ms1 Mc1 Md1 

Mz1 Mm1 Mpf1 Tm1 Depth1 dd1 mf1 new_Mw1 x y xv yv te ts itw; 

%%%%%write ccsc_Alberta catalog%%%%% 

sec=zeros(length(yr),1); 

Dth_or=zeros(length(yr),1); 

tf=2*ones(length(yr),1); 

disp('generate dataset data_ccsc13blast'); 

data_ccsc13blast=dataset(yr,mo,dy,hr,min,sec,lat,lon,ML,MN,MB,MW,MS,MC,M

D,MZ,Mpf,Tmpf,Depth,Dth_or,dd,cf,mf,Mw,tf);     

clear yr mo dy hr min sec lat lon ML MN MB Mw Ms Mc Md Mz Mpf Tmpf Depth 

Dth_or dd mf Mnew Mm in MC MD MS MW MZ; 

clear cf; 
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export(data_ccsc13blast,'file','ccsc13forcascblast.csv','Delimiter',',')

; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%Section4: Complilation of CASC13catalog%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

data=[data_GSC; data_AGS; data_ccsc];  

Data=sortrows(data,{'yr','mo','dy','hr','min','sec'}); 

clear data ans; 

export(Data,'file','Alberta_Composite_Catalog_2013.csv','Delimiter',',')

; 

%%%%%%%compare_magt.m %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [ML MN MB Mw Ms Mc Md Mz Mpf Tmpf mf Mnew] = 

compare_magt(mag,magt) 

%convert different types of magnitude scale to moment magnitude 

% The functions I choose here is from Azadeh Fereidoni (2012) 

iml=strcmpi(magt,'Ml'); ML=mag.*iml; 

imn=strcmpi(magt,'MN'); MN=mag.*imn; 

imb=strcmpi(magt,'mb_Lg'); MB=mag.*imb; 

imw=or(strcmpi(magt,'Mw'),strcmpi(magt,'Mwp')); Mw=mag.*imw; 

ims=strcmpi(magt,'Ms'); Ms=mag.*ims; 

imc=strcmpi(magt,'Mc'); Mc=mag.*imc; 

imd=strcmpi(magt,'Md'); Md=mag.*imd; 

imz = strcmp(magt,''); Mz = mag.*imz; 

Mnew=zeros(length(ML),1); 

mf=zeros(length(ML),1); 

Mpf=zeros(length(ML),1); 

Tmpf=cell(length(ML),1); 

for i=1:length(ML) 
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    if iml(i)==1 

        Mnew(i)=ML(i)+0.12; 

        mf(i)=0.12; 

        Mpf(i)=ML(i); 

        Tmpf{i}='ML'; 

    elseif imn(i)==1 

        Mnew(i)=MN(i)+0.05; 

        mf(i)=0.05; 

        Mpf(i)=MN(i); 

        Tmpf{i}='MN'; 

    elseif imb(i)==1 

        Mnew(i)=MB(i)-0.06; 

        mf(i)=-0.06; 

        Mpf(i)=MB(i); 

        Tmpf{i}='MB'; 

    elseif imw(i)==1 

        Mnew(i)=Mw(i); 

        mf(i)=0; 

        Mpf(i)=Mw(i); 

        Tmpf{i}='Mw'; 

    elseif ims(i)==1 

        Mnew(i)=0.81*Ms(i)+1.3; 

        mf(i)=1.3; 

        Mpf(i)=Ms(i); 

        Tmpf{i}='Ms'; 

    elseif imc(i)==1 

        Mnew(i)=0.96*Mc(i)+0.19; 
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        mf(i)=0.19; 

        Mpf(i)=Mc(i); 

        Tmpf{i}='Mc'; 

    elseif imd(i)==1 

        Mnew(i)=0.96*Md(i)+0.19; 

        mf(i)=0.19; 

        Mpf(i)=Md(i); 

        Tmpf{i}='Md'; 

    elseif imz(i)==1 

        Mnew(i)=-9.99; 

        mf(i)=0; 

        Mpf(i)=Mz(i); 

        Tmpf{i}='Mz'; 

    else 

        Mnew(i)=-9.99; 

        mf(i)=0; 

        Mpf(i)=Mz(i); 

        Tmpf{i}='Mz'; 

    end 

end 

disp([iml imn]) 

end 

 

 Appendix D. Matlab Script of Estimation Mc in time and space 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% The Study of Magnitude Completeness Distribution%%%%%%%%%%%         

%%%%%%%%%%%%%%%%%%%of Alberat and its surrounding area%%%%%%%%%%%%%%%%% 
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%This script will study the changes of seismic stations of Earthquake 

%Canada since 1985. According to the distribution of seismic stations in 
different time period, a method based on the distance to the fourth 

%closest station is applied to calculate the magnitude completeness 

values in space and temporal.  

Clear 

clc 

%% import GSC station list 

% using function importGSCstns to import the whole GSC station list used 

% for AB province 

%   Sta: text (%s) 

%   Name: text (%s) 

%   Prov: text (%s) 

%   stnLat: double (%f) 

%   stnLon: double (%f) 

%   Network: text (%s) 

%   OnDate: datetimes (%{MM/dd/yyyy}D) 

%   offDate: datetimes (%{MM/dd/yyyy}D) 

%   Status: text (%s) 

[Sta,Name,Prov,stnLat,stnLon,Network,OnDate,offDate,Status] =... 

    importGSCstns('filteredGSCformatlab.csv'); 

% manipulate datetime vector OnDate 

%change OnDate<=1985-01-01 to 1985-01-01 

for i=1:length(OnDate) 

    if datenum(OnDate(i))<datenum('01/01/1985','MM/dd/yyyy') 

        OnDate(i)=datetime('01/01/1985','Format','MM/dd/yyyy'); 

    end 

end 
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%calculate month duration between StartDate and 1985-01-01 

stnmonths=months(datetime(1985,01,01),OnDate); 

%calculate month duration between EndDate and 1985-01-01 

stnendmonths=months(datetime(1985,01,01),offDate); 

for i=1:length(stnendmonths) 

    if stnendmonths(i)==7368; 

        stnendmonths(i)=nan; 

    end 

end 

clear i 

%% Investigate how to devide Time Periods based on the Increasing No. of 

GSC stations 

%graphic of stations and their working duration 

%Output is the "The Time Period Distribution of GSC stations Figure" 

x=1:22; 

%y1 means the end month of stations 

y1=[NaN(21,1); stnendmonths(22)]; 

% y is the matrix with start month and end month of all 22 stations 

y=[stnmonths y1]; 

createGSCStnfigure(x,y); 

clear y1 x y i 

%%  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%Investigate Magnitude Completeness based on the divided Time Period%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Time Period 

%1985.01 - 1988.12    8 
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%1989.01 - 1999.12    9 (SES ended; WALA and YkW3 added) 

%2000.01 - 2009.12    14  

%2010.01 - 2012.12    19 

%2013.01 - 2013.12    21 

% import GSCstationTimeTable.xlsx, which includes a table of these 22 

stations 

% and flag numbers to note their working durations 

%0 : not working 

%1 : on working 

%changing time period will have to regenerate the 

GSCstationTimeTable.xlsx 

GSCstn=importStnList('GSCstationTimeTable.xlsx','sheet1'); 

p1=logical(GSCstn.p1); 

p2=logical(GSCstn.p2); 

p3=logical(GSCstn.p3); 

p4=logical(GSCstn.p4); 

p5=logical(GSCstn.p5); 

%load grid center locations 

load gridcenters.mat lat lon 

% 1) D4 and mc from GSC catalog  

D4p1=Dist(stnLat(p1),stnLon(p1),lat,lon); 

D4p2=Dist(stnLat(p2),stnLon(p2),lat,lon); 

D4p3=Dist(stnLat(p3),stnLon(p3),lat,lon); 

D4p4=Dist(stnLat(p4),stnLon(p4),lat,lon); 

D4p5=Dist(stnLat(p5),stnLon(p5),lat,lon); 

D4_GSC=[D4p1 D4p2 D4p3 D4p4 D4p5]; 

mc=zeros(242,5); 

a=82.398; 
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b=132.16; 

for i=1:5 

    for j=1:242 

  mc(j,i)=(D4_GSC(j,i)+a)/b;  

      if mc(j,i)>3.5; 

          mc(j,i)=3.5; 

      end 

    end 

end 

xlswrite('McofGSC.xlsx',[lat lon mc],'sheet1') 

xlswrite('McofGSC.xlsx',[lat lon D4_GSC],'sheet2') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%% The Study of Magnitude Completeness Distribution%%%%%%%%%%% 

%%%%%%%%%%%    of Alberat and its surrounding area for AGS   %%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Objects: to calculate the distance(D4) between each center location of 

the Alberta 242  

%grids and the fourth closed staion of the AGS2006-2010 list 

%Input 

%1) group of vectors include: station name, station latitude and 

longitude,station open date and closed date, station status 

%2) vectors of grid center points Output 

% vectors of D4 in different time period 

clear 

clc  

%% import AGS station list 

% using function importGSCstns to import the whole GSC station list used 

% for AB province 
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%   Sta: cell  

%   stnLat: double (%f) 

%   stnLon: double (%f) 

%   Network: cell  

%   OnDate: cell  

%   offDate: cell  

%   Status: cell  

[Sta,stnLat,stnLon,Network,onDate,offDate,Status] = ... 

    importAGSstns('stationAGS.xlsx');  

% manipulate datetime vector OnDate 

%change onDate offDate to datetime 

OnDate=datetime(onDate,'Format','MM/dd/yyyy'); 

OffDate=datetime(offDate,'Format','MM/dd/yyyy'); 

clear onDate offDate 

% find Not-a-Time elements in OffDate and change these elements to 

% '12/31/2010' 

tf=isnat(OffDate); 

OffDate(tf)='12/31/2010';  

%calculate month duration between StartDate and 2006-01-01 

stnmonths=months(datetime(2006,01,01),OnDate); 

%calculate month duration between EndDate and 2006-01-01 

stnendmonths=months(datetime(2006,01,01),OffDate);  

for i=1:length(stnendmonths) 

    if stnendmonths(i)==59; 

        stnendmonths(i)=nan; 

    end 

end 
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save AGSstn.mat  

%% Investigate how to devide Time Periods based on the Increasing No. of 

GSC stations 

%graphic of stations and their working duration 

%Output is the "The Time Period Distribution of GSC stations Figure" 

x=1:53; 

y=[stnmonths stnendmonths]; 

createAGSfigure(x,y) 

clear x y 

print(gcf,'-dpng','-r600','AGSstnTimePeriod.png');  

%% import AGS Time Period Table 

AGSTimeTable = importAGSstnTimeTable('AGSstationTimeTable.xlsx'); 

StnName=AGSTimeTable.stnName; 

% The first time period is from 2006  to 2009.06-01, 37 stations totally 

p1=logical(AGSTimeTable.p1); 

% The second time period is from 2009-06-01 to 2010   44 stations 

totally 

p2=logical(AGSTimeTable.p2);  

clear AGSTimeTable  

%load grid center locations 

load gridcenters.mat lat lon 

%%  

% 1) D4 and mc from AGS catalog  

D4p1=Dist(stnLat(p1),stnLon(p1),lat,lon); 

D4p2=Dist(stnLat(p2),stnLon(p2),lat,lon);  

D4_AGS=[D4p1 D4p2]; 

mc=zeros(242,2); 

a=82.398; 
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b=132.16; 

for i=1:2 

    for j=1:242 

  mc(j,i)=(D4_AGS(j,i)+a)/b;  

      if mc(j,i)>3.5; 

          mc(j,i)=3.5; 

      end 

    end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%% The Study of Magnitude Completeness Distribution%%%%%%%%%%% 

%%%%%%%%%%%    of Alberat and its surrounding area for NMX   %%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Objects: to calculate the distance(D4) between each center location of 

the Alberta 242  

%grids and the fourth closed staion of the NMX list as beginning of2015 

%Input 

%1) group of vectors include: station name, station latitude and 

longitude,station open date and closed date, station status 

%2) vectors of grid center points Output 

% vectors of D4 in different time period 

Clear 

clc  

%% import NMX station list 

% using function importGSCstns to import the whole GSC station list used 

% for AB province 

%   Sta: cell  

%   stnLat: double (%f) 
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%   stnLon: double (%f)  

[Sta,stnLat,stnLon] = ... 

    importNMXstn('NMXstations.xlsx','sheet1',2,55);  

save NMXstn.mat  

%% load grid center locations  

load gridcenters.mat lat lon 

%%  1) D4 and mc from NMX catalog  

D4=Dist(stnLat,stnLon,lat,lon); 

mc=zeros(242,1); 

a=82.398; 

b=132.16;  

for i=1:242 

  mc(i)=(D4(i)+a)/b;  

      if mc(i)>3.5; 

          mc(i)=3.5; 

      end 

end  

%% Export D4 and mc matrix of NMX 

xlswrite('McofNMX.xlsx',[lat lon mc],'sheet1') 

function D4= Dist(stnlat,stnlon,lat,lon) 

%DIST Summary of this function goes here 

%   Detailed explanation goes here 

m=length(lat); 

n=length(stnlat); 

d=zeros(n,1); 

D4=zeros(m,1); 

for i=1:m 
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    for j=1:n 

        d(j)=distance(lat(i),lon(i),stnlat(j),stnlon(j)); 

    end 

    D4(i)=dist4(d); 

end 

D4=deg2km(D4); 

Appendix E. Magnitude Completeness Grid 

latitude longitude 
1985-
1989 

1990-
1999 

2000-
2006 

2007-
2009 2010 

2011-
2013 

2014-
2015 

58.75 -120.5 3.50 3.50 3.50 3.50 3.02 3.02 2.67 

58.25 -120.5 3.50 3.50 3.50 3.50 2.62 2.62 2.37 

57.75 -120.5 3.50 3.50 3.50 3.50 2.31 2.31 2.31 

57.25 -120.5 3.50 3.50 3.50 3.50 2.46 2.46 2.01 

56.75 -120.5 3.50 3.50 3.50 3.26 2.75 2.75 1.95 

56.25 -120.5 3.50 3.50 3.50 3.12 2.98 2.98 2.05 

55.75 -120.5 3.50 3.50 3.50 3.16 2.75 2.75 1.72 

55.25 -120.5 3.50 3.50 3.40 3.17 2.59 2.59 1.47 

54.75 -120.5 3.50 3.50 3.02 2.99 2.50 2.85 1.62 

54.25 -120.5 3.50 3.50 2.65 2.59 2.51 2.58 1.98 

53.75 -120.5 3.50 3.50 2.71 2.61 2.31 2.56 2.19 

53.25 -120.5 3.50 3.50 2.76 2.40 2.36 2.40 2.32 

52.75 -120.5 3.50 3.50 2.43 2.08 2.08 2.43 2.53 

52.25 -120.5 3.31 3.31 2.16 2.16 2.16 2.16 2.18 

51.75 -120.5 3.50 3.50 1.83 1.96 1.96 1.83 1.96 

51.25 -120.5 3.50 3.50 1.87 1.98 1.98 1.87 1.98 
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50.75 -120.5 3.50 3.50 1.91 1.93 1.93 1.91 1.93 

50.25 -120.5 3.50 3.50 2.12 2.27 2.27 2.12 2.27 

49.75 -120.5 3.50 3.50 2.45 2.67 2.67 2.45 2.67 

49.25 -120.5 3.50 3.50 2.81 2.81 2.81 2.81 2.68 

48.75 -120.5 3.50 3.50 3.19 3.19 3.19 3.19 3.03 

48.25 -120.5 3.50 3.50 3.50 3.50 3.50 3.50 3.40 

58.75 -119.5 3.50 3.50 3.50 3.50 3.19 3.19 2.42 

58.25 -119.5 3.50 3.50 3.50 3.50 2.83 2.83 2.17 

57.75 -119.5 3.50 3.50 3.50 3.50 2.50 2.50 2.07 

57.25 -119.5 3.50 3.50 3.50 3.50 2.37 2.37 2.08 

56.75 -119.5 3.50 3.50 3.50 3.50 2.51 2.51 1.95 

56.25 -119.5 3.50 3.50 3.50 3.35 2.87 2.87 1.63 

55.75 -119.5 3.50 3.50 3.50 3.04 2.82 3.18 1.46 

55.25 -119.5 3.50 3.50 3.32 2.89 2.43 3.05 1.29 

54.75 -119.5 3.50 3.50 2.99 2.84 2.55 2.84 1.59 

54.25 -119.5 3.50 3.50 2.98 2.48 2.44 2.59 1.85 

53.75 -119.5 3.50 3.50 2.91 2.35 2.07 2.57 2.05 

53.25 -119.5 3.50 3.50 2.51 2.17 2.17 2.25 1.97 

52.75 -119.5 3.50 3.50 2.13 1.78 1.78 2.13 2.17 

52.25 -119.5 3.50 3.50 1.78 1.78 1.78 1.78 2.26 

51.75 -119.5 3.50 3.50 1.49 1.49 1.49 1.49 2.20 

51.25 -119.5 3.50 3.50 1.61 1.61 1.61 1.61 2.00 

50.75 -119.5 3.50 3.50 1.83 1.83 1.83 1.83 1.90 

50.25 -119.5 3.50 3.50 1.94 2.14 2.14 1.94 2.14 
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49.75 -119.5 3.50 3.50 2.20 2.44 2.44 2.20 2.44 

49.25 -119.5 3.50 3.50 2.60 2.60 2.60 2.60 2.40 

48.75 -119.5 3.50 3.50 3.01 3.01 3.01 3.01 2.79 

48.25 -119.5 3.50 3.50 3.42 3.29 3.29 3.42 3.19 

58.75 -118.5 3.50 3.50 3.50 3.50 3.43 3.43 2.75 

58.25 -118.5 3.50 3.50 3.50 3.50 3.11 3.11 2.59 

57.75 -118.5 3.50 3.50 3.50 3.50 2.82 2.82 2.39 

57.25 -118.5 3.50 3.50 3.50 3.39 2.58 2.59 2.20 

56.75 -118.5 3.50 3.50 3.50 3.33 2.41 2.42 1.99 

56.25 -118.5 3.50 3.50 3.50 3.09 2.68 2.68 1.75 

55.75 -118.5 3.50 3.50 3.50 2.74 2.69 3.08 1.64 

55.25 -118.5 3.50 3.50 3.50 2.49 2.41 3.19 1.52 

54.75 -118.5 3.48 3.48 3.34 2.77 2.44 2.77 1.48 

54.25 -118.5 3.49 3.49 2.93 2.52 2.35 2.85 1.64 

53.75 -118.5 3.50 3.50 2.80 2.11 1.93 2.50 1.88 

53.25 -118.5 3.50 3.50 2.38 1.91 1.91 2.29 1.72 

52.75 -118.5 3.50 3.50 1.97 1.66 1.66 1.97 1.73 

52.25 -118.5 3.37 3.37 1.55 1.55 1.55 1.55 1.75 

51.75 -118.5 3.50 3.50 1.15 1.15 1.15 1.15 1.85 

51.25 -118.5 3.50 3.50 1.42 1.42 1.42 1.42 2.07 

50.75 -118.5 3.50 3.49 1.84 1.84 1.84 1.84 1.97 

50.25 -118.5 3.50 3.32 2.18 2.18 2.18 2.18 2.26 

49.75 -118.5 3.50 3.20 2.58 2.11 2.11 2.58 2.58 

49.25 -118.5 3.50 3.15 2.78 2.53 2.53 2.78 2.78 
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48.75 -118.5 3.50 3.50 3.04 2.83 2.83 3.04 3.04 

48.25 -118.5 3.50 3.50 3.34 2.96 2.96 3.34 3.26 

58.75 -117.5 3.50 3.50 3.50 3.50 3.50 3.50 2.74 

58.25 -117.5 3.50 3.50 3.50 3.50 3.33 3.33 2.77 

57.75 -117.5 3.50 3.50 3.50 3.38 3.19 3.19 2.53 

57.25 -117.5 3.50 3.50 3.50 3.44 2.99 2.99 2.16 

56.75 -117.5 3.50 3.50 3.50 3.30 2.77 2.86 1.83 

56.25 -117.5 3.50 3.50 3.50 2.90 2.58 2.80 1.67 

55.75 -117.5 3.50 3.50 3.50 2.68 2.50 2.99 1.56 

55.25 -117.5 3.50 3.50 3.46 2.29 2.26 3.23 1.49 

54.75 -117.5 3.50 3.50 3.09 2.47 2.31 3.05 1.55 

54.25 -117.5 3.50 3.50 2.98 2.41 2.27 2.82 1.49 

53.75 -117.5 3.50 3.50 2.75 2.00 2.00 2.57 1.66 

53.25 -117.5 3.50 3.50 2.40 1.62 1.62 2.40 1.44 

52.75 -117.5 3.50 3.50 1.99 1.70 1.70 1.99 1.33 

52.25 -117.5 3.33 3.33 1.59 1.54 1.54 1.59 1.43 

51.75 -117.5 3.08 3.08 1.56 1.56 1.56 1.56 1.56 

51.25 -117.5 3.33 3.29 1.75 1.75 1.75 1.75 1.75 

50.75 -117.5 3.50 3.03 2.05 2.04 2.04 2.05 2.08 

50.25 -117.5 3.50 2.82 2.33 2.31 2.31 2.33 2.31 

49.75 -117.5 3.50 2.74 2.67 2.21 2.21 2.59 2.51 

49.25 -117.5 3.50 3.15 2.61 2.54 2.54 2.61 2.60 

48.75 -117.5 3.50 3.50 3.02 2.48 2.48 3.02 2.69 

48.25 -117.5 3.50 3.50 3.43 2.40 2.40 3.43 2.95 
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58.75 -116.5 3.50 3.50 3.50 3.50 3.48 3.50 3.18 

58.25 -116.5 3.50 3.50 3.50 3.50 3.50 3.50 2.82 

57.75 -116.5 3.50 3.50 3.50 3.50 3.13 3.50 2.41 

57.25 -116.5 3.50 3.50 3.50 3.50 2.79 3.42 2.00 

56.75 -116.5 3.50 3.50 3.50 3.31 2.47 3.31 2.16 

56.25 -116.5 3.50 3.50 3.50 3.18 2.58 3.27 1.77 

55.75 -116.5 3.50 3.50 3.50 2.77 2.38 3.25 1.69 

55.25 -116.5 3.50 3.50 3.50 2.38 2.08 3.36 1.84 

54.75 -116.5 3.50 3.50 3.50 2.24 2.00 2.97 1.55 

54.25 -116.5 3.50 3.50 3.14 2.12 2.12 2.88 1.73 

53.75 -116.5 3.50 3.50 2.77 2.24 2.24 2.62 1.37 

53.25 -116.5 3.50 3.50 2.41 1.93 1.93 2.41 1.11 

52.75 -116.5 3.50 3.50 2.20 1.69 1.69 2.20 1.05 

52.25 -116.5 3.50 3.50 2.05 1.84 1.84 2.05 1.19 

51.75 -116.5 3.26 3.26 2.07 1.69 1.69 2.00 1.40 

51.25 -116.5 2.96 2.94 2.20 1.89 1.89 1.89 1.56 

50.75 -116.5 3.27 2.70 2.43 2.19 2.19 2.19 1.68 

50.25 -116.5 3.50 2.54 2.49 2.33 2.33 2.35 1.92 

49.75 -116.5 3.50 2.91 2.46 2.25 2.25 2.37 2.16 

49.25 -116.5 3.50 3.30 2.82 2.20 2.20 2.46 2.34 

48.75 -116.5 3.50 3.50 3.19 2.08 2.08 2.84 2.41 

48.25 -116.5 3.50 3.50 3.50 1.94 1.94 3.23 2.58 

58.75 -115.5 3.50 3.50 3.50 3.50 3.50 3.50 3.23 

58.25 -115.5 3.50 3.50 3.50 3.50 3.37 3.50 2.81 
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57.75 -115.5 3.50 3.50 3.50 3.50 2.97 3.50 2.39 

57.25 -115.5 3.50 3.50 3.50 3.50 2.57 3.50 1.97 

56.75 -115.5 3.50 3.50 3.50 3.50 2.47 3.50 2.29 

56.25 -115.5 3.50 3.50 3.50 3.34 2.62 3.38 1.91 

55.75 -115.5 3.50 3.50 3.50 2.97 2.40 3.08 1.99 

55.25 -115.5 3.50 3.50 3.50 2.62 2.31 3.49 1.77 

54.75 -115.5 3.50 3.50 3.50 2.29 2.29 3.21 1.69 

54.25 -115.5 3.50 3.50 3.39 2.04 2.04 3.04 1.44 

53.75 -115.5 3.50 3.50 3.05 1.86 1.86 3.00 1.20 

53.25 -115.5 3.50 3.50 2.79 1.82 1.82 2.75 0.88 

52.75 -115.5 3.50 3.50 2.53 1.78 1.91 2.49 0.79 

52.25 -115.5 3.44 3.44 2.31 1.99 2.03 2.27 0.96 

51.75 -115.5 3.24 3.04 2.28 2.09 2.16 2.21 1.19 

51.25 -115.5 3.10 2.66 2.62 2.01 2.11 2.33 1.10 

50.75 -115.5 3.02 2.98 2.57 2.12 2.12 2.34 1.26 

50.25 -115.5 3.02 3.00 2.86 2.22 2.22 2.55 1.58 

49.75 -115.5 3.19 3.19 2.90 2.22 2.22 2.82 1.89 

49.25 -115.5 3.50 3.50 3.13 1.87 1.87 2.89 2.26 

48.75 -115.5 3.50 3.50 3.46 1.62 1.62 3.11 2.65 

48.25 -115.5 3.50 3.50 3.50 1.52 1.52 3.47 2.82 

58.75 -114.5 3.50 3.50 3.50 3.50 3.50 3.50 3.29 

58.25 -114.5 3.50 3.50 3.50 3.50 3.30 3.50 2.89 

57.75 -114.5 3.50 3.50 3.50 3.50 2.88 3.50 2.49 

57.25 -114.5 3.50 3.50 3.50 3.50 2.46 3.50 2.20 
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56.75 -114.5 3.50 3.50 3.50 3.50 2.52 3.50 2.43 

56.25 -114.5 3.50 3.50 3.50 3.23 2.30 3.23 2.16 

55.75 -114.5 3.50 3.50 3.50 2.82 2.36 3.25 1.92 

55.25 -114.5 3.50 3.50 3.50 2.42 2.42 3.50 1.78 

54.75 -114.5 3.50 3.50 3.50 2.18 2.03 3.50 1.70 

54.25 -114.5 3.50 3.50 3.50 2.30 1.77 3.27 1.32 

53.75 -114.5 3.50 3.50 3.43 1.91 1.94 3.24 0.93 

53.25 -114.5 3.50 3.50 3.19 1.64 2.18 3.15 0.88 

52.75 -114.5 3.30 3.50 2.94 1.73 2.07 2.93 1.10 

52.25 -114.5 3.02 3.33 2.80 1.69 2.06 2.72 1.10 

51.75 -114.5 2.78 2.91 2.73 1.99 2.18 2.67 1.11 

51.25 -114.5 2.80 2.80 2.74 1.94 2.38 2.54 0.78 

50.75 -114.5 3.00 3.00 2.84 2.08 2.30 2.79 0.98 

50.25 -114.5 3.25 3.25 3.19 2.46 2.51 3.01 1.40 

49.75 -114.5 3.50 3.50 3.44 2.09 2.09 3.23 1.73 

49.25 -114.5 3.50 3.50 3.50 1.81 1.81 3.44 2.14 

48.75 -114.5 3.50 3.50 3.50 1.42 1.42 3.49 2.16 

48.25 -114.5 3.50 3.50 3.50 1.06 1.06 3.50 2.31 

58.75 -113.5 3.50 3.50 3.50 3.50 3.50 3.50 3.43 

58.25 -113.5 3.50 3.50 3.50 3.50 3.30 3.50 3.05 

57.75 -113.5 3.50 3.50 3.50 3.50 2.88 3.50 2.68 

57.25 -113.5 3.50 3.50 3.50 3.50 2.55 3.50 2.54 

56.75 -113.5 3.50 3.50 3.50 3.50 2.53 3.50 2.53 

56.25 -113.5 3.50 3.50 3.50 3.17 2.61 3.49 2.54 
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55.75 -113.5 3.50 3.50 3.50 2.76 2.75 3.48 2.34 

55.25 -113.5 3.50 3.50 3.50 2.44 2.33 3.50 2.12 

54.75 -113.5 3.50 3.50 3.50 2.36 2.16 3.50 1.84 

54.25 -113.5 3.50 3.50 3.50 2.23 1.97 3.50 1.49 

53.75 -113.5 3.50 3.50 3.50 1.89 1.89 3.50 1.23 

53.25 -113.5 3.50 3.50 3.50 2.07 2.07 3.50 1.22 

52.75 -113.5 3.41 3.50 3.41 1.97 1.99 3.37 1.43 

52.25 -113.5 3.30 3.32 3.30 1.95 1.99 3.20 1.60 

51.75 -113.5 3.25 3.25 3.18 2.08 2.09 3.10 1.33 

51.25 -113.5 3.29 3.29 3.27 2.28 2.31 3.07 1.11 

50.75 -113.5 3.46 3.46 3.35 2.06 2.24 3.10 1.15 

50.25 -113.5 3.50 3.50 3.49 2.38 2.13 3.21 1.47 

49.75 -113.5 3.50 3.50 3.50 2.16 2.13 3.50 1.79 

49.25 -113.5 3.50 3.50 3.50 1.82 1.82 3.50 2.19 

48.75 -113.5 3.50 3.50 3.50 1.57 1.57 3.50 2.60 

48.25 -113.5 3.50 3.50 3.50 1.31 1.31 3.50 2.65 

58.75 -112.5 3.50 3.50 3.50 3.50 3.50 3.50 3.50 

58.25 -112.5 3.50 3.50 3.50 3.50 3.39 3.50 3.28 

57.75 -112.5 3.50 3.50 3.50 3.50 3.08 3.50 3.08 

57.25 -112.5 3.50 3.50 3.50 3.50 2.92 3.50 2.92 

56.75 -112.5 3.50 3.50 3.50 3.50 2.99 3.50 2.99 

56.25 -112.5 3.50 3.50 3.50 3.38 3.06 3.50 2.94 

55.75 -112.5 3.50 3.50 3.50 3.07 2.79 3.50 2.70 

55.25 -112.5 3.50 3.50 3.50 2.80 2.38 3.50 2.35 
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54.75 -112.5 3.50 3.50 3.50 2.63 2.29 3.50 2.13 

54.25 -112.5 3.50 3.50 3.50 2.44 2.32 3.50 1.86 

53.75 -112.5 3.50 3.50 3.50 2.39 1.98 3.50 1.67 

53.25 -112.5 3.50 3.50 3.50 2.43 2.34 3.50 1.71 

52.75 -112.5 3.50 3.50 3.50 2.45 2.27 3.50 1.86 

52.25 -112.5 3.50 3.50 3.50 2.46 2.46 3.50 1.97 

51.75 -112.5 3.50 3.50 3.50 2.18 2.18 3.50 1.77 

51.25 -112.5 3.50 3.50 3.50 2.34 2.04 3.50 1.62 

50.75 -112.5 3.50 3.50 3.50 2.24 1.93 3.50 1.64 

50.25 -112.5 3.50 3.50 3.50 2.46 1.88 3.50 1.82 

49.75 -112.5 3.50 3.50 3.50 2.41 1.92 3.50 2.06 

49.25 -112.5 3.50 3.50 3.50 2.09 2.06 3.50 2.40 

48.75 -112.5 3.50 3.50 3.50 1.84 1.84 3.50 2.27 

48.25 -112.5 3.50 3.50 3.50 1.67 1.67 3.50 2.18 

58.75 -111.5 3.50 3.50 3.50 3.50 3.50 3.50 3.50 

58.25 -111.5 3.50 3.50 3.50 3.50 3.50 3.50 3.50 

57.75 -111.5 3.50 3.50 3.50 3.50 3.22 3.50 3.31 

57.25 -111.5 3.50 3.50 3.50 3.50 3.32 3.50 3.32 

56.75 -111.5 3.50 3.50 3.50 3.50 3.45 3.50 3.45 

56.25 -111.5 3.50 3.50 3.50 3.50 3.32 3.50 3.30 

55.75 -111.5 3.50 3.50 3.50 3.43 2.93 3.50 2.95 

55.25 -111.5 3.50 3.50 3.50 3.21 2.56 3.50 2.72 

54.75 -111.5 3.50 3.50 3.50 2.97 2.22 3.50 2.50 

54.25 -111.5 3.50 3.50 3.50 2.92 2.14 3.50 2.28 
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53.75 -111.5 3.50 3.50 3.50 2.88 2.30 3.50 2.16 

53.25 -111.5 3.50 3.50 3.50 2.66 2.61 3.50 2.15 

52.75 -111.5 3.50 3.50 3.50 2.96 2.31 3.50 2.31 

52.25 -111.5 3.50 3.50 3.50 2.79 2.39 3.50 2.37 

51.75 -111.5 3.50 3.50 3.50 2.44 2.16 3.50 2.24 

51.25 -111.5 3.50 3.50 3.50 2.54 1.76 3.50 2.14 

50.75 -111.5 3.50 3.50 3.50 2.56 1.87 3.50 2.14 

50.25 -111.5 3.50 3.50 3.50 2.68 1.92 3.50 2.27 

49.75 -111.5 3.50 3.50 3.50 2.37 2.07 3.50 2.37 

49.25 -111.5 3.50 3.50 3.50 2.44 1.96 3.50 2.04 

48.75 -111.5 3.50 3.50 3.50 2.21 2.13 3.50 1.98 

48.25 -111.5 3.50 3.50 3.50 2.13 2.13 3.50 2.13 

58.75 -110.5 3.50 3.50 3.50 3.50 3.50 3.50 3.50 

58.25 -110.5 3.50 3.50 3.50 3.50 3.50 3.50 3.50 

57.75 -110.5 3.50 3.50 3.50 3.50 3.50 3.50 3.50 

57.25 -110.5 3.50 3.50 3.50 3.50 3.50 3.50 3.50 

56.75 -110.5 3.50 3.50 3.50 3.50 3.50 3.50 3.50 

56.25 -110.5 3.50 3.50 3.50 3.50 3.50 3.50 3.50 

55.75 -110.5 3.50 3.50 3.50 3.50 3.17 3.50 3.28 

55.25 -110.5 3.50 3.50 3.50 3.49 2.83 3.50 3.14 

54.75 -110.5 3.50 3.50 3.50 3.35 2.53 3.50 2.91 

54.25 -110.5 3.50 3.50 3.50 3.41 2.49 3.50 2.74 

53.75 -110.5 3.50 3.50 3.50 3.29 2.69 3.50 2.65 

53.25 -110.5 3.50 3.50 3.50 2.96 2.95 3.50 2.64 
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52.75 -110.5 3.50 3.50 3.50 3.26 2.67 3.50 2.79 

52.25 -110.5 3.50 3.50 3.50 3.09 2.43 3.50 2.84 

51.75 -110.5 3.50 3.50 3.50 2.79 2.26 3.50 2.73 

51.25 -110.5 3.50 3.50 3.50 2.84 2.19 3.50 2.63 

50.75 -110.5 3.50 3.50 3.50 2.95 2.24 3.50 2.66 

50.25 -110.5 3.50 3.50 3.50 2.73 2.38 3.50 2.72 

49.75 -110.5 3.50 3.50 3.50 2.61 2.28 3.50 2.58 

49.25 -110.5 3.50 3.50 3.50 2.89 2.39 3.50 2.51 

48.75 -110.5 3.50 3.50 3.50 2.62 2.53 3.50 2.53 

48.25 -110.5 3.50 3.50 3.50 2.64 2.38 3.50 2.64 
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