
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

9-10-2015 12:00 AM 

Implementation Techniques for the Truncated Fourier Transform Implementation Techniques for the Truncated Fourier Transform 

Li Zhang, The University of Western Ontario 

Supervisor: Marc Moreno Maza, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in 

Computer Science 

© Li Zhang 2015 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Other Computer Sciences Commons 

Recommended Citation Recommended Citation 
Zhang, Li, "Implementation Techniques for the Truncated Fourier Transform" (2015). Electronic Thesis and 
Dissertation Repository. 3287. 
https://ir.lib.uwo.ca/etd/3287 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F3287&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ir.lib.uwo.ca%2Fetd%2F3287&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/3287?utm_source=ir.lib.uwo.ca%2Fetd%2F3287&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


IMPLEMENTATION TECHNIQUES FOR THE TRUNCATED

FOURIER TRANSFORM

Li Zhang

Graduate Program in Computer Science

October 26, 2015

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

© Li Zhang 2015



ii

Abstract

We study various algorithms for the Truncated Fourier Transform (TFT) which is a

variation of the Discrete Fourier Transform (DFT) that allows one to work with an input

vector of arbitrary size without zero padding.

After a review of the original algorithms for the forward and inverse TFT introduced

by J. van der Hoeven, we consider the variation of D. Harvey as well as that of J. Johnson

and L.C. Meng. Both variations are based on Cooley-Tukey like formulas. The former is

called strict general radix as it strictly follows the specifications proposed by J. van der

Hoeven, while the latter is called relaxed general radix as it requires some zero padding

so as to improve data flow which supports full vectorization and parallelization.

In this thesis, we report on an implementation of the relaxed general radix forward

TFT and a strict general radix inverse TFT. We have three objectives. First, obtain-

ing a software tool generating optimized code forward and inverse TFT, extending the

previous work of S. Covanov dedicated to FFT code generation. Second, comparing the

practical efficiency of the strict and relaxed general radix schemes. Third, investigating

the parallelization of one-dimensional TFT algorithms.

Our experimental results show that, in practice, the relaxed general radix forward

TFT can reach similar performance (in terms of running time, clock cycles and cache

misses) as the optimized FFT code of the BPAS library (on input vectors on which both

codes apply without zero padding). Moreover, for an input vector whose size ranges

between two consecutive values for which FFT does not require zero padding, our relaxed

TFT generated code provides an effective implementation. Unfortunately, the same

satisfactory observation does not hold for the strict radix scheme when comparing the

inverse TFT and FFT. As for parallelization, here again the relaxed general radix scheme

is satisfactory while the strict general radix is not. For instance, w.r.t. to the FFT code,

the parallel forward TFT code has a speedup factor of 5.31 and 6.78 for an input vector

of size 223 and 226 respectively.

Keywords. Parallel Algorithms, High Performance Computing, TFT, Inverse TFT,

Computer Algebra.



iii

Acknowledgments

First and foremost I would like to offer my sincerest gratitude to my supervisor, Dr

Marc Moreno Maza, who has supported me throughout my thesis with his patience and

knowledge. I attribute the level of my Masters degree to his encouragement and effort,

and without him, this thesis would not have been completed or written.

Secondly, I would like to thank my academic brothers and sisters Ning Xie, Xiaohui

Chen, Javad Doliskani, Parisa Alvandi and Dr. Paul Vrbik for working along with me

and helping me complete this research work successfully. Special thanks to Svyatoslav

Covanov and Andrew Arnold for helping me with Montgomery tricks and theory of the

TFT. In addition, thanks to Shaun Li for reading this thesis and his useful comments.

Thirdly, all my sincere thanks and appreciation go to all the members from our

Ontario Research Centre for Computer Algebra (ORCCA) lab in the Department of

Computer Science for their invaluable support and assistance, and all the members of

my thesis examination committee.

Finally, I would like to thank all of my friends and family members for their consistent

encouragement and continued support.

I dedicate this thesis to my parents for their unconditional love and support through-

out my life.



Contents

List of Algorithms vii

List of Tables viii

List of Figures x

1 Introduction 1

1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 4

2.1 Rings and fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Montgomery arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Primitive roots of unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Discrete Fourier transform (DFT) . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Fast Fourier transform (FFT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Montgomery arithmetic in practice . . . . . . . . . . . . . . . . . . . . . . . . 8

2.7 Tensor algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.8 Cooley Tukey factorization formula . . . . . . . . . . . . . . . . . . . . . . . . 13

2.9 Multi-core architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.10 The fork-join concurrency model . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.11 The CilkPlus programming language . . . . . . . . . . . . . . . . . . . . . . . 17

2.12 The ideal cache model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.13 Cache complexity of data transposition . . . . . . . . . . . . . . . . . . . . . 20

2.14 Cache complexity of Cooley-Tukey algorithm . . . . . . . . . . . . . . . . . . 21

2.15 Blocking strategy for FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Forward and Inverse Truncated Fourier Transform 25

3.1 FFT: review and complement . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 The truncated Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . 28

iv



CONTENTS v

3.3 Forward TFT: pseudo-code with an illustrative example . . . . . . . . . . . 30

3.4 The inverse truncated Fourier transform . . . . . . . . . . . . . . . . . . . . . 31

3.5 Inverse TFT: an algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Illustration of the inverse TFT algorithm . . . . . . . . . . . . . . . . . . . . 34

4 The Relaxed General Radix TFT and Strict General Radix Inverse

TFT 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 A relaxed general-radix TFT algorithm . . . . . . . . . . . . . . . . . . . . . 42

4.3 A cache-friendly inverse TFT (ITFT) . . . . . . . . . . . . . . . . . . . . . . 43

5 Python Code Generator for TFT and Inverse TFT in C++/CilkPlus 45

5.1 C++ code generation in Python . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 The basic polynomial algebra subprograms . . . . . . . . . . . . . . . . . . . 47

5.2.1 Design and specification . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.2 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.3 BPAS’s DFT code generator . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.4 The use of the BPAS library . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Code generation for TFT and ITFT . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 Details of the Python code generator . . . . . . . . . . . . . . . . . . 51

5.3.2 The structure of the template file . . . . . . . . . . . . . . . . . . . . . 52

5.4 Optimization techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.1 The use of machine code . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.2 Hard-coded constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.3 Unrolling loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.4 Work space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.5 Montgomery arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.6 Cache-efficient transpose . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4.7 Parallel code generation . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Experimentation of Serial and Inverse TFT (ITFT) 61

6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Comparison of serial code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Results for serial TFT between two consecutive powers of two . . . . . . . . 63

6.4 Results for TFT and ITFT parallel code . . . . . . . . . . . . . . . . . . . . . 63

7 Conclusion 70



CONTENTS vi

A Python Script 74



List of Algorithms

1 transpose(sfixn *A, int lda, sfixn *B, int ldb, int i0, int i1, int j0, int j1) . . 18

2 FFTradix K(α,ω,n = J ⋅K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 FFT(α, ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 TFT(X,ω, p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 InvTFT(x,head, tail, last, s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 CACHEFRIENDLYITFT(L, ζ, z, n, f ; (x0, . . . , xL−1) . . . . . . . . . . . . . . . 44

7 DFT eff(n,A,Ω,H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8 Shuffle(n,A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9 DFT rec(n,A,Ω,H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

10 TFT 8POINT(sfixn ∗A,sfixn ∗W ) . . . . . . . . . . . . . . . . . . . . . . . . . 53

11 TFT Core(invec, ω, p, n, `,m, basecase, invectmp) . . . . . . . . . . . . . . . . 56

12 MontMulModSpe OPT3 AS GENE INLINE(sfixn a,sfixn b) . . . . . . . . . . 57

13 unrolledSpe8MontMul(sfixn* input1, sfixn* input2, MONTP OPT2 AS GENE

* pPtr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

14 AddModSpe(sfixn a, sfixn b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

15 SubModSpe(sfixn a, sfixn b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

16 Prod Inv(x, y, z, p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

17 Prod Inv Mont(x, y, z, p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

18 transpose serial(sfixn *A, int lda, sfixn *B, int ldb, int i0, int i1, int j0, int

j1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

19 FFT 8POINT(sfixn *A,sfixn *W ) . . . . . . . . . . . . . . . . . . . . . . . . . 59

20 DFT iter(n,A,Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

21 FFT 2POINT(sfixn ∗A,sfixn ∗W ) . . . . . . . . . . . . . . . . . . . . . . . . . 60

22 FFT 4POINT(sfixn ∗A,sfixn ∗W ) . . . . . . . . . . . . . . . . . . . . . . . . . 60

vii



List of Tables

6.1 Clock cycles for serial FFT, TFT and ITFT with input size n. . . . . . . . 62

6.2 Cache misses for serial FFT, TFT and ITFT with input size n. . . . . . . . 64

6.3 Cilkview analysis of parallel TFT on input size N , where work, and

span rows are the number of instructions, and parallelism is the ratio

of Work/Span. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.4 Cilkview analysis of parallel ITFT on input size N , where work, and

span rows are the number of instructions, and parallelism is the ratio of

Work/Span. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.5 Running time (secs) for serial FFT, serial TFT and parallel TFT with

grain size of 1024 on 12 cores) and the speedup between serial FFT and

parallel TFT and between serial TFT and parallel TFT. . . . . . . . . . . . 69

viii



List of Figures

2.1 The ideal-cache model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Scanning an array of n = N elements, with L = B words per cache line. . . 19

2.3 Algorithm 3 strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Optimal FFT using blocking. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Butterfly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Butterflies. Schematic representation of Equation (3.1). The black dots

correspond to the xs,i. The top row corresponding to s = 0. In this case

n = 16 = 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 The Fast Fourier Transform for n = 16. The top row, corresponding to

s = 0, represents the values of x0. The bottom row, corresponding to s = 4

is some permutation of â (the result of the FFT on a). . . . . . . . . . . . . 28

3.4 The FFT with “artificial” zero points (green). . . . . . . . . . . . . . . . . . 29

3.5 Removing all unnecessary computations from Figure 3.4 gives the schematic

representation of the TFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Example of TFT where n = 16, ` = 9, prime number is 17, and ω = 3. . . . . 35

3.7 The relation for no butterfly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8 tail ≥ LeftMiddle (i.e. at least half the values are at x = p). . . . . . . . . . . 36

3.9 tail < LeftMiddle (i.e. less than half the values are at x = p). . . . . . . . . . 37

3.10 Schematic representation of the recursive computation of the Inverse TFT

for n = 16 and ` = 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.11 The first part of ITFT example. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.12 The second part of ITFT example. . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 An example of factoring TFT32,17,17 with the relaxed general-radix TFT

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 A snapshot of BPAS algebraic data structures. . . . . . . . . . . . . . . . . . . 48

6.1 Running time (secs) of serial FFT, TFT and ITFT. . . . . . . . . . . . . . . 63

6.2 TFT and ITFT results on a range between 222 and 223 on a 12 cores node. 65

ix



LIST OF FIGURES x

6.3 TFT and ITFT results on a range between 223 and 224 on a 12 cores node. 65

6.4 TFT speedup on 4 cores and 12 cores. . . . . . . . . . . . . . . . . . . . . . . 66

6.5 ITFT speedup on 4 cores and 12 cores. . . . . . . . . . . . . . . . . . . . . . . 66

6.6 Parallel TFT with different grain sizes. . . . . . . . . . . . . . . . . . . . . . . 68

6.7 Parallel ITFT with different grain sizes. . . . . . . . . . . . . . . . . . . . . . 68

A.1 Python code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



Chapter 1

Introduction

The discrete Fourier transform (DFT) plays a fundamental role in digital signal processing

and computer algebra. In the latter case, coefficients1 are in a finite field and K-way

Cooley-Tukey fast Fourier transform (FFT) is commonly used, while in the former case,

coefficients are usually complex numbers and other schemes like mixed-radix are prefered.

Over finite fields, K-way Cooley-Tukey FFTs can be implemented efficiently, for well-

chosen K. However, when the input vector has a size varying between two consecutive

powers of K, say between Ke + 1 and Ke+1, a K-way FFT has the same cost (that at

Ke+1) in terms of arithmetic operations.

Truncated Fourier transforms TFT deal with this challenge but the complex data

flow of those algorithms make them hard to implement efficiently. This thesis compares

experimentally different schemes for implementing TFT both serially and in parallel.

1.1 Literature review

The original TFT algorithms of Joris van der Hoeven [26] has stimulated a significant re-

search activity. It was integrated in various software libraries, like the modpn library [17]

where it was used in a building block, in particular for multi-dimensional FFT-like trans-

forms [19] and their application to dense multivariate polynomial arithmetic [20].

For the one-dimensional case, improvements to the algorithms of Joris van der Hoeven

were proposed by David Harvey [12] amd by Lingchuan Meng and Jeremy R. Johnson [21].

In the former case, these enhancements are in terms of cache complexity, even though

the paper does not phrase things in such terms; in the latter case, data flow is simpli-

fied (to the expense of slightly increasing the algebraic complexity) so as to offer more

1Often, we have K = 2.

1



1.2. Contributions of this thesis 2

opportunities for concurrent computations to take place.

Both the variation of David Harvey and that of Lingchuan Meng and Jeremy R.

Johnson are based on a Cooley-Tukey like formula. The former is called strict general

radix as it strictly follows the specifications proposed by J. van der Hoeven, while the

latter is called relaxed general radix as it requires some zeroes padding to improve data

flow that supports full vectorization and parallelization.

1.2 Contributions of this thesis

L.C. Meng and J. R. Johnson have exhibited Cooley-Tukey-like formulas (called relaxed,

strict) for TFT (forward and inverse) but do not provide pseudo-code nor publicly avail-

able code (as of August 2015 when this thesis was written). We propose pseudo-code for

their relaxed Cooley-Tukey-like formula and a Python code generator integrated into the

Basic Polynomial Algebra Subprograms (BPAS)2 for both forward and inverse FFT. Our

generated code can be serial (C++) or parallel (CilkPlus).

Our second contribution is experimental. Thanks to Svyatoslav Covanov [4], BPAS

has a serial-FFT Python generator which produces highly optimized and competitive

code. For appropriate input vectors, we compare the serial-FFT and serial-TFT (both

forward and inverse) codes produced by the BPAS code generators (the one of S. Covanov

and ours). The forward serial-TFT (which uses the relaxed formula) is competitive

while the inverse serial-TFT (which uses the strict formula) suffers, as expected, from a

more complex data flow. Our generated parallel forward TFT code provides interesting

speedup factors, beneficial to the BPAS library. For instance, w.r.t. to the FFT code,

the parallel forward TFT code has a speedup factor of 5.31 and 6.78 for an input vector

of size 223 and 226 respectively.

This thesis is organized as follows. In Chapter 2, we briefly review finite field arith-

metic and DFT computations over such fields, the fork-join concurrency model, and

CilkPlus programming language, the ideal cache model and cache complexity results for

FFT algorithms.

In Chapter 3, we review the original algorithms for TFT and its inverse, as they were

proposed by J. van der Hoeven. In Chapter 4, we describe the variation sof D. Harvey

as well as that of J. Johnson and L.C. Meng. We stress the fact that David Harvey

in [12] proposed conceptually simpler ways of computing TFTs compared to J. van der

Hoeven and this inspired the work of J. Johnson and L.C. Meng [21] which has brought

a practically efficient forward TFT algorithm.

2This library is available in source at www.bpaslib.org.

www.bpaslib.org


1.2. Contributions of this thesis 3

In Chapter 5, we rely on the BPAS library to fulfil the implementation of our Python

code generator We take advantage of the Python code generator framework designed

by Svyatoslav Covanov for FFT. Our experimental results are collected in Chapter 6, It

includes the comparisons of running times, clock cycles, cache misses as well as Cilkview

analysis results such as speedup factors, work and burdened span.



Chapter 2

Background

In this chapter, we review basic concepts related to high-performance implementation of

the truncated Fourier transform (TFT) and the inverse TFT (ITFT). We start with the

definition of rings and fields in Section 2.1. We continue with the Montgomery arith-

metic, described in Section 2.2, which plays an important role in our algorithms. We

introduce the definition of primitive roots of unity in Section 2.3. The algorithm of

the fast Fourier transform (FFT) is summarized in Section 3.1. We describe the imple-

mentation of Montgomery arithmetic in practice in Section 2.6. Further, we review basic

notions of tensor algebra 2.7 which is used as a particular factorization of the DFTn in the

FFT algorithm, follow the PhD thesis of Wei Pan http://www.csd.uwo.ca/~moreno/

Publications/Wei.Pan-Thesis-UWO.pdf. The Cooley Tukey factorization formula is

summarized in Section 2.14.

We continue with an introduction of multi-core architectures in Section 2.9 and the

fork-join concurrency model in Section 2.10, follow the Master thesis of Farnam Man-

souri [18]. We give a brief description of CilkPlus programming language in Section 2.11.

The theory behind the ideal cache model can be found in Section 2.12. Then, we de-

scribe the cache complexity of data transposition in Section 2.13. Cache complexity of

Cooley-Tukey algorithm is analyzed in Section 2.14. The blocking strategy for FFT can

be found in Section 2.15.

2.1 Rings and fields

In algebra, a ring is a (non-empty) set R endowed with two binary operations, denoted

additively and multiplicatively. Both are required to be associative and have a neutral

element (denoted 0 and 1, respectively). Moreover, the addition must be commutative

4

http://www.csd.uwo.ca/~moreno/Publications/Wei.Pan-Thesis-UWO.pdf
http://www.csd.uwo.ca/~moreno/Publications/Wei.Pan-Thesis-UWO.pdf


2.1. Rings and fields 5

and each x ∈ R must admit an opposite element, denoted by −x, such that x + (−x) = 0

holds. Finally, the multiplication must be distributive w.r.t. the addition. For more

details, see https://en.wikipedia.org/wiki/Ring_%28mathematics%29.

Examples of rings are: (1) the set Z of (positive and negative) integers, (2) the set

of square matrices of order n, for a given positive integer n, with coefficients in Z, (3)

the set of univariate polynomials with coefficients in Z and (4) the set Z/mZ of integers

modulo m, where m is a given positive integer.

When the multiplication itself is commutative, the ring R is called commutative. If

each non-zero x ∈ R also admits an inverse, denoted by x−1 or 1/x, such that x × x−1 = 1

holds, then the commutative ring R is said to be a field.

Examples of fields are: (1) the set Q of rational numbers, (2) the set R of real numbers,

(3) the set C of complex numbers, and (4) the set Fp ∶= Z/pZ where p is a prime number.

Fields of the form Fp play a fundamental role in algebra and are called prime fields.

Elements of Fp are the residue classes of the equivalence relation on Z ×Z defined by

a ≡ b mod p ⇐⇒ p divide (a − b).

Let a, b ∈ Fp, be represented by a, b ∈ Z respectively. The sum a + b and the product

a × b are given by r and s, where r (resp. s) is the remainder in the Euclidean division

of a + b (resp. a × b) by p.

Consider now the implementation of Fp on computers. Let ws be the size in bits of

a machine word, which is assumed to be even. Assume that elements of Fp are encoded

by the non-negative integers 0,1, . . . , p− 1. We focus here on the case where p is a prime

number such that

2(p − 1) ≤ 2ws − 1

holds (for a reason that will become clear shortly) thus implying the inequality

⌊log2(p)⌋ + 1 ≤ ws,

that is, all integers in the range 0,1, . . . , p − 1 can be written on a single machine word.

Clearly, the addition (a, b) z→ a+b is easily implemented using machine word operations.

Here’s a C function illustrating that fact and which is correct thanks to our assumption

2(p − 1) ≤ 2ws − 1:

sfixn AddMod(sfixn a, sfixn b, sfixn p){

sfixn r = a + b;

r -= p;

https://en.wikipedia.org/wiki/Ring_%28mathematics%29


2.2. Montgomery arithmetic 6

r += (r >> BASE_1) & p;

return r;

}

where sfixn is the type of a machine word and BASE 1 is ws − 1.

Implementing the multiplication (a, b) z→ a × b with machine word operations is a

more delicate task, unless (p − 1)2 ≤ 2ws − 1 holds. The next section presents an efficient

solution.

2.2 Montgomery arithmetic

Let x, p be integers such that p > 2 is a prime. We shall compute x mod p in an indirect

way. following an idea proposed by Peter Montgomery in [22]. Consider a positive integer

R ≥ p such that gcd(R,p) = 1. Hence there exists integers R−1, p′ such that

RR−1 − pp′ = 1 and 0 < p′ < R.

Consider the following two Euclidean divisions 1

x R

d c
and

dp′ R

f e
.

Hence we have:

x + fp = cR + d + (dp′ − eR)p = cR + d(1 + pp′) − epR.

Therefore x + fp writes qR and thus x
R ≡ q mod p. Suppose R is a power of 2. Then

we have obtained a procedure computing x
R mod p for any 0 ≤ x < p2, amounting to 2

multiplications, 2 additions and 3 shifts. Recall the three divisions (actually shifts):

x R

d c
and

dp′ R

f e
and

x + fp R

0 q

The result is q or q − p since x
R ≡ q mod p and we have:

0 ≤ x < p2 ⇒ 0 ≤ q < 2p.

1For non-negative integers a, b, q, r, with b > 0, we write
a b
r q

whenever a = bq+ r and 0 ≤ r < b both

hold. See https://en.wikipedia.org/wiki/Euclidean_division for details.

https://en.wikipedia.org/wiki/Euclidean_division


2.3. Primitive roots of unity 7

It follows that to compute in Z/pZ, we map each a ∈ Z/pZ to a ∶= aR ∈ Z/pZ. Then the

above procedure gives us aRbR
R mod p, that is, ab the image of ab in this new represen-

tation. We call Montgomery multiplication the map (a, b) ∈ Fp × Fp z→ ab. Note that

we have a + b ≡ a + b mod p.

In summary, although the map a ∈ Z/pZ z→ a ∈ Z/pZ is not a ring homomorphism,

one can think of it as it were. To be precise, if an algorithm performs a sequence of

additions and multiplications in Z/pZ, one can replace each residue class a by a provided

that the products are computed by Montgomery multiplication. Section 2.6 contains

C code for this procedure. Before that we shall review the discrete and fast Fourier

transforms.

2.3 Primitive roots of unity

Let R be a commutative ring. Let n > 1 be an integer. An element ω ∈ R is a primitive

n-th root of unity if for 1 < k ≤ n we have:

ωk = 1 ⇐⇒ k = n.

The element ω ∈ R is a principal n-th root of unity if ωn = 1 and for all 1 ≤ k < n we have

n−1

∑
j=0

ωjk = 0. (2.1)

In particular, if n is a power of 2 and ωn/2 = −1, then ω is a principal n-th root of unity.

When R is a field, every primitive root of unity of R is also a principal root of unity in

R.

2.4 Discrete Fourier transform (DFT)

Let ω ∈ R be a principal n-th root of unity. The n-point DFT at ω is the linear function,

mapping the vector a ∶= (a0, . . . , an−1) ∈ Rn to the vector â = (â0, . . . , ˆan−1) ∈ Rn with

âi =
n−1

∑
j=0

ajωij.

If n admits an inverse in R, then the n-point DFT at ω has an inverse map which is 1/n
times the n-point DFT at ω−1 = ωn−1.

Alternatively we can see the vector a as the coefficient array of a polynomial A from

R[x] (with degree less than n) and interpret the n-point DFT at ω as the mapping which



2.5. Fast Fourier transform (FFT) 8

takes A = a0 + a1x + ⋅ ⋅ ⋅ + an−1xn−1 to the vector (A(ω0), . . . ,A(ωn−1)). It is convenient to

denote this by:

DFTω(a0, . . . , an−1) = (A(ω0), . . . ,A(ωn−1)).

The DFT has major applications in signal processing and computer algebra. In the

former case, the ring R is often the field C of complex numbers whereas in the latter

case, it is generally a prime field.

A fast Fourier Transform is an asymptotically fast algorithm for computing the n-

point DFT of a vector over R.

2.5 Fast Fourier transform (FFT)

From now on, we assume that n = 2e for some positive integer e. Then, the DFT can be

computed using binary splitting. This method requires that we evaluate the polynomial

A only at ω2i for i ∈ (0, . . . , e−1), rather than at all powers ω0, . . . , ωn−1. To compute the

DFT of a at ω we write:

(a0, . . . , an−1) = (b0, c0, . . . , bn/2−1, cn/2−1)

and recursively compute the DFT of (b0, . . . , bn/2−1) and (c0, . . . , cn/2−1) w.r.t ω2:

DFTω2(b0, . . . , bn/2−1) = (b̂0, . . . , ˆbn/2−1);
DFTω2(c0, . . . , cn/2−1) = (ĉ0, . . . , ˆcn/2−1);

(2.2)

Finally we construct â according to:

DFTω(a0, . . . , an−1) = (b̂0 + ĉ0, . . . , ˆbn/2−1 + ˆcn/2−1ω
n/2−1, b̂0 − ĉ0, . . . , ˆbn/2−1 − ˆcn/2−1ω

n/2−1).

This leads to a 2-way divide-and-conquer, with recursive calls on half of the input and a

merging phase whose work is proportional to the input data size. Therefore, its running

is in Θ(n log(n)) operations on coefficients. Since its running time is, up to a log factor,

proportional to the input data size, this method, due to Cooley & Tukey [5], is considered

as asymptotically fast. More generally, any algorithm computing DFT ω(a0, . . . , an−1) in

that time is called a fast Fourier transform.

2.6 Montgomery arithmetic in practice

As in Section 2.2, suppose that p > 2 is a prime. Moreover, suppose that it is a Fourier

prime, that is, a prime number such that p − 1 = c2n and ` ≤ 2n hold, where ` ∶=



2.6. Montgomery arithmetic in practice 9

⌊log2(p)⌋ + 1 ≤ w on w-bit machine words. Fourier primes are clearly interesting in view

of DFT computations since they support the 2-way DFT computation of large vectors,

namely vectors of size 2n. Let R ∶= 2` and 0 ≤ x ≤ (p − 1)2. We obtain x
R mod p by:

x R

r1 q1

and
c2nr1 R

r2 q2

and
c2nr2 R

0 q3

Using c2n ≡ −1 mod p we have:

x

R
≡ q1 +

r1

R
≡ q1 − q2 −

r2

R
≡ q1 − q2 + q3 mod p.

The last equality requires a proof. We have:

r2 = c2nr1 − q2R = c2nr1 − q22`.

Hence 2n ∣ r2 thus 22n ∣ c2nr2 and R ∣ c2nr2. Moreover we have:

−(p − 1) < q1 − q2 + q3 < 2(p − 1).

Hence the desired output is either (q1−q2+q3)+p, or q1−q2+q3 or (q1−q2+q3)−p Indeed

0 ≤ x ≤ (p − 1)2 and p ≤ R imply

q1 = xquoR ≤ (p − 1)2/R < p − 1.

Next, we have: q2 = c2nr1 quoR ≤ c2n = p − 1, since r1 < R. Similarly, we have q3 < p − 1.

We now describe the C implementation for 32-bit machine integers, assuming we have

at hand the following function:

/**

* Input : The addresses of two unsigned machine integers a, b

* Output : Store (a * b) quo 2^32 into a, and

store (a * b) mod 2^32 into b

**/

inline void MulHiLoUnsigned (uint32_t *a, uint32_t *b) {

uint64_t prod;

prod = (uint64_t)(*a) * (uint64_t)(*b);

*a = (uint32_t) (prod >> 32);

*b = (uint32_t) prod;



2.6. Montgomery arithmetic in practice 10

}

Then, Montgomery multiplication can be computed as follows.

1. Let a, b be non-negative 32-bit machine integers less than p. We state how to

compute ab
R mod p.

2. q1,232−`r1 := MulHiLoUnsigned(a,232−`b)

3. q2,232−`r2 := MulHiLoUnsigned(232−`r1,2nc)

4. q3 := c r2
2`−n

. The division r2
2`−n

is exact and the multiplication c r2
2`−n

is correct on 32

bits.

5. Let A ∶= q1 − q2 + q3. Then we execute the following code:

A += (A >> 31) & p;

A -= p;

A += (A >> 31) & p;

6. Finally we have performed 6 shifts, 5 additions, 2 64-bit multiplications and 1 32-bit

multiplication.

Here is a numerical example:

• Consider p = 257 = 1 + 28. Hence c = 1, n = 8, ` = 9 and R = 29.

• Take a = 131 and b = 187.

• Compute 232−`b = 1568669696.

• Compute q1 = 47 and 232−`r1 = 3632267264.

• Compute q2 = 216 and 232−`r2 = 2147483648.

• Compute q3 = c r2
2`−n

= 128.

• Compute A = q1 − q2 + q3 = −41.

• Adjust to get ab
R ≡ 216 mod p.



2.7. Tensor algebra 11

2.7 Tensor algebra

Each FFT algorithm can be interpreted as a particular factorization of the DFTn through

tensor algebra. We review basic notions of the latter.

Let n,m, q, s be positive integers and let A,B be two matrices over K with respective

dimensions m × n and q × s. The tensor (or Kronecker) product of A by B is an mq × ns
matrix over K denoted by A⊗B and defined by

A⊗B = [ak`B]k,` with A = [ak`]k,` (2.3)

For example, let

A =
⎡⎢⎢⎢⎢⎣

0 1

2 3

⎤⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎣

1 1

1 1

⎤⎥⎥⎥⎥⎦
. (2.4)

Then their tensor products are

A⊗B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1

0 0 1 1

2 2 3 3

2 2 3 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and B ⊗A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1

2 3 2 3

0 1 0 1

2 3 2 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.5)

Denoting by In the identity matrix of order n, we emphasize two particular types of

tensor products, In ⊗Am and An ⊗ Im, where Am (resp. An) is a square matrix of order

m (resp, n) over K that plays an important role in matrix factorization. A few examples

follow:

I4 ⊗DFT2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1

1 −1

1 1

1 −1

1 1

1 −1

1 1

1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



2.7. Tensor algebra 12

DFT2 ⊗ I4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

1

1

1

1

1

1

1

1

−1

−1

−1

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The direct sum of A and B is an (m + q) × (n + s) matrix over K denoted by A⊕B
and defined by

A⊕B =
⎡⎢⎢⎢⎢⎣

A 0

0 B

⎤⎥⎥⎥⎥⎦
. (2.6)

The stride permutation matrix Lmnm permutes an input vector x of length mn as

follows

x[im + j] ↦ x[jn + i], (2.7)

for all 0 ≤ j < m, 0 ≤ i < n. If x is viewed as an n ×m matrix, then Lmnm performs a

transposition of this matrix. For example, with n = 4 and m = 2, we have

L4
2(x0, x1, x2, x3, x4, x5, x6, x7) = (x0, x2, x4, x6, x1, x3, x5, x7). (2.8)

Let ei be the vector of Kn whose j-th entry is δi,j, the Kronecker symbol, thus δi,j = 1

if i = j otherwise δi,j = 0. Consider L4
2 the endomorphism of the vector space V = K8

defined by

L4
2(e1, e2, e3, e4, e5, e6, e7, e8) = (e1, e5, e2, e6, e3, e7, e4, e8). (2.9)

The matrix representation of L4
2 in the basis {ei ∣ i = 1 . . .8} is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.10)



2.8. Cooley Tukey factorization formula 13

We have ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2

x3

x4

x5

x6

x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x2

x4

x6

x1

x3

x5

x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.11)

which shows that this matrix is as desired.

2.8 Cooley Tukey factorization formula

The well-known Cooley-Tukey Fast Fourier Transform (FFT) [6] in its recursive form is

a procedure for computing DFTn x based on the following factorization of the matrix

DFTn, for any integers q, s such that n = qs holds:

DFTqs = (DFTq ⊗ Is)Dq,s(Iq ⊗DFTs)Lqsq , (2.12)

where Dq,s is the diagonal twiddle matrix defined as

Dq,s =
q−1

⊕
j=0

diag(1, ωj, . . . , ωj(s−1)), (2.13)

Formula (2.14) illustrates Formula (2.12) with DFT4:

DFT4 = (DFT2 ⊗ I2)D2,2(I2 ⊗DFT2)L2
2

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

1 ω −1 −ω
1 −1 1 −1

1 −ω −1 ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

1 ω1 ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.14)



2.9. Multi-core architectures 14

Assume that n is a power of 2, e.g., n = 2k. Formula (2.12) can be unrolled so as

to reduce DFTn to DFT2 (or a base case DFTm, where m divides n) together with the

appropriate diagonal twiddle matrices and stride permutation matrices. This unrolling

can be done in various ways. Before presenting one of them, we introduce a notation.

For integers i, j, h ≥ 1, we define

∆(i, j, h) = (Ii ⊗DFTj ⊗ Ih) (2.15)

which is a square matrix of size ijh. For m = 2` with 1 ≤ ` < k, the following formula

holds:

DFT2k = (
k−`
∏
i=1

∆ (2i−1,2,2k−i) (I2i−1 ⊗D2,2k−i))∆ (2k−`,m,1)(
1

∏
i=k−`

(I2i−1 ⊗L2k−i+1

2 )) .

(2.16)

Therefore, Formula (2.16) reduces the computation of DFT2k to composing DFT2, DFT2` ,

diagonal twiddle endomorphisms and stride permutations. Another recursive factoriza-

tion of the matrix DFT2k is

DFT2k = (DFT2 ⊗ I2k−1)D2,2k−1L
2k

2 (DFT2k−1 ⊗ I2), (2.17)

from which one can derive the Stockham FFT [25] as follows

DFT2k =
k−1

∏
i=0

(DFT2 ⊗ I2k−1)(D2,2k−i−1 ⊗ I2i)(L2k−i

2 ⊗ I2i). (2.18)

This is a basic routine that is implemented in our library (CUMODP 2) as the FFT

over a finite field (prime) targeted GPUs [23].

2.9 Multi-core architectures

A multi-core processor is an integrated circuit consisting of two or more processors.

Having multiple processors would enhance the performance by giving the opportunity of

executing tasks simultaneously. Ideally, the performance of a multi-core machine with

n processors, is n times that of a single processor (considering that they have the same

frequency).

In recent years, this family of processors has become popular and widely being used

due to their performance and power consumption compared to single-core processors. In

2http://cumodp.org/

http://cumodp.org/


2.10. The fork-join concurrency model 15

addition, because of the physical limitations of increasing the frequency of processors, or

designing more complex integrated circuits, most of the recent improvements have been

in designing multi-core systems.

In different topologies for multi-core systems, the cores may share the main memory,

cache, bus, etc. Plus, heterogeneous multi-cores may have different cores, however in

most cases the cores are similar to each other.

In a multi-core system, we may have multi-level cache memories that can have a

huge impact on performance. Having cache memories on each of the processors, gives

the programmers an opportunity of designing extremely fast memory access procedures.

Implementing a program that can take benefits from the cache hierarchy, with low cache

misses rates, is known to be challenging.

There are numerous parallel programming languages for multi-core architectures.

Well-known examples of these concurrency platforms are CilkPlus 3, OpenMP 4, MPI 5.

2.10 The fork-join concurrency model

The Fork-Join Parallelism Model is a multi-threading model for parallel computing. In

this model, execution of threaded programs is represented by DAG (directed acyclic

graph) in which the vertexes correspond to threads, and edges (strands) correspond to

relations between threads (forked or joined). Fork stands for ending one strand, and

starting a couple of new strands; whereas, join is the opposite operation in which a

couple of strands end and one new strand begins.

3http://www.cilkplus.org/
4http://openmp.org/wp/
5http://en.wikipedia.org/wiki/Message_Passing_Interface

http://www.cilkplus.org/
http://openmp.org/wp/
http://en.wikipedia.org/wiki/Message_Passing_Interface


2.10. The fork-join concurrency model 16

In the following diagram, a sample DAG is shown

in which the program starts with the thread 1.

Later, the thread 2 will be forked into two threads

3 and 13. Following the division of the program,

the threads 15, 17 and 12 will be joined to 18.

1start

2

3 13

4
6 14

16

5
7

9

8
10

11

12

15
17

18

For analyzing the parallelism in the fork-join model, we measure T1 and T∞ which

are defined as the following:

Work (T1): the total amount of time required to process all of the instructions of a

given program on a single-core machine.

Span (T∞): the total amount of time required to process all of the instructions of a

given program on a multi-core machine with an infinite number of processors. This is

also called the critical path.

Work/Span Law: the total amount of time required to process all of the instructions

of a given program using a multi-core machine with p processors (called Tp) bounded as

the following:

Tp ≥ T∞ , Tp ≥ T1

p

Parallelism: the ratio of work to span (T1/T∞).

In the above DAG, the work, span, and the parallelism are 18, 9, and 2 respectively.

(The critical path is highlighted.)



2.11. The CilkPlus programming language 17

Greedy Scheduler A scheduler is greedy if it attempts to do as much work as possible

at every step. In any greedy scheduler, there are two types of steps: complete steps

in which there are at least p strands that are ready to run (then the greedy scheduler

selects any p of them and runs them), and incomplete step in which there are strictly

fewer than p threads that are ready to run (then the greedy scheduler runs them all).

Graham-Brent Theorem For any greedy scheduler, we have: Tp ≤ T1/p + T∞.

2.11 The CilkPlus programming language

CilkPlus is a C++ based concurrency platform providing an implementation of the

fork-join concurrency model [16, 10, 7]. The CilkPlus runtime system offers a dynamic

scheduler using the randomized work-stealing scheduling [3] in which every processor has

a stack of pending tasks, and all of the processors can steal tasks from others’ stacks

when they are idle.

In CilkPlus, one can use the keywords cilk spawn to spawn a function call, and cilk sync

as a synchronization point for concurrent threads. Algorithm 1 is an illustrative Cilkplus

program which transposes a given rectangular matrix A into a matrix B:

In this implementation, we divide the problem into two sub problems based on the

input sizes.If the dimension sizes of the sub problems are large enough, then the sub

problems are solved recursively and the corresponding recursive calls are spawned, oth-

erwise a serial code performs the transposition using the naive transposition algorithm.

Note that the constant THRESHOLD is determined by consideration like the size of L1

cache.

2.12 The ideal cache model

The cache complexity of an algorithm aims at measuring the (negative) impact of memory

traffic between the cache and the main memory of a processor executing that algorithm.

Cache complexity is based on the ideal-cache model shown in Figure 2.1 which is taken

from [10]. This idea was first introduced by Matteo Frigo, Charles E. Leiserson, Harald

Prokop, and Sridhar Ramachandran in 1999 [8]. In this model, there is a computer with

a two-level memory hierarchy consisting of an ideal (data) cache of Z words and an

arbitrarily large main memory. The cache is partitioned into Z/L cache lines where L

is the length of each cache line representing the amount of consecutive words that are

always moved in a group between the cache and the main memory. In order to achieve



2.12. The ideal cache model 18

Algorithm 1: transpose(sfixn *A, int lda, sfixn *B, int ldb, int i0, int i1, int j0,
int j1)

Input: A,B matrix represented in array, lda number of columns, ldb number of
rows, i0, i1 index of rows, j0, j1 index of columns.

Output: Array A.
/* parallel version */

tail:
int di = i1 − i0, dj = j1 − j0;
if di ≥ dj&&di > TRANSPOSETHRESHOLD then

int im = (i0 + i1)/2;
cilk spawn transpose(A, lda,B, ldb, i0, im, j0, j1);
i0 = im; goto tail;

else if dj >TRANSPOSETHRESHOLD then
int jm = (j0 + j1)/2;
cilk spawn transpose(A, lda,B, ldb, i0, i1, j0, jm);
j0 = jm; goto tail;

else
for i from i0 to i1 do

for j from j0 to j1 do
B[j ∗ ldb + i] = A[i ∗ lda + j];

spatial locality, cache designers usually use L > 1 which eventually mitigates the overhead

of moving the cache line from the main memory to the cache. As a result, it is generally

assumed that the cache is tall and practically that we have

Z = Ω(L2).

In the sequel of this thesis, the above relation is referred to as the tall cache assumption.

In the ideal-cache model, the processor can only refer to words that reside in the

cache. If the referenced line of a word is found in cache, then that word is delivered

to the processor for further processing. This situation is literally called a cache hit.

Otherwise, a cache miss occurs and the line is first fetched into anywhere in the cache

before transferring it to the processor; this mapping from memory to cache is called full

associativity. If the cache is full, a cache line must be evicted. The ideal cache uses the

optimal off-line cache replacement policy to perfectly exploit temporal locality. In this

policy, the cache line whose next access is furthest in the future is replaced [2].

Cache complexity analyzes algorithms in terms of two types of measurements. The

first one is the work complexity, W (n), where n is the input data size of the algorithm.



2.12. The ideal cache model 19
fathena,cel,prokop,sridharg@supertech.lcs.mit.edu

= ( ) �
( + = )

( + ( = )( + )) ( )
� �

( +( + + )= + =
p

)

( ; )

Q
cache
misses

organized by
optimal replacement

strategy

Main
Memory

Cache

Z=L Cache lines

Lines
of length L

CPU

W
work

>

= ( ) ;

( )

( ; )

Figure 2.1: The ideal-cache model.

This complexity estimate is actually the conventional running time in a RAM model [1].

The second measurement is its cache complexity, Q(n;Z,L), representing the number of

cache misses the algorithm incurs as a function of:

• the input data size n,

• the cache size Z, and

• the cache line length L of the ideal cache.

When Z and L are clear from the context, the cache complexity can be denoted simply

by Q(n).
An algorithm whose cache parameters can be tuned, either at compile-time or at

run-time, to optimize its cache complexity, is called cache aware; while other algorithms

whose performance does not depend on cache parameters are called cache oblivious. The

performance of a cache-aware algorithm is often satisfactory. However, there are many

approaches which can be applied to design optimal cache oblivious algorithms to run on

any machine without fine tuning their parameters.

BB

Figure 2.2: Scanning an array of n = N elements, with L = B words per cache line.

Although cache oblivious algorithms do not depend on cache parameters, their anal-

ysis naturally depends on the alignment of data block in memory. For instance, due to

a specific type of alignment issue based on the size of block and data elements 2.2 (See

Proposition 1 and its proof), the cache-oblivious bound is an additive 1 away from the



2.13. Cache complexity of data transposition 20

external-memory bound [14]. However, such type of error is reasonable as our main goal

is to match bounds within multiplicative constant factors.

Proposition 1 Scanning n elements stored in a contiguous segment of memory with

cache line size L costs at most ⌈n/L⌉ + 1 cache misses.

Proof. The main ingredient of the proof is based on the alignment of data elements

in memory. We make the following observations.

• Let (q, r) be the quotient and remainder in the integer division of n by L. Let u

(resp. wun) be the total number of words in fully (not fully) used cache lines. Thus,

we have n = u +wun.

• If wun = 0 then (q, r) = (⌊n/L⌋,0) and the scanning costs exactly q; thus the

conclusion is clear since ⌈n/L⌉ = ⌊n/L⌋ in this case.

• If 0 < wun < L then (q, r) = (⌊n/L⌋,wun) and the scanning costs exactly q + 2; the

conclusion is clear since ⌈n/L⌉ = ⌊n/L⌋ + 1 in this case.

• If L ≤ wun < 2L then (q, r) = (⌊n/L⌋,wun −L) and the scanning costs exactly q + 1;

the conclusion is clear again.

2.13 Cache complexity of data transposition

We consider the following problem, which plays a fundamental role in implementing

multi-dimensional FFTs [24] and TFTs [19]. Given an m × n matrix A stored in a row-

major layout, compute and store the transposed matrix AT into an n ×m matrix B also

stored in a row-major layout. We shall describe a recursive cache-oblivious algorithm

which uses Θ(mn) work and incurs Θ(1 +mn/L) cache misses, which is optimal. The

straightforward algorithm employing doubly nested loops incurs Θ(mn) cache misses on

one of the matrices when m≫ Z/L and n≫ Z/L.

This recursive algorithm due to Leiserson at al. [9] works as follows:

• If n ≥m, the Rec-Transpose algorithm partitions

A = (A1 A2) , B =
⎛
⎝
B1

B2

⎞
⎠

and recursively executes Rec −Transpose(A1,B1) and Rec −Transpose(A2,B2).

• If m > n, the Rec-Transpose algorithm partitions

A =
⎛
⎝
A1

A2

⎞
⎠
, B = (B1 B2)



2.14. Cache complexity of Cooley-Tukey algorithm 21

and recursively executes Rec −Transpose(A1,B1) and Rec −Transpose(A2,B2).

The Cilkplus implementation of this algorithm is shown in Section 2.11

2.14 Cache complexity of Cooley-Tukey algorithm

We analyze the cache complexity of the (radix 2) Cooley-Tukey algorithm stated in

Section 3.1. for an ideal cache with Z words and L words per cache line. We assume

that each coefficient of the input vector fits within a machine word and that the array

storing the coefficients consist of consecutive memory words. If Q(n) denotes the number

of cache misses incurred by the algorithm of Section 3.1. then, neglecting misalignment,

we have for some 0 < α < 1,

Q(n) =
⎧⎪⎪⎨⎪⎪⎩

n/L if N < αZ (base case)
2Q(n/2) + n/L if n ≥ αZ (recurrence)

(2.19)

Unfolding k times the recurrence relation (2.19) yields

Q(n) = 2kQ(n/2k) + kn/L.

Assuming n ≥ αZ and choosing k such that n/2k ≃ αZ, that is, 2k ≃ n
αZ , or equivalently

n/L ≃ 2kαZ/L, we obtain

Q(n) ≤ 2kαZ/L + kn/L
= n/L + kn/L
= (k + 1)n/L
≤ (log2( n

αZ ) + 1)n/L.

Therefore we have Q(n) ∈ O(n/L (log2(n)− log2(αZ))). This result is known to be non-

optimal, following the work of Hong Jia-Wei and H.T. Kung in their landmark paper I/O

complexity: The red-blue pebble game in the proceedings of STOC’81 [14].

Usually, this (non-optimal) radix 2 FFT is implemented as follows:

• If the input vector does not fit in cache, a recursive algorithm is applied

• Once the vector fits in cache, an iterative algorithm (not requiring shuffling) takes

over.

This strategy is illustrated by Figure 2.3 [15] and Algorithm 3 below.



2.15. Blocking strategy for FFT 22

Figure 2.3: Algorithm 3 strategy.

2.15 Blocking strategy for FFT

To obtain an optimal FFT in terms of cache-complexity, one should proceed as follows

• Instead of processing row-by-row, one computes as deep as possible while staying

in cache (resp. registers): this yields a blocking strategy.

• On the left picture, assuming Z = 4, on the first (resp, last) two rows, we successively

compute the red, green, blue, orange 4-point blocks.

• On an ideal cache of Z words with L words per cache line the cache complexity

drops to O(n/L(log2(n)/ log2(Z))) which is optimal.

This strategy is illustrated by the picture and pseudo-code in Figure 2.4 and is reported

in [4]. Figure 2.4 is taken from the Master thesis of Svyatoslav Covanov www.csd.uwo.ca/

~moreno//Publications/Svyatoslav-Covanov-Rapport-de-Stage-Recherche-2014.

pdf. The strategy is used by the BPAS library www.bpaslib.org for its FFT code gen-

erator. The work reported in this thesis extends this tool to TFT computations. Our

TFT code generator also follows this blocking strategy.

Let us estimate now the cache complexity of the above algorithm for an ideal cache

with Z words and L words per cache line. As before, we assume that each coefficient

fits within a machine word. If Q(n) denotes the number of cache misses incurred by

Algorithm 2, then, neglecting misalignment, we have for some 0 < α < 1,

Q(n) =
⎧⎪⎪⎨⎪⎪⎩

n/L if n < αZ (base case)
KQ(n/K) + n/L + n/KQ(K) if n ≥ αZ (recurrence)

(2.20)

www.csd.uwo.ca/~moreno//Publications/Svyatoslav-Covanov-Rapport-de-Stage-Recherche-2014.pdf
www.csd.uwo.ca/~moreno//Publications/Svyatoslav-Covanov-Rapport-de-Stage-Recherche-2014.pdf
www.csd.uwo.ca/~moreno//Publications/Svyatoslav-Covanov-Rapport-de-Stage-Recherche-2014.pdf
www.bpaslib.org


2.15. Blocking strategy for FFT 23

Figure 2.4: Optimal FFT using blocking.

We shall assume that K < αZ holds. Hence, we have Q(K) ≤ K/L. Thus, for n ≥ αZ,

Relation (2.20) leads to:

Q(n) = KQ(n/K) + 2n/L
≤ KeQ(n/Ke) + 2 en/L
≤ Ke αZ

L + 2 en/L
= n/L (1 + 2 e)
≤ n/L 3 e.

(2.21)

where e is chosen such that n/Ke = αZ, that is, Ke = n
αZ or equivalently n/L =KeαZ/L.

Therefore, we have Q(n) ∈ O(n/L (logK(n)− logK(αZ))). In particular, for K ≃ αZ and

since we have

Q(n) ∈ O(n/L logαZ(n). (2.22)

According to the paper I/O complexity: The red-blue pebble game, this bound would be

optimal for α = 1. In practice α is likely to 1/8 or 1/16 and Z is likely to be between

1024 and 8192 for an L1 cache. Hence, the above estimate of Q(n) suggests to choose K

between 64 and 1024. In fact, in practice, we have experimented K between 8 and 16.

The reason is that optimizing register usage (minimizing register spilling) is also another

factor of performance and, to some sense, registers can be seen another level cache. As

an example, the X86-64 processors that we have been using have 16 GPRs/data+address

registers and 16/32 FP registers.



2.15. Blocking strategy for FFT 24

Algorithm 2: FFTradix K(α,ω,n = J ⋅K)
Input: α = [a0, a1, . . . , an−1] is the coefficient array of the input polynomial, ω is a

primitive n-th root of unity, n = J ⋅K denotes n be split into K parts of
size J .

Output: Array α.
for 0 ≤ j < J do

/* Data transposition */

for 0 ≤ k <K do
γ[j][k] ∶= αkJ+j;

for 0 ≤ j < J do
/* Base case FFTs */

c[j] ∶= FFTbase−case(γ[j], ωJ ,K);
for 0 ≤ k <K do

/* Twiddle factor multiplication */

for 0 ≤ j < J do
δ[k][j] ∶= c[j][k] ∗ ωjk ;

for 0 ≤ k <K do
/* Recursive calls */

ζ[k] = FFTradixK(ζ[k], ωK , J);
for 0 ≤ k <K do

/* Data transposition */

for 0 ≤ j < J do
α[jK + k] ∶= ζ[k][j];

return (α0, α1, . . . , αn−1);

Algorithm 3: FFT(α, ω)

Input: α = [a0, a1, . . . , an−1] is the coefficient array of the input polynomial, ω a
primitive n-th root of unity.

Output: The output array α becomes
[α0 + αn/2, α1 + ω ⋅ αn/2+1, . . . , αn/2−1 − ωn/2−1 ⋅ αn−1].

if n ≤HTHRESHOLD then
ArrayBitReversal([α0, α1, . . . , αn−1]);
return FFT iterative in cache([α0, α1, . . . , αn−1], ω);

Shuffle([α0, α1, . . . , αn−1]);
[α0, α1, . . . , αn/2−1] = FFT([α0, α1, . . . , αn/2−1], ω2);
[αn/2, αn/2+1, . . . , αn−1] = FFT([αn/2, αn/2+1, . . . , αn−1], ω2);
return [α0 + αn/2, α1 + ω ⋅ αn/2+1, . . . , αn/2−1 − ωn/2−1 ⋅ αn−1];



Chapter 3

Forward and Inverse Truncated

Fourier Transform

We review the notion of truncated Fourier transform (TFT) as introduced by Joris van

der Hoeven in [26], together with detailed pseudo-code and examples for the forward and

inverse TFT, follow Paul Vrbik’s tech report about TFT https://carma.newcastle.

edu.au/paulvrbik/pdfs/TFT.pdf. We stress the fact those algorithms have the same

specifications as those of David Harvey in [12]. However, the formulation in this latter

paper opened the door to conceptually simpler ways of computing TFTs. In fact, David

Harvey’s paper inspired the work of Jeremy Johnson and LingChuan Meng [21] which

has brought a practically efficient forward TFT algorithm.

In Section 3.1, we review the 2-way divide-and-conquer FFT algorithm presented in

Section 2.4. Then, we slightly modify its presentation in order to better introduce the

concept of truncated Fourier transform (TFT) in Section 3.2. From there, computing

the forward TFT is deduced from the 2-way divide-and-conquer TFT algorithm in a very

natural manner: we do this in Section 3.3. Unfortunately, and unlike FFT, the inverse

map of TFT is very different from the forward process and, in fact, harder to understand

in details. Sections 3.4, 3.5 and 3.6 attempt to deal with this challenge.

3.1 FFT: review and complement

Let R, n, and ω be given as in Section 2.4. The DFT — with respect to ω — of an

n-tuple a = (a0, . . . , an−1) ∈ Rn is the n-tuple â = (â0, . . . , ân−1) ∈ Rn with

âi =
n−1

∑
j=0

ajω
ij.

25

https://carma.newcastle.edu.au/paulvrbik/pdfs/TFT.pdf
https://carma.newcastle.edu.au/paulvrbik/pdfs/TFT.pdf


3.1. FFT: review and complement 26

The n-tuples can alternatively be represented as coefficients of polynomials in R[x] and

the FFT can be defined as the mapping from A = a0 + a1x + ⋯ + an−1xn−1 to the n-

tuple (A(ω0), . . . ,A(ωn−1)). Binary splitting is used to perform the FFT efficiently by

evaluating only at ω2i for i ∈ {0, . . . , e − 1}, rather than all ω0, . . . , ωn−1. To compute the

FFT of a with respect to ω we write

a0, . . . , an−1 = (b0, c0, . . . , bn/2−1, cn/2−1)

and compute recursively the Fourier transform of (b0, . . . , bn/2−1) and (c0, . . . , cn/2−1) at

ω2:

FFTω2(b0, . . . , bn/2−1) = (b̂0, . . . , b̂n/2−1);
FFTω2(c0, . . . , cn/2−1) = (ĉ0, . . . , ĉn/2−1).

Finally we construct â according to

FFTω(a0, . . . , an−1) = (b̂0 + ĉ0, . . . , b̂n/2−1 + ĉn/2−1ω
n/2−1

b̂0 − ĉ0, . . . , b̂n/2−1 − ĉn/2−1ω
n/2−1).

The equivalent polynomial interpretation divides A into even and odd parts, evaluates

them at ω2, and then reconstructs to obtain Â. Although this can be implemented as

a recursive algorithm, it is faster to use avoid the overhead of recursive stacks via an

in-place algorithm.

The 2-way divide-and-conquer TFT recalled above can be executed in-place. Let us

explain how since this way of presenting Cooley-Tukey algorithm is a good introduction

to TFT. We need the following definition.

Definition We denote by [i]e the bit wise reverse1 of i at length e. Suppose i = i020 +
⋯ + ie−12e−1 and j = j020 +⋯ + je−12e−1 then

[i]e = j ⇐⇒ ik = je−k−1 for k ∈ {0, . . . , e − 1}.

Example [3]5 = 24 because 3 = 000112 whose reverse is 110002 = 24.

[11]5 = 26 because 11 = 010112 whose reverse is 110102 = 26.

1In [26] the word ”mirror” instead of reverse is used, which may lead to some ambiguity.



3.1. FFT: review and complement 27

We begin at step zero with the vector

x0 = (x0,0, . . . , x0,n−1) = (a0, . . . , an−1)

and update this vector at step s ∈ {1, . . . , e} by the rule

⎡⎢⎢⎢⎢⎣

xs,ims+j
xs,(i+1)ms+j

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

1 ω[i]sms

1 −ω[i]sms

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

xs−1,ims+j
xs−1,(i+1)ms+j

⎤⎥⎥⎥⎥⎦
(3.1)

for all i ∈ {0,2, . . . , n/ms − 2} and j ∈ {0, . . . ,ms − 1}, where ms = 2e−s.

xs−1, ims+j xs−1, (i+1)ms+j

xs, ims+j xs, (i+1)ms+j

Figure 3.1: Butterfly.

Figure 3.1, known as a butterfly because of its form, is an illustration of Equation (3.1)

as a relation among four values at steps s and s − 1. The butterflys width is determined

by ms, which decreases as s increases. Note that two additions and one multiplication

i = 0 i = 1 · · · · · · i = 15

s = 0

s = 1

s = 2

s = 3

s = 4

x3, 11x3, 9

x2, 11x2, 9

Figure 3.2: Butterflies. Schematic representation of Equation (3.1). The black dots
correspond to the xs,i. The top row corresponding to s = 0. In this case n = 16 = 24.

are done in Equation (3.1) as one product is merely the negation of the other. Using

induction over s, it can be easily shown [26] that

xs,ims+j = (DFTωms(aj, ams+j, . . . , an−ms+j))[i]s ,



3.2. The truncated Fourier transform 28

for all i ∈ {0, . . . , n/ms − 1} and j ∈ {0, . . . ,ms − 1}. In particular, when s = e and j = 0 we

have

xe,i = â[i]e
âi = xe,[i]e

for all i ∈ {0, . . . , n − 1}. That is, â is a permutation of xe as illustrated in Figure 3.3

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

â[0]4 â[1]4 â[2]4 â[3]4 â[4]4 â[5]4 â[6]4 â[7]4 â[8]4 â[9]4 â[10]4 â[11]4 â[12]4 â[13]4 â[14]4 â[15]4

Figure 3.3: The Fast Fourier Transform for n = 16. The top row, corresponding to s = 0,
represents the values of x0. The bottom row, corresponding to s = 4 is some permutation
of â (the result of the FFT on a).

One nice feature of the FFT is that it is straightforward to recover a from â

DFTω−1(â)i = DFTω−1(DFTω(a))i =
n−1

∑
k=0

n−1

∑
j=0

aiω
(i−k)j = nai (3.2)

since
n−1

∑
j=0

ω(i−k)j = 0

whenever i ≠ k. This yields a polynomial multiplication algorithm of time complexity

O(n logn) in R[x].

3.2 The truncated Fourier transform

When the length of a (the input) is not equal to a power of two, the `-tuple a =
(a0, . . . , a`−1) is completed by setting ai = 0 when i ≥ ` to artificially extend the length of

a to the nearest power of two so that FFT can be performed.



3.2. The truncated Fourier transform 29

As illustrated in Figures 3.4 and 3.5, FFT will calculate all of â, even if only `

components of â are needed. These unnecessary computations occur when FFT is used

to multiply polynomials, as the degree of the product is rarely a power of two.

Figure 3.4: The FFT with “artificial” zero points (green).

Figure 3.5: Removing all unnecessary computations from Figure 3.4 gives the schematic
representation of the TFT.

With the exception that the lengths of the input and output vectors (a resp. â) are

not necessarily powers of two, the TFT is similar to the FFT. More precisely the TFT

of an `-tuple (a0, . . . , a`−1) ∈ R` is the `-tuple

(A(ω[0]
e , ) . . . ,A(ω[`−1]e)) ∈ R`.

where n = 2e, ` < n (usually ` ≥ n/2) and ω a n-th root of unity.

Remark A more general description of the TFT, in which one can choose an initial

vector (x0,i0 , . . . , x0,in) and target vector (xe,j0 , . . . , xe,jn), is given by van der Hoeven.

The TFT may be performed by considering the full FFT and removing computations



3.3. Forward TFT: pseudo-code with an illustrative example 30

unnecessary for the desired output if each ik is distinct. However, as we are ignorant to a

sufficiently fast method to find this sub graph, this discussion is restricted to the scenario

in which the input and output are the same initial segments, as depicted in Figure 3.5.

The in-place algorithm in the previous section can be easily modified to perform the

TFT. At stage s it suffices to compute

(xs,0, . . . , xs,j) with j = (⌊(` − 1)/ms⌋ + 1)ms − 1

where ms = 2e−s.2

3.3 Forward TFT: pseudo-code with an illustrative

example

Denote X as a vector over Z/pZ, ω ∈ Z/pZ is a primitive n− th root of unity, p is a prime

number, ` is the length of X, e ∶= min{k ∣ ` ≤ 2k} and n = 2e. Initially, we pad the vector

X (at its end) with zeroes (s. t. its size becomes n) and call it X0. The value of X at

the end of the s-th iteration is denoted by Xs for 1 ≤ s ≤ log2(n). We write xs,i for Xs[i]
with 0 ≤ i ≤ n − 1.

Algorithm 4: TFT(X,ω, p)

Input: X is the coefficient array of the input polynomial, ω is a primitive n-th
root of unity, p is a prime number

Output: Array X.
for s from 1 to log2n do

ms = n/2s
for i from 0 by 2 to (n/ms − 2) do

Let is be the bit wise reverse of i in the form of a decimal number
for j from 0 to (ms − 1) do

if (i + 1)ms + j < ⌈ `
ms

⌉ ms then

[ xs,ims+j
xs,(i+1)ms+j

] = [1 ωisms

1 −ωisms
] [ xs−1,ims+j
xs−1,(i+1)ms+j

]

The following is an example of serial forward TFT w.r.t. prime number is 17, ω is 3, `

is 9 and n is 16 which is defined before. The initial input is an vector {1,2,3,4,5,6,7,8,9}.

2This is a correction to the bound given in [12].



3.4. The inverse truncated Fourier transform 31

The size of input ` is 9 and the smallest number which larger than ` and satisfied some

power of two is 16. Totally, we need log2n = log216 = 4 steps to achieve the final output.

With zero padding in the end of input to make it a vector {1,2,3,4,5,6,7,8,9,

0,0,0,0,0,0,0} as showing in figure 3.5(b). Using equation 3.1, the second line can be cal-

culated from the original input which is an vector {10,2,3,4,5,6,7,8,9,2,3,4,5,6,7,8}.

Applied equation 3.1 to calculate the third line from the second line as before. As

showing in the algorithm 2, only ⌈ `
ms

⌉ ms items are calculated which is 12 in this step.

After calculation, the output is vector {15,8,10,12,5,13,13,13,6,12,9,6}. Keep applying

equation 3.1 to the last two steps and the final output is vector {11,5,4,6,10,15,12,0,13}.

3.4 The inverse truncated Fourier transform

Unlike the FFT, the TFT cannot be inverted simply by performing another TFT with

1/ω and adjusting by a constant factor. There is information missing that must be taken

into account.

Example Let R = Z/17Z, n = 22 = 4, with ω = 4 a n-th primitive root of unity. The TFT

of a = (a0, a1, a2) is

⎡⎢⎢⎢⎢⎢⎢⎣

A(ω0)
A(ω2)
A(ω1)

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

A(1)
A(−1)
A(3)

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

a0 + a1 + a2

a0 − a1 + a2

a0 + 3a1 + 9a2

⎤⎥⎥⎥⎥⎥⎥⎦

Now to show that the TFT of this w.r.t. 1/ω is not a define

b =
⎡⎢⎢⎢⎢⎢⎢⎣

b0

b1

b2

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

a0 + a1 + a2

a0 − a1 + a2

a0 + 3a1 + 9a2

⎤⎥⎥⎥⎥⎥⎥⎦

The TFT of b w.r.t 1/ω = −4 is

⎡⎢⎢⎢⎢⎢⎢⎣

B(ω0)
B(ω−2)
B(ω−1)

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

B(1)
B(−1)
B(−4)

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

b0 + b1 + b2

b0 − b1 + b2

b0 − 4b1 − b2

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

3a0 + 3a1 + 11a2

a0 + 5a1 + 9a2

−4a0 + 2a1 + 5a2

⎤⎥⎥⎥⎥⎥⎥⎦

which is not some constant multiple of TFTω(a). The completion of b to (b0, b1, b2,0)
results in this discrepancy. Instead, to match the FFT of a w.r.t ω, b should be completed

to (b0, b1, b2, a0 − 3a1 + 9a2).



3.5. Inverse TFT: an algorithm 32

We follow the paths from xe back to x0 to invert the TFT. If one value of

xs,ims+j, xs−1,ims+j

and one value of

xs,(i+1)ms+j, xs−1,(i+1)ms+j

are known, the other values may be found. In other words, if two values of a butterfly

are known, then Equation (3.1) can be used to find the other two values, as the relevant

matrix can be inverted. Also, this situation is ideal for implementation, as these relations

only involve shifting (multiplication and division by two), additions, subtractions and

multiplications by roots of unity.

Given xe,0, . . . , xe,2k−1, xe−k,0, . . . , xe−k,2k−1 can be found. As depicted in Figure 3.7,

no butterfly relations necessary to move up in this manner require xs,2k+j for any s ∈
{e − k, . . . , e}, j > 0. In general,

xe,2j+2k , . . . , xe,2j+2k−1

is enough to calculate

xe−k,2j , . . . , xe−k,2j+2k−1

for 0 < k ≤ j < e.

3.5 Inverse TFT: an algorithm

For our restricted case (all padding zeroes packed at the end), a simple recursive descrip-

tion of the inverse TFT algorithm is presented. The algorithm operates in a length n

array x = (x0, . . . ,xn−1) for which we assume access; here n = 2e corresponds to ω, a nth

primitive root of unity.

Initially, the content of the array is

x ∶= (xe,0, . . . , xe, `−1, 0, . . . ,0)

where (xe,0, . . . , xe, `−1) is the result of the TFT on (x0,0, . . . , x0, `−1, 0, . . . ,0).
As in our illustrations, we use pictures, like Figure 3.7, to indicate which values are

known (solid dots ●) and which are to be calculated (empty dot ○). For instance, “push

down x⃗k with Figure 3.7, represents: use xk = xs−1, ims+j and xk+ms+j = xs−1, (i+1)ms+j to



3.5. Inverse TFT: an algorithm 33

find xs, ims+j. An arrow emphasizes that this new value should also overwrite the one

at xk. With the caveat that i and j are not explicitly known values, this calculation is

easily accomplished using (3.1). As s is known, so are ms and an array position k. Note

i is recovered by i = k quo ms, the quotient of k/ms.

A full description of the inverse TFT follows in Algorithm 5. Note that the initial

call is InvTFT(0, ` − 1, n − 1, 1). Figure 3.10 illustrates Algorithm 5.

Algorithm 5: InvTFT(x,head, tail, last, s)
Input: x is an input array, head, tail, last is the indexing of the input array,

s = log2 last.

Output: Array x = [x0, x1, . . . , x`].

middle ← last − head

2
+ head;

LeftMiddle ← ⌊middle⌋;
RightMiddle← LeftMiddle + 1;

if head > tail then
Base case—do nothing;

return null;

else if tail ≥ LeftMiddle then
Push up the self-contained region xhead to xLeftMiddle;

Push down xtail+1 to xlast with ;

InvTFT(x,RightMiddle, tail, last, s + 1);
s← e − log2(LeftMiddle − head + 1);

Push up (in pairs) (xhead, xhead+ms) to (xLeftMiddle, xLeftMiddle+ms) with ;

else if tail < LeftMiddle then

Push down xtail+1 to xLeftMiddle with ;

InvTFT(x,head, tail, LeftMiddle, s + 1);

Push up xhead to xLeftMiddle with ;



3.6. Illustration of the inverse TFT algorithm 34

3.6 Illustration of the inverse TFT algorithm

Figure 3.11 and Figure 3.12 show an example of the inverse TFT algorithm w.r.t prime

number is 17, ω is 3, ` is 11 and n is 16. The initial input is an vector {1,2,3,4,5,6,7,8,9,

10,11} in the first step and zero padding in the final step. The algorithm operates on a

length-n array X = (X[0], . . . ,X[n − 1]) with n = 2e, 1 ≤ ` < n (the last n − ` coefficients

being zeroes) and ω is an n-th primitive root of unity). Thus, initially, the contents of

the array are

X = (xe,0, . . . , xe,`−1,0, . . . ,0)

where (xe,0, . . . , xe,`−1) is the result of the TFT on (x0,0, . . . , x0,`−1,0, . . . ,0), ultimately,

the output of the computation.

According to Algorithm 4, tail ≥ LeftMiddle (tail = 10, LeftMiddle = 7) self-contained

push up is used to calculate x1,0, . . . , x1,7 from x4,0, . . . , x4,7 using Equation 3.1. Then

push down xtail+1 to xlast which is x4,11 to x4,15 here. After calculation,x4,11 to x4,15 is

equal to {14,15,7,10,8}.

Recursive call on right half. Tail ≤ LeftMiddle (tail = 2, LeftMiddle = 3), push down

to calculate x3,11 = 16. Recursive call on left half. Tail ≥ LeftMiddle (tail = 2, LeftMiddle

= 1), push up the contained (dashed) region then push down. After calculation,x2,8 = 1,

x2,9 = 14 and x2,11 = 15. Recursive call on right half to obtain x2,10 = 15.

Following Algorithm 5, do pushing up to calculate x3,8 to x3,11 which is {11,6,14,16}.

Self push up to calculate x4,8 to x4,11 which is {3,0,3,14}.

For now all items in the second line are available. According to Equation 3.1, the

final step can be achieved by pushing up which is {8,15,13,14,15,7,10,8,5,15,10} here.



3.6. Illustration of the inverse TFT algorithm 35

1 2 3 4 5 6 7 8 9

(a) Initial input.

1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0

(b) With zero padding in the end.

1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0

10 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8

15 8 10 12 5 13 13 13 6 12 9 6

8 3 5 13 4 12 6 14 2 15

11 5 4 6 10 15 12 0 13

(c) Values of each step.

Figure 3.6: Example of TFT where n = 16, ` = 9, prime number is 17, and ω = 3.

xk = xs−1, ims+j xs−1, (i+1)ms+j = xk+ms+j

xs, ims+j xs, (i+1)ms+j

Figure 3.7: The relation for no butterfly.



3.6. Illustration of the inverse TFT algorithm 36

xhead xtail

xlast

2n 2n

s = p− n− 1

s = p− n

s = p

(a) Line (8): push up the self contained (dashed) region. This yields values sufficient to push
down at line (9).

xhead xtail

xlast

2n

s = p− n− 1

s = p− n

s = p

(b) This enables us to make a recursive call on the dashed region (line (12)). By our induction
hypothesis this brings all points at s = p to s = p − n.

s = p− n− 1

s = p− n

s = p

(c) Sufficient points at s = p − n are known to move to s = p − n − 1 at line (13).

Figure 3.8: tail ≥ LeftMiddle (i.e. at least half the values are at x = p).



3.6. Illustration of the inverse TFT algorithm 37

xhead xtail

xlast

2n 2n

s = p− n− 1

s = p− n

s = p

(a) Initially there is sufficient information to push down at line (14).

xhead xtail

xlast

2n 2n

s = p− n− 1

s = p− n

s = p

(b) This enables us to make the prescribed recursive call at line (15).

2n 2n

s = p− n− 1

s = p− n

s = p

(c) By the induction hypothesis this brings the values in the dashed region to s = p−n, leaving
enough information to move up at line (16).

Figure 3.9: tail < LeftMiddle (i.e. less than half the values are at x = p).



3.6. Illustration of the inverse TFT algorithm 38

(a) Initial state of the algorithm. Grey dots
are the result of the forward TFT; larger grey
dots are zeroes.

(b) tail≥LeftMiddle. Push up; calculate
x1,0, . . . , x1,7 from x4,0, . . . , x4,7 (contained re-
gion). Then push down.

(c) Recursive call on right half. (d) tail<LeftMiddle. Push down with.

(e) Recursive call on left half.
(f) tail≥LeftMiddle. Push up the contained
(dashed) region then push down.

(g) Recursive call on right half. (h) Hiding details. The result of (g).

(i) Finish step (e) by pushing up. (j) Finish step (c) by pushing up.

(k) Resolve the original call by pushing up. (l) Done.

Figure 3.10: Schematic representation of the recursive computation of the Inverse TFT
for n = 16 and ` = 11.



3.6. Illustration of the inverse TFT algorithm 39

0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11

(a) Initial state of the algorithm with zero padding in the end.

0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11

10 8 12 15 14 16 16 13

11 3 16 5 15 6 13 6

13 13 6 14 15 7 10 8 14 15 7 10 8

(b) tail ≥ LeftMiddle. Push up. calculate x1,0, . . . , x1,7 from x4,0, . . . , x4,7 (contained
region).

0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11

10 8 12 15 14 16 16 13

11 3 16 5 15 6 13 6

13 13 6 14 15 7 10 8 14 15 7 10 8

16

(c) tail < LeftMiddle. Push down.

0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11

10 8 12 15 14 16 16 13

11 3 16 5 15 6 13 6

13 13 6 14 15 7 10 8 14 15 7 10 8

16

1 14 15

(d) tail ≥ LeftMiddle.Push up the contained (dashed) region then push down.

Figure 3.11: The first part of ITFT example.



3.6. Illustration of the inverse TFT algorithm 40

0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11

10 8 12 15 14 16 16 13

11 3 16 5 15 6 13 6

13 13 6 14 15 7 10 8 14 15 7 10 8

16

1 14 15

14

(a) Recursive call on right half.

0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11

10 8 12 15 14 16 16 13

11 3 16 5 15 6 13 6

13 13 6 14 15 7 10 8 14 15 7 10 8

16

1 14 1515

14

(b) Push up.

0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11

10 8 12 15 14 16 16 13

11 3 16 5 15 6 13 6

13 13 6 14 15 7 10 8 14 15 7 10 8

16

1 14 15

14

11 6 14 16

(c) Self pushing up.

0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11

10 8 12 15 14 16 16 13

11 3 16 5 15 6 13 6

13 13 6 14 15 7 10 8 14 15 7 10 8

16

1 14 15

14

11 6 14 16

3 0 3 14

(d) Self pushing up.

Figure 3.12: The second part of ITFT example.



Chapter 4

The Relaxed General Radix TFT

and Strict General Radix Inverse

TFT

In Chapter 3, we reviewed the original algorithms for the forward and inverse TFT

introduced by J. van der Hoeven. We turn our attention now to the variation of D.

Harvey as well as that of J. Johnson and L.C. Meng. Both variations are based on

Cooley-Tukey like formula. The former is called strict general radix as it strictly follows

the specifications proposed by J. van der Hoeven, while the latter is called relaxed general

radix as it requires some zero padding so as to improve data flow which supports full

vectorization and parallelization.

Using general radix (instead of radix 2) and Cooley-Tukey like formula, instead of a

naive 2-way divide-and-conquer algorithm, can be interpreted as using a blocking strat-

egy. The reader should remember from Sections 2.14 and 2.15 that going from the latter

to the former with Cooley-Tukey FFT algorithm yields optimal cache complexity. In

addition, those TFT algorithm are cache-oblivious, that is, they automatically adapt to

the memory hierarchy. Last but not least, serial algorithm with optimal cache optimality

are likely to produce parallel algorithms with good (or minimal) communication costs.

4.1 Introduction

The discrete Fourier transform (DFT) is an important computation in scientific comput-

ing, and many applications require a high-performance implementation of DFT. Compu-

tational complexity can be reduced from O(n2) to O(nlogn) using Fast Fourier Transform

41



4.2. A relaxed general-radix TFT algorithm 42

(FFT) algorithms, usually by obtaining smaller transforms via recursive factorization of

a large transform. FFTs are used for fast polynomial and integer arithmetic and modular

methods in computer algebra.

For polynomial and integer multiplications, the convolution theorem is used, in which

two forward FFTs and one inverse FFT are required, and the input size is arbitrary.

Inputs are typically padded to the smallest power of two that is larger than the output,

as many FFT implementations require the inputs to have a size that is a power of two.

This results in a staircase phenomenon, in which the computing time for sizes between

powers of two is virtually equal to the time for the larger power of two FFTs, leading to

FFT computations in which some inputs are zero and not all outputs are needed.

Because of this situation, the pruned or truncated DFT was developed. Van der

Hoeven presented a radix-2 algorithm for TFT, as well as an Inverse Truncated Fourier

Transform (ITFT). Although the TFT reduces the operation count and smooths out the

staircase phenomenon, it must be optimized to have better performance than a highly-

tuned power-of-two FFT with padding.

By decomposing the problem in a cache-friendly approach, David Harvey reported

improved performance of the TFT. In this chapter, we implement a general-radix TFT

algorithm expressed in the Σ-SPL formalism used by SPIRAL. A small relaxation is

introduced while using more arithmetic operations to improve the data flow and allow

automatic vectorization and parallelization, resulting in improved performance.

4.2 A relaxed general-radix TFT algorithm

Like the DFT, a general-radix TFT algorithm recursively breaks down a transform into

smaller ones. In this section, we introduce an algorithm that allows for full vectorization

and improved parallelism by using a small relaxation that slightly increases arithmetic

cost for improved data flow.

Denote a truncated Fourier transform as TFTn,`,m, where n = rs is the size of the

transform, 1 ≤ ` ≤ n is the size of the input (assuming x` = . . . = xn−1 = 0), and 0 ≤m ≤ n
is the size of the truncated output. Let n = 2e, for some positive integer e.

Define `s = ⌈`/r⌉,ms = ⌈m/r⌉, `r = min(`, r),mr = min(m,r), TFTr̄ = TFTr,`r,mr and



4.3. A cache-friendly inverse TFT (ITFT) 43

TFTc̄ = TFTs,`s,ms , then the relaxed Cooley-Tukey algorithm for TFT is:

TFTn,`,m = (Ims ⊗TFTr̄) ⋅ T nr,s ⋅ (TFTc̄ ⊗ I`r) (4.1)

During the recursive factorization, the relaxed TFT algorithm does not perform explicit

permutation. The transformed values are thus permuted based on the specific factor-

ization path. The permuted values can be recovered if the inverse transform uses a

symmetric factorization path that cancels the permutations of the forward transform, as

the TFT is used mainly for high-performance implementation of convolution algorithms.

Figure 4.1: An example of factoring TFT32,17,17 with the relaxed general-radix TFT
algorithm.

Figure 4.1 shows an example of the relaxation in one recursive step. The relaxation is

applied to the columns 1 to 7, therefore obtaining uniform column transforms. The row

transforms become uniform as well. The right tensor product in equation 2.1 containing

TFTc̄ and the twiddle matrix are applied to the relaxed columns. The left tensor prod-

uct containing TFTr̄ is applied to the relaxed rows. The relaxation is repeated in the

recursive application of equation 2.1, until fixed-size base cases are reached.

4.3 A cache-friendly inverse TFT (ITFT)

The ITFT cannot be implemented by simply running the TFT in reverse, because when

the ITFT commences there is insufficient information to perform all the row transforms.

To circumvent this difficulty, we proceed as follows. We first perform as many row

transforms as possible. We are then able to perform some of the column transforms.

When these are complete, it becomes possible to execute the last row transform that was

inaccessible before. After this row transform, the remainder of the column transforms

may be completed. The following algorithm gives a precise statement.



4.3. A cache-friendly inverse TFT (ITFT) 44

Algorithm 6: CACHEFRIENDLYITFT(L, ζ, z, n, f ; (x0, . . . , xL−1)

Input: L is the size of input vector, f is 0 initially. x is input vector.
L = 2` ≥ 2, ζ ∈ Rx, f ∈ {0,1},1 ≤ n + f ≤ L,1 ≤ z ≤ L, z ≤ n,xi = âi for
0 ≤ i < n,xi = Lai for n ≤ i < z.

Output: xi = Lai for 0 ≤ i < n,xn = ân if f = 1.
if L = 2 then

if n = 2 then
(x0, x1) ← (x0 + ζ

−1x1, x0 − ζ
−1x1)

if n = 1 and f = 1 and z = 2 then
(x0, x1) ← (2x0 − x1, ζ(x0 − x1))

if n = 1 and f = 1 and z = 1 then
(x0, x1) ← (2x0, ζx0)

if n = 1 and f = 0 then
x0 ← (z == 1)? 2x0 ∶ 2x0 − x1

if n = 0 then
x0 ← (z == 1)? x0/2 ∶ (x0 + x1)/2

return;

/* recursive case */

L1 ← 2⌊`/2⌋, L2 ← 2⌈`/2⌉, n2 ← n mod L2, n1 ← ⌊n/L2⌋, z2 ← z mod L2, z1 ← ⌊z/L2⌋;
if n2 + f > 0 then

f ′ ← 1
else

f ′ ← 0

if z1 > 0 then
z′2 ← L2

else
z′2 ← z2

m←min(n2, z2), m
′ ←max(n2, z2);

/* row transforms */

for u = 0 to n1 − 1 do

CACHEFRIENDLYITFT(L2, ζ
L1 , L2, L2,0; ru);

/* rightmost column transforms */

for u = n2 to m′ − 1 do
CACHEFRIENDLYITFT(L1, ω

u
Lζ, z1 + 1, n1, f

′; cu);

for u =m′ to z′2 − 1 do
CACHEFRIENDLYITFT(L1, ω

u
Lζ, z1, n1, f

′; cu);

/* last row transform */

if f ′ = 1 then

CACHEFRIENDLYITFT(L2, ζ
L1 , z′2, n2, f ; rn1);

/* leftmost column transforms */

for u = 0 to m − 1 do
CACHEFRIENDLYITFT(L1, ω

u
Lζ, z1 + 1, n1 + 1,0; cu);

for u =m to n2 − 1 do
CACHEFRIENDLYITFT(L1, ω

u
Lζ, z1, n1 + 1,0; cu);



Chapter 5

Python Code Generator for TFT

and Inverse TFT in C++/CilkPlus

We have implemented an automatic code generator for the implementation of forward

TFT 4.2 and inverse TFT (ITFT) 4.3 algorithms. Both generated programs are (1)

supported to be compiled in both serial and parallel mode, and (2) valid for any arbitrary

input size. In order to generate efficient parallel code, optimized techniques, such as

Montgomery tricks and unrolling loops are taken into account and integrated into the

code generator.

This code generator is written in Python and described in Section 5.1. Our implemen-

tation framework in Section 5.2 is based on the Basic Polynomial Algebra Subprograms

(BPAS) library [4]. In Section 5.3, we describe the architecture of our code generator and

the specifications of the main methods in the code. Finally, in Section 5.4, optimization

techniques and code generation in both serial and parallel mode are discussed.

5.1 C++ code generation in Python

This section discusses the use of Python as a tool for code generation. Python is a

widely used general-purpose programming language 1. It provides high-level features

that emphasize code readability and allow programmers to express concepts in fewer

lines of code than would be possible in languages such as C++, or Java. The automatic

generation of code using Python is intended to be adaptive to different architectures, for

which, for instance, the cache size or the number of registers varies.

A simple example is given below to demonstrate the use of Python to generate C++

1https://en.wikipedia.org/wiki/Python_(programming_language)

45

https://en.wikipedia.org/wiki/Python_(programming_language)


5.1. C++ code generation in Python 46

code 2:

from CodeGenerator import *

cpp = CppFile("tft_test.cpp")

cpp("#include <iostream>")

with cpp.block("void main()"):

for i in range(6):

cpp(’std::cout << "’ + str(i) + ’" << std::endl;’)

cpp.close()

such that we have the following output:

#include <iostream>

void main()

{

std::cout << "0" << std::endl;

std::cout << "1" << std::endl;

std::cout << "2" << std::endl;

std::cout << "3" << std::endl;

std::cout << "4" << std::endl;

std::cout << "5" << std::endl;

}

Using Python’s “with” keyword, statements can be encapsulated in {} blocks that

are closed out automatically with the correct indentation so that the output remains

readable. When generating more sophisticated code, the Python script becomes less

readable because of numerous unseemly string concatenations. This issue can be ad-

dressed through the “subs” method as follows.

from CodeGenerator import *

cpp = CppFile("tft_test.cpp")

cpp("#include <iostream>")

with cpp.block("void main()"):

for i in range(6):

with cpp.subs(i=str(i), xi="x"+str(i+1)):

cpp(’int $xi$ = $i$;’)

cpp.close()

2http://www.codeproject.com/Articles/571645/Really-simple-Cplusplus-code-generation-in-Python

http://www.codeproject.com/Articles/571645/Really-simple-Cplusplus-code-generation-in-Python


5.2. The basic polynomial algebra subprograms 47

The substitutions are valid within the Python “with” block, which can be nested, pro-

ducing:

#include <iostream>

void main()

{

int x1 = 0;

int x2 = 1;

int x3 = 2;

int x4 = 3;

int x5 = 4;

int x6 = 5;

}

5.2 The basic polynomial algebra subprograms

The serial and parallel TFT and ITFT algorithms are implemented based on the BPAS

library [4]. The BPAS provides arithmetic operations such as multiplication, division

and root isolation for uni-variate and multivariate polynomials over prime fields or with

integer coefficients. The code is mainly written in CilkPlus [16] targeting multicore

processors. The current distribution focuses on dense polynomials, while the sparse case

is a work in progress.

Since the library supports a wide variety of situations in terms of problem sizes

and available computing resources, our emphasis is on adaptive algorithms. One of

the purposes of the BPAS project is to take advantage of hardware accelerators in the

development of polynomial systems solvers. The BPAS library source code is publicly

available at www.bpaslib.org.

5.2.1 Design and specification

The BPAS functionalists are organized into three levels. Level 1 comprises basic arithmetic

operations that are specific to a polynomial representation or coefficient ring. Examples

of Level-1 operations are multi-dimensional FFTs/TFTs and uni-variate real root isola-

tion. At Level 2, arithmetic operations are implemented for all types of coefficient rings

supported by BPAS such as prime fields, ring of integers, field of rational numbers. Level

3 includes advanced arithmetic operations taking as input a zero-dimensional regular

chain, e.g. the normal form of a polynomial and multivariate real root isolation.

www.bpaslib.org


5.2. The basic polynomial algebra subprograms 48

5.2.2 User interface

The BPAS library makes use of type constructors to provide generic structures. For in-

stance, SparseUnivariatePolynomial (SUP) can be instantiated over any BPAS ring.

On the other hand, for efficiency considerations, certain polynomial type constructors,

such as DistributedDenseMultivariateModularPolynomia (DDMMP), are only avail-

able over finite fields. This ensures that the data encoding a DDMMP polynomial consists

only of consecutive memory cells.

For the same efficiency considerations, the most frequently used polynomial rings,

such as DenseUnivariateIntegerPolynomial (DUZP) and DenseUnivariateRational

NumberPolynomial (DUQP), are primitive types. Consequently, DUZP and SUP<Integer>

implement the same functionalists; however, the implementation of the former is further

optimized.

Figure 5.1: A snapshot of BPAS algebraic data structures.

Figure 5.1 [4] shows a subset of BPAS’s tree of algebraic data structures. Dark and

blue boxes correspond to abstract and concrete classes, respectively. BPAS counts many

other classes, for instance Intervals and RegularChains.

5.2.3 BPAS’s DFT code generator

BPAS also uses a Python generator to generate C++ code for DFT 2.4 algorithms. The

second author of [4] implements a self-generating code able to obtain an optimized DFT

(using methods such as loop-unrolling and optimizing the pipeline) in any radix.

The entrance of the DFT algorithm is the function DFT eff which is shown in Al-

gorithm 7. The Shuffle function is used for permuting the inputs of DFT shown in

Algorithm 8. The function DFT rec, shown in Algorithm 9, and the function DFT iter,

shown in Algorithm 20, are called in DFT eff.

When the size is broken down to less than or equal to 16, BPAS calls a straight-line

program code directly. Algorithm 21 and Algorithm 22 show the snippet code of the



5.2. The basic polynomial algebra subprograms 49

loop-unrolling technique for the functions FFT 2POINT and FFT 4POINT of input size 2

and 4, respectively.

Algorithm 7: DFT eff(n,A,Ω,H)

Input: n = 2r, A = [a0, a1, . . . , an/2−1, . . . , an−1] coefficient array of
the input polynomial a, Ω = [1, ω, . . . , ωN/2−1, . . . , ωN−1] an
array of the consecutive powers of a primitive N -th root of
unity ω, where N ≥ n and N is a power of two, and H is
a threshold below which computations are expected to fit in
cache.

Output: DFT (n,A,Ω) computed as A[i] = a(ωi), for 0 ≤ i ≤ n−1.
if n = 1 then

return;

else if n >H then
DFTrec(n,A,Ω,H);

ArrayBitReversal(n,A);
DFTiter(n,A,Ω);

Algorithm 8: Shuffle(n,A)

Input: n = 2r, A = [a0, a1, . . . , an/2−1, . . . , an−1] coefficient array of
a polynomial a,

Output: A = [a0, a2, . . . , an−2, a1, a3, . . . , an−1]
allocate B[0⋯n/2 − 1];
for k from 0 to n/2 − 1 do

A[k] = A[2k];
B[k] = A[2k + 1];

for k from 0 to n/2 − 1 do
A[k + n/2] = B[k];

5.2.4 The use of the BPAS library

The implementation of the TFT code relies on BPAS’s modular arithmetic operations in

the Montgomery mode. In other words, we take advantage of highly optimized machine-

word operations, such as addition, subtraction and multiplication corresponding to func-

tions AddModSpe, SubModSpe and MontMulModSpe OPT3 AS GENE INLINE, respectively in

BPAS. In particular, machine-word multiplication operations are implemented by assembly

code, which can run twice as fast as its counterpart in C code.



5.3. Code generation for TFT and ITFT 50

Algorithm 9: DFT rec(n,A,Ω,H)

Input: n = 2r, A = [a0, a1, . . . , an/2−1, . . . , an−1] coefficient array of
the input polynomial a, Ω = [1, ω, . . . , ωN/2−1, . . . , ωN−1] an
array of the consecutive powers of a primitive N -th root of
unity ω, where N ≥ n and N is a power of two.

Output: DFT (n,A,Ω) computed as A[i] = a(ωi), for 0 ≤ i ≤ n−1.
step = (the number of Ω) / n;
Shuffle(n,A);
DFT eff(n/2,A,Ω,H);
DFT eff(n/2,A + n/2,Ω,H);
for k from 0 to n/2 − 1 do

s = stepk;
v = A[k + n/2];
u = A[k];
t = Ωs v;
A[k] = u + t;
A[k + n/2] = u − t;

In addition, BPAS provides function calls to compute tables of (1) n-th roots of unity

ω, that is, {ω0, ω1, ω2, ω3, ω4, . . ., wn−1} by PBPAS::RootsTableSpe; and (2) the inverse

of these ω by PBPAS::InverseRootsTable. Then we only pre-compute them once and

store each table in its respective array. Thus, for each TFT iteration, we access these

tables instead of redundant computations.

The BPAS library implements an efficient DFT algorithm restricted to input sizes equal

to powers of two. Thus, we invoke its functions, such as DFT eff, when either (1) the

input size equals a power of two, or (2) during any TFT iteration, the divided block size

equals a power of two. Furthermore, Shuffle tft is called to permuted the outputs of

BPAS’s DFT into order for TFT.

5.3 Code generation for TFT and ITFT

Our TFT and ITFT source code are generated by (1) a Python file: generate tft relax

.py, which is the relaxed TFT code generator; and (2) a template code: generate tft tre

e template.cpp, for which the implemented algorithms are described in Section 4.2 and

Section 4.3. To use this code generator, one executes .config tft tree to configure

the generated files and their primes. To illustrate, the configuration file contains the

following lines:

tft_tree1



5.3. Code generation for TFT and ITFT 51

4179340454199820289

tft_tree2

2485986994308513793

After configuration, two files are generated: tft tree1.cpp and tft tree2.cpp for the

primes 4179340454199820289 and 2485986994308513793, respectively.

The generated C++ file contains three high-level functions for TFT (TFT Basecase,

TFT Core and TFT Wrapper) and three for ITFT (ITFT Basecase, ITFT Core and

ITFT Wrapper). The methods TFT Basecase and ITFT Basecase are used to compute

the base case scenario, for which users can specify the base case size (16 by default).

TFT Core and ITFT Core are the implementations of the core algorithms of the TFT and

ITFT, respectively. Each one recursively divides the original problem into smaller sizes

until it reaches the base case. Functions TFT Wrapper and ITFT Wrapper are top-level

functions calling their core algorithms and generating random inputs.

5.3.1 Details of the Python code generator

To generate the header files of C++ code (e.g. *.h) in Python, one can use header.write

and define a constant variable as follows:

header.write("#include <iostream>\n")

header.write("#define Mont_two 3458764513820540920\n")

Corresponding to its source code, code.write is needed to generate C++ code for any

.cpp file. Furthermore, line.replace is necessary when any string is to be replaced.

To illustrate, in the following example, if the string void TFT Core is found in a line, we

replace the first parameter in line.replace by the second one, in both the header and

source file.

if "void TFT_Core" in line:

code.write(line.replace("TFT_Core","TFT_Core_p%i"%num))

header.write(line.replace("{",";\n").replace("TFT_Core","TFT_Core_p%i"%num))

This code generator requires a template file to open, such that each generated file has

the same format as the content defined in generate tft template.cpp. In Python, we

use open to read from a file as below.

template = open("generate_tft_template.cpp","r")

for line in template:

...

For further detail, Appendix 7 shows the full content of our Python script.



5.3. Code generation for TFT and ITFT 52

5.3.2 The structure of the template file

The template file is used for different prime numbers and their n-th roots of unity ω.

Each high-level function is defined in the template file, and it is used by the code gen-

erator to rewrite. For instance, the method TFT Core is passed to the code generator

for a prime number p1 such that a method TFT Core p1 is generated in the source file:

tft tree1.cpp. To illustrate, the following pieces of code are shown in template and

generated file, respectively.

/* in template file: generate_tft_template.cpp */

void TFT_Core(int n, int l, int m, int basecase, ... ){

...

}

/* in generated file: tft_tree1.cpp */

void TFT_Core_p1(int n, int l, int m, int basecase, ... ){

...

}

This particular method, TFT Core, implements the relaxed Cooley-Tukey algorithm as

Equation 4.1. Algorithm 11 shows the TFT Core code in the template file, which consists

of the base case computation and two parts of the computation in Equation 4.1. We refer

the implementation of the right part and shuffle part to T nr,s ⋅ (TFTc̄⊗ I`r) and that of the

left part to (Ims ⊗TFTr̄) . Note that parameter invec is the input vector and invectmp

is an intermediate array for data reuse.

For the method TFT Basecase, we apply the TFT algorithm for 5 base cases, namely,

the input sizes of 2,4,8,16 and 32. Algorithm 10 implements the forward TFT as de-

scribed in 4, but for the base case of size of 8 in particular. We generate random inputs

of size K (given by the user) in the body of the method TFT Wrapper, as shown below:

sfixn *Ap = (sfixn *)calloc(K, sizeof(sfixn));

Ap = EX_RandomUniPolyCoeffsVec(K, p);

and then TFT Core is called to execute the TFT on these inputs.



5.4. Optimization techniques 53

Algorithm 10: TFT 8POINT(sfixn ∗A,sfixn ∗W )

Input: A the coefficient array of the input polynomial, W a primitive 8-th root of
unity.

Output: Array A.
sfixn ∗Wp =W + (8 ≪ 1) − 4;
sfixn u = A[0];
sfixn t = A[4];
A[0] = AddModSpe(u, t);
A[4] = SubModSpe(u, t);
u = A[2];
t = A[6];
A[2] = AddModSpe(u, t);
A[6] = SubModSpe(u, t);
u = A[1];
t = A[5];
A[1] = AddModSpe(u, t);
A[5] = SubModSpe(u, t);
u = A[3];
t = A[7];
A[3] = AddModSpe(u, t);
A[7] = SubModSpe(u, t);
A[6] = MontMulModSpe OPT3 AS GENE INLINE(A[6],∗(Wp − 3));
A[7] = MontMulModSpe OPT3 AS GENE INLINE(A[7],∗(Wp − 3));
TFT AddSubSpeSSEModInplace(A,A + 4,A + 2,A + 6);
TFT AddSubSpeSSEModInplace(A + 1,A + 5,A + 3,A + 7);
A[5] = MontMulModSpe OPT3 AS GENE INLINE(A[5],∗(Wp − 11));
A[3] = MontMulModSpe OPT3 AS GENE INLINE(A[3],∗(Wp − 10));
A[7] = MontMulModSpe OPT3 AS GENE INLINE(A[7],∗(Wp − 9));
TFT AddSubSpeSSEModInplace(A,A + 4,A + 1,A + 5);
TFT AddSubSpeSSEModInplace(A + 2,A + 6,A + 3,A + 7);

5.4 Optimization techniques

5.4.1 The use of machine code

We optimize efficiency-critical low-level routines (like Montgomery modular multiplica-

tion) with the intention of fully taking advantage of hardware features, in particular

instruction pipelining and vectorized instructions (SSE2, SSE4). An example of such

usage of assembly code is shown in Algorithm 12.



5.4. Optimization techniques 54

5.4.2 Hard-coded constants

For a prescribed prime number, quantities like R−1 and p′ used in Montgomery arithmetic,

see Section 2.2. In the header files, MY PRIME1 is the prime number p used for the TFT

and ITFT algorithms while INV PRIME1 is p′. Also, Mont two and INV Mont two are R

and R−1, respectively:

#define MY_PRIME1 4179340454199820289

#define INV_PRIME1 4179340454199820287

#define Mont_two 3458764513820540920

#define INV_Mont_two 2559286960657440491

5.4.3 Unrolling loops

Loop unrolling is a well-known loop transformation technique interpreting the iterations

into a sequence of instructions so as to reduce the loop execution overhead. For TFT

on input sizes 2,4,8,16,32, an straight-line program (SLP) code was manually gener-

ated. Such code is meant to minimize arithmetic calculations and optimize the use of

hardware pipelines. Algorithm 10 and algorithm 19 show examples for the un-rolling

code. Note that the subroutines AddModSpe and SubModSpe, are called: they perform

modular addition and modular subtraction, respectively. Those subroutines are defined

in Algorithm 14 and Algorithm 15, respectively.

5.4.4 Work space

Dynamic allocation/deallocation of temporary arrays is avoided by passing the necessary

work space to the top-level TFT function. This work space is a sufficiently large array

which is passed as an argument of both recursive functions TFT Core and ITFT Core.

In Algorithm 11, TFT Core is recursively called with parameter invectmp which is this

work space vector.

5.4.5 Montgomery arithmetic

Arithmetic operations in Z/pZ are all performed in Montgomery representation to speedup

modular multiplication. Consider Algorithm 16, in which we seek to apply the Mont-

gomery arithmetic to compute modular products and inverses. Let R > p with gcd(R,p) =
1 and p is a prime number greater than 2. We assume to have at hand two functions

Montgomery convert in and Montgomery convert out to convert the representation of



5.4. Optimization techniques 55

a modular integer from the usual residual representation to the Montgomery represen-

tation. Then, we apply two operations Montgomery product and Montgomery inverse,

whenever a modular product and modular inverse calculation are required. The former

operation is defined in Section 2.6, and the latter is defined in Algorithm 2.25 of [11].

Hence, using the Montgomery arithmetic, one obtains the corresponding code in Algo-

rithm 17.

5.4.6 Cache-efficient transpose

Transposition is an efficiency-critical subroutine for FFT and TFT algorithms. We use

a cache-optimal transposition method. The serial version of this method is implemented

in Algorithm 18, while the parallel version is implemented in Algorithm 1. Both versions

are based on the divide and conquer method of [9] which is described in Section 2.13.

Note that in Algorithms 18 and 1, lda and ldb are defined as the number of columns

and rows, respectively, of the input matrix.

5.4.7 Parallel code generation

Our Python code generator can produce either C++ and CilkPlus code. The user of

the BPAS library switches between serial and parallel code by setting the environment

variable SERIAl to either 0 or 1.

Following the work in [19] on the parallelization of multi-dimensional FFTs and TFTs,

we parallelize the TFT Core and ITFT Core by executing for-loops with the cilk for

construct of CilkPlus. As we shall see in Section 6, we have verified experimentally that

the default grain size of those cilk for loops ensured that parallelism overheads were

negligible.

While this parallelization scheme may look quite simple, one should note that the

structure of the algorithms underlying TFT Core and ITFT Core made it easy.



5.4. Optimization techniques 56

Algorithm 11: TFT Core(invec, ω, p, n, `,m, basecase, invectmp)

Input: invec the coefficient array of the input polynomial, ω a primitive n-th root of
unity, n, `,m is defined in 4.2, invectmp a temporary variable.

Output: Array invec returns the results of TFT.
/* base case computation */

if n ≤ basecase then
TFT Basecase(n, e, invec,ω, invectmp);
return;

if n > basecase2 then
s = basecase; r = n/basecase;

else

s = 2⌈(log2n)/2⌉; r = 2⌊(log2n)/2⌋;

`s = ⌈`/r⌉, ms = ⌈m/r⌉, `r =min(`, r), mr =min(m,r);
/* right part and shuffle part: Tnr,s ⋅ (TFTc̄ ⊗ I`r) */

new r n = s, new r l = ls, new r m =ms, new r a = n/new r n, new r b = lr;
if new r n ≤ basecase then

right step = log2new r n;
transpose(invec, new r b, invectmp, s,0, s,0, new r b);
for j from 0 to new r b − 1 do

pi = j ∗ new r n;
TFT Basecase(new r n, right step, invectmp + pi, ω, invec + pi);

transpose(invectmp, s, invec, new r b,0, new r b,0, s);

else
for j from 0 to new r b − 1 do

TFT Core(invec + j ∗
new r n,ω, p, new r n,new r l, new r m, basecase, invectmp + j ∗ new r n);

/* left part: (Ims ⊗TFTr̄) */

new l n = r, new l l = lr, new l m =mr, new l a = n/new l n, new l b = 1;
if new l n ≤ basecase then

left step = log2new l n;
for j from 0 to new l a − 1 do

pi = j ∗ new l n;
TFT Basecase(new l n, left step, invec + pi, ω, invectmp + pi);

else
for j from 0 to new l a − 1 do

TFT Core(invec + i ∗
new l n,ω, p, new l n,new l l, new l m, basecase, invectmp + i ∗ new l n);



5.4. Optimization techniques 57

Algorithm 12: MontMulModSpe OPT3 AS GENE INLINE(sfixn a,sfixn b)

Input: a, b can be any arbitrary integer number.
Output: a is the product of a and b in Montgermory mode.
asm(“mulq %2/n/t”
“movq %%rax,%%rsi/n/t”
“movq %%rdx,%%rdi/n/t”
“imulq %3,%%rax/n/t”
“mulq %4/n/t”
“add %%rsi,%%rax/n/t”
“adc %%rdi,%%rdx/n/t”
“subq %4,%%rdx/n/t”
“mov %%rdx,%%rax/n/t”
“sar $63,%%rax/n/t”
“andq %4,%%rax/n/t”
“addq %%rax,%%rdx/n/t”
: “=d” (a)
: “a”(a),“rm”(b),“b”((sfixn) INV PRIME1),“c”((sfixn) MY PRIME1)
:“rsi”,“rdi”);
return a;

Algorithm 13: unrolledSpe8MontMul(sfixn* input1, sfixn* input2,
MONTP OPT2 AS GENE * pPtr)

Input: input1, input2 can be any arbitrary integer number.
Output: Return the product of input1 and input2.
asm (“movq (%%rsi),%%rax/n/t”
“mulq (%%rdi)/n/t”
“pinsrq $0,%%rdx,%%xmm0/n/t”
“mulq %2/n/t”
“movq %%rax,%%r8/n/t”
“pinsrq $0,%%rdx,%%xmm4/n/t”
“movq 8(%%rsi),%%rax/n/t”
“mulq 8(%%rdi)/n/t”
“pinsrq $1,%%rdx,%%xmm0/n/t”
“mulq %2/n/t”
“movq %%rax,%%r9/n/t”
“pinsrq $1,%%rdx,%%xmm4/n/t”
. . .



5.4. Optimization techniques 58

Algorithm 14: AddModSpe(sfixn a, sfixn b)

Input: a, b long int numbers.
Output: r is the sum of a and b.
sfixn r = a + b;
r− = MY PRIME1;
r+ = (r ≫ BASE 1)&MY PRIME1;
return r;

Algorithm 15: SubModSpe(sfixn a, sfixn b)

Input: a, b long int numbers.
Output: r returns the difference between a and b.
sfixn r = a − b;
r+ = (r ≫ BASE 1)&MY PRIME1;
return r;

Algorithm 16: Prod Inv(x, y, z, p)

Input: x, y, z are numbers in normal mode. p is a prime number.
Output: Return x in Z/pZ where p is a prime number.
for i from 1 to n do

x = (x + y[i] ∗ z[i]) mod p;
x = (1/x) mod p;

Algorithm 17: Prod Inv Mont(x, y, z, p)

Input: x, y, z are numbers in normal mode and p is a prime number.
Output: x is converted to Montgomery mode.
for i from 1 to n do

yM[i] = Montgomery convert in(y[i]);
zM[i] = Montgomery convert in(z[i]);

xM = Montgomery convert in(x);
for i from 1 to n do

prodM = Montgomery product(yM[i], xM[i]);
xM = (xM + prodM) mod p;
xM = Montgomery inverse(xM);

x = Montgomery convert out(xM);



5.4. Optimization techniques 59

Algorithm 18: transpose serial(sfixn *A, int lda, sfixn *B, int ldb, int i0, int i1,
int j0, int j1)

Input: A,B matrix represented in array, lda number of columns, ldb number of
rows, i0, i1 index of rows, j0, j1 index of columns.

Output: Array A.
tail:
int di = i1 − i0, dj = j1 − j0;
if di ≥ dj&&di > TRANSPOSETHRESHOLD then

int im = (i0 + i1)/2;
transpose serial(A, lda,B, ldb, i0, im, j0, j1);
i0 = im; goto tail;

else if dj >TRANSPOSETHRESHOLD then
int jm = (j0 + j1)/2;
transpose serial(A, lda,B, ldb, i0, i1, j0, jm);
j0 = jm; goto tail;

else
for i from i0 to i1 do

for j from j0 to j1 do
B[j ∗ ldb + i] = A[i ∗ lda + j];

Algorithm 19: FFT 8POINT(sfixn *A,sfixn *W )

Input: A the coefficient array of the input polynomial, W a primitive 8-th root of
unity.

Output: Array A returns the result of FFT.
sfixn *Wp =W + (8 ≪ 1) − 4;
sfixn u = A[0];
sfixn t = A[1];
A[0] = AddModSpe(u, t);
A[1] = SubModSpe(u, t);
u = A[2];
t = A[3];
A[2] = AddModSpe(u, t);
A[3] = SubModSpe(u, t);
u = A[4];
t = A[5];
A[4] = AddModSpe(u, t);
A[5] = SubModSpe(u, t);
. . .



5.4. Optimization techniques 60

Algorithm 20: DFT iter(n,A,Ω)

Input: n = 2r, A the array for the coefficient of a polynomial a
sorted by the DFT ordering. Ω = [1, ω, . . . , ωN/2−1, . . . , ωN−1]
an array of the consecutive powers of a primitive N -th root
of unity ω, where N ≥ n and N is a power of two,.

Output: DFT (n,A,Ω) computed as A[i] = a(ωi), for 0 ≤ i ≤ n−1.
step = (the number of Ω) / n;
for i from 1 to r do

/* Traversing the tree, bottom-up */

m = 2i;
for k from 0 to n − 1 by m do

/* for each internal node from left to right */

for j from 0 to m/2 − 1 do
/* combine its two children */

s = step j n/m;
t = Ωs A[k + j +m/2];
u = A[k + j];
A[k + j] = u + t;
A[k + j +m/2] = u − t;

Algorithm 21: FFT 2POINT(sfixn ∗A,sfixn ∗W )

Input: A the coefficient array of the input polynomial, W a primitive 2-th root of
unity.

Output: Array A returns the result of FFT.
sfixn u = A[0]; sfixn t = A[1];
A[0] = AddModSpe(u, t); A[1] = SubModSpe(u, t);

Algorithm 22: FFT 4POINT(sfixn ∗A,sfixn ∗W )

Input: A the coefficient array of the input polynomial, W a primitive 4-th root of
unity.

Output: Array A returns the result of FFT.
sfixn ∗Wp =W + (4 ≪ 1) − 4;
sfixn w = A[1];
A[1] = A[2]; A[2] = w;
sfixn u = A[0]; sfixn t = A[1];
A[0] = AddModSpe(u, t); A[1] = SubModSpe(u, t);
u = A[2]; t = A[3];
A[2] = AddModSpe(u, t); A[3] = SubModSpe(u, t);
A[3] = MontMulModSpe OPT3 AS GENE INLINE(A[3],∗(Wp − 3));
AddSubSpeSSEModInplace(A,A + 2);



Chapter 6

Experimentation of Serial and

Inverse TFT (ITFT)

In this chapter, we first describe the environmental setup for our experimentation in

Section 6.1. In Section 6.2, we compare running times, clock cycles and cache misses

among serial FFT 3.1, serial TFT and serial ITFT. Due to the relaxed scheme of TFT 4.2,

our serial TFT code is competitive with FFT code, while ITFT 4.3 runs slower because

of higher overheads. In Section 6.3, we show the trend of running times of serial TFT

and serial ITFT when the input size increases within a range. Running times of both

algorithms increase linearly. Finally, in Section 6.4, the experimental results of our

parallel methods are displayed and analyzed. We show that the parallel TFT is 5.31

times faster than the serial FFT (at input size 223) and 6.78 times faster than the serial

TFT (at input size 226).

6.1 Experimental setup

Our input vector consists of {1,2, . . . , n} for any arbitrary size n. We collected exper-

imentation results of various values of n on an Intel X5650 machine with 12 cores (24

cores with Hyper-Threading) with frequency of 2.67GHz. Our code was compiled by GCC

version 4.8.1, with -lbpas -lmodpnLINUXINTEL64 -lcilkrts linking flags and -c -O2 -g

-fcilkplus -DLINUXINTEL64=1 compilation flags. Note that -lbpas -lmodpnLINUXINTEL

64 and -DLINUXINTEL64=1 are required by the BPAS library and -lcilkrts and -fcilkplus

are required by CilkPlus.

In order to collect performance measures such as clock cycles and cache misses, we

used the Linux Perf performance analysis tool (see https://perf.wiki.kernel.org/

index.php/Main_Page).

61

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page


6.2. Comparison of serial code 62

We relied on the version perf 3.2.18 with command line: perf stat -e cycles

-e cache-misses binary name. And we used Cilkview [13], extracted from the Intel

CilkPlus SDK build 4225 package, to collect work, span, burdened span, and parallelism.

The collected data are then displayed with plot 4.4.

6.2 Comparison of serial code

Running times for serial FFT, serial TFT and serial ITFT can be found in Figure 6.1.

The x-axis is a logarithm to base 2 of the input size, i.e. 12 = log2(4096). The y-axis is

a logarithm to base 10 of the running time in seconds, i.e. −0.5 = log10(0.31622). Clock

cycles for serial FFT, serial TFT and serial ITFT can be found in Table 6.1. Cache

misses for serial FFT, serial TFT and serial ITFT can be found in Table 6.2. There is

a little variation in the number of clock cycles and the number of cache misses among

code executions. For instance, among ten code executions, the number of clock cycles

for serial TFT ranges from 7,376,556,355 to 7,370,257,970 (a narrow range), for input

size 8,388,608. We observe that our serial TFT code runs slightly slower than the serial

FFT code, while their clock cycles and cache misses are coherent with this result. This is

due to the fact that our TFT follows the relaxed scheme. Furthermore, our serial ITFT

runs much more slowly than the serial FFT code, since this strictly ITFT algorithm has

a complex data flow. Thus, ITFT suffers from higher overheads and is not competitive

with FFT code.

log2(n) Serial FFT Serial TFT Serial ITFT
10 8,567,358 8,990,501 10,406,586
11 7,633,606 10,494,993 8,959,363
12 10,465,353 8,930,546 11,382,820
13 10,127,8003 10,088,607 19,096,836
14 15,285,211 15,176,968 32,262,386
15 19,398,703 26,807,539 59,212,666
16 39,789,124 41,899,422 128,884,441
17 71,928,652 98,468,975 259,321,821
18 175,679,865 184,111,555 571,758,675
19 344,479,786 312,873,524 1,130,050,020
20 723,018,779 807,968,662 2,531,523,723
21 1,439,760,2437 1,767,759,406 5,199,437,793
22 3,281,504,234 3,590,756,599 11,588,723,554
23 6,664,053,326 7,567,093,379 22,429,454,018
24 14,050,973,272 14,995,597,184 48,880,609,613

Table 6.1: Clock cycles for serial FFT, TFT and ITFT with input size n.



6.3. Results for serial TFT between two consecutive powers of two 63

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 15  16  17  18  19  20  21  22  23  24  25  26  27

ru
nn

in
g 

tim
e

size of input vector

Serial FFT, TFT and  ITFT running time

Serial FFT
Serial TFT
Serial ITFT

Figure 6.1: Running time (secs) of serial FFT, TFT and ITFT.

6.3 Results for serial TFT between two consecutive

powers of two

For the choice of input size n, we use values of the form 2k + c1 ∗ 2k−1 + c2 ∗ 2k−2 + c3 ∗
2k−3 + c4 ∗ 2k−4 where c1, c2, c3, c4 are either 0 or 1. Thus, 24 + 1 = 17 choices of n are

given, including 2k+1 itself. Figure 6.2 and Figure 6.3 show running time comparisons

between serial TFT and serial ITFT on this range of 2k . . .2k+1, where we set k to 22

and 23, respectively. The x-axis represents the increased value based on k and the y-axis

represents a logarithm to base 10 of the running time in seconds. Both algorithms have

a nearly straight curve between two consecutive powers of two, as expected. This is

satisfactory.

6.4 Results for TFT and ITFT parallel code

We run the input size n = 2k, for an integer k from 14 to 27 on 4 cores and 12 cores.

Figure 6.4 and Figure 6.5 show increases in speed between serial TFT and parallel TFT,

as well as between serial ITFT and parallel ITFT. One can observe that we obtain an

increase in speed of approximately factor 7 for the case of TFT at input size 220, and



6.4. Results for TFT and ITFT parallel code 64

log2(n) Serial FFT Serial TFT Serial ITFT
10 11,999 12,132 8,796
11 8,493 15,880 8,811
12 17,612 7,399 7,288
13 9,324 11,301 16,342
14 14,696 12,902 17,289
15 11,881 36,331 21,017
16 28,055 40,844 43,707
17 55,692 90,325 95,380
18 210,514 209,629 273,559
19 400,919 449,267 530,346
20 935,616 1,289,325 1,442,793
21 1,773,831 2,900,084 3,391,734
22 4,090,681 5,965,302 8,234,309
23 8,424,800 13,568,997 18,699,274
24 17,780,019 26,304,109 33,878,567

Table 6.2: Cache misses for serial FFT, TFT and ITFT with input size n.

factor 4.5 at input size 227 for the case of ITFT on a 12 cores node. Table 6.3 and

Table 6.4 show Cilkview results for TFT and ITFT, respectively, of input sizes of 222

and 223 on a 12 cores node. Note that for both cases, the span and burdened span

are approximately equivalent, indicating that our parallel code has parallelism overhead

under control.

The increase in speed may appear low for TFT, but for that type of mergesort-like

algorithm on multi-cores, the increase in speed is as expected. In fact, this is confirmed

by the Cilkview results. However, the speedup curves for ITFT are not satisfactory.

According to Cilkview, the burden on the span is low, as desired. Nevertheless, an

overhead undetectable by Cilkview seems to have a major negative impact. This could

be due to cache misses of type false/true sharings; however, these cannot be measure by

perf.

The speedup for parallel TFT and parallel ITFT with grain sizes of 512,1024 and

2048 can be found in Figure 6.6 and Figure 6.7, respectively. Based on these figures, we

choose 1024 as the grain size for both TFT and ITFT.

Table 6.5 compares the running times among serial FFT, serial TFT and parallel

TFT, as well as the speedups between serial FFT and parallel TFT and between serial

TFT and parallel TFT. We observe that our parallel code can outperform its serial code

by a factor of 6.9 and the corresponding serial FFT code by a factor of 5.3.



6.4. Results for TFT and ITFT parallel code 65

-0.25
-0.2

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

ru
nn

in
g 

tim
e

size of input vector

 TFT and ITFT running time (12 cores)

TFT
ITFT

Figure 6.2: TFT and ITFT results on a range between 222 and 223 on a 12 cores node.

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1
 1.05

 1.1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

ru
nn

in
g 

tim
e

size of input vector

 TFT and ITFT running time (12 cores)

TFT
ITFT

Figure 6.3: TFT and ITFT results on a range between 223 and 224 on a 12 cores node.



6.4. Results for TFT and ITFT parallel code 66

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 14  15  16  17  18  19  20  21  22  23  24  25  26  27

S
pe

ed
 u

p

size of input vector

Speed up of parallel TFT on 4 cores and 12 cores

Speedup of TFT with 4 cores
Speedup of TFT with 12 cores

Figure 6.4: TFT speedup on 4 cores and 12 cores.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 14  15  16  17  18  19  20  21  22  23  24  25  26  27

S
pe

ed
 u

p

size of input vector

Speed up of parallel ITFT on 4 cores and 12 cores

Speed up ITFT with 4 cores
Speed up ITFT with 12 cores

Figure 6.5: ITFT speedup on 4 cores and 12 cores.



6.4. Results for TFT and ITFT parallel code 67

N 4194304 8388608
Whole Program Statistics TFT TFT

Work 3423032744 6677120612
Span 453096525 898770886

Burdened span 455596525 901520886
Parallelism 7.55 7.43

Burdened parallelism 7.51 7.41
Number of spawns/syncs 1643758 2693870

Average instructions / strand 694 826
Strands along span 201 221

Average instructions / strand on span 2254211 4066836
Total number of atomic instructions 1643774 2693886

Frame count 3501596 5601820

Table 6.3: Cilkview analysis of parallel TFT on input size N , where work, and span
rows are the number of instructions, and parallelism is the ratio of Work/Span.

N 4194304 8388608
Whole Program Statistics ITFT ITFT

Work 24383770364 48947869668
Span 466043686 902702311

Burdened span 468278686 905012311
Parallelism 52.32 54.22

Burdened parallelism 52.07 54.09
Number of spawns/syncs 29036550 58071054

Average instructions / strand 279 280
Strands along span 175 181

Average instructions / strand on span 2663106 4987305
Total number of atomic instructions 29036566 58071070

Frame count 81936396 163868700

Table 6.4: Cilkview analysis of parallel ITFT on input size N , where work, and span
rows are the number of instructions, and parallelism is the ratio of Work/Span.



6.4. Results for TFT and ITFT parallel code 68

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 14  15  16  17  18  19  20  21  22  23  24  25  26

S
pe

ed
 u

p

size of input vector

Speed up of TFT with grainsize 512, 1024 and 2048 (12 cores)

TFT with grainsize 512
TFT with grainsize 1024
TFT with grainsize 2048

Figure 6.6: Parallel TFT with different grain sizes.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 14  15  16  17  18  19  20  21  22  23  24  25  26

S
pe

ed
 u

p

size of input vector

Speed up of ITFT with grainsize 512, 1024 and 2048 (12 cores)

ITFT with grainsize 512
ITFT with grainsize 1024
ITFT with grainsize 2048

Figure 6.7: Parallel ITFT with different grain sizes.



6.4. Results for TFT and ITFT parallel code 69

log2(n) Serial FFT Serial TFT Parallel TFT SerialFFT
ParallelTFT

SerialTFT
ParallelTFT

14 0.001 0.002 0.003 0.333 0.667
15 0.002 0.004 0.002 1.000 2.000
16 0.004 0.005 0.004 1.000 1.250
17 0.008 0.013 0.004 2.000 3.250
18 0.016 0.022 0.005 3.200 4.400
19 0.036 0.046 0.01 3.600 4.600
20 0.076 0.099 0.016 4.750 6.188
21 0.164 0.249 0.037 4.432 6.730
22 0.355 0.489 0.072 4.931 6.792
23 0.764 0.993 0.144 5.306 6.896
24 1.568 2.001 0.301 5.209 6.648
25 3.128 4.493 0.707 4.424 6.355
26 6.645 8.773 1.294 5.135 6.780

Table 6.5: Running time (secs) for serial FFT, serial TFT and parallel TFT with grain
size of 1024 on 12 cores) and the speedup between serial FFT and parallel TFT and
between serial TFT and parallel TFT.



Chapter 7

Conclusion

In this thesis, we have reported on an implementation of the relaxed general radix forward

TFT and a strict general radix inverse TFT. We have obtained a software tool written in

Python that generates optimized serial C/C++ code as well as parallel CilkPlus code for

forward and inverse TFT, extending a previous work dedicated to FFT code generation

within the BPAS library. We have compared the practical efficiency of the strict and

relaxed general radix schemes.

Our experimental results show that, in practice, the relaxed general radix forward

TFT can reach similar performance (in terms of running time, clock cycles and cache

misses) to the optimized FFT code of the BPAS library [4] on input vectors on which both

codes apply without zero padding.

Moreover, for an input vector whose size ranges between two consecutive values for

which FFT does not require zero padding, our relaxed TFT generated code provides an

effective implementation. Unfortunately, the same satisfactory observation does not hold

for the strict radix scheme when comparing the inverse TFT and FFT. With respect to

parallelization, here also the relaxed general radix scheme is satisfactory while the strict

general radix is not. W.r.t. to the FFT code, the parallel forward TFT code has a

speedup factor of 5.31 and 6.78 for an input vector of size 223 and 226 respectively.

As for future work, we plan to implement a Python code generator for a relaxed

inverse TFT. Moreover, based on our experience with the strict and relaxed schemes

of TFT, we believe that it would valuable to enhance an existing model of concurrent

computations so as to better take data flow complexity into account.

70



Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley Publishing Company, 1974.

[2] L. A. Belady. A study of replacement algorithms for virtual storage computers. IBM

Systems Journal, 5:78–101, 1966.

[3] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work

stealing. J. ACM, 46(5):720–748, 1999.

[4] C. Chen, S. Covanov, F. Mansouri, M. M. Maza, N. Xie, and Y. Xie. The basic

polynomial algebra subprograms. In Mathematical Software–ICMS 2014, pages 669–

676. Springer, 2014.

[5] J. Cooley and J. Tukey. An algorithm for the machine calculation of complex fourier

series. Mathematics of Computation, 19(90):297–301, 1965.

[6] J. Cooley and J. Tukey. An algorithm for the machine calculation of complex Fourier

series. Math. Comp., 19:297–301, 1965.

[7] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin. Reducers and other

cilk++ hyperobjects. In Proceedings of the Twenty-first Annual Symposium on Par-

allelism in Algorithms and Architectures, SPAA ’09, pages 79–90, New York, NY,

USA, 2009. ACM.

[8] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algo-

rithms. In Proceedings of the 40th annual symposium on foundations of computer

science, FOCS ’99, pages 285 – 297, 1999.

[9] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algo-

rithms. ACM Transactions on Algorithms, 8(1):4, 2012.

[10] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the cilk-5

multithreaded language. SIGPLAN Not., 33(5):212–223, May 1998.

71



BIBLIOGRAPHY 72

[11] D. Hankerson, S. Vanstone, and A. Menezes. Finite field arithmetic. Guide to

Elliptic Curve Cryptography, pages 25–73, 2004.

[12] D. Harvey. A cache-friendly truncated FFT. Theor. Comput. Sci., 410(27-29):2649–

2658, 2009.

[13] Y. He, C. E. Leiserson, and W. M. Leiserson. The Cilkview scalability analyzer. In

Proc. of SPAA, pages 145–156, 2010.

[14] J. W. Hong and H. T. Kung. I/o complexity: The red-blue pebble game. In STOC,

pages 326–333. ACM, 1981.

[15] S. G. Johnson and M. Frigo. A modified split-radix fft with fewer arithmetic oper-

ations. Signal Processing, IEEE Transactions on, 55(1):111–119, 2007.

[16] C. E. Leiserson. The cilk++ concurrency platform. The Journal of Supercomputing,

51(3):244–257, 2010.

[17] X. Li, M. Moreno Maza, R. Rasheed, and É. Schost. The modpn library: Bringing

fast polynomial arithmetic into maple. J. Symb. Comput., 46(7):841–858, July 2011.

[18] Farnam Mansouri. On the parallelization of integer polynomial multiplication. 2014.

[19] M. Moreno Maza and Y. Xie. Fft-based dense polynomial arithmetic on multi-

cores. In HPCS, volume 5976 of Lecture Notes in Computer Science, pages 378–399.

Springer, 2009.

[20] M. Moreno Maza and Y. Xie. Balanced dense polynomial multiplication on multi-

cores. Int. J. Found. Comput. Sci., 22(5):1035–1055, 2011.

[21] L. Meng and J. R. Johnson. High performance implementation of the inverse TFT. In

Jean-Guillaume Dumas, Erich L. Kaltofen, and Clément Pernet, editors, Proceedings

of the 2015 International Workshop on Parallel Symbolic Computation, PASCO

2015, Bath, United Kingdom, July 10-12, 2015, pages 87–94. ACM, 2015.

[22] P. L. Montgomery. Modular multiplication without trial division. Mathematics of

Computation, 44(170):519–521, 1985.

[23] M. Moreno Maza and W. Pan. Fast polynomial arithmetic on a gpu. J. of Physics:

Conference Series, 256, 2010.

[24] M. Moreno Maza and Y. Xie. Balanced dense polynomial multiplication on multi-

cores. International Journal of Foundations of Computer Science., 22(5), 2011.



BIBLIOGRAPHY 73

[25] T. G. Stockham, Jr. High-speed convolution and correlation. In AFIPS ’66 (Spring):

Proceedings of the April 26-28, 1966, Spring joint computer conference, pages 229–

233, New York, NY, USA, 1966. ACM.

[26] J. van der Hoeven. The truncated fourier transform and applications. In Jaime

Gutierrez, editor, ISSAC, pages 290–296. ACM, 2004.



Appendix A

Python Script

Figure A.1: Python code.

74



 LI ZHANG   

 
  

                                 Software Engineer 
 

Object-Oriented Analysis, High Performance Computing, Design and Development 

 

 

SKILLS 

 5+ years of experience in the full software development lifecycle – from concept through delivery of next-generation 

applications and customizable solutions. 

 Proficiency in developing requirements specifications, user documentation, and architectural systems research. 

 Exceptional problem solving, troubleshooting, planning, and organizational skills. 
 

LANGUAGES AND TECHNOLOGIES 

 C++; C; Julia; Cilkplus; SQL; JavaScript; Linux  

 Python; Maple; OpenGl; Qt; HTML5; XML; Unix 
 

 
EDUCATION 
University of Western Ontario  London, ON Sep 2014 - Aug 2015 

              MSc in Computer Science 

              Teaching Assistant, Foundations of Programming for High Performance Computing 

Graduate Coursework: Distributed and Parallel Systems; Internet Algorithm; Information Visualization; Programming 

for High Performance Computing 
Zhejiang University  Hangzhou, China Sep 2007 - Jun 2010 

              MSc in Computer Science  

Graduate Coursework: Compiler Construction; Computer Architecture; Operating Systems; Databases; Artificial 

Intelligence; Computer vision 
Fujian Normal University                                                   Fuzhou, China                                      Sep 2002 - Jun 2006 

                BEng in Electronic and Information Engineering 
Undergraduate Coursework: Advanced Circuit Analysis and Design; Signal Processing; Signals and Systems 

 

 
EMPLOYMENT EXPERIENCE 
High Performance Implementation of the TFT  Ontario Research Centre for Computer Algebra   2014 - Present 

Research Assistant for Prof. Marc Moreno Maza 
 Implemented parallel algorithms of Forward TFT and Inverse TFT (Truncated Fourier Transform) 

 Introduced a small relaxation for larger transform sizes which trades off slightly higher arithmetic cost for improved 
data flow which allows full vectorization and parallelization  

 Reduced time complexity from O(n2) to O(n log n) 

 Effectively used C++; Maple; Python; CilkPlus 

3D Hairstyle Design and Display System Zhejiang University 2008 - 2009 

Research Assistant in Research Centre for Computer Aided Design and Computer Graphics 

 Modeled a 3D hairstyle by strands with the theory of fluid dynamics  

 Detected collisions between meshes and strands with high precision  

 Implemented and tested major modules of the system, increasing efficiency and model quality 

 Skillfully used C++; OpenGL; Qt GUI Library 
 
 

EXTRA CURRICULAR ACTIVITIES AND AWARDS  

 Active member of Squash, Photography and Outdoor Clubs, University of Western Ontario, Present 
 IBM Women in Technology (WIT) Program, Zhejiang University, 2008 
 VP of Computer Science Department Student Union, Zhejiang University, 2007-2009  
 Awarded for Excellence in Student Leadership, Zhejiang University, 2009  
 


	Implementation Techniques for the Truncated Fourier Transform
	Recommended Citation

	List of Algorithms
	List of Tables
	List of Figures
	Introduction
	Literature review
	Contributions of this thesis

	Background
	Rings and fields
	Montgomery arithmetic
	Primitive roots of unity
	Discrete Fourier transform (DFT)
	Fast Fourier transform (FFT)
	Montgomery arithmetic in practice
	Tensor algebra
	Cooley Tukey factorization formula
	Multi-core architectures
	The fork-join concurrency model
	The CilkPlus programming language
	The ideal cache model
	Cache complexity of data transposition
	Cache complexity of Cooley-Tukey algorithm
	Blocking strategy for FFT

	Forward and Inverse Truncated Fourier Transform
	FFT: review and complement
	The truncated Fourier transform
	Forward TFT: pseudo-code with an illustrative example
	The inverse truncated Fourier transform
	Inverse TFT: an algorithm
	Illustration of the inverse TFT algorithm

	The Relaxed General Radix TFT and Strict General Radix Inverse TFT
	Introduction
	A relaxed general-radix TFT algorithm
	A cache-friendly inverse TFT (ITFT)

	Python Code Generator for TFT and Inverse TFT in C++/CilkPlus
	C++ code generation in Python
	The basic polynomial algebra subprograms
	Design and specification
	User interface
	BPAS's DFT code generator
	The use of the BPAS library

	Code generation for TFT and ITFT
	Details of the Python code generator
	The structure of the template file

	Optimization techniques
	The use of machine code
	Hard-coded constants
	Unrolling loops
	Work space
	Montgomery arithmetic
	Cache-efficient transpose
	Parallel code generation


	Experimentation of Serial and Inverse TFT (ITFT)
	Experimental setup
	Comparison of serial code
	Results for serial TFT between two consecutive powers of two
	Results for TFT and ITFT parallel code

	Conclusion
	Python Script

