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Abstract 

Microcystis aeruginosa is an important bloom forming cyanobacterium, responsible for 

the degradation of freshwater environments through the production of a potent 

hepatotoxin or the deoxygenation of waters during the decline of the bloom. I 

investigated the growth, photosynthesis and toxin contents of two strains of M. 

aeruginosa, CPCC 299 and CPCC 300, grown with different nitrogen supplies (nitrate or 

ammonium) and depleted or replete Molybdenum (Mo) and/or Iron (Fe) concentrations. 

When Mo and Fe were supplied at growth-replete levels, M. aeruginosa grew equally 

well with nitrate and ammonium. Reducing Fe decreased growth rate efficiency when the 

cells were supplied with nitrate, but not with ammonium. In contrast, the removal of Mo 

from the medium did not impair growth or nitrogen utilization rates regardless of the 

form of nitrogen available but negatively impacted photosynthetic capacity. Experiments 

designed to assess if excess Fe could “mask” the Mo-limitation by replacing key 

physiological processes with Fe revealed the opposite was true: addition of Mo alleviated 

the stresses associated with Fe-limitation. 

Keywords 

Freshwater, cyanobacteria, toxins, microcystin, harmful algal blooms, nutrients, nitrogen, 

iron, molybdenum, limitation, co-limitation. 
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Chapter 1  

1 Introduction 

1.1 Problem Statement 

Cyanobacteria harmful algal blooms (cyanoHABs) are excessively dense 

populations of cyanobacteria that can lead to a wide variety of adverse environmental 

conditions in freshwater ecosystems. These blooms alter water quality by increasing the 

turbidity of aquatic ecosystems and reducing the distribution of light energy. CyanoHABs 

increase primary production and compete with eukaryotic phytoplankton and aquatic 

plants. They also disrupt the food chain and subsequent energy/carbon transfer to the next 

trophic level, because ultimately the unutilized cyanobacterial biomass will sink and 

decompose, depriving invertebrate and fish populations of oxygen (Paerl and Huisman 

2008). In addition, some cyanobacteria produce toxins, which can have serious side 

effects for humans, including liver, digestive, neurological, and skin diseases (Falconer 

1999). 

Historically, the development of cyanoHABs has been attributed to excess levels 

of phosphorus (P) in the environment (Oliver and Ganf 2002, Schindler and Vallentyne 

2008). Phosphorus reduction measures appear to have decreased the frequency of 

cyanoHAB events from the “eutrophication” period of the 1960s and 1970s (Dillon and 

Vollenweider 1974). However, recent reports of increases in the occurrence of 

cyanoHABs (Winter et al. 2011) (Figure 1.1) have forced researchers to reconsider our 

conceptual understanding of the factors that stimulate, prolong or maintain cyanoHABs 

(Vasconcelos 2006, Huber et al. 2012). Molot et al. (2014) challenged the notion that 

blooms are only regulated by total phosphorus (TP) and total nitrogen (TN) 

concentrations. They point out that cyanoHABs are not limited to nutrient-rich, eutrophic 

systems and that toxic or economically adverse cyanobacteria manage to dominate waters 

ranging from oligotrophic to mesotrophic to eutrophic systems (Watson et al. 1997, 

Downing et al. 2001). It is still not possible to predict the timing, magnitude or longevity 

of a cyanoHAB. Since N and P are thought to be critical to the biomass accumulations of 
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all phytoplankton, the TN and TP model fails to explain why cyanoHABs are expanding 

in area and frequency, while blooms of other types of potentially bloom-forming 

eukaryotic phytoplankton, physiological competitors to cyanobacteria, have failed to 

thrive. Other environmental factors potentially serve as secondary regulators of the 

physiology of cyanoHAB species include temperature (Jacoby and Kann 2007, Paerl and 

Huisman 2008, Paerl et al. 2011), light (Paerl et al. 2011), water column stability (Jacoby 

and Kann 2007, Paerl 2008), cellular buoyancy (Paerl and Paul 2012), and brownification 

of waters (increase in colored dissolved organic carbon) (Trigal et al. 2013). Most of 

these factors deal with the longevity of the bloom once it has formed but do not influence 

the initiation phase or the bloom sequence when cyanoHABs may outcompete 

ecologically similar eukaryotic species.  

 

Figure 1.1 Reports of cyanobacterial and other bloom events from 1994 to 2013 in 

Ontario Lakes (modified from Winter et al. 2011). 

The effectiveness of cellular use of TN and TP can be regulated by molybdenum 

(Mo) (Cole et al. 1993) and iron (Fe) (Wilhelm 1995), which can contribute to 

cyanobacterial dominance in blooms over their eukaryotic rivals. As was wonderfully 

stated in the Molot et al. (2014) paper: “Judging by the quantity of literature published in 

recent years, many scientists must feel that looking at P and N one more time from a 

different angle could shine enough light to solve the mystery of cyanobacteria dominance 

in nutrient-enriched waters.”  Since cyanobacteria are able to maintain a cellular storage 

of P, focusing on N alone would be a good start. Here, I hypothesize that limiting levels 

of these two trace metals, Mo and Fe, modulates the efficiency of the use of the 

macronutrient N by the globally distributed cyanoHAB species, Microcystis aeruginosa. 
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1.2 The Genus Microcystis 

Microcystis is one of the most common harmful algal-blooming genera in the 

world (Moisander et al. 2009, Straub et al. 2011).  While the genus is most often 

associated with freshwater environments, representative isolates have also been found in 

estuarine systems and along ocean coasts (Lehman et al. 2008, 2013, Davis et al. 2009, 

Miller et al. 2010) – although there is some uncertainty whether the “estuarine” and 

“marine” observations are not simply freshwater cells swept into a saline environment 

unsuitable for growth, or are only found in low enclaves or embayments of marine seas 

(i.e., Baltic Sea, Belykh et al. 2013).  Microcystis has a cosmopolitan distribution, yet its 

distribution within a region is lake specific, so the origin of the genus has drawn some 

attention (van Gremberghe 2011).  Moreira et al. (2014) used four molecular markers 

(16S rRNA, 16S-23S ITS, DNA gyrase ß and ftsZ) to suggest there are two nodes of 

origin for Microcystis: Africa and Europe (North American strains evolved from the 

latter).  

There is general physical uniformity of species in the Microcystis genus. They are 

generally described as coccoid photosynthetic prokaryotes, with individual cells that 

range from 1 to 5 µm in diameter and are found either as single cells (less common) or 

colonies of hundreds of cells in a gelatinous matrix (very common).  Initial descriptions 

were made using microscopic observations by Lemmerman (1907) and Tilden (1910) 

(see Wehr et al. 2015) to generate taxonomic and nomenclatural history, followed by a 

more pragmatic assessment from Rippka et al. (1979). Photosynthetic prokaryotic cells of 

the primarily unicellular form were placed in the Family Chroococcales.  A modern 

assessment of the 16S rRNA gene sequence data showed that members of this family 

were widely dispersed and divergent (Turner 1997), and upon reorganization Microcystis 

remained central to the Subsection I of Bergey’s Manual of Systematic Bacteriology 

(Boone and Castenholz 2012).  Members of this subsection are defined as unicellular 

cyanobacteria that divide by binary division, range in size from 0.5 to 30 µm, contain 

phycobiliproteins in association with chlorophyll-a (chl-a), and have spheroid or ellipsoid 

single cell shapes. Reference to colony formation has been removed as this population 

form varies with environmental conditions.   



 4 

There are 10 different species commonly listed in the taxonomic genus 

Microcystis (Walsby 1981). Microcystis aeruginosa and M. flos-aquae are the two most 

prevalent ecological forms and are often found in the same water samples. These two 

species are separated from other species of Microcystis, because their cells are encased in 

a mucilage sheath. The two species are distinguished from each other based on the 

density of cells within a colony: M. aeruginosa colonies are loosely formed and easily 

separated into single cells, and M. flos-aquae colonies are densely packed with cells.   

 

Figure 1.2 M. aeruginosa cells under microscope. Figures show one non-toxic 

strain (CPCC 632) under different microscopic magnifications. 

Taxonomic differences aside, the toxic members of the genus Microcystis produce 

a common array of similar toxins: neurotoxins [lipopolysaccharides (LPSs)]   and 

hepatotoxins (microcystins). Microcystin is considered the most dominant cyanotoxin 

produced due primarily to the ubiquitous distribution of M. aeruginosa, the wide 

diversity of different structural variants of microcystin (~60 variants of this cyclic 

peptide) and that multiple cyanobacterial species can produce the toxin (van Apeldoorn et 

al. 2007, Neilan et al. 2008, Pearson et al. 2010).                                     

1.3 Nutrient Requirements 

The growth and maintenance of M. aeruginosa depends on the supply of 

macronutrients [Carbon (C), N, P], micronutrients (Mo, Fe, vitamins) and light because it 
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is a photosynthetic, prokaryotic phytoplankton species.  Thus, in a lake system the 

cyanobacterial growth potential depends strongly on the physical structure of the water 

column. Cells must be in an area with sufficient and appropriate light levels, while still 

allowing nutrients generated by decomposition in the sediments of the lake to resupply 

the euphotic area (light-rich surface) of the water column. Cyanobacterial growth is also 

strongly regulated by the aquatic ecosystem’s relationship with the terrestrial 

environment (a significant source of both macronutrients and micronutrients).  The 

presence and growth of cyanobacteria are controlled by biotic factors, such as 

competitors and predators, and abiotic factors, such as temperature, pH and nutrient 

supply (Moss et al. 2013). 

 Cyanobacteria that make blooms have different physiological and nutritional 

needs from competing eukaryotic species. The physiology of cyanobacteria gives them an 

advantage over their eukaryotic competitors: (1) cyanobacteria are generally small and 

have a higher surface area-to-volume ratio, which influences nutrient scavenging 

capability when nutrients are low; (2) they are luxury consumers of P, storing it in 

polyphosphate granules; (3) cyanobacteria are opportunist consumers of N, able to obtain 

N from a variety of reduced and oxidized forms, with some able to fix dinitrogen (N2); 

(4) cyanobacteria can secrete organic molecules to scavenge micro-nutrients when 

supplies are low (Mo, Fe); (5) they can adjust buoyancy – sinking to achieve access to 

remineralized nutrients and floating to obtain light energy for photosynthesis; (6) they 

have a sheath to protect the cell from grazing or desiccation; and (7) they produce 

secondary metabolites that interfere with grazing or are allelopathic to eukaryotic 

predators (Fulton and Paerl 2006, Paerl and Fulton 2006).  Many of these traits are 

ancient physiological attributes developed by cyanobacteria in chemical environments 

dramatically different than modern levels of micronutrient and macronutrients (Gomez-

Consarnau and Sunudo-Wilhelmy 2015).  As was published in the obituary of Ralph 

Lewin (1921-2008; phycologist, “discoverer” of Prochloron, poet):  

“When algae all were bluish-green / and all prokaryotic, / the land (the non-

aquatic scene) / was mostly quite chaotic”.   
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From this chaos, arose diversity between cyanobacteria and eukaryotic species. 

1.3.1 Macronutrients 

Macronutrients are the elements required by a cell that are a major part of the 

cellular structure (e.g., C is the chemical basis of cell walls, cell membranes, pigments, 

etc.; C and P form phospholipid membranes etc.) or comprise major cellular biochemicals 

(e.g., N is required for amino acids, proteins, enzymes, pigments; P is required for the 

structure of DNA, phospholipids, etc.).  As a consequence, these elements make up a 

substantial proportion of the cell biomass, and cells have a strong requirement for each 

element to enable the cell biomass to double during binary reproduction.   

 Since cyanobacteria can take up and accumulate P at rates greater than their 

cellular needs (luxury uptake) (Paerl and Otten 2013, Ma et al. 2014), the logical starting 

point for understanding variations in the growth and maintenance of cyanobacteria in 

freshwater systems is understanding N.  Nitrogen sources that can be commonly utilized 

by cyanobacteria include nitrate, nitrite, and ammonium. Some cyanobacteria are also 

able to assimilate organic forms, such as amino acids (Flores and Herrero 2005) and urea 

(Valladares et al. 2002). Nitrate is a common N source for cyanobacteria and is 

assimilated by being transported through the cellular membrane and then reduced in a 

two-step process: reduction of nitrate to nitrite catalyzed by nitrate reductase and 

reduction of nitrite to ammonium using nitrite reductase (Ohashi et al. 2011). The 

assimilation of nitrate is regulated by the activation of existing cellular nitrate reductase, 

as synthesizing of new reductase is rare (Avissar 1985). It is also inhibited by the 

presence of ammonium (Martin-Nieto et al. 1989, Ohashi et al. 2011). Nitrate 

assimilation processes are closely related to photosynthesis, as the energy currency 

adenosine triphosphate and the electron donor ferredoxin are all generated 

photosynthetically (Flores et al. 2005). Thereby, factors influencing photosynthesis may 

also affect nitrate uptake in cyanobacteria. 

Since the utilization of ammonium does not involve enzymes such as nitrate and 

nitrite reductases, it is the energetically preferred source of N for most algae and 

cyanobacteria. Ammonia is readily diffusible via the lipid bilayer, while ammonium 
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requires cationic transporters (mono-component permeases) for uptake, especially at low 

ambient concentrations (Herrero et al. 2001, Ritchie 2013). Urea may represent another 

natural N source for cyanobacteria. Some species can assimilate urea at very low (less 

than 1 µM) extracellular concentrations (Valladares et al. 2002). There is an adenosine 

triphosphate-binding cassette type permease urea transporter in the cyanobacterium 

Synechocystis sp. that is similar to those used for ammonium assimilation (Valladares et 

al. 2002), indicating that the assimilations of urea and ammonium share some similarity, 

but the exact mechanism of urea utilization remains unclear.  

Molecular N2 can be reduced by N-fixing species of cyanobacteria. Biological N2 

fixation is a feature shared by many species of cyanobacteria and is significant for the 

biosynthesis of cellular nitrogenous compounds, which helps primary productivity in 

oceans and therefore is important for the biogeochemical history of Earth (Latysheva et 

al. 2012). In aquatic ecosystems, this process supports the growth of phytoplankton not 

capable of fixing N2, as well as higher hierarchies of the food web that feed on 

phytoplankton. In N2-fixing species, an inducer such as nitrate may be required, but the 

presence of ammonium can either positively promote N2 fixation by inhibiting nitrate 

uptake or negatively affect gaseous N2 assimilation by repressing nitrate reductase 

(Martin-Nieto et al. 1989). 

1.3.2 Micronutrients 

In contrast to macronutrients, micronutrients include elements that are required at 

lower levels by the cell for growth. They regulate the processing of macromolecules in 

the cell and as such are consumed at low rates or are recycled and reused. As an example, 

both Fe and magnesium are required in the formation of chl-a – Fe is used as a catalyst of 

heme formation and thus is a micronutrient; magnesium is part of the structure of 

chlorophyll and is required as a macronutrient (von Wettstein et al. 1995).  Because of 

differences in demand for macronutrients and micronutrients, amounts of macronutrients 

are often discussed based on the availability of elemental mass, while amounts of 

micronutrients are discussed based on the concept of flux rate. Thus, terms such as 

“nutrient-limited” growth are reserved for macronutrients (i.e. N-limited vs. P-limited 

cells).  Whereas “nutrient depleted” and “nutrient replete” are employed in the 
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assessment of micronutrient supply and needs.  “Nutrient replete” indicates that a 

micronutrient is at a level that allows for (near) maximum macronutrient processing, and 

“nutrient depleted” indicates a low level of available micronutrient that does not allow for 

the sufficient cell supply to meet the needs of maximum growth.   

Cell quota is the content of a chemical element in the cells (Smirnov and Revkova 

2002). Cells, particularly cyanobacteria that are steadily dividing, have minimum 

requirements (cell quotas) to maintain function.  As cells initiate cell division, these 

amounts need to be maintained in daughter cells. Thus, for any division rate there is a 

corresponding rate of quota resupply needed.  Maximum assimilation rates are a function 

of cell physiology, but the achieved assimilation rates are most likely controlled by the 

biogeochemistry of the element outside the cell, and it is important to assess if the 

element is in sufficient concentration to enable saturation of the uptake system (Monod 

equation growth kinetics, comparable to the more commonly assessed Michaelis-Menten 

uptake kinetics equation) (Huisman and Hulot 2005).  The concentration of the element is 

determined by both the rate of environmental supply (leaching from catchment, 

remineralisation from the sediments, atmospheric deposition) and the chemical form of 

the element since only certain forms of an element can be utilized by cells (also a 

function of supply, but also impacted by the redox of the water or the complexity of the 

chemical matrix, particularly the level of complication sites that compete with the cell 

assimilation site). 

1.3.3 Iron, Biological Function and Assimilation 

For most micronutrients (boron, zinc, copper, iodine, cobalt), either the cell quota 

is extremely low or the supply concentrations are high and thus the needs for 

cyanobacterial growth are usually met.  For Mo and Fe, the natural supply rates may not 

be sufficient to meet the demands for growth of some freshwater cyanobacteria. The 

possibility that Fe limits the growth rates of phytoplankton has drawn the most attention. 

Early work on large lakes such as Lake Ontario (Murphy et al. 1976) indicated that 

adding Fe enabled the existing phytoplankton community to grow to a higher density (or 

at least turn “greener” because the level of chlorophyll in the water is commonly used as 

a proxy for biomass) (Lean and Pick 1981, Wilhelm 1995).  Iron-limitation in lakes has 
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been clearly demonstrated in a wide variety of lakes of different trophic status (Chang et 

al. 1992, Haraughty and Burks 1996, Coats and Goldman 2001, Shaked et al. 2004, 

Nagai et al. 2006, Vrede and Tranvik 2006, Kosakowska et al. 2007, Imai et al. 2009, Du 

2013, Sorichetti et al. 2014a, 2014b, Goldberg et al. 2015). Thus, low Fe levels may 

modulate the efficiency of N use in lake systems, and perhaps more frequently than 

commonly considered (Molot et al. 2014). 

Iron is one of the most abundant elements in the earth’s crust (6% by weight). 

However, due to variations in the oxidation states of the element (elemental iron Fe°, 

reduced form ferrous Fe
2+

 and oxidized form ferric Fe
3+

) and variations in the complexes 

formed with dissolved organic material, sulfides, carbonates, oxides/hydroxides, the form 

of Fe that cyanobacteria can transport (non-complexed Fe
3+

 – a.k.a. “free ferric ions”) can 

be exceeding low – particularly in oxic environments where cyanobacteria thrive.  In 

most oxic environments, the highly soluble form of iron (Fe
2+

) quickly forms FeCO3 and 

FeS complexes, which in turn are quickly oxidized to form the precipitate Fe(OH)3. 

Cyanobacteria must intercept the Fe as “free Fe
3+

” before the oxide is formed. The 

biogeochemical battle is sometimes referred to as the “ferrous wheel”, which indicates 

the recycling of Fe within the microbial food web. In this case, Fe entering cells regulates 

N assimilation and photosynthesis.  There is a direct link between Fe availability and the 

key physiological processes of cyanobacteria.  Iron is a key component in enzymes and 

the biochemical constituents of photosynthesis and in nitrate assimilation. Photosynthetic 

efficiency and apparatus are highly Fe-dependent in both cyanobacteria and plants. In 

cyanobacteria, electron transportation takes place in the thylakoid membrane. Iron is a 

key element in the PSI-Cytochrome (b6f)-PSII electron transport chain (Figure 1.3) and is 

a part of three major components in photosynthesis: the PSII complex contains two Fe 

atoms; cytochrome b6f has four Fe atoms, and PSI contains 16 Fe atoms in the form of 

FeS clusters, including a [2Fe-2S] cluster that belongs to ferredoxin (Briat et al. 2015). In 

photosystems, 22-23 iron atoms are required in order for the photosynthetic apparatus to 

function properly (Baulina 2012). While Fe is not a constructional element in chlorophyll, 

it serves as a synthesis activator of certain enzymes or enzyme cofactors in the 

biosynthesis of chlorophyll. Chlorophyll contents, as well as the heme enzymes activity, 

are positively correlated with Fe concentrations (Marsh Jr. et al. 1963). When grown 
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under Fe limitation, phycobilisomes also degrade quickly, with lower binding firmness 

between chlorophyll to chlorophyll-binding protein. Even though binding ability is 

reduced, the production of an Fe-deficiency related protein that simulates the chlorophyll-

binding protein can enhance the light harvesting of PSI (Boekema et al. 2001), which 

may serve as a protection mechanism. 

 

Figure 1.3 Photosynthetic electron transportation between PSII and PSI. Upon light 

activation, one electron is lost from PSII and transferred to cytochrome b6f. Plastocyanin 

carries the electron between b6f and PSI (LHC: light-harvesting complexes. PQ: 

plastoquinone pool. PQH2: reduced PQ. Number of Fe atoms required in each 

stage/component is shown. Modified from Cavet et al. 2003, Briat and Gaymard 2015).  

Since Fe levels in nature can be low, cyanobacteria have evolved two responses to 

maintain growth under Fe deficiency: either decreasing cellular Fe requirements or 

improving their ability to scavenge ambient Fe (Ferreira and Straus 1994, Wilhelm 1995). 

Some genes that control the production of Fe-related proteins are tightly regulated by Fe 

concentration. Cyanobacteria could re-regulate the synthesis of those proteins by 

reducing the protein biosynthesis and producing substitute proteins (such as the 

substitution of ferredoxin with flavodoxins) under Fe deficiency (Ferreira and Straus 

1994). Secondly, some cyanobacteria employ a high-affinity siderophore system to 

scavenge Fe when it is limited. Siderophores are ferric-specific chelators with low 

molecular weight that are synthetized by some cyanobacteria species and can be 

transported through the cell membrane by transporter proteins (Lange 1974, Murphy et al. 

1976, Simpson and Neilands 1976, Lammers and Sanders-Loehr 1982, Kerry et al. 1988, 
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Wilhelm and Trick 1994, Wilhelm 1995).  There are two types of siderophores: 

hydroxamate-type siderophores and catechol-type siderophores. Hydroxamate-type 

siderophores are hydrophilic. They use hydroxamic acid moieties to coordinate Fe 

molecules (Wilhelm 1995). They are released into the extracellular environment and after 

binding with Fe, make the Fe-siderophore complexes available for cellular assimilation 

(Wilhelm and Trick 1994). Catecholate-type siderophores, however, are hydrophobic and 

after being secreted by the cell, remain at the cell surface. In general, catechol-type 

siderophores have a higher ferric affinity than hydroxamate ones (Ferreira and Straus 

1994, Wilhelm and Trick 1994) (Figure 1.4) Ferrous (Fe (II)) siderophore complexes also 

exist, but with much weaker binding ability than the ferric specific siderophores (Lewis et 

al. 1995). 

 

Figure 1.4 Two models of the mechanisms of high-affinity iron acquisition strategies 

used by cyanobacteria in the aquatic environment. Left: Iron assimilation using 

hydroxamate siderophores (H) only. Iron that is bound to a siderophore is transferred into 

the cell through certain transmembrane and intra-membrane proteins. Right:  Iron 

scavenging in presence of both hydroxamate siderophores and catecholate siderophores 

(C). Iron is transferred from hydroxamate siderophores to catecholate siderophores and 

into the cell (modified from Wilhelm and Trick 1994). 
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1.3.4 Molybdenum and Molybdenum Co-factors 

Molybdenum has not received the same level of research attention as Fe, but it is 

also of high cellular need in relation to its low biological availability, controlling the 

ecology of some cyanobacteria species. The trace metal Mo is essential for numerous N2-

fixation and nitrate reduction systems. In aquatic ecosystems, the primary bioavailable 

form of Mo is molybdate (MoO4
2−

) (Cole et al. 1993, Mendel et al. 2009). In marine 

systems, the levels of Mo (well-mixed at about 105 nmol ˑ L
-1

) are significantly higher 

than cellular needs relative to the level of nitrate available, but in freshwater systems Mo 

is usually scarce, typically at 20 nm L
-1 

(Page 1995). In 2012, Mo concentrations ranged 

from <1 nmol L
-1 

to over 1000 nmol L
-1

 in Ontario lakes (Provincial Water Quality 

Monitoring Network 2012). Low levels of biologically available Mo limited primary 

production in Castle Lake, California, and small scale Mo fertilization had positive 

responses (Goldman 1960).  

Molybdenum is important in the catalytic center of essential enzymes such as 

nitrogenase, nitrate reductase, sulphite oxidase, xanthine oxidoreductases and 

dimethylsulphoxide reductase (Mendel et al. 2009).  The latter three are grouped into 

pterin-based Mo enzymes, which is a big family containing more than 50 enzymes 

(Mendel et al. 2009). Nitrogenase and nitrate reductase are important because they are 

the key enzymes in N assimilation processes. Most cyanobacteria can carry out N-

fixation using the nitrogenase enzyme system. Reduced N is a constructional material in 

proteins and nucleic acids (Kim and Rees 1994). Therefore, the acquisition of 

bioavailable N is critical to the growth and survival of all organisms (Kim and Rees 1994, 

Burgess and Lowe 1996).  

Molybdenum-containing prokaryotic nitrate reductases are sub-grouped into three 

categories: respiratory nitrate reductases (NARs), periplasmic nitrate reductases (NAPs) 

and assimilatory nitrate reductases (NASs) (González et al. 2006). NARs have not been 

identified in cyanobacteria while NASs are common (Richardson et al. 2001). The active 

site of NASs contain a Mo-bisMGD cofactor, but the electron and molecular properties 

vary among organisms. Besides the active site, [4Fe-4S] clusters and [2Fe-2S] clusters 

are contained in the catalytic subunits, and FAD cofactors with flavodoxins and 
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ferredoxins serve as electron donors (González et al. 2006). The roles of Mo and Fe in N 

assimilation by cyanobacteria are discussed in more detail in Section 1.4. 

The level of biologically available Mo affects photosynthesis rates as well. There 

was an increase in the rate of photosynthesis caused by Mo supplementation in Castle 

Lake, California (Romero et al. 2013), but the role of Mo in photosynthesis remains 

unclear. Molybdenum levels may shape the community structure of freshwater 

phytoplankton (Howarth and Cole 1985) and control the growth of cyanobacteria and 

related blooms by controlling their N and C assimilation. 

1.4 Molybdenum, Iron and Nitrogen Assimilation 

1.4.1 Nitrate Reductase 

Nitrate reduction in cyanobacteria as well as in algae and plants started with the 

reduction of nitrate to nitrite by the enzyme nitrate reductase. Molybdenum and Fe are 

both involved in the functioning of this enzyme (Suzuki et al. 2000, Schwarz et al. 2009). 

As discussed in section 1.3, Mo is a structural element in the Mo cofactor at the active 

site (Schwarz et al. 2009), and since the reduction of nitrate is in need of large quantities 

of reducing power, Mo also assists the catalysis of the transfer of electrons (two or 

multiples of two) to or from the substrate (Cole et al. 1993).  

Fe plays a redox role as Fe-S clusters, and is responsible for a majority of the 

electron transportation in nitrate reductase (Timmermans et al. 1994). Cyanobacteria use 

ferredoxin, an Fe-sulfur protein, as an electron donor, with electrons transferred from 

ferredoxins to Mo cofactors (Flores and Herrero 2005). In Fe-depleted environments 

some marine phytoplankton (Emiliania huxleyi, Isochrysis galbana and Tetraselmis sp.) 

reduced their nitrate reductase activities by 15 to 50 percent (Timmermans et al. 1994). 

Despite catalyzing the same chemical reaction, the structure of nitrate reductases as well 

as synthesizing and catalyzing processes are different in prokaryotes and eukaryotes. In 

cyanobacteria, Pro-NAS is most common, which contains [4Fe-4S] and [2Fe-2S] clusters 

in the catalytic subunits. Prokaryotic nitrate reductases belong to the dimethylsulfoxide 

(DMSO) reductase family, while eukaryotic nitrate reductases are classified into the 



 14 

sulfite oxidase family and contain a simpler type of cofactor (Moreno-Vivián et al. 1999, 

Stolz and Basu 2002). 

1.4.2 Nitrite Reductase and Nitrogen Fixation 

Molybdenum and Fe may also be involved in nitrite assimilation and N fixation 

(Stolz and Basu 2002, Flores and Herrero 2005). The former process is catalyzed by 

nitrite reductase. Nitrite reductase is similar to nitrate reductase in size and charge, and 

the Mo active site of nitrate reductase generally favors nitrite binding and reduction as 

well (Silaghi-Dumitrescu et al. 2012). There are several types of nitrite reductase, though. 

The cytochrome c nitrite reductase is common in bacteria and is ferredoxin-dependent 

(Flores and Herrero 2005). Cyanobacterial nitrite reductase bears some resemblance with 

eukaryotic nitrite reductase, both containing [4Fe-4S] clusters (Flores and Herrero 2005). 

In this enzyme system, electrons are transferred from reduced ferredoxin to the Fe-sulfur 

cluster, and then to sirohaem, where the reduction of nitrite to ammonium occurs (Flores 

and Herrero 2005).  

Biological N2 fixation is catalyzed by Mo- and Fe-containing nitrogenase 

(Romero et al. 2013). More than three classes of nitrogenase have been identified based 

on the heterometal located in the active site (Mo, Fe or Vanadium) (Mendel 2009, 

Yoshizawa 2009). Molybdenum nitrogenase is the best characterized of these, which 

consists of a Fe protein and a MoFe cofactor at the active site. Similarly as in nitrate and 

nitrite reductase, the Fe protein is capable of transferring electrons to the Mo-Fe protein 

for substrate reductions (Burgess and Lowe 1996, Mendel 2009).  

1.4.3 Interchangeability of Molybdenum and Iron 

Non-Mo nitrate reductases do exist (Leigh and Jimenez-Tenorio 1991, Stolz and 

Basu 2002, Romero et al. 2013). Many anaerobic archaea and bacteria can utilize 

tungsten instead of Mo for growth (Schwarz et al. 2009). Such systems have been found 

in Pseudomonas isachenhovii and archaeon Pyrobaculum aerophilum, which indicates 

the existence of alternative systems (Stolz and Basu 2002). Stolz and Basu (2002) also 

described a Heme-C-containing enzyme complex in the bacterium Geobacter 

metallireducens that contains cytochrome c, which has a heme-molecule coordinating a 
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central Fe atom and can complete nitrate and nitrite reductions without the involvement 

of Mo (Murillo et al. 1999, Stolz and Basu 2002). 

Iron may be the only transition metal needed in the assimilation of N. Iron, 

instead of Mo, may serve as the binding site in the FeMo-cofactor, and Mo is not required 

in this system (Anderson et al. 2013). There is an Fe complex that can catalyze the 

reduction of N to ammonium without the involvement of Mo (Anderson et al. 2013). Fe 

can be exchangeable with Mo in the functioning of nitrogenase (Leigh and Jimenez-

Tenorio 1991). An Fe (II) dinitrogen complex was proposed, and a reductive cycle for N 

gas was constructed by adjusting hydrogen ion concentrations in the environment (Leigh 

and Jimenez-Tenorio 1991). Even though this reaction was not observed in real 

organisms, the system suggested that Fe-only nitrogenase may exist as more ancestral 

nitrogenase than the ones containing Mo (Leigh and Jimenez-Tenorio 1991). 

1.5 Cyanobacteria and Microcystin 

The factors that regulate the growth of cyanobacteria are also critical in regulating 

the negative health impacts of the presence of cyanobacteria in lakes. CyanoHABs have 

become increasingly common in fresh (lakes, ponds, rivers and reservoirs) and brackish 

(seas, estuaries, and lakes) waters throughout the world (Carmichael 2001, O’Neil et al. 

2012). Anthropogenic nutrient input of P, N and organic compounds may increase the 

frequency and severity of cyanoHABs. A low N:P ratio and low CO2 availability also 

contribute to cyanobacterial dominance (Rastogi et al. 2014). 

CyanoHABs cause harm either due to the production of toxins and toxic 

metabolites released by HAB species or through the development of high biomass that 

affects co-occurring organisms and alters food web dynamics (Anderson et al. 2002, 

Havens 2008). Approximately 50% to 75% of reported cyanoHABs were related to toxin 

production, usually with more than one toxin variant (Malbrouck and Kestemont 2006). 

Some algal toxins are extremely potent, causing poisonings at concentrations as low as a 

few hundred cells per litre (Havens 2008). Toxins released by cyanobacteria are 

collectively called cyanotoxins, which pose risks to ecosystem sustainability and 

seriously threaten human health by inducing liver, digestive, neurological, and skin 
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diseases (Falconer 1999). The mechanisms of their toxicity are poorly understood, but 

they may function as protective compounds like anti-herbivore compounds in vascular 

plants (Carmichael 1992). Based on the detection method, cyanotoxins can be grouped 

into two categories: cytotoxins, which can be detected using cultured cells, and biotoxins, 

which are more lethal and must be detected using whole organisms (Carmichael 1992). 

Organisms in more than 40 genera are responsible for cyanotoxin poisonings, including 

Anabaena, Aphanizomenon sp., Cylindrospermopsis sp., Lyngbya sp., Microcystis sp., 

Nostoc sp., and Oscillatoria sp. (Carmichael 2001).  

Microcystins are a family of monocyclic hepatotoxins produced by several genera 

of freshwater cyanobacteria, primarily Anabaena and Microcystis sp. (Dawson 1998, 

Brittain 2000, Rastogi et al. 2014). More than 85 microcystins have been identified from 

both cultured and natural strains, but microcystin-LR is by far the most common (Rastogi 

et al. 2014). There are over 40 steps in the biosynthesis of microcystins, which are non-

ribosomal, built by large multi-enzyme complexes consisting of polyketide synthases 

(PKS), non-ribosomal peptide synthetases (NRPS) and some tailoring enzymes (Rastogi 

et al. 2014). Orr and Jones (1998) observed a linear correlation between toxin production 

rate and growth rate. At all times cell division rates were almost equal to microcystin 

production rates, and microcystin content remained constant or only declined slightly 

during the stationary and death phases. The highest microcystin cell quota was observed 

in the late exponential or early stationary phases (Orr and Jones 1998).  Similarly, in most 

Microcystis-dominant cyanoHAB events, microcystin levels peak at the collapse of the 

bloom (Malbrouck and Kestemont 2006). 

1.6 Thesis Questions, Hypotheses, and Objectives 

The supply rates of N and P are thought to be the predominant drivers of 

cyanoHAB biomass (Schindler et al. 2008, Schindler and Hecky 2009, Lewis et al. 2011, 

Paerl et al. 2011, Michalak et al. 2013). The relationship between macronutrient loading 

and climate change parameters (temperature, length of season, hydrologic pattern) are 

thought to change and perhaps enhance the probability of cyanoHAB formation and 

maintenance (McQueen and Lean 1987, Molot et al. 2014). When macronutrient supplies 

are high, the availability of trace metals could limit the assimilation of macronutrients by 
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cyanobacterial cells.  Here, I hypothesize that the low availability of two trace metals, Mo 

and Fe, negatively impact the conversion of macronutrients into cell biomass.  The aim of 

this study is to examine the effects of low levels of available Mo and Fe on the growth, 

photosynthesis and toxin production in bloom-forming freshwater cyanobacteria.  Using 

the ubiquitous cyanoHAB forming M. aeruginosa as a model species, the primary 

research objectives in this thesis are: 

(1) Evaluating the cellular quota for Mo and Fe of M. aeruginosa cells grown on 

different N sources; 

(2) Examining the physiological changes in growth and photosynthesis associated 

with Mo- and Fe-depleted growth conditions; 

(3) Exploring if there is a relationship between Mo-limitation and the cellular need 

for Fe in M. aeruginosa. 

Five experiments were performed on two toxin-producing strains of M. 

aeruginosa to test the research objectives: 

(1) Establishing the optimal growth conditions for M. aeruginosa under different 

forms of N. 

(2) Determining the levels of Mo in the medium that reduce the growth and 

photosynthetic characteristics of M. aeruginosa; 

(3) Determining the levels of Fe in the medium that reduce the growth and 

photosynthetic characteristics of M. aeruginosa; 

(4) Determining if the cellular demands for Mo and Fe are independent or if one 

element could supply the needs of the limiting nutrient. 

(5) Determining what effects replenishing Mo and Fe have on cultured cells. 
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Chapter 2  

2 Materials and Methods 

The species tested throughout this project was Microcystis aeruginosa, a common 

freshwater cyanobacterium. Microcystis aeruginosa is responsible for a majority of 

freshwater cyanoHABs, and its production of hepatotoxic microcystins leads to more 

serious consequences during and after cyanoHABs (Lifshits et al. 2012). Therefore, 

biomass, photosynthetic capability and microcystin production were observed in cell 

cultures. 

2.1 Cultures, Media and Culture Maintenance 

For this study, two toxic isolates of M. aeruginosa, CPCC 299 and CPCC 300, 

were tested. They were originally collected from Pretzlaff Pond (Alberta, Canada) by E. 

Prepas and A. Lam on August 7
th

, 1990 and have been maintained by the Canadian 

Phycological Culture Centre (CPCC) at the University of Waterloo, formerly the 

University of Toronto Culture Collection of Algae and Cyanobacteria (UTCC) (CPCC 

2013). They are among the most common bloom-forming strains. They have been proven 

to be injurious to the liver (hepatotoxic) and produce microcystins at 204 µg per gram dry 

weight and 415 µg per gram dry weight, respectively (CPCC 2013). I received the 

isolates from the CPCC in April 2014, and the first inoculation was carried out with 1:5 

inoculum: media inoculation ratios. 

All experiments and culture maintenance were conducted in batch cultures. 

Modified BG-11 was used as the culture medium in all experiments (Rippka et al. 1979) 

(Appendix A and Section 2.2, below). Cultures were maintained and the majority of 

experiments were conducted in 250 mL Erlenmeyer flasks containing 100 mL medium 

(150 mL Erlenmeyer flasks containing 50 mL medium were used for the trace metal 

replacement experiment). Flasks were capped with non-absorbent cotton and 

cheesecloth plugs and aluminum foil caps to eliminate contamination yet allow an 

intermediate degree of gas exchange (Lee and Michael 1991). Cultivation took place 

under continuous illumination with light irradiance of ~60 µmol photons m
-2

 s
-1

 that was 
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supplied by cool white fluorescent light lamps, measured with a Quantum Scalar 

Laboratory (QSL) 2100 radiometer (Biospherical Instruments Inc.) equipped with a 1.9 

cm Teflon
®
 4 π spherical optical collector. 

Stock solutions of media (1000× concentrated) were stored in 250 mL Nalgene™ 

polycarbonate bottles. For the Mo and Fe replenishment experiments, Mo and Fe stock 

solutions were microwave-sterilized (1250 watt Panasonic
®

 Nn-sn933w oven) on “high” 

for a total exposure of 10 minutes. A time sequence of 3 min, 2 min, 3 min and 2 min, 

with agitations in-between, brought the solutions to near boiling but without bubbling. 

This method avoids trace metal contamination from the autoclave (Keller et al. 1988).  

To avoid physiological changes and adaptations, including loss of toxin 

production, caused by perpetual maintenance over long periods (Andersen et al. 2005), 

inoculations into fresh media were conducted every 7 to 10 days. The inoculation ratios 

were calculated based on the existing culture density to make the starting cell 

concentration approximately 1,000,000 cells per litre. Prior to the initiation of 

experiments, cultures were allowed to acclimate to the experimental conditions for two 

weeks. 

2.2 Experimental Procedures 

Five experimental sets were conducted with M. aeruginosa culture strains CPCC 

299 and CPCC 300. For each experiment, cell density and chl-a fluorescence were 

measured twice from one replicate. These parameters were recorded each day (every 24-

30 hours) (except for the replenishment experiment, which were recorded every other 

day), starting from the day of inoculation (Day 0) and continuing until cells entered the 

stationary phase of growth (Day 9 for Experiment 1, Day 10 for all other experiments). 

Photosynthetic activities were monitored during the mid-exponential phase (5
th

 to 6
th

 day 

after inoculation), determined using one measurement from each of two replicates. 

Microcystin concentrations were only measured for the cells after Mo and Fe were 

replaced in early stationary phase, measured once from each of two replicates. 
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The key variable that defined each experiment was the elemental composition of 

the medium.  The basal medium was modified BG-11 media (Appendix A). Experiment 1 

assessed the capacity of the strains to grow on different N sources: nitrate (10 mM), 

ammonium (10 mM) or urea (5 mM Co(NH2)2). In Experiment 2 (Mo-limitation), cells 

were first cultured in Mo-free media with nitrate or ammonia as N sources for five days 

to remove their cellular Mo stores and to get acclimated. Cultures were then inoculated 

into media with the following Mo concentrations in the form of Na2MoO4ˑ2H2O: 0 mol 

L
-1

, 1 × 10
-16

 mol L
-1 

, 1 × 10
-14

 mol L
-1 

, 1 × 10
-12

 mol L
-1 

, 1 × 10
-10

 mol L
-1 

, 1 × 10
-8

 mol 

L
-1 

 and 1 × 10
-6

 mol L
-1

 (the Mo-satiated control).  In Experiment 3, (Fe-limitation), cells 

were starved in Fe-free media with nitrate of ammonia for five days prior to inoculating 

into media with different Fe concentrations (in the form of ferric citrate): 0 mol L
-1

, 2 × 

10
-14

 mol L
-1

, 2 × 10
-12

 mol L
-1

, 2 × 10
-10

 mol L
-1

, 2 × 10
-8

 mol L
-1

, 2 × 10
-6

 mol L
-1

 and 2 

× 10
-5

 mol L
-1 

(the Fe-satiated control). In Experiment 4, (Mo and Fe co-limitation) cells 

were first grown in media with Mo and Fe omitted so that cells consumed their cellular 

storages, and then inoculated into fresh Mo-free BG-11 media with various Fe levels 

(Experiment 4): 0 mol L
-1

, 2 × 10
-14

 mol L
-1

, 2 × 10
-12

 mol L
-1

, 2 × 10
-10

 mol L
-1

, 2 × 10
-8

 

mol L
-1

, 2 × 10
-6

 mol L
-1 

and 2 × 10
-5

 mol L
-1 

(control). In Experiment 5 (replenishment), 

inoculums were taken from the Experiment 4 (co-limitation) cultures on Day 7 with the 

following concentrations: [Fe] = 2 × 10
-6

 mol L
-1

, [Fe] = 2 × 10
-10

 mol L
-1

 and [Fe] = 2 × 

10
-14

 mol L
-1

, which were then inoculated with (A) an additional 1 × 10
-6

 mol L
-1

 Mo, (B) 

an additional 2 × 10
-6

 Fe, or (C) into media without Mo or Fe. Microcystin was measured 

using an enzyme linked immunosorbent assay (ELISA) on Day 7 to capture toxicity 

during the early stationary phase from the three treatments in Experiment 5, plus a fourth 

treatment that had an additional 1 × 10
-6

 mol L
-1

 Mo and an additional 2 × 10
-6

 Fe. The 

complete experimental procedures are shown in Figure 2.1. 
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Figure 2.1 Experimental procedures: Experiments started from CPCC 299 and CPCC 300 

cultures in complete BG-11 media. For each experiment, the forms of N and 

concentrations of Mo and/or Fe were manipulated to meet certain limiting conditions. 

Cells in Experiment 1 (N-limitation) were maintained for nine days with daily 

observations. Cells in Experiments 2, 3 and 4 (Mo-, Fe- and co-limitation)  were 

maintained for ten days with daily observations. Cells in Experiment 5 (replenishment) 

were maintained for ten days with observations every other day. Microcystin toxin 

production was observed in the three Experiment 5 treatments, as well as a fourth 

treatment that had an additional 1 × 10
-6

 mol L-1 Mo and an additional 2 × 10
-6

 Fe  
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2.3 Methods of Analysis 

2.3.1 Flow Cytometry 

Cell counts and chl-a fluorescence were determined at the start (t=0) and then 

daily for the duration of the experiment using Turner Designs PhytoCyt™ flow cytometer 

(now marketed as the BD Accuri C6
®

 flow cytometer). A flow cytometer measures 

multiple parameters of cells or other particles in a liquid stream moving through a laser-

activated detector system. This method is widely used to differentiate algae, 

cyanobacteria and other populations according to their fluorescence and morphology 

(Veldhuis and Kraay 2002, Peniuk et al. 2015). As a cell passes through the laser beam, 

light enters the cell and is reflected and refracted by cell structures and/or absorbed by 

pigments. Fluorescence emitted at different wavelengths is quantified using an array of 

specific detectors. The refracted or scattered light is measured by a photodiode that is 

forward but adjacent to the laser beam.  From this, the number of particles of a known 

size and granularity are counted using the forward-scatter method. Similarly, chl-a 

concentrations within a particle can be observed by exciting a particle with a 488 nm 

laser beam and measuring the resulting red chlorophyll fluorescence emission at > 650 

nm (red, FL3 detector) (Rogers et al. 2012). 

Sampling for flow cytometry involved transferring 1 mL of the culture solution to 

12 mm × 75mm VWR
®

 borosilicate glass culture tubes. All sampling was conducted in 

laminar hood to avoid contamination. Cultures were re-suspended by swirling before 

sampling. Samples were re-suspended by vortexing prior to flow cytometry. For growth 

curves, each flask was sampled twice each day.  

Samples were analyzed on fast rate (66 µL m
-1

) for 30 µL in the flow cytometer. 

Debris was electronically eliminated from the assessment by gating (selecting only 

particles with a measureable level of chlorophyll). Using a 670 nm long filter (FL3, 488 

nm excitation), the chl-a fluorescence of cyanobacteria was presented, and the number 

and mean fluorescence of particles with strong signal were recorded and gated, giving the 

number of cells ml
-1

 and the average relative fluorescence of each particle due to chl-a 

content. 
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2.3.2 Photosynthesis Analysis – Light Specific Oxygen Evolution 

Photosynthesis measurements were conducted using a Hansatech Chlorolab 2 

System. Light was generated by a LH11/2R light source at 650 nm. The light scheme 

followed a pre-entered illumination pattern (Table 2.1). Experiments, where photon 

fluxes changed from 0 to 800 μmol photons m
−2

 s
−1

 over a 26-minute exposure were 

carried out.  Measurement procedures followed the operational manual provided by the 

manufacturer. A liquid-phase calibration was performed each day before measurements. 

Table 2.1. Process flow diagram table for photosynthesis measurements. 

Incubation time (min) 0 4 7 10 13 16 18 20 22 24 

Photon fluxes (μmol m−2 s−1) 0 20 40 60 80 100 200 400 600 800 

           

Light specific oxygen evolution rates were determined by averaging steady states 

of photosynthesis and respiration (determined by changes in dissolved O2 levels) during 

each period of a defined illumination level. An initial measurement in the dark (lasting 

for four minutes) provided the respiration rate (𝑅𝑟𝑒𝑠𝑝.) of the sample. In order to calculate 

cellular photosynthesis, cell counts were conducted using a Turner Designs PhytoCyt™ 

Flow Cytometer and results were normalized to µmol O2 per 10
9
 cells per hour. The 

photosynthetic performance of the cells was evaluated using the P vs. E (photosynthesis 

over irradiance) curve generated for each measurement (see section 2.4). 

2.3.3 Toxin Quantification 

The concentrations of microcystin ([MC]) in cultures were determined by indirect 

competitive ELISA using an Enzo Life Sciences
®

 Microcystins (Adda specific) ELISA 

kit. ELISA methods offer one of the best options for monitoring microcystins, because 

they are relatively fast, inexpensive and commercially available (Preece et al. 2015). In 

ELISA, microcystins in the sample compete with a microcystin-protein analog for 

binding sites of the anti-microcystin antibodies. A color signal is generated that is 

inversely proportional to the microcystin concentration present in a sample. As there are 

more than 80 variants of microcystin, the ADDA kit is specific for a variant on the C20 

of the cyclic heptapeptide allowing for the assessment of the most toxic form (Fisher et 

al. 2001). 
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Analysis procedures followed the protocol published in the instruction manual 

from the Enzo Life Sciences
®

 ELISA kit. Samples and standards (50 µL) were seeded in 

duplicates in a 12 × 8 microtiter plate in which microcystins-protein analog had been 

immobilized (Figure 2.2). The plate was incubated, washed and color-labeled. 

Absorbance was read at 450 nm on a Versamax microplate reader (Molecular Devices
®
). 

A standard curve was constructed to calibrate each assay (R
2
 > 0.99) using known 

standards (0, 0.15, 0.4, 1, 2, 5 ppb). The microcystin concentration of samples was 

determined using the formula for a standard curve (in the unit of ppb or ng mL
-1

). Cell 

density was determined using flow cytometry, and cellular microcystin content was 

calculated for each sample (in the unit of fg cell
-1

). 

 

Figure 2.2 ELISA plate design. STD: standard solution. CT: control solution (0.75 ppb). 

Rep 1 and Rep 2 represent the first and second replicates with each replicate sampled 

twice. The first +/– sign indicates the addition of Mo. The second +/– sign indicates the 

addition of Fe. To avoid the interference between standards and samples, wells in 

between were left empty. 
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2.4 Data Analysis 

2.4.1 Calculating Growth Parameters 

Growth rate was determined during the exponential phase using the following 

equation: 

𝜇 =
𝑙𝑛𝑁2 − 𝑙𝑛𝑁1

𝑡2 −  𝑡1
 

where N2 and N1 represented biomass at time t2 and t1, which are cell densities (mL
-1

) in 

the present study but could also be chl-a fluorescence (written as F2 and F1) in situations 

where chlorophyll levels do not change throughout the experiment (Levasseur et al. 1993, 

Mikulec et al. 2015). Three growth rates were calculated for each replicate. 

Doubling times (𝑇𝑑) and doublings per day (𝑅𝑇𝑑, as doublings per day, equal to 

reciprocal doubling time) were calculated from growth rates using the following 

equations: 

𝑇𝑑 = 0.6931/𝜇, 𝑅𝑇𝑑 = 𝜇/0.6931 (Mikulec et al. 2015) 

Cell yield was calculated using 

Y = 𝐶𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅ 

where 𝐶𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅ was the average of two or three adjacent maximum cell counts during the 

stationary phase based on the growth curve, giving two or three values for each nutrient 

condition. 

For these experiments where the level of the growth-limiting nutrient is known (N 

at 10 mM), the nutrient use efficiency can be determined and compared amongst all 

experimental outcomes.  Nutrient use efficiency is a simple means to compare how much 

cell yield (biomass) is generated under the same level of a limiting nutrient.  

Experimental conditions could require the cell to allocate energy or C differently, and 

thus achieve a lower end-of-experiment cell yield and, by extension, show reduced 

nutrient use efficiency. 
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2.4.2 Light Specific Oxygen Evolution and P-E Curve Analysis 

The average gross oxygen evolution rate (𝑅𝑂2−𝑔𝑟𝑜𝑠𝑠) in photosynthesis was 

calculated using the sum of the oxygen production rate (𝑅𝑡𝑜𝑡𝑎𝑙) and the absolute value of 

the respiration rate: 

𝑅𝑂2−𝑔𝑟𝑜𝑠𝑠 = 𝑅𝑡𝑜𝑡𝑎𝑙 − |𝑅𝑟𝑒𝑠𝑝| 

Oxygen evolution rates were normalized using the following equation: 

𝑃𝑂2
 ( 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑) =

𝑃𝑂2
 (𝑠𝑎𝑚𝑝𝑙𝑒)

(𝑆𝑎𝑚𝑝𝑙𝑒 𝑉𝑜𝑙𝑢𝑚𝑒) ∙ (60𝑚𝑖𝑛) ∙ (𝐶𝑒𝑙𝑙 𝐷𝑒𝑛𝑠𝑖𝑡𝑦) ∙ 109
  

where 𝑃𝑂2
 represents oxygen evolution rates calculated from the photosynthesis-

irradiance response (P-E) curve. Normalized O2 evolution was expressed as micromoles 

of O2 released per hour per 10
9
 cells in the light chamber. Sample volume in this study 

was 1.5 mL. 𝑃𝑂2
 (𝑠𝑎𝑚𝑝𝑙𝑒) was expressed as micromoles of O2 released per minute in the 

light chamber.  

Photosynthesis-irradiance response curve analysis was based on Sakshaug et al. 

(1997) (Figure 2.3). Two values were obtained from the P-E curve to represent the 

photosynthesis capability of cell. First is the initial slope (α*) (slope of the first (PAR=0) 

and third (PAR=40) points on the O2 evolution curve); second is the light saturation point 

(Pm*) (average of two adjacent maximum values). The light absorption rate α* is a key 

description of light-limited photosynthesis, whereas Pm* is a major definition of light-

saturated photosynthesis. Both parameters are broadly correlated to the photosynthetic 

pigment content (MacIntyre et al. 2002).  
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Figure 2.3 P-E curve analysis (photosynthesis (P) versus irradiance). Initial slope (α*) 

shows the maximum O2 production rates. Light saturating point (Pm*) represents the 

maximum achieved rate of O2 production. Ek is the light-saturation parameter (Ek = 

Pm*/α*). 

2.4.3 Cellular Microcystin Content Analysis 

Mean absorbance at ʎ = 450 nm of each standard was calculated. The %B/B0 

value was calculated by dividing the absorbance value of each sample by the zero 

standard ([MC] = 0 ppb) mean absorbance value of each standard. A standard curve was 

constructed using the %B/B0 values of standards and their known microcystin 

concentrations. The following formula was used to construct the standard curve: 

𝐴 = 0.755[𝑀𝐶]−0.369, 𝑅2 = 0.9917 

or                                       [𝑀𝐶] = (
𝐴

0.755
)−

1

0.369, 𝑅2 = 0.9917  

The absorbance of samples (A) was then converted to microcystin concentration 

([MC], unit: ppb) using the equations above. The microcystin concentration of the 

positive control ([MC] = 0.75 ppb) gave a value of 0.865 ppb, which was within the 

acceptable error range of ± 0.185 ppb. The cellular microcystin content was determined 
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by dividing the microcystin concentration of each well by the corresponding cell 

concentration measured. 

2.4.4 Statistical Analysis 

Standard errors were calculated using the following equation: 

𝑆𝐸𝑥 =  
𝑠

√𝑛
 

where 𝑆𝐸𝑥 stands for the standard error of the samples, s stands for the standard deviation 

of the samples, and n represents the number of readings. 
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Chapter 3  

3 Results 

3.1 Experiment 1: Nitrogen-Limited Growth and 
Photosynthetic Capacity 

Growth of the two strains of M. aeruginosa strains CPCC 299 and CPCC 300 

under different forms of N was examined to confirm optimal growth conditions (Figure 

3.1). It was critical to assess growth under these otherwise replete nutrient conditions 

because the achieved growth rates and yields represent the optimal growth against which 

growth under other experimental conditions will be compared. The medium used 

(modified BG-11) contained lower levels of N compared to phosphate than the original 

recipe (10 mM N, 0.175 mM P vs. 17 mM N, 0.175 mM P).  By reducing the initial 

supply of N, the medium contained 10:1 N:P (molar) instead of 17:1 N:P (molar), the 

latter providing a ratio of nutrients where P could be equally limiting the growth 

compared with N (Wang and Moore 2014). Thus the lower ratio of 10:1 ensures that N 

will be used up in the medium (N-limited), leaving unused P (P-replete). 

The two strains of M. aeruginosa performed similarly when provided with nitrate 

and ammonium as the N source in the medium. Maximum growth rates for the CPCC 299 

and CPCC 300 were 0.411 and 0.401 day
-1

, respectively, on nitrate and 0.363 and 0.310 

day
-1

, respectively, on ammonium (Table 3.1). The cells provided with ammonium as a 

N-source had a longer lag phase, even with a period of adaptation to the new nutrient 

source, and entered the stationary phase after a longer period (Figure 3.1). When 

provided with urea as the sole N-source, growth rates were 0.062 and 0.066 day
-1

 for 

strains CPCC 299 and CPCC 300, respectively. There was no indication that N was used 

by these strains (Figure 3.1).  It is possible that urea supplied at 10 mM is inhibitory to M. 

aeruginosa. No further experiments were performed to discern the mechanisms leading to 

a low growth rate when supplied with urea. 
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Figure 3.1 Representative growth curves for M. aeruginosa culture strains CPCC 299 (A) 

and CPCC 300 (B) grown in media with nitrate (10 mM NO3
-
), ammonium (10 mM 

NH4
+
) and urea (10 mM CO(NH2)2) as N sources. The corresponding growth rates (µ) 

and yields (Y) are summarized in Table 3.1. 
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Table 3.1 Growth and photosynthesis parameters of two M. aeruginosa strains (CPCC 299 and CPCC 300) grown on 10 mM nitrate, 

10 mM ammonium and 10 mM urea [average ± standard error]. Summary of units for each parameter: μ is the growth rate, presented 

as doublings day
-1

 (three measurements from one replicate); Y is the average concentration of cells mL
-1

 achieved during the 

stationary phase of growth (two or three measurements from one replicate); chl-a cell
-1

 is the relative chlorophyll-a fluorescence per 

particle from the flow cytometer assessment (two measurements from one replicate); Exp. 96h indicates that exponentially growing 

cells after 96 hours of incubation were assessed; Stat. 192h indicates that cells from the stationary phase of growth (192h) were 

assessed; α* is the initial slope of the light dependent phase of photosynthesis (μmoles of O2 evolved 10
9
 cells

-1
) (one measurement 

from each of two replicates);  Pm* is the maximum rate of photosynthesis under lights-saturating conditions (μmoles of O2 evolved h
-1

 

10
9
 cells

-1
) (one measurement from each of two replicates). 

CPCC 299 

N 
Growth Chl-a cell-1 Light specific O2 evolution 

μ Y Exp. 96h Stat. 192h α* Pm* 

NO3
- 0.411 ± 0.020 1.11E+07 ± 7.20E+04 6804 ± 24 6901 ± 29 0.224 ± 0.017 28.209 ± 5.886 

NH4
+ 0.363 ± 0.053 8.51E+06 ± 5.24E+05 3997 ± 10 3311 ± 6 0.342 ± 0.086 24.746 ± 2.274 

Urea 0.062 ± 0.001 1.43E+06 ± 3.71E+04 5900 ± 13 1574 ± 1 0.049 ± 0.005 9.538 ± 1.713 

CPCC 300 

N 
Growth Chl-a cell-1 Light specific O2 evolution 

μ Y Exp. 96h Stat. 192h α* Pm* 

NO3
- 0.401 ± 0.055 1.09E+07 ± 2.51E+05 6032 ± 42 7541 ± 282 0.255 ± 0.107 26.902 ± 8.244 

NH4
+ 0.301 ± 0.042 9.76E+06 ± 2.12E+04 3306 ± 13 3003 ± 4 0.170 ± 0.025 19.428 ± 3.432 

Urea 0.066 ± 0.012 1.78E+06 ± 1.99E+04 4377 ± 132 1361 ± 4 0.051 ± 0.003 8.643 ± 1.177 
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Light specific oxygen evolution of the isolates grown on single sources of N 

(nitrate, ammonium and urea) strongly reflected the growth curves.  For strain CPCC 299, 

the light specific oxygen evolution parameters were indistinguishable from each other 

between the two positive nutrient sources: nitrate and ammonium. Only strain CPCC 300 

grown under ammonium had a reduced photosynthetic rate (Figure 3.2 and Table 3.1).  

For the two strains, the lowest light specific oxygen evolution rates were observed in 

cultures grown with urea as the N-source. While urea-grown cells did not grow well, (a 

reduction of >80% compared to the nitrate-grown cells, for example), there was a 

positive increase in photosynthesis with increasing light intensities. Cells grown with 

urea had an approximately 65% reduction in light saturating photosynthetic rates 

compared to cells grown on nitrate (Table 3.1) – indicating that urea at 10 mM was not 

toxic but rather inhibitory to the growth of this species.  Overall, when the strains of M. 

aeruginosa were grown on either nitrate or ammonium, light saturation occurred at about 

200 µmol photons m
-2

 s
-1

. At the maximum light intensity of 800 µmol photons m
-2 

s
-1

 

there was no detectable photoinhibition.  

Despite similar growth and light activated photosynthesis parameters, there were 

discernable differences in the cell biochemistry of strains grown under nitrate and 

ammonium.  The chl-a fluorescence was twice as high when grown in nitrate compared 

to ammonium, and the difference was more pronounced in the stationary phase (Day 8) 

than in the exponential phase (Day 4) (Table 3.1). In nitrate, chl-a decreased initially and 

increased until Day 7 for CPCC 299 and Day 8 for CPCC 300 (Figure 3.2). In ammonium, 

fluorescence decreased beginning on Day 3. Cells grown on urea were not able to 

maintain levels of chlorophyll throughout their growth period, further indicating that the 

cells were not able to obtain sufficient N to replace the chlorophyll contents of cells as 

they grew (Figure 3.2). 
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Figure 3.2 The relative chl-a content per cell (left) and oxygen evolution versus light 

intensity (right) of M. aeruginosa culture strains CPCC 299 (A1 and A2) and CPCC 300 

(B1 and B2) grown in media with nitrate (NO3
-
), ammonium (NH4

+
) and urea 

(CO(NH2)2). The corresponding initial slopes of P vs. E curve (α*) and light saturation 

points (Pm*) were summarized in Table 3.1. 
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3.2 Experiment 2: Molybdenum-Limited Growth and 
Photosynthetic Capacity 

Removing Mo from the medium had little impact on the growth and fluorescence 

of the two strains of M. aeruginosa (Table 3.2, Figures 3.3, 3.4).  Growth rates and cell 

yields remained constant regardless of the level of Mo supplied to the cells, and cells 

grown with ammonium did not show distinguishable reductions in growth compared to 

those with nitrate. While growth was not an informative indicator of Mo-limitation, the 

metrics associated with light-limited and light-saturating photosynthesis assessment 

indicated that the CPCC 299 cells were undergoing a reduction in photosynthetic capacity 

proportional to the level of supplied Mo (Table 3.2). However, given the variation 

observed among the different N source experiments, this decrease was not significant. 

None of the strains showed any reduction on the level of relative fluorescence per cell. 

Therefore, growth under Mo deficiency did not result in significant limitations on growth 

or photosynthetic capacities for the strains (Figure 3.5). 
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Table 3.2 Growth and photosynthesis parameters of M. aeruginosa strain CPCC 299 (A) and CPCC 300 (B) grown on two different 

forms of nitrogen and under different Mo concentrations [average ± standard error].  A summary of units for each parameter is 

provided in legend of Table 3.1. 

A 

CPCC 299 

N [Mo] 
Growth Chl-a cell-1 Light specific O2 evolution 

μ Y Exp. 92-96h Stat. 188-192h α* Pm* 

NO3
- 

1×10-6 0.298 ± 0.049 1.08E+07 ± 4.31E+05 6696 ± 20 6878 ± 89 0.315 ± 0.092 26.726 ± 8.706 

1×10-8 0.318 ± 0.056 1.07E+07 ± 2.18E+05 7227 ± 9 5233 ± 6 0.223 ± 0.065 22.230 ± 6.592 

1×10-10 0.309 ± 0.057 9.55E+06 ±1.54E+05 7375 ± 8 5704 ± 5 - - 

1×10-12 0.303 ± 0.057 1.01E+07 ± 2.11E+05 7052 ± 52 5250 ± 148 0.140 ± 0.009 20.537 ± 1.800 

1×10-14 0.311 ± 0.056 9.58E+06 ± 1.67E+05 6473 ± 13 4075 ± 5 - - 

1×10-16 0.309 ± 0.054 9.34E+06 ± 1.25E+05 6903 ± 14 4647 ± 12 0.157 ± 0.137 25.480 ± 17.021 

0 0.320 ± 0.055 9.23E+06 ± 5.94E+05 6475 ± 1 5369 ± 11 - - 

NH4
+ 

1×10-6 0.308 ± 0.045 1.07E+07 ± 1.40E+05 5537 ± 10 4382 ± 3 0.152 ± 0.044 15.109 ± 1.714 

1×10-8 0.290 ± 0.050 9.36E+06 ± 2.11E+05 5382 ± 2 4223 ± 2 0.191 ± 0.027 21.528 ± 5.134 

1×10-10 0.314 ± 0.042 9.88E+06 ± 7.09E+05 5101 ± 4 3960 ± 17 - - 

1×10-12 0.308 ± 0.044 9.72E+06 ± 1.20E+05 5274 ± 6 4133 ± 3 0.085 ± 0.059 12.358 ± 1.183 

1×10-14 0.301 ± 0.044 9.73E+06 ± 1.15E+05 5264 ± 17 3858 ± 1 - - 

1×10-16 0.285 ± 0.048 9.75E+06 ± 8.70E+04 5185 ± 21 3777 ± 6 0.114 ± 0.020 14.907 ± 1.767 

0 0.300 ± 0.052 1.00E+07 ± 1.67E+05 5111 ± 3 3880 ± 8 - - 

Continued on next page. 
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Continued from previous page. 

 

B 
CPCC 300 

N [Mo] 
Growth Chl-a cell-1 Light specific O2 evolution 

μ Y Exp. 92-96h Stat. 188-192h α* Pm* 

NO3
- 

1×10-6 0.238 ± 0.010 1.10E+07 ± 6.77E+05 7025 ± 67 6985 ± 11 0.082 ± 0.028 21.336 ± 9.372 

1×10-8 0.220 ± 0.011 1.08E+07 ± 6.84E+05 6710 ± 28 4713 ± 12 0.203 ± 0.042 18.482 ± 2.895 

1×10-10 0.212 ± 0.022 1.03E+07 ± 7.35E+05 7254 ± 16 4991 ± 56 - - 

1×10-12 0.209 ± 0.025 1.05E+07 ± 7.90E+05 7103 ± 12 4761 ± 6 0.105 ± 0.015 14.588 ± 2.635 

1×10-14 0.212 ± 0.025 1.02E+07 ± 6.87E+05 7410 ± 52 5865 ± 13 - - 

1×10-16 0.228 ± 0.021 1.02E+07 ± 6.66E+05 7398 ± 5 4649 ± 9 0.224 ± 0.007 15.616 ± 3.735 

0 0.224 ± 0.085 1.01E+07 ± 6.62E+05 6749 ± 33 6260 ± 26 - - 

NH4
+ 

1×10-6 0.311 ± 0.051 1.14E+07 ± 5.16E+05 4541 ± 14 3466 ± 6 0.139 ± 0.029 14.987 ± 1.161 

1×10-8 0.298 ± 0.049 1.01E+07 ± 3.76E+05 4153 ± 13 3568 ± 12 0.090 ± 0.038 14.773 ± 1.879 

1×10-10 0.293 ± 0.056 9.64E+06 ± 3.43E+05 4311 ± 26 3113 ± 2 - - 

1×10-12 0.303 ± 0.052 1.01E+07 ± 3.49E+05 4171 ± 9 3327 ± 21 0.122 ± 0.088 16.083 ± 4.943 

1×10-14 0.291 ± 0.059 9.52E+06 ± 3.72E+05 4038 ± 5 3256 ± 5 - - 

1×10-16 0.314 ± 0.059 1.10E+07 ± 4.07E+05 4244 ± 4 3406 ± 9 0.100 ± 0.025 13.063 ± 1.122 

0 0.303 ± 0.057 1.06E+07 ± 4.16E+05 4145 ± 5 3194 ± 19 - - 
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Figure 3.3 Growth rates (left) and achieved cell yield (right) for M. aeruginosa 

culture strains CPCC 299 (A1 and A2) and CPCC 300 (B1 and B2) grown in media with 

nitrate (NO3
-
) or ammonium (NH4

+
).  Mo concentrations ranged from 0 to 10

-16
 M.  
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Figure 3.4 The relative chlorophyll-a content per cell of M. aeruginosa culture strains 

CPCC 299 (A) and CPCC 300 (B) grown in media with nitrate (NO3
-
) and Mo 

concentrations ranging from 10
-6

 to 10
-16 

M. The line with the dark solid symbols 

indicates cell performance when Mo is at the maximum exposed levels.  



 39 

 

Figure 3.5 An assessment of light saturating photosynthesis of M. aeruginosa 

culture strains (A) CPCC 299 and (B) CPCC 300 grown in media with nitrate (NO3
-
, left) 

and ammonium (NH4
+
) with Mo concentrations ranging from 10

-6
 to 10

-16 
M. The 

corresponding initial slopes of the light saturating photosynthetic curve (α*) and light 

saturation points (Pm*) were summarized in Table 3.1. 

3.3 Experiment 3: Iron-Limited Growth and Photosynthetic 
Capacity 

Both M. aeruginosa strains showed symptoms of Fe deficiency when provided 

with medium containing reduced levels of Fe, especially in CPCC 300. The growth rates, 

yields, cellular chlorophyll fluorescence at exponential cell phases and stationary cell 

phases, and photosynthetic parameters all indicated a decline in the efficiency of 

physiological performance with decreasing Fe concentrations (Table 3.3).  

Cells grown with nitrate as the N-supply and 2 × 10
-5

 M added FeCl3, the 

maximum added Fe level, achieved the highest growth rates of 0.421 day
-1

 and 0.391 day
-

1
, for strain CPCC 299 and CPCC 300, respectively. As supplied Fe was incrementally 

decreased from 2×10
-5

 to 2×10
-8

 mol L
-1

 the growth rate dropped (~20% in CPCC 299, 
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~40% in CPCC 300). As the Fe supply was further decreased, there was a slight increase 

in the growth rates of the cells, followed by a gentle reduction in the growth rate. This 

“step up” pattern suggests that physiological changes occur when Fe is reduced to the 

level of 2 × 10
-10

 M. Thus, either there is a change in the level of available Fe to the cell 

or the cell physiology is altered to reduce the cellular need for Fe to achieve a specific 

growth rate or the yield of cells within the culture medium.  

The pattern of growth parameters for cells where nitrate was the sole N source 

was not the same as the pattern when ammonium was the supplied N source, suggesting 

increased cellular needs of nitrate-grown cells and the added stress on the overall cell 

physiology. Cells grown with ammonium as the N-supply and 2 × 10
-5

 M added FeCl3, 

the maximum added Fe level, achieved the highest growth rates of 0.284 day
-1

 and 0.261 

day
-1

, for strain CPCC 299 and CPCC 300, respectively. Supplying the cultures with 

incrementally lower levels of FeCl3 reduced the growth rates, such that the growth rate 

achieved at the lowest level of added Fe (0 M) resulted in a reduction in growth rate of 

about 15 to 30% (0.238 and 0.180 day
-1

, for CPCC 299 and CPCC 300, respectively). 

The reduction in the achieved growth rate of the two cultures was not linearly 

proportional to Fe concentration but was better represented as a step function: maximum 

growth was achieved at the two highest levels of added Fe (2 × 10
-5

 and 2 × 10
-6

 M) and 

at a constant reduced growth rate when Fe was added at levels of 2 × 10
-8

 M or lower.  

There was a similar pattern between the level of added Fe and the yield of the cells in the 

Fe-limited medium; however, the yield of the cells in the medium does consistently 

decline at the lower levels of added Fe (Figure 3.6).
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Table 3.3 Growth and photosynthesis parameters of M. aeruginosa strains CPCC 299 (A) and CPCC 300 (B) grown on two different 

forms of nitrogen and under different Fe concentrations [average ± standard error]. Summary of units for each parameter is provided 

in legend of Table 3.1.  

A 

CPCC 299 

N [Fe] 
Growth Chl a cell-1 Light specific O2 evolution 

Μ Y Exp. 90h Stat. 186h α* Pm* 

NO3
- 

2×10-5 0.421 ± 0.005 1.14E+07 ± 3.77E+05 5034 ± 45 9972 ± 21 0.217 ± 0.005 35.598 ± 0.886 

2×10-6 0.403 ± 0.002 1.09E+07 ± 2.29E+05 5048 ± 10 6910 ± 1 - - 

2×10-8 0.344 ± 0.040 1.03E+07 ± 4.60E+05 3089 ± 37 2106 ± 2 0.152 ± 0.004 11.507 ± 0.346 

2×10-10 0.378 ± 0.024 1.32E+07 ± 1.66E+05 3461 ± 4 2535 ± 8 0.081 ± 0.023 11.325 ± 3.015 

2×10-12 0.384 ± 0.022 1.33E+07 ± 4.02E+04 3454 ± 5 2414 ± 4 - - 

2×10-14 0.385 ± 0.011 1.30E+07 ± 1.59E+05 3531 ± 6 2275 ± 11 0.087 ± 0.058 14.225 ± 4.601 

0 0.298 ± 0.013 7.20E+06 ± 2.84E+05 2421 ± 14 1661 ± 8 - - 

NH4
+ 

2×10-5 0.284 ± 0.021 8.58E+06 ± 4.04E+05 4739 ± 21 3039 ± 11 0.475 ± 0.067 26.457 ± 2.341 

2×10-6 0.279 ± 0.014 9.09E+06 ± 2.60E+05 4082 ± 10 2714 ± 8 - - 

2×10-8 0.204 ± 0.014 5.37E+06 ± 2.88E+05 3617 ± 14 2914 ± 7 0.094 ± 0.093 8.464 ± 8.059 

2×10-10 0.192 ± 0.012 5.35E+06 ± 3.23E+05 3485 ± 4 2834 ± 18 0.058 ± 0.058 8.013 ± 7.546 

2×10-12 0.258 ± 0.014 5.21E+06 ± 4.11E+05 3589 ± 19 2866 ± 14 - - 

2×10-14 0.244 ± 0.025 4.81E+06 ± 1.89E+05 3303 ± 2 2487 ± 11 0.015 ± 0.015 3.805 ±3.317 

0 0.238 ± 0.029 4.68E+06 ± 2.02E+05 3141 ± 2 2428 ± 8 - - 

 

Continued on next page. 
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Continued from previous page. 

B 

CPCC 300 

N [Fe] 
Growth Chl a cell-1 Light specific O2 evolution 

μ Y Exp. 96h Stat. 192h α* Pm* 

NO3
- 

       

2×10-5 0.391 ± 0.027 1.16E+07 ± 8.06E+05 4907 ± 31  8431 ± 76 0.363 ± 0.080  35.241 ± 3.945 

2×10-6  0.386 ± 0.047  1.13E+07 ± 5.12E+05  4761 ± 22 4309 ± 2 - - 

2×10-8  0.243 ± 0.002 6.99E+06 ± 2.71E+04  2579 ± 21 2045 ± 4 0.117 ± 0.066  14.155 ± 7.100  

2×10-10  0.300 ± 0.039 1.34E+07 ± 2.10E+05  3438 ± 6 2946 ± 6  0.072 ± 0.003  11.587 ± 3.523 

2×10-12  0.276 ± 0.034 1.04E+07 ± 1.92E+05  3038 ± 16 2371 ± 3  - - 

2×10-14  0.266 ± 0.034 1.00E+07 ± 2.28E+05  3185 ± 21 2226 ± 0  0.135 ± 0.028  10.805 ± 1.972  

0 0.250 ± 0.027 8.67E+06 ± 1.83E+05  2853 ± 1  2137 ± 1  - - 

NH4
+ 

2×10-5 0.261 ± 0.035  8.35E+06 ± 2.45E+05  4485 ± 154 3272 ± 8  0.187 ± 0.015 20.857 ± 2.350 

2×10-6  0.258 ± 0.026 8.31E+06 ± 2.17E+05  3837 ± 20 2960 ± 24  - - 

2×10-8  0.183 ± 0.025 4.22E+06 ± 1.46E+04  3345 ± 2  2556 ± 6 0.059 ± 0.005 11.673 ± 1.383  

2×10-10  0.221 ± 0.023 5.36E+06 ± 1.37E+05  3183 ± 11 2592 ± 70  0.051 ± 0.007  13.431 ± 0.290  

2×10-12  0.183 ± 0.002 4.45E+06 ± 3.17E+05  3089 ± 33 2494 ± 18 - - 

2×10-14  0.167 ± 0.002  3.82E+06 ± 1.23E+05  2905 ± 24 2255 ± 3 0.094 ± 0.047  13.125 ± 0.000  

2×10-5  0.180 ± 0.009  3.93E+06 ± 2.51E+05  2973 ± 44 2406 ± 1  - - 
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Figure 3.6 Growth rates (left) and achieved cell yield (right) for M. aeruginosa 

culture strains CPCC 299 (A1 and A2) and CPCC 300 (B1 and B2) grown in media with 

nitrate (NO3
-
) or ammonium (NH4

+
).  Fe concentrations ranged from 0 to 2 × 10

-5 
M. 

Looking at the photosynthetic parameters of the cells under the different levels of 

Fe stress, each strain had a “step down” photosynthetic performance as added Fe levels 

decreased from 2 × 10
-5

 M (Table 3.3; Figure 3.7), for both nitrate- and ammonium-

supplied cells. Only CPCC 300 showed a slight recovery of photosynthesis when Fe was 

reduced to 2 × 10
-14

 M. Cellular chlorophyll fluorescence changed similarly in nitrate, 

with positive Fe effects observed after Day 4 when the Fe level was 2 × 10
-5

 M (Figure 

3.8). This indicates a disconnection between the recovery of growth rate and the recovery 

of the photosystem in Fe-limited, nitrate grown cells. However, cellular chlorophyll 

fluorescence did not show differences with variable Fe levels when cultured with 

ammonium (Figure 3.7). 
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Figure 3.7 An assessment of light saturating photosynthesis of M. aeruginosa 

culture strains (A1 and A2) CPCC 299 and (B1 and B2) CPCC 300 grown in media with 

nitrate (NO3
-
, left) or with ammonium (NH4

+
, right) and Fe concentrations ranging from 2 

× 10
-14

 to 2 × 10
-5 

M. The corresponding initial slopes of the light saturating 

photosynthetic curve (α*) and light saturation points (Pm*) were summarized in Table 3.3. 
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Figure 3.8 The relative chlorophyll-a content per cell of M. aeruginosa culture strains 

CPCC 299 (A) and CPCC 300 (B) grown in media with nitrate (NO3
-
, left) or ammonium 

(NH4
+
, right).  Fe concentrations ranged from 2 ×10

-14
 to 2 ×10

-5 
M.  
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3.4 Experiment 4: Growth under Molybdenum and Iron Co-
Limitation 

Cells grown with no added Mo and a range of Fe levels, from Fe-replete to Fe-

depleted, were assessed for growth and photosynthetic capacity (Table 3.4). Cells grown 

on nitrate had a “step-up” pattern of growth rates and cell yields, with a peak at the 2 × 

10
-12

 M Fe level. In ammonium-grown cells, cell growth and chl-a parameters appeared 

to be insensitive to the level of added Fe, but light specific O2 evolution was highest with 

2 × 10
-5

 M Fe and dropped considerably with less added Fe (with a minor recovery at 2 × 

10
-14

 M). 
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Table 3.4 Growth and photosynthesis parameters of M. aeruginosa strains CPCC 299 (A) and CPCC 300 (B) grown with different Fe 

concentrations in the absence of Mo (co-limitation) [average ± standard error]. Summary of units for each parameter is provided in 

legend of Table 3.1. 

A 

CPCC 299 

N [Fe] 
Growth Chl-a cell-1 Light specific O2 evolution 

μ Y Exp. 96h Stat. 192h α* Pm* 

NO3
- 

2×10-5 0.304 ± 0.039 1.14E+07 ± 1.18E+05 6527 ± 96 7142 ± 18 0.441 ± 0.173 34.176 ± 2.024 

2×10-6 0.321 ± 0.020 1.16E+07 ± 5.39E+05 6372 ± 35 3866 ± 18 - - 

2×10-8 0.308 ± 0.044 1.21E+07 ± 4.73E+05 4752 ± 34 3554 ± 6 0.228 ± 0.048 21.947 ± 1.769 

2×10-10 0.231 ± 0.032 4.92E+06 ± 3.00E+05 2871 ± 9 1969 ± 2 0.194 ± 0.073 23.545 ± 3.197 

2×10-12 0.326 ± 0.052 1.23E+07 ± 9.44E+05 3904 ± 8 3383 ± 8 - - 

2×10-14 0.253 ± 0.038 6.24E+06 ± 4.21E+05 2901 ± 12 2087 ± 25 0.175 ± 0.007 21.400 ± 1.032 

0 0.278 ± 0.036 7.08E+06 ± 4.87E+05 2993 ± 12 2259 ± 18 - - 

NH4
+ 

2×10-5 0.330 ± 0.043 1.12E+07 ± 8.35E+05 2786 ± 54 2893 ± 40 0.170 ± 0.026 15.640 ± 0.864 

2×10-6 0.382 ± 0.052 1.04E+07 ± 9.71E+05 2949 ± 279 2471 ± 213 - - 

2×10-8 0.401 ± 0.035 1.05E+07 ± 1.06E+06 2594 ± 124 2607 ± 34 0.190 ± 0.045 15.962 ± 3.111 

2×10-10 0.376 ± 0.022 1.03E+07 ± 8.36E+05 2607 ± 62 2737 ± 44 0.017 ± 0.017 7.430 ± 1.279 

2×10-12 0.409 ± 0.040 1.03E+07 ± 4.57E+05 2499 ± 34 2624 ± 43 - - 

2×10-14 0.344 ± 0.053 1.02E+07 ± 6.17E+05 2470 ± 93 2594 ± 200 0.067 ± 0.017 12.277 ± 0.558 

0 0.328 ± 0.065 1.01E+07 ± 4.46E+05 2435 ± 40 2596 ± 106 - - 

 

Continued on next page. 
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Continued from previous page. 

B 

CPCC 300 

N [Fe] 
Growth Chl-a cell-1 Light specific O2 evolution 

μ Y Exp. 96h Stat. 192h α* Pm* 

NO3
- 

2×10-5 0.330 ± 0.035 1.22E+07 ± 2.54E+05 5542 ± 2 7201 ± 38 0.562 ± 0.024 43.441 ± 8.870 

2×10-6  0.335 ± 0.011 1.13E+07 ± 2.56E+05 5568 ± 25 3762 ± 12 - - 

2×10-8  0.350 ± 0.034 1.29E+07 ± 6.05E+05 4378 ± 4 3249 ± 4 0.381 ± 0.010 35.296 ± 4.393 

2×10-10  0.308 ± 0.050 1.01E+07 ± 5.89E+05 3066 ± 6 2316 ± 8 0.341 ± 0.167 29.184 ± 2.945 

2×10-12  0.333 ± 0.050 1.19E+07 ± 8.25E+05 3544 ± 17 2492 ± 6 - - 

2×10-14  0.278 ± 0.051 7.78E+06 ± 4.22E+05 2699 ± 3 1972 ± 6 0.173 ± 0.089 22.002 ± 3.776 

0 0.281 ± 0.043 9.24E+06 ± 6.87E+05 2935 ± 3 2342 ± 17 - - 

NH4
+ 

2×10-5 0.384 ± 0.010 1.23E+07 ± 1.03E+06 2930 ± 45 3017 ± 128 0.239 ± 0.004 17.006 ± 0.307 

2×10-6  0.368 ± 0.028 9.66E+06 ± 5.86E+05 2899 ± 71 2933 ± 96 - - 

2×10-8  0.333 ± 0.001 9.67E+06 ± 5.58E+05 2715 ± 53 2566 ± 50 0.045 ± 0.029 12.021 ± 2.167 

2×10-10  0.347 ± 0.011 9.62E+06 ± 7.21E+05 2726 ± 43 2659 ± 36 0.018 ± 0.018 8.997 ± 1.316 

2×10-12  0.332 ± 0.001 9.73E+06 ± 4.67E+05 2796 ± 32 2594 ± 42 - - 

2×10-14  0.330 ± 0.010 9.18E+06 ± 3.48E+05 2653 ± 78 2746 ± 72 0.031 ± 0.031 10.136 ± 4.214 

0 0.293 ± 0.029 8.72E+06 ± 1.83E+05 2627 ± 87 2555 ± 8 - - 
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3.5 Experiment 5: Molybdenum and Iron Replenishment 

To assess the ability of added trace metals to allow for the recovery of growth and 

photosynthetic capacity, the two strains CPCC 299 and CPCC 300 were grown under 

zero Mo and Fe levels ranging from replete (2 × 10
-5

 M) to depleted (2 × 10
-10

 M) to 

growth-stressed (2 × 10
-14

 M) and then spiked with either sufficient Fe to allow for 

maximum growth rates or Mo at 10
-6

 M to assess if the level of Mo in the medium could 

supply missing trace metals in the Fe-depleted cells, or nothing at all. The two strains 

grown on nitrate (Table 3.5, Figure 3.9) behaved similarly. The growth rate of the 

cultures was proportional to the initial level of Fe (ranging from 0.172 to 0.503 day
-1

).  

Spiking the cultures with additional Fe alleviated the Fe stress, and growth rates of >0.3 

day
-1

 were achieved by all cultures. This pattern was also observed when the yield of the 

culture was assessed, indicating that full replenishment of physiological parameters was 

met. Adding 10
-6

 M of Mo impacted the growth rates of cells that were initially Fe-

stressed, elevating their growth rates by 60 – 70% compared to the control cultures, but it 

did not stimulate the growth rate of the Fe-replete or Fe-depleted cells. When relatively 

abundant Fe existed, Mo addition did not play a role in increasing growth. Thus, the 

growth parameters of cells that are Fe-stressed and growing on nitrate can be relieved by 

adding Mo.  

Cells grown on ammonium medium that were Fe-limited did not respond to 

additional Mo. With ammonium, Mo addition only increased growth rates and yields in 

the Fe-depleted cells for CPCC 300, but not under low and high Fe levels (Table 3.5, 

Figures 3.10). In general, cells grew better in nitrate than in ammonium. For both strains, 

the final yield obtained was about 30% higher in nitrate than in ammonium. In both N 

sources, Fe may replace Mo in some key biological functions. Mo and Fe appeared to 

work collaboratively in increasing cyanobacterial growth, but Mo performed a more 

obvious compensatory role for Fe under Fe deficiency in nitrate.
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Table 3.5 Growth and photosynthesis of M. aeruginosa strains CPCC 299 (A) and CPCC 300 (B) after Fe or Mo replenishment 

[average ± standard error]. Summary of units for each parameter is provided in legend of Table 3.1.  

A 

CPCC 299 in NO3
-
 

Previous [Fe] N 
Growth Chl-a cell-1 Light specific O2 evolution 

Μ Y Exp. 90h Stat. 186h α* Pm* 

Fe+ 

2×10-6 0.503 ± 0.043 1.11E+07 ± 8.58E+05 5704 ± 26 6787 ± 46 0.596 ± 0.239 41.485 ± 6.726 

2×10-10 0.457 ± 0.062 1.07E+07 ± 1.91E+06 5358 ± 9 7159 ± 16 0.598 ± 0.129 44.439 ± 7.790 

2×10-14 0.454 ± 0.021 1.24E+07 ± 1.70E+06 4927 ± 72 6575 ± 2 0.219 ± 0.173 18.758 ± 14.684 

Mo+ 

2×10-6 0.380 ± 0.109 9.87E+06 ± 4.29E+05 5448 ± 65 3103 ± 31 0.702 ± 0.063 49.004 ± 2.232 

2×10-10 0.313 ± 0.007 3.98E+06 ± 8.76E+05 2473 ± 10 2516 ± 19 0.194 ± 0.194 17.451 ± 12.190 

2×10-14 0.234 ± 0.007 3.56E+06 ± 5.70E+05 2188 ± 6 1982 ± 1 0.275 ± 0.126 20.015 ± 6.075 

-Mo/-Fe 

2×10-6 0.381 ± 0.093 1.07E+07 ± 5.56E+05 5497 ± 3 2852 ± 8 0.808 ± 0.080 49.979 ± 5.318 

2×10-10 0.343 ± 0.043 4.54E+06 ± 9.18E+05 2533 ± 2 2547 ± 0 0.320 ± 0.019 26.678 ± 4.127 

2×10-14 0.172 ± 0.051 1.41E+06 ± 8.40E+04 1846 ± 9 1633 ± 1 0.163 ± 0.070 17.601 ± 3.690 

CPCC 299 in NH4
+
 

Previous [Fe] N 
Growth Chl-a cell-1 Light specific O2 evolution 

Μ Y Exp. 90h Stat. 186h α* Pm* 

Fe+ 

2×10-6 0.295 ± 0.060 7.56E+06 ± 1.12E+05 3231 ± 21 3540 ± 9 0.217 ± 0.017 17.907 ± 0.142 

2×10-10 0.266 ± 0.049 7.37E+06 ± 3.87E+05 3604 ± 21 3646 ± 38 0.217 ± 0.022 15.927 ± 2.934 

2×10-14 0.290 ± 0.034 7.88E+06 ± 3.26E+05 3120 ± 12 3762 ± 3 0.192 ± 0.006 8.969 ± 0.116 

Mo+ 

2×10-6 0.292 ± 0.058 7.57E+06 ± 1.10E+05 2918 ± 6 3485 ± 26 0.193 ± 0.051 15.477 ± 2.484 

2×10-10 0.177 ± 0.033 5.10E+06 ± 5.52E+05 2833 ± 2 2550 ± 3 0.086 ± 0.027 8.658 ± 1.758 

2×10-14 0.198 ± 0.016 4.71E+06 ± 4.94E+05 2757 ± 54 2191 ± 8 0.161 ± 0.013 8.211 ± 0.307 

-Mo/-Fe 

2×10-6 0.291 ± 0.062 7.88E+06 ± 3.01E+05 2773 ± 26 3182 ± 7 0.192 ± 0.015 19.534 ± 0.866 

2×10-10 0.211 ± 0.022 5.19E+06 ± 5.31E+05 2887 ± 19 2557 ± 2 0.045 ± 0.045 9.596 ± 2.004 

2×10-14 0.198 ± 0.022 4.82E+06 ± 3.46E+05 2866 ± 74 2383 ± 45 0.131 ± 0.023 10.921 ± 1.065 

Continued on next page. 
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Continued from previous page. 

B 

CPCC 300 in NO3
-
 

Previous [Fe] N 
Growth Chl-a cell-1 Light specific O2 evolution 

Μ Y Exp. 96h Stat. 180h α* Pm* 

Fe+ 

2×10-6 0.369 ± 0.045 1.22E+07 ± 6.20E+05 5617 ± 16 9097 ± 5 0.581 ± 0.051 36.947 ± 7.604 

2×10-10 0.453 ± 0.008 1.20E+07 ± 1.15E+06 5553 ± 8 8547 ± 12 0.569 ± 0.050 47.782 ± 3.398 

2×10-14 0.519 ± 0.009 1.14E+07 ± 8.76E+04 5133 ± 33 7671 ± 0 0.164 ± 0.116 26.828 ± 4.123 

Mo+ 

2×10-6 0.398 ± 0.069 1.19E+07 ± 6.67E+05 5066 ± 3 4183 ± 5 0.542 ± 0.092 42.027 ± 3.005 

2×10-10 0.293 ± 0.039 7.85E+06 ± 1.10E+06 3073 ± 26 2643 ± 34 0.118 ± 0.007 14.379 ± 1.896 

2×10-14 0.267 ± 0.043 3.74E+06 ± 4.49E+05 2139 ± 7 2199 ± 7 0.096 ± 0.023 13.157 ± 1.569 

-Mo/-Fe 

2×10-5 0.339 ± 0.114 1.21E+07 ± 9.28E+05 5314 ± 26 3813 ± 5 0.543 ± 0.043 45.540 ± 3.049 

2×10-10 0.369 ± 0.027 7.56E+06 ± 8.23E+05 2837 ± 22 2264 ± 4 0.162 ± 0.037 17.422 ± 0.993 

2×10-14 0.170 ± 0.016 2.06E+06 ± 1.38E+05 2506 ± 4 1707 ± 2 0.101 ± 0.035 15.818 ± 1.080 

CPCC 300 in NH4
+
 

Previous [Fe] N 
Growth Chl-a cell-1 Light specific O2 evolution 

Μ Y Exp. 96h Stat. 182h α* Pm* 

Fe+ 2×10-6 0.305 ± 0.055 7.55E+06 ± 1.92E+05 3670 ± 65 3857 ± 1 0.187 ± 0.072 15.912 ± 1.311  

2×10-10 0.509 ± 0.053 7.60E+06 ± 1.03E+05 3306 ± 26 3112 ± 1 0.095 ± 0.048 10.823 ± 1.561  

2×10-14 0.316 ± 0.057 7.47E+06 ± 2.23E+04 3035 ± 8 3020 ± 26 0.092 ± 0.040 10.588 ± 0.309  

Mo+ 2×10-6 0.315 ± 0.052 7.33E+06 ±1.81E+05 3029 ± 7 3018 ± 3 0.096 ± 0.028 15.524 ± 0.392  

2×10-10 0.234 ± 0.015 5.20E+06 ± 4.45E+05 2691 ± 25 2301 ± 2 0.079 ± 0.026 7.955 ± 0.057  

2×10-14 0.153 ± 0.041 3.08E+06 ± 4.90E+05 2212 ± 53 1949 ± 4 0.038 ± 0.038  7.050 ± 1.494 

-Mo/-Fe 2×10-6 0.314 ± 0.067 7.74E+06 ± 2.14E+05 3084 ± 6 3172 ± 55 0.167 ± 0.081  16.229 ± 0.196 

2×10-10 0.166 ± 0.025 3.62E+06 ± 3.59E+05 2812 ± 14 2740 ± 2 0.104 ± 0.052  10.608 ±0.3987 

2×10-14 0.162 ± 0.025 3.28E+06 ± 4.40E+05 2554 ± 1 2368 ± 3 0.082 ± 0.053  9.736 ± 1.301  
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Figure 3.9 The effects of Mo/Fe replenishment on growth rate and yield of M. 

aeruginosa culture strain CPCC 299 (A1 and A2) and CPCC 300 (B1 and B2) grown in 

media with nitrate as the nitrogen source under three conditions: Mo starved cultures 

without Mo or Fe (control); Mo starved with Mo addition (1 µM Mo+) (Mo control) and 

Mo starved with Fe addition (20 µM Fe+) (Fe treatment). 
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Figure 3.10 The effects of Mo/Fe replenishment on growth rate and yield of M. 

aeruginosa culture strain CPCC 299 (A1 and A2) and CPCC 300 (B1 and B2) grown 

with ammonium as the nitrogen source under three conditions: Mo starved cultures 

without Mo or Fe (control); Mo starved with Mo addition (1 µM Mo+) (Mo control) and 

Mo starved with Fe addition (20 µM Fe+) (Fe treatment). 

Replenishing Fe allowed cells to generate higher fluorescence during the 

stationary phase in nitrate medium; Chl-a increased for at least eight days after Fe 

replenishment (Figure 3.11). In ammonium grown cells, Fe replenishment increased chl-a 

fluorescence to a much lesser extent than in nitrate (Figures 3.11). Cell chlorophyll 

fluorescence did not increase over time or among initial Fe treatments by adding Mo 

(Figure 3.11). Similar trends were seen for CPCC 300 in photosynthetic activity over 

light availability, where Fe plays crucial roles in enhancing photosynthesis. In cells 

grown on ammonium, addition of Fe increased the photosynthetic capability for CPCC 

300, but did not show a positive effect for CPCC 299 (Figure 3.12).   
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Figure 3.11 Mean chlorophyll-a fluorescence per cell of M. aeruginosa culture strains 

CPCC 299 (A1 and A2) and CPCC 300 (B1 and B2) grown in media with nitrate (left) or 

ammonium (right) as the N source under 3 conditions: Mo starved cultures without Mo or 

Fe (control); Mo starved with Mo addition (1 µM Mo+) (Mo control) and Mo starved 

with Fe addition (20 µM Fe+) (Fe treatment). 
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Figure 3.12 Oxygen evolution of M. aeruginosa culture strains CPCC 299 (A1 and A2) 

and CPCC 300 (B1 and B2) grown in media with nitrate (left) or ammonium (right) as 

the N source under 3 conditions: Mo starved cultures without Mo or Fe (control); Mo 

starved with Mo addition (1 µM Mo+) (Mo control) and Mo starved with Fe addition (20 

µM Fe+) (Fe treatment). 

3.6 Molybdenum and Iron Regulation of Microcystin 
Production 

When grown with nitrate, trace metal replete cells (+Mo/+Fe) had the highest 

levels of cellular microcystin in CPCC 299, while the Mo-limited, Fe-replete (-Mo/+Fe) 

cells had the highest levels for CPCC 300 (Figure 3.13). Cells grown with ammonium as 

the sole N source generally produced less microcystin, though the Mo-replete, Fe-limited 

(+Mo/-Fe) CPCC 299 cells produced the highest microcystin levels (~20 fg cell
-1

). In 

general, Fe-limited cells produced the lowest level of microcystin, regardless of N source 

or the level of supplied Mo. In nitrate, cellular microcystin content increased from 6.43 fg 

cell
-1

 to 16.23 fg cell
-1

 for CPCC 299 and from 6.32 fg cell
-1

 to 11.82 fg cell
-1

 for CPCC 

300 after Fe addition.  
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Figure 3.13 Microcystin measurement (ELISA) in M. aeruginosa culture strains CPCC 

299 and CPCC 300 in each of exponential and stationary phase of cells grown in media 

with NO3
-
 (A) and NH4

+
 (B) being the nitrogen under 3 conditions: Mo starved cultures 

without Mo or Fe (control); Mo starved with Mo addition (1 µM Mo+) (Mo control) and 

Mo starved with Fe addition (20 µM Fe+) (Fe treatment).  
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Chapter 4  

4 Discussion 

There have been numerous reports indicating that the frequency, magnitude and 

duration of cyanoHABs are on the rise.  For many of these reports the increased 

incidence has been related to a combination of increased water usage, world population 

growth and urban or agricultural waste (Smolders et al. 2010, Howarth et al. 2011) – 

similar to factors that caused the cyanoHABs in the Great Lakes in the 1960s and 1970s 

(Schindler and Valentyne 2008). The addition of primary nutrients such as phosphate and 

N to lakes is beneficial to photosynthetic phytoplankton populations, particularly those 

with both a high affinity to absorb and store macronutrients and a low rate of grazing 

consumption (Smayda 1997). For most lakes, the species with these two physiological 

traits are cyanobacteria (Reynolds et al. 1981, Paerl and Millie 1996, Dokulil and 

Teubner 2000). Thus, the explosion of cyanoHABs in highly populated areas with altered 

landscapes and incomplete wastewater nutrient filtering systems has dominated the 

reports of cyanobacterial infested lake systems (Chen and Hong 2012). The modern 

classic cyanobacterial lakes are temperate or tropical lakes that are hypereutrophic with 

defined anthropogenic disturbances.  For example, a number of lakes in China are 

undergoing increasing cyanoHABs, such as Lake Taihu (a.k.a. Lake Tai or Tai Hu), Lake 

Caohu, Lake Dianchi or the reservoirs of Guangdong region (Qin et al. 2007, 2010, Lei et 

al. 2011). However, the problem of cyanobacteria in China is just a modern 

representation of a long list of urban-agricultural-cyanoHAB connections that have 

occurred globally as humans have influenced the nutrient flux and water flows of surface 

waters. 

The connections between population, land use, and agriculture predominate 

intellectual thought on cyanoHABs.  There is little debate that excessive levels of N 

(nitrate, ammonium and urea) and P result in cyanoHABs (Lewis and Wurtsbaugh 2008, 

Paerl 2008, Schindler and Vallentyne 2008, Schindler 2012, Moss et al. 2013).  

CyanoHABs are most common in eutrophic and hypereutrophic lakes worldwide, but 

oligotrophic lakes, with low or moderate nutrient status, are developing periodic 
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cyanoHABs without a change in trophic status (Molot et al. 2014) and the rising of such 

blooms has drawn public concern (Winter et al. 2011, Beaulieu et al. 2014, Sorichetti et 

al. 2014b, Persaud et al. 2015, Taranu et al. 2015). The nutrient-cyanobacterial response 

relationship in oligotrophic lakes is not fully understood, but it appears to involve the 

stimulation of cyanobacteria to utilize the natural levels of macronutrients differently 

than the competing eukaryotic species. The result is that natural levels of nutrients are 

now converted to cyanobacterial biomass, which remains in the water column because 

these cells are poorly grazed. At the completion of the seasonal cycle in temperate lakes 

the un-grazed cells decompose at the sediment surface, releasing the elements below the 

thermocline. 

There are two explanations for the proliferation of cyanoHABs: (1) major 

modifications in macronutrients result in an increase in cyanobacteria biomass, or (2) 

alterations in the natural nutrient chemistries now select for cyanobacteria. It is this latter 

paradigm that serves as the focus for this dissertation. Molot et al. (2014) argued that the 

supply of micronutrients – particularly Fe, but also Mo and copper – may be sufficiently 

limiting to lower macronutrient assimilation rates and slow down the growth of 

phytoplankton that compete against cyanobacteria. Thus, if cyanobacteria can obtain or 

use micronutrients more efficiently than eukaryotic species, then the pool of 

macronutrients will be effectively transferred to cyanobacteria. This model is described 

as the “nutrient use efficiency approach” and is analogous to the large scale Fe-limited, 

nutrient rich zones in marine systems that have drawn research attention over the last few 

decades (Sunda and Hunstman 1995, Coale et al. 1996, Pitchford and Brindley 1999), 

where the low availability of Fe influences the consumption of nitrate and as a 

consequence shapes the phytoplankton community structure. Molot et al. (2014) 

postulate that a similar regulation of N or P use occurs in lakes, depending on the 

availability of trace metals and that cyanobacteria dominate in the phytoplankton 

community by controlling the use of trace metals. 

In this study, the growth and photosynthetic capacity of the dominant bloom-

forming cyanobacterium, M. aeruginosa, were assessed over a range of Fe, Mo and Fe-

Mo co-limitations.  The hypothesis was that this dominant strain of cyanobacteria could 
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utilize both Mo and Fe at exceptionally low levels. Thus, the dominance of this species 

could be explained by this unique affinity for trace metals that regulate the use of the N 

source. Generally, nitrate is the predominant form of N in freshwater systems, followed 

by ammonium (Morris and Simon 2012).  The level of urea in freshwater systems is 

highly variable depending on the proximity of agriculture activities and may represent as 

much as 50% of the available N in a lake system (Bogard et al. 2012).  Levels of urea in 

areas without direct anthropogenic impact are typically negligible, because as inputs are 

low, the chemical transformation to ammonia is rapid, and ammonia is not a suitable 

growth source for phytoplankton. 

The ability of M. aeruginosa to grow on three different sources of N – nitrate, 

ammonium and urea – has previously been assessed (Erratt, Trick, unpubl. Data). After 

presenting cells with the selected N-source at growth-saturating light levels, both nitrate- 

and ammonium-supported maximum growth rate, but urea did not support growth. 

Additional studies revealed that the level of urea chosen was inhibitory and that the M. 

aeruginosa strains chosen for this work can grow on urea at lower concentrations. 

Cyanobacteria cells typically grow equally efficiently in nitrate and ammonium 

(reviewed in Oliver and Ganf 2002 and confirmed here), although efficiency of growth 

on nitrate is light dependent. When light levels are between 24 and 29 μmol photons·m
-

2
·s

-1
, nitrate is a preferred N-source, but in waters with reduced light availability (i.e., 

range between 2 and 3 μmol photons·m
-2

·s
-1

), ammonium becomes the preferred N-

source (Dortch 1990). This illustrates the strong link between the N-fixation and C-

fixation, as the cells compete for the same energy and electrons in order to process and 

incorporate elements. The resulting biomolecules after assimilation have C:N of 10:1 to 

15:1 (mol:mol) (Turpin 1991).  

The link between N-source supply and the photosystem was evident in the 

analysis of chlorophyll fluorescence. Microcystis aeruginosa cells grown with nitrate as 

the sole N-source expressed chlorophyll levels two times the cellular level of ammonium-

grown cells. The difference was strongest in the stationary phase of growth compared 

with cells in the exponential phase. The link between N-source and photosynthesis is best 
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represented in photosynthesis vs. light intensity curves (P vs. E). The highest rates of 

photosynthesis and light use efficiencies were observed on nitrate-grown cells.  However, 

in one strain of M. aeruginosa there was no difference in the photosynthetic efficiency 

for ammonium-grown cells, and in the second isolate, the photosystem was reduced when 

the cells were grown on ammonium, corresponding to the slightly lower growth rate on 

ammonium-grown cells of strain CPCC 300.  In these studies, the photosystem of the 

urea grown cells was functional but highly reduced compared with the other sources of N, 

indicating a suppression of the photosystem, rather than toxicity to the cells. 

There has been increased speculation that Mo may be a growth-limiting factor in 

oligotrophic lakes (Glass et al. 2012), in part due to reports of highly variable levels of 

Mo in temperate Ontario lakes (Provincial Water Quality Monitoring Network 2011). I 

hypothesized that reducing Mo concentrations would indeed reduce the efficiency of 

nitrate use by bloom-forming cyanobacteria. Strains of cyanobacteria may regulate the 

acquisition of low levels of Mo, or alter the cell demands for Mo, allowing them to 

outcompete other phytoplankton for the common pool of nitrate.  Removing Mo from the 

medium had little impact on the growth rates and cell yields and only decreased the 

photosynthesis of CPCC 299 to a small extent.  Repeated transfers at the lower levels of 

added Mo did not result in a further decrease in growth parameters, indicating that the 

cells were not thriving on residual or stored Mo, either because the cellular requirement 

for Mo was too low to be detected, or another element replaced Mo and satisfied cellular 

needs. Ter Steeg et al. (1986) observed that low levels of Mo did not impact growth in an 

Anabaena isolate, perhaps due to an inducible transport system that ensures sufficient 

supply of Mo.  This study did not use trace metal free culturing and used a highly 

enriched culture medium, so there may have been sufficient residual Mo to supply the 

cells even at very low levels of added Mo. Ter Steeg et al. (1986) documented an 

inducible Mo transport system, a scavenging system where the transport rate was inverse 

to the level of added Mo.  Control Mo concentrations in the cells were ~ 20-25-fold the 

concentration outside of the cells; whereas, when Mo levels were low, the concentration 

ratio was greater than 3000-fold. As a result of increased transport and a lower Mo pool, 

the cells with the greatest Mo-limitation only showed a ten-fold reduction in the level of 

Mo in the cells. Thiel et al. (2002), recognizing that Mo was an essential co-factor for 
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both nitrate assimilation and N-fixation, reported that after several generations and 

transfers of Anabaena variabilis, a filament forming N2-fixing cyanobacterium, Mo 

starvation could not be achieved or at least recognized using growth characteristics. They 

suggested that there was a substantial Mo storage system linked to the nitrate transport 

system and a Mo scavenging transport system that was repressed by Mo. This 

combination of physiological controls would create cells that modulated the consumption 

and storage of Mo in a strong homeostatic balance with N transport and consumption 

(Glass et al. 2010).  Cells exposed to long-term levels of low Mo adjust their needs, alter 

the transport affinity to scavenge Mo, and tap a generally un-described Mo storage 

system.  The strong feedback linkage with nitrate transport results in Mo-limited cells 

that express N-limited characteristics. Anabaena variabilis is an N2-fixing species with a 

higher cell quota for Mo compared with non-N2-fixing counterparts (Ungerer et al. 2010).  

Cells without the added need for Mo to act as a cofactor in N2-fixation would be even 

more difficult to stress for Mo. 

Consistent with the above reports, M. aeruginosa maintained growth rates close to 

the control when presented with increasing lower levels of supplied Mo. Given the 

evidence that cells scavenge Mo to meet their N needs, alterations in photosynthetic 

capacity of CPCC 299 are likely due primarily to the change from N-replete to N-

depleted cell conditions. There is a strong parallel between the inducible Mo transport 

system and the inducible Fe transport systems in cyanobacteria. Both systems have likely 

evolved over biogeochemical time because of the changes in availability of each element 

as the earth’s systems shifted from reducing to oxidizing conditions (Zerkle et al. 2005, 

Glass et al. 2009, Planavsky et al. 2014). The ecological consequences of the coevolution 

of two element scavenging systems and the fact that Mo and Fe are cofactors in the N-

acquisition systems have led researchers to consider both transport systems in unison. 

Evans and Prepas (1997) and Tuit et al. (2004) have provided linked studies of Mo and 

Fe transport and scavenging in freshwater and marine systems, respectively.  

In this study, Fe-limited growth and photosynthetic characteristics in M. 

aeruginosa were evident. When grown on nitrate (with higher Fe demands than 

ammonium) there were stepped declines in Fe, resulting in declines in growth rate, yield, 
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cellular chlorophyll fluorescence and light specific oxygen evolution in both exponential 

and stationary phases indicating a decline in the efficiency of physiological performance.  

When grown on nitrate growth rates and yields provided a non-linear response. Under Fe-

reduced conditions, growth rate reduced from 10
-5

 M to 10
-8

 M, but then increased from 

10
-8

 M to 10
-10

 M, and then slightly reduced from 10
-10

 to 10
-14

 M, but still remained 

above the low point at 10
-8

 M.  This concentration-dependent pattern is dramatically 

different than the Mo-limited growth experiment.  In the Mo experiment, the transport 

system appears to meet the demands of cell growth, but changes in the Fe transport 

system do not seem to meet the growth needs of the cells but does improve access to a 

new pool of Fe. The pattern observed is comparable to the induction of an Fe scavenging 

system that involves the production of an extracellular Fe-binding ligand (referred to as a 

siderophore), providing access to otherwise unavailable pools of Fe in the medium.  The 

siderophore system in cyanobacteria has been known for some time (Murphy et al. 1976, 

Simpson and Neilands 1976, Kerry et al. 1988, Brown and Trick 1992, Wilhelm and 

Trick 1994).  The key observations are that this species has an inducible active Fe 

transport system.  Iron scavenged from this system is sufficient to meet the growth needs 

of the cells but not sufficient to fully replace the Fe required to achieve a fully functional 

photosystem. As a consequence, Fe-limited cells remain “unbalanced” in growth even 

when supplying new Fe to the cells – with less C fixed per N than fully replete cells.   

The ease of access of Mo may alleviate some of the cellular needs for Fe (Evans 

and Prepas 1997), rebalancing the “unbalanced” growth and allowing the cells to 

scavenge enough Mo and Fe to satiate both growth and photosynthetic capacity. 

Extending the thoughts of Thiel et al. (2002), if both the Mo and Fe scavenging systems 

function, then the needs of the nitrate assimilation and the photosystem can be met under 

micronutrient-limiting conditions.  In the present study, Fe-limited cells, resupplied with 

growth-saturating levels of Mo, expressed a physiology between Fe-depleted and Fe-

replete cell. Presumably, Mo can replace some the cellular demands for Fe, allowing the 

cells to restore the reduced growth rates. Given that adding Mo to low-Fe grown cells did 

not repair the photosystem, the addition of Mo is probably sufficient to maintain nitrate 

transport and assimilation.  The compensatory role of Mo on Fe-limitation has significant 

impact on our understanding of the biogeochemical control of cyanoHABs.  Recent work 
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has established that Fe-levels have a significant influence on the possibility and the 

longevity of the cyanoHABs (Du 2013, Molot et al. 2014, Sorichetti et al. 2014b, Orihel 

et al. 2015), but it is important to consider the possible influence that Mo concentrations 

have on shaping the cyanobacterial community. 
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Chapter 5  

5 Conclusions 

5.1 Main Findings 

This dissertation examined the interaction between the supply of N and the 

alterations in growth and photosynthetic characteristics of two unialgal cultures (CPCC 

299 and CPCC 300) of the freshwater cyanobacterium M. aeruginosa due to low levels of 

two trace metals, Mo and Fe. At growth saturating light levels (60-80 μmol photons·m
-

2
·s

-1
), unialgal laboratory cultures of M. aeruginosa were capable of exponential growth 

on nitrate and ammonium substrates, whereas urea proved not to be an effective N source 

for toxic M. aeruginosa at the concentration tested (10 μM).  

Mo depletion did not significantly limit the growth of M. aeruginosa cells. Cell 

growth rates and the achieved cell yield under defined levels of supplied N were not 

diminished at lower levels of supplied Mo as predicted from our hypotheses. Only CPCC 

299 cells were stressed at the lower levels of Mo, based on the reduction in the kinetic 

measurements of light–driven photosynthesis (α* – the light limited initial slope of the P-

E curve, and Pm* – the light saturating photosynthetic rate). Molybdenum did not reach 

growth-limiting levels under laboratory conditions, either because the cells had an 

extremely low cellular requirement for this micronutrient or another element replaced Mo 

to satisfy cellular needs.  

In contrast, reducing the amount of added Fe lowered growth rates and yields as 

well as photosynthetic capacity in M. aeruginosa cells.  The reduced growth and 

photosynthetic potential was strongly evident in nitrate-grown cells, compared with 

ammonium grown cells.  This may be due to the higher Fe quota for cells that depend on 

nitrate reductase (a major Fe-containing transport and conversion enzyme). Cells grown 

at low to moderately-low Fe concentrations showed a significant recovery of growth rates 

and yields, but not a concomitant recovery in the low-Fe depressed photosystem, 

reflective of a change in the external supply of available Fe.  This recovery was evident 

only in nitrate-grown cells.  These forensic criteria are similar to cyanobacteria that 
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produce siderophores to scavenge low levels of Fe from the matrix of organic-inorganic 

complexes in the medium (Kerry et al. 1988, Wilhelm and Trick 1994).  

Experiments on possible co-limitation by Mo and Fe indicated that Fe may 

replace Mo in some key biological functions during cell reproduction. Molybdenum and 

Fe are linked in key physiological processes in the cell – notably nitrate reductase. When 

Fe-limited cells were presented with additional Mo, recovery of growth parameters was 

evident – but not siginificant recovery of photosynthetic parameters. This indicates a 

possible trace metal replacement of Mo with Fe, presumably in the functioning of nitrate 

reductase.  

Cellular microcystin concentrations were examined during the stationary phase of 

growth to evaluate different nutrient stressors on microcystin production.  Both strains of 

M. aeruginosa produced microcystin at concentrations between 10 and 20 fg cell
-1

.  

Cellular microcystin concentrations did not vary substantially with N-source – levels 

were similar in range for nitrate-grown cells, compared with ammonium-grown cells.  

Cells grown in Fe- or Mo-limited media produced less microcystin than N-limited cells, 

in contrast to other published research (Amé and Wunderlin 2005, Li et al. 2009, Long 

2010). 

5.2 Scientific Significance 

The potential growth-limiting role of Mo in freshwater cyanobacteria has not been 

considered for some time.  While initially proposed a half-century ago (Goldman 1960, 

Howarth and Cole 1985) as a credible limiting factor for growth in oligotrophic lakes, the 

concept of Mo limitation has only recently reemerged (Glass et al. 2012). This is the first 

study to consider Mo and Fe co-limitation in the ubiquitous bloom-forming 

cyanobacterium Microcystis. Co-limitation of Mo and Fe has been considered elsewhere 

but is usually limited to marine N2-fixing cyanobacteria (Tuit et al. 2004, Zerkle et al. 

2006), as Mo plays a major role in nitrogenase. However, this study focused more on the 

role Mo plays in nitrate reductase and its possibility to be involved in photosynthesis.  
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This study also provides evidence for the hypothesis that trace metals, such as Mo 

and Fe, which directly affect the stoichiometry of cellular elements by restricting the 

uptake of N and C, stimulate cellular microcystin production.  The stoichiometry – or 

unbalanced growth – model for toxin production has garnered considerable support 

recently (van de Waal et al. 2014).  The findings in this dissertation do not support this 

hypothesis. 

5.3 Practical Significance 

The practical significance of this study lies in societal need for knowledge of the 

fundamental controlling factors for cyanoHABs and toxin levels associated with 

cyanoHABs.  For example, a poorly constructed but highly cited correlational argument 

links the global increase of urea use with the increased frequency of cyanoHABs.  Urea is 

a commonly used N fertilizer in farmland and has increased 100-fold in the past four 

decades (Gilbert et al. 2004). However, this study suggests that urea may not be a 

significant N source for cyanobacteria and, in fact, would be inhibitory at comparably 

low concentrations. Work similar in design to this study may provide a better 

understanding of physiological needs of cyanobacteria and assist researchers, legislatures, 

and environmentalists to make regulations and strategies. 

In natural freshwaters, the two elements most closely associated with cyanoHAB 

initiation and biomass are N and P, and there is substantial debate about the importance 

of each of these elements even after 50 years of study (Schindler et al. 2008, Schindler 

and Hecky 2009).  These macronutrients control the level of potential biomass, but minor 

elements such as Mo and Fe can be key elements in regulating the effective processing of 

macronutrients and, therefore, the speciation of the bloom (Glass et al. 2012, Molot et al. 

2014). Thus, understanding the physiological needs for macronutrients as well as minor 

elements and their natural levels in bloom waters is critical in understanding the control 

of bloom maintenance and longevity.  

During a cyanoHAB, microcystin can be produced in large quantities, threatening 

ecological and human health. Measuring microcystin concentrations in natural waters is 
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important in order to raise public awareness of the need to mitigate toxin-producing 

cyanoHABs and to give a better understanding of the factors affecting toxin formation.  

5.4 Future Research 

The biggest challenge of this study lies in inducing a Mo-limiting condition for 

cyanobacteria. It was very hard to obtain the Mo cell quota and to understand the exact 

mechanism of Mo assimilation. Starving cells in Mo-free medium for five days was long 

enough to remove the Mo from the photophysiology of the cell but may not have been 

long enough to use up cellular Mo storage. Trace elements that depress the energy 

acquisition of the cell are difficult to study as cell health declines precipitously.  

However, in this case, the cell health was depressed but not depleted entirely, suggesting 

that research should be directed into the areas of co-limitation and element replacement.  

Most experiments were conducted with only one replicate, though oxygen 

measurements were done in duplicate. Therefore, statistical analyses were not carried out. 

In future research, all experiments should be conducted with at least three biological 

replicates, multiple readings for each replicate and possibly experimental repeats.  
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Appendix 

Appendix A: Formula for BG-11 medium used in this study (from Andersen 2005, based 

on Rippka et al. 1979) 

Component 
Stock Solution 

(g ˑ L-1 dH2O) 
Quantity 

Used 
Concentration in Final 

Medium (M) 

Fe Citrate solution 
 

1 mL  

Citric acid 6 1 mL 3.12 × 10-5 

Ferric ammonium citrate 6 1 mL ~3 × 10-5 

NaNO3 - 1.5g 1.76 × 10-2 

K2HPO4ˑ3H2O 40 1 mL 1.75 × 10-4 

MgSO4ˑ7H2O 75 1 mL 3.04 × 10-4 

CaCl2ˑ2H2O 36 1 mL 2.45 × 10-4 

Na2CO3 20 1 mL 1.89 × 10-4 

MgNa2EDTAˑH2O 1 1 mL 2.79 × 10-6 

Trace metals solution (See following recipe) 1 mL - 

    

Trace metals Solution    

Component 
Stock Solution 

(g ˑ L-1 dH2O) 
Quantity 

Used 
Concentration in Final 

Medium (M) 

H3BO3 - 2.860 g 4.63 × 10-5 

MnCl2ˑ4H2O - 1.810 g 9.15 × 10-6 

ZnSO4ˑ7H2O - 0.220 g 7.65 × 10-7 

CuSO4ˑ5H2O 79 1 mL 3.16 × 10-7 

Na2MoO4ˑ2H2O - 0.391 g 1.61 × 10-6 

Co(NO3)2ˑ6H2O 49.4 1 mL 1.70 × 10-7 
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