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Abstract 

A spectral algorithm based on the immersed boundary conditions (IBC) concept has been 

developed for the analysis of flows in channels bounded by vibrating walls. The vibrations 

take the form of travelling waves of arbitrary profile. The algorithm uses a fixed 

computational domain with the flow domain immersed in its interior. Boundary conditions 

enter the algorithm in the form of constraints. The spatial discretization uses a Fourier 

expansion in the stream-wise direction and a Chebyshev expansion in the wall-normal 

direction. Use of the Galileo transformation converts the unsteady problem into a steady one. 

An efficient solver which takes advantage of the structure of the coefficient matrix has been 

used. It is demonstrated that the method can be extended to more extreme geometries using 

the over-determined formulation. Various tests confirm the spectral accuracy of the 

algorithm. Pressure losses in these types of channels have been analyzed. Mechanisms of 

drag generation have been studied. Analytical solutions have been determined in the limit of 

long wavelength waves and small amplitude waves in order to simplify identification of these 

mechanisms. The numerical algorithm has also been validated with the help of analytical 

solutions. Detailed analyses of different cases, i.e. wave propagation along one wall and both 

walls have been carried out. Different wave profiles have been considered in order to find 

forms of waves which minimize pressure losses in vibrating channels. The results show 

dependence of the pressure losses on the phase speed of the waves, with the waves 

propagating in the downstream direction reducing the pressure gradient required to maintain 

a fixed flow rate. A drag increase is observed when the waves propagate with a phase speed 

similar to the flow velocity.  

 

Keywords 

Spectral discretization, vibrating walls, immersed boundary conditions method, Navier-

Stokes equations, pressure-driven flows, efficient solvers, over-determined formulation, 

pressure losses, drag reduction, flow control.   
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Section 1 

1 Introduction 

 

Determination of flows in channels with vibrating walls requires solution of the moving 

boundary problem. This class of problems has been of interest in many application areas 

including surface waves, interfacial problems, phase change problems, flow induced 

vibrations, peristaltic and pulsatile flows in the esophagus and flows through the 

vasculatures due to cardiac actions to name just a few. The available algorithms can be 

classified either as Lagrangian or Eulerian [1].  Mixed methods involving combinations 

of the Lagrangian and Eulerian techniques have also been pursued [1]. Each fluid element 

is followed individually in the Lagrangian algorithms resulting in a need for a coordinate 

system that moves with the fluid. Mesh tangling leads to significant restrictions on the 

overall applicability of these methods [1]. The Eulerian algorithms rely on the coordinate 

systems that are stationary in a laboratory frame of reference or may move in a prescribed 

manner. Such algorithms can be divided for convenience into the fixed grid methods, the 

adaptive grid methods and various mapping methods.  

In the fixed grid methods, grid is fixed in the solution domain and locations of the 

moving boundaries are tracked using either surface [1, 2] or volume tracking procedures 

[1, 3]. The surface tracking relies on a set of points whose motion is tracked during the 

solution process allowing precise identification of the boundary locations; these 

boundaries are represented as a set of interpolated curves [3, 4]. The volume tracking 

algorithms on the other hand work by reconstructing the boundary whenever necessary 

instead of storing the boundary locations. The presence of a convenient marker within a 

computational cell and its quantity form the basis of the various reconstruction 

methodologies. Different versions of volume tracking algorithms exist, e.g. VOF 

(Volume of Fluid) [5], MAC (Marker and Cell) [6] and Level Set [7, 8] methods. These 

methods are based on the standard spatial discretization schemes with the low-order 

spatial accuracy which is consistent with the diffused boundary locations resulting from 
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the tracking procedures. 

The adaptive grid methods use numerical mappings to adjust grids at each time step so 

that one of the grid lines always overlaps with the boundary location. The computational 

costs are very high due to grid reconstruction at each time step, e.g. the grid construction 

consumed about 75% of the computational cost for the problem discussed in [9]. The 

spatial discretization technique has a smaller effect on the overall computational costs. 

The need for high solution accuracy leads to numerous challenges as the total error has 

contributions from the grid generation as well as from the spatial and temporal 

discretizations of the field equations. Use of mappings based of the Schwarz-Christoffel 

transformation provides access to higher accuracy at a reasonable cost as one need to 

determine mapping parameters only and these parameters can be determined with the 

near spectral accuracy [10–12]. Analytical mapping of the irregular physical domain into 

a rectangular computational domain can help in improving the accuracy at the cost of 

increased complexity of the field equations [13, 14]. However, such mappings are 

available only for a limited class of geometries [1] and reconstruction of the coefficient 

matrix during each time step can add to the overall computational cost by a substantial 

margin [14–20]. 

The immersed or fictitious boundaries represent a new concept which has potential to 

increase the accuracy while maintaining the computational efficiency. This concept is due 

to Peskin [21] and has been developed in the context of cardiac dynamics; see [22, 23] 

for reviews. The common limitation is the spatial accuracy, as most of these methods are 

based on either low-order finite-difference, or finite-volume or finite-element techniques 

[22–26]. The second, less known limitation is the use of the local fictitious forces 

required to enforce the no-slip and no-penetration conditions. These forces locally affect 

the flow physics and this may lead to the incorrect estimates of derivatives of flow 

quantities, i.e. misrepresentation of the local wall shear. This problem is likely to be more 

pronounced in the case of methods with high spatial accuracy.  

Spectral methods provide the lowest error for the spatial discretization but are generally 

limited to solution domains with regular geometries. The first spectrally accurate 
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implementation of the immersed boundary concept is given in [27]. We shall refer to this 

method as the immersed boundary conditions (IBC) method in the rest of this 

presentation. IBC method relies on a purely formal construction of boundary constraints 

in order to generate the required closing relations. Spatial discretization relies on the 

Fourier and Chebyshev expansions in the stream-wise and normal-to-the-wall directions, 

respectively, and, thus, provides the ability to reach the machine level accuracy. The 

method could be viewed as a gridless as it uses global basis functions which span the 

complete solution domain. The construction of boundary constraints relies on the 

representation of the physical boundaries in the spectral space and nullifying the relevant 

Fourier modes. The method involves two types of Fourier expansions, one for the field 

equations and one for the boundary relations and, thus, the rate of convergence of both 

expansions determines the limits of its applicability. The programming effort associated 

with accounting for geometry changes is reduced to specification of a set of Fourier 

coefficients which need to be provided as an input. The additional attractiveness of the 

IBC method is associated with the precise mathematical formalism, high accuracy and 

sharp identification of the location of time-dependent physical boundaries. The method 

has been extended to two-dimensional unsteady problems [28], moving boundary 

problems involving Laplace [29] and biharmonic [30] operators, the complete Navier-

Stokes system [31], to operators involving different classes of non-Newtonian fluids [32, 

33], to three-dimensional operators [34, 35] as well as to operators expressed in 

cylindrical coordinate systems [36]. Its accuracy has been improved through the use of 

the over-determined formulation [37]. The efficiency has been increased by an order of 

magnitude through the development of specialized solvers which account for the special 

structure of the coefficient matrix [38, 39]. The method has been used to identify the 

laminar drag-reducing grooves [16–20] and to study effects of various grooves on the 

flow stability [40–46]. 

This work is focused on the development of an efficient algorithm suitable for analysis of 

changes of the pressure gradient required to drive a specified flow rate through a 

vibrating channel.  Vibrations in the form of travelling waves, such as those found in the 

peristaltic pumping, are of primary interest. The identification of the most effective forms 

of such waves is of interest.  
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Vibrating boundaries can be found in many engineering and biological applications. 

Effects of surface vibrations on fluid flows are very important in different fields and have 

been of interest for a long time. Fundamental knowledge on flows through vibrating 

conduits is important in various applications and is widely used in developing strategies 

for flow control. 

We shall refer to the flow in vibrating channels as peristaltic flow. Peristaltic action is a 

vital process and can be seen in many parts of the human body. An example of this is the 

use of peristaltic action to push urine from the kidney to the bladder. Peristaltic action 

also helps to push food forward through the gullet. Bile moving from the gall-bladder to 

the duodenum is caused by peristaltic action as well as ovum movement in the fallopian 

tube. Along with biological processes, peristaltic action can be used for industrial 

processes. One example of this is in the design of roller pumps which allows for the 

pumping of fluids without pump components coming into contact with the fluid.  

The numerous applications of peristaltic flow have led to many studies on the topic. The 

use of deformed conduit walls for flow control has been studied by several researchers 

[47] and has been extensively employed to control turbulent flows. Along with flow 

control, features that affect the reduction of friction have been studied to allow an optimal 

shape of deformation to be determined [48-55].  

In peristaltic flow, the fluid motions are affected by the vibrations of flexible walls 

caused by the propagation of a traveling wave along the channel. Numerous studies have 

been published about this topic. The first study of non-steady peristaltic transport in a 

finite-length tube for an arbitrary wave is described in [56]. A novel pumping mechanism 

in a microchannel with moving wall contractions is studied in [57]. Analysis of peristaltic 

flow for Jeffrey fluid within a circular tube is provided by [58]. A model which involves 

slip effects on the peristaltic flow of a Maxwellian fluid is given by [59]. Analysis of 

effects of peristaltic waves in a curved channel on non-Newtonian fluid flows is provided 

by [60]. A more detailed analysis of peristaltic flow within an asymmetric channel is 

discussed in [61].  
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Most of the studies mentioned above are focused on pumping effects of peristaltic action. 

In the current work such pumping effects have not been studied; however, peristaltic 

action has been considered as a drag-reducing tool and effects of vibrations on drag 

reduction have been analyzed. It has been assumed that fluid is Newtonian, 

incompressible and viscous while flow remains laminar in the whole problem.  

This work is focused on the problem of channel flow subjected to transverse solid wall 

vibrations in the form of travelling waves of arbitrary profiles. The analysis has primarily 

been motivated by the lack of information on the response of fluid flows to surface 

vibrations, and the possibility of using these vibrations in different aspects of flow 

control. Waves propagate along a channel where a laminar flow is driven by a constant 

pressure gradient. The waves’ effect is assessed by determining the additional pressure 

gradient required to maintain the same mass flow rate as in the smooth channel. The 

Reynolds number is kept sufficiently small as computational cost increases with 

increasing its magnitude. Variations and distributions of surface forces acting on the fluid 

are investigated and mechanic of drag generation is studied with the help of analytical 

solutions in the limit of long wavelength waves and small amplitude waves. The critical 

wave speeds and their effects are illustrated. Unusual responses of flow are observed 

when wave propagates with speed similar to the flow velocity. The responses were also 

studied in [62].  This work provides a more thorough explanation for these responses and 

illustrates effects of these responses on drag variations. Also, effects of vibrations in the 

form of waves of different profiles, which have not been studied previously, are of 

primary interest.    

This dissertation is organized as follows: Section 2 presents formulation of the problem; 

Section 3 presents a spectrally-accurate algorithm that is specifically developed for the 

analysis of flows in vibrating channels; Section 4 is devoted to parametrization of 

features of wave geometry that is relevant to pressure losses. Details of variations of drag 

in the limit of long wavelength waves and small amplitude waves as well as the analyses 

of mechanisms contributing to the formation of drag are given in this Section; Section 5 

summarizes the main conclusions. 
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Section 2 

2 Formulation of the Problem  

 

This Section is focused on the development of physical formulation of the problem. 

Subsection 2.1 provides the physical formulation.  

 

2.1    Problem Formulation 

We shall use formulation described in Zandi et al. (2015). Consider steady, two-

dimensional flow of a fluid confined in a channel bounded by two parallel walls 

extending to  in the 𝑋-direction and placed at a distance 2ℎ apart as shown in Figure 

2.1. The flow is driven in the positive 𝑋-direction by a pressure gradient resulting in the 

velocity and pressure fields, and the flow rate of the form 

𝒗𝟎(𝑋, 𝑌) = (1 − 𝑌2, 0), 𝑝0(𝑋, 𝑌) = −2𝑋 𝑅𝑒⁄ , 𝛹0 = 𝑌 −
𝑌3

3
+

2

3
, 𝑄0 =

4

3
   (2.1) 

where 𝒗𝟎 = (𝑢0, 𝑣0) denotes the velocity vector scaled with the maximum of the 𝑋-

velocity 𝑢𝑚𝑎𝑥, 𝑝0 stands for the pressure scaled with 𝜌𝑢𝑚𝑎𝑥
2  where 𝜌 stands for the 

density, 𝛹0 stands for the stream function, 𝑄0 denotes the flow rate, the Reynolds number 

is defined as 𝑅𝑒 = 𝑢𝑚𝑎𝑥ℎ 𝜈⁄  where 𝜈 stands for the kinematic viscosity, and ℎ has been 

used as the length scale. The flow is modified by imposing wall vibrations in the form of 

travelling waves with known amplitudes. The resulting time-dependent channel geometry 

is described as 

𝑌𝑈 (𝑡, 𝑋) =  1 + ℎ𝑈(𝑋 − 𝑐𝑡)  = 1 + ∑ 𝐻𝑈
〈𝑛〉𝑛=𝑁𝐴

𝑛=−𝑁𝐴
𝑒𝑖𝑛𝛼(𝑋−𝑐𝑡),  (2.2a) 

𝑌𝐿 (𝑡, 𝑋) = −1 + ℎ𝐿(𝑋 − 𝑐𝑡) = −1 + ∑ 𝐻𝐿
〈𝑛〉𝑛=𝑁𝐴

𝑛=−𝑁𝐴
𝑒𝑖𝑛𝛼(𝑋−𝑐𝑡)  (2.2b) 

where ℎ𝑈 and ℎ𝐿 are known, the subscripts 𝐿 and 𝑈 refer to the lower and upper walls, 

respectively, 𝑁𝐴  denotes the number of Fourier modes required to describe the shape of 

the wave, 𝑐  and 𝛼 denote the wave phase speed and its wave number, respectively, and 
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𝐻𝑈
〈−𝑛〉

= 𝐻𝑈
〈𝑛〉∗

 and 𝐻𝐿
〈−𝑛〉

= 𝐻𝐿
〈𝑛〉∗

 are the reality conditions with * denoting the complex 

conjugates. Our interests are in waves that do not affect the mean channel opening and, 

thus, coefficients of modes zero in (2.2) have been set to zero, i.e. 𝐻𝑈
〈0〉

= 𝐻𝐿
〈0〉

= 0. In 

general, (2.2) cannot accurately describe shapes with discontinuities due to the Gibbs 

phenomenon [63–65], but the error can be controlled by using a proper filtering method 

[66]. 

 

Figure 2.1: Sketch of the flow domain. 

We shall represent all flow quantities as sums of the reference flow and the vibration-

induced modifications, i.e. 

𝑢𝑇(𝑡, 𝑋, 𝑌) = 𝑢0(𝑌) + 𝑢1(𝑡, 𝑋, 𝑌), 𝑣𝑇(𝑡, 𝑋, 𝑌) = 𝑣1(𝑡, 𝑋, 𝑌),   

                                   𝑝𝑇(𝑡, 𝑋, 𝑌) = 𝑝0(𝑋) + 𝑝1(𝑡, 𝑋, 𝑌).  

(2.3) 

In the above, (𝑢𝑇 , 𝑣𝑇) and 𝑝𝑇 denote the complete velocity and pressure fields, 

respectively, and (𝑢1, 𝑣1) and 𝑝1 denote the velocity and pressure field modifications 

caused by the vibrations, respectively. Substitution of (2.3) into the Navier-Stokes and 

continuity equations and use of (2.1) lead to the field equations for the flow modifications 

of the form 
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𝜕𝑢1

𝜕𝑡
+ (𝑢0 + 𝑢1)

𝜕𝑢1

𝜕𝑋
+ 𝑣1

𝑑𝑢0

𝑑𝑌
+ 𝑣1

𝜕𝑢1

𝜕𝑌
= −

𝜕𝑝1

𝜕𝑋
+ 𝑅𝑒−1 (

𝜕2𝑢1

𝜕𝑋2
+

𝜕2𝑢1

𝜕𝑌2
),  (2.4a) 

𝜕𝑣1

𝜕𝑡
+ (𝑢0 + 𝑢1)

𝜕𝑣1

𝜕𝑋
+ 𝑣1

𝜕𝑣1

𝜕𝑌
= −

𝜕𝑝1

𝜕𝑌
+ 𝑅𝑒−1 (

𝜕2𝑣1

𝜕𝑋2 +
𝜕2𝑣1

𝜕𝑌2 ),  (2.4b) 

𝜕𝑢1

𝜕𝑋
+

𝜕𝑣1

𝜕𝑌
= 0  (2.4c) 

subject to boundary conditions of the form 

𝑢𝑇  (𝑡, 𝑋, 𝑌𝑈(𝑡, 𝑋)) =  0,  𝑣𝑇 (𝑡, 𝑋, 𝑌𝑈(𝑡, 𝑋)) =  
𝜕𝑌𝑈(𝑡,𝑋)

𝜕𝑡
 = − 𝑐ℎ′

𝑈(𝑋 − 𝑐𝑡),  (2.4d,e) 

𝑢𝑇  (𝑡, 𝑋, 𝑌𝐿(𝑡, 𝑋)) =  0, 𝑣𝑇 (𝑡, 𝑋, 𝑌𝐿(𝑡, 𝑋)) =
𝜕𝑌𝐿(𝑡,𝑋)

𝜕𝑡
 = − 𝑐ℎ′

𝐿(𝑋 − 𝑐𝑡)  (2.4f,g) 

where ℎ 𝑢𝑚𝑎𝑥⁄  has been used as the time scale, 𝜕 denotes partial differentiation and 

prime denotes differentiation with respect to the argument. We are interested in 

determining if the surface vibrations can lead to a reduction of the pressure gradient 

required to maintain the specified flow rate. Accordingly, we impose the mass flow rate 

constraint of the form 

𝑄(𝑡, 𝑋)|𝑚𝑒𝑎𝑛 = (∫ 𝑢(𝑡, 𝑋, 𝑌)
𝑌𝑈(𝑡,𝑥)

𝑌𝐿(𝑡,𝑥)
𝑑𝑌)|

𝑚𝑒𝑎𝑛
=

4

3
,  (2.4h) 

i.e. the net flow rate through the vibrating channel at any 𝑋-location must be the same as 

through the stationary reference channel. 
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Section 3 

3 Spectrally-Accurate Algorithm  

 

Subsection 3.1 describes the form of the field equation suitable for the numerical 

solution. Subsection 3.2 discusses discretization of the field equations. Subsection 3.3 

provides a description of the proper construction of the boundary constraints. Subsection 

3.4 illustrates the evaluation of the pressure field. Subsection 3.5 discusses the iterative 

solution procedure. Subsection 3.6 describes the linear solver used in the solution. 

Subsection 3.7 provides descriptions of various numerical tests which demonstrate the 

spectral accuracy of the algorithm. Subsection 3.8 describes improvements resulting from 

the over-determined formulation.  

 

3.1    Field Equations Suitable for the Numerical Solution 

We shall use solution method described in Zandi et al. (2015). Introduction of the Galileo 

transformation of the form 

𝑦 =  𝑌, 𝑥 =  𝑋 –  𝑐𝑡,  (3.1) 

converts the unsteady problem (2.4) into the steady problem of the form 

(𝑢0 + 𝑢1 − 𝑐)
𝜕𝑢1

𝜕𝑥
+ 𝑣1

𝑑𝑢0

𝑑𝑦
+ 𝑣1

𝜕𝑢1

𝜕𝑦
= −

𝜕𝑝1

𝜕𝑥
+ 𝑅𝑒−1 (

𝜕2𝑢1

𝜕𝑥2 +
𝜕2𝑢1

𝜕𝑦2 ),                                                                    (3.2a) 

(𝑢0 + 𝑢1 − 𝑐)
𝜕𝑣1

𝜕𝑥
+ 𝑣1

𝜕𝑣1

𝜕𝑦
= −

𝜕𝑝1

𝜕𝑦
+ 𝑅𝑒−1 (

𝜕2𝑣1

𝜕𝑥2 +
𝜕2𝑣1

𝜕𝑦2 ),                                                                                   (3.2b) 

𝜕𝑢1

𝜕𝑥
+

𝜕𝑣1

𝜕𝑦
= 0,                                                                                                                                                         (3.2c) 

𝑦 = 𝑦𝑈(𝑥):            𝑢 1 = −𝑢0,         𝑣 1 = − 𝑐ℎ′
𝑈(𝑥),                                                                                                                                                                                                                                         (3.2d) 
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𝑦 = 𝑦𝐿(𝑥):             𝑢1  =  −𝑢0,         𝑣1  = − 𝑐ℎ′
𝐿(𝑥),                                                                                            (3.2e) 

𝑄(𝑥)|𝑚𝑒𝑎𝑛 = (∫ 𝑢𝑇  (𝑥, 𝑦)
𝑦𝑈(𝑥)

𝑦𝐿(𝑥)
𝑑𝑦)|

𝑚𝑒𝑎𝑛
=

4

3
                                                                                                       (3.2f) 

where the locations of the boundaries are given as 

𝑦𝑈(𝑥) = 1 + ℎ𝑈(𝑥) = 1 + ∑ 𝐻𝑈
〈𝑛〉𝑛=𝑁𝐴

𝑛=−𝑁𝐴
𝑒𝑖𝑛𝛼𝑥 ,   (3.3a) 

𝑦𝐿(𝑥) = −1 + ℎ𝐿(𝑥) = −1 + ∑ 𝐻𝐿
〈𝑛〉𝑛=𝑁𝐴

𝑛=−𝑁𝐴
𝑒𝑖𝑛𝛼𝑥.                                                      (3.3b) 

The reader may note that 𝑄(𝑥) is a periodic function of 𝑥 and its mean value corresponds 

to the 0th mode of its Fourier expansion. The continuity equation can be satisfied 

identically by introducing functions 𝛹𝑇, 𝛹1 defined as 

𝑢𝑇 = 𝑢0 + 𝑢1 =
𝜕𝛹𝑇

𝜕𝑦
=

𝑑𝛹0

𝑑𝑦
+

𝜕𝛹1

𝜕𝑦
,      𝑣𝑇 = 𝑣1 = −

𝜕𝛹1

𝜕𝑥
,       𝛹𝑇 = 𝛹0 + 𝛹1.                 (3.4) 

Pressure can be eliminated by taking the derivative of (3.2a) with respect to 𝑦 and the 

derivative of (3.2b) with respect to 𝑥 and subtracting the resulting equations. The use of 

(3.4) leads to the flow problem of the form 

−𝑅𝑒−1𝛻2(𝛻2𝛹1) + (𝑢0 − 𝑐)
𝜕

𝜕𝑥
𝛻2𝛹1 −

𝑑2𝑢0

𝑑𝑦2

𝜕𝛹1

𝜕𝑥
= −(

𝜕𝛹1

𝜕𝑦

𝜕

𝜕𝑥
−

𝜕𝛹1

𝜕𝑥

𝜕

𝜕𝑦
)𝛻2𝛹1,                                                     (3.5) 

𝑦 = 𝑦𝑈(𝑥):            
𝜕𝛹1

𝜕𝑦
= −𝑢0 ,                      

𝜕𝛹1

𝜕𝑥
=  𝑐ℎ′

𝑈(𝑥),                                                                              (3.6a,b) 

𝑦 = 𝑦𝐿(𝑥):             
𝜕𝛹1

𝜕𝑦
= −𝑢0 ,                      

𝜕𝛹1

𝜕𝑥
=  𝑐ℎ′

𝐿(𝑥),                                                                               (3.7a,b) 

𝑄(𝑥)|𝑚𝑒𝑎𝑛 = [(𝛹0 + 𝛹1)|𝑦𝑈(𝑥) − (𝛹0 + 𝛹1)|𝑦𝐿(𝑥)]|𝑚𝑒𝑎𝑛
=

4

3
.                                                                              (3.8) 

Condition (3.7b) can be written in a different form by noting that variations of 𝛹𝑇 along 

the lower wall can be expressed as  

𝑑𝛹𝑇,𝐿 = (
𝜕𝛹𝑇

𝜕𝑥
𝑑𝑥 +

𝜕𝛹𝑇

𝜕𝑦
𝑑𝑦)|

𝑦𝐿(𝑥)
= 𝑐 

𝑑𝑦𝐿

𝑑𝑥
𝑑𝑥 .  (3.9) 
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Integration along the wall results in 

𝛹𝑇,𝐿(𝑥) =  𝑐[𝑦𝐿(𝑥) − 𝑦𝐿(𝑥0)]   (3.10) 

where the constant of integration has been selected by assuming that 𝛹𝑇,𝐿(𝑥0) = 0 with 

𝑥0 representing an arbitrary point on the lower wall. A similar analysis carried out for the 

upper wall leads to an alternative form of (3.6b), i.e. 

𝛹𝑇,𝑈(𝑥) =  𝑐[𝑦𝑈(𝑥) − 𝑦𝐿(𝑥0)] − 2𝑐 +
4

3
  (3.11) 

where the constraint (3.8) has been used in order to determine the integration constant. 

Equations (3.5), (3.6a), (3.7a), (3.10) and (3.11) represent an alternative problem 

formulation. This particular formulation is better suited for the theoretical analysis while 

(3.5)–(3.8) is better suited for the numerical solution [20]. 

The flow problem can be formulated using the velocity with respect to the moving 

reference frame, i.e. 𝑈1 = 𝑢1 − 𝑐 , 𝑉1 = 𝑣1. Equations (3.2) assume the following form  

(𝑈0 + 𝑈1)
𝜕𝑈1

𝜕𝑥
+ 𝑉1

𝑑𝑈0

𝑑𝑦
+ 𝑉1

𝜕𝑈1

𝜕𝑦
= −

𝜕𝑃1

𝜕𝑥
+ 𝑅𝑒−1 (

𝜕2𝑈1

𝜕𝑥2 +
𝜕2𝑈1

𝜕𝑦2 ),  (3.12a) 

(𝑈0 + 𝑈1)
𝜕𝑉1

𝜕𝑥
+ 𝑉1

𝜕𝑉1

𝜕𝑦
= −

𝜕𝑃1

𝜕𝑦
+ 𝑅𝑒−1 (

𝜕2𝑉1

𝜕𝑥2 +
𝜕2𝑉1

𝜕𝑦2 ),  (3.12b) 

𝜕𝑈1

𝜕𝑥
+

𝜕𝑉1

𝜕𝑦
= 0,   (3.12c) 

𝑦 = 𝑦𝑈(𝑥):               𝑈1 = −𝑈0  − 𝑐,                  𝑉1  = − 𝑐ℎ′
𝑈(𝑥),   (3.12d) 

𝑦 = 𝑦𝐿(𝑥):               𝑈1  = −𝑈0  − 𝑐,                 𝑉1  = − 𝑐ℎ′
𝐿(𝑥),   (3.12e) 

�̅�(𝑥)|𝑚𝑒𝑎𝑛 = (∫ 𝑈 (𝑥, 𝑦)
𝑦𝑈(𝑥)

𝑦𝐿(𝑥)
𝑑𝑦)|

𝑚𝑒𝑎𝑛
=

4

3
− 2𝑐.   (3.12f) 

Introducing the functions  �̅�𝑇 = 𝛹0 + �̅�1 defined as 

𝑈𝑇 = 𝑈0 + 𝑈1 =
𝑑𝛹0

𝑑𝑦
+

𝜕�̅�1

𝜕𝑦
, 𝑉𝑇 = 𝑉1 = −

𝜕�̅�1

𝜕𝑥
   (3.13) 
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and eliminating the pressure lead to the flow problem of the form 

−𝑅𝑒−1𝛻2(𝛻2�̅�1) + 𝑈0
𝜕

𝜕𝑥
𝛻2�̅�1 −

𝑑2𝑈0

𝑑𝑦2

𝜕�̅�1

𝜕𝑥
= −(

𝜕�̅�1

𝜕𝑦

𝜕

𝜕𝑥
−

𝜕�̅�1

𝜕𝑥

𝜕

𝜕𝑦
)𝛻2�̅�1,   (3.14a) 

𝑦 = 𝑦𝑈(𝑥):               
𝜕�̅�1

𝜕𝑦
= −𝑐 − 𝑢0,                      

𝜕�̅�1

𝜕𝑥
=  𝑐ℎ′

𝑈(𝑥),                                                                      (3.14b) 

𝑦 = 𝑦𝐿(𝑥):               
𝜕�̅�1

𝜕𝑦
= −𝑐 − 𝑢0 ,                       

𝜕�̅�1

𝜕𝑥
=  𝑐ℎ′

𝐿(𝑥),                                                                      (3.14c) 

[(𝛹0 + �̅�1)|𝑦𝑈(𝑥) − (𝛹0 + �̅�1)|𝑦𝐿(𝑥)]|𝑚𝑒𝑎𝑛
=

4

3
− 2𝑐.                                                                 (3.14d) 

Evaluation of �̅�𝑇 at the walls results in 

�̅�𝑇(𝑦𝑈) =
4

3
− 2𝑐,                    �̅�𝑇(𝑦𝐿) = 0.  (3.14e) 

We shall address the dependence of the algorithm performance on the formulation used 

later in this presentation.  

 

3.2    Discretization of the field Equations 

We seek a spectrally accurate solution to the above problem with the channel geometry 

expressed by (3.3). The immersed boundary conditions (IBC) method is used to deal with 

the complexities associated with the irregular geometry. In this method, a fixed 

computational domain with the physical domain immersed in its interior is used and the 

flow boundary conditions are replaced with constraints. The size of the computational 

domain in the 𝑦-direction cannot be smaller than −1 − 𝑦𝑏 <  𝑦 <  1 + 𝑦𝑡 where 𝑦𝑡, 𝑦𝑏 

denote locations of extremities of the upper and lower walls, respectively (see Figure 

2.1). The locations of these extremities determine the minimum 𝑦-expanse of the 

computational domain which needs to be used and a transformation of the form 

�̂� = 2 [
𝑦−(1+𝑦𝑡)

𝑦𝑡+𝑦𝑏+2
] + 1,  (3.15) 



13 

 

maps this domain into [−1, 1] to facilitate the use of the standard form of Chebyshev 

polynomials. The flow problem expressed using  �̂� rather than the 𝑦 coordinate has the 

form 

−𝑅𝑒−1 (𝛤4 𝜕4𝛹1

𝜕�̂�4
+ 2𝛤2 𝜕2

𝜕𝑥2
(
𝜕2𝛹1

𝜕�̂�2
) +

𝜕4𝛹1

𝜕𝑥4
) +  

                              (𝑢0 − 𝑐)
𝜕

𝜕𝑥
(
𝜕2𝛹1

𝜕𝑥2 + 𝛤2 𝜕2𝛹1

𝜕�̂�2 ) − 𝛤2 𝑑2𝑢0

𝑑�̂�2

𝜕𝛹1

𝜕𝑥
=   

                                             −𝛤
𝜕

𝜕�̂�
(
𝜕𝑢1𝑢1̂

𝜕𝑥
+ 𝛤

𝜕𝑢1𝑣1̂

𝜕�̂�
) +

𝜕

𝜕𝑥
(
𝜕𝑢1𝑣1̂

𝜕𝑥
+ 𝛤

𝜕𝑣1𝑣1̂

𝜕�̂�
),   

(3.16a) 

�̂� = �̂�𝑈(𝑥):                    
𝜕𝛹1

𝜕�̂�
= − 𝛤−1𝑢0,                                                                               (3.16b) 

               𝛹𝑇,𝑈(𝑥) =  𝑐𝛤−1[�̂�𝑈(𝑥) − �̂�𝐿(𝑥0)] − 2𝑐 +
4

3
 or  

𝜕𝛹1

𝜕𝑥
= 𝑐𝛤−1 𝑑�̂�𝑈(𝑥)

𝑑𝑥
,  (3.16c) 

�̂� = �̂�𝐿(𝑥):                    
𝜕𝛹1

𝜕�̂�
= −𝛤−1𝑢0,                                            (3.16d) 

                𝛹𝑇,𝐿(𝑥) =  𝑐𝛤−1[�̂�𝐿(𝑥) − �̂�𝐿(𝑥0)]         or 
𝜕𝛹1

𝜕𝑥
= 𝑐𝛤−1  

𝑑�̂�𝐿(𝑥)

𝑑𝑥
,   (3.16e) 

𝑄(𝑥)|𝑚𝑒𝑎𝑛 = [(𝛹0 + 𝛹1)|�̂�𝑈(𝑥) − (𝛹0 + 𝛹1)|�̂�𝐿(𝑥)]|𝑚𝑒𝑎𝑛
=

4

3
,               (3.16f) 

�̂�𝑈 = ∑ 𝐴𝑈
〈𝑛〉

𝑒𝑖𝑛𝛼𝑥𝑁𝐴
𝑛=−𝑁𝐴

 with   𝐴𝑈
〈0〉

= 1 − 𝛤𝑦𝑡,     𝐴𝑈
〈𝑛〉

= 𝛤𝐻𝑈
〈𝑛〉

    for  𝑛 ≠ 0,   (3.16g) 

�̂�𝐿 = ∑ 𝐴𝐿
〈𝑛〉

𝑒𝑖𝑛𝛼𝑥𝑁𝐴
𝑛=−𝑁𝐴

with𝐴𝐿
〈0〉

= 1 + 𝛤(−2 − 𝑦𝑡), 𝐴𝐿
〈𝑛〉

= 𝛤𝐻𝐿
〈𝑛〉

for 𝑛 ≠ 0  (3.16h) 

where  𝛤 =
𝑑�̂�

𝑑𝑦
=

2

𝑦𝑡+𝑦𝑏+2
  and 𝐴𝑈

〈𝑛〉
= 𝐴𝑈

〈−𝑛〉∗
 and 𝐴𝐿

〈𝑛〉
= 𝐴𝐿

〈−𝑛〉∗
 represent the reality 

conditions. We shall keep two forms of (3.16c) and (3.16e) as the use of boundary 

conditions in the form of derivatives is more computationally efficient (see Subsection 

3.5) while the specification of 𝛹𝑇 along the walls is more convenient for the enforcement 

of the flow rate constraint [20]. 

The 𝑥-periodicity of the solution domain suggests expressing the unknown 𝛹1 as a 

Fourier expansion of the form 
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𝛹1(𝑥, �̂�) = ∑ 𝛷〈𝑛〉(�̂�)𝑒𝑖𝑛𝛼𝑥 ≈ ∑ 𝛷〈𝑛〉(�̂�)𝑒𝑖𝑛𝛼𝑥𝑁𝑀
𝑛=−𝑁𝑀

∞
𝑛=−∞       (3.17) 

where 𝛷〈𝑛〉 are the modal functions satisfying the reality conditions of the form 𝛷〈𝑛〉 =

𝛷〈−𝑛〉∗ and 𝑁𝑀 is the number of Fourier modes used in the solution. 

The discretization of the field equations begins with the substitution of (3.17) into 

(3.16a). The resulting equation can be expressed in terms of a system of modal equations 

if the nonlinear terms on the right hand side of (3.16a) can be expressed as Fourier 

expansions. Such expansions can be written in the following form 

[𝑢1𝑢1̂, 𝑢1𝑣1̂, 𝑣1𝑣1̂](𝑥, �̂�) = ∑ [𝑢�̂�〈𝑛〉, 𝑢�̂�〈𝑛〉, 𝑣�̂�〈𝑛〉](�̂�)𝑒𝑖𝑛𝛼𝑥∞
𝑛=−∞ ≈  

                                                                           ∑ [𝑢�̂�〈𝑛〉, 𝑢�̂�〈𝑛〉, 𝑣�̂�〈𝑛〉](�̂�)𝑒𝑖𝑛𝛼𝑥𝑁𝑀
𝑛=−𝑁𝑀

.  

(3.18) 

Substitution of (3.18) into (3.16a) and separation of Fourier modes lead to the modal 

equations of the form  

−𝑅𝑒−1[𝛤4𝐷4 − 2𝛤2(𝑛𝛼)2𝐷2 + (𝑛𝛼)4]𝛷〈𝑛〉 +  

𝑖𝑛𝛼(𝑢0 − 𝑐)[𝛤2𝐷2 − (𝑛𝛼)2]𝛷〈𝑛〉 − 𝑖𝑛𝛼𝛤2𝐷2𝑢0𝛷
〈𝑛〉 = 

                                −𝛤𝐷[𝑖𝑛𝛼 𝑢�̂�〈𝑛〉 + 𝛤𝐷𝑢�̂�〈𝑛〉] + 𝑖𝑛𝛼[𝑖𝑛𝛼 𝑢�̂�〈𝑛〉 + 𝛤𝐷𝑣�̂�〈𝑛〉] 

(3.19) 

where –𝑁𝑀 < 𝑛 < 𝑁𝑀, 𝐷 = 𝑑/𝑑�̂�. These equations are coupled explicitly through the 

nonlinear terms and coupled implicitly through the boundary conditions which we shall 

discuss later. 

The differential system (3.19) needs to be converted into an algebraic system before the 

actual computations can begin. Discretization begins with representing 𝛷〈𝑛〉 in terms of 

Chebyshev expansions of the form 

𝛷〈𝑛〉(�̂�) = ∑ 𝐺𝑘
〈𝑛〉

𝑇𝑘(�̂�) ≈ ∑ 𝐺𝑘
〈𝑛〉

𝑇𝑘(�̂�)𝑁𝑇−1
𝑘=0

∞
𝑘=0    (3.20) 
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where 𝑇𝑘 denotes the Chebyshev polynomial of the first kind of 𝑘𝑡ℎ order, 𝐺𝑘
〈𝑛〉

 denotes 

the unknown coefficients of the expansion and 𝑁𝑇 denotes the number of Chebyshev 

polynomials retained in the solution. The nonlinear terms on the right hand side of (3.19) 

have to be expressed in terms of similar expansions, i.e. 

[𝑢�̂�〈𝑛〉,  𝑢�̂�〈𝑛〉, 𝑣�̂�〈𝑛〉](�̂�) = ∑ [𝐺𝑢�̂�𝑘
〈𝑛〉

, 𝐺𝑢�̂�𝑘
〈𝑛〉

, 𝐺𝑣�̂�𝑘
〈𝑛〉

]𝑇𝑘(�̂�)∞
𝑘=0 ≈  

                                                                          ∑ [𝐺𝑢�̂�𝑘
〈𝑛〉

, 𝐺𝑢�̂�𝑘
〈𝑛〉

, 𝐺𝑣�̂�𝑘
〈𝑛〉

]𝑇𝑘(�̂�)𝑁𝑇−1
𝑘=0   

(3.21) 

where 𝐺𝑢�̂�𝑘
〈𝑛〉

, 𝐺𝑢�̂�𝑘
〈𝑛〉

, 𝐺𝑣�̂�𝑘
〈𝑛〉

 are considered to be known. The reader may note that 

these coefficients need to be recomputed at the beginning of each iteration. We shall 

address this issue later in the presentation. The derivatives of  𝛷〈𝑛〉(�̂�) are evaluated 

using the formula 

𝐷𝑛𝛷〈𝑛〉 = ∑ 𝐺𝑘
〈𝑛〉

𝐷𝑛𝑇𝑘(�̂�).
𝑁𝑇−1
𝑘=0   (3.22) 

Similar formulae are used for the �̂� derivatives of 𝑢�̂�〈𝑛〉,  𝑢�̂�〈𝑛〉, 𝑣�̂�〈𝑛〉. Substitution of 

(3.20)–(3.21) into (3.19) and the use of (3.22) results in modal equations of the form 

∑ {−𝑅𝑒−1[𝛤4𝐷4𝑇𝑘 − 2𝛤2(𝑛𝛼)2𝐷2𝑇𝑘 + (𝑛𝛼)4𝑇𝑘] +
𝑁𝑇−1
𝑘=0   

                    𝑖𝑛𝛼[𝛤2(𝑢0 − 𝑐)𝐷2𝑇𝑘 − (𝑛𝛼)2(𝑢0 − 𝑐)𝑇𝑘] −

                                𝑖𝑛𝛼𝛤2(𝐷2𝑢0)𝑇𝑘}𝐺𝑘
〈𝑛〉

=    

                                     ∑ [−𝑖𝑛𝛼𝛤𝐺𝑢�̂�𝑘
〈𝑛〉

𝐷𝑇𝑘 − 𝛤2𝐺𝑢�̂�𝑘
〈𝑛〉

𝐷2𝑇𝑘 −
𝑁𝑇−1
𝑘=0   

                                                         (𝑛𝛼)2𝐺𝑢�̂�𝑘
〈𝑛〉

𝑇𝑘 + 𝑖𝑛𝛼𝛤𝐺𝑣�̂�𝑘
〈𝑛〉

𝐷𝑇𝑘].  

(3.23) 

The Galerkin procedure is used to extract algebraic equations for 𝐺𝑘
〈𝑛〉

. This procedure 

involves projecting the residuum on the basis functions and setting it to zero and, in 

practical terms, involves multiplying (3.23) by 𝑇𝑗(�̂�), 𝑗 = [0, 𝑁𝑇−1] and integrating with 

the weight factor of 𝜔 = (1 − �̂�2)−1/2. This process results in 
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∑ {−𝑅𝑒−1[𝛤4〈𝑇𝑗 , 𝐷
4𝑇𝑘〉 − 2𝛤2(𝑛𝛼)2〈𝑇𝑗, 𝐷

2𝑇𝑘〉 + (𝑛𝛼)4〈𝑇𝑗, 𝑇𝑘〉] +
𝑁𝑇−1
𝑘=0   

             𝑖𝑛𝛼[𝛤2〈𝑇𝑗 , (𝑢0 − 𝑐)𝐷2𝑇𝑘〉 − (𝑛𝛼)2〈𝑇𝑗, (𝑢0 − 𝑐)𝑇𝑘〉] −  

                   𝑖𝑛𝛼𝛤2〈𝑇𝑗 , (𝐷
2𝑢0)𝑇𝑘〉}𝐺𝑘

〈𝑛〉
=  

                        −𝑖𝑛𝛼𝛤 ∑ 𝐺𝑢�̂�𝑘
〈𝑛〉〈𝑇𝑗, 𝐷𝑇𝑘〉 − 𝛤2𝑁𝑇−1

𝑘=0 ∑ 𝐺𝑢�̂�𝑘
〈𝑛〉〈𝑇𝑗 , 𝐷

2𝑇𝑘〉 −
𝑁𝑇−1
𝑘=0   

                              (𝑛𝛼)2 ∑ 𝐺𝑢�̂�𝑘
〈𝑛〉〈𝑇𝑗 , 𝑇𝑘〉 + 𝑖𝑛𝛼𝛤 ∑ 𝐺𝑣�̂�𝑘

〈𝑛〉〈𝑇𝑗 , 𝐷𝑇𝑘〉
𝑁𝑇−1
𝑘=0

𝑁𝑇−1
𝑘=0 ,   

(3.24) 

where   denotes the inner product defined as 〈𝑓(�̂�), 𝑔(�̂�)〉 = ∫ 𝑓(�̂�)𝑔(�̂�
1

−1
)𝜔(�̂�)𝑑�̂�. The 

use of the orthogonality properties of the form [66, 67] 

〈𝑇𝑗 , 𝑇𝑘〉 = {

0            for            𝑗 ≠ 𝑘,    
𝜋            for        𝑗 = 𝑘 = 0,

𝜋 2⁄        for        𝑗 = 𝑘 > 0,
   (3.25) 

permits analytical evaluation of the integrals. In order to take full advantage of the 

orthogonality properties, the derivatives of the Chebyshev polynomials in (3.24) are 

expressed in terms of the Chebyshev polynomials by taking advantage of the following 

relations [66, 67] 

𝑇0(�̂�) = 1,                     𝑇1(�̂�) = �̂�,            𝑇𝑘+1(�̂�) = 2�̂�𝑇𝑘(�̂�) − 𝑇𝑘−1(�̂�)      (3.26a) 

𝐷𝑛𝑇0(�̂�) = 0   for   𝑛 ≥ 1,       𝐷𝑇1(�̂�) = 1,        𝐷𝑛𝑇1(�̂�) = 0    for   𝑛 ≥ 2  

𝐷𝑛𝑇𝑘+1(�̂�) = 2𝑛𝐷𝑛−1𝑇𝑘(�̂�) + 2�̂�𝐷𝑛𝑇𝑘(�̂�) − 𝐷𝑛𝑇𝑘−1(�̂�)     for      𝑛 ≥ 1.                                           

(3.26b) 

A detailed description of the evaluation of various inner products appearing in Eq. (3.24) 

is given in Appendix A. 
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3.3    Discretization of the Boundary Conditions 

The boundary conditions are imposed using the tau method [66]. Four equations resulting 

from the discretization of each modal equation (i.e. Eq. (3.24)) and corresponding to the 

highest Chebyshev polynomials are eliminated in order to provide space for the inclusion 

of the boundary conditions. The development of the form of these conditions suitable for 

their implementation in the IBC method is described below. 

The flow boundary conditions are to be enforced along the walls located inside the 

computational domain. We shall discuss the construction of constraints equivalent to 

these conditions using the upper wall as an example. The construction for the lower wall 

is similar. Boundary conditions (3.16b,c) require the evaluation of 𝑢0 along the wall 

whose shape is defined by (3.16g). The resulting values of 𝑢0 represent periodic 

functions of 𝑥 and can be expressed in terms of a Fourier series as 

𝑢0(�̂�𝑈(𝑥)) = ∑ 𝐹𝑈
〈𝑛〉

𝑒𝑖𝑛𝛼𝑥2𝑁𝐴
𝑛=−2𝑁𝐴

                                (3.27) 

where the summation extends over the range −2𝑁𝐴 ≤ 𝑛 ≤ 2𝑁𝐴 due to the quadratic 

dependence of 𝑢0 on �̂�𝑈. Since 𝑦 = 𝑎�̂� + 𝑏 where 𝑎 = 𝛤−1, 𝑏 = −𝛤−1 + 1 + 𝑦𝑡, it 

follows that 

𝑢0(�̂�𝑈(𝑥)) = −𝑎2�̂�𝑈
2(𝑥) − 2𝑎𝑏�̂�𝑈(𝑥) + 1 − 𝑏2.    (3.28) 

The first term on the RHS of (3.28) has the form 

𝑎2�̂�𝑈
2(𝑥) = 𝑎2 ∑ ∑ 𝐴𝑈

〈𝑚〉
𝐴𝑈

〈𝑛−𝑚〉
𝑒𝑖𝑛𝛼𝑥𝑁𝐴

𝑚=−𝑁𝐴

2𝑁𝐴
𝑛=−2𝑁𝐴

   (3.29) 

where the non-zero values of 𝐴𝑈
〈𝑘〉

 occur only for |𝑘| ≤ 𝑁𝐴. Substitution of (3.16g), (3.28) 

and (3.29) into (3.27) and separating Fourier modes gives explicit expressions for the 

expansion coefficients of the form 

𝐹𝑈
〈𝑛〉

= −𝑎2 ∑ 𝐴𝑈
〈𝑚〉

𝐴𝑈
〈𝑛−𝑚〉

− 2𝑎𝑏𝐴𝑈
〈𝑛〉𝑁𝐴

𝑚=−𝑁𝐴
                            1 ≤ |𝑛| ≤ 2𝑁𝐴,  (3.30a) 

𝐹𝑈
〈0〉

= −𝑎2 ∑ 𝐴𝑈
〈𝑚〉

𝐴𝑈
〈𝑚〉∗ − 2𝑎𝑏𝐴𝑈

〈0〉
+ (1 − 𝑏2)𝑁𝐴

𝑚=−𝑁𝐴
                     𝑛 = 0  (3.30b) 



18 

 

The unknowns appearing in (3.16b,c) need to be expressed using their discretized form 

i.e. 

𝜕𝛹1

𝜕�̂�
= ∑ 𝐷

𝑁𝑀
𝑛=−𝑁𝑀

𝛷〈𝑛〉(�̂�𝑈(𝑥))𝑒𝑖𝑛𝛼𝑥 =           

                                                                  ∑ ∑ 𝐺𝑘
〈𝑛〉

𝐷𝑇𝑘(�̂�𝑈(𝑥))𝑒𝑖𝑛𝛼𝑥𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑛=−𝑁𝑀

,  

(3.31a) 

𝜕𝛹1

𝜕𝑥
= ∑ 𝑖𝑛𝛼

𝑁𝑀
𝑛=−𝑁𝑀

𝛷〈𝑛〉(�̂�𝑈(𝑥))𝑒𝑖𝑛𝛼𝑥 =  

                                                                    ∑ ∑ 𝑖𝑛𝛼𝐺𝑘
〈𝑛〉

𝑇𝑘(�̂�𝑈(𝑥))𝑒𝑖𝑛𝛼𝑥𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑛=−𝑁𝑀

       

(3.31b) 

where the derivative form of (3.16c) has been used as this is computationally more 

efficient. Chebyshev polynomials and their derivatives evaluated along the wall represent 

periodic functions of 𝑥 and, thus, can be expressed using Fourier expansions of the form 

𝑇𝑘(�̂�𝑈(𝑥)) = ∑ (𝑤𝑈)𝑘
〈𝑚〉

𝑒𝑖𝑚𝛼𝑥𝑁𝑠
𝑚=−𝑁𝑠

, 𝐷𝑇𝑘(�̂�𝑈(𝑥)) = ∑ (𝑑𝑈)𝑘
〈𝑚〉

𝑒𝑖𝑚𝛼𝑥𝑁𝑠
𝑚=−𝑁𝑠

   (3.32a,b) 

where 𝑁𝑠 = (𝑁𝑇 − 1)𝑁𝐴 as the highest order polynomials being used are of order 

�̂�𝑈
𝑁𝑇−1

. The evaluation of coefficients of the above expansions begins by noting that 

(𝑤𝑈)0
〈0〉

= 1,   (𝑤𝑈)0
〈𝑚〉

= 0   for  |𝑚| ≥ 1, (𝑤𝑈)1
〈𝑚〉

= 𝐴𝑈
〈𝑚〉

 for |𝑚| ≥ 0.  (3.33a,b) 

Coefficients with higher indices can be determined using a recurrence relation of the 

form 𝑇𝑘+1(�̂�) = 2�̂�𝑇𝑘(�̂�) − 𝑇𝑘−1(�̂�) resulting in 

(𝑤𝑈)𝑘+1
〈𝑚〉

= 2∑ 𝐴𝑈
〈𝑛〉

(𝑤𝑈)𝑘
〈𝑚−𝑛〉

− (𝑤𝑈)𝑘−1
〈𝑚〉

               for         𝑘 > 1.
𝑁𝐴
𝑛=−𝑁𝐴

   (3.33c) 

Similarly, 

(𝑑𝑈)0
〈𝑚〉

= 0  for |𝑚| ≥ 0,   (𝑑𝑈)1
〈0〉

= 1, (𝑑𝑈)1
〈𝑚〉

= 0   for  |𝑚| ≥ 1 ,   

                            (𝑑𝑈)2
〈𝑚〉

= 4𝐴𝑈
〈𝑚〉

  for  |𝑚| ≥ 0,   

(3.34a–c) 
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and the use of the recurrence relation of the form 𝐷𝑇𝑘+1(�̂�) = 2𝑇𝑘(�̂�) + 2�̂�𝐷𝑇𝑘(�̂�) −

𝐷𝑇𝑘−1(�̂�)  gives 

(𝑑𝑈)𝑘+1
〈𝑚〉

= 2∑ 𝐴𝑈
〈𝑛〉(𝑑𝑈)𝑘

〈𝑚−𝑛〉
− (𝑑𝑈)𝑘−1

〈𝑚〉
+ 2𝑤𝑘

〈𝑚〉
       for     𝑘 > 2.

𝑁𝐴
𝑛=−𝑁𝐴

  (3.34d) 

Substitution of the above relations into (3.31) gives 

𝜕𝛹1

𝜕�̂�
= ∑ ∑ ∑ 𝐺𝑘

〈𝑛〉(𝑑𝑈)𝑘
〈𝑚〉𝑁𝑠

𝑚=−𝑁𝑠
𝑒𝑖(𝑛+𝑚)𝛼𝑥 =

𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑛=−𝑁𝑀

  

                                              ∑ ∑ ∑ 𝐺𝑘
〈𝑛〉(𝑑𝑈)𝑘

〈ℎ−𝑛〉𝑁𝑇−1
𝑘=0 𝑒𝑖ℎ𝛼𝑥𝑁𝑀

𝑛=−𝑁𝑀

𝑁𝑠+𝑁𝑀
ℎ=−𝑁𝑠−𝑁𝑀

,         

(3.35a) 

𝜕𝛹1

𝜕𝑥
= 𝑖𝛼 ∑ ∑ ∑ 𝑛𝐺𝑘

〈𝑛〉(𝑤𝑈)𝑘
〈𝑚〉𝑁𝑠

𝑚=−𝑁𝑠
𝑒𝑖(𝑛+𝑚)𝛼𝑥 =

𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑛=−𝑁𝑀

     

                                             𝑖𝛼 ∑ ∑ ∑ 𝑛𝐺𝑘
〈𝑛〉(𝑤𝑈)𝑘

〈ℎ−𝑛〉𝑁𝑇−1
𝑘=0 𝑒𝑖ℎ𝛼𝑥𝑁𝑀

𝑛=−𝑁𝑀

𝑁𝑠+𝑁𝑀
ℎ=−𝑁𝑠−𝑁𝑀

         

(3.35b) 

where ℎ = 𝑛 + 𝑚. It can be deduced from (3.33) and (3.34) that (𝑤𝑈)𝑘
〈ℎ−𝑛〉

 and (𝑑𝑈)𝑘
〈ℎ−𝑛〉

 

take the non-zero values only for |ℎ − 𝑛| ≤ 𝑁𝑠. Redefining the indices 𝑛 → 𝑚 and ℎ → 𝑛 

in (3.35) and substituting them together with (3.27) into (3.16b,c) lead to boundary 

relations of the form  

∑ ∑ 𝐺𝑘
〈𝑚〉(𝑑𝑈)𝑘

〈𝑛−𝑚〉
= −𝛤−1𝐹𝑈

〈𝑛〉
                              0 ≤ |𝑛| ≤ 𝑁𝑓

𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑚=−𝑁𝑀

,  (3.36a) 

∑ ∑ −𝑖𝑚𝛼𝐺𝑘
〈𝑚〉(𝑤𝑈)𝑘

〈𝑛−𝑚〉
= −𝑐𝛤−1(𝑖𝑛𝛼)𝐴𝑈

〈𝑛〉
      1 ≤ |𝑛| ≤ 𝑁𝑓

𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑚=−𝑁𝑀

                  (3.36b) 

where 𝑁𝑓 = (𝑁𝑇 − 1)𝑁𝐴 + 𝑁𝑀. A similar process applied at the lower wall leads to the 

following relations 

∑ ∑ 𝐺𝑘
〈𝑚〉(𝑑𝐿)𝑘

〈𝑛−𝑚〉
= −𝛤−1𝐹𝐿

〈𝑛〉
                               0 ≤ |𝑛| ≤ 𝑁𝑓

𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑚=−𝑁𝑀

,  (3.37a) 

∑ ∑ −𝑖𝑚𝛼𝐺𝑘
〈𝑚〉(𝑤𝐿)𝑘

〈𝑛−𝑚〉
= −𝑐𝛤−1(𝑖𝑛𝛼)𝐴𝐿

〈𝑛〉
      1 ≤ |𝑛| ≤ 𝑁𝑓

𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑚=−𝑁𝑀

.       (3.37b) 

The reader may note that (3.36b) and (3.37b) do not provide conditions for 𝑛 =  0 and 

this is due to the character of the boundary conditions for 𝑣1 . The required conditions 
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can be constructed on the basis of boundary conditions (3.16c,e) written in terms of  𝛹𝑇. 

These conditions are re-written in the following form  

𝛹1,𝑈(𝑥) = 𝑐𝛤−1[�̂�𝑈(𝑥) − �̂�𝐿(𝑥0)] − 2𝑐 +
4

3
− 𝛹0,𝑈(𝑥),             (3.38a) 

𝛹1,𝐿(𝑥) = 𝑐𝛤−1[�̂�𝐿(𝑥) − �̂�𝐿(𝑥0)] − 𝛹0,𝐿(𝑥).   (3.38b) 

Values of 𝛹0 evaluated along the lower and upper walls represent known periodic 

functions of 𝑥 which can be expressed as Fourier expansions of the form 

𝛹0,𝑈(𝑥) = ∑ 𝛩𝑈
〈𝑛〉

𝑒𝑖𝑛𝛼𝑥,           
3𝑁𝐴
𝑛=−3𝑁𝐴

𝛹0,𝐿(𝑥) = ∑ 𝛩𝐿
〈𝑛〉

𝑒𝑖𝑛𝛼𝑥3𝑁𝐴
𝑛=−3𝑁𝐴

   (3.39a,b) 

where summations extend over the range −3𝑁𝐴 ≤ 𝑛 ≤ 3𝑁𝐴 due to the cubic nonlinearity 

of 𝛹0. Coefficients 𝛩𝑈
〈𝑛〉

and 𝛩𝐿
〈𝑛〉

 can be readily determined. Substituting (3.39) and 

(3.16g,h) into (3.38) and taking 𝑥0 =  0 results in 

𝛹1,𝑈 = 𝑐𝛤−1 ∑ 𝐴𝑈
〈𝑛〉

𝑒𝑖𝑛𝛼𝑥𝑛=𝑁𝑀
𝑛=−𝑁𝑀

− 𝑐𝛤−1 ∑ 𝐴𝐿
〈𝑛〉𝑛=𝑁𝑀

𝑛=−𝑁𝑀
− 2𝑐 +

4

3
−  

                                                                                                  ∑ 𝛩𝑈
〈𝑛〉

𝑒𝑖𝑛𝛼𝑥 ,
𝑁𝑀
𝑛=−𝑁𝑀

  

(3.40a) 

𝛹1,𝐿 = 𝑐𝛤−1 ∑ 𝐴𝐿
〈𝑛〉

𝑒𝑖𝑛𝛼𝑥𝑛=𝑁𝑀
𝑛=−𝑁𝑀

− 𝑐𝛤−1 ∑ 𝐴𝐿
〈𝑛〉𝑛=𝑁𝑀

𝑛=−𝑁𝑀
− ∑ 𝛩𝐿

〈𝑛〉
𝑒𝑖𝑛𝛼𝑥𝑁𝑀

𝑛=−𝑁𝑀
.   (3.40b) 

𝛹1 can be expressed at the walls using (3.17), (3.20) and (3.33) in the form 

𝛹1,𝑈 = ∑ ∑ ∑ 𝐺𝑘
〈𝑚〉(𝑤𝑈)𝑘

〈𝑛−𝑚〉
𝑒𝑖𝑛𝛼𝑥𝑁𝑇−1

𝑘=0
𝑁𝑀
𝑚=−𝑁𝑀

𝑁𝑓

𝑛=−𝑁𝑓
,  (3.41a) 

𝛹1,𝐿 = ∑ ∑ ∑ 𝐺𝑘
〈𝑚〉(𝑤𝐿)𝑘

〈𝑛−𝑚〉
𝑒𝑖𝑛𝛼𝑥𝑁𝑇−1

𝑘=0
𝑁𝑀
𝑚=−𝑁𝑀

𝑁𝑓

𝑛=−𝑁𝑓
.  (3.41b) 

Substitution of (3.41) into (3.40) and extraction of the zeroth mode provide the two 

missing boundary relations of the form 

∑ ∑ 𝐺𝑘
〈𝑚〉(𝑤𝑈)𝑘

〈𝑚〉∗ = 
𝑁𝑇−1
𝑘=0

𝑁𝑀
𝑚=−𝑁𝑀

                                                                                                               

                                                  −𝛩𝑈
〈0〉

+ 𝑐𝛤−1𝐴𝑈
〈0〉

− 𝑐𝛤−1 ∑ 𝐴𝐿
〈𝑛〉𝑛=𝑁𝑀

𝑛=−𝑁𝑀
− 2𝑐 +

4

3
,  

(3.42a) 
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∑ ∑ 𝐺𝑘
〈𝑚〉

(𝑤𝐿)𝑘
〈𝑚〉∗ = −𝛩𝐿

〈0〉
+ 𝑐𝛤−1𝐴𝐿

〈0〉
− 𝑐𝛤−1 ∑ 𝐴𝐿

〈𝑛〉
.

𝑛=𝑁𝑀
𝑛=−𝑁𝑀

𝑁𝑇−1
𝑘=0  

𝑁𝑀
𝑚=−𝑁𝑀

  (3.42b) 

The discretization of the field variables uses only 𝑁𝑀 modes, where 𝑁𝑀 < 𝑁𝑓  and, thus, 

only 𝑁𝑀 relations of types (3.36), (3.37) can be enforced (relations (3.42) always have to 

be enforced). In the basic formulation, i.e. the so-called classical formulation [37], 

boundary relations corresponding to the lowest Fourier modes are used as the closing 

conditions; relations not used provide a measure of error in the enforcement of the flow 

boundary conditions as well as a test for the consistency of the method. Direct 

enforcement of a larger number of boundary relations leads to an over-determined 

formulation of the IBC method which is advantageous in the case of more extreme 

geometries [37]. This formulation will be discussed in Subsection 3.7. 

 

3.4    Evaluation of the Pressure Field 

The governing equations describing flow in the (𝑥, �̂�) plane have the form 

𝑢1𝜕𝑥𝑢1 + 𝛤𝑣1𝜕�̂�𝑢1 + 𝛤𝑣1𝐷𝑢0 + (𝑢0 − 𝑐)𝜕𝑥𝑢1 =  

                                                −𝜕𝑥𝑝1 + 𝑅𝑒−1(𝜕𝑥
2𝑢1 + 𝛤2𝜕�̂�

2𝑢1),                              (3.43a) 

𝑢1𝜕𝑥𝑣1 + 𝛤𝑣1𝜕�̂�𝑣1 + (𝑢0 − 𝑐)𝜕𝑥𝑣1 = −𝛤𝜕�̂�𝑝1 + 𝑅𝑒−1(𝜕𝑥
2𝑣1 + 𝛤2𝜕�̂�

2𝑣1),            (3.43b) 

𝜕𝑥𝑢1 + 𝛤𝜕�̂�𝑣1 = 0 .                                                                                                   (3.43c) 

Introduction of velocity products defined as 

𝜕𝑥𝑢1𝑢1̂ = 2𝑢1𝜕𝑥𝑢1, 𝜕𝑥𝑢1𝑣1̂ = 𝑢1𝜕𝑥𝑣1 + 𝑣1𝜕𝑥𝑢1, 𝜕�̂�𝑣1𝑣1̂ = 2𝑣1𝜕�̂�𝑣1               (3.44a–c) 

leads to the field equations of the form 

𝜕𝑥𝑢1𝑢1̂ + 𝛤𝜕�̂�𝑢1𝑣1̂ + 𝛤𝑣1𝐷𝑢0 + (𝑢0 − 𝑐)𝜕𝑥𝑢1 =                                  

                                                    −𝜕𝑥𝑝1 + 𝑅𝑒−1(𝜕𝑥
2𝑢1 + 𝛤2𝜕�̂�

2𝑢1),                          (3.45a) 
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𝜕𝑥𝑢1𝑣1̂ + 𝛤𝜕�̂�𝑣1𝑣1̂ + (𝑢0 − 𝑐)𝜕𝑥𝑣1 = −𝛤𝜕�̂�𝑝1 + 𝑅𝑒−1(𝜕𝑥
2𝑣1 + 𝛤2𝜕�̂�

2𝑣1).            (3.45b) 

Equation (3.45a) permits evaluation of the x-pressure gradient, i.e. 

𝜕𝑥𝑝1 =                            

−𝜕𝑥𝑢1𝑢1̂ − 𝛤𝜕�̂�𝑢1𝑣1̂ − 𝛤𝑣1𝐷𝑢0 − (𝑢0 − 𝑐)𝜕𝑥𝑢1 + 𝑅𝑒−1(𝜕𝑥
2𝑢1 + 𝛤2𝜕�̂�

2𝑢1).           (3.46) 

The velocity components and the pressure modification can be represented as follows 

where 𝐴𝑝 denotes the pressure gradient correction and ∑ 𝑝1
〈𝑛〉(�̂�)𝑒𝑖𝑛𝛼𝑥𝑛=𝑁𝑀

𝑛=−𝑁𝑀
 describes 

the periodic part of the pressure modification: 

𝑢1(𝑥, �̂�) = 𝛤 ∑ 𝐷𝛷〈𝑛〉(�̂�)𝑒𝑖𝑛𝛼𝑥,
𝑁𝑀
𝑛=−𝑁𝑀

  

𝑣1(𝑥, �̂�) =  −𝑖𝛼 ∑ 𝑛𝛷〈𝑛〉(�̂�)𝑒𝑖𝑛𝛼𝑥,
𝑁𝑀
𝑛=−𝑁𝑀

  

𝑝1(𝑥, �̂�)  = 𝐴𝑝𝑥 + ∑ 𝑝1
〈𝑛〉(�̂�)𝑒𝑖𝑛𝛼𝑥𝑛=𝑁𝑀

𝑛=−𝑁𝑀
.  

(3.47a–c) 

Substitution of (3.47) and (3.18) into (3.46) and separation of Fourier modes result in 

𝐴𝑝 + 𝑖𝑛𝛼𝑝1
〈𝑛〉(�̂�) = −𝑖𝑛𝛼𝑢�̂�〈𝑛〉(�̂�) − 𝛤𝐷𝑢�̂�〈𝑛〉(�̂�) + 𝑖𝑛𝛼𝛤𝐷𝑢0(�̂�)𝛷〈𝑛〉(�̂�) − 

      𝑖𝑛𝛼𝛤(𝑢0 − 𝑐)(�̂�)𝐷𝛷〈𝑛〉(�̂�) + 𝑅𝑒−1[−𝑛2𝛼2𝛤𝐷𝛷〈𝑛〉(�̂�) + 𝛤3𝐷3𝛷〈𝑛〉(�̂�)].           (3.48) 

Equation (3.48) written for mode zero provides the expression for the evaluation of the 

pressure gradient correction, i.e. 

𝐴𝑝 = 𝑅𝑒−1𝛤3𝐷3𝛷〈0〉(�̂�) − 𝛤𝐷𝑢�̂�〈0〉(�̂�).                                                                    (3.49) 

Equation (3.48) written for 𝑛 ≠ 0 gives the expression for the evaluation of 𝑝1
〈𝑛〉(�̂�), i.e. 

𝑝1
〈𝑛〉(�̂�) = (𝑖𝑛𝛼)−1{−𝑖𝑛𝛼𝑢�̂�〈𝑛〉(�̂�) − 𝛤𝐷𝑢�̂�〈𝑛〉(�̂�) + 𝑖𝑛𝛼𝛤𝐷𝑢0(�̂�)𝛷〈𝑛〉(�̂�) −  

             𝑖𝑛𝛼𝛤(𝑢0 − 𝑐)(�̂�)𝐷𝛷〈𝑛〉(�̂�) + 𝑅𝑒−1[−𝑛2𝛼2𝛤𝐷𝛷〈𝑛〉(�̂�) + 𝛤3𝐷3𝛷〈𝑛〉(�̂�)]}.   (3.50) 
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Modal functions 𝑝1
〈𝑛〉(�̂�) can be expressed in terms of the Chebyshev polynomials as 

𝑝1
〈𝑛〉(�̂�) ≈ ∑ 𝛱𝑘

〈𝑛〉
𝑇𝑘(�̂�)𝑁𝑇−1

𝑘=0 .                                                                                        (3.51) 

Insertion of (3.52), (3.20), and (3.21) into (3.50), taking the inner product with 𝑇𝑗(�̂�), and 

use of the orthogonality properties result in  

𝛱𝑗
〈𝑛〉

= 2(𝑖𝑛𝛼𝜋𝐶𝑗)
−1

∑ {−𝑖𝑛𝛼𝐺𝑢�̂�𝑘
〈𝑛〉〈𝑇𝑗, 𝑇𝑘〉 − 𝛤𝐺𝑢�̂�𝑘

〈𝑛〉〈𝑇𝑗, 𝐷𝑇𝑘〉 +
𝑁𝑇−1
𝑘=0   

                  𝑖𝑛𝛼𝛤𝐺𝑘
〈𝑛〉

[〈𝑇𝑗, 𝐷𝑢0𝑇𝑘〉 − 〈𝑇𝑗 , (𝑢0 − 𝑐)𝐷𝑇𝑘〉] +  

                     𝛤𝑅𝑒−1𝐺𝑘
〈𝑛〉

[−𝑛2𝛼2〈𝑇𝑗, 𝐷𝑇𝑘〉 + 𝛤2〈𝑇𝑗 , 𝐷
3𝑇𝑘〉]}, for  {

𝑛 ≠ 0,
0 ≤ 𝑗 ≤ 𝑁𝑇 − 1,

    (3.52) 

where 𝐶𝑗 = {
2          for       𝑗 = 0,
1          for       𝑗 ≠ 0.

 

One needs to use the 𝑦-momentum equation to evaluate 𝑝1
〈0〉(�̂�). Substitution of (3.47) 

and (3.18) into (3.45b) and separation of Fourier modes give 

𝛤𝐷𝑝1
〈𝑛〉(�̂�) = −𝑖𝑛𝛼𝑢�̂�〈𝑛〉(�̂�) − 𝛤𝐷𝑣�̂�〈𝑛〉(�̂�) − 𝑛2𝛼2(𝑢0 − 𝑐)(�̂�)𝛷〈𝑛〉(�̂�) + 

                             𝑅𝑒−1[𝑖𝑛3𝛼3𝛷〈𝑛〉(�̂�) − 𝑖𝑛𝛼𝛤2𝐷2𝛷〈𝑛〉(�̂�)].                                     (3.53) 

Equation (3.53) written for mode zero takes the form 

𝛤𝐷𝑝1
〈0〉(�̂�) = −𝛤𝐷𝑣�̂�〈0〉(�̂�)                                                                                         (3.54) 

which, after integration, becomes 

𝑝1
〈0〉(�̂�) = −𝑣�̂�〈0〉(�̂�) + 𝑐1                                                                                            (3.55) 

where 𝑐1 is the integration constant. Substitution of (3.51) and (3.21) into (3.55) and 

taking the inner product of the resultant relation with 𝑇𝑗(�̂�) provide the expression for the 

evaluation of 𝛱𝑗
〈0〉

, i.e. 
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𝛱𝑗
〈0〉

= −2(𝐶𝑗𝜋)
−1

∑ 𝐺𝑣�̂�𝑘
〈0〉〈𝑇𝑗, 𝑇𝑘〉

𝑁𝑇−1
𝑘=0 + 2𝑐1(𝐶𝑗𝜋)

−1
〈𝑇𝑗 , 𝑇0〉,                      

                                                                            for       0 ≤ 𝑗 ≤ 𝑁𝑇 − 1.                    (3.56) 

The complete pressure field can be represented as 

𝑝𝑇(𝑥, �̂�) = (−2𝑅𝑒−1 + 𝐴𝑝)𝑥 + ∑ ∑ 𝛱𝑘
〈𝑛〉

𝑇𝑘(�̂�)𝑒𝑖𝑛𝛼𝑥 + 𝑐𝑜𝑛𝑠𝑡
𝑁𝑇−1
𝑘=0

𝑛=𝑁𝑀
𝑛=−𝑁𝑀

,               (3.57) 

where 𝑐𝑜𝑛𝑠𝑡 stands for an arbitrary constant. 

 

3.5    Solution Process 

The solution process relies on iterations and yields new approximations of 𝛷〈𝑛〉(�̂�), 

denoted as [𝛷〈𝑛〉(�̂�)]
(𝑘)

, at each iteration where the superscript 𝑘 denotes the iteration 

number. The nonlinear terms on the right hand side of (3.19) are taken from the previous 

iteration (these terms are ignored during the first iteration) resulting in the first order 

fixed point method. The iteration process can be summarized as  

[𝛷〈𝑛〉]
(𝑘+1)

= [𝛷〈𝑛〉]
(𝑘)

+ 𝑅𝐹 {[𝛷〈𝑛〉]
(𝑐𝑜𝑚𝑝)

− [𝛷〈𝑛〉]
(𝑘)

}                                                          (3.58) 

where the superscript 𝑐𝑜𝑚𝑝 identifies the solution computed at the new iteration, and the 

process is controlled using the under-relaxation parameter 𝑅𝐹. Typically, 𝑅𝐹 < 0.1 is 

used with its value decreasing with an increase of the wave amplitude and the Reynolds 

number. Iterations are stopped when the convergence criterion of the form  

|[𝛷〈𝑛〉]
(𝑘+1)

− [𝛷〈𝑛〉]
(𝑘)

| / |[𝛷〈𝑛〉]
(𝑘+1)

| < 𝐶𝑂𝑁𝑉     (3.59) 

is satisfied, where |[𝛷〈𝑛〉]
(𝑘+1)

− [𝛷〈𝑛〉]
(𝑘)

| is the 𝐿2 norm of the difference between the 

solution vectors computed at two consecutive iterations and |[𝛷〈𝑛〉]
(𝑘+1)

| is the 𝐿2 norm 

of the current solution vector. 𝐶𝑂𝑁𝑉 = 10−14 was used in all tests of the algorithm while 

𝐶𝑂𝑁𝑉 = 10−10 is sufficient for studies of effects of different physical parameters. 
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The nonlinear terms on the right hand side of (3.19) need to be updated at the end of each 

iteration step. It is more efficient to evaluate the required products by transferring data to 

the physical space, carrying out the multiplications there and transferring the results back 

into the Fourier space [66]. The new values of the velocity components of the form 

𝑢1(𝑥, �̂�) = 𝛤 ∑ 𝐷𝛷〈𝑛〉(�̂�)𝑒𝑖𝑛𝛼𝑥,
𝑁𝑀
𝑛=−𝑁𝑀

  

𝑣1(𝑥, �̂�) =  −𝑖𝛼 ∑ 𝑛𝛷〈𝑛〉(�̂�)𝑒𝑖𝑛𝛼𝑥𝑁𝑀
𝑛=−𝑁𝑀

  

(3.60a,b) 

are computed on a suitable grid in the (𝑥, �̂�) plane. 2𝑁𝑥 + 2 equidistant points, where 

𝑁𝑥 =
3

2
𝑁𝑀, are used along the 𝑥-direction in order to remove the aliasing error with the 

last point removed due to periodicity, and 𝑁𝑇 points are used in the �̂�-direction with the 

first and last points overlapping with the borders of the computational domain. 

Chebyshev points defined as �̂�𝑗 = cos (
𝑗𝜋

𝑁𝑇−1
), where 𝑗 = 1, 2, … ,𝑁𝑇 − 2, are used in the 

interior of the domain. This process results in the formation of two matrices containing 

values of 𝑢1 and 𝑣1 and their multiplication yields the desired products, 

i.e. 𝑢1𝑢1̂, 𝑢1𝑣1̂, 𝑣1𝑣1̂. These products need to be expressed using Fourier expansions 

(3.18) which necessitates the determination of the modal functions 𝑢�̂�〈𝑛〉,  𝑢�̂�〈𝑛〉, 𝑣�̂�〈𝑛〉. 

This is accomplished using the Fast Fourier Transform (FFT) at each �̂�-location; 2𝑁𝑥 + 1 

data points are used in the 𝑥-direction resulting in values of 2𝑁𝑥 + 1 modal functions. 

Modal functions with indices in the range [–𝑁𝑀, 𝑁𝑀] are retained and the remaining ones 

are discarded as part of the aliasing error control process [66]. The last step involves 

expressing each modal function in terms of a Chebyshev expansion, i.e. the evaluation of 

coefficients 𝐺𝑢�̂�𝑘
〈𝑛〉

, 𝐺𝑢�̂�𝑘
〈𝑛〉

, 𝐺𝑣�̂�𝑘
〈𝑛〉

. Since values of these functions are available at the 

�̂�-grid points, one can write equation of type (3.21) for each point resulting in a system of 

linear equation whose numerical solution determines the unknown expansion 

coefficients. The number of grid points determines the maximum length of the 

Chebyshev expansion. No de-aliasing is required in the Chebyshev direction if a 

sufficient number of polynomials are used. 
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3.6    The Linear Solver 

A linear algebraic problem for 𝐺𝑘
〈𝑛〉

 has to be solved at each iteration step. The problem 

has two types of intermodal coupling, i.e. coupling due to nonlinear terms and coupling 

due to boundary conditions. The former has been eliminated by the use of nonlinear 

terms from the previous iteration. The latter remains and, as result, one needs to solve a 

very large linear system involving all modal functions at each iteration step. A very 

efficient linear solver which takes advantage of the structure of the coefficient matrix 

following [38] is described below. 

Governing equation (3.24) with the boundary conditions and closing constraint can be 

represented in matrix notation as 

𝑳𝒙 = 𝑹(𝒙)    (3.61) 

where 𝑳 denotes the coefficient matrix of size 𝑝 × 𝑝 with 𝑝 = (2𝑁𝑀 + 1)𝑁𝑇 , 𝒙 is a 

𝑝 −dimensional vector of unknown Chebyshev coefficients 𝐺𝑘
〈𝑛〉

and 𝑹 stands for the 

𝑝 −dimensional right-hand side vector which contains nonlinearities. This system is 

solved repeatedly during the iteration process.  

Storage requirements can be reduced and the solution efficiency can be improved by 

taking advantage of the special structure of matrix 𝑳. The structure of 𝑳 for 𝑁𝑀 = 5 and 

𝑁𝑇 = 31 is shown in Figure 3.1 where all non-zero components have been marked in 

black and the unknowns have been organized according to the mode number 

–𝑁𝑀, … ,0, … ,𝑁𝑀. The upper triangular blocks correspond to the modal equations and are 

uncoupled. The only coupling between blocks is provided thorough the boundary 

relations which are marked as black horizontal lines. In the first step 𝑳 is re-organized; 

the entries corresponding to the boundary relations are moved to the bottom of 𝑳 forming 

a block diagonal matrix 𝑳1 of size 𝑞 × 𝑝, where 𝑞 = (2𝑁𝑀 + 1)(𝑁𝑇 − 4) and a full 

matrix 𝑳2 of size 𝑟 × 𝑝, where 𝑟 = 4(2𝑁𝑀 + 1). In order to extract the largest possible 

square matrix 𝑨 (of size 𝑞 × 𝑞) from 𝑳1, the unknown Chebyshev coefficients 

corresponding to the four lowest polynomials are placed at the end of the vector of 

unknowns. The resultant square matrix 𝑨 of size 𝑞 × 𝑞 has a block diagonal structure 
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with each block of size (𝑁𝑇 − 4) × (𝑁𝑇 − 4). The rectangular matrix 𝑩 of size 𝑞 × 𝑟 

also has a block diagonal form with blocks of size (𝑁𝑇 − 4) × 4 whereas the full 

rectangular matrix 𝑪 has size 𝑟 × 𝑞 and the full square matrix 𝑫 has size 𝑟 × 𝑟. Matrices 

𝑩 and 𝑫 contain coefficients corresponding to 𝐺0
〈𝑛〉

, 𝐺1
〈𝑛〉

, 𝐺2
〈𝑛〉

, and 𝐺3
〈𝑛〉

, while 

information associated with the remaining coefficients is stored in matrices 𝑨 and 𝑪. 

Equation (3.24) can now be re-written in the form 

𝑨𝒙1 + 𝑩𝒙2 = 𝑹1,   𝑪𝒙1 + 𝑫𝒙2 = 𝑹2  (3.62a,b) 

where vector 𝒙1 contains unknowns 𝐺𝑘
〈𝑛〉

 for 𝑛 ∈ 〈−𝑁𝑀, 𝑁𝑀〉, 𝑘 ∈ 〈4, 𝑁𝑇 − 1〉, and vector 

𝒙2 contains unknowns 𝐺𝑘
〈𝑛〉

 for 𝑛 ∈ 〈−𝑁𝑀, 𝑁𝑀〉, 𝑘 ∈ 〈0,3〉. The solution of (3.62) can be 

written as  

𝒙2 = [𝑫 − 𝑪𝑨−1𝑩]−1(𝑹2 − 𝑪𝑨−1𝑹1),  𝒙1 = 𝑨−1[𝑹1 − 𝑩𝒙2].        (3.63a,b) 

The above procedure results in a substantial reduction in memory usage as one needs to 

store only the diagonal blocks of matrices 𝑨 and 𝑩. The efficiency gains result from the 

construction of 𝑨−1, 𝑪𝑨−1, 𝑪𝑨−1𝑩,𝑨−1𝑹1 and 𝑨−1𝑩 block by block rather than working 

with complete matrices. The use of complex conjugate properties of the modal functions 

provides further efficiencies. 
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                                       (A)                                                                (B) 

Figure 3.1: Structure of the coefficient matrix 𝑳 for 𝑵𝑴 = 𝟓 and 𝑵𝑻 = 𝟑𝟏. Black 

identifies the non-zero elements. Figure 3.1A displays the coefficient matrix before the 

re-arrangement whereas Figure 3.1B displays its structure after the re-arrangement (see 

Subsection 3.6). 

 

3.7    Performance of the Algorithm 

This Subsection discusses results of various tests carried out in order to demonstrate the 

performance of the algorithm as well as to characterize the effects of numerical and 

physical parameters on the accuracy of the solution. 

For simplicity, the majority of the reported tests deal with a sinusoidal wave propagating 

along the lower wall resulting in the channel geometry of the form 

𝑌𝑈 = 1,         𝑌𝐿 = −1 + 𝐴 cos[𝛼(𝑋 − 𝑐𝑡)]  (3.64a,b) 

where 𝐴 and 𝛼 are the amplitude and the wave number of the wave, and 𝑐 denotes its 

phase speed. 
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In a spectrally accurate algorithm, the solution converges exponentially as the number of 

Chebyshev polynomials 𝑁𝑇 and the number of Fourier modes 𝑁𝑀 increase. The solution 

error is defined as 

𝐸𝑟 = max⏟
solution domain

|𝑢(𝑥, 𝑦) − 𝑢𝑟𝑒𝑓(𝑥, 𝑦)|           (3.65) 

where the reference solution 𝑢𝑟𝑒𝑓(𝑥, 𝑦) has been determined numerically using 𝑁𝑇 = 80 

Chebyshev polynomials and 𝑁𝑀 = 20 Fourier modes. While the reference solution is not 

exact, the relevant numerical error is below machine level accuracy and, thus, the actual 

solution and the numerical test solution are the same within the double precision accuracy 

used in the tests. The Chebyshev expansions are guaranteed to be spectrally accurate [66] 

but, nevertheless, explicit tests to demonstrate that this accuracy is preserved in the IBC 

method have been carried out.  Figure 3.2 displays variations of 𝐸𝑟 as a function of 𝑁𝑇 

while using 𝑁𝑀 = 20 Fourier modes for the streamwise discretization and demonstrates 

the exponential decrease of 𝐸𝑟 with an increase of 𝑁𝑇. It has been verified that the 

number of Fourier modes used in this test reduces the 𝑥-discretization error below 

machine level accuracy and, thus, 𝐸𝑟 is a function of 𝑁𝑇 only. 
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Figure 3.2: Variations of the error 𝐸𝑟 (see Eq. (3.65)) for the wave shape described by 

Eq. (3.64) with the wave number  = 1, Reynolds number 𝑅𝑒 = 5, phase speed 𝑐 = 1.3 

and wave amplitudes 𝐴 shown on the graph. 

The above conclusions regarding the accuracy of Chebyshev expansions are subject to 

one constraint. The accuracy of the streamwise discretization depends on the convergence 

of the Fourier expansion (3.17) for the field variable and the Fourier expansions (3.36)–

(3.37) for the boundary relations. If one of these expansions is slowly convergent, one 

may need to use more Fourier modes. Distributions of the real part of 𝐷𝛷〈𝑛〉 displayed in 

Figure 3.3 demonstrate that modal functions for higher modes are nearly zero everywhere 

except close to the vibrating wall where they form boundary layers. The need to resolve 

such layers may require the use of a greater number of Chebyshev polynomials than 

deemed necessary purely on the basis of spectral convergence. The convergence of the 

Fourier expansions (3.36)–(3.37) slows down for the short wavelength waves and, thus, 

the analysis of such waves requires the use of a greater number of Fourier modes. This, in 

turn, leads to the need for a greater number of Chebyshev polynomials. The elimination 

of spurious oscillations outside the boundary layers provides an easy method for 

verification if a sufficient number of Chebyshev polynomials have been used. 
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Figure 3.3: Distribution of the real part of 𝐷Ф(𝑛) as a function of 𝑦 for higher Fourier 

modes (𝑛 > 15) in the region very close to the lower wall for the wave shape described 

by Eq. (3.64) with the wave number  = 5, amplitude 𝐴 = 0.05, Reynolds number 𝑅𝑒 =

5 and phase speed 𝑐 = 1.3 obtained using 𝑁𝑀 = 20 Fourier modes and 𝑁𝑇 = 80 

Chebyshev polynomials. 

We shall now discuss the convergence of the Fourier expansions. Magnitudes of the 

modal functions 𝐷𝛷〈𝑛〉 can be measured using Chebyshev norms defined as  

‖𝐷𝛷〈𝑛〉‖
𝜔

= {∫ 𝐷𝛷〈𝑛〉(�̂�) ∙ 𝐷𝛷〈𝑛〉∗(�̂�) ∙ 𝜔(�̂�) ∙ 𝑑�̂�
1

−1
}
1 2⁄

.          (3.66) 

The results displayed in Figure 3.4 demonstrate the exponential decrease of the 

Chebyshev norm with the mode number 𝑛 which confirms the spectral convergence of 

the 𝑥-discretization. Both 𝛷〈𝑛〉 and 𝐷𝛷〈𝑛〉 are physically relevant as they represent 

velocity components; only  𝐷𝛷〈𝑛〉 has been used in the testing as the error in the 

determination of the function is smaller than in the determination of its derivative. 

The overall accuracy of the IBC method is dominated by the accuracy in the enforcement 

of the boundary conditions [30, 35]. Conditions (2.4f,g) state that 𝑢𝑇 and 𝑣𝑇 + 𝑐ℎ𝐿
′  are to 
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be zero along the lower wall and, thus, their values, denoted as 𝑢𝐿 and 𝑣𝐿 + 𝑐ℎ𝐿
′ , provide 

a means for assessing the error of the whole method. It is convenient to use the 𝐿∞ norm 

of 𝑢𝑇 and 𝑣𝑇 +  𝑐ℎ′
𝐿 , i.e. 

‖𝑢𝐿‖∞ = sup|𝑢𝐿(𝑥, 𝑦𝐿(𝑥))|, ‖𝑣𝐿 + 𝑐ℎ𝐿
′ ‖∞ = sup|𝑣𝐿(𝑥, 𝑦𝐿(𝑥)) + 𝑐ℎ𝐿

′ (𝑥)|,    (3.67a,b) 

where 0 ≤ 𝑥 ≤ 2𝜋/𝛼, as an explicit measure of the error. Figure 3.5 displays variations 

of both norms as a function of the number of Fourier modes 𝑁𝑀 used in the 

computations. These norms decrease exponentially with an increase of 𝑁𝑀 and this 

demonstrates the spectral convergence of the algorithm. 

 

Figure 3.4: Variations of the Chebyshev norm of  𝐷Ф(𝑛) as a function of the Fourier 

mode number determined for the wave shape described by Eq. (3.64) with the wave 

number  = 1 and with different wave amplitudes 𝐴. Calculations were carried out for 

Reynolds number 𝑅𝑒 = 5 and wave phase speed 𝑐 = 1.3 using 𝑁𝑀 = 20 Fourier modes 

and 𝑁𝑇 = 80 Chebyshev polynomials. 
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Figure 3.5: Variations of the ‖𝑢𝐿‖∞, ‖𝑣𝐿 + 𝑐ℎ𝐿
′ ‖∞ norms as functions of the total number 

of Fourier modes 𝑁𝑀 used in the calculation for the wave shape described by Eq. (3.64) 

with the wave number  = 1 and with different amplitudes 𝐴. Calculations have been 

carried out for Reynolds number 𝑅𝑒 = 5 and phase speed 𝑐 = 1.3 using 𝑁𝑇 = 80 

Chebyshev polynomials. 

Distributions of errors along the vibrating wall provide useful information about the 

properties of the method. This error is dominated by the Fourier expansion truncation, i.e. 

it is dominated by the higher modal functions. Locations of the error maxima coincide 

with the location of the maximum channel opening as documented by the distributions of 

𝑢𝐿 and 𝑣𝐿 + 𝑐ℎ𝐿
′  over one wavelength displayed in Figure 3.6. Data presented in Figure 

3.3 demonstrate that the maxima of the modal functions 𝐷𝛷<𝑛> occur around the edge of 

the solution domain; distributions of 𝛷<𝑛>, which are not shown, have the same form. 

This means that the flow field around the crest of the wave is less affected by higher 

Fourier modes when compared to the flow field in the valley position. As a result, the 

truncation of the Fourier expansion has a greater effect in the valley position than in the 

crest position. This effect is more pronounced for waves with shorter wavelengths as the 

boundary layers in the distributions of the modal functions are thinner. 



34 

 

 

Figure 3.6: Distributions of the error in the enforcement of the boundary conditions along 

the vibrating wall, i.e. 𝑢𝐿 and 𝑣𝐿 + 𝑐ℎ𝐿
′ , for the wave with shape described by Eq. (3.64) 

with the wave number  = 5 and amplitude 𝐴 = 0.05. Calculations were carried out for 

Reynolds number 𝑅𝑒 = 5 and phase speed 𝑐 = 1.3 using 𝑁𝑀 = 20 Fourier modes and 

𝑁𝑇 = 80 Chebyshev polynomials. 

The Fourier spectra of the boundary error are defined as  

𝑢𝐿(𝑥) = ∑ 𝑈𝐿
(𝑛)𝑒𝑖𝑛𝛼𝑥∞

𝑛=−∞ ,          𝑣𝐿(𝑥) + 𝑐ℎ𝐿
′ (𝑥) = ∑ 𝑉𝐿

(𝑛)𝑒𝑖𝑛𝛼𝑥∞
𝑛=−∞          (3.68a,b) 

and their distributions are shown in Figure 3.7. These spectra should not contain any 

harmonics of order lower than or equal to the number of Fourier modes used in the 

enforcement of the boundary conditions (2.4f,g). The results displayed in Figure 3.7 

demonstrate the absence of the first 20 Fourier modes in the computations carried out 

using 𝑁𝑀 = 20 Fourier modes consistent with the construction of the boundary relations. 



35 

 

 

Figure 3.7: Fourier spectra of the error in the enforcement of the boundary conditions 

along the vibrating wall, i.e. Eq. (3.68), for the wave with shape described by Eq. (3.64) 

with wave number  = 5 and amplitude 𝐴 = 0.05. Calculations were carried out for the 

Reynolds number 𝑅𝑒 = 5 and phase speed 𝑐 = 1.3 using 𝑁𝑀 = 20 Fourier modes and 

𝑁𝑇 = 80 Chebyshev polynomials. The reader should note the absence of the first 20 

Fourier modes. 
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Figure 3.8: Fourier spectra of 𝑢𝐿(𝑥) for the wave shape described by Eq. (3.64) with the 

amplitude 𝐴 = 0.04 and wavelength 𝜆𝑥 = 2𝜋/3. Solutions have been obtained in case A 

using 𝑁𝑀 = 10 Fourier modes, in case B using 𝑁𝑀 = 20 Fourier modes, and in case C 

using 𝑁𝑀 = 30 Fourier modes. Calculations were carried out with Reynolds number 

𝑅𝑒 = 5 and phase speed 𝑐 = 1.3 using 𝑁𝑇 = 80 Chebyshev polynomials. 

In order to show that the algorithm does not produce spurious subharmonics, a wave with 

wavelength 𝜆𝑥 = 2𝜋/3 has been analyzed using three different numerical setups. In case 

A, the shape of the wave has been represented by the principal Fourier mode with the 

wave number 𝛼 = 3 and the solution has been obtained using 𝑁𝑀 = 10 Fourier modes. In 

case B, the same shape has been represented by the second Fourier mode of an expansion 

with the principal mode corresponding to the wave number 𝛼 = 1.5 and the solution has 

been obtained using 𝑁𝑀 = 20 Fourier modes in order to provide space for all modes used 

in case A. Finally, in case C, the shape was represented by the third Fourier mode of an 

expansion with the principal mode corresponding to the wave number 𝛼 = 1 and the 

solution has been obtained using 𝑁𝑀 = 30 Fourier modes. Cases B and C admitted 

subharmonics of 1/2 and 1/3 types, respectively, but the results displayed in Figure 3.8 

show that the algorithm has not produced any spurious subharmonics. 
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Variations of the error in the enforcement of the boundary conditions as a function of the 

wave parameters, i.e. the amplitude 𝐴 and the wave number 𝛼, are shown in Figures 3.9 

and 3.10. Only variations of ‖𝑢𝐿‖∞ are shown as this represents a more demanding test. 

The error remains at machine level as long as 𝐴 and 𝛼 assume values below certain 

critical thresholds. When either 𝐴 or 𝛼 increases beyond this threshold, the error starts to 

increase rapidly. These thresholds can be increased by increasing the number of Fourier 

modes and the number of Chebyshev polynomials used in the computations. One may 

need to use an excessively large 𝑁𝑀 and 𝑁𝑇 in order to significantly increase the 

threshold and this places limitations on the applicability of the proposed method when 

dealing with waves of large amplitudes and short wavelengths. An over-determined 

formulation discussed in Subsection 3.8 provides a more efficient alternative. 

 

Figure 3.9: Variations of the ‖𝑢𝐿‖∞ norm for the wave shape described by Eq. (3.64) as a 

function of the wave amplitude 𝐴 for selected wave numbers  . Dashed and solid lines 

correspond to results obtained with 𝑁𝑀 = 15 and 𝑁𝑀 = 20 Fourier modes, respectively. 

Calculations have been carried out for the Reynolds number 𝑅𝑒 = 5 and phase speed 𝑐 =

1.3 using 𝑁𝑇 = 80 Chebyshev polynomials. 
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Figure 3.10: Variations of the ‖𝑢𝐿‖∞ norm for the wave shape described by Eq. (3.64) as 

a function of the wave number   for selected amplitudes 𝐴. Dashed and solid lines 

correspond to results obtained with 𝑁𝑀 = 15 and 𝑁𝑀 = 20 Fourier modes, respectively. 

Calculations have been carried out with Reynolds number 𝑅𝑒 = 5 and phase speed 𝑐 =

1.3 using 𝑁𝑇 = 80 Chebyshev polynomials. 
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Figure 3.11: Variations of the ‖𝑢𝐿‖∞ norm for the wave shape described by Eq. (3.64) 

with the wave number  = 2, the amplitude 𝐴 = 0.06 and the phase speed 𝑐 = 1.3 as a 

function of Reynolds number computed using different numbers of Fourier modes 𝑁𝑀 

and 𝑁𝑇 = 80 Chebyshev polynomials.  

Figure 3.11 illustrates variations of ‖𝑢𝐿‖∞ as a function of the Reynolds number 𝑅𝑒. The 

error change is marginal as long as 𝑅𝑒 remains smaller than a certain threshold. As 𝑅𝑒 

increases above this threshold, the error rises rapidly but its magnitude can be controlled 

through an increase in the number of Fourier modes. Variations of the error as a function 

of the phase speed 𝑐 shown in Figure 3.12 demonstrate a similar behavior. The minimum 

error occurs for the wave propagating with a phase speed similar to the flow velocity. 

When the wave phase speed increases above the maximum flow velocity or the wave 

propagates in the negative 𝑥-direction, the error increases with an increase in the 

magnitude of 𝑐. This error can be easily controlled by increasing the number of Fourier 

modes 𝑁𝑀. 
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Figure 3.12: Variations of the ‖𝑢𝐿‖∞ norm for the wave shape described by Eq. (3.64) 

with amplitude 𝐴 = 0.04, wave number  = 2 and Reynolds number 𝑅𝑒 = 5 as a 

function of the phase speed 𝑐 determined using different numbers of Fourier modes 𝑁𝑀 

and 𝑁𝑇 = 80 Chebyshev polynomials. 

 

3.8    The Over-Determined Formulation 

Results displayed in Figures 3.9–3.10 demonstrate a rapid increase of the error when the 

wave amplitude increases above a certain critical threshold, with the value of this 

threshold depending on the wave amplitude. As the algorithm involves the use of two 

Fourier expansions, one for the field variables and one for the boundary conditions, it can 

be concluded that the convergence rate of the expansion representing the boundary 

conditions slows down as the geometry becomes more extreme.  This suggests that the 

use of more Fourier modes in the expansion for the boundary conditions could increase 

the accuracy but adopting this method leads to an over-determined formulation [37]. 

The over-determined system is created using 4(2𝑀𝑀 + 1) boundary constraints of type 

(3.36), (3.37), and (3.42), where |𝑛| = 0, … ,𝑀𝑀 and 𝑁𝑓 ≥ 𝑀𝑀 ≥ 𝑁𝑀 with 𝑀𝑀 being the 

number of Fourier modes used for the representation of the field variables (Eq. (3.17)). 
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The system reduces to the same form as in Subsection 3.3 if 𝑀𝑀 = 𝑁𝑀. The over-

determined linear system has the form 

𝑳0𝒙 = 𝒛0,          (3.69) 

where 𝑳0 is a 𝑟 × 𝑝 coefficient matrix with 𝑝 = (2𝑁𝑀 + 1)𝑁𝑇 and 𝑟 = 𝑝 + 8(𝑀𝑀 − 𝑁𝑀) 

and 𝒙 is a known 𝑝-dimensional column vector and 𝒛0 is a 𝑟-dimensional right-hand side 

vector. The structure of 𝑳0 for 𝑁𝑀 = 5, 𝑀𝑀 = 10, and 𝑁𝑇 = 31 is shown in Figure 

3.13A where all non-zero components have been marked using black. The matrix is 

organized by placing entries corresponding to the field equations in matrix 𝑯 of size 𝑞 ×

𝑝, 𝑞 = (2𝑁𝑀 + 1)(𝑁𝑇 − 4), and entries corresponding to the boundary constraints in 

matrix 𝑲0 of size (𝑟 − 𝑞) × 𝑝. 𝑯 has a block-diagonal structure with each block having 

the size (𝑁𝑇 − 4) × 𝑁𝑇; 𝑲0 is full as it provides the coupling between different Fourier 

modes. 

System (3.69) can be solved only in the least squares sense. The solution can be written 

in the form of 

𝒙 = 𝑳0
+𝒛0                           (3.70) 

where 𝑳0
+ represents the generalized inverse (or pseudo-inverse) of 𝑳0. In the present 

work, the QR factorization, as well as the singular value decomposition (SVD), are used 

to evaluate 𝑳0
+. 

In the QR factorization method, the matrix 𝑳𝟎 ∈ 𝑪𝑟×𝑝 is split into a product of a unitary 

matrix 𝑸 ∈ 𝑪𝑟×𝑟 and another matrix 𝑹 ∈ 𝑪𝑟×𝑝 in such a way that 

𝑳0 = 𝑸𝑹 = 𝑸(𝑹𝟏
𝟎
)                                 (3.71a) 

where 𝑹𝟏 ∈ 𝑪𝑝×𝑝 is an upper-triangular matrix. 𝑳0
+ can be represented as  

𝑳𝟎
+ = (𝑹𝟏

−1 𝟎)𝑸𝐻                 (3.71b) 

where 𝑳𝟎
+ ∈ 𝑪𝑝×𝑟 and the superscript 𝐻 denotes the conjugate transpose.  
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According to the SVD method, for any matrix 𝑳0 ∈ 𝑪𝑟×𝑝 of rank ℎ there exist unitary 

matrices 𝑼 ∈ 𝑪𝑟×𝑟 and 𝑽 ∈ 𝑪𝑝×𝑝 such that  

𝑳𝟎 = 𝑼𝑺𝑽𝐻,     𝑺 = (
𝑺1 𝟎
𝟎 𝟎

)        (3.72a) 

where 𝑺 ∈ 𝑪𝑟×𝑝 , 𝑺1 = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, 𝜎3, … , 𝜎ℎ) and 

𝜎1 ≥ 𝜎2 ≥ 𝜎3 ≥ ⋯ ≥ 𝜎ℎ > 0        (3.72b) 

are the singular values of 𝑳0. The pseudo-inverse can be expressed in the form of 

𝑳0
+ = 𝑽(𝑺1

−1 𝟎
𝟎 𝟎

)𝑼𝐻.                                        (3.72c) 

The construction of the efficient solver begins with the re-arrangement of matrix 𝑳𝟎 [39]. 

The largest square matrix 𝑨 of the size 𝑞 × 𝑞 is extracted from 𝑯 in a manner similar to 

that described in Subsection 3.6 resulting in the matrix structure illustrated in Figure 

3.13B. The 𝑨 and 𝑩 matrices have block-diagonal structures, while the rectangular 

matrices 𝑪0 and 𝑫0 are of sizes (𝑟 − 𝑞) × 𝑞 and (𝑟 − 𝑞) × (𝑝 − 𝑞), respectively (see 

Figure 3.13B). The system (3.69) can now be written in the following form 

𝑨𝒙1 + 𝑩𝒙2 = (𝒛0)1,     𝑪0𝒙1 + 𝑫0𝒙2 = (𝒛0)2      (3.73a,b) 

where vectors 𝒙1 and 𝒙2 contain unknowns 𝐺𝑘
〈𝑛〉

, 𝑛 ∈ 〈−𝑁𝑀, 𝑁𝑀〉, for 𝑘 ∈ 〈4, 𝑁𝑇 − 1〉 

and 𝑘 ∈ 〈0,3〉, respectively. The right hand side vector is presented as [(𝒛0)1 (𝒛0)2]
𝑇 =

𝒛0 where vectors (𝒛0)1 and (𝒛0)2 have sizes 𝑞 and 𝑟 − 𝑞, respectively. The solution of 

(3.73) has the form 

𝒙2 = (𝑫0 − 𝑪0𝑨
−1𝑩)+[(𝒛0)2 − 𝑪0𝑨

−1(𝒛0)1],     𝒙1 = 𝑨−1[(𝒛0)1 − 𝑩𝒙2]           (3.74a,b) 

where 𝑨−1(𝒛0)1 and 𝑨−1𝑩 can be computed block by block in order to reduce the 

computational time and memory requirements. One should note that the part of the 

system corresponding to the field equations is solved exactly while the part 

corresponding to the boundary constraints is solved in the least squares sense. 
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                                            (A)                                                (B) 

Figure 3.13: Structure of the coefficient matrix 𝑳𝟎 for 𝑵𝑴 = 𝟓, 𝑴𝑴 = 𝟏𝟎 and 𝑵𝑻 = 𝟑𝟏 

resulting from the use of the over-determined IBC method. Black identifies the non-zero 

elements. Figure 3.13A displays the coefficient matrix before the re-arrangement whereas 

Figure 3.13B displays its structure after the re-arrangement (see Subsection 3.8). 

Figure 3.14 displays Fourier spectra of the boundary error along the vibrating wall (see 

Eq. (3.68)) for the same conditions as in Figure 3.7. It can be seen that the error is 

distributed over several modes including modes with 𝑛 < 𝑁𝑀 which is expected from the 

least squares solution.  Figure 3.15 illustrates variations of the error as a function of the 

wave amplitude 𝐴 obtained using SVD and QR methods. If one considers the maximum 

acceptable error to be at the level of 10−6, the over-determined formulation expands the 

range of applicability of the IBC method by approximately 40% when measured in terms 

of the wave amplitude 𝐴. There is no advantage to using either SVD or QR techniques. 

The same results demonstrate that there is an optimal value of 𝑀𝑀 which provides the 

best accuracy at a minimal cost as an increase in the number of boundary relations used 

in the computations beyond this value does not improve the accuracy of the results (see 

Figure 3.15); the optimal 𝑀𝑀 is approximately equal to 1.5𝑁𝑀. Figure 3.16 illustrates 

error variations as a function of the wave amplitude resulting from the use of different 

numbers of Fourier modes 𝑁𝑀 combined with the optimal number of boundary relations. 
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These results demonstrate a significant expansion in the applicability of the IBC method 

provided by the over-determined formulation. 

 

Figure 3.14: Fourier spectra of the error in the enforcement of the boundary conditions 

along the vibrating wall (see Eq. (3.68)) for the wave with shape described by Eq. (3.64) 

with wave number  = 5 and amplitude 𝐴 = 0.05. Calculations have been carried out for 

𝑅𝑒 = 5 and 𝑐 = 1.3 using 𝑁𝑀 = 20 Fourier modes, 𝑀𝑀 = 30 boundary relations and 

𝑁𝑇 = 80 Chebyshev polynomials. 
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Figure 3.15: Variations of the ‖𝑢𝐿‖∞ norm as a function of the wave amplitude 𝐴 for the 

wave shape described by Eq. (3.64) with wave number 𝛼 = 2 and phase speed 𝑐 = 1.3 

for 𝑅𝑒 = 1 resulting from the use of the over-determined method. Dashed and dotted 

lines correspond to results obtained using the SVD and QR factorization techniques, 

respectively. Calculations have been carried out using 𝑁𝑀 = 20 Fourier modes and 𝑁𝑇 =

100 Chebyshev polynomials. 
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Figure 3.16: Variations of the ‖𝑢𝐿‖∞ norm as a function of the wave amplitude 𝐴 for the 

wave shape described by Eq. (3.64) with phase speed 𝑐 = 1.3 and wave number 𝛼 = 2 

for Re = 1 determined using the over-determined formulation. Dashed and dotted lines 

correspond to results obtained using SVD and QR factorization techniques, respectively. 

Calculations have been carried out using 𝑁𝑇 = 100 Chebyshev polynomials and different 

numbers 𝑁𝑀 of Fourier modes and an optimal number 𝑀𝑀 of boundary relations.  

Figure 3.17 illustrates the velocity field in a channel where the lower wall vibrates 

resulting in the channel geometry of the form 

𝑌𝑈 = 1,      

𝑌𝐿 = −1 + 𝐴 sin[𝛼(𝑋 − 𝑐𝑡)] + 2𝐴 cos[4𝛼(𝑋 − 𝑐𝑡)] + 𝐴 cos[7𝛼(𝑋 − 𝑐𝑡)].  

(3.75) 

The velocity vector plot demonstrates the algorithm’s abilities to deal with complex 

vibrations.  
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(D) 

Figure 3.17: Plots of the velocity field in a vibrating channel whose geometry is 

described by Eq. (3.75) with 𝛼 = 1, 𝐴 = 0.02, 𝑅𝑒 = 5 and 𝑐 = 1.3. The black dot 

represents a reference point moving with the phase speed. Figures 3.17 A–D correspond 

to times 𝑡 = 𝑡0, 𝑡 = 𝑡0  + 𝑇 4⁄ , 𝑡 = 𝑡0 + 𝑇 2⁄ , 𝑡 = 𝑡0 + 3𝑇 4⁄ , respectively, where 𝑇 =

2𝜋 𝛼𝑐⁄  stands for a period of vibration and 𝑡0 denotes the time when the black dot was 

located at 𝑋 = 0. 𝑁𝑇 = 120 Chebyshev polynomials and 𝑁𝑀 = 60 Fourier modes have 

been used in the calculations. 
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Section 4 

4 Pressure Losses in Vibrating Channels 

 

Subsection 4.1 describes the determination of forces. Subsection 4.2 discusses the 

mechanics of drag generation in vibrating channels and provides solution for the long 

wavelength waves. Subsection 4.3 provides a solution for the small amplitude waves. 

Subsection 4.4 is devoted to parametrization of features of wave geometry that is relevant 

to pressure losses. 

 

4.1    Determination of Forces 

We shall use the solution method described in details in Section 3. Analysis of drag 

requires determination of forces acting on the fluid at the walls. It begins with the 

specification of the outwards normal unit vectors of the form 

𝒏𝑈 = (𝑛𝑈,𝑥, 𝑛𝑈,𝑦) = (−ℎ𝑈
′ , 1) [1 + (ℎ𝑈

′ )
2
]
−
1
2
, 

𝒏𝐿 = (𝑛𝐿,𝑥, 𝑛𝐿,𝑦) = (ℎ𝐿
′ , −1) [1 + (ℎ𝐿

′ )
2
]
−
1
2
. 

(4.1) 

The stress tensor is of the form 

�⃗⃗� = [
𝜎𝑥𝑥 𝜎𝑥𝑦

𝜎𝑦𝑥 𝜎𝑦𝑦
] = [

−𝑝0 − 𝑝1 + 2𝑅𝑒−1 𝜕𝑢1

𝜕𝑥
  𝑅𝑒−1 (

𝑑𝑢0

𝑑𝑦
+

𝜕𝑢1

𝜕𝑦
+

𝜕𝑣1

𝜕𝑥
)

𝑅𝑒−1 (
𝑑𝑢0

𝑑𝑦
+

𝜕𝑢1

𝜕𝑦
+

𝜕𝑣1

𝜕𝑥
) −𝑝0 − 𝑝1 + 2𝑅𝑒−1 𝜕𝑣1

𝜕𝑦

],  (4.2) 

the stresses 𝒇 = (𝑓𝑥  , 𝑓𝑦) and 𝒈 = (𝑔𝑥 , 𝑔𝑦) acting on the lower and upper walls, 

respectively, are evaluated as  

𝒇 = 𝒏𝐿 . �⃗⃗� |𝑦𝐿(𝑥)  ,  𝒈 = 𝒏𝑈. �⃗⃗� |𝑦𝑈(𝑥) (4.3) 
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with their components are written as  

𝑅𝑒 𝑓𝑥 = 𝑅𝑒(𝑓𝑥,𝑣𝑖𝑠𝑐 + 𝑓𝑥,𝑝𝑟𝑒𝑠) = 

[2𝑛𝐿,𝑥
𝜕𝑢1

𝜕𝑥
|
𝑦𝐿(𝑥)

 + 𝑛𝐿,𝑦 (
𝑑𝑢0

𝑑𝑦
+

𝜕𝑢1

𝜕𝑦
+

𝜕𝑣1

𝜕𝑥
)|

𝑦𝐿(𝑥)
] − 𝑅𝑒[𝑛𝐿,𝑥(𝑝0 + 𝑝1)|𝑦𝐿(𝑥)],  

(4.4a) 

𝑅𝑒 𝑓𝑦 = 𝑅𝑒(𝑓𝑦,𝑣𝑖𝑠𝑐 + 𝑓𝑦,𝑝𝑟𝑒𝑠) = 

[𝑛𝐿,𝑥 (
𝑑𝑢0

𝑑𝑦
+

𝜕𝑢1

𝜕𝑦
+

𝜕𝑣1

𝜕𝑥
)|

𝑦𝐿(𝑥)
+ 2𝑛𝐿,𝑦

𝜕𝑣1

𝜕𝑦
|
𝑦𝐿(𝑥)

] − 𝑅𝑒[𝑛𝐿,𝑦(𝑝0 + 𝑝1)|𝑦𝐿(𝑥)],  

 

(4.4b) 

𝑅𝑒 𝑔𝑥 = 𝑅𝑒(𝑔𝑥,𝑣𝑖𝑠𝑐 + 𝑔𝑥,𝑝𝑟𝑒𝑠) = 

[2𝑛𝑈,𝑥
𝜕𝑢1

𝜕𝑥
|
𝑦𝑈(𝑥)

+ 𝑛𝑈,𝑦 (
𝑑𝑢0

𝑑𝑦
+

𝜕𝑢1

𝜕𝑦
+

𝜕𝑣1

𝜕𝑥
)|

𝑦𝑈(𝑥)
] −  

                                                                             𝑅𝑒[𝑛𝑈,𝑥(𝑝0 + 𝑝1)|𝑦𝑈(𝑥)],   

 

(4.4c) 

𝑅𝑒 𝑔𝑦 = 𝑅𝑒(𝑔𝑦,𝑣𝑖𝑠𝑐 + 𝑔𝑦,𝑝𝑟𝑒𝑠) = 

[𝑛𝑈,𝑥 (
𝑑𝑢0

𝑑𝑦
+

𝜕𝑢1

𝜕𝑦
+

𝜕𝑣1

𝜕𝑥
)|

𝑦𝑈(𝑥)
+ 2𝑛𝑈,𝑦

𝜕𝑣1

𝜕𝑦
|
𝑦𝑈(𝑥)

] −                                                                                                   

                                                                                       𝑅𝑒[𝑛𝑈,𝑦(𝑝0 + 𝑝1)|𝑦𝑈(𝑥)] 

 

(4.4d) 

where  𝑓𝑥,𝑣𝑖𝑠𝑐, 𝑓𝑦,𝑣𝑖𝑠𝑐 , 𝑔𝑥,𝑣𝑖𝑠𝑐, 𝑔𝑦,𝑣𝑖𝑠𝑐 arise due to the friction, and 𝑓𝑥,𝑝𝑟𝑒𝑠 , 𝑓𝑦,𝑝𝑟𝑒𝑠 , 𝑔𝑥,𝑝𝑟𝑒𝑠 

, 𝑔𝑦,𝑝𝑟𝑒𝑠 are generated by the pressure. The total force per unit length of the channel 

acting at the lower wall 𝐹 = ((𝐹𝑥,𝑣𝑖𝑠𝑐 + 𝐹𝑥,𝑝𝑟𝑒𝑠) , (𝐹𝑦,𝑣𝑖𝑠𝑐 + 𝐹𝑦,𝑝𝑟𝑒𝑠)) can be expressed as 

𝑅𝑒 𝐹𝑥,𝑣𝑖𝑠𝑐 = 𝑅𝑒 {∫ 𝑓𝑥,𝑣𝑖𝑠𝑐 [1 + (ℎ𝐿
′ )

2
]

1

2
𝑑𝑥

2𝜋

𝛼
0

} 𝜆,⁄     

 𝑅𝑒 𝐹𝑥,𝑝𝑟𝑒𝑠 = 𝑅𝑒 {∫ 𝑓𝑥,𝑝𝑟𝑒𝑠 [1 + (ℎ𝐿
′ )

2
]

1

2
𝑑𝑥

2𝜋

𝛼
0

} 𝜆⁄ , 

(4.5a-b) 
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𝑅𝑒 𝐹𝑦,𝑣𝑖𝑠𝑐 = 𝑅𝑒 {∫ 𝑓𝑦,𝑣𝑖𝑠𝑐 [1 + (ℎ𝐿
′ )

2
]

1

2
𝑑𝑥

2𝜋

𝛼
0

} 𝜆⁄ ,   

𝑅𝑒 𝐹𝑦,𝑝𝑟𝑒𝑠 = 𝑅𝑒 {∫ 𝑓𝑦,𝑝𝑟𝑒𝑠 [1 + (ℎ𝐿
′ )

2
]

1

2
𝑑𝑥,

2𝜋

𝛼
0

} 𝜆⁄ ,  

 

(4.5c-d) 

with the required integrations to be done numerically. Expressions for the total force for 

one wavelength per unit length of the channel acting on the upper wall  𝐺 =

((𝐺𝑥,𝑣𝑖𝑠𝑐 + 𝐺𝑥,𝑝𝑟𝑒𝑠) , (𝐺𝑦,𝑣𝑖𝑠𝑐 + 𝐺𝑦,𝑝𝑟𝑒𝑠)) can be written in a similar manner. 

 

4.2    Mechanics of Drag Generation 

A pressure gradient needs to be applied along the channel in order to produce a desired 

flow rate. We shall refer to this pressure gradient as a pressure loss. The introduction of 

surface vibration may increase or decrease this pressure loss depending on the vibration 

amplitude, phase speed, wavelength and flow conditions. The pressure gradient 

correction can be represented in the form of 

𝜕𝑝1

𝜕𝑥
=

𝜕𝑝𝑇

𝜕𝑥
−

𝜕𝑝0

𝜕𝑥
  (4.6) 

where a negative 𝜕𝑝1 𝜕𝑥⁄  corresponds to an increase of losses while the positive value 

corresponds to drag decrease. 

It is convenient to use small wave number approximation (𝛼 → 0) to discuss the physical 

processes leading to the drag generation as this approximation yields an analytic solution. 

Consider problem (3.2) expressed in terms of the total flow quantities and with a 

sinusoidal wave propagating along the lower wall resulting in the shape of the flow 

domain of the form 

𝑦𝑈 (𝑥) =  1,       𝑦𝐿 (𝑥) =  −1 + 𝐴 cos(𝛼𝑥).         (4.7a) 
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The boundary conditions and the flow rate constraint take the form of 

𝑦 = 𝑦𝑈(𝑥):             𝑢𝑇  = 𝑣𝑇  = 0,          (4.7b) 

𝑦 = 𝑦𝐿(𝑥):             𝑢𝑇 = 0,   𝑣𝑇 = 𝑐 𝐴 𝛼 sin(𝛼𝑥),       (4.7c) 

(∫ 𝑢𝑇  
𝑦𝑈(𝑥)

𝑦𝐿(𝑥)
𝑑𝑦)|

𝑚𝑒𝑎𝑛
=

4

3
 .                                                                                           (4.7d) 

The solution domain is regularized using transformation of the form  

𝜉 = 𝛼𝑥, 𝜂 = (𝑦 − 1) [1 −
1

2
𝐴 cos(𝛼𝑥)]

−1

+ 1          (4.8) 

which maps the original irregular domain into 𝜂 ∈ 〈−1,1〉 and introduces a wavelength-

based scale in the 𝑥-direction which accounts for the flow modulation due to the wave 

motion. Field equations after transformation take the form 

𝜕2𝑢𝑇

𝜕𝜂2 + [𝐹1 − 𝐹2(𝑢𝑇 − 𝑐) − 𝐹3𝑣𝑇]
𝜕𝑢𝑇

𝜕𝜂
+ 𝐹4

𝜕2𝑢𝑇

𝜕𝜉𝜕𝜂
+                

                                            𝐹5
𝜕2𝑢𝑇

𝜕𝜉2 − 𝐹6(𝑢𝑇 − 𝑐)
𝜕𝑢𝑇

𝜕𝜉
− 𝐹6

𝜕𝑝𝑇

𝜕𝜉
− 𝐹2

𝜕𝑝𝑇

𝜕𝜂
= 0,            (4.9a) 

𝜕2𝑣𝑇

𝜕𝜂2 + [𝐹1 − 𝐹2(𝑢𝑇 − 𝑐) − 𝐹3𝑣𝑇]
𝜕𝑣𝑇

𝜕𝜂
+ 𝐹4

𝜕2𝑣𝑇

𝜕𝜉𝜕𝜂
+                                 

                                            𝐹5
𝜕2𝑣𝑇

𝜕𝜉2 − 𝐹6(𝑢𝑇 − 𝑐)
𝜕𝑣𝑇

𝜕𝜉
− 𝐹3

𝜕𝑝𝑇

𝜕𝜂
= 0,                           (4.9b) 

𝛼
𝜕𝑢𝑇

𝜕𝜉
+ 𝐹7

𝜕𝑢𝑇

𝜕𝜂
+ 𝐹8

𝜕𝑣𝑇

𝜕𝜂
= 0,          (4.9c) 

with definitions of the coefficients given in Appendix B. The boundary conditions and 

the constraint take the form 

𝑢(𝜉, 1) = 𝑣(𝜉, 1) = 0,     𝑢(𝜉, −1) = 0,     𝑣(𝜉, −1) = 𝑐 𝐴 𝛼 sin(𝜉),                                  

                                         (
1

2
𝐺1 ∫ 𝑢𝑇 

1

−1
𝑑𝜂)|

𝑚𝑒𝑎𝑛
=

4

3
 .                                               (4.10a-d)                                                          

The unknowns can be represented as expansions of the form 
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(𝑢𝑇 , 𝑣𝑇) = (�̃�0, �̃�0) + 𝛼(�̃�1, �̃�1) + 𝑂(𝛼2),     𝑝𝑇 = 𝛼−1𝑝−1 + 𝑝0 + 𝑂(𝛼)    (4.11) 

and the flow rate constraint can be expressed as  

(𝐺1 ∫ [�̃�0 + 𝛼�̃�1 + 𝑂(𝛼2)]𝑑𝜂
𝜂=1

𝜂=−1
)|

𝑚𝑒𝑎𝑛
=

8

3
 .       (4.12) 

The variable coefficients in (4.9) are replaced by their small-𝛼 approximations (see 

Appendix B), (4.11) is substituted into (4.9)-(4.10) and terms of the same orders of 

magnitude are separated resulting in a sequence of problems with the leading order 

system being of the form 

𝜕2𝑢0

𝜕𝜂2 −
1

2
𝑅𝑒 𝐺1�̃�0

𝜕𝑢0

𝜕𝜂
−

1

4
𝑅𝑒 𝐺1

2 𝜕�̃�−1

𝜕𝜉
+

1

4
𝑅𝑒 𝐴 sin(𝜉)𝐺1(𝜂 − 1)

𝜕�̃�−1

𝜕𝜂
= 0,                (4.13a) 

𝜕�̃�−1

𝜕𝜂
= 0,        

𝜕�̃�0

𝜕𝜂
= 0,                                   (4.13b-c) 

�̃�0(𝜉, ±1) = �̃�0(𝜉, ±1) = 0,      (𝐺1 ∫ �̃�0
𝜂=1

𝜂=−1
𝑑𝜂)|

𝑚𝑒𝑎𝑛
=

8

3
.            (4.13d-e) 

Its solution can be written as 

𝑑�̃�−1

𝑑𝜉
= −16𝑅𝑒−1𝐺1

−3 + 𝑐 12 𝐴 𝑅𝑒−1𝐺1
−3cos(𝜉)  ,                 (4.14a) 

�̃�0 = 2(1 − 𝜂2)𝐺1
−1 − 𝑐

 3

2
𝐴  (1 − 𝜂2) cos(𝜉)𝐺1

−1 ,         �̃�0 = 0.                       (4.14b-c) 

Integration of (4.14a) gives expression for pressure of the form 

𝑅𝑒 𝑝−1 = −(4 +
𝐴2

2
)𝐵(𝜉) − (8 −

𝐴2

2
− 3𝐴 cos(𝜉))𝐴 sin(𝜉) (1 −

𝐴2

4
)
−2

𝐺1
−2 −  

              𝑐 {−
9

4
𝐴2𝐵(𝜉) + (

−3𝐴2−24

4
+ 

6+3𝐴2

4
𝐴 cos(𝜉))𝐴 sin(𝜉) (1 −

𝐴2

4
)
−2

𝐺1
−2},  (4.14d) 

where 
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 𝐵(𝜉) = (1 −
𝐴2

4
)
−

5

2
[arctan((1 +

𝐴

2
)

1

2
(1 −

𝐴

2
)
−

1

2
tan (

𝜉

2
)) + 𝜋 ⌊

𝜉+𝜋

2𝜋
⌋].                  (4.14e)               

In the above, symbol ⌊… ⌋ stands for the floor function which needs to be added in order 

to remove spurious discontinuities associated with the arctan function (Jeffrey & Rich 

1994). Pressure has been normalized by assuming that 𝑝−1 = 0 at 𝜉 = 0. As this point 

moves in the laboratory frame (it moves as 𝑋 = 𝑐𝑡), it is preferable to normalize pressure 

by selecting its value at a stationary point in the laboratory frame, say at 𝑋 = 0. Pressure 

normalized in this manner is denoted as 𝑝−1 and can be expressed as 

𝑅𝑒 𝑝−1(𝑋, 𝑡) = 𝑅𝑒 𝑝−1[𝛼(𝑋 − 𝑐𝑡)] − 𝑅𝑒 𝑝−1(−𝛼𝑐𝑡).      (4.15)  

Useful information about  𝑝−1 can be gained by noting that 𝑑𝑝−1 𝑑𝜉⁄  in (4.14a) is an 

even function of 𝜉, expressing it as a Fourier expansion and integrating this expansion 

with respect to 𝜉 term by term to arrive at at the following expression in the moving 

frame  

𝑅𝑒 𝑝−1 = (1 −
𝐴2

4
)

−5

2
[−2(1 +

𝐴2

8
) +

9

8
𝑐𝐴2] 𝜉 +               

                                        𝐴 (1 −
𝐴2

4
)

−5

2
[−3 +

3

2
𝑐 (1 +

𝐴2

2
)] sin(𝜉) + ⋯                   (4.16a) 

and an alternative expression in the laboratory frame 

𝑅𝑒 𝑝−1 = (1 −
𝐴2

4
)

−5

2
[−2(1 +

𝐴2

8
) +

9

8
𝑐𝐴2] 𝛼𝑋 +  

                        2𝐴 (1 −
𝐴2

4
)

−5

2
[−3 +

3

2
𝑐 (1 +

𝐴2

2
)] sin

𝛼𝑋

2
 cos (

𝛼𝑋

2
− 𝛼𝑐𝑡) + ⋯. (4.16b) 

The mean pressure gradient can be directly computed from (4.16). 

The next order system has the form 
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𝜕2𝑢1

𝜕𝜂2
−

1

2
𝑅𝑒 𝐺1

𝜕𝑢0

𝜕𝜂
�̃�1 −

1

4
𝑅𝑒 𝐺1

2 𝜕�̃�0

𝜕𝜉
+

1

4
𝑅𝑒 𝐴 sin(𝜉) 𝐺1(𝜂 − 1)

𝜕�̃�0

𝜕𝜂
=  

                     − 
1

4
𝑅𝑒 𝐴 sin(𝜉) 𝐺1(𝜂 − 1)(�̃�0 − 𝑐)

𝜕𝑢0

𝜕𝜂
+

1

4
𝑅𝑒 𝐺1

2(�̃�0 − 𝑐)
∂𝑢0

𝜕𝜉
,            (4.17a) 

𝜕�̃�0

𝜕𝜂
= 0,       

𝜕�̃�1

𝜕𝜂
=

1

2
𝐴(𝜂 − 1)sin(𝜉)

𝜕𝑢0

𝜕𝜂
−

1

2
𝐺1

𝜕𝑢0

𝜕𝜉
,                                    (4.17b-c) 

�̃�1(𝜉, 1) = �̃�1(𝜉, 1) = 0,       �̃�1(𝜉, −1) = 0,        �̃�1(𝜉, −1) = 𝑐 𝐴 sin(𝜉),              (4.17d-f) 

(∫ �̃�1
𝜂=1

𝜂=−1
𝑑𝜂)|

𝑚𝑒𝑎𝑛
= 0                                                                             (4.17g) 

and its solution can be written as 

𝑑�̃�0

𝑑𝜉
=

96

35
𝐴 sin(𝜉)𝐺1

−3 − 
𝑐

35
𝐴 sin(𝜉)𝐺1

−2[(36𝐴 cos(𝜉) + 216)𝐺1
−1 + 28] +  

         
𝑐2

35
𝐴 sin(𝜉)𝐺1

−2[(−27𝐴2 cos2(𝜉) + 162𝐴 cos(𝜉))𝐺1
−1 − 21𝐴 cos(𝜉) + 84],  (4.18a) 

�̃�1 = 𝑅𝑒 𝐴 sin(𝜉)𝐺1
−1𝐻8  + 𝑐 𝑅𝑒 𝐴 sin(𝜉)[𝐺1

−1𝐴 cos(𝜉)𝐻5 + 𝐺1
−1𝐻6 + 𝐻7] +  

      𝑐2𝑅𝑒 𝐴 sin(𝜉) [𝐺1
−1𝐴2 cos2(𝜉)𝐻1 + 𝐺1

−1𝐴 cos(𝜉)𝐻2 +
3

4
𝐴 cos(𝜉)𝐻3 −

3

4
𝐻4],  (4.18b) 

�̃�1 = −2𝐴 sin(𝜉)𝐺1
−1𝐻11 − 𝑐 2𝐺1

−1𝐴 sin(𝜉)[ 𝐻9 − 𝐴 cos(𝜉)𝐻10],                          (4.18c) 

𝑅𝑒 𝑝0 = 𝑅𝑒 {−
48

35
𝐺1

−2 +
12

35
(1 −

𝐴

2
)
−2

−  

                 
𝑐

35
[−128 𝐺1

−2 − 8𝐴 cos(𝜉)𝐺1
−2 + 2(𝐴 + 16) (1 −

𝐴

2
)
−2

] +  

                       
𝑐2

35
[(−84 − 12𝐴 cos(𝜉))𝐺1

−2 + 3(7 + 𝐴) (1 −
𝐴

2
)
−2

− 6 ln
𝐺1

2−𝐴
]}       (4.18d) 

with definitions of the relevant coefficients given in Appendix B. Pressure has been 

normalized with condition 𝑝0 = 0 at 𝜉 = 0. Normalization with respect to the laboratory 

frame can be determined in a similar process to (4.15). It can be shown that 𝑝0 does not 

contribute to the mean pressure gradient as  
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𝑑�̃�0

𝑑𝜉
|
𝑚𝑒𝑎𝑛

=
1

2𝜋
∫

𝑑�̃�0

𝑑𝜉
𝑑𝜉 = 0

𝜋

–𝜋
          (4.19) 

which leads to the final expression for the mean pressure gradient of the form 

𝑅𝑒
𝑑𝑝𝑇

𝑑𝑥
|
𝑚𝑒𝑎𝑛

= −2(1 −
𝐴2

4
)
−

5

2
(1 +

𝐴2

8
−

9

16
𝑐 𝐴2) + 𝑂(𝛼2).                        (4.20) 

The pressure gradient correction required in order to maintain the same flow rate in the 

presence of the waves has the form 

𝑅𝑒
𝑑𝑝1

𝑑𝑥
= 𝑅𝑒 (

𝑑𝑝𝑇

𝑑𝑥
−

𝑑𝑝0

𝑑𝑥
) = −2 (1 −

𝐴2

4
)
−

5

2
(1 +

𝐴2

8
−

9

16
𝑐 𝐴2) + 2 + 𝑂(𝛼2).    (4.21) 

Since 𝐴 < 2, the first bracket on the right hand side of (4.21) is always positive and, thus, 

the pressure gradient correction is negative in the absence of the waves (𝑐 = 0), i.e. the 

stationary grooves always increase drag. Drag can be reduced with the waves that 

propagate in the positive 𝑥-direction. The wave speed which completely eliminates drag 

is referred to as the critical wave speed 𝑐𝑐𝑟 and is defined as 

𝑐𝑐𝑟 =
16

9
𝐴−2 (1 +

𝐴2

8
).                (4.22) 

Use of waves with 𝑐 > 𝑐𝑐𝑟 creates pumping effect sufficient to move the fluid without the 

need to apply an external pressure gradient. 

We shall now describe mechanisms responsible for changes in the drag. In the case of 

smooth walls the drag is generated only by viscous shear. In the case of stationary 

corrugations (𝑐 = 0), pressure contributes to the drag due to the interaction between the 

surface topography and the pressure field. At the same time, corrugations increase the 

wetted surface area and alter the distribution of the wall shear stress (Mohammadi & 

Floryan, 2012b). Moving surface waves (𝑐 ≠ 0) create more complex situation as 

described below.  

Determination of forces acting on the fluid at the walls begins with the specification of 

the outwards normal unit vectors, i.e. 
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𝒏𝑈 = (0, 1),                             𝒏𝐿 = [−𝐴 𝛼 sin(𝜉) + 𝑂(𝛼3),−1 + 𝑂(𝛼2)].                (4.23) 

In the case of the lower wall, use of (4.23) and (4.4a) leads to the x-component of the 

shear stress of the form 

𝑅𝑒 𝑓𝑥,𝑣𝑖𝑠𝑐 = 𝐺1
−2[−8 + 6 𝑐 𝐴 cos(𝜉)] + 𝑅𝑒 𝛼 𝐺1

−1 {
32

105
𝐴 sin(𝜉)𝐺1

−1 −  

                        𝑐 𝐴 sin(𝜉) [
124

105
𝐴 cos(𝜉)𝐺1

−1 −
152

105
𝐺1

−1 +
16

15
] −  

                            𝑐2𝐴 sin(𝜉) [−
5

7
𝐴2cos2(𝜉)𝐺1

−1 +
38

35
𝐴 cos(𝜉)𝐺1

−1 −  

                                 
7

10
𝐴 𝑐os(𝜉) −

1

5
]} + 𝑂(𝛼2),                                                         (4.24) 

and demonstrates that its distribution is fixed with respect to the moving wave. 

Integration of (4.24) over one wavelength gives the 𝑥-component of the shear force per 

unit length of the channel of the form 

𝑅𝑒 𝐹𝑥,𝑣𝑖𝑠𝑐 = (1 −
𝐴2

4
)
−

3

2
(−2 + 𝑐

3

4
𝐴2) +  𝑂(𝛼2) .             (4.25) 

The second term on the right hand side of (4.24) does not contribute to this force due to 

being an odd function of 𝜉. Equation (4.25) demonstrates that the positive 𝑐 reduces the 

magnitude of the shear force until it reaches zero at  

𝑐𝑐𝑟,𝑣 =
8

3
𝐴−2                                                                                                                 (4.26) 

with further increase of 𝑐 resulting in 𝐹𝑥,𝑣𝑖𝑠𝑐 assisting with the fluid pumping. It is 

interesting to note that 𝑐𝑐𝑟,𝑣 is never smaller than 2 3⁄ ; reduction of 𝐴 leads to larger 𝑐𝑐𝑟,𝑣. 

Distribution of the 𝑥-component of the normal stress generated by the pressure has the 

form 

𝑅𝑒 𝑓𝑥,𝑝𝑟𝑒𝑠 = 𝑅𝑒 𝐴 sin(𝜉)[�̃�−1 + 𝛼𝑝0 + 𝑂(𝛼2)]        (4.27) 
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and its integration over one wavelength, say from 𝛾 to 𝛾 + 2𝜋, gives the 𝑥-component of 

the pressure force. Substitution of (4.16a) and (4.18d) into (4.27) and integration show 

that terms omitted in (4.16a) as well as 𝑝0 do not contribute to 𝐹𝑥,𝑝𝑟𝑒𝑠 (integrals of 

𝑠𝑖𝑛(𝜉)𝑠𝑖𝑛(𝑛𝜉) with 𝑛 > 1 over one period are zero; integrals of odd functions are zero). 

As a result 𝐹𝑥,𝑝𝑟𝑒𝑠 can be expressed as  

𝑅𝑒 𝐹𝑥,𝑝𝑟𝑒𝑠 = 𝑅𝑒(𝐹𝑥,𝑓𝑜𝑟𝑚 + 𝐹𝑥,𝑖𝑛𝑡𝑒𝑟) =      

                            𝐴 (1 −
𝐴2

4
)
−

5

2
[2 +

𝐴2

4
−

9

8
𝑐𝐴2] cos(𝛾) −                 

                                     𝐴2 (1 −
𝐴2

4
)
−

5

2
[
3

2
− 𝑐 (

3

8
𝐴2 +

3

4
)] + 𝑂(𝛼2),                            (4.28) 

where the first term on the right hand side is associated with the mean pressure gradient 

and is referred to as the form drag (Mohammadi & Floryan, 2012b). This force is a 

periodic function of 𝛾 with the amplitude given by the curly bracket and its sign depends 

on the segment of the wave being considered, i.e. depends on the value of 𝛾. Positive 𝑐 

decreases its magnitude until it reaches zero at 

𝑐𝑐𝑟,𝑝𝑓 =
4

9
𝐴−2 (4 +

𝐴2

2
).                                                                                               (4.29) 

Further increase of 𝑐 changes direction of this force and it begins to assist with the fluid 

movement rather than opposing it (This argument is correct only if cos(𝛾) < 0). The 

second term on the right hand side of (4.28) arises out of the interaction of the periodic 

part of  𝑝−1 with the surface wave and is referred to as the interaction drag (Mohammadi 

& Floryan, 2012b). Positive 𝑐 reduces the magnitude of this force until it reaches zero at 

 𝑐𝑐𝑟,𝑝𝑖 = 3(
3

4
𝐴2 +

3

2
)
−1

 .                                                                                              (4.30) 

Further increase of 𝑐 results in the change of direction so that this force assists with the 

fluid movement.  
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Sum of 𝐹𝑥,𝑣𝑖𝑠𝑐 and 𝐹𝑥,𝑝𝑟𝑒𝑠 gives the 𝑥-component of the total force which is reduced when 

𝑐 increases and reaches zero at 

𝑐𝑐𝑟,𝑡𝑜𝑡 = 𝐴−2 {4 − 𝐴 (1 −
𝐴2

4
)
−1

[(4 +
𝐴2

2
) cos(𝛾) − 3𝐴]} ×                          

                                                     {
3

2
− (1 −

𝐴2

4
)
−1

[
9

4
𝐴cos(𝛾) − (

3

4
𝐴2 +

3

2
)]}

−1

.       (4.31) 

Figure 4.1 displays variations of the critical wave speeds as functions of 𝐴.  

 

Figure 4.1: Variations of the critical wave speed of the long wavelength waves as a 

function of the wave amplitude 𝐴 for waves with profile described by Eq. (4.7).  

The reader may note that the critical wave speeds are never smaller than 2 3⁄  and 𝑐𝑐𝑟,𝑣, 

𝑐𝑐𝑟,𝑝𝑓, 𝑐𝑐𝑟,𝑡𝑜𝑡 increase rapidly when 𝐴 → 0. Point 𝐴 = 0 represents a limit point for which 

𝑐 plays no role. Figure 4.2 displays variations of the total surface force and all its 

components as functions of 𝑐 for selected values of 𝐴. It can be seen that these forces, 

regardless of their origin, assist with the fluid motion if 𝑐 is large enough. 
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                           (A)                                    (B)                                        (C) 

Figure 4.2: Variations of forces acting on the fluid at the lower wall in the limit of 𝛼 → 0 

as functions of the wave speed 𝑐 for the wave form described by Eq. (4.7) with: (A) 𝐴 =

0.1; (B) 𝐴 = 0.3; (C) 𝐴 = 0.5. Solid, dashed, dash-dotted lines and lines with circles on 

them correspond to 𝑅𝑒 ∗ 𝐹𝑥,𝑣𝑖𝑠𝑐, 𝑅𝑒 ∗ 𝐹𝑥,𝑓𝑜𝑟𝑚, 𝑅𝑒 ∗ 𝐹𝑥,𝑖𝑛𝑡𝑒𝑟, and 𝑅𝑒 ∗ 𝐹𝑥,𝑡𝑜𝑡𝑎𝑙(=

𝑅𝑒 ∗ (𝐹𝑥,𝑣𝑖𝑠𝑐 + 𝐹𝑥,𝑓𝑜𝑟𝑚 + 𝐹𝑥,𝑖𝑛𝑡𝑒𝑟)), respectively.     

We shall conclude this discussion by describing the 𝑦-component of surface forces acting 

on the fluid. We start with (4.23) and (4.4b) to get the 𝑦-component of the shear stress 

𝑅𝑒 𝑓𝑦,𝑣𝑖𝑠𝑐 = 𝛼 𝐴 𝐺1
−2[8 sin(𝜉) − 3𝑐 𝐴 sin(2𝜉)] + 𝑂(𝛼2)                                    (4.32) 

and note that its distribution is fixed with respect to the wave. Integration of (4.32) over 

one wavelength demonstrates that 𝐹𝑦,𝑣𝑖𝑠𝑐 = 𝑂(𝛼2), i.e. viscous forces can be neglected at 

this level of approximation. The 𝑦-component of the normal stress generated by the 

pressure has the form 

𝑅𝑒 𝑓𝑦,𝑝𝑟𝑒𝑠 = 𝑅𝑒[𝛼−1𝑝−1 + 𝑝0 + 𝑂(𝛼)].                      (4.33) 

Substitution of (4.18d) and (4.16a) into (4.33) and integration over one wavelength show 

that only the linear term from 𝑝−1 as well as 𝑝0 bring nonzero contributions to the total 

force per unit length of the channel, i.e.  

𝑅𝑒 𝐹𝑦,𝑝𝑟𝑒𝑠 = −𝛼−12(𝛾 + 𝜋) (1 −
𝐴2

4
)
−

5

2
(1 +

𝐴2

8
− 𝑐

9

16
𝐴2) −  
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12

35
𝑅𝑒 [(1 −

𝐴2

4
)
−

3

2
− (1 −

𝐴

2
)
−2

] +  

                              𝑐
2

35
𝑅𝑒 [(16 +

𝐴2

2
) (1 −

𝐴2

4
)
−

3

2
− (16 + 𝐴) (1 −

𝐴

2
)
−2

] −   

                                 𝑐2 3

35
𝑅𝑒 [(7 +

𝐴2

2
) (1 −

𝐴2

4
)
−

3

2
− (7 + 𝐴) (1 −

𝐴

2
)
−2

+  

                                             2ln [(1 + (1 −
𝐴2

4
)

1

2
) (2 − 𝐴)−1]] + 𝑂(𝛼).                   (4.34) 

The dominant (first) term on the right hand side is reduced to zero at 𝑐 =

(16 9⁄ )𝐴−2(1 + 𝐴2 8⁄ ). Variations of the second term are more complex as it is a 

quadratic function of 𝑐. The reader may note the dependence of 𝐹𝑦,𝑝𝑟𝑒𝑠 on 𝛾. 

Determination of forces acting at the upper wall follows a similar process; 𝑔𝑥,𝑣𝑖𝑠𝑐 as well 

as 𝐺𝑥,𝑣𝑖𝑠𝑐 are both the same as at the lower wall, i.e. 𝑔𝑥,𝑣𝑖𝑠𝑐 = 𝑓𝑥,𝑣𝑖𝑠𝑐, 𝐺𝑥,𝑣𝑖𝑠𝑐 = 𝐹𝑥,𝑣𝑖𝑠𝑐. 

Pressure does not generate any forces in the 𝑥-direction but generates force in the 𝑦-

direction that is equal and opposite to the pressure force at the lower wall, i.e. 𝐺𝑥,𝑝𝑟𝑒𝑠 =

0, 𝐺𝑦,𝑝𝑟𝑒𝑠 = −𝐹𝑦,𝑝𝑟𝑒𝑠.  

We complete this discussion by assessing the range of validity of the small-𝛼 solution. To 

do so, we compare pressure gradient corrections determined analytically and numerically. 

The error has been defined as a norm of the form  

‖
𝑑𝑝1

𝑑𝑥
‖

𝑚𝑎𝑥
= sup |(

𝑑𝑝1

𝑑𝑥
)
a
− (

𝑑𝑝1

𝑑𝑥
)
c
|,                                                                            (4.30) 

where subscripts “a” and “c” correspond to the asymptotic and complete solutions, 

respectively. Results displayed in Figure 4.3 demonstrate that the range of validity of the 

asymptotic solution extends up to 𝛼 = 𝑂(1) if 𝑅𝑒 is small (𝑅𝑒 = 0.1); at 𝑅𝑒 = 200 this 

range decreases to 𝛼 = 𝑂(10−1). 
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Figure 4.3: Variations of the norm ‖𝑑𝑝1 𝑑𝑥⁄ ‖𝑚𝑎𝑥 as a function of the wave number 𝛼 for 

the flow Reynolds numbers 𝑅𝑒 = 0.1 (dashed lines) and 𝑅𝑒 = 200 (solid lines) and 

phase speed 𝑐 = 1.3.  

 

4.3    Waves with Small Amplitudes 

Further insight into the mechanics of the flow response can be gained by considering 

waves with small amplitudes. We start with the model problem described by Eq. (4.7) 

and regularize the solution domain using a transformation of the form 

𝜉 = 𝑥, 𝜂 = (𝑦 − 1) [1 −
1

2
𝐴 cos(𝛼𝑥)]

−1

+ 1.                   (4.31) 

Field equations after transformation take the form 

𝜕2𝑢𝑇

𝜕𝜂2 + [𝐼1 − 𝐼2(𝑢𝑇 − 𝑐) − 𝐼3𝑣𝑇]
𝜕𝑢𝑇

𝜕𝜂
+ 𝐼4

𝜕2𝑢𝑇

𝜕𝜉𝜕𝜂
+                     

                                            𝐼5
𝜕2𝑢𝑇

𝜕𝜉2 − 𝐼6(𝑢𝑇 − 𝑐)
𝜕𝑢𝑇

𝜕𝜉
− 𝐼6

𝜕𝑝𝑇

𝜕𝜉
− 𝐼2

𝜕𝑝𝑇

𝜕𝜂
= 0,             (4.32a) 
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𝜕2𝑣𝑇

𝜕𝜂2
+ [𝐼1 − 𝐼2(𝑢𝑇 − 𝑐) − 𝐼3𝑣𝑇]

𝜕𝑣𝑇

𝜕𝜂
+ 𝐼4

𝜕2𝑣𝑇

𝜕𝜉𝜕𝜂
+                     

                                             𝐼5
𝜕2𝑣𝑇

𝜕𝜉2 − 𝐼6(𝑢𝑇 − 𝑐)
𝜕𝑣𝑇

𝜕𝜉
− 𝐼3

𝜕𝑝𝑇

𝜕𝜂
= 0,                          (4.32b) 

𝜕𝑢𝑇

𝜕𝜉
+ 𝐼7

𝜕𝑢𝑇

𝜕𝜂
+ 𝐼8

𝜕𝑣𝑇

𝜕𝜂
= 0,                                   (4.32c) 

𝑢(𝜉, 1) = 𝑣(𝜉, 1) = 0,     𝑢(𝜉, −1) = 0,     𝑣(𝜉, −1) = 𝑐 𝐴 𝛼 sin(𝛼𝜉),                      

                                         (
1

2
𝐿1 ∫ 𝑢𝑇 

1

−1
𝑑𝜂)|

𝑚𝑒𝑎𝑛
=

4

3
                                      (4.32d) 

with definitions of all coefficients given in Appendix C.  Assume that the waves have 

very small amplitude, i.e. 𝐴 → 0. The unknowns can be represented as expansions of the 

form 

(𝑢𝑇 , 𝑣𝑇) = (�̃�0, �̃�0) + 𝐴(�̃�1, �̃�1) + 𝐴2(�̃�2, �̃�2) + 𝑂(𝐴3),                           

                                                             𝑝𝑇 = 𝑝0 + 𝐴𝑝1 + 𝐴2𝑝2 + 𝑂(𝐴3),                   (4.33) 

and the flow rate constraint can be expressed as  

(𝐿1 ∫ [�̃�0 + 𝐴�̃�1 + 𝐴2�̃�2 + 𝑂(𝐴3)]𝑑𝜂
𝜂=1

𝜂=−1
)|

𝑚𝑒𝑎𝑛
=

8

3
 .                 (4.34) 

Substitution of (4.33) into (4.32) and separation of terms of the same orders of magnitude 

result in a sequence of problems with the leading order system having the form of 

𝜕2𝑢0

𝜕𝜂2 − 𝑅𝑒 �̃�0
𝜕𝑢0

𝜕𝜂
+

𝜕2𝑢0

𝜕𝜉2 − 𝑅𝑒(�̃�0 − 𝑐)
𝜕𝑢0

𝜕𝜉
− 𝑅𝑒

𝜕�̃�0

𝜕𝜉
= 0,                                         (4.35a) 

𝜕2�̃�0

𝜕𝜂2 − 𝑅𝑒 �̃�0
𝜕�̃�0

𝜕𝜂
+

𝜕2�̃�0

𝜕𝜉2 − 𝑅𝑒(�̃�0 − 𝑐)
𝜕�̃�0

𝜕𝜉
− 𝑅𝑒

𝜕�̃�0

𝜕𝜂
= 0,        

𝜕𝑢0

𝜕𝜉
+

𝜕�̃�0

𝜕𝜂
= 0,        (4.35b-c) 

�̃�0(𝜉, ±1) = �̃�0(𝜉, ±1) = 0,      ∫ �̃�0
𝜂=1

𝜂=−1
𝑑𝜂 =

4

3
.                                                  (4.35d-e) 

It can be shown that solution of (4.35) has the form 

𝑑�̃�0

𝑑𝜉
= −2𝑅𝑒−1,   �̃�0 = 1 − 𝜂2,    �̃�0 = 0,   �̃�0 = −2𝑅𝑒−1𝜉                                     (4.36a-d) 
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where pressure has been normalized with condition 𝑝0 = 0 at 𝜉 = 0. 

System 𝑂(𝐴) has the form 

𝜕2𝑢1

𝜕𝜂2
+

𝜕2𝑢1

𝜕𝜉2
− 𝑅𝑒(1 − 𝑐 − 𝜂2)

𝜕𝑢1

𝜕𝜉
+ 2𝑅𝑒 �̃�1𝜂 − 𝑅𝑒

𝜕�̃�1

𝜕𝜉
=   

   cos(𝛼𝜉)[2 − 𝛼2(𝜂2 − 𝜂)] − 𝛼 𝑅𝑒 sin(𝛼𝜉)[𝜂4 − 𝜂3 + (𝑐 − 1)𝜂2 + (1 − 𝑐)𝜂],    (4.37a) 

𝜕2�̃�1

𝜕𝜂2
+

𝜕2�̃�1

𝜕𝜉2
− 𝑅𝑒(1 − 𝑐 − 𝜂2)

𝜕�̃�1

𝜕𝜉
− 𝑅𝑒

𝜕�̃�1

𝜕𝜂
= 0,   

                                             
𝜕𝑢1

𝜕𝜉
+

𝜕�̃�1

𝜕𝜂
= −𝛼 sin(𝛼𝜉)(𝜂2 − 𝜂),                             (4.37b-c) 

�̃�1(𝜉, 1) = �̃�1(𝜉, 1) = 0,           �̃�1(𝜉, −1) = 0,          �̃�1(𝜉, −1) = 𝑐 𝛼 sin(𝛼𝜉),       (4.37d-f) 

∫ �̃�1𝑑𝜂 = (
2

3
− 𝑐) cos(𝛼𝜉).

𝜂=1

𝜂=−1
                                                                 (4.37g) 

The solution of (4.37) has the form 

[�̃�1(𝜉, 𝜂), �̃�1(𝜉, 𝜂), 𝑝1(𝜉, 𝜂)] = [�̃�1
(1)(𝜂), �̃�1

(1)(𝜂), 𝑝1
(1)(𝜂)]𝑒𝑖𝛼𝜉 +                

                                                                       [�̃�1
(−1)(𝜂), �̃�1

(−1)(𝜂), 𝑝1
(−1)(𝜂)]𝑒−𝑖𝛼𝜉 ,      (4.38) 

where �̃�1
(−1)

, �̃�1
(−1)

, 𝑝1
(−1)

 are complex conjugates of �̃�1
(1)

, �̃�1
(1)

, 𝑝1
(1)

. Substitution of (4.38) 

into (4.37), separation of Fourier modes and elimination of �̃�1
(1)

 and 𝑝1
(1)

 lead to the 

problem for �̃�1
(1)

 of the form 

𝐷4�̃�1
(1)

+ 𝛼[−𝑖 𝑅𝑒(1 − 𝑐 − 𝜂2) − 2𝛼]𝐷2�̃�1
(1)

+                      

                                    𝛼[𝛼3 + 𝑖 𝛼2𝑅𝑒(1 − 𝑐 − 𝜂2) − 2𝑖 𝑅𝑒]�̃�1
(1)

= 0,                     (4.39a) 

�̃�1
(1)(1) = 0,       �̃�1

(1)(−1) = −
1

2
𝑖 𝑐 𝛼,       𝐷�̃�1

(1)(1) = 0,       𝐷�̃�1
(1)(−1) = 𝑖 𝛼,   (4.39b-e)  
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where 𝐷 = 𝑑/𝑑𝜂. System (4.39) has been solved numerically using the standard Galerkin 

method and �̃�1
(1)

 and 𝑝1
(1)

 have been determined a posteriori using the following formulae 

�̃�1
(1)

= 𝑖 𝛼−1𝐷�̃�1
(1)

+
1

2
(𝜂2 − 𝜂),                                                                                (4.40a) 

𝑅𝑒 𝑝1
(1)

= 𝛼−2𝐷3�̃�1
(1)

+   

                               𝑅𝑒[−𝑖 𝛼−1(1 − 𝑐 − 𝜂2) − 𝑅𝑒−1]𝐷�̃�1
(1)

− 2𝑖 𝑅𝑒 𝛼−1𝜂�̃�1
(1)

.       (4.40b) 

System 𝑂(𝐴2) has the form 

𝜕2𝑢2

𝜕𝜂2 +
𝜕2𝑢2

𝜕𝜉2 − 𝑅𝑒(1 − 𝑐 − 𝜂2)
𝜕𝑢2

𝜕𝜉
+ 2𝑅𝑒 𝜂�̃�2 − 𝑅𝑒

𝜕�̃�2

𝜕𝜉
=  

{
1

2
𝛼2 cos(𝛼𝜉)(𝜂 − 1) −

1

2
𝛼 𝑅𝑒 sin(𝛼𝜉)[−𝜂3 + 𝜂2 + (1 − 𝑐)𝜂 + 𝑐 − 1] + 𝑅𝑒 �̃�1}

𝜕𝑢1

𝜕𝜂
+  

     𝑅𝑒[�̃�1 − cos(𝛼𝜉)(1 − 𝑐 − 𝜂2)]
𝜕𝑢1

𝜕𝜉
+  

           𝛼 {𝑅𝑒 sin(𝛼𝜉)�̃�1 +
1

2
𝛼[cos2(𝛼𝜉) + 2sin2(𝛼𝜉)]} (𝜂2 − 𝜂) +  

                     𝛼 sin(𝛼𝜉)(𝜂 − 1)
𝜕2𝑢1

𝜕𝜉𝜕𝜂
+ cos(𝛼𝜉)

𝜕2𝑢1

𝜕𝜉2 + 𝑅𝑒 cos(𝛼𝜉)𝜂�̃�1 −  

                                𝑅𝑒 cos(𝛼𝜉)
𝜕�̃�1

𝜕𝜉
−

1

2
𝛼 𝑅𝑒 sin(𝛼𝜉)(𝜂 − 1)

𝜕�̃�1

𝜕𝜂
+  

                                       
1

2
{𝛼 𝑅𝑒 sin(𝛼𝜉) cos(𝛼𝜉)[𝜂4 − 𝜂3 + (𝑐 − 1)𝜂2 + (1 − 𝑐)𝜂] −  

                                                cos2(𝛼𝜉) + 𝛼2sin2(𝛼𝜉)(𝜂 − 1)2},                             (4.41a) 

𝜕2�̃�2

𝜕𝜂2
+

𝜕2�̃�2

𝜕𝜉2
− 𝑅𝑒(1 − 𝑐 − 𝜂2)

𝜕�̃�2

𝜕𝜉
− 𝑅𝑒

𝜕�̃�2

𝜕𝜂
=   

    {
1

2
𝛼2cos(𝛼𝜉)(𝜂 − 1) −

1

2
𝛼 𝑅𝑒 sin(𝛼𝜉)[−𝜂3 + 𝜂2 + (1 − 𝑐)𝜂 + 𝑐 − 1] + 𝑅𝑒 �̃�1}

𝜕�̃�1

𝜕𝜂
+  

              𝛼 sin(𝛼𝜉)(𝜂 − 1)
𝜕2�̃�1

𝜕𝜉𝜕𝜂
+ cos(𝛼𝜉)

𝜕2�̃�1

𝜕𝜉2 +                                                                                                                                          
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                            𝑅𝑒[�̃�1 − cos(𝛼𝜉)(1 − 𝑐 − 𝜂2)]
∂�̃�1

𝜕𝜉
−

1

2
𝑅𝑒 cos(𝛼𝜉)

𝜕�̃�1

𝜕𝜂
,               (4.41b)                                                            

𝜕𝑢2

𝜕𝜉
+

𝜕�̃�2

𝜕𝜂
=

1

2
𝛼 sin(𝛼𝜉)(𝜂 − 1)

𝜕𝑢1

𝜕𝜂
−

1

2
cos(𝛼𝜉)

𝜕�̃�1

𝜕𝜂
−                                           

                                                              
1

2
𝛼 sin(𝛼𝜉) cos(𝛼𝜉)(𝜂2 − 𝜂),                      (4.41c) 

�̃�2(𝜉, ±1) = �̃�2(𝜉, ±1) = 0,        ∫ �̃�2𝑑𝜂 = (
1

3
−

1

2
𝑐)

𝜂=1

𝜂=−1
cos2(𝛼𝜉).                    (4.41d-e) 

The solution of (4.41) has the form  

[�̃�2(𝜉, 𝜂), �̃�2(𝜉, 𝜂), 𝑝2(𝜉, 𝜂) − 𝐴𝑝𝑐𝜉] = ∑ [�̃�2
(𝑛)(𝜂), �̃�2

(𝑛)(𝜂), 𝑝2
(𝑛)(𝜂)]𝑒𝑖𝑛𝛼𝜉𝑛=2

𝑛=−2 .        (4.42) 

Substitution of (4.42) into (4.41) and extraction of mode zero leads to the following 

system 

𝐷2�̃�2
(0)

+ 2𝑅𝑒 𝜂�̃�2
(0)

− 𝑅𝑒 𝐴𝑝𝑐 = 𝑔1,    𝐷
2�̃�2

(0)
− 𝑅𝑒 𝐷𝑝2

(0)
= 𝑔2,      𝐷�̃�2

(0)
= 𝑔3, (4.43a-c) 

�̃�2
(0)(𝜉, ±1) = �̃�2

(0)(𝜉, ±1) = 0,           ∫ 𝑢2
(0)

𝑑𝜂 =
1

6
−

1

4
𝑐

𝜂=1

𝜂=−1
                               (4.43d-e) 

with definitions of the relevant functions given in Appendix C. System (4.43) can be 

solved resulting in 

�̃�2
(0)

= −
1

4
(𝜂 − 1)𝐷(�̃�1

(−1)
+ �̃�1

(1)
),                                                                          (4.44a) 

�̃�2
(0)

=
1

2
𝑅𝑒 𝐴(𝜂2 − 1) + ∫ 𝐾(𝜃)

𝜂

−1
𝑑𝜃 −

1

2
(𝜂 + 1) ∫ 𝐾(𝜂)𝑑𝜂

1

−1
,                               (4.44b) 

𝑅𝑒 𝑝2
(0)

= −
1

4
[(𝜂 − 1)(𝐷2 − 𝛼2) + 𝐷](�̃�1

(−1)
+ �̃�1

(1)
) +    
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1

4
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                                                       +
1

4
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) + 𝑐𝑜𝑛𝑠𝑡,                           (4.44c)                     

𝑅𝑒 𝐴𝑝𝑐 =
3

2
∫ [∫ 𝐾(𝜃)𝑑𝜃

𝜂

−1
]𝑑𝜂 −

3

12
+

3

8
𝑐

1

−1
,                                                               (4.44d) 

where 

𝐾(𝜂) = ∫ [𝑔1 − 2𝑅𝑒 𝜂𝑣2
(0)

]
𝜂

−1
𝑑𝜂.                                                                               (4.44e) 

 

4.4    Arbitrary Waves 

We shall now discuss the system response to waves with arbitrary form, amplitude and 

wave speed. We start with the sinusoidal waves described by Eq. (4.7).  

4.4.1    Sinusoidal Waves on One Wall 

The overall channel geometry is described as  

𝑌𝑈 = 1,         𝑌𝐿 = −1 + 𝐴 cos[𝛼(𝑋 − 𝑐𝑡)]                                                                 (4.45a) 

which, after the Galileo transformation, can be expressed as 

𝑦𝑈 = 1,       𝑦𝐿 = −1 + 𝐴 cos(𝛼𝑥).                                                               (4.45b) 

Figure 4.4 illustrates the variations of the pressure gradient correction 𝑅𝑒(𝑑𝑝1 𝑑𝑥⁄ ) as a 

function of the phase speed 𝑐.   
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Figure 4.4: Variations of 𝑅𝑒(𝑑𝑝1 𝑑𝑥⁄ ) as a function of phase speed 𝑐 for the wave form 

defined by (4.45) for selected 𝛼 and 𝐴. Dashed and solid lines correspond to  𝑅𝑒 = 1 and 

𝑅𝑒 = 200, respectively.  

The stationary corrugation (𝑐 = 0) represents the reference case. Such corrugation 

generates pressure losses whose magnitude increases with an increase of both 𝐴 and 𝛼. 

The drag decreases for waves propagating in the downstream directions with a 

sufficiently high phase speed, and the magnitude of the decrease is larger for waves with 

larger 𝛼 and 𝐴. The qualitative character of the system response is not affected by the 

Reynolds number in the range of 𝑅𝑒 studied but the quantitative character is affected by 

𝑅𝑒 as the surface vibrations are more effective in reducing drag at small 𝑅𝑒. In general, 

the pressure gradient correction increases with 𝑐, from negative values at negative 𝑐 to 

positive values at large enough 𝑐. This pattern is altered for 𝑐 ∈ (0,1) but only when Re is 

large enough. The reader may note that in such case the wave speed is equal to the fluid 

velocity in the interior of the channel. Results displayed in Figure 4.4 demonstrate that 

use of waves with certain values of 𝑐 in this range results in a significant drag increase, 

and this increase is larger for larger 𝐴. Results displayed in Figure 4.5 demonstrate that 

the drag increase occurs only for 𝛼 = 𝑂(1) with the largest effect taking place when 𝛼 ∈



69 

 

(2,3). A sufficient reduction of 𝛼 eliminates this effect as well as a sufficient increase of 

𝛼.  

 

Figure 4.5: Variations of 𝑅𝑒(𝑑𝑝1 𝑑𝑥⁄ ) as a function of the phase speed 𝑐 for the wave 

profile defined by (4.45) with 𝑅𝑒 = 200 and 𝐴 = 0.03, and different wave numbers 𝛼.  

We are interested in determining the source for the strange behavior occurring when 𝑐 ∈

(0,1). We choose conditions the same as the dotted line in Figure 4.5. We shall look at 

the variations of forces per unit length of the channel acting on the fluid in this range as 

well as the velocity fields for selected values of wave speed. Figure 4.5 displays 

variations of forces per unit length of the channel acting on the fluid at the upper and 

lower walls as functions of the wave speed 𝑐. It can be seen that the 𝑥-componet of 

pressure force acting on the fluid at the lower wall has a positive value. This value drops 

rapidly in the range of 𝑐 ∈ (0.4,0.6) when wave propagates with a phase speed similar to 

the flow velocity. In addition the 𝑥-componet of viscous force acting on the fluid at lower 

wall has a negative value which becomes less opposing in the range mentioned above. 

The total effect can be determined by the variations of 𝐹𝑥,𝑡𝑜𝑡𝑎𝑙. It has been shown that 

𝐹𝑥,𝑡𝑜𝑡𝑎𝑙 reaches the most negative value at 𝑐 ≈ 0.58 which justifies the drag increase 

observed in Figure 4.5. The situation is the same at the upper wall except that the 𝑥-
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component of pressure force acting on the fluid at upper wall is zero due to the upper 

wall being smooth.  

 

                                  (A)                                                                    (B)                                                

Figure 4.6: Variations of forces per unit length of the channel acting on the fluid at (A) 

the lower and (B) the upper walls as functions of the wave speed 𝑐 for the wave form 

described by Eq. (4.45) with Reynolds number 𝑅𝑒 = 200, wave amplitude 𝐴 = 0.03, and 

wave number 𝛼 = 2. Dashed, dotted, and solid lines correspond to viscous forces 

(𝐹𝑥,𝑣𝑖𝑠𝑐 , 𝐺𝑥,𝑣𝑖𝑠𝑐), pressure forces (𝐹𝑥,𝑝𝑟𝑒𝑠, 𝐺𝑥,𝑝𝑟𝑒𝑠), and total forces (𝐹𝑥,𝑡𝑜𝑡𝑎𝑙 = 𝐹𝑥,𝑣𝑖𝑠𝑐 +

𝐹𝑥,𝑝𝑟𝑒𝑠, 𝐺𝑥,𝑡𝑜𝑡𝑎𝑙 = 𝐺𝑥,𝑣𝑖𝑠𝑐 + 𝐺𝑥,𝑝𝑟𝑒𝑠 ), respectively.     

Figure 4.7 illustrates the velocity field near the lower wall in a vibrating channel with the 

same conditions as in Figure 4.6 for selected values of wave speed and, thus, provides a 

more direct tool for assessment of different types of vibrations.  
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(A) 

 

(B) 

 

(C) 

Figure 4.7: Plots of velocity field in a vibrating channel whose geometry is described by 

Eq. (4.45) with 𝛼 = 2, 𝐴 = 0.03, 𝑅𝑒 = 200. Figures 4.7 A–C correspond to 𝑐 = 0, 𝑐 =

0.58, and 𝑐 = 1, respectively. 

Figure 4.8 illustrates plots of pressure field for conditions the same as Figure 4.7 but for 

𝑅𝑒 = 1. Pressure has been normalized by assuming that 𝑝𝑇 = 0 at (𝑋, 𝑌) = (0,0). This 

figure may provide useful information. 
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     (A)                                          (B)                                        (C) 

Figure 4.8: Plots of 𝑅𝑒 ∗ 𝑝𝑇 in a vibrating channel whose geometry is described by Eq. 

(4.45) with 𝛼 = 2, 𝐴 = 0.03, 𝑅𝑒 = 1. Figures 4.8 A–C correspond to 𝑐 = 0, 𝑐 = 0.58, 

and 𝑐 = 1, respectively. 

Figure 4.9 illustrates plots of pressure field for conditions the same as Figure 4.7.  

 

                        (A)                                         (B)                                           (C) 

Figure 4.9: Plots of 𝑅𝑒 ∗ 𝑝𝑇 in a vibrating channel whose geometry is described by Eq. 

(4.45) with 𝛼 = 2, 𝐴 = 0.03, 𝑅𝑒 = 200. Figures 4.9 A–C correspond to 𝑐 = 0, 𝑐 = 0.58, 

and 𝑐 = 1, respectively. 

Effects of 𝛼 can be assessed using the results displayed in Figure 4.10. The magnitude of 

the drag reduction increases nearly monotonically with an increase of both the phase 

speed 𝑐 and the wave number 𝛼 and the thick line separates the drag-increasing and the 

drag-reducing waves. Such smooth variations are replaced with the rapid re-adjustment 

for 𝑐 ∈ (0,1) and 𝛼 > 0.8 and a “local” increase of the drag, but only when 𝑅𝑒 is high 

enough. 
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                          (A)                                        (B)                                         (C) 

Figure 4.10: Variations of 𝑅𝑒(𝑑𝑝1 𝑑𝑥⁄ ) as a function of the phase speed 𝑐 and the wave 

number 𝛼 for the wave form defined by (6.1) with 𝐴 = 0.03 and: (A) 𝑅𝑒 = 1; (B) 𝑅𝑒 =

100; (C) 𝑅𝑒 = 200.  

We shall look again at different effects contributing to the creation of forces acting on the 

fluid. Figures 4.11–4.13 display the distributions of 𝑓𝑥,𝑣𝑖𝑠𝑐, 𝑓𝑥,𝑓𝑜𝑟𝑚, 𝑓𝑥,𝑖𝑛𝑡𝑒𝑟, and 𝑔𝑥,𝑣𝑖𝑠𝑐 as 

well as their mean values for different Reynolds numbers and for waves with different 

phase speeds. Subscripts 𝑥, 𝑣 and 𝑥, 𝑓 and 𝑥, 𝑖 correspond to 𝑥-component of viscous, 

form, and interaction forces, respectively. Subscript 𝑚 identifies mean values.   

 

(A)                              (B)                             (C)                           (D) 

Figure 4.11: Distributions of (A) the 𝑥-component of the shear force 𝑓𝑥,𝑣𝑖𝑠𝑐 and (B) the 𝑥-

component of the form force 𝑓𝑥,𝑓𝑜𝑟𝑚 and (C) the 𝑥-component of the interaction force 

𝑓𝑥,𝑖𝑛𝑡𝑒𝑟 acting on the fluid at the lower wall and (D) the 𝑥-component of the shear force 

𝑔𝑥,𝑣𝑖𝑠𝑐 acting on the fluid at the upper wall for the wave profile described by (4.45) with 

𝐴 = 0.03, 𝑅𝑒 = 1, and 𝛼 = 2. The solid, dashed, and dotted lines correspond to 𝑐 = −5, 
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𝑐 = 0, and 𝑐 = 5, respectively. Thick and thin lines identify local and mean values, 

respectively. 

 

           (A)                                (B)                              (C)                            (D) 

Figure 4.12: Distributions of (A) the 𝑥-component of the shear force 𝑓𝑥,𝑣𝑖𝑠𝑐 and (B) the 𝑥-

component of the form force 𝑓𝑥,𝑓𝑜𝑟𝑚 and (C) the 𝑥-component of the interaction force 

𝑓𝑥,𝑖𝑛𝑡𝑒𝑟 acting on the fluid at the lower wall and (D) the 𝑥-component of the shear force 

𝑔𝑥,𝑣𝑖𝑠𝑐 acting on the fluid at the upper wall for the wave profile described by (4.45) with 

𝐴 = 0.03, 𝑅𝑒 = 100, and 𝛼 = 2. The solid, dashed, and dotted lines correspond to 𝑐 =

−5, 𝑐 = 0, and 𝑐 = 5, respectively. Thick and thin lines identify local and mean values, 

respectively. 

 

                (A)                                (B)                            (C)                                 (D) 

Figure 4.13: Distributions of (A) the 𝑥-component of the shear force 𝑓𝑥,𝑣𝑖𝑠𝑐 and (B) the 𝑥-

component of the form force 𝑓𝑥,𝑓𝑜𝑟𝑚 and (C) the 𝑥-component of the interaction force 

𝑓𝑥,𝑖𝑛𝑡𝑒𝑟 acting on the fluid at the lower wall and (D) the 𝑥-component of the shear force 

𝑔𝑥,𝑣𝑖𝑠𝑐 acting on the fluid at the upper wall for the wave profile described by (4.45) with 

𝐴 = 0.03, 𝑅𝑒 = 200, and 𝛼 = 2. The solid, dashed, and dotted lines correspond to 𝑐 =

−5, 𝑐 = 0, and 𝑐 = 5, respectively. Thick and thin lines identify local and mean values, 

respectively. 
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Figure 4.12 displays variations of mean values for 𝑓𝑥,𝑣𝑖𝑠𝑐, 𝑓𝑥,𝑓𝑜𝑟𝑚, 𝑓𝑥,𝑖𝑛𝑡𝑒𝑟, 𝑔𝑥,𝑣𝑖𝑠𝑐, and 

𝑓𝑥,𝑡𝑜𝑡𝑎𝑙 as functions of the wave speed 𝑐. 

 

(A)                                              (B)                                             (C) 

Figure 4.14: Variations of mean values of local forces as functions of the wave speed 𝑐. 

Conditions in Figures 4.14 A–C are the same as conditions in Figures 4.11–4.13, 

respectively. Solid, dashed, dotted, and dash-dotted lines and line with circles on it 

correspond to 𝑓𝑥,𝑣,𝑚, 𝑓𝑥,𝑓,𝑚, 𝑓𝑥,𝑖,𝑚, 𝑔𝑥,𝑣,𝑚, and 𝑓𝑥,𝑡,𝑚(= 𝑓𝑥,𝑣,𝑚 + 𝑓𝑥,𝑓,𝑚 + 𝑓𝑥,𝑖,𝑚 + 𝑔𝑥,𝑣,𝑚), 

respectively. 

It can be seen that 𝑓𝑥,𝑣𝑖𝑠𝑐 becomes a more opposing forces as 𝑐 increases. 𝑓𝑥,𝑖𝑛𝑡𝑒𝑟 

becomes a less opposing force as 𝑐 increases in the range of 𝑐 ∈ (−5,1) and it appears as 

a reinforcing force as 𝑐 increases in the range of 𝑐 ∈ (1,5). The magnitude of mean value 

of 𝑓𝑥,𝑓𝑜𝑟𝑚 reduces as 𝑐 increases. 𝑔𝑥,𝑣𝑖𝑠𝑐 becomes a less opposing force as 𝑐 increases. 

The total effect can be shown by the variations of 𝑓𝑥,𝑡𝑜𝑡𝑎𝑙,𝑚𝑒𝑎𝑛. 

4.4.2    Sinusoidal Waves on Both Walls 

We shall assume that both walls vibrate in the same manner and determine the effect of 

the phase shift between the upper and lower waves. The channel geometry is described as  

𝑌𝑈 = 1 + 𝐴 cos[𝛼(𝑋 − 𝑐𝑡)],          𝑌𝐿 = −1 + 𝐴 cos[𝛼(𝑋 − 𝑐𝑡) + 𝜙 ]                      (4.46a) 

where 𝜙 stands for the phase shift. Galileo transformation leads to the following 

expression for geometry 

𝑦𝑈 = 1 + 𝐴 cos(𝛼𝑥),       𝑦𝐿 = −1 + 𝐴 cos(𝛼𝑥 + 𝜙).                           (4.46b) 
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Figure 4.15 illustrates the variations of the 𝑅𝑒(𝑑𝑝1 𝑑𝑥⁄ ) as a function of 𝜙.   

 

(A)                                       (B)                                    (C) 

Figure 4.15: Variations of 𝑅𝑒(𝑑𝑝1 𝑑𝑥⁄ ) as a function of the phase shift 𝜙 for the wave 

form defined by (4.46) for selected 𝛼 and 𝐴 and: (A) 𝑐 = −5; (B) 𝑐 = 0; (C) 𝑐 = 5. 

Dashed and solid lines correspond to 𝑅𝑒 = 1 and 𝑅𝑒 = 200, respectively.  

It has been verified that when there is no vibration in the channel or when waves 

propagate in direction opposite to the flow direction, pressure loss increases as the phase 

shift between the waves on the upper and lower walls increases. This means that, in these 

cases, wavy channels have the lowest pressure losses and the converging-diverging 

channels have the highest pressure losses. It has also been demonstrated that when waves 

propagate in direction similar to the flow direction, drag reduction increases as the phase 

shift increases. So in this case, converging-diverging channels have better drag-reducing 

effects comparing to the wavy ones.   

Figure 4.16 illustrates the variations of 𝑅𝑒(𝑑𝑝1 𝑑𝑥⁄ ) as functions of 𝜙 and 𝑐 and thus 

provides a better tool for assessment of the effectiveness of different phase shifts between 

wave patterns. This Figure illustrates that effects of the phase shifts are more significant 

for higher magnitudes of phase speed.  
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Figure 4.16: Variations of 𝑅𝑒(𝑑𝑝1 𝑑𝑥⁄ ) as a function of phase shift 𝜙 and the phase 

speed 𝑐 for the wave form defined by (4.46) with 𝛼 = 3, 𝐴 = 0.03 for 𝑅𝑒 = 1.  

4.4.3    Different Wave Profiles 

We shall now turn our attention to the analysis of the effects of wave profiles. As our 

interest is in the maximization of the drag reduction, we shall inquire if changing the 

wave inclination from the upstream-tilted to the downstream-tilted provides any 

advantage. Waves with triangular shapes shown in Figure 4.17 have been selected for this 

test. The reader may note that this particular wave profile has to be positioned in such a 

way so that it does not affect the mean channel opening.  

 

Figure 4.17: Triangular wave profiles used in the study. 𝐴, 𝜆 and 𝛼 = 2𝜋 𝜆⁄  denote the 

wave amplitude, wavelength and wave number, respectively.  
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Figure 4.18 illustrates the variations of 𝑅𝑒(𝑑𝑝1 𝑑𝑥⁄ ) as a function of 𝑎 𝜆⁄  , with 𝑎 < 𝜆 2⁄  

corresponding to the waves tilting upstream, when only one wall vibrates. The symmetric 

waves (no tilting) produce the smallest pressure losses for the negative phase speeds. 

Waves with positive 𝑐 produce the highest drag reduction when tilted in the downstream 

direction.  

 

                               (A)                                   (B)                                    (C) 

Figure 4.18: Variations of 𝑅𝑒(𝑑𝑝1 𝑑𝑥⁄ ) as a function of 𝑎 𝜆⁄  for waves with triangular 

profiles (see Figure 4.17) for selected 𝛼 and 𝐴 with: (A) 𝑐 = −5; (B) 𝑐 = 0; (C) 𝑐 = 5. 

Dashed and solid lines correspond to 𝑅𝑒 = 1 and 𝑅𝑒 = 200, respectively. The reader 

may note that 𝑎 < 𝜆 2⁄  corresponds to the waves tilting upstream. 

We shall now place triangular waves on both walls and investigate the effect of the phase 

shift between both waves. The resulting channel geometry is illustrated in Figure 4.19. 
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                                                (A)                                                 (B)                                                   

Figure 4.19: Channel with triangular waves at both walls. The parametrization of each 

wave is the same as in Figure 4.17. 

 

                              (A)                                     (B)                                   (C) 

Figure 4.20: Variations of 𝑅𝑒(𝑑𝑝1 𝑑𝑥⁄ ) as a function of the phase shift 𝜙 for wave forms 

defined in Figure 4.19 for 𝛼 = 1, 𝐴 = 0.01, 𝑎 𝜆 = 0.1⁄  and: (A) 𝑐 = −5; (B) 𝑐 = 0; (C) 

𝑐 = 5. Cases A and B correspond to configurations A and B in Figure 4.19. Dashed and 

solid lines correspond to 𝑅𝑒 = 1 and 𝑅𝑒 = 200, respectively.  

Data presented in Figure 4.20 demonstrate that the drag reduction is maximized when the 

waves propagate in the downstream direction and their relative position corresponds to 

𝜙 = 𝜋 (Case A) and 𝜙 = 0 (Case B) i.e. they produce a bulge which propagates in the 

downstream direction; such channel assumes the diverging-converging form in the 

reference frame moving with the wave. The loses can be minimized for waves 

propagating in the upstream direction when the relative position of both waves 
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corresponds to 𝜙 = 0 (Case A) and 𝜙 = 𝜋 (Case B) i.e. the channel assumes a wavy 

form in the moving reference frame.  
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Section 5 

5 Conclusions  

 

An efficient algorithm for the analysis of flows in channels with vibrating walls has been 

developed. The algorithm is able to simulate waves with arbitrary profiles propagating 

along or against the flow direction. The spatial discretization is based on the Fourier 

expansions in the flow direction and on the Chebyshev expansions in the transverse 

direction. Use of the Galileo transformation eliminates the need for any time 

discretization. The domain irregularity associated with the waves is accounted for by 

using the immersed boundary conditions concept. The field equations are discretized 

using a regular, rectangular computational domain while the vibrating channel is 

immersed inside this domain. A Galerkin procedure is used to develop algebraic 

equations corresponding to the field equation. The tau procedure is used to provide space 

for the inclusion of the flow boundary conditions. The forms of these conditions suitable 

for the inclusion in the algorithm have been constructed using Fourier expansions based 

on the shape of the vibrating wall. This has led to construction of internal constraints 

which are then used to close the system of equations. Use of an iterative solution method 

based on values of nonlinear terms from the previous iteration resulted in a first order 

fixed-point method. A special linear solver, which takes advantage of the structure of the 

coefficient matrix, has been used. It has been demonstrated that the algorithm does 

deliver the spectral accuracy. The absolute error increases for more demanding wave 

shapes due to the reduction in the convergence rates of the Fourier expansions used for 

the construction of the boundary relations. It has been demonstrated that accuracy can be 

increased by using additional boundary relations in excess to that required for the closure 

of the system of equations, leading to the over-determined formulation. The resulting 

system is solved in such a way that the part associated with the field equation is solved 

exactly while the part associated with the boundary relations solved in the least square 

sense. The best results are obtained when the number of boundary relations used in the 
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computation is approximately 50% larger than the number of Fourier modes used to 

discretize the field equation. 

Analysis of drag generation in conduits with vibrating walls has been carried out 

analytically using both long wavelength and small amplitude approximations. These 

solutions have been validated by comparing analytical results with numerical solution of 

the complete field equations. Detailed analyses of different cases, i.e. waves propagation 

along one wall and both walls have been carried out. Different wave profiles have been 

considered in order to find forms of waves which minimize pressure losses in vibrating 

channels. The results show dependence of the pressure losses on the phase speed of the 

waves, with the waves propagating in the downstream direction reducing the pressure 

gradient required to maintain a fixed flow rate. A drag increase is observed when the 

waves propagate with a phase speed similar to the flow velocity. Analytical solution 

demonstrates that the drag changes result from the nonlinear interactions and vary 

proportionally to 𝐴2 for small enough 𝐴, where 𝐴 stands for the wave amplitude. 

There are several conditions limiting applicability of the results reported in this thesis. 

Single-phase flow considered in this thesis is always laminar as Reynolds number is kept 

sufficiently small. In addition, no flow separation has been considered. Only waves with 

sinusoidal and simple Fourier-transformable geometries have been studied. The wave 

amplitude, the wave number and the wave phase speed can assume values below certain 

critical thresholds as otherwise numerical error begins to increase rapidly.     
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Appendices  

Appendix A 

 

Evaluation of the inner products 

(I) Evaluation of the inner product of the Chebyshev polynomial of order 𝑗 and the first 

derivative of the Chebyshev polynomial of order 𝑘, e.g. 〈𝑇𝑗 , 𝐷𝑇𝑘〉. 

The first derivative of the Chebyshev polynomial of order k can be expressed in terms of 

the remaining Chebyshev polynomials in the form of 

𝐷𝑇𝑘 = 2𝑘 ∑
1

𝐶𝑥
𝑇𝑥,     𝑘 − 𝑥 = 𝑜𝑑𝑑,     𝑘 ≥ 𝑥 + 1𝑥=𝑘−1

𝑥=0                                                  (A.1) 

where 𝐶𝑥 is defined as  

𝐶𝑥 = {
2,       𝑥 = 0,
1,       𝑥 ≥ 1.

            (A.2) 

Inner product of (A.1) with 𝑇𝑗 gives 

〈𝑇𝑗 , 𝐷𝑇𝑘〉 = 2𝑘 ∑
1

𝐶𝑥
〈𝑇𝑗 , 𝑇𝑥〉,     𝑘 − 𝑥 = 𝑜𝑑𝑑,     𝑘 ≥ 𝑥 + 1𝑥=𝑘−1

𝑥=0 .                                 (A.3) 

Insertion of (3.25) into (A.3) results in a final form of the inner product, i.e.  

〈𝑇𝑗 , 𝐷𝑇𝑘〉 = 𝑘𝜋,     𝑘 − 𝑗 = 𝑜𝑑𝑑,     𝑘 ≥ 𝑗 + 1.                                                               (A.4) 

 

(II) Evaluation of the inner product of the Chebyshev polynomial of order 𝑗 and the 

second derivative of the Chebyshev polynomial of order 𝑘, e.g. 〈𝑇𝑗 , 𝐷
2𝑇𝑘〉. 

Second derivative of the Chebyshev polynomial of order 𝑘 can be expressed in terms of 

the remaining Chebyshev polynomials in the form of 
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𝐷2𝑇𝑘 = ∑
1

𝐶𝑥
𝑘(𝑘2 − 𝑥2)𝑇𝑥,     𝑘 − 𝑥 = 𝑒𝑣𝑒𝑛,     𝑘 ≥ 𝑥 + 2𝑥=𝑘−2

𝑥=0 .                               (A.5) 

Its inner product with the Chebyshev polynomial 𝑇𝑗 can be expressed as 

〈𝑇𝑗 , 𝐷
2𝑇𝑘〉 = ∑

1

𝐶𝑥
𝑘(𝑘2 − 𝑥2)〈𝑇𝑗, 𝑇𝑥〉,     𝑘 − 𝑥 = 𝑒𝑣𝑒𝑛,     𝑘 ≥ 𝑥 + 2𝑥=𝑘−2

𝑥=0 .                (A.6) 

The simplified form of (A.6) can be obtained with the help of Eq. (3.25) which results in 

〈𝑇𝑗 , 𝐷
2𝑇𝑘〉 = 𝑘(𝑘2 − 𝑗2)

𝜋

2
,     𝑘 − 𝑗 = 𝑒𝑣𝑒𝑛,     𝑘 ≥ 𝑗 + 2.                                          (A.7) 

 

(III) Evaluation of the inner product of the Chebyshev polynomial of order 𝑗 and the 

third derivative of the Chebyshev polynomial of order 𝑘, e.g. 〈𝑇𝑗 , 𝐷
3𝑇𝑘〉. 

Taking derivative of (A.5) with respect to �̂� leads to a relation for the third derivative of 

Chebyshev polynomial 𝑇𝑘 in the form  

𝐷3𝑇𝑘 = ∑
1

𝐶𝑥
𝑘(𝑘2 − 𝑥2)𝑥=𝑘−2

𝑥=0 𝐷𝑇𝑥,     𝑘 − 𝑥 = 𝑒𝑣𝑒𝑛,     𝑘 ≥ 𝑥 + 2.                           (A.8) 

Substitution of (A.1) into the above equation, leads to the following relation for the third 

derivative of Chebyshev polynomial 𝑇𝑘 

𝐷3𝑇𝑘 = ∑
1

𝐶𝑥
𝑘(𝑘2 − 𝑥2) [2𝑥 ∑

1

𝐶𝑧
𝑇𝑧

𝑧=𝑥−1
𝑧=0 ]𝑥=𝑘−2

𝑥=0 ,     {
𝑘 − 𝑥 = 𝑒𝑣𝑒𝑛,     𝑘 ≥ 𝑥 + 2,
𝑥 − 𝑧 = 𝑜𝑑𝑑,       𝑥 ≥ 𝑧 + 1.

    (A.9) 

Taking inner product of (A.9) with 𝑇𝑗 and using (3.25) result in a relation for inner 

product of a Chebyshev polynomial of 𝑗th order and its third derivative of 𝑘th order, i.e. 

〈𝑇𝑗 , 𝐷
3𝑇𝑘〉 = ∑

1

𝐶𝑥
𝑘(𝑘2 − 𝑥2)𝜋𝑥,     {

𝑘 − 𝑥 = 𝑒𝑣𝑒𝑛,     𝑘 ≥ 𝑥 + 2,
𝑥 − 𝑗 = 𝑜𝑑𝑑,       𝑥 ≥ 𝑗 + 1.

𝑥=𝑘−2
𝑥=0                   (A.10) 

 

(IV) Evaluation of the inner product of the Chebyshev polynomial of order 𝑗 and the 

fourth derivative of the Chebyshev polynomial of order 𝑘, e.g. 〈𝑇𝑗 , 𝐷
4𝑇𝑘〉. 
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Evaluation of the forth derivative of the Chebyshev polynomial of order 𝑘 begins with 

taking the second derivative of (A.5) with respect to �̂�, i.e. 

𝐷4𝑇𝑘 = ∑
1

𝐶𝑥
𝑘(𝑘2 − 𝑥2)𝐷2𝑇𝑥

𝑥=𝑘−2
𝑥=0 ,     𝑘 − 𝑥 = 𝑒𝑣𝑒𝑛,     𝑘 ≥ 𝑥 + 2.                       (A.11) 

Replacing 𝐷2𝑇𝑥 with (A.5) gives 

𝐷4𝑇𝑘 = ∑
1

𝐶𝑥
𝑘(𝑘2 − 𝑥2) [∑

1

𝐶𝑧
𝑥(𝑥2 − 𝑧2)𝑇𝑧

𝑧=𝑥−2
𝑧=0 ]𝑥=𝑘−2

𝑥=0 ,     

                                                                  {
𝑘 − 𝑥 = 𝑒𝑣𝑒𝑛,     𝑘 ≥ 𝑥 + 2,
𝑥 − 𝑧 = 𝑒𝑣𝑒𝑛,     𝑥 ≥ 𝑧 + 2.

                    (A.12) 

Taking the inner product of (A.12) with the Chebyshev polynomial 𝑇𝑗 leads to 

〈𝑇𝑗 , 𝐷
4𝑇𝑘〉 = ∑

1

𝐶𝑥
𝑘(𝑘2 − 𝑥2) [𝑥(𝑥2 − 𝑗2)

𝜋

2
],     𝑥=𝑘−2

𝑥=0        

                                                                  {
𝑘 − 𝑥 = 𝑒𝑣𝑒𝑛,     𝑘 ≥ 𝑥 + 2 ≥ 𝑗 + 4,
𝑥 − 𝑗 = 𝑒𝑣𝑒𝑛,                      𝑥 ≥ 𝑗 + 2.

      (A.13) 

 

(V) Evaluation of the inner product of the Chebyshev polynomial of order 𝑗 with  𝑢0𝑇𝑘 , 

i.e. 〈𝑇𝑗 , 𝑢0𝑇𝑘〉. 

Evaluation begins by expressing 𝑢0 in terms of the Chebyshev polynomials, i.e. 

𝑢0(�̂�) = ∑ 𝑈𝑚𝑇𝑚(�̂�)𝑚=𝑀
𝑚=0                                                                                            (A.14) 

where 𝑈𝑚’s are the coefficients of the expansion and 𝑀 denotes the length of the 

expansion. The reference velocity 𝑢0 has the form (see Eq. (3.28))  

𝑢0(�̂�) = −𝑎2�̂�2 − 2𝑎𝑏�̂� + 1 − 𝑏2                                                                             (A.15) 

where 

𝑎 = 𝛤−1,     𝑏 = −𝛤−1 + 1 + 𝑦𝑡.                                                                                (A.16) 
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This leads to the expansion coefficients of the form 

𝑈0 = 1 −
𝑎2

2
− 𝑏2,     𝑈1 = −2𝑎𝑏,     𝑈2 = −

𝑎2

2
.                                                         (A.17)                                                                                                                                          

The inner product 〈𝑇𝑗 , 𝑢0𝑇𝑘〉 takes the form 

〈𝑇𝑗 , 𝑢0𝑇𝑘〉 = ∫ ∑ 𝑇𝑗𝑈𝑚𝑇𝑚𝑇𝑘𝜔𝑑𝑦 = ∑ 𝑈𝑚 (∫ 𝑇𝑗𝑇𝑚𝑇𝑘𝜔𝑑𝑦
1

−1
)𝑚=2

𝑚=0
𝑚=2
𝑚=0

1

−1
.                    (A.18) 

Use of the following property of the Chebyshev polynomials 

𝑇𝑗𝑇𝑚 =
1

2
(𝑇𝑗+𝑚 + 𝑇|𝑗−𝑚|)                                                                                           (A.19) 

in (A.18) leads to 

〈𝑇𝑗 , 𝑢0𝑇𝑘〉 =
1

2
∑ 𝑈𝑚 [∫ 𝑇𝑗+𝑚𝑇𝑘𝜔𝑑𝑦 + ∫ 𝑇|𝑗−𝑚|𝑇𝑘𝜔𝑑𝑦

1

−1

1

−1
] =𝑚=2

𝑚=0                                                                                                            

                                                            
1

2
∑ 𝑈𝑚[〈𝑇𝑗+𝑚, 𝑇𝑘〉 + 〈𝑇|𝑗−𝑚|, 𝑇𝑘〉]

𝑚=2
𝑚=0 .            (A.20) 

 

(VI) Other inner products 

Evaluation of the inner-product 〈𝑇𝑗 , (𝑢0 − 𝑐)𝑇𝑘〉 takes advantage of the following relation 

〈𝑇𝑗 , (𝑢0 − 𝑐)𝑇𝑘〉 = 〈𝑇𝑗 , 𝑢0𝑇𝑘〉 − 𝑐〈𝑇𝑗 , 𝑇𝑘〉.                                                                   (A.21) 

Evaluation of the inner products on the right hand side of (A.21) has already been 

explained. 

Evaluation of the inner products  〈𝑇𝑗, 𝑢0𝐷
2𝑇𝑘〉 and 〈𝑇𝑗, (𝑢0 − 𝑐)𝐷2𝑇𝑘〉 takes advantage of 

the following relations 

〈𝑇𝑗 , 𝑢0𝐷
2𝑇𝑘〉 =

1

2
∑ 𝑈𝑚[〈𝑇𝑗+𝑚, 𝐷2𝑇𝑘〉 + 〈𝑇|𝑗−𝑚|, 𝐷

2𝑇𝑘〉]
𝑚=2
𝑚=0 ,                                     (A.22) 

〈𝑇𝑗 , (𝑢0 − 𝑐)𝐷2𝑇𝑘〉 = 〈𝑇𝑗 , 𝑢0𝐷
2𝑇𝑘〉 − 𝑐〈𝑇𝑗 , 𝐷

2𝑇𝑘〉.                                                     (A.23) 
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Evaluation of the inner product 〈𝑇𝑗, 𝐷
2𝑢0𝑇𝑘〉 begins with evaluation of 𝐷2𝑢0, i.e. 

𝐷2𝑢0(𝑦) = −2𝑎2.                                                                                                       (A.24) 

The inner product 〈𝑇𝑗 , 𝐷
2𝑢0𝑇𝑘〉 reduces to the following form 

〈𝑇𝑗 , 𝐷
2𝑢0𝑇𝑘〉 = −2𝑎2〈𝑇𝑗 , 𝑇𝑘〉                                                                                       (A.25) 

where evaluation of the product on the right hand side has already been explained. 
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Appendix B 

 

Definitions of functions used in Subsection 4.2 

𝐹1 = 𝜂𝑥𝑥𝐺3
−1 = [−𝛼2𝐺1𝐴 cos(𝜉) + 2𝛼2𝐴2 sin2(𝜉)](𝜂 − 1)𝐺2

−1 =     

                                 
1

4
𝛼2[−𝐺1𝐴 cos(𝜉) + 2𝐴2 sin2(𝜉)](𝜂 − 1) + 𝑂(𝛼4),       (B.1a) 

𝐹2 = 𝑅𝑒 𝜂𝑥𝐺3
−1 = −𝛼𝑅𝑒 𝐴 sin(𝜉) 𝐺1(𝜂 − 1)𝐺2

−1 =                             

                                       −
1

4
𝛼 𝑅𝑒 𝐺1𝐴 sin(𝜉) (𝜂 − 1) + 𝑂(𝛼3),                                (B.1b) 

𝐹3 = 𝑅𝑒 𝜂𝑦𝐺3
−1 = 2𝑅𝑒 𝐺1𝐺2

−1 =
1

2
𝑅𝑒 𝐺1 −

1

8
𝑅𝑒 𝐺1(𝐺2 − 4) +  𝑂(𝛼4),                   (B.1c) 

𝐹4 = 2𝛼𝜂𝑥𝐺3
−1 = −2𝛼2𝐴 sin(𝜉) 𝐺1(𝜂 − 1)𝐺2

−1 =                                   

                                           −
1

2
𝛼2𝐺1𝐴 sin(𝜉) (𝜂 − 1) +  𝑂(𝛼4),                                (B.1d) 

𝐹5 = 𝛼2𝐺3
−1 = 𝛼2𝐺1

2𝐺2
−1 =

1

4
𝛼2𝐺1

2 + 𝑂(𝛼4),                                                            (B.1e) 

𝐹6 = 𝛼 𝑅𝑒 𝐺3
−1 = 𝛼 𝑅𝑒 𝐺1

2𝐺2
−1 =

1

4
𝛼 𝑅𝑒 𝐺1

2 + 𝑂(𝛼3),                                               (B.1f) 

𝐹7 = 𝜂𝑥 = −𝛼 𝐴(𝜂 − 1) sin(𝜉) 𝐺1
−1,      𝐹8 = 𝜂𝑦 = 2𝐺1

−1,                                    (B.1g-h) 

𝐺1 = 2 − 𝐴 cos(𝜉),       𝐺2 = 4 + 𝛼2𝐴2 sin2(𝜉) (𝜂 − 1)2,      𝐺3 = 𝜂𝑥
2 + 𝜂𝑦

2 ,         (B.1i-k) 

𝐻1 = −
1

80
𝜂6 +

3

32
𝜂4 −

1

8
𝜂3 −

27

280
𝜂2 +

1

8
𝜂 +

17

1120
,       

                                        𝐻2 = −
1

80
𝜂6 +

1

4
𝜂3 +

9

560
𝜂2 −

1

4
𝜂 −

1

280
,                       (B.2a-b) 

𝐻3 =
1

12
𝜂4 −

1

6
𝜂3 −

1

10
𝜂2 +

1

6
𝜂 +

1

60
,                𝐻4 = −

1

12
𝜂4 +

1

10
𝜂2 −

1

60
,            (B.2c-d) 

𝐻5 =
1

24
𝜂6 −

1

4
𝜂4 +

1

6
𝜂3 +

69

280
𝜂2 −

1

6
𝜂 −

4

105
,        
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                                        𝐻6 =
1

60
𝜂6 −

1

3
𝜂3 −

3

140
𝜂2 +

1

3
𝜂 +

1

210
,                            (B.2e-f) 

𝐻7 = −
1

8
𝜂4 +

1

6
𝜂3 +

3

20
𝜂2 −

1

6
𝜂 −

1

40
,          𝐻8 = −

1

30
𝜂6 +

1

6
𝜂4 −

11

70
𝜂2 +

1

42
,     (B.2g-h) 

𝐻9 = −
1

4
𝜂3 +

3

4
𝜂 −

1

2
,      𝐻10 =

1

4
𝜂3 −

3

8
𝜂2 +

1

8
,   𝐻11 =

1

2
𝜂3 −

1

2
𝜂2 −

1

2
𝜂 +

1

2
   (B.2i-k) 
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Appendix C 

 

Definitions of functions used in Subsection 4.3 

𝐼1 = 𝜂𝑥𝑥𝐿3
−1 = [−𝛼2𝐿1 𝐴 cos(𝛼𝜉) + 2𝛼2𝐴2 sin2(𝛼𝜉)](𝜂 − 1)𝐿2

−1 = 

                 
1

4
𝛼2[−2𝐴 cos(𝛼𝜉) + 𝐴2(cos2(𝛼𝜉) + 2sin2(𝛼𝜉))](𝜂 − 1) + 𝑂(𝐴3),        (C.1a) 

𝐼2 = 𝑅𝑒 𝜂𝑥𝐿3
−1 = −𝛼𝑅𝑒 𝐴 sin(𝛼𝜉) 𝐿1(𝜂 − 1)𝐿2

−1 =   

               −
1

4
(2𝐴 − 𝐴2cos(𝛼𝜉))𝛼 𝑅𝑒 sin(𝛼𝜉)(𝜂 − 1) + 𝑂(𝐴3),                               (C.1b) 

𝐼3 = 𝑅𝑒 𝜂𝑦𝐿3
−1 = 2𝑅𝑒 𝐿1𝐿2

−1 =                            

                 
1

4
𝑅𝑒[4 − 2𝐴 cos(𝛼𝜉) − 𝐴2𝛼2 sin2(𝛼𝜉) (𝜂 − 1)2] + 𝑂(𝐴3),                     (C.1c) 

𝐼4 = 2𝜂𝑥𝐿3
−1 = −2𝛼 𝐴 sin(𝛼𝜉) 𝐿1(𝜂 − 1)𝐿2

−1 =              

                −
1

2
(2𝐴 − 𝐴2cos(𝛼𝜉))𝛼 sin(𝛼𝜉)(𝜂 − 1) + 𝑂(𝐴3),                                   (C.1d) 

𝐼5 = 𝐿3
−1 = 𝐿1

2𝐿2
−1 =                              

                  1 − 𝐴 cos(𝛼𝜉) +
1

4
𝐴2[cos2(𝛼𝜉) − 𝛼2 sin2(𝛼𝜉) (𝜂 − 1)2] + 𝑂(𝐴3),       (C.1e) 

𝐼6 = 𝑅𝑒 𝐿3
−1 = 𝑅𝑒 𝐿1

2𝐿2
−1 =            

               
1

4
𝑅𝑒[4 − 4𝐴 cos(𝛼𝜉) + 𝐴2(cos2(𝛼𝜉) − 𝛼2 sin2(𝛼𝜉) (𝜂 − 1)2)] + 𝑂(𝐴3),(C.1f) 

𝐼7 = 𝜂𝑥 = −𝛼 𝐴 (𝜂 − 1) sin(𝛼𝜉) 𝐿1
−1 =                          

               −
1

4
(2𝐴 + 𝐴2cos(𝛼𝜉))𝛼 sin(𝛼𝜉)(𝜂 − 1) + 𝑂(𝐴3),                                    (C.1g) 
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𝐼8 = 𝜂𝑦 = 2𝐿1
−1 = 1 +

1

2
𝐴 cos(𝛼𝜉) −

1

4
𝐴2cos2(𝛼𝜉) + 𝑂(𝐴3),                                 (C.1h) 

𝐿1 = 2 − 𝐴 cos(𝛼𝜉),   𝐿2 = 4 + 𝛼2𝐴2 sin2(𝛼𝜉) (𝜂 − 1)2,     𝐿3 = 𝜂𝑥
2 + 𝜂𝑦

2,           (C.1i-k) 

𝑔1 = −
1

4
𝛼2(𝜂 − 1)𝐷(�̃�1

(−1)
+ �̃�1

(1)
) −

1

2
𝛼2(�̃�1

(−1)
+ �̃�1

(1)
) +  

                
1

2
𝑖 𝛼 𝑅𝑒(−2𝜂2 + 𝜂 + 1 − 𝑐)(�̃�1

(−1)
− �̃�1

(1)
) +  

                    
1

4
𝑖 𝛼 𝑅𝑒[−𝜂3 + 𝜂2 + 𝑐(1 − 𝜂) + 𝜂 − 1]𝐷(�̃�1

(−1)
− �̃�1

(1)
) +  

                       
1

2
𝑅𝑒 𝜂(�̃�1

(−1)
+ �̃�1

(1)
) + 𝑅𝑒(�̃�1

(1)
𝐷�̃�1

(−1)
+ �̃�1

(−1)
𝐷�̃�1

(1)
)  

                             +
1

2
𝑖 𝛼 𝑅𝑒(𝑝1

(−1)
− 𝑝1

(1)
) +

1

4
𝑖 𝛼 𝑅𝑒(𝜂 − 1)𝐷(𝑝1

(−1)
− 𝑝1

(1)
) −  

                                    
1

4
[1 + 𝛼2(−4𝜂2 + 5𝜂 − 1)],                                                       (C.2a) 

𝑔2 = −
1

4
𝛼2(𝜂 − 1)𝐷(�̃�1

(−1)
+ �̃�1

(1)
) −  

                
1

4
𝑖 𝛼 𝑅𝑒[𝜂3 − 𝜂2 + 𝑐(𝜂 − 1) − 𝜂 + 1]𝐷(�̃�1

(−1)
− �̃�1

(1)
) +   

                     𝑅𝑒 𝐷(�̃�1
(−1)

�̃�1
(1)

) −
1

2
𝛼2(�̃�1

(−1)
+ �̃�1

(1)
) + 𝑖 𝛼 𝑅𝑒(𝑢1

(−1)
𝑣1

(1)
− 𝑢1

(1)
𝑣1

(−1)
) +  

                           
1

2
𝑖 𝛼 𝑅𝑒(1 − 𝑐 − 𝜂2)(�̃�1

(−1)
− �̃�1

(1)
) −

1

4
𝑅𝑒 𝐷(𝑝1

(−1)
+ 𝑝1

(1)
),            (C.2b) 

𝑔3 = −
1

4
𝑖 𝛼(𝜂 − 1)𝐷(�̃�1

(−1)
− �̃�1

(1)
) −

1

4
𝐷(�̃�1

(−1)
+ �̃�1

(1)
)                                        (C.2c) 
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