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Abstract 

Mixed convection through a pipe immersed in a hotter, stagnant fluid is used in HVAC 

systems, water heaters, chemical processes, etc. In this study, the effect of mixed convection 

on the flow and thermal structure of a fluid immersed inside a hotter, stagnant fluid was 

experimentally investigated. Temperature and velocity fields were obtained for a Reynolds 

number range of 330-6670, and a Grashof number range of 14000-95000 (0.6 < Gr/Re2 < 

0.0003). It was found that the buoyancy-induced wall-normal velocity component altered the 

streamwise velocity structure and the temperature profiles. The mean streamwise velocity 

profile was skewed towards the bottom of the pipe for initially laminar flow only. A vertical 

temperature gradient was also observed in the internal fluid under these conditions, where the 

hotter fluid resided in the top region of the pipe. The Nusselt number was found to 

moderately follow the predictive Gnielinski correlation, with an additional dependence on the 

bottom wall temperature. This showed that an increase in the Grashof number tended to 

dampen the turbulent convective heat transfer. The influence of natural convection on the 

mean and turbulent velocity profiles was found to be almost negligible in the high Reynolds 

number range.  

 

Keywords 

Mixed convection; low Reynolds numbers; immersed pipe; near-isothermal fluid; 

temperature profile; particle image velocimetry (PIV); turbulence. 
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Chapter 1  

1 Introduction 

1.1 Convective heat transfer 

Heat exchangers are vital to a wide variety of residential and industrial applications such 

as HVAC systems, chemical and petrochemical processes, food processing, automotive 

and aerospace sector, and power plants. A heat exchanger is mechanically designed to 

effectively transfer heat from one fluid medium to another via a separating solid 

conductor. The advantage of using fluids is their ability to increase the rate of heat 

transfer by the additional process of convection. The heat transfer rate between the two 

fluids is dependent on many factors, including the geometry of the heat exchanger, and 

the flow behaviour and thermal conditions of the two fluids.  

The mode of convection present in the flow is dependent on the relative magnitudes of 

inertial and buoyant forces. Inertial or buoyant dominant flows indicate whether the given 

fluid is undergoing mainly forced convection or natural convection, respectively. The 

Reynolds number (𝑅𝑒) as defined in Equation (1.1) is a dimensionless quantity that can 

be used as a reference for forced convection in pipe flows [1].  

𝑅𝑒 =
𝜌�̅�𝐷𝑖

𝜇
     (1.1) 

In the above equation, the average fluid velocity in the pipe (�̅�) is the characteristic 

velocity scale, which is obtained by dividing the volumetric flow rate by the inner cross-

sectional area of the pipe. The inner diameter of the pipe (𝐷𝑖) is the characteristic length 

scale, 𝜌 is the fluid density and 𝜇 is the dynamic velocity of the fluid.  

The Reynolds number is the ratio between inertial and viscous forces acting on the fluid. 

When 𝑅𝑒 ≪ 1, the fluids viscous forces prohibit a coherent inertial motion. When 𝑅𝑒 ≫

1, the inertial effects begin to increase but the viscous effects are still significant. In pipe 

flows, as the value of the Reynolds number exceeds 2000, the inertial forces become 

large enough to produce transitionally turbulent behaviour resulting in chaotic eddies. 
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Beyond a Reynolds number value of 4000, most fluids and geometries exhibit fully 

turbulent flow.  

A dimensionless parameter that quantifies the strength of natural convection is the 

Grashof number (Gr) defined in Equation 1.2 [1].  

𝐺𝑟 =
𝑔𝛽(𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑇𝑏𝑢𝑙𝑘)𝐷3

𝜈2
          (1.2) 

where 𝑔 is the acceleration of gravity, 𝛽 is the thermal expansion coefficient of the fluid, 

and 𝜈 is the fluid kinematic viscosity. The quantities 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 and 𝑇𝑏𝑢𝑙𝑘 are the inner 

surface and bulk fluid temperatures, respectively. Grashof number expresses the ratio 

between the buoyant and viscous forces.  

As mentioned above, the convective behaviour present in the fluids operating inside a 

heat exchanger increases the total heat transfer rate. Therefore, most heat exchanger 

systems typically utilize both forced and natural convection. When both natural and 

forced modes of convection are present in the heat exchanger, this is called mixed 

convection. The relative contribution of the inertial and buoyant forces can be quantified 

through a single ratio of 𝐺𝑟/𝑅𝑒2 [2]. At a value of 𝐺𝑟/𝑅𝑒2 ≪ 1, the fluid exhibits very 

little natural convective behaviour in relation to the forced convection. At 𝐺𝑟/𝑅𝑒2 ≫ 1, 

the fluids buoyant forces are much more prevalent with relation to the inertial motion and 

hence, the natural convection mode dominates over forced convection. At a large enough 

value of 𝐺𝑟/𝑅𝑒2, the buoyant forces can also induce turbulent behaviour, analogous to 

the turbulent threshold present in Reynolds number.  

Mixed convection has a strong influence on the thermal and hydrodynamic structure 

present inside laminar flows [3]. Many studies have investigated the heat transfer rate 

during fully developed mixed convection through different geometries and experimental 

conditions including a large range of 𝑅𝑒 and 𝐺𝑟 numbers. The onset of unstable 

stratification is strongly dependent on the Grashof number and/or the Reynolds number 

[4]. This buoyancy driven flow enhances the heat transfer rate. However, after the 
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convection induced mixing, reducing the temperature gradient, the bulk temperature of 

the fluid rises and the heat transfer rate can drop [5]. 

For a given geometry, the heat transfer rate of the system is positively correlated with the 

𝑅𝑒 and 𝐺𝑟, i.e. increasing one of these increases the heat transfer rate of the system. On 

the contrary, the same heat exchanger with a fluid operating at a lower 𝑅𝑒 increases the 

local temperature of the output but not the heat transfer rate. Extensive research has been 

conducted in the past to study forced convection in pipe flows, which occurs primarily at 

high Reynolds numbers. However, very limited research work has been performed for 

pipe flows at low Reynolds numbers. Although a wide range of heat exchanger 

applications involve high Reynolds numbers and hence forced convection. There are 

growing applications where the heat exchange occurs at low Reynolds numbers. 

Applications operating at low 𝑅𝑒 are becoming more popular in the green energy 

industry. Such type of flow are also present in chemical vapour deposition (CVD), 

biomedical applications and in the food process industry.  

In a large number of heat exchanger applications, both fluids are in motion and hence, 

either forced or mixed convection modes exists in each fluid. Heat exchangers where one 

fluid is in motion while the other is stagnant are relatively few but such heat exchangers 

have numerous applications in food process industry, and chemical and nuclear reactors. 

The primary function of the heat exchanger in these applications is to add or remove heat 

from the stagnant fluid medium via the fluid flowing through the piping system immersed 

in the stagnant fluid. 

The thermo-fluid process inside the immersed pipe is expected to be different from other 

types of heat exchanger applications. Being immersed in a larger stagnant fluid domain, 

the pipe is exposed to an almost isothermal condition of the stagnant fluid. Hence, the 

fluid dynamics inside the pipe is expected to influence the thermal boundary conditions at 

the pipe wall or vice versa. Furthermore, the mode of convection heat transfer is also 

expected to play a role in the heat exchange between the pipe fluid and the surrounding 

stagnant fluid. There is however a scarcity of studies investigating the thermo-fluid 
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process inside the pipe immersed in a stagnant isothermal fluid. This particular problem 

was the focus of this thesis. 

The specific geometry of interest in this study is a fluid undergoing convection (forced 

and mixed) through a pipe that is immersed in a hotter stagnant fluid maintained at a 

uniform bulk temperature. To the best knowledge of the author, no thermo-fluid 

investigation has been conducted on such a geometry. 

 

1.2 Heat transfer for fluids flowing in a channel 

Due to the scarcity of previous studies on the thermo-fluid behavior in a submerged pipe 

flow, the literature review is primarily comprised of previous studies investigating 

thermo-fluid process in channel flows subjected to wall heating in the presence of mixed 

convection heat transfer. There are several studies that investigated bulk properties of a 

fluid forced through a channel with bottom heating. For example, Mahaney et al. [3] and 

Maughan and Incropera [6] investigated the longitudinal change in Nusselt number (Nu) 

and coefficient of friction along the heating section of a thermofluid circuit. They both 

observed an increase in the Nusselt number along the channel. This enhancement was 

attributed to the increase in natural convection along the channel, which increased the 

convective heat transfer rate by disrupting the thermal boundary layer. In these studies, 

the Nusselt number at the entrance region was minimal because the mode of convection 

was mainly forced, and natural convection was not developed. They also found that an 

increase in 𝐺𝑟 accelerates the onset of convective flow, while an increase in 𝑅𝑒 

decelerates this onset.  

Osborne and Incropera [4&7] investigated mixed convection through a square channel 

with bottom and top heating during laminar and turbulent flow. Their main objective was 

to quantify the local Nusselt number near both the top and bottom wall regions of the 

channel. Forced convection was found to be prevalent at the top of the channel, while 

natural convection dominated at the bottom, increasing the Nusselt number. During 

laminar flow, the top region exhibited a thermal boundary layer in which rising plumes 
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from the bottom wall could not penetrate. Patil and Babu [8] investigated the convective 

heat transfer in a square duct with uniform thermal boundary conditions. They concluded 

that the average Nusselt number throughout the duct was positively correlated with the 

𝐺𝑟/𝑅𝑒2 and Prandtl number (Pr) values. The correlation was stronger at a lower 

Reynolds number, i.e. at lower 𝑅𝑒, the increase in 𝐺𝑟/𝑅𝑒2 or 𝑃𝑟 resulted in a larger 

increase in the Nusselt number. 

An experimental investigation of the region immediately adjacent to the bottom heating 

wall of a square channel during forced convection was conducted by Gajusingh and 

Siddiqui [9]. They researched the effect of heat transfer on the near wall region for 

originally laminar and turbulent flows. It was concluded that high buoyancy driven flows 

generated turbulence in originally laminar flow with large 𝐺𝑟. In the case of originally 

turbulent flow, the buoyant forces in the near wall region dampened local turbulent 

fluctuations. They quantified the instability of the fluid in this region due to stratification 

with the Richardson (𝑅𝑖) number. They argued that the unstable stratification generated 

by bottom heating enhanced turbulence in originally laminar flows, but decreases its 

magnitude in originally turbulent flows. 

Nicholl [10] investigated the effects of bottom heating on the turbulent boundary layer 

for unstable and stable stratification of air in a wind tunnel. The difference between the 

bulk and wall temperatures ranged from 20 to 100 C. It was found that during unstable 

stratification, the mean velocity and turbulent velocity magnitudes at the heated surface 

near the inlet of the heater were larger in magnitude with respect to the velocities further 

downstream of the heater. It was concluded that the turbulent boundary layer experienced 

a damping effect due to the present convective boundary layer. Similarly, Arya [11] 

experimentally investigated the effects of mixed convection on the mean and turbulent 

velocity profiles in a fully developed turbulent flow over a bottom flat plate for both 

stable and unstable stratification. It was found that the convective heat transfer coefficient 

and the coefficient of friction decreased with an increase in thermal stability, where the 

viscous sublayer grew in thickness with increasing stability. For turbulent flows during 

stable stratification, it was found that turbulence was damped with an increase in 

stability.  
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Rued et al. [12] experimentally and numerically investigated mixed convection in a 

square channel with a single heated side wall. They focused on researching the effects of 

wall intersections on the flow and thermal structures. An increase in the Nusselt number 

was observed in the corner region of wall intersection. This convective heat transfer 

enhancement was evidently attributed to the asymmetry of the corner region, and was 

also found to decrease with an increase in distance from the heated surface. Fukui and 

Nakajima [13] investigated the effect of bottom heating and unstable stratification 

generation in the near wall region for fully developed turbulent flow between two 

horizontal plates. They found an increase in the streamwise velocity fluctuations and a 

decrease in wall-normal velocity fluctuations with an increase in the Richardson number.  

Hirota et al. [14] experimentally investigated the flow and thermal structures present 

during mixed convection in a bottom heated square duct for fully developed turbulent 

flow. Their focus was on the flow structure in a plane residing normal to the direction of 

flow. They found that in the center region of the duct, the eddy diffusivity of the fluid 

was higher for the heated cases than for the unheated cases. The comparative eddy 

diffusivity then became comparable at the near wall regions symmetrically. They also 

concluded that the buoyantly induced currents had a larger influence on the momentum 

transport with respect to the heat transport. Yamada and Ichimiya [15] numerically 

investigated mixed convection inside a square duct for both insulated walls, and uniform 

temperature wall conditions. They focused on the velocity field normal to the direction of 

flow, similar to Hirota et al. [14]. They found that the buoyant forces present under 

uniform wall temperature conditions influenced the development of convective currents 

with an increase in downstream distance. 

 

1.3 Flow visualization   

Some studies focused on visualizing the flow behaviour of thermofluids in order to 

conceptualize and quantify the mixed convection. For example, Rued et al. [12] used 

laser Doppler anemometry to study the flow structures in a duct with a side heated wall, 

as mentioned above. Perry and Hoffman [16] used X-wire probes to investigate the 
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velocity of fluid over a horizontal heated plate. They discovered that the fluctuating 

velocity fields were most prominently due to spurious pressure gradients than due to the 

mean flow motion. Wang et al. [17] investigated flow patterns in a bottom heated square 

channel using a shadowgraph technique. In their experiment, the Reynolds number 

ranged from 100 to 1000 and the Grashof number ranged from 2.8 × 106 to 2.5 × 107. 

They identified four distinct flow patterns between these experimental ranges: laminar 

forced convection, laminar mixed convection, transient mixed convection, and turbulent 

free convection. Lin and Lin [18] experimentally investigated mixed convection for air 

through a bottom heated rectangular channel using a smoke tracer. The range of Reynolds 

number was from 9 to 186, and the Grashof number was up to 5 × 106. They concluded 

that an increase in the Grashof number and/or a decrease in the Reynolds number 

changed the flow structure from periodic to quasiperiodic. Chaotic flow structures were 

even observed in some cases. 

Mixed convection in different geometries were experimentally investigated by 

Nandakumar et al. [19] for a Grashof number up to 5 × 105. They found that either two 

or four longitudinal vortices occurred depending on the aspect ratio of the channel and 

the Grashof number. A numerical investigation of laminar mixed convection in a bottom 

heated square duct was conducted by Huang and Lin [20]. They focused on studying the 

flow behaviour under different 𝐺𝑟/𝑅𝑒2 ratios. They concluded that an increase in the 

buoyancy-inertia ratio 𝐺𝑟/𝑅𝑒2, the flow structure altered from a steady vortex into 

chaotic flow. This occurred typically at 𝐺𝑟/𝑅𝑒2 = 25. Sookdeo and Siddiqui [21] 

investigated the mixed convection flow structure in a pipe utilizing particle image 

velocimetry (PIV) technique. They used a Reynolds number range of 150 to 900 with 

four different heating conditions and an unheated condition. To eliminate the distortion 

made by the curved surface, a square case filled with the same fluid was place around the 

tube in a small measurement section as a corrective measure for the image distortion due 

to pipe’s curvature. They found that the collector heating had a significant effect on the 

mean velocity, inducing a vertically asymmetrical velocity profile over the range of 

Reynolds numbers and heating conditions. They also observed a stably stratified layer in 

the upper regions of the pipe and unstable stratification in the bottom regions. 
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Elatar and Siddiqui [22, 23] experimentally investigated mixed convection in a channel 

subjected to heating through bottom at low Reynolds numbers (750 ≥ 𝑅𝑒 ≥ 150), and 

large Grashof numbers resulting in buoyancy-inertia ratios ranging from 9 to 206. They 

imaged the internal flow structures non-invasively by employing the PIV technique. They 

were able to measure fluid velocity in a plane parallel to the flow direction and normal to 

the bottom wall. They also acquired velocity measurements in two planes parallel to the 

bottom wall at different heights in the near wall region. They found that the dominant 

natural convective currents induced chaotic turbulent behaviour in the fluid during 

initially laminar flow conditions. They also concluded that a coherent reverse current 

occurred in the top, cooler region of the pipe for 𝐺𝑟/𝑅𝑒2 > 55, which increased in 

magnitude with an increase in this ratio.  

 

1.4 Objectives 

It was shown in the previous sections that several studies have been conducted on mixed 

convection in square and circular channels (pipes) under initially laminar and turbulent 

flow conditions. However, to the knowledge of the author, no studies have been 

conducted on the quantitative effect of mixed convection on the flow and thermal 

behaviour inside a pipe submerged in an isothermal fluid, despite its use in several 

applications. Therefore the present research is aimed at improving the knowledge and 

core understanding of the heat transfer mechanisms present inside such a geometry. The 

objectives of this study are as follows, 

1. To quantify and investigate the mean and turbulent velocity structures present 

inside the pipe. 

2. To quantify and investigate the internal temperature field in order to understand 

the heat transfer mechanisms present. 

3. To explore the underlying effect of mixed convection on these structures 
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1.5 Thesis layout 

The first chapter introduces the topic, discusses the heat exchange process involving 

fluids and the need for present investigation of thermo-fluid behavior in the specific 

geometry considered in this research. A brief literature review of studies focused on the 

fundamental heat transfer process to a fluid from heated wall is also presented. The 

chapter concludes with the objectives of the present dissertation. The second chapter 

focuses on the experimental setup and measurements. It provides details of the 

experimental apparatus used in this study along with instrumentation and measurement 

technique deployed to conduct the detailed investigation of the underlying thermo-fluid 

processes. The third chapter presents the detailed fluid temperature structure inside the 

submerged pipe obtained from thermocouple measurements. The variations in the local 

fluid temperature are presented and discussed in the context of the heat exchange process. 

The heat transfer rate and other critical dimensionless parameters also presented and their 

trends are discussed. The fourth chapter provides a detailed flow behaviour inside the 

pipe over a range of conditions obtained from PIV measurements. The variations in the 

mean and turbulent flow structures and their impact of the heat transport process are also 

discussed. The fifth chapter combines the key conclusions from earlier chapters and 

presents the main conclusions from the present study along with some recommendations 

for the future extension of the current work.  
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Chapter 2  

2 Experimental Conditions 

Experiments were conducted in a laboratory environment in a specially built test heat 

exchanger.   

2.1 Experimental Apparatus 

The test heat exchanger was comprised of a rectangular reservoir for the higher 

temperature fluid hereinafter referred to as the secondary (hot) fluid. The reservoir was 

made of 0.63 cm thick glass plates as the reservoir walls. The bottom was also made of 

0.63 cm thick aluminum plate (see Figure 2.1a). The top of the reservoir was left open, 

exposed to the room pressure and temperature, which was approximately constant 

throughout the experiments. Heating of the reservoir fluid was achieved through the 

bottom aluminum plate. The aluminum plate was heated by a radiant heater, which was 

placed 8 mm below the aluminum surface, facing upward. This allowed the aluminum 

plate to be uniformly heated. During a given experimental run, the non-uniform 

temperature of the aluminum plate was kept constant using a PID controller (ZESTA-

ZCP513). A K-type thermocouple located near the measurement location was used as a 

feedback for the temperature control. A glass tube of 2.54 cm (1 inch) internal diameter 

(0.32 cm or 1/8th inch wall thickness) and 1 m long was inserted through the center of the 

side walls of the reservoir such that the glass tube was fully submerged in the reservoir 

fluid, as shown in Figure 2.1(a). The red box in this figure illustrates the region in which 

PIV and temperature measurement were made. A cooler fluid, hereinafter referred to as 

the primary (cold) fluid passed through the tube and heat transfer occurred from the 

reservoirs hot fluid to the primary fluid. This heat transfer is referred to as the primary 

heat transfer.  

Water was used as the primary and secondary fluids. The primary fluid was flowing in a 

closed circuit as illustrated in Figure 2.1(b). The primary fluid was drawn from a 10-litre 

reservoir tank and circulated through the loop by a pump (Little Giant, 2E 38N). Due to 

the heat transfer to the primary fluid in the test heat exchanger, its temperature increased 
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at the heat exchanger exit. To maintain similar inlet conditions, the heat gained by the 

primary fluid was removed via a secondary heat exchanger. The secondary heat exchange 

occurred in a 50-gallon tank. The primary fluid was passed through a copper coil 

submerged in 50 gallons of tap water at room temperature. A magnetic driven pump was 

used to stir this reservoir tank to enhance heat transfer. Preliminary test results showed 

that for a given run, the 50-litres of water had enough capacity to remove the heat added 

to the primary fluid in the primary heat exchange process and hence, to maintain the same 

conditions for the primary fluid at the inlet of the heat exchanger test section. The 

primary fluid exiting the secondary heat exchanger, then entered a 10-litre storage tank. 

A ball-valve downstream of the pump was used to control the volumetric flow rate of the 

primary fluid, which was measured by a flow meter (0 to 1 gpm ± 2%) located 

downstream of the valve (see Figure 2.1b). The primary fluid temperature at the inlet of 

the test heat exchanger was maintained at 21 oC. 

A.   
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B.   

Figure 2.1: A) Test heat exchanger illustration and dimensions, B) Idealized fluid 

circuit use in experimentation 

 

The test heat exchanger and the radiant heater were supported by a rectangular wooden 

frame with a height of 1.2 m, width of 0.42 m, and length of 1.15 m (see Figure 2.2). The 

test heat exchanger and radiant heater both rested on adjustable shelves attached to the 

sides of the wooden frame. The height of the center of the glass channel was 0.55 meters 

off the ground. 
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Figure 2.2: Experimental Facility used for experimentation 

The upstream side of the glass tube in the test heat exchanger was connected to a straight 

copper pipe (0.5 inch ID) of 1 m in length. The purpose of this copper pipe was to allow 

the fluid to enter the test heat exchanger in a fully developed state. The upstream end of 

the copper tube was connected to the pump via a plastic hose. Two equations were used 

to compute the maximal development length; one for the laminar flow and the other for 

the turbulent flow, given as follows [24], 

𝐿𝐷 = 0.06 𝐷𝑖  𝑅𝑒     𝐿𝑎𝑚𝑖𝑛𝑎𝑟 

𝐿𝐷 = 1.6 𝐷𝑖 𝑅𝑒0.25     𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 

where, 𝐿𝐷 is the flow development length, 𝐷𝑖 is the inner pipe diameter and 𝑅𝑒 is the 

Reynolds number of the flow based on the pipe diameter. To ensure that the flow was 

fully developed for the given flow rate range, the development length was computed for 

the highest Reynolds numbers in both the laminar and turbulent regimes considered in 

this study. The results showed that the length of the copper tube was sufficient enough to 

provide fully developed flow at the entrance of the test heat exchanger.  

Five mass flow rates were considered in this study which were 0.0031, 0.0062, 0.0125, 

0.0378, and 0.6356 kg/s. The corresponding Reynolds numbers at room temperature were 
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330, 660, 1330, 4000 and 6670, respectively. For each flow rate, five different bottom 

wall temperatures of 30, 40, 50, 60 and 70°C were considered. To ensure steady state 

conditions were attained before testing, there was a 20 minute waiting period between 

tests.  

The chosen Reynolds numbers were intended to cover relatively low flow rates through 

the transition into turbulence and onwards. With these flow rates, there existed a 

threshold temperature in which bubbles began to generate in the reservoir fluid, which 

obstructed imaging of the submerged channel flow. To avoid this issue a criterion was set 

based on the condition that after waiting 20 minutes for the system to reach a steady state 

after changing the experimental conditions, there must have been at least five minutes of 

moderately bubble-free image acquisition. Due to this criterion, the experimental 

conditions utilized for the flow rates used for PIV experimentation excluded the highest 

temperature condition of 70°C, as well as the lowest flow rate condition of 𝑅𝑒 = 330. 

 

2.2 Experimental Measurements 

Temperatures were recorded at several locations inside a cross section of the test heat 

exchanger using T-type thermocouples (uncertainty of ± 0.5 C). These thermocouples 

were grouped into two sets; one set of thermocouples to measure the temperature outside 

the glass channel, while the second set of thermocouples measured the fluid temperature 

inside the glass channel. In the first set, three thermocouples were attached to the outer 

surface of the glass tube to measure the wall temperature of the glass tube (see Figure 

2.3a). Another thermocouple was attached to the bottom aluminum plate to measure its 

temperature.  

To measure the fluid temperature inside the tube cross-sectional plane with high spatial 

resolution, a rake was built from aluminum wire to support nine thermocouples in the 

cross-sectional plane as shown in Figure 2.3(b). The rake was inserted from the 

downstream end of the glass tube and was supported by a long thin aluminum tube to 

maintain axial alignment. The 90 degree elbow in the downstream copper tube held the 
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aluminum tube in place. The thermocouples were fed through the center of this aluminum 

tube into the front of the rake. The rake was positioned 20 cm from the downstream end 

of the test heat exchanger.  Two additional thermocouples were used to measure the 

temperature of the primary fluid at the inlet and outlet of the test heat exchanger.  

A National Instruments data acquisition system comprised of two DAQ cards (NI 9211) 

and a chassis (NI cDAQ-9174) was used to acquire data from these thermocouples. The 

data acquisition system was connect to a PC and LabView was then used as the data 

acquisition software. As mentioned earlier, the data acquisition began once the system 

reached a steady state. This was monitored in real-time through the temperature graph 

present in LabView. The temperature data graph of temperature vs. time visually 

indicated when a steady state was reached. The data then recorded at a sampling rate of 3 

Hz (based on the response time of thermocouples) for approximately five minutes for 

each experimental condition. The average temperature values were obtained by time-

averaging the corresponding temperature data for each thermocouple.  

Generally, the resistance of a thermocouple is dependent on the soldered connection of 

the two metals at its tip. Different thermocouples will then result in different voltage 

readings for the same temperature. Each thermocouple must therefore be individually 

linearly calibrated in order to offset any bias error present. The calibration was conducted 

using a 500 mL glass insulated beaker. A mercury-bulb thermometer was used as the 

reference. The calibration was conducted at six temperature set points (9, 19, 26, 31.5, 38 

and 45.5 °C) by varying the temperature of the liquid bath.  These temperatures cover the 

temperature range of the experimental conditions. The calibration equations for each 

thermocouple were obtained through linear regression between the measured and 

reference temperature values. These calibration equations were then used to correct the 

temperature data obtained during actual experiments.  
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A.  

B.  

Figure 2.3: A) Constructed thermocouple rake inserted inside the pipe to acquire 

the internal temperature field measurements, B) the cross sectional arrangement of 

each thermocouple with respect to the pipe. 

 

2.3 Particle image velocimetry 

Particle image velocimetry (PIV) was employed to measure the two-dimensional velocity 

field of the primary fluid in the vertical mid-plane of the glass pipe. The PIV system is 

displayed in Figure 2.4. The primary fluid was initially seeded with glass particles of 15 

m diameter. A 120 mJ Nd:YAG laser (SoloPIV 120XT 532nm) was used to illuminate 
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these reflective seeding particles present in the measurement plane. A CCD camera (VA-

4M32, Vieoworks) with a resolution of 2336x1752 pixels was used to capture images of 

the reflected laser light. A CORE-DVR image acquisition system (IO Industries) was 

used to acquire and store images. The CORE-DVR was connected to a PC and controlled 

by the Coreview software. A four-channel pulse generator (555-4C, Berkley Nucleonics 

Corporation) was used to time and coordinate the laser pulses and synchronize them with 

the camera.  

 

Figure 2.4: Idealized Particle Image Velocimetry (PIV) setup 

 

To ensure a uniform distribution of the seed particles, they were rigorously stirred in a 

200 mL beaker. This solution was then poured into the ten liter reservoir and mixed 

thoroughly with the working fluid. For the seeding particles to accurately follow the fluid 

flow, they must have been neutrally buoyant in the fluid. The specific gravity of the seed 

particles was approximately 2.5. Hence, to confirm that they accurately followed the 

flow, the response time of the particles was computed, i.e. how quickly the particles 

responded to any change in the flow behavior. The characteristic response time of the 

seed particles can be computed using the following equation, 

𝑇𝑃 =
𝑢𝑇

𝑔
     (2.1) 
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where 𝑇𝑃 is the particle response time, 𝑢𝑇 is the particle terminal velocity and 𝑔 is the 

acceleration due to gravity [25].  The terminal velocity can be computed using the 

following equation, 

𝑢𝑇 =
(𝛾 − 1)𝑑2𝑔

18𝜈
     (2.2) 

where   and 𝑑 are the specific gravity and diameter of the seed particles, respectively, 

and  is the kinematic viscosity of water [26]. For the seed particles used in the present 

study, the response time was found to be 18.75 𝜇𝑠. The smallest timescale expected in 

the flow is the Kolmogorov timescale (𝜏𝜂) which is given by,  

𝜏𝜂 = (
𝜈

𝜖
)

1
2

     (2.3) 

Where, 𝜈 is the kinematic viscosity and 𝜖 is the energy dissipation rate [27]. The 

dissipation rate can be approximated as, 

𝜖 ~
𝑢′3

𝑙
     (2.4) 

Where, 𝑢′ is the streamwise turbulent velocity and 𝑙 is the integral length scale [28]. For 

the turbulent flow regime in the present study, the Kolmogorov time scale was computed 

to be approximately 1 s, which was more than 105 times larger than the response time of 

the seed particles and hence, it confirms that the particles accurately followed the flow 

[25, 29, 30].  

The laser light emitted from the laser head was a collimated cylindrical beam. A set of 

optics was used to transform it into a light sheet and align it with the measurement plane. 

For this purpose, the laser beam first passed through a spherical lens and then spread out 

into a two dimensional sheet by passing through a cylindrical lens. An apparatus attached 

to the facility directly above the test heat exchanger mirrored the laser sheet 90 degrees 

downwards to illuminate the measurement plane in the center of the glass pipe. The 

camera was centered on a region 80 cm downstream of the test heat exchanger entrance. 



19 

 

The cameras field of view was 3.5 cm × 1.4 cm. Note that the center of this measurement 

region coincided with the location of temperature measurements using the thermocouple 

rake.  

The measurement plane for PIV imaging was inside the circular glass tube. The tubes 

curved surface would distort the images as acquired by the camera located outside (see 

Figure 2.5a). This is due to the reason that the camera receives light at different incident 

angles due to the curved surface and a change in density of the internal water and external 

air mediums. The experimental setup described above allows for a correction in the 

distortion made by this curved surface. As shown in Figure 2.5(b), the light does not 

refract at the surface of the glass tube because the internal and external mediums are the 

same. There is also no refraction angle when the light passes from water to air because it 

exits the square channel normal to its surface. The minimal refraction due to the thickness 

of the glass pipe was considered negligible due to its thinness [31].  

A.  B.  

Figure 2.5: A cross sectional schematic of the pipe. A) The reflected light is distorted 

by the curved surface, B) the reflected light is not distorted by the curved surface 

due to presence of water-filled rectangular reservoir. 

 

For each of the 25 different experimental conditions, about 9000 8-bit gray scale images 

were taken at a sampling rate of 30 Hz. The shutter pattern of the camera and 

synchronous laser pulses are displayed in Figure 2.6. Two lasers alternated in releasing 

one light pulse every camera frame. Both lasers individually pulsed at 150 µs intervals 

and the time separation between them was the time elapsed between each image pair. The 
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delay generator was used to control the timing of the laser pulses. In Figure 2.6, frames 1 

and 2 are image pairs, and so are frames 3 and 4. 

 

 

Figure 2.6: Camera and laser pulse synchronization pattern; the camera captures 

single frames over 15 𝝁𝒔 intervals. This figure illustrates how the short laser pulses 

can have a time separation of 𝜹𝒕. (Adapted from Dabiri, 2006) 

 

A unique time separation between the images was set for each flow rate since it had the 

most dominant effect on the instantaneous particle velocities, and hence the particle shift 

in the image pair. If the time separation was too large, the PIV cross correlation analyses 

would not be functional. And if the time separation was too small, a spatial change would 

not be visible. By trial and error, the time separations of 2.22, 1.22, 0.5, 0.15 ms were set 

for the volumetric flow rates of 0.1, 0.2, 0.6 and 1 gpm, respectively. These time 

separations were programmed on the pulse generator for each condition.  

Once the images were acquired, the velocity fields were computed by cross-correlating 

the image pairs. An in-house algorithm in the Heurisko domain was used. The first image 

of each image pair was partitioned into 32x32 pixel cells, called interrogation windows. 

An interrogation window was read as a gray scale value for each pixel in the cell, 

resulting in 32x32 two-dimensional scalar fields. In the second image of the image pair, a 

search region of 64 × 64 pixels was set for each corresponding interrogation window to 

search for the particles’ movement between the two images.  

A cross correlation [41] (see Equation 2.5) was implemented on the gray scale values of 

the 32x32 pixels in an interrogation window against the values of all 32x32 pixel cells in 
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the corresponding 64x64 search window. This resulted in a 32x32 discrete scalar field 

𝑅𝐼𝐼(𝑥, 𝑦) for every interrogation window. The value of 𝑅𝐼𝐼(𝑥, 𝑦) at a certain location in 

an interrogation window could be attributed to the pixel at position x and y that was the 

center of a 32x32 pixel cell of the corresponding 64x64 search window.  At the location 

in the second image where a group of particles in the first image had traveled to, the 

correlation coefficient had the largest magnitude, which appeared as a peak in the 

correlation scalar field. A displacement vector was drawn from this location to the center 

of the interrogation window. In every interrogation window there resided a single vector. 

This displacement vector was divided by the time separation in order to obtain a velocity.  

𝑅𝐼𝐼(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑖, 𝑗)𝐼′(𝑖 + 𝑥, 𝑗 + 𝑦)

𝐿

𝑗=−𝐿

𝐾

𝑖=−𝐾

     (2.5) 

In Equation 2.5, 𝐼(𝑥, 𝑦) is the gray scale value for the pixels in the interrogation window 

and 𝐼′(𝑥, 𝑦) is the gray scale value for the pixels in a section of the search window. A 

scalar value with coordinates x and y rests at the center of every 32x32 section of a 64x64 

search window. This equation sums the product of intensities of all pixel location pairs 

between a 32x32 interrogation window and a 32x32 pixel cell of the search window. A 

pixel-to-length conversion factor was used to covert the vectors into velocity units 𝑐𝑚/𝑠. 

In the given setup, the conversion factor was 0.0017 pixels per 𝑐𝑚. 

An image pair yielded one velocity vector field. Therefore, about 4500 vector fields were 

acquired for each experimental condition. Sporadically aligned vectors that were 

considered noise of the statistical cross correlation function were corrected using a local 

median test as proposed by Siddiqui et al. [32] that examined both magnitude and angular 

deviations of every vector against its eight neighbouring vectors. There was less than 1% 

of spurious vectors in the given velocity fields.  

In some of the images, there were certain local regions with visual impedances that 

needed to be removed from the images. In particular alignments of the laser and camera, 

reflections disturbed the quality at certain locations within the image. These local regions 

only resulted in noisy data without contribution to the results. These bad regions were 
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marked out and the corresponding velocity vectors were excluded from subsequent 

analyses.  

The images taken by the PIV setup encompassed a 3.5 cm long segment of the pipe. As a 

parcel of fluid passed through the test heat exchanger, it amassed an increasing amount of 

heat at a non-uniform rate. The axially varying heat transfer rates therefore caused the 

velocity profile to axially vary as well along the test heat exchanger. The entire heat 

exchanger was 0.9 meters, and it was assumed that the change in flow profile along the 

3.5 cm section of acquired images was negligible. This was concluded by analyzing the 

average the streamwise velocity component at the far left and right columns and 

comparing them along each row. The case of lower flow rate and highest heating 

condition was considered for this analyses due to its maximized error contribution. It was 

found there was no noticeable change along the 3.5 cm long PIV image. 

 

2.4 Error Analyses 

As mentioned above, the uncertainty of all thermocouples used in this experiment was ± 

0.5 C, as given by the manufacturer. Another source of error for the thermocouple 

measurements was the linear regression method used to calibrate the acquired voltage 

signals into temperature values. The condition considered for this evaluation held the 

highest applied error as calculated by the program Excel and was a value of 

approximately ± 1%, resulting in an uncertainty of ± 0.34 of the highest temperatures 

used in the present experiment. The total magnitude of this uncertainty was calculated 

with the following equation, 

𝐸𝑇 = √𝑎2 + 𝑏2     (2.6) 

where 𝐸𝑇 is the total uncertainty magnitude associated all thermocouples, and 𝑎 and 𝑏 are 

the manufacture and linear calibration uncertainties, respectively. Equation 2.6 resulted in 

a total uncertainty of 0.6 C for the thermocouples used to acquire temperature data in this 

thesis. 
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The error sources present in the PIV setup were the particle diameter, velocity gradient, 

peak locking and adaptive Gaussian window interpolation [33]. The glass particles used 

to reflect the laser light had a diameter of 15 𝜇𝑚, and hence 0.882 pixels. A correlation 

between particle diameter (measured in pixels), and the expected error was provided in 

Figure 5(a) of Cowen and Monismith [33], which was  

𝜖𝑢1
= (−0.03) + 0.095 = 0.065  𝑝𝑖𝑥𝑒𝑙𝑠       (2.7) 

The source of error attributed to peak locking was approximated as a function of particle 

diameter, found in Figure 13 of Prasad et al. [34]. It was illustrated that a particle 

diameter of 0.882 pixels was attributed with an error of 

𝜖𝑢2
= (0.4)𝜖𝑢1

=  0.025 𝑝𝑖𝑥𝑒𝑙𝑠       (2.8) 

The error due to the PIV setup was based on the largest average velocity gradient present 

during experimentation. This was found to be approximately 
𝜕𝑢

𝜕𝑦
= 0.015 pixels/pixel 

during conditions of maximal flow rate and any heating condition (due to similarity). 

Using Figure 5(e) in Cowen and Monismith [26], the error attributed to this velocity 

gradient was the sum of both mean and RMS errors, resulting in a total error of  

𝜖𝑢3
= (−0.01) + 0.03 = 0.02  𝑝𝑖𝑥𝑒𝑙𝑠       (2.9) 

The error attributed to adaptive Gaussian window interpolation (AGW) was provided in 

Figure 5(f) of [33]. The total number of vectors fields used for analyses was 4500, which 

converted to an error of approximately  

𝜖𝑢4
= 0.08  𝑝𝑖𝑥𝑒𝑙𝑠       (2.10) 

The total error associated with the PIV setup was calculated as follows, 

𝐸𝑃𝐼𝑉 = √∑ 𝜖𝑢𝑖
2

4

𝑖=1

       (2.11) 
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resulting in a total error of 0.11 pixels, which converts into 0.015 cm. This error value for 

the calculation of velocity vectors then translates into a velocity uncertainty of ± 0.015 

cm/s. 

 

2.5 Conclusions 

An immersed pipe heat exchanger was constructed by completely submerging a pipe of 

flowing fluid into a stagnant, near-isothermal, hotter fluid. The underlying thermo-fluid 

processes were experimentally investigated by acquiring temperature and velocity 

measurements of the internal flow at a region located near the outlet of the heat 

exchanger. A thermocouple rake was built and used to acquire a temperature field in the 

internal cross-sectional plane of the pipe. Nine thermocouples were placed inside the 

pipe, and three were placed on the outer surface of the pipe at the same axial location; 

one on the top, one on the bottom and one on the side. Two additional thermocouples 

resided at the inlet and the outlet of the heat exchanger in order to measure the total heat 

transfer rate into the fluid through the stagnant secondary fluid.  

Particle image velocimetry (PIV) was employed in the same axial region as the 

thermocouple measurements in order to acquire a velocity field of the internal flow. A 

laser illuminated micro glass particles in the flowing fluid, which was captured by a 

camera. These images were run through a cross correlation algorithm in order to obtain 

the velocity field. The outer rectangular reservoir in the test heat exchanger allowed for 

the acquisition of a non-distorted images. 
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Chapter 3  

3 Temperature Field 

As mentioned in Chapter 2, the temperature field inside the tube was measured using a 

rake of thermocouples. This chapter presents and discusses the fluid temperature behavior 

inside the test heat exchanger under various conditions.  

3.1  Computation of physical and dimensionless 
parameters 

The total amount of heat per unit time (q) transferred into the primary fluid was 

calculated using Equation 3.1, where 𝑇𝑖𝑛𝑙𝑒𝑡 and 𝑇𝑜𝑢𝑡𝑙𝑒𝑡 are the bulk fluid temperatures at 

the inlet and outlet of the test heat exchanger, respectively, �̇� is the mass flow rate of the 

primary fluid and 𝑐𝑝 is the specific heat of the fluid [35]. In the present study, time-

averaged values of the inlet and outlet fluid temperatures were used in Equation 3.1, and 

𝑐𝑝 was computed at the mean of the average inlet and outlet temperatures.  

𝑞 = �̇�𝑐𝑝(𝑇𝑜𝑢𝑡𝑙𝑒𝑡 − 𝑇𝑖𝑛𝑙𝑒𝑡)     (3.1) 

The Reynolds number defined in Equation 1.1 is a dimensionless quantity that 

determined the ratio between inertial and viscous forces acting on the fluid. Since the 

fluid density and viscosity depend on the fluid temperature, during fluid heating even at a 

given flow condition, the Reynolds number was expected to change along the pipe length 

as well as for different heating cases. To keep consistency for comparison purposes, the 

Reynolds number for each flow rate at room temperature was used as the reference 

Reynolds number throughout this thesis. For the flow rates considered in this study, the 

Reynolds number for the unheated cases varied from 330 to 6670.  

The bulk temperature of the primary fluid at the cross-sectional plane of the temperature 

measurement was also calculated in order to determine the thermophysical properties of 

the fluid at this location. This bulk temperature was found by spatially averaging the fluid 

temperature at nine locations in the measurement rake (see Figure 2.3b). Various 

dimensionless parameters were calculated at this location as a reference for the 
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subsequent analyses of corresponding temperature and velocity fields. The Prandtl 

number (𝑃𝑟) in Equation 3.2, is the ratio of viscous diffusion rate to the thermal diffusion 

rate, which was dependent only on the state of the fluid (thermophysical properties). The 

Nusselt number (𝑁𝑢) in Equation 3.3 is the ratio of convective to conductive heat transfer 

rates normal to the boundary of the heated surface (i.e. the pipe). The Grashof number 

(𝐺𝑟) in Equation 1.2 is the ratio of buoyant to viscous forces present on the fluid [1].  

𝑃𝑟 =
𝑐𝑝𝜇

𝑘
          (3.2) 

𝑁𝑢 =
ℎ𝐿

𝑘
          (3.3)Certain assumptions were made in order to compute some of these 

parameters. The inner surface temperature of the glass tube was calculated using the 

measured outer surface temperature and a local heat flux density through the glass. The 

local heat flux 𝑞′′ was approximated to be constant axially and circumferentially along 

the pipe in order to use the total heat transfer rate 𝑞 to find the average heat flux through 

the entire pipe. The local heat flux could then be expressed as 𝑞′′ = 𝑞/𝐴, where 𝐴 is the 

heat transfer surface area (an average of ID and OD of the pipe was used). This implied 

that the outer and inner surface temperature difference was constant everywhere on the 

pipe. The four outer surface locations in the measurement plane were spatially averaged 

to yield the average outer surface temperature. The approximate radial heat flux into the 

fluid at this location must initially have passed through the glass via conduction. Hence, 

knowing the conductive heat flux, the average inner surface temperature could be 

estimated by using Fourier’s law of conductive heat transfer. The conductive heat transfer 

rate through a circular pipe of uniform heat flux was calculated as follows [35], 

𝑞 =
2𝜋𝑘𝐿

ln (
𝑟𝑜

𝑟𝑖
)

(Touter − 𝑇𝑖𝑛𝑛𝑒𝑟)     (3.4) 

where 𝑞 is the total heat transfer rate from Equation 3.1, 𝑟𝑜 and 𝑟𝑖 are the outer and inner 

radius of the glass pipe, 𝐿 is the axial length of the heat exchanger, and 𝑇𝑜𝑢𝑡𝑒𝑟 and 𝑇𝑖𝑛𝑛𝑒𝑟 

are the inner and outer glass pipe surface temperatures, respectively.  
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The radially averaged glass inner surface temperature and the bulk temperature of the 

fluid allowed for the calculation of the Grashof number and the approximate convective 

heat transfer coefficient h, which was then used to calculate the Nusselt number. 

Considering the one-dimensional heat transfer, the heat transferred through conduction 

via the glass pipe was equal to the convective heat transfer to the primary fluid inside the 

pipe. The convective heat transfer coefficient was calculated using Newton’s law of 

cooling as presented in Equation 3.5, where 𝑇𝑏𝑢𝑙𝑘 was the bulk fluid temperature in the 

temperature measurement plane and flux 𝑞′′ was calculated using 𝑞 in Equation 3.1. 

ℎ =
𝑞′′

𝑇𝑖𝑛𝑛𝑒𝑟 − 𝑇𝑏𝑢𝑙𝑘
     (3.5) 

Although for calculation simplicity, the heat flux through the glass tube was assumed 

constant throughout the entire test heat exchanger, in reality it varied both axially and 

radially. Hence, the dimensional and dimensionless parameters computed using this 

assumption can be treated as bulk parameters not local parameters. This issue is further 

discussed in detail in Section 5.2.  

The above computed and measured parameters of the primary fluid in the measurement 

plane were used to calculate the discussed dimensionless quantities. Table 3.1 lists the 

values of the key parameters for the four extremum highest and lowest operating flow 

rate and bottom wall temperature conditions. 

Again, the Grashof number quantifies the ratio of buoyant to viscous forces. It can be 

interpreted loosely as the natural convection analogue of the Reynolds number in forced 

convection (the ratio of inertial to viscous forces). As shown in Table 3.1, the Grashof 

number was higher at the higher bottom wall temperature due to the magnified buoyant 

forces. The results also show that at the same wall temperature, the Grashof number was 

relatively lower at the higher flow rate. This was due to the reason that an increase in the 

flow rate reduced the temperature difference between the pipe surface and the bulk fluid 

and hence, reduced the buoyant forces. Therefore, the highest value of the Grashof 

number (𝐺𝑟 = 95,000) was obtained at the lowest operating flow rate and highest bottom 
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wall temperature, and its lowest value (𝐺𝑟 = 14,000) was found at the highest flow rate 

and lowest bottom wall temperature.  

The Reynolds number was primarily considered for the forced convection phenomena 

present in the experiments, while the Grashof number was considered for the natural 

convection phenomena present. During mixed convection, both forced convection and 

natural convection modes co-exist. The relative contribution of each mode during mixed 

convection was quantified using a dimensionless quantity 𝐺𝑟/𝑅𝑒2 which represents the 

ratio of buoyancy to inertial forces. If 𝐺𝑟/𝑅𝑒2 << 1, the forced convection mode 

dominates, while for 𝐺𝑟/𝑅𝑒2 >> 1, natural convection mode dominates [2]. For 𝐺𝑟/

𝑅𝑒2 ≈ 1, both modes have almost equal contribution. The values of 𝐺𝑟/𝑅𝑒2 for the four 

extremum cases are also presented in Table 3.1. As the results show, the highest 

measured 𝐺𝑟/𝑅𝑒2 = 0.6 was found at the highest wall temperature and lowest flow rate 

indicating that forced convection had a relatively higher contribution compared to natural 

convection, where the contribution of the latter was still significant. At the opposite 

conditions of lowest operating bottom wall temperature and highest flow rate, the 

smallest value of the ratio was found as 𝐺𝑟/𝑅𝑒2 ≈ 10−4, where the buoyant forces were 

almost completely negligible. 

 

3.2 Heat transfer rate in the test heat exchanger 

Figure 3.1 illustrates the relationship between the Reynolds number, 𝑅𝑒, and the total 

heat transfer rate, 𝑞, for each heating condition that corresponds to a constant local 

bottom surface temperature of the rectangular reservoir. The results show that at a given 

flow rate, the heat transfer rate increased with an increase in the wall temperature, as 

expected. At the lowest Reynolds number, the heat transfer rate increased from about 20 

W to 160 W (a factor of 8) as the wall temperature increased from 30 oC to 70 oC, 

whereas at the highest Reynolds number, the heat transfer rate increased from about 60 

W to 260 W (a factor of 4.3) over the same wall temperature range. The higher 

temperature rise at low Reynolds number could be due to the reason that at this Reynolds 

number, the flow was originally in the laminar range. As the temperature increased, the 
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buoyancy effects continued to become stronger. Buoyancy also induces turbulence, 

hence, with an increase in the buoyancy effects, the flow transitioned to turbulence at this 

low Reynolds number, which increased the heat transfer rate. At high Reynolds numbers, 

turbulence is dominantly due to the mean shear stress. Although the buoyancy does 

contribute, its effects were still relatively low; hence the increase in the heat transfer rate 

is relatively small compared to the low Reynolds number. 

The change in the heat transfer rate over the given Reynolds number range showed a 

strong dependency on the wall temperature, i.e. the temperature of the reservoir fluid, 

particularly for higher Reynolds numbers. At low Reynolds numbers in the laminar range 

for the unheated condition, the heat transfer rate increased monotonically with an 

increase in the Reynolds number for all heating conditions. This was likely due to an 

increase in the fluid velocity, which increased the heat transfer coefficient. In the high 

Reynolds number range that corresponded to the turbulent regime, the heat transfer rate 

remained almost constant. 

 

Figure 3.1: The total heat transfer rate versus the average Reynolds number along 

the test heat exchanger for various conditions. The curves represent conditions of 

constant bottom control temperature. 
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The results in Figure 3.1 showed that both the Reynolds number and the controlled wall 

temperature influenced the heat transfer rate. To investigate the relative influence of 

forced and natural convection on the heat transfer rate, the heat transfer rate was plotted 

versus 𝐺𝑟/𝑅𝑒2 in Figure 3.2. The plot showed that the influence of 𝐺𝑟/𝑅𝑒2 on the heat 

transfer rate was strongly dependent on the flow rate. That is, the influence of 𝐺𝑟/𝑅𝑒2on 

the heat transfer rate increased with a decrease in the flow rate. At the lowest flow rate of 

0.05 gpm, the plot showed a strong dependency of the heat transfer rate on 𝐺𝑟/𝑅𝑒2. 

However, with an increase in the flow rate, the dependency became weaker and at the 

two highest flow rates, the heat transfer rate was independent of 𝐺𝑟/𝑅𝑒2. At a given flow 

rate, the increase in 𝐺𝑟/𝑅𝑒2 was due to the increase in the wall temperature. This effect 

was more pronounced at low flow rates, where the magnitude of 𝐺𝑟/𝑅𝑒2was higher, i.e. 

the buoyancy effects were more significant compared to the inertial effects. However, as 

the flow rate increased, the buoyancy effects became weaker (smaller magnitudes of 

𝐺𝑟/𝑅𝑒2) and the heat transfer rate was dominated by forced convection. 

 

Figure 3.2: The heat transfer rate of the test heat exchanger versus the buoyancy-

inertia ratio of 𝑮𝒓/𝑹𝒆𝟐. The curves represent constant volumetric flow rates. 



31 

 

 

3.3 Computation of thermophysical properties and 
dimensionless parameters 

The Nusselt number (Nu) is often used as the dimensionless parameter to quantify the 

heat transfer process. According to [35], for forced convection in a fully developed pipe 

flow with constant local heat flux 𝑞′′, the Nusselt number has a constant value of 4.36, 

independent of any parameters or thermophysical properties. The prediction of the local 

Nusselt number for the transition into, and fully turbulent flow was more difficult 

because it was dependent on certain parameters. The Gnielinski correlation [35] as 

presented in Equation 3.5 was used to predict the local Nusselt number for 𝑅𝑒 > 3,000 

and uniform heat flux conditions. 

𝑁𝑢 =

𝑓
8

(𝑅𝑒 − 1,000)Pr

1 + 12.7 (
𝑓
8)

0.5

(𝑃𝑟2/3 − 1)

             (3.5) 

In the above equation, 𝑓 is the friction factor of the pipe, which can be calculated for a 

smooth surface as follows [35]. 

𝑓 = (0.79 ln(𝑅𝑒) − 1.64)−2                (3.6) 

Figure 3.3 depicts the relation between 𝑁𝑢 and 𝑅𝑒 for both the laminar and turbulent 

regime. The curve generated from the Gnielinski correlation is also plotted within its 

bounds of accuracy for reference. At a given bottom wall temperature, the Nusselt 

number increased with an increase in the Reynolds number as expected. However, at 

lager 𝑅𝑒 in the turbulent regime, the graph showed a strong dependency on the bottom 

wall temperature, i.e. the secondary fluid temperature, which was not expected. It was 

observed that at a given Reynolds number in the turbulent regime, the Nusselt number 

decreased with an increase in the bottom wall temperature. At a given Reynolds number, 

as the wall temperature increased, the Grashof number increased, implying an increase in 

the contribution of buoyancy-driven natural convection. Hence, the results in Figure 3.3 

indicated that the Nusselt number decreased with an increase in the Grashof number at a 
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given Reynolds number. In other words, in the turbulent regime, an increase in buoyancy 

dampened the turbulent convective heat transfer. A decrease in turbulent convection with 

an increase in the Grashof number was also observed by Gajusingh and Siddiqui [9]. It 

should be noted that at a given flow rate (especially at lower flow rates), an increase in 

the temperature also caused a minor increase in the Reynolds number due to a decrease in 

viscosity; this change was relatively small compared to the change in the Grashof number 

and hence for simplicity it was assumed to be constant.  

The Gnielinski correlation is accurate for forced convection, which was relatively close 

to the values at the two lowest bottom wall cases where the buoyancy effects were 

negligible and forced convection was the dominant mode of heat transfer, as mentioned 

earlier. At 𝑅𝑒 < 1000, the Nusselt number values were relatively close to the theoretical 

value of 4.36. In the transition regime, the trends from the experimental results were quite 

different from the predicted values. 

   

Volumetric flow 

rate (gpm) 

Bottom wall 

temperature (C) 

Reynolds 

number 

Grashof 

number 

𝑮𝒓/𝑹𝒆𝟐 Nusselt 

Number 

0.05 30 330 18,000 0.16 2.6 

0.05 70 400 95,000 0.6 3.6 

1 30 6660 14,000 0.0003 25.7 

1 70 6660 68,000 0.002 10.2 

Table 3.1: Dimensionless parameters are compared for the two extremum flow rates 

and two extremum temperatures, resulting in four separate conditions. 
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Figure 3.3 A theoretical correlation between Re and Nu compared for each curve of 

constant heating conditions. 

 

The Nusselt number correlations are conventionally expressed for forced convection with 

a Reynolds and Prandtl number dependency, while for natural convection it is expressed 

with a Rayleigh number dependency. For mixed convection, where both forced and 

natural convection modes co-exists, none of these groups of correlations can accurately 

predict the Nusselt number. The combined effect of forced and natural convection can be 

conveniently shown by 𝐺𝑟/𝑅𝑒2. Figure 3.4 shows the variation in the Nusselt number 

versus 𝐺𝑟/𝑅𝑒2. The plot shows that the Nusselt number decreased with an increase in the 

𝐺𝑟/𝑅𝑒2, i.e. with a relative increase in the natural convection and/or a decrease in the 

forced convection. This was due to the reason that the rate of convection heat transfer 

was higher during forced convection compared to natural convection. This was likely due 

to a higher velocity magnitude during forced convection, which enhanced mixing. Figure 

3.4 also shows that the dependency of Nusselt number on 𝐺𝑟/𝑅𝑒2 was nonlinear. 
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Figure 3.4: Nusselt number versus the buoyancy-inertia ratio for all 25 experimental 

conditions. 

 

3.4 Temperature fields 

The simultaneously acquired temperature data taken at nine locations in the measurement 

cross-sectional plane allowed for the investigation of the spatial temperature field. To 

study the spatial distribution of the temperature field in the pipe’s cross-sectional plane, 

the results are presented in the form of colour maps. The spatial variation of the fluid 

temperature was most prominent at the highest bottom wall temperature, therefore the 

results are presented for this case in order to illustrate the underlying processes. Note that 

the trends were similar for other cases not presented here. Figures 3.5(a-e) present the 

cross sectional temperature fields for the highest operating temperature of 70 oC for five 

volumetric flow rates of 0.05, 0.1, 0.2, 0.6, 1 𝑔𝑝𝑚. The corresponding Reynolds numbers 

for the unheated condition were 330, 670, 1330, 4000, and 6660, respectively. The inner 

and outer surfaces of the glass pipe are outlined in each figure with black for reference. 

The figures were not to physical scale; the boundary existed in the image in order to 

separate the internally placed thermocouples from the ones placed on the outer glass 
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surface. The bottom row of each figure represents the temperature of the boundary 

between the secondary fluid and the bottom aluminum plate. This temperature was 

different from the controlled surface temperature of 70 oC because it was on the top side 

of the material (the feedback thermocouple was on the dry bottom) and was at a different 

axial location. 

It was seen in the first three images in this group of contour maps that there was a trend 

for the internal temperature to increase with height in the center vertical plane of the pipe. 

This temperature gradient became more prominent as the flow rate decreased. This was 

predicted by the corresponding Grashof numbers.  Figure 3.5(a) therefore illustrated the 

largest temperature difference of about 13 oC between the top and bottom internal fluid 

temperatures at 𝐺𝑟 = 95,000. The top and bottom outer surface temperatures remained 

hotter than the fluid close to the corresponding top and bottom inner boundary for all 

conditions as expected. The upper outer surface was typically hotter than the lower outer 

surface temperature. The side outer surface temperatures were lower than the top and 

bottom outer surface temperatures. The internal horizontal temperature center plane was 

approximately uniform with a slight tendency to maximize in the center and become 

cooler with increasing radial position. 

The internal vertical temperature gradient was proposed to be present for the following 

reason. The temperature difference between the top outer surface measurement and the 

top inner fluid measurement was about 6 oC. The temperature difference between the 

bottom outer surface and the bottom fluid was 16.5 oC. This temperature difference was 

evidently much larger at the bottom than at the top. This result indicated that there was a 

larger heat flux through the bottom then there was through the top of the pipe in the 

measurement plane due Fourier’s law of heat transfer. This was a result of the 

gravitational asymmetry of the flow geometry. The warmer fluid at the top formed a layer 

of stably stratified fluid, which restricted the fluid from mixing induced by buoyancy-

driven convective flow and therefore unstable stratification was most prominent at the 

bottom of the pipe, where the hot fluid could rise. The relatively higher heat transfer rate 

at the bottom of the pipe indicated that the fluid was well mixed in this region, lowering 

its temperature compared to the top of the pipe where mixing was absent. The relatively 
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uniform fluid temperature in the mid-horizontal and lower half of the pipe indicated that 

the convective currents were mainly restricted in the lower half of the pipe.  

In Figure 3.5(c) for 𝑅𝑒 = 1330, the cross sectional temperature field of the internal flow 

was more or less uniform, except for the top section of the pipe. The mid and bottom 

regions in the cross section for this flow rate was well mixed. The buoyancy-induced 

convection was absent in this region due to the absence of a vertical temperature gradient. 

At this Reynolds number of 1330, transitionally turbulent behaviour was visible from the 

high mixing rates and uniform temperatures, although it was not fully developed as 

shown by the upper higher temperature. 

The vertical temperature gradient in the internal flow was almost negligible at the two 

highest flow rates of 0.6 and 1 𝑔𝑝𝑚 (Figures 3.5(d) and 3.5(e) for 70 oC). The 

corresponding 𝐺𝑟/𝑅𝑒2 for these flow conditions were ≈ 10−4 and 10−3 respectively, 

which indicated a very weak buoyant force with respect to the inertial force. The uniform 

internal temperature implied that the fluid was undergoing an efficient mixing process 

other than the convection currents, namely the expected onset of turbulent flow. For the 

case of 𝑅𝑒 = 4000 and at 70 oC bottom wall temperature (Figure 3.5(d)), the plot showed 

that the primary flow was fully turbulent and the flow mixing extended over the entire 

pipe cross section leading to a uniform bulk temperature field. Similar results were 

observed at the highest Reynolds number of 6660.  

The plots in Figure 3.5 also show a temperature non-uniformity along the outer 

circumference of the pipe. This was the surface that was in contract with the secondary 

fluid and was the heat source to the primary fluid. To investigate this temperature non-

uniformity, the first step was to check whether this effect was driven by the vertical 

temperature variation in the secondary fluid. For this purpose, the secondary fluid 

temperature was measured at eight vertical locations from the bottom heated wall to the 

upper edge of the reservoir. The measurements were made in the same cross-sectional 

plane slightly off from the glass pipe for different conditions. Figure 3.6 shows the 

vertical temperature profiles of the secondary fluid for different Reynolds numbers at a 

bottom wall temperature of 70oC. The results showed that the fluid temperature was 
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approximately constant over the vertical extent of the reservoir for each condition. This 

indicated that the variation in the pipe surface temperature was due to flow variations 

inside the pipe. In the following paragraph, a conceptual physical description of the heat 

transfer process in the test heat exchanger based on the temperature colour maps is 

presented. 

As mentioned earlier, the flow dynamics of the primary fluid inside the pipe played an 

important role in the heat transfer along the pipes circumference at a given cross-section. 

These flow dynamics in turn were influenced by the thermal boundary conditions along 

the pipes circumference. Since the pipe was immersed in a fluid of higher temperature, 

the heat transfer occurred radially along the entirety of the pipes circumference. The local 

flow dynamics inside the pipe was influenced by the angular position at which the heat 

was transferred to the fluid from the inner pipe surface, due to the buoyancy effects. That 

is, the heat transfer through the pipe wall increased the temperature of the fluid parcels 

adjacent to the pipes surface. These fluid parcels then tended to rise vertically due to 

buoyancy inducing convective motion. These convective motions were well established 

in the bottom section of the pipe. However, as reaching the upper curvature of the pipe, 

due to the heat transfer from the upper section, the lighter fluid stayed at the top and thus, 

suppressed the convective motion, or mixing. As a result, the temperature of the fluid 

parcel in the top section of the pipe remained higher, which reduced the temperature 

differential across the pipe and hence, caused a reduction in the local heat transfer rate. 

This caused a local increase in the temperature at the surface of the pipe. In the bottom 

section on the other hand, the convective motion persisted, which took the warm fluid 

parcels away from the surface and brought the cooler and dense fluid parcels towards the 

surface. This process maintained higher temperature differential across the pipe and 

resulted in a higher heat transfer rate that caused a local reduction in the temperature at 

the surface of the pipe. 

While the bulk temperature of the secondary fluid was relatively uniform over the 

reservoir height as shown in Figure 3.6, the variation in the local heat transfer rate at the 

boundaries of the immersed tube also caused local variations in the secondary fluid 

temperature in the peripheral region around the pipe. The secondary fluid in the reservoir 
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received heat from the bottom wall, which was then transported throughout the fluid 

domain. Since the dominant heat transfer to the primary fluid in the pipe was through the 

secondary fluid underneath the pipe, the convective motion in this region was expected to 

be very active. This convective motion brought the high temperature fluid parcels from 

the vicinity of the bottom heated wall to the region underneath the pipe. The fluid parcels 

rejected heat to the primary fluid via the pipe wall, which lowered the fluid parcels’ 

temperature. The convective motion brought these lower temperature fluids parcels to the 

bottom plate and brought the high temperature fluid parcels to the pipe as mentioned 

earlier. A portion of this high temperature, low density secondary fluid tended to rise. But 

due to the presence of the top pipe surface, the fluid parcels tended to slide over the pipe 

curvature in the lower half. During this process, the fluid temperature dropped due to the 

heat transfer along the pipe curvature. Hence, the temperature at the mid-height of pipe 

was lower. Technically, these fluid parcels moving along the pipe curvature should have 

tended to rise to the top. However, due to the lower heat transfer rate at the upper section 

of the pipe (discussed earlier), the secondary fluid above the pipe remained at a higher 

temperature. This layer of high temperature fluid, with a density lower than that of the 

rising fluid parcels, prevented vertical fluid mixing and hence maintained a higher 

temperature. It was expected that this fluid layer received heat from the bulk secondary 

flow surrounding it at the same height.   
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D.  
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E.  

Figure 3.5: Colour maps indicating the temperature field inside the temperature 

measurement plane during maximal bottom wall temperature of 70 oC for the 

volumetric flow rates of A) 0.05, B) 0.1, C) 0.2, D) 0.6 E) 1 gpm. 

 

Figure 3.6: Confirmation of secondary fluid bulk temperature uniformity. 



42 

 

 

3.5 Vertical temperature profiles 

The temperature field colour maps in the preceding section provide a good perception of 

the primary fluid temperature distribution in the cross-sectional plane of the pipe. For a 

detailed quantitative comparison of the fluid temperature variation under difference 

conditions, the vertical profiles of the fluid temperature was plotted in Figure 3.7(a-e). 

The graphs were separated for different flow rates, where each of the five heating 

conditions for the same flow rate was compared on the same graph. The height, y, is 

normalized by the inner pipe diameter, D and the normalized temperature Θ, is expressed 

by,  

Θ =
𝑇𝑙𝑜𝑐𝑎𝑙

𝑇𝑏𝑢𝑙𝑘
          (3.7) 

where 𝑇𝑙𝑜𝑐𝑎𝑙 is the individual temperature acquired by a single thermocouple, and 𝑇𝑏𝑢𝑙𝑘 is 

the average temperature of all nine thermocouples measuring the temperature in the 

cross-sectional plane of the pipe. The x-axis in Figures 3.7(a-e) were held consistent for 

the laminar flow regime, but not for the turbulent regime. 

Figures 3.7 (a-c) show the temperature profiles at the flow rates that correspond to the 

originally laminar regime. A consistent trend in each of these graphs was observed, i.e. 

the fluid temperature increased from the bottom to the top of the pipe. However, the 

shape of the vertical temperature profile changed with a change in the bottom wall 

temperature. At the lowest bottom wall temperature of 30 oC, the vertical variation in the 

fluid temperature was very small (within approx. 10%) at all three lower flow rates (in 

the laminar regime). This was the case when the buoyancy forces were the weakest at 

each flow rate. The vertical temperature variations increased monotonically with an 

increase in the bottom wall temperature at each of these flow rates, i.e. higher vertical 

temperature gradients. The bulk temperature (i.e. Θ = 1) occurred approximately at the 

center of the pipe for each case with a slight tendency to increase in height with flow rate 

due to the average change in temperature profile shape. The height of the mean 
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temperature seemed to be consistent within each flow rate, regardless of the heating 

condition. At a given flow rate, all curves converged to a point at approximately Θ = 1. 

As observed in the colour maps and profiles of the fluid temperature, the fluid in the top 

region was consistently hotter than the bottom region of the pipe. The plots in Figure 

3.7(a-c) show that the fluid temperature in the pipe top region ranged from around 105% 

to 130% of the mean temperature. The fluid temperature in the bottom region however 

ranged from an average of 85% to 95% of the mean fluid temperature The Grashof 

numbers presented in Table 1 were highest for the lowest flow rate and highest bottom 

wall temperature at 𝐺𝑟 = 95,000, indicating the highest average buoyant forces. This 

case was displayed in Figure 3.7(a) of 𝑅𝑒 = 330 and 𝑇 = 70 𝐶, represented by a black 

curve. It presents the largest average deviation from the mean at this flow rate, indicating 

a higher heat transfer in the lower section and a lower heat transfer in the upper section of 

the pipe. The temperature difference between the top and bottom were measured at a 

maximum of 13 oC. The trend was similar at the next higher flow rate of Re = 670. 

As the Reynolds number further increased to 𝑅𝑒 = 1330, the temperature profiles 

gradually started to become more uniform in the bottom half of the pipe, in particular at 

the higher wall temperatures (see Figure 3.7 c). However, the strong temperature 

gradients remained in the upper half of the pipe. This indicated that an increase in the 

flow rate enhanced mixing in the lower section of the pipe but the stably stratified layer 

in the upper section of the pipe remained strong enough to dampen convective motions 

attempting to penetrate into this layer. The difference in temperature between the fluid at 

the top and bottom of the pipe had decreased to 7.1 oC in this case at the highest wall 

temperature of 70 oC.  

As the Reynolds number further increased and the flow regime transitioned to turbulence, 

the inertial effects became strong enough to overcome the damping due to stable 

stratification, and the flow mixing extend over the entire vertical extent of the pipe cross-

section. As a result, the vertical temperature profiles became almost uniform (see Figure 

3.7 d-e). The plots showed that the vertical temperature fluctuations were within 1-2% of 

the mean fluid temperature. The five temperature profile curves for each of the two high 
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Reynolds number cases were consistently partitioned into two groups. The two lowest 

operating bottom wall temperatures of 30 and 40 oC were both very uniform, presenting 

no obvious temperature trends. The higher operating temperatures of 50, 60 and 70 oC 

however, show a tendency to be warmer on the perimeter of the pipe and cooler in the 

center.  

To better understand the relative contributions of buoyancy and inertial forces on the 

vertical temperature distribution inside the pipe, the vertical temperature profiles are 

plotted versus 𝐺𝑟/𝑅𝑒2 in Figure 3.8. The partition between laminar and turbulent 

regimes is clearly evident in this figure. As observed, the vertical stratification was 

highest at the highest value of 𝐺𝑟/𝑅𝑒2. As the ratio started to decrease, i.e. the buoyancy 

effects decreased relative to the inertial effects, the stratification effects started to reduce 

due to mixing beginning in the bottom section of the pipe, which was subjected to the 

strongest convective motions. The results also showed that the profiles in the upper 

section of the pipe remained almost the same at the two highest values of 𝐺𝑟/𝑅𝑒2 = 0.6 

and 0.1. These were the two cases at which the buoyancy effects were still relatively 

significant. A similar trend was observed at 𝐺𝑟/𝑅𝑒2 = 0.03 where the buoyancy effect 

was expected to be very weak, however the profile in the upper section of the pipe started 

to move towards uniformity. This indicated that in the case of circumferential heat 

transfer, the stably stratified layer persisted even when the buoyancy effects became 

relatively very weak. The two lowest 𝐺𝑟/𝑅𝑒2 values of 0.002 and 0.0003 were more or 

less uniform at Θ = 1 throughout the height of the pipe, indicating that the buoyancy 

effects were almost negligible and inertial effects were dominantly inducing mixing 

throughout the pipe cross-section.  

The laminar profiles closely resembled one another in that their normalized gradients 

were approximately similar along the height. Within slight deviations, the temperature of 

the fluid located at the bottom of the pipe deviated further from the mean with 

increasing 𝐺𝑟/𝑅𝑒2, while maintaining the rest of the temperature profile. The condition 

of greatest 𝐺𝑟/𝑅𝑒2 = 0.6 therefore indicatively had the largest average relative gradient 

throughout the height of the pipe, which continued to reduce with reducing 𝐺𝑟/𝑅𝑒2. Both 

turbulent conditions were expectantly seen to be approximately uniform at Θ = 1. The 
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relative variations in these profiles appeared negligible when compared to the large 

laminar gradients. 

A.  
 

 

B.  
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C.  
 

 

D.  
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E.  

Figure 3.7: Normalized temperature profiles plotted along the normalized height of 

the pipe. The volumetric flow rates are A) 0.05, B) 0.1, C) 0.2, D) 0.6, E) 1 gpm. 

 

Figure 3.8: Normalized temperature profiles plotted along the normalized height of 

the test heat exchanger for interval buoyancy-inertia ratio values. 
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3.6 Conclusions of this chapter 

This chapter investigated the temperature field in the cross-sectional plane of a horizontal 

pipe fully submerged in a hotter fluid subjected to different heating conditions over a 

range of flow rates. A thermocouple rake was constructed and inserted into the pipe in 

order to measure the temperature fields. With these acquired temperature values, the local 

heat flux through the pipe and primary dimensionless parameters were calculated. It was 

expectantly found that the outlet temperature of the test heat exchanger decreased with an 

increase in the Reynolds number, and also increased in an increase in the Grashof 

number. This was attributed to the relative and absolute magnitudes of forced and natural 

convective modes of heat transfer. It was found that this buoyancy-inertia ratio had a 

large dependence on the heat transfer rate of the fluid that increased as the flow rate 

decreased.  

For initially laminar flow, the calculated Nusselt numbers approximately followed the 

Gnielinski correlation, which expressed Nu as a function of the Reynolds and Prandtl 

numbers, as well as the coefficient of friction of the pipes inner surface. In addition the 

present results also showed that the Nusselt number was dependent on the heating 

conditions, i.e. decreasing with an increase in bottom wall temperature, except for very 

small Re. In other words, as the magnitude of the natural convection mode increased at a 

given Re, the turbulent convective heat transfer rate decreased. The Nusselt number was 

also found to be negatively and non-linearly correlated with the buoyancy-inertia ratio, 

implying the rate of convective heat transfer was larger during forced convection 

compared to natural convection. 

At low flow rates that correspond to laminar flow regime in the absence of heating, it was 

observed that a strong vertical temperature gradient existed in the pipe cross-sectional 

plane. This temperature gradient (cooler at the bottom, and hotter at the top) increased in 

magnitude with an increase in 𝐺𝑟/𝑅𝑒2. The temperature gradient was prominently 

attributed to the asymmetric convective behaviour present inside the pipe; natural 

convection was prominent in the bottom region due to unstable stratification, while 
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absent in the top region due to stable stratification. The unstable stratification in the 

bottom region induced convective motions that were responsible for the larger heat 

transfer rate through the bottom of the pipe, compared to the top. With an increase in 

Reynolds number that transitioned the flow into the turbulent flow regime, the 

temperature profiles became relatively uniform in the pipe cross-sectional plane and the 

local convective motions due to unstable stratification became negligible.  This was 

expected due to efficient fluid mixing induced by turbulence. 
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Chapter 4  

4 Particle Image Velocimetry 

As mentioned in Chapter 2, the instantaneous velocity fields inside the tube were 

measured using the particle image velocimetry (PIV) technique at the same location as 

the temperature field measurements. This chapter presents and discusses the flow 

behavior inside the test heat exchanger under various conditions.  

4.1 Instantaneous Velocity Fields 

Figure 4.1 illustrates a typical instantaneous velocity field at 𝑅𝑒 = 670 and a bottom wall 

temperature of 60 C. The figure shows a relatively well-organized flow in the streamwise 

direction with negligible fluctuations. The velocity vectors in the immediate vicinity of 

the walls were generally masked due to vision obscurities and hence, the convergence of 

the flow velocity field to zero at the top and bottom walls is not visible in Figure 4.1. The 

change in velocity outwards from the wall had some resemblance to that of typical 

Poiseuille flow, however, a clear asymmetry along the pipe height is evident in the figure. 

That is, the maximal fluid velocity was in the lower section of the pipe, not at the center 

(as for the Poiseuille flow). This effect will be discussed in details in the later part. The 

void in the middle of this figure was due to the masking out of the high uncertainty data 

caused by the reflections in the PIV images. All other laminar cases are qualitatively 

similar to the one presented, with minor variations.  

The reason for the vertical asymmetry in the flow profile is proposed as follows. In the 

previous chapter, a temperature gradient was present in the vertical cross sectional profile 

of the temperature measurement plane. The temperature of the fluid was minimal at the 

bottom of the pipe, and increased with height. It was concluded that this temperature 

gradient persisted due to buoyantly driven mass transfer from bottom to top. Typically, 

when the fluid is hotter, its viscosity decreases, which therefore decreases the wall 

friction. The hotter fluid therefore has less friction and should move faster. Instead, the 

velocity profile indicated that the velocity of the fluid was highest in the lower, colder 

region of the pipe. This was probably because the top region of the pipe restricted the 
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present convective behaviour, increasing the static pressure and impeding horizontal 

movement. At the bottom of the pipe, where the fluid was free to upwardly convect out of 

and into the upper region, the static pressure dropped and the fluid flowed more freely. 

This convective behaviour therefore forced the velocity profile to shift its peak into a 

colder, lower region of the pipe opposed to residing at the center, as seen in Figure 4.1.  

As discussed in the previous chapter, the convective behaviour of the fluid influenced the 

heat transfer rate through the glass pipe to be higher through the bottom than through the 

top of the pipe. In turn, this behaviour forced a change in the velocity profile of the pipe, 

increasing its velocity in the lower region. This phenomena even further increased the 

difference in heat transfer rates between the top and bottom of the pipe by increasing the 

mass carried away by forced convection, opposed to natural convection as discussed 

above. The non-uniform circumferential heat transfer rate into the fluid was then much 

larger than qualitatively predicted from the previous chapter on natural convection. 

 

Figure 4.1: PIV acquired instantaneous laminar velocity vector field 
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The planer PIV images as in the present study provide a sequence of instantaneous 

velocity fields at a particular experimental condition. For a given case, the mean velocity 

field is obtained by time-averaging the instantaneous velocities at each grid point. The 

turbulent fields are obtained by subtracting the mean velocity at each grid point from the 

corresponding instantaneous velocities. That is, 

𝑢′(𝑥, 𝑦, 𝑡) = �̃�(𝑥, 𝑦, 𝑡) − 𝑈(𝑥, 𝑦)     (4.1) 

where 𝑢′ is the turbulent velocity,  �̃� is the instantaneous velocity, 𝑈 is the mean velocity, 

x and y are the coordinate of the grid point and t is the time. Figure 4.2 illustrates a 

typical turbulent velocity field at 𝑅𝑒 = 6670 and bottom wall temperature of 60 C. When 

heat is added to a fluid flow from the bottom, thermal plumes of warmer and less dense 

fluid are formed and ascend into the main flow, which are replaced by the falling parcels 

of cooler and denser fluid from above. These flow patterns are typically observed in pure 

natural convection [36, 37] as well as in mixed convection when 𝐺𝑟/𝑅𝑒2 is significantly 

higher than unity [38]. In the present case, the value of 𝐺𝑟/𝑅𝑒2 was 0.0003, which was 

significantly less than unity. Hence, the buoyancy-induced flow was very weak and the 

turbulence was predominantly due to the mean shear. Thus, the flow features evident in 

the Figure 4.2 are associated with the classical turbulent flow in a pipe, which include 

bursting and sweeping motions, local vortices, etc. These turbulent flow patterns play a 

very critical role in the transportation of heat from the wall into the fluid domain as well 

as in fluid mixing. Both of these processes increase the rate of heat transfer. The results in 

Figure 4.2 also show that the turbulent velocity field was relatively similar from top to 

bottom of the pipe indicating that the turbulence was fully spread out across the pipe. 

This caused fluid mixing across the pipe cross-section which resulted in an almost 

uniform fluid temperature over the height, which was evident in the corresponding fluid 

temperature profile in Figure 3.7. More detailed analyses of the turbulent velocities is 

presented later in this chapter. 
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Figure 4.2: Instantaneous turbulent velocity field 𝒖′ at Re = 6670 and bottom wall 

temperature of 60 C. 

 

4.2 Mean Velocity Profiles 

As mentioned earlier, the mean velocity field, 𝑈(𝑥, 𝑦) was computed by time-averaging 

the corresponding instantaneous velocities. The two-dimensional mean velocity field was 

then spatially averaged at each height to obtain the streamwise-averaged mean velocity 

profile, �̅�(𝑦), as a function of height.  Figure 4.3 shows the vertical profiles of the mean 

streamwise velocity (�̅�) at different heating conditions and flow rates. The profiles were 

normalized by the streamwise velocity averaged over the pipe cross section, �̅�, for the 

corresponding condition, while the height is normalized by the pipe diameter. Figure 

4.3(a) shows the mean velocity profiles at the lowest flow rate of 0.1 gpm for different 

wall heating conditions. The flow in the absence of heating at this flow rate was in the 

laminar regime where the pipe flows exhibited classical Poiseuille velocity profiles. The 

results in the plot showed an asymmetry in the profile with the peak velocity shifted 

towards the bottom, which was a clear deviation from the Poiseuille behavior. This 
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indicated that under these conditions, wall heating influenced the mean flow structure 

inside the pipe. The plot also showed that the profiles at different wall heating conditions 

collapsed in a narrow band indicating that the change in temperature of the pipe wall due 

to the change in the surrounding fluid temperature does not have a major influence on the 

shape of the profile, except near the bottom end of the tube. It was also observed that the 

peak velocity magnitude was approximately 40% larger than the mean velocity.  For the 

four heating conditions presented in the figure, the 𝐺𝑟/𝑅𝑒2 values ranged from 0.02 to 

0.08, which was within the same order of magnitude, hence the velocity profiles for 

different heating conditions showed a similar behavior. Figure 4.3(b) showed the mean 

streamwise velocity profiles at the flow rate of 0.2 gpm, which was also in the laminar 

regime for unheated condition. The shape of the profiles at this flow rate for different 

heating conditions was similar to that observed in Figure 4.3(a). The 𝐺𝑟/𝑅𝑒2 for these 

cases has a relatively small range from 0.01 to 0.04, again supporting their similar profile 

shape. Figures 4.3 (c) and (d) illustrate the mean streamwise velocity profile at flow rates 

of 0.6 and 1 𝑔𝑝𝑚. The flow at these flow rates in the absence of heating was in the 

turbulent regime. The results in both figures showed almost symmetric profiles, which 

were typical of the turbulent pipe flow. The effect of heating on the mean velocity was 

very weak for 0.6 gpm, which became negligible as the flow rate increased to 1 gpm. The 

𝐺𝑟/𝑅𝑒2 value for these cases ranged from 0.0003 to 0.002. The results showed that the 

peak velocity magnitude in these cases was about 15% larger than the mean velocity.  

The velocity profiles at the two lower flow rates displayed in Figures 4.3 (a) and (b) had a 

slightly different relative shape, as did the profiles at the two higher flow rates shown in 

Figure 4.3 (c) and (d) under the turbulent conditions. This issue is further investigated. 

Figure 4.4 illustrates the normalized mean streamwise velocities for the same intervals of 

𝐺𝑟/𝑅𝑒2 as discussed in Chapter 3 for the temperature analyses. The two cases of 

𝐺𝑟/𝑅𝑒2 = 0.1 and 0.03 were at low Reynold numbers, the laminar flow regime under 

unheated conditions, while the cases of 0.002 and 0.0003 were at a high Reynolds 

number that corresponded to the turbulent flow regime under unheated conditions. The 

plot showed a clear change in the mean velocity behavior when 𝐺𝑟/𝑅𝑒2 became very 

low.  The case of  𝐺𝑟/𝑅𝑒2 = 0.1 showed an increase in the velocity gradually from the 



55 

 

top of the pipe towards the bottom with the peak at approximately 𝑦/𝐷 = 0.3, indicating 

a higher normalized velocity in the top-mid region of the pipe relative to the case 

𝐺𝑟/𝑅𝑒2 = 0.03, which had a more uniform gradient from the top of the pipe to the peak 

of the profile at approximately 𝑦/𝐷 = 0.25. Although the absolute velocity gradient was 

much larger for the lower 𝐺𝑟/𝑅𝑒2 values, the relative gradient seemed smaller on 

average in this top-mid region. The maximal velocity for the case of 𝐺𝑟/𝑅𝑒2 = 0.1 was 

slightly higher along the height of the pipe than the lower case of 𝐺𝑟/𝑅𝑒2 = 0.03. As 

mentioned earlier, the inertial effects started to become significant as 𝐺𝑟/𝑅𝑒2 became 

less than unity. The results in Figure 4.4 showed an asymmetry in the mean velocity 

profile even at 𝐺𝑟/𝑅𝑒2 =  0.03, where the buoyancy effects were significantly lower 

compared to the inertial effects. This indicated that the shape of the mean streamwise 

velocity profile was also influenced by the nature of the flow rate regime in the absence 

of heating. That is, in the flow regime that was in the laminar range in the absence of 

heating, the wall heating had a profound effect on the mean flow structure even when the 

buoyancy effects were relatively weak.    

Other studies have also reported an asymmetry in the mean streamwise velocity profile at 

low Reynolds numbers in the presence of heating. Sookdeo and Siddiqui [21] reported an 

asymmetry in the mean velocity profiles in a flat-plate solar collector tube where the peak 

velocity shifted towards the bottom. The Reynolds numbers at room temperature  were 

ranged from 150 to 900, all in the laminar regime. Depending on the heating condition 

and the flow rate, the location of the peak mean velocity ranged from 0.25 < 𝑦/𝐷 < 0.4, 

which was consistent with the present results. The values of 𝐺𝑟/𝑅𝑒2 in their study 

covered a very wide range from 0.7 to 511 indicating that the mixed convection in their 

case was predominately in the natural convection mode. Ouzzane and Galanis [39] in 

their numerical study of flow in an inclined tube with longitudinal fins heated from 

above, also observed an asymmetry in the mean velocity profile with the peak shifted 

towards the bottom side. They conducted simulations at 𝑅𝑒 = 400 and 𝐺𝑟/𝑅𝑒2 = 1.9. 

They attributed the shift in the velocity peak to the secondary flow induced by buoyancy. 

Figures 4.5(a,b) present the mean vertical velocity (𝑣) normalized by the characteristic 

velocity scale �̅� for the two laminar flow rate only, at different heating conditions 
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(corresponding to the cases presented in Figure 4.3 a & b, respectively). The 

manifestation of the mean vertical velocity in a horizontal pipe was due to the buoyancy-

induced flow which acted parallel to the gravity vector. This resulted in the magnitude of 

the vertical velocity component being significantly lower than that of the streamwise 

velocity component at both flow rates. This indicated that the buoyancy effects (vertical 

flow) were much weaker than the inertial effects (streamwise flow), which was 

confirmed by the values of 𝐺𝑟/𝑅𝑒2 less than unity at both flow rates. The positive sign in 

the figure indicates an upwards velocity opposed to a negative sign corresponding to a 

downward velocity. Although it is weak, the figures did illustrate the presence of 

convectively induced flows in each condition. Both figures showed relatively much 

stronger magnitudes of upward flow in the bottom region of the pipe that corresponded to 

the upward convective currents, indicating that natural convection was present in the 

bottom region of the pipe, and not in the upper region. The results also showed that at a 

given flow rate, the velocity profiles at different heating conditions were very similar. 

The profile shapes however showed some differences between the two flows. This 

showed that the change in the buoyancy effects due to the change in the wall temperature 

at a given flow rate had a relatively weak contribution compared to that of inertia due to 

the change in the flow rate. There was also a slight trend for the fluid in the top region of 

the pipe to have a downwards velocity, hence the negative value of 𝑣. This trend was 

slightly more prominent for the case of lower flow rate. This was likely due to the 

influence of the convective currents, which also had a downward component to satisfy 

mass conservation. It was also observed that the peaks of the mean upward velocity 

profiles were located at approximately the same height inside the pipe as the peak for the 

mean streamwise velocity profiles. This means that the location of maximal inertia also 

exhibited maximal buoyancy. 

The vertical velocity profiles illustrated in Figure 4.5(b) were much less smooth than the 

velocity profiles at generally lower Reynolds numbers as seen in Figure 4.5(a). This 

‘choppiness’ might have been a sign of the onset of turbulent behaviour that distorted the 

vertical velocity profile. For the fully turbulent conditions, the mean upward velocity 

vanished throughout the height of the tube; the turbulent flow behavior will be discussed 

in a later section. 
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These mean velocity results in combination with the corresponding temperature fields 

provided an insight into the underlying physical processes inside the pipe subjected to 

peripheral heating from a surrounding isothermal fluid. Both velocity and temperature 

results showed very distinct velocity and temperature fields for originally laminar and 

originally turbulent flow regimes (in the absence of heating). For the turbulent case (two 

higher flow rates), the results showed that the fluid temperature was almost uniform 

throughout the pipe cross-section. This indicated that the fluid was well mixed, which 

was confirmed by the mean velocity profiles at these flow rates that showed almost 

symmetric behavior about the pipe centerline. For the laminar case (two lower flow 

rates), significant variations in both velocity and temperature fields were observed with 

respect to the pipe height. The results in Figures 4.3 and 4.4 showed that at low flow 

rates, wall heating influenced both the streamwise and vertical velocity components. It 

was observed that both velocity components peaked in the bottom region of the pipe 

while the velocity magnitudes in the upper region were very small (up to an order of 

magnitude smaller than the peak magnitudes). This implied that the primary fluid in the 

pipe was moving much faster in the lower section of the pipe with higher mixing due to 

the vertical velocity component, compared to that in the upper section of the pipe. The 

corresponding fluid temperature profiles showed higher temperature and temperature 

gradients in the upper section of the pipe and relatively lower temperature and smaller 

temperature gradients in the lower section.  

Based on these results, the underlying physical process at low flow rates could be 

described as follows: The peripheral wall heating induced convective currents in the 

lower section of the pipe. The overall effect of these convective currents was a rise in the 

warmer fluid from the wall region into the bulk fluid domain. While rising, these warm 

fluid parcels were subjected to a strong streamwise flow that pushes them in the 

downstream direction. As a result, these fluid parcels ascended at an inclination angle in 

the bulk fluid stream and hence penetrating into the downstream flow. This process 

enhanced fluid mixing, which reduced the vertical temperature gradient. The presence of 

both streamwise and vertical velocity peaks in the close vicinity of the bottom wall 

indicated that the warm fluid parcels rapidly moved away from the wall, which 

maintained a lower fluid temperature that enhanced the heat transfer rate. In the upper 
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section of the pipe, the lower magnitude of streamwise vertical velocity and almost 

negligible vertical movement caused the fluid parcels in that region to remain unmixed 

and to slowly move along the pipe. In the absence of mixing, the warm fluid parcels 

remained in the same configuration relative to pipe wall and hence, strong vertical 

temperature gradients were established with higher temperatures. The slow movement of 

these fluid parcels increased their contact time with the heated wall, causing some 

increase in the fluid temperature, but their persistent contact with the wall reduced the 

temperature difference required for a higher heat transfer, resulting is a much lower heat 

transfer rate compared to that from the bottom wall.        
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A.  

 

 

B.  
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C.  

 

D.  

Figure 4.3: Normalized mean streamwise component velocity against the normalized 

height of the pipe for volumetric flow rates of A) 0.1, B) 0.2, C) 0.6, D) 1 gpm 
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Figure 4.4: Normalized streamwise velocity component against the normalized 

height of the pipe for interval buoyancy-inertia ratios. 
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A.  

B.  

Figure 4.5: Normalized mean vertical velocity component against the normalized 

height of the pipe for volumetric flow rates of A) 0.1 and B) 0.2 gpm 
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4.3 RMS Velocity Fields 

The mean velocity profile is not sufficient in characterizing a turbulent flow due to the 

presence of vortices and other turbulent features, as shown in Figure 4.2. The magnitude 

of turbulent velocity was quantified through root-mean-square (RMS) as follows,  

𝑢𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑢𝑖

2𝑁
𝑖=0       (4.2)  

where 𝑢𝑖 is the 𝑖th turbulent velocity in the chosen direction and 𝑁 is the total number of 

samples. The RMS streamwise and vertical turbulent velocities were computed 

throughout the height of the tube for each condition. The lowest flow rate that 

corresponded to the case of 𝑅𝑒 = 330 (at room temperature) was not considered since 

the turbulent velocity fluctuations even in the presence of heating were almost 

nonexistent.  

The turbulent velocities during convection were normalized by a characteristic velocity 

scale. For forced convection, friction velocity is generally used as the velocity scale. The 

friction velocity is given as, 

𝑢∗ = √𝜈
𝑑𝑈

𝑑𝑦
⃒𝑦=0      (4.3) 

Where 𝜈 is the kinematic viscosity and 
𝑑𝑈

𝑑𝑦
⃒𝑦=0 is the mean velocity gradient in the 

vertical direction at the boundary. Unfortunately, as discussed above, the boundary of this 

figure was masked due to limitations of the experimental apparatus. To find the gradient 

in vertical velocity at this location, an approximate extrapolation method was used. From 

classical turbulent flow theory, a viscous sublayer exists at the boundary in which the 

mean velocity gradient remains constant (i.e. a constant slope). The friction velocity was 

computed by assuming the velocity gradient to be constant between the lowest measured 

point and the wall.  
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Figures 4.6 and 4.7 illustrate contours of the RMS streamwise and vertical turbulent 

velocity fields, respectively, in the measurement plane at two values of 𝐺𝑟/𝑅𝑒2. In 

Figure 4.6, the results showed that the RMS streamwise turbulent velocity was maximum 

near the walls and minimal in the center. Note that the RMS velocity should have 

decreased to zero at the walls, but these areas were masked out and hence the decay of 

turbulent velocity was not visible in the figure. As the Reynolds number increased i.e. the 

𝐺𝑟/𝑅𝑒2 value decreased (Figure 4.6b), the streamwise turbulent velocity magnitude 

increased near the wall, as expected, however the overall flow structure and velocity 

magnitudes remain similar. The results also showed that at a given height, the streamwise 

turbulent velocity remained almost constant along the tube. Figure 4.7 illustrates the 

RMS vertical turbulent velocity contours. The results showed that the vertical turbulent 

velocity was significantly influenced by the 𝐺𝑟/𝑅𝑒2 values. At 𝐺𝑟/𝑅𝑒2 = 0.002, the 

vertical turbulent velocity magnitude was almost zero near the walls, which increased 

with height but remained fairly constant in most of the pipe domain. As the 𝐺𝑟/𝑅𝑒2 

value decreased due to an increase in the Reynolds number, the overall magnitude of the 

vertical turbulent velocity increased throughout the pipe domain. The flow structure also 

changed with the peak velocity magnitudes near the walls, which gradually decreased 

towards the pipe center. The overall vertical turbulent velocity magnitude at this 

condition was almost twice that of at 𝐺𝑟/𝑅𝑒2 = 0.002. The results in Figure 4.7 also 

showed that at a given height the structure of vertical turbulent velocity remained 

relatively similar along the pipe at a given value of 𝐺𝑟/𝑅𝑒2. These results indicated that 

the overall structure of the turbulent flow was mainly influenced in the direction normal 

to the pipe wall, which was expected from classical turbulence theory. Comparison of 

streamwise and vertical turbulent velocity magnitudes in Figures 4.6 and 4.7 showed that 

the streamwise turbulent velocity magnitudes were higher than the vertical turbulent 

velocity magnitudes for both cases.    

Figure 4.8 illustrates the normalized profiles of the RMS streamwise turbulent velocity 

versus the normalized height of the pipe at three flow rates. The profiles in Figure 4.8(a) 

are for the flow rate of 0.2 𝑔𝑝𝑚. As discussed earlier, this flow corresponded to the case 

when the flow was in the transitional regime  (Re =1330). The results showed a behavior 
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similar to that observed in Figure 4.6, i.e. the streamwise turbulent velocity magnitude 

was largest close to the wall, which then decreased to a minimal value in the core of the 

pipe. However, the magnitude of turbulent velocity was very low. This result implied that 

the wall heating introduced buoyancy-induced instabilities in the flow that caused a 

transition of a laminar flow into turbulence. The results also indicated that these 

instabilities generated turbulence primarily in the near-wall regions. With an increase in 

height, the turbulence magnitude rapidly decreased to very small value, confirming that 

the turbulence was almost negligible in the core region of the pipe. At the two higher 

flow rates that corresponded to the turbulent regime in the absence of heating (Re = 4000 

and 6660), the streamwise turbulent velocity magnitudes were significantly higher 

although the flow structure remained very similar to that observed in Figure 4.6. The 

results also showed that at a given flow rate, the wall heating did not have any significant 

impact on the structure of the streamwise turbulent velocity in the wall-normal direction.     

Figure 4.9 shows the profiles of the RMS vertical turbulent velocity versus the 

normalized height of the pipe corresponding to the same cases shown in Figure 4.8. At 

the flow rate of 0.2 𝑔𝑝𝑚 (Figure 4.9a), as expected, the turbulent velocity magnitude was 

very low and did not show any trend indicating that the vertical turbulent velocity 

fluctuations were almost negligible throughout the pipe domain at this flow rate 

regardless of the bottom wall temperature. The large fluctuations in this profile are due to 

the relative scale of the axis being comparable to the attributed PIV error scale. As the 

flow increased to the turbulent regime (Figure 4.9 b & c), the structure of the vertical 

turbulent velocity was well defined. The results at both of these flow rates show 

relatively symmetric behavior with peak velocity magnitudes close to the walls. 

Comparison of the profiles at different heating conditions at a given flow rate, showed 

that the heating condition did not have an impact on the structure of the vertical turbulent 

velocity, similar to that of the streamwise turbulent velocity shown earlier.  

The RMS streamwise and vertical turbulent velocity profiles at the two higher flow rates 

in Figures 4.8 and 4.9 show symmetric behavior, which indicated that the turbulence was 

fully established in the pipe cross-sectional plane. The peak velocity magnitudes near the 

pipe wall enhanced mixing which increased the transportation of heat from the wall into 
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the bulk fluid. This resulted in an almost uniform fluid temperature inside the pipe as 

shown in Figure 3.7 (d & e), and also enhances the heat transfer rate as shown in Figure 

3.1. The structure of both streamwise and vertical turbulent velocities were different from 

that observed in mixed convection at higher 𝐺𝑟/𝑅𝑒2 values [38] but relatively similar to 

that observed in the pipe flow in the absence of heating. This confirmed that at low 

𝐺𝑟/𝑅𝑒2 values, the mechanism of turbulence production was primarily the mean shear 

flow, not the buoyancy. The results further showed that when the contribution of 

buoyancy-driven flow (natural convection) was smaller than that of the inertia-driven 

flow (forced convection), i.e. 𝐺𝑟/𝑅𝑒2 was less than unity, the role of buoyancy was 

primarily limited to the initiation of instabilities in the laminar flow to trigger the 

transition to turbulent flow at low Reynolds numbers.       
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A.  

B.       

Figure 4.6: Streamwise RMS velocity contour maps for conditions of buoyancy-

inertia ratio of A) 0.002, B) 0.0003, with colour bar units of [mm/s] 
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A.  

B.    

Figure 4.7: Vertical RMS velocity contour maps for conditions of buoyancy-inertia 

ratio of A) 0.002, and B) 0.0003 with colour bar units of [mm/s] 
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A.  

 

B.  
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C.  

Figure 4.8: Streamwise RMS velocity profile plotted against the normalized height 

of the pipe for volumetric flow rates of A) 0.2, B) 0.6 and C) 1 gpm 
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A.  

 

B.  
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C.  

Figure 4.9: Horizontal RMS velocity profile plotted against the normalized height of 

the pipe for volumetric flow rates of A) 0.2, B) 0.6 and B) 1 gpm 

 

4.4 Conclusions of this Chapter 

This chapter focused on the PIV acquired velocity vector fields (positioned in a plane 

parallel to the direction of flow and normal to the bottom wall). In the previous chapter, it 

was concluded that a temperature gradient existed inside the pipe due to buoyantly driven 

momentum transport in the fluid residing in the lower pipe region at low Reynolds 

numbers and higher Gr/Re2 values. These conclusions were supported in the present 

chapter by the acquired wall-normal velocity fields that clearly illustrated a prominent 

existence of vertical convective currents in the lower region of the pipe. The magnitude 

of the vertical component of the velocity in the near wall region was much lower than the 

magnitude of the streamwise velocity component, supporting the low 𝐺𝑟/𝑅𝑒2 values. 
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There was a slight trend for the fluid in the top region to have a downwards velocity, 

which slightly increased in magnitude with decreasing flow rate.  

In this chapter, it was also concluded that the present convective behaviour (i.e. the heat 

transfer into the submerged pipe), effected the mean streamwise velocity structure in the 

vertical plane of the pipe. Specifically, the temperature gradient forced the mean velocity 

peak to shift from the middle of the pipe into the lower region. This altered the classical 

Poiseuille-flow velocity profile and relatively increased the convective heat transfer rates 

in the lower region of the pipe, indicating larger buoyant forces in this region. The mean 

velocity profiles recovered their classical trend at high Reynolds numbers where the flow 

was in fully turbulent regime.  The results also show that the mean velocity profiles were 

approximately independent of the bottom wall temperature, supported by the similar 

values of 𝐺𝑟/𝑅𝑒2 for a given flow rate. It was also found that the peaks of the wall-

normal and streamwise profiles coincided.  

The RMS turbulent velocity fields at the higher Reynolds numbers showed that the 

streamwise turbulent velocity was maximum near the bottom and minimal in the center. 

The velocity magnitude increased near the wall with an increase in the Reynolds number, 

i.e. a decrease in 𝐺𝑟/𝑅𝑒2. The vertical turbulent velocity was found to be significantly 

influenced by the 𝐺𝑟/𝑅𝑒2 values. The vertical turbulent velocity increased throughout 

the pipe domain as the 𝐺𝑟/𝑅𝑒2 value decreased due to an increase in the Reynolds 

number. These results indicated that the overall structure of the turbulent flow was 

mainly influenced in the direction normal to the pipe wall, which was expected from 

classical turbulence theory. It was also observed that the streamwise turbulent velocity 

magnitudes were higher than the vertical turbulent velocity magnitudes for both cases. 

The results also showed that the magnitudes of both streamwise and vertical turbulent 

velocities were almost constant along the tube at a given height. 

The RMS turbulent velocity profiles showed very low turbulent velocity magnitudes at 

0.2 gpm (corresponded to the case when the flow was in the laminar regime in the 

absence of heating) implying that the wall heating introduced buoyancy-induced 

instabilities in the flow that caused the transition of a laminar flow into turbulence. At the 
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two higher flow rates that corresponded to the turbulent regime in the absence of heating, 

higher velocity magnitudes and almost symmetric behavior were seen, indicating that the 

turbulence was fully established in pipe’s cross-sectional plane. It was concluded that at 

low Reynolds numbers when the contribution of buoyancy-driven flow (natural 

convection) was smaller than that of the inertia-driven flow (forced convection), the role 

of buoyancy was primarily limited to the initiation of instabilities in the laminar flow to 

trigger the turbulence transition.   
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Chapter 5  

5 Conclusions 

An experimental study was conducted to investigate the thermo-fluid behavior in a 

horizontal pipe fully submerged in a hotter fluid. The temperature and velocity fields 

were measured to characterize the transport processes over a range of flow and thermal 

conditions that correspond to a variation in the relative magnitudes of free and forced 

convection. A thermocouple rake was constructed to acquire temperature measurements 

at nine internal locations as well as several measurements on the pipe surface and hotter 

fluid. The PIV technique was employed to measure two-dimensional velocity fields in the 

mid-vertical plane of the pipe.  

5.1 Discussion Summary 

All experimental conditions included in this study exhibited a buoyancy-inertia ratio of 

less than unity, implying the prominent mode of convection preset was forced 

convection. Although this was the more prominent convective mode, natural convection 

still existed in comparable quantities at low flow rates and higher wall temperatures. In 

the laminar flow rate regime, this ratio maintained a range between 0.01 and 0.6. Inside 

the test setup, the bottom wall heating induced heat transfer into the secondary fluid that 

resided in the outer reservoir, which in turn induced a heat transfer into the primary fluid 

through the pipe wall.  

The temperature of the outer surface of the pipe was measured, and so was the 

temperature of the secondary fluid in the outer reservoir. It was determined that the 

secondary fluid exhibited a uniform temperature in the reservoir domain, while the 

temperatures around the pipe surface were not uniform. The change in temperature close 

to the pipe surface was attributed to the heat transfer interaction with the primary fluid. 

The Gnielinski correlation provided a good theoretical outline for the expected Nusselt 

numbers. It was found that for the two lowest bottom wall temperature, the resulting 

Nusselt numbers for different 𝑅𝑒 and 𝑃𝑟 were in close agreement to the theoretical 

correlation. The Nusselt number was also found to decrease with an increase bottom wall 
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temperature and 𝐺𝑟/𝑅𝑒2 in the transitional and turbulent regimes, indicating that 

turbulent convective heat transfer was damped by an increase in natural convection.  

At low Reynolds numbers that correspond to the laminar flow regime in the absence of 

heating, strong vertical temperature gradients existed inside the pipe cross-sectional plane 

within primary. This temperature gradient (cooler on the bottom, and hotter at the top) 

increased in magnitude with an increase in 𝐺𝑟/𝑅𝑒2. It was also found that the outer pipe 

surface was hotter on top with respect to the bottom. In addition, the temperature 

difference between the outer pipe surface temperature and the fluid on the inner pipes 

surface was largest in the bottom region of the pipe, which indicated a larger heat transfer 

rate there. The variations in the heat transfer rate were proposed to be present for the 

following reasons. The unstable stratification in the bottom region of the pipe induced 

convective motions, which were responsible for the larger heat transfer rate through the 

bottom of the pipe. In the upper region of the pipe, the stable stratification prevented the 

convective motions resulting in a significantly low heat transfer rate. This variation in the 

heat transfer rate in turn influenced the local surface temperature along the pipe 

periphery.  This conclusion was supported by the acquired wall-normal velocity profiles. 

It was shown that, during initially laminar flow, the vertical velocity magnitude is 

relatively large in the bottom region of the pipe and almost absent in the op region. There 

was also a slight trend for the fluid in the top region to have a small downwards velocity 

that increased in magnitude with a decrease in flow rate. 

This wall normal thermal behavior influenced the flow structure resulting in a lower 

magnitude of streamwise fluid velocity in the upper region compared to that in the 

bottom region. The streamwise velocity profile was therefore altered from typical 

Poiseuille flow into an asymmetric profile with a velocity peak shifted towards the 

bottom wall. This effect even further increased the relative heat transfer rate between the 

top and bottom fluid regions, increasing the convective heat transfer rate in the bottom 

region. This was because the fluid parcel at the bottom of the pipe exhibited a larger flux 

out of the region due to upwards convection. 
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At high Reynolds numbers that correspond to the fully turbulent regime in the absence of 

heating, the temperature profiles appeared relatively uniform in comparison. This was 

expected due to the efficient fluid mixing induced by turbulence. The uniform 

temperature field in the vertical plane reduced fluid stratification which in turn caused a 

substantial reduction in the magnitude of local convective motions. The mean and 

turbulent velocity profiles under these conditions were found to be similar to the classical 

trend indicating that in the turbulent regime with predominantly forced convection mode, 

the buoyancy has negligible influence on the mean flow structure. 

The results in this study showed that the original flow regime (in the absence of heating) 

had significant impact on the local temperature field as well as the mean and turbulent 

flow structure.  At low Reynolds numbers that corresponded to an originally laminar flow 

in the absence of heating, the heat transfer from the outer pipe surface influenced the 

local flow and temperature behavior that in turn influenced the local heat transfer rate. 

Whereas, at high Reynolds numbers that corresponded to an originally turbulent flow in 

the absence of heating, the enhanced fluid mixing caused uniformity in the temperature 

field and the mean and turbulent flow structure remained unaltered by the buoyancy 

forces. It is concluded that, at low Reynolds numbers when the contribution of buoyancy-

driven flow (natural convection) is smaller than that of the inertia-driven flow (forced 

convection), the role of buoyancy was primarily limited to the initiation of instabilities in 

the laminar flow to trigger the transition into turbulence. 

 

5.2 Future Considerations 

The present study investigated the thermal and flow behaviours of the fluid at a location 

where it was fully developed. In real applications, significant heat transfer could occur 

within the pipe length, in which the flow undergoes a developing phase. Therefore, it is 

recommended to investigate these behaviours within the developing length inside the 

pipe to determine the change in heat transfer rate along the pipe and evaluate parameters 

that influence this transport process. Such investigation should be conducted axially and 

circumferentially (preferably with a higher resolution than that used in the present study) 
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due to the non-uniform heating conditions. This would provide a more adaptive insight 

into the underworking of the heat transfer process along the pipe during hydrodynamic 

and thermal development of the fluid. It may also provide insight into the origins of the 

thermal and flow profiles observed in the fully developed region.  

Another influential component of the above heat transfer process was the behaviour of 

the secondary fluid that resided in the external reservoir in the test heat exchanger. 

Discrete temperature gradients present in the secondary fluid were measured from the 

surface of the external wall to the surface of the internal pipe. Convective flows must 

have been present in this reservoir, which influenced the heat transfer in a presently 

unknown way. For example, secondary fluid natural convection along the side of the pipe 

would induce a larger convective heat transfer rate into the primary fluid in this side 

region. These, and similar, behaviours are presently undetermined. These are 

recommended to be thoroughly investigated using thermocouples and PIV. 

While the present study was focused on heat transfer from a hotter surrounding fluid into 

a submerged pipe, a variety of applications involve heat transfer from the submerged pipe 

flow into the surrounding fluid. It is expected that the local thermal and fluid behavior in 

both internal and external fluid would not be similar to that observed in for former case. 

Hence, it is recommended to conduct a thorough investigation considering the heat 

transfer in the opposite direction.  
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