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Abstract 

Metal-organic frameworks (MOFs) are a new class of porous materials that possess large 

three-dimensional voids in their structures, which are ideal for applications such as gas 

adsorption and separation. In this work, Solid-state NMR (SSNMR) is used to examine the 

dynamics of guest molecules at various temperatures in MOFs that possess different types of 

channels. Chapter 2 introduces the 
13

CO2 adsorption behavior in α-Mg formate studied by 
13

C 

SSNMR in conjunction with molecular dynamic (MD) simulation. 
1
H-

13
C cross polarization (CP) 

technique has successfully determined the adsorption sites of CO2 in this type of MOF to be 

hydrogen atoms. The dynamic analysis detects that at low temperature (room temperature and 

below), all of the adsorbed CO2 undergo a localized rotation upon a single hydrogen site and a 

simultaneous non-localized two-sites hopping between two hydrogen sites, whereas at high 

temperature (above room temperature), a small portion of the adsorbed CO2 molecules undergo 

only a localized rotation while the majority still follow the combined motion. Chapter 3 studies 

the ethylene adsorption behavior in α-Mg formate and CPO-27-M (M = Mg and Zn) by means of 

2
H SSNMR. Two types of ethylene are found in α-Mg formate following distinct motions. The 

majority of the adsorbed ethylene undergoes a localized rotation and a simultaneous 

non-localized two-sites hopping, whereas the minority follows a localized rotation only. In 

CPO-27-M, all the adsorbed ethylene follows a localized rotation upon the unsaturated metal 

sites and a simultaneous non-localized hopping between six unsaturated metal sites. The affinity 

of ethylene towards CPO-27-Mg is found to be stronger than in CPO-27-Zn. 
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Chapter 1 Introduction 

1.1 Metal-Organic Frameworks 

Metal-organic frameworks, or MOFs, are a relatively new class of porous material with 

ultrahigh surface area.
1
 In general, MOFs feature metal containing units (also known as 

secondary building unit, SBU) interconnected by organic linkers in three dimensions, creating 

crystalline porous structures. Since 1990, more than 20000 MOFs have been reported.
2
 Figure 

1.1 shows the framework structures of three well-studied MOFs, CPO-27-M,
3
 (CPO is an 

acronym for Coordination Polymer of Oslo, also known as M2(dobdc) or MOF-74. Metal centre: 

Mg, Co, Ni, Zn, Cu, Fe; Ligand: 2,5-dioxido-1,4-benzenedicarboxylate), HKUST-1 (acronym of 

Hong Kong University of Science and Technology, also known as Cu3(BTC). Metal centre: Cu; 

Ligand: benzene-1,3,5-tricarboxylate, or BTC),
4
 and MOF-5 (Metal centre: Zn, Ligand: 

1,4-benzenedicarboxylate).
5
 The three dimensional porous structures of these MOFs have made 

them exceptionally interesting in various industrial applications such as gas adsorption, 

separation, and catalysis.
2
  

 

Figure 1.1 - Framework structures of CPO-27-Mg (a),
3
 HKUST-1 (b),

4
 MOF-5 (c).

5
 

In order to accommodate those applications, long term chemical and physical stability of the 

(a) (b) (c) 



2 

 

 

 

materials is mandatory. Since MOFs are entirely composed of strong bonds, such as C-O, C-C, 

and M-O, they generally exhibit high thermal stability in the range of 250°C to 500°C. However, 

some MOFs are sensitive to trace amount of chemicals in ambient condition, which would 

compromise their performances. For example, previous report suggests that MOF-5 retains only 

28 % of its original porosity after 19 hours’ exposure to 40 % relative humidity.
6
 This property 

has made MOFs not entirely economical for industrial applications.  

Enormous variability is one of the most attractive features of MOFs. Numerous SBU plus 

countless organic linkers give rise to an almost infinite number of MOFs. One classic case is 

CPO-27-Mg.
7
 The metal centre can also be Co, Ni, Zn, Mn, Fe, and Cu while the framework 

remains isostructural. In 2012, Yaghi et al reported a series of isoreticular MOFs originating from 

CPO-27-M with substantially expanded pores.
8
 The adopted organic linkers possess 2 to 11 

phenyl rings, constructing a series of MOFs with pore sizes from 10 × 14 Å to as high as 85 × 98 

Å. These results are very promising for applications such as gas adsorption and catalysis, which 

generally require large surface area for the reaction to take place. 

Several methods have been reported to effectively produce MOFs with high crystallinity 

and long range 3D structure,
9
 such as solvothermal, mechanochemistry,

10
 electrochemistry,

11
 and 

microwave heating.
12

 Syntheses of MOFs are usually followed by solvent removal procedure 

which allows exposure of pores in the frameworks.
9
 For the sake of large scale 

commercialization, a simple and rapid synthesis route under moderate conditions is preferential. 

One recent study reported a easy and straightforward way of preparing ZIF-8 (acronym of 

zeolitic imidazolate framework-8. Metal centre: Zn; ligand: 2-methylimidazole),
13

 which only 

requires mixing the starting materials at room temperature. Another example is Mg formate MOF. 

BASF has applied a patent which reports mixing Mg oxide and formic acid at 75°C would 

produce Mg formate with very good crystallinity.
14

 So far, there are a number of MOFs that are 

commercially available, most of which are from BASF,
15

 through their product series of 

“Basolite MOFs” including HKUST-1, ZIF-8, Mg(O2CH)2, and MIL-53-Al.  
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1.2 MOFs in gas adsorption 

The high porosity of MOFs is of significant value in terms of gas adsorption and separation. 

Recent research has mainly focused on using MOFs as adsorbents for greenhouse gases and toxic 

chemicals such as CO2, C2H4, H2S, CO, NO, Cl2, etc.
16

  

CO2 capture has been a hot research area arising from the increasing concerns of climate 

change. Currently, the biggest source of CO2 emission is undoubtedly fossil fuel combustion. 

Two routes of capturing CO2 using alkanolamine absorbents are generally adopted by the 

industries:
17

 pre-combustion (CO2 capture takes place at 30 bar and 40° C before combustion) 

and post-combustion capture (CO2 capture takes place at 50-75°C and 1 bar after combustion). 

After capture, CO2 is desorbed and injected into a deep underground porous field (old oil well, or 

saline aquifer) to prevent leakage.
18

 However, alkanolamine is known to slowly corrode the 

pipelines and vessels, potentially increasing the operating cost. In addition, this type of 

absorbents also suffers from stability issues during high temperature CO2 desorption process. 

Therefore developing “harmless” absorbents that could function under mild operating conditions 

is urgent.  

Large pore MOFs have proven to have better adsorption behavior in pre-combustion capture 

processes, whereas relatively small pore MOFs have demonstrated better performance in post 

combustion process due to the difference in their adsorption mechanisms.
19, 20

 Because of the 

high pressure and ambient temperature condition during pre-combustion process, MOFs with 

high porosity are able to bear more CO2. For instance, MOF-200, with Brunauer-Emmett-Teller 

(BET) surface area around 4530 m
2
/g, is able to provide a CO2 uptake of 2347 mg/g (235 wt %) 

at 50 bar.
19

 On the other hand, in the context of post-combustion capture, a number of MOFs 

possessing modest porosity have shown exceptional adsorption behavior due to the presence of 

miscellaneous affinity sites, such as the unsaturated metal sites, amine, hydroxyl and thiol 

functional groups.
21-23

 As mentioned earlier, MOFs bearing unsaturated metal sites like 
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HKUST-1 and CPO-27-M exhibit significantly high adsorption capacity due to the strong 

electronic interactions between the unsaturated metal nodes and CO2 molecules. Similarly, 

electron donor-acceptor interaction is also the main reason why the functionalized MOFs show 

stronger adsorption than the non-functionalized ones. In J. Long’s recent work, mmen 

(N,N′-dimethylethylenediamine) was used to functionalize Mg2(dobpdc) (Metal centre: Mg, 

ligand: 4,4′-dioxido-3,3′- biphenyldicarboxylate), which is an expanded variant of CPO-27-Mg. 

The functionalized Mg2(dobpdc) has displayed an exceptional capacity for CO2 adsorption at 

extraordinarily low pressures. The CO2 uptake is 2 mmol/g (8.1 wt %) at 0.39 mbar and 25°C,
24

 

which is 15 times higher than the unfunctionalized Mg2(dobpdc). This is primarily due to the 

strong interaction between unpaired electrons on N- in mmen and CO2. Hence tailoring 

functional groups onto organic linkers purposely has become a common strategy for improving 

adsorption behavior. MIL-53 (MIL is an acronym for Materials of Institut Lavoisier. Metal centre: 

Al; Ligand: benzene-1,4-dicarboxylate, BDC) is thought to be effective for both pre-combustion 

and post-combustion captures due to its unique structural change with respect to pressure and 

temperature.
25

 At 25 bar and 304 K, MIL-53-Al with a pore size of 8.5 × 8.5 Å
2
 is able to adsorb 

30.6 wt % of CO2,
26

 whereas at 1 bar and 298 K, the pore size shrinks to 2.6 × 13.6 Å
2
 and 

exhibits a CO2 uptake of only about 10 wt %.
27

 This unique pressure and temperature induced 

structural change is known as the breathing effect of this type of MOF. 

Ethylene is involved in various important chemical processes in industries, such as the 

production of polyethylene and ethylene oxide.
28

 Ethylene is primarily produced by petroleum 

steam cracking. During this process, a gaseous mixture including ethylene, methane, and propene 

is produced. The industrial method of trapping C2H4 from this gas mixture is by means of 

repeated condensation and distillation,
29

 which is considered to be one of the most energy 

consuming steps in the production of C2H4. Therefore for the sake of energy consumption, it is 

important to develop absorbents that are able to selectively pick up ethylene under mild 

conditions. M. Bulow et al. reported the significant preferential adsorption behavior for ethylene 

over ethane by HKUST-1.
30

 In this type of MOF, each Cu site is six coordinated. One 
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coordination site is from the neighboring Cu atom; four other coordination sites are the 

contributions of two BTC ligands, and one more from solvent molecule.
5
 Upon dehydration, the 

solvent molecule is removed and the Cu site is five coordinated and becomes unsaturated, also 

known as the open metal site. The preferential adsorption is attributed to the electrostatic 

interaction between π-electrons from C2H4 and partially positive charge of unsaturated Cu site on 

the frameworks. This observation is further supported by Wang and his co-workers’ Monte Carlo 

simulation,
31

 in which a selectivity factor of 2 for C2H4 over C2H6 is obtained. However, very 

few works have focused on the dynamics of adsorbed ethylene molecules in MOFs, which is 

strongly relevant to the selective adsorption.  

 

1.3 Gas adsorption characterization 

Several characterization methods have been reported to assist the thorough investigation of 

guest-host interactions in MOFs, such as single crystal or powder diffraction,
27,32

 vibrational 

spectroscopy,
33

 and nuclear magnetic resonance.
34

  

Among these characterization methods, single crystal X-ray diffraction has been considered 

as the definitive structural determination method, which is able to provide the precise location of 

the adsorbed guest species. In the case of Sc2(BDC)3 MOF (Metal centre: Sc, ligand: 

Terephthalic acid),
32

 single crystal X-ray diffraction successfully locates the position of the 

adsorbed CO2, CH4 and C2H6 molecules in the frameworks. A 14° rotation of the terephthalic 

linkers is found during CO2 adsorption, resulting in two different types of triangular channels 

therefore two distinct types of CO2 adsorption. The structure of CO2 adsorbed Sc2(BDC)3 is 

shown in Figure 1.2a.  

Although single crystal diffraction is a very powerful tool to accurately pinpoint the location 

of the guest species, it can be troublesome to perform due to the difficulty in preparing crystal 
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samples with ideal quality. In addition, it is also unable to identify the location of light elements 

such as hydrogen. Therefore, powder X-ray diffraction (pXRD) and neutron diffractions are also 

commonly used in detecting guest-host interaction as alternative methods.
35

 In the case of 

MIL-53-Cr,
27

 a clear left shift of low angle peaks in pXRD pattern was observed after the 

introduction of CO2, resulting from the breathing effect in this type of MOF, as shown in Figure 

1.2b. In the case of CPO-27-Fe,
36

 the use of neutron diffraction has successfully identified the 

adsorption sites, which are the unsaturated metal centres, as well as the adsorption behaviors 

upon the metal sites of a number of hydrocarbons.  

 

Figure 1.2 - Two sites adsorption of CO2 molecules in ScBDC at 1 bar and 253 K (a),
32

 and pXRD 

patterns of MIL-53-Cr under various pressures of CO2 at 293 K (b).
27

 

In addition to diffraction methods, vibrational spectroscopy (IR and Raman) is also 

commonly used to determine the motion of the adsorbed guest molecules. FTIR spectra have 

confirmed that the CO2 adsorption site in CPO-27-Ni is at the unsaturated Ni sites with an 

end-on fashion.
33

 An unusual splitting of the asymmetric stretching mode of CO2 is also observed 

in IR spectrum, which can be interpreted by a bended structure of CO2 molecules, other than its 

usual linear form. This result is further confirmed by powder XRD refinement, which shows the 

(b) (a) 



7 

 

 

 

O-C-O angle has become 162°. In the case of ZIF-8, in-situ high pressure IR spectrum clearly 

shows a direct interaction between CO2 and imidazole ring on the framework, suggesting 

stronger adsorption behavior under high pressure.
37

 

Multiple computational methods have been reported to predict the gas adsorption behaviors, 

as complements to experimental data due to their limitation in idealizing the system of 

interest.
38,39

 With the use of grand canonical Monte Carlo molecular simulation, the position of 

the adsorbed hydrocarbons including C2H4, C2H6, C3H8, C3H6 in CPO-27-Mg is successfully 

identified, which is upon the unsaturated Mg sites exposed to the channels.
38

 In this work, the 

molecular dynamic simulation conducted by our collaborator Dr. Anmin Zheng is also used to 

assist the determination of adsorption site of CO2 in α-Mg formate.  

 

1.4 Solid-state NMR in MOF studies 

Nuclear magnetic resonance (NMR) has become a very useful tool in deriving fine structural 

information of materials.
40

 Compared to commonly used solution NMR, solid state NMR 

(SSNMR) is relatively challenging due to the longer experimental time, complicated 

experimental setup, and more importantly, the difficulty in interpreting the broad powder pattern. 

Unlike the averaged signal resulting from the rapid molecular tumbling from solution NMR 

(isotropic sharp peaks), broad powder patterns are usually observed in SSNMR due to the 

randomly oriented molecules in solid phase.
41

 With more advanced developments in hardware, 

techniques, and pulse sequences, such as magic angle spinning (MAS) and cross-polarization 

(CP),
42,43

 as well as a number of simulation programs, more information can be obtained from 

SSNMR spectra. 

One of the biggest uses of SSNMR in MOFs studies is structural determination. For instance, 

recent study of -Br and -NH2 functionalized UiO-66-Zr (Metal centre: Zr; Ligand: 1,4 - 
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benzenedicarboxylic acid; Formula: Zr6O4(OH)4(CO2)12) shows that with the use of 
1
H SSNMR, 

spatial proximity of the non-equivalent H, metal centre, and functional groups can be 

successfully resolved.
44

 
2
H NMR used in another study also regarding UiO-66-Zr discovered a 

distribution of the π-flipping rate of BDC ligand.
45

 Our group has also reported a number of 

MOFs’ studies using SSNMR. With 
25

Mg NMR, we successfully refined the structure of 

α-Mg3(HCOO)6.
46

 We also confirmed different oxygen species in CPO-27-Mg, UiO-66-Zr, 

MIL-53-Al, etc using 
17

O NMR.
40

 In one of our most recent publications, we studied a number of 

MOFs and identified the inaccuracies in previous structural reports.
47

  

In addition to structural studies, SSNMR has also been widely used in revealing guest-host 

interactions. A classic and well-studied case is CPO-27-Mg.
34

 With the use of 
13

C SSNMR, a 

uniaxial rotation of a CO2 molecule upon an open metal site is identified through a wide 

temperature range. A controversial result of this work is that the rotation angle of CO2 molecules 

decreases as temperature increases, which is contradictory to the fact that gas molecules are more 

dynamic at higher temperature. In the follow-up study conducted by the same research group, the 

13
C NMR spectra was further analyzed and interpreted into two distinct types of CO2 motions at 

low and high temperatures.
48

 They claimed that at sufficiently low temperature, the adsorbed 

CO2 molecules undergo fluctuation around the minimum energy configuration near the open 

metal site. While the temperature reached 150 K, an intermediate movement of CO2 molecules 

consisting of localized fluctuation and non-localized hopping between the six unsaturated metal 

centres in xy plane was predicted. Whereas at higher temperature, only a hopping motion of CO2 

molecules between six different open metal was found. However, 
17

O NMR study from our 

group suggests that both localized wobbling and the non-localized hopping of CO2 are present 

from 150 K to 403 K in this type of MOF, which is also confirmed by 
13

C SSNMR results.
49

 

Other MOFs are also subjected to SSNMR study in terms of guest-host interactions studies and 

have shown unique adsorption behaviors. For example in CD-MOF-2 (Metal centre: Rb; Ligand: 

γ-cyclodextrin),
50

 the discovery of carbonic acid using 
13

C magic angle spinning (MAS) indicates 

a direct chemical reaction between CO2 and the framework, instead of simple 
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adsorption-desorption.  

As mentioned earlier, the unsaturated metal sites in certain MOFs are the primary adsorption 

site for guest molecules. In some cases, SSNMR is also used in detecting the change in the metal 

cations’ local environment in addition to direct guest species examination. By resolving the 

qudrupolar powder pattern of 
25

Mg NMR of CPO-27-Mg,
51

 Jun et al found that upon activation, 

which is the solvent removal process mentioned earlier in this chapter, the local environment of 

Mg became disordered due to the distortion of MgO5 square-pyramid, while long-range ordering 

remained according to XRD results. When water was reintroduced back to the framework, the 

perfectly ordered structure was restored. A similar result was discovered when small organic 

molecules were introduced into the system.  

Therefore, SSNMR is extremely useful for providing information about guest-host 

interactions in MOFs. 

 

1.5 Physical background of SSNMR 

In general, NMR active nuclei all possess intrinsic angular momentum, known as the spin (I). 

The values of I is positive half integer or integers (i.e. 1/2, 1, 3/2…). Some nuclei that have I = 0 

do not possess intrinsic angular momentum. As a result, those nuclei are NMR inactive. An easy 

way to distinguish whether a nucleus is NMR active is by the number of protons and neutrons.
52

 

If the number of protons and neutrons are both even, these nuclei are NMR inactive. If there is an 

odd number of protons OR neutrons, or an odd number of protons AND neutrons, these nuclei 

are NMR active.  
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SSNMR interactions 

Nuclear spins undergo different types of interactions with their surroundings in the presence 

of an external magnetic field. There are five nuclear spin interactions taking place in NMR, 

including Zeeman, dipolar, chemical shift, quadrupolar interactions (for spin I > 1/2), and 

scalar-coupling.
53

 Their corresponding magnitudes are shown in Table 1-1.  

Table 1-1. Nuclear interactions and the corresponding magnitudes  

Nuclear interactions Magnitude (Hz) 

Zeeman 10
6
~10

9
 

Dipolar 0~10
5
 

Chemical shift 0~10
5
 

Quadruplar  0~10
9
 

J (spin-spin)-coupling 0~10
4
 

 

Zeeman is known as the strongest among all interactions,
53

 and all other interactions can be 

considered small perturbations of the Zeeman interaction. Since the first four interactions are 

involved in identifying host-guest behavior in this study, brief introductions are included in this 

section.  

 

1) Zeeman interaction 

Zeeman interaction refers to the interaction of the magnetic moment of the nuclear spin with 

external magnetic field. Without an external magnetic field, nuclei are all in the degenerate 

ground state. After being exposed to the magnetic field, the non-degeneracy of the ground state 

occurs and 2I + 1 energy levels are formed, distinguished by magnetic quantum number mI (mI = 

-I, -I + 1, -I + 2……, I - 2, I - 1, I. ). The rate of transitions from low energy level to adjacent 

high energy level is termed as Larmor frequency, shown in equation 1. The energy split of a spin 
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1/2 nucleus after being exposed to external magnetic field (B0) is shown in Figure 1.3 as 

illustration.
41

  

 

 𝜈 = (
𝛾

2𝜋
)𝐵0 (1) 

 

 

Figure 1.3 - Illustration of Zeeman interaction of a spin1/2 nucleus 

where ν the nucleus dependent Larmor frequency, γ is the gyromagnetic ratio, an intrinsic 

property of the nucleus and B0 is the applied magnetic field in Tesla. 

The energy difference between the split levels can be calculated using following Equation 2.  

 

Applying a higher magnetic field would create a larger gap between split energy levels, 

resulting in a stronger NMR signal.  

 

2) Dipolar interaction 

Dipolar interaction (DI) is a through space interaction between two spins, usually denoted by 

 ∆𝐸 = ℎ𝜈 = (
ℎ

2𝜋
) 𝛾𝐵0 (2) 

Before applying B
0
 After applying B

0
 

𝑚𝐼 = −
1

2
 

𝑚𝐼 =
1

2
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I and S.
41

 Each spin has a magnetic moment and can be considered as a small bar magnet, where 

each magnet yields a small local field felt by the other. Dipolar coupling constant (D) is used to 

quantify the strength of dipolar interaction, from which the frequency change induced by DI can 

be calculated, as shown the Equations 3 and 4. The principle of dipolar interaction is shown in 

Figure 4a.  

 

 𝐷 =
𝜇𝑜
4𝜋

𝛾𝐼𝛾𝑆

𝑟𝐼𝑆
3

ℎ

2𝜋
 (3) 

 𝜈 = 𝜈𝐿 ±
1

2
𝐷(1 − 3 𝑐𝑜𝑠2 α) (4) 

where rIS is the inter-nuclear distance, α is the angle between inter-nuclear vector and the 

direction of external magnetic field, μ0 is the permeability of vacuum, γI and γS are the 

magnetogyric ratios of spin I and S, νL is the Larmor frequency, and ν is the modified frequency 

by DI. It is clear that DI has strong dependence on inter-nuclear distance, gyromagnetic ratio, and 

angle α. Figure 1.4b shows a typical Pake doublet NMR spectrum arising from dipolar coupling 

interaction for a heteronuclear powder sample.  

 

Figure 1.4 - Principle of dipolar interaction (a), and simulated dipolar coupling spectrum of two 

heterogeneous nuclei I and S (b). Purple and green lines represents the dipole of S either augment 

or cancel the magnetic field that I is experiencing. The blue line is the integrated Pake doublet 

powder pattern. 

(a) (b) 

I 

S 

B
0
 

α 
r 

D 

2D 

α = 0˚ α = 0˚ 

α = 90˚ α = 90˚ 



13 

 

 

 

A typical Pake doublet is composed of two subspectra, which are ascribed to two opposite 

perturbations to Zeeman caused by the parallel and anti-parallel direction of the second spin with 

respect to B0. The two “horns” arise from the 90° I-S vector with respect to B0, and the two “feet” 

on the bottom are resulting from the I-S vector parallel to B0. The frequency gap between the two 

“horns” and two “feet” are exactly D and 2D, which is the most straightforward way of 

calculating the dipolar coupling constant. The higher intensity of the two horns are due to the 

numerous spin pairs with inter-nuclear vectors lying perpendicular to B0, whereas the weaker 

intensity of the two “feet” result from significantly fewer spin pairs with inter-nuclear vectors 

lying along B0. Experimentally, the broad and featureless NMR pattern arising from DI could be 

troublesome for further analysis. A feasible approach is to run magic angle spinning, which refers 

to tilting the sample tube to 54.74° with respect to B0. As a result, the term 1 – 3cos
2
α in 

Equation 4 equals 0, therefore ν = νL and DI is successfully eliminated.  

 

3) Chemical shift interaction 

Placing a single atom into a magnetic field would induce circulation of the electronic cloud.
41

 

Accordingly, a small magnetic field is generated. If the generated magnetic field direction is 

opposite the main magnetic field, the nucleus is shielded from the main magnetic field by its own 

surrounding orbiting electrons, resulting in the shift of observed frequency, known as the 

chemical shift interaction (CS). Its influence on Zeeman can be interpreted by Equation 5. 

 

 ν =
𝛾

2𝜋
𝐵 =

𝛾

2𝜋
𝐵0(1 − 𝜎) (5) 

 

where ν is the resonance frequency, B0 and B represent the main and modified magnetic field, 

respectively, and σ is the chemical shielding constant (≪ 1). σ is represented by three principal 

components, σ11, σ22 and σ33, along the three orthogonal directions of molecular framework, as 
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known as chemical shielding anisotropy (CSA). In solution phase, molecules undergo rapid 

reorientation therefore the chemical shielding anisotropy is averaged-out, resulting in sharp 

peaks in comparison with the broad powder pattern obtained by SSNMR. 

According to Equation 5 it is not hard to see that chemical shielding is magnetic field 

dependent. Therefore it is hard to compare spectra obtained from different fields. In order to 

solve this problem, chemical shift tensors are introduced as an alternative to σ, as shown in 

Equation 6.  

 

 𝛿 =
106(𝜈−𝜈𝑟𝑒𝑓)

𝜈𝑟𝑒𝑓
  (6) 

 

where 𝛿 is chemical shift, which represents the frequency difference between the reference 

sample and sample of interest in the form of part per million (ppm), 𝜈𝑟𝑒𝑓  and 𝜈 are the 

resonance frequency of reference sample and sample of interest. In this case, the field 

dependency is easily eliminated. As with σ, chemical shift δ is also represented by three principal 

values, δ11, δ22 and δ33 along the three orthogonal directions of molecular frame, as known as 

the principal axis system (PAS). The three components are in the order of δ11 > δ22 > δ33. For 

linear molecules such as CO2 and C2H2, δ33 is along the molecular axis and δ11 and  δ22 are 

equivalent and perpendicular to δ33. As an example, PAS of a CO2 molecule is shown in Figure 

1.5 a, and 
13

C spectrum of stationary 
13

CO2 is shown in Figure 1.5 b. 
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Figure 1.5 - PAS of CO2 molecule (a), and simulated 
13

C spectrum of CO2 (b).  

The shape of the 
13

C spectrum of CO2 is well-known as the axial symmetric powder pattern, 

which is generally discovered among linear molecules. In a powder sample, molecules are 

randomly oriented and stationary. The CO2 molecules lie perpendicular to B0 give rise to the 

more intense resonance at less shielded side, which correspond to δ11 and δ22. In comparison, 

much less CO2 molecules lie along B0, resulting in weak signal at more shielded side, which is 

corresponding to δ33. The CO2 molecules oriented between 0 ͦ and 90 ͦ with respect to B0 give rise 

to resonance in between the two edges. Accordingly, a broad powder pattern is observed.  

Herzfeld-Berger convention is used in this work to quantitatively interpret NMR line shape, 

as shown in Equation 7-9:
54

 

 

  𝛿𝑖𝑠𝑜 =
1

3
(𝛿11 + 𝛿22 + 𝛿33) (7) 

 𝛺 = 𝛿11 − 𝛿33 (8) 

 𝜅 =
3(𝛿22 − 𝛿𝑖𝑠𝑜)

𝛺
 (9) 

Isotropic chemical shift δiso is simply the average of the three principal CS tensor 

components, which is also the observed frequency if the nucleus of interest is in solution phase. 

In addition, δiso of the same nucleus in different compounds exhibit distinctive values, which 

assist the identification of the chemical environments of the nucleus of interest. Span Ω describes 

(a) (b) 

B0 

δiso O
=

C
=

O
 

δ
33

 

O=C=

O 

δ
11

 

δ
22
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the whole width of the spectra, and skew κ illustrates the symmetry of the spectrum, which 

ranges within -1 to 1. Axial symmetric powder patterns is generally observed when symmetry of 

C3 or higher reside at the nucleus site, which show a skew value of 1 or -1. For the spectrum with 

κ between 1 and -1, it is known as the asymmetric powder pattern, indicating a less symmetric 

local structure of C2 or less. The influence of Ω, κ and δiso on NMR spectrum is shown in Figure 

1.6. 

 

 

Figure 1.6 - The influence of δiso (a), Ω (b), and κ (c) on 
13

C NMR line shape. 

 

 

 

4) Quadrupolar interaction 

All nuclei with a spin number greater than 1/2 hold an electric quadrupole moment, resulting 

from the non-spherical charge distribution. The nuclear quadrupole moment Q is able to couple 

with the local electric field gradients (EFG) and gives rise to quadrupolar interaction (QI). 

Similar to chemical shielding interaction, QI is characterized by three components of the EFG 

tensors in principal axis system (PAS), Vxx, Vyy and Vzz (Vzz is the largest principal component), 
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and in the order of Vzz > Vyy > Vxx. When evaluating QI, two commonly reported parameters are 

the quadrupolar coupling constant (CQ) and the asymmetry (ηQ), as shown in Equation 10 and 

11.
52

  

 

 𝐶𝑄 =
𝑒𝑄𝑉𝑧𝑧
ℎ

 (10) 

 𝜂𝑄 = (𝑉𝑥𝑥 − 𝑉𝑦𝑦)/𝑉𝑧𝑧 (11) 

The magnitude of CQ indicates the strength of the QI. The higher the value, the more 

non-symmetric the geometry of the nucleus is, resulting in stronger QI. ηQ is used to describe the 

symmetry of the spectrum, ranging from 0 to 1.  

In the third chapter of this work, deuterium NMR is conducted to examine the adsorption 

behaviors of deuterated ethylene in MOFs. Deuterium is a spin 1 quadrupolar nucleus that 

possesses a relatively small Q, which is on the order of 10
-3

 barn in comparison with 10
-2

 or 10
-1

 

barn of other quadrupolar nuclei.
55

 As a result, the line shape
 
of 

2
H SSNMR is usually narrow 

and very sensitive to any sort of motional change including the reorientation of the molecules or 

the increasing or decreasing of the exchange rate. Therefore, 
2
H SSNMR is widely used to 

determine the molecular dynamics.  

The observed spectrum also shapes into Pake doublet, just like the dipolar interaction 

induced ones.
56

 However, the origin is different in these two cases. With the presence of an 

external magnetic field, the degenerate energy levels of deuterium nucleus split into three due to 

Zeeman interaction, corresponding to three spin quantum number, 𝑚𝐼 = +1, 𝑚𝐼 = 0, and 

𝑚𝐼 = −1. And the two energy transitions between the three energy levels show identical values. 

The observed Pake doublet in 
2
H SSNMR is the result of first-order quadrupolar interaction, 

which acts as the perturbation of the Zeeman states, as shown in Figure 1.7 a. Two subspectra are 

clearly observed in the Pake doublet due to the opposite change in the two transitions, 

corresponding to transitions from mI = -1 to 0 and from mI = 0 to 1. In most organic compounds, 
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Vzz is typically along C-D or O-D vector, and Vxx and Vyy are equivalent and perpendicular to 

Vzz.
57

 As a result, the two subspectra are also axially symmetric. More C-D or O-D are likely to 

be perpendicular to B0, resulting in high intensity of the two “horns”. The C-D or O-D bonds lie 

along B0, on the other hand, give rise to weak resonance as two “feet”. And the bonds that lie 

between these two extreme conditions give rise to resonance in between. Consequently, two 

axially symmetric powder patterns are observed and compose a Pake doublet. 

 

 

Figure 1.7 - Qualitative illustration of the energy split of 
2
H nucleus (a). Simulated NMR spectrum 

of 
2
H (b). The green and purple lines are from two transitions between +1↔ 0 and -1↔ 0. The blue 

line is the integrated Pake doublet powder pattern. 

CQ can be easily calculated by the frequency difference between the two horns of the Pake 

doublet, which equals 3/4 of CQ. Figure 1.8 shows the influence of CQ and ηQ on SSNMR 

spectrum. 

With decreasing CQ, the width of the spectrum decreases as well as the distance between two 

horns. When ηQ increases from 0 to 1, the width of the spectrum remains the same while the two 

horns are gradually merging together. 
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Figure 1.8 - The effect of CQ (a) and ηQ (b) towards 
2
H NMR line shape. 

 

1.6 Experimental background of SSNMR 

In order to demonstrate the change of magnetization during NMR experimentation in a 

simple and straightforward manner, a vector model consisting of a Cartesian coordinate system 

known as the rotating frame of reference is introduced in this section. Here, a simple 90° pulse 

(some time denoted as a π/2 pulse) experiment is demonstrated in Figure 1.9. 

 

Figure 1.9 - Schematic of one pulse experiment in vector model (a) and in time domain (b). 
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Generally, the external magnetic field B0 is considered along z axis of this frame. During 

SSNMR experiment, after a sample is placed in a magnetic field, the magnetic moments of the 

nuclei would generate a net magnetization that lie along B0, denoted as M0. The detection coil of 

the NMR probe can be considered in the xy plane of the rotating frame. Therefore, in order to 

make M0 detectable, a 90° rotation of the magnetization from z axis to xy plane is performed by 

applying second magnetic field B1 along x axis. After M0 is rotated to the xy plane and recorded, 

B1 is switched off. The net magnetization then gradually relaxes back to the z axis to achieve 

thermal equilibrium due to B0. This relaxation process gives rise to an oscillating signal termed 

as free induction decay (FID) in the time domain, shown in Figure 1.9b. Fourier transformation 

(FT) is then performed to convert the FID into frequency domain.  

 

1.6.1 NMR pulse sequences 

Multiple pulse sequences are programmed based on the simple one pulse experiment to fulfill 

various purposes. Here, time domain schemes of some pulse sequences used in this work are 

briefly introduced, as shown in Figure 1.10.  

 

Figure 1.10 - Schematic of pulse sequences of DEPTH (a), Echo (b), and Cross Polarization (CP) 

(c). 

(a) (b) (c) 
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1) DEPTH 

DEPTH sequence originates from a simple 90 ͦ pulse experiment and is normally used to 

eliminate the background resonance originating from probe materials.
58

 Generally, DEPTH 

consists of one π/2 pulse followed by two consecutive π pulses, as shown in Figure 1.10 a. In this 

case, the magnetization from the probe would be rotated further away from the transverse plane 

where the detection lies after three consecutive pulses. As a result, the resonance of the probe is 

too weak to collect. 

 

2) Echo 

In certain cases, the relaxation time of nuclei can be so fast that there is not enough time for 

the current to transfer from applying B1 to receiving radio frequency energy from the sample. As 

a result, a broad and truncated powder pattern is sometimes observed due to failure in collecting 

the full FID. Echo sequence is designed for this situation.
59

 An initial π/2 pulse rotates the 

magnetization to the xy plane, followed by echo dephasing time τ1. During this time, 

magnetizations start to evolve with different paces in the transverse plane. Then, a π pulse is 

applied to “flip” the magnetizations 180°, which would refocus them back to the detection coil 

over the course of τ2. This process is known as “echo”, after which FID is collected.°  

3) Cross Polarization (CP) 

Some nuclei are known to be NMR unfavorable due to various reasons such as long 

relaxation time, low natural abundance, or low gyromagnetic ratio γ. The spectra of such nuclei 

usually show low signal-to-noise ratios as well as long experimental time. Cross polarization (CP) 

is designed to transfer magnetization from NMR favorable nuclei (such as 
1
H and 

19
F) to 

unfavorable ones (such as 
13

C and 
17

O) via dipolar coupling, resulting in higher signal-to-noise 
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ratios and faster acquisition.
60

 The polarization transfer between two nuclei that possess different 

Larmor frequencies is achieved by satisfying the Hartmann-Hahn condition, as shown in 

Equation 12. 

 

 𝛾𝑠𝐵𝑆 = 𝛾𝐼𝐵𝐼 (12) 

where γS and γI are the gyromagnetic ratio of dilute spin S and abundant spin I, BI and BS are the 

radio frequency fields that are applied on two channels for two nuclei. Here, one of the most 

common CP experiments, 
1
H-

13
C cross polarization, is used for illustration, where 

1
H is known 

as abundant spin, and 
13

C is the dilute spin, as shown in Figure 1.8 c. After applying a π/2 pulse 

on 
1
H channel, a spin lock pulse BI is then applied to keep the magnetization from dephasing. 

Meanwhile, another pulse BS is applied to 
13

C channel so that the magnetization of 
13

C will be 

built up in xy plane due to dipolar coupling. This period is known as the contact time. Longer 

contact time allows 
1
H to enhance the signal of 

13
C nuclei weakly coupled to it, or in other word, 

13
C nuclei that are distant to it. Whereas shorter contact time, the signal enhancement only 

happens between strongly coupled 
1
H and 

13
C. Then, decoupling occurs on the 

1
H channel, and 

the 
13

C FID is collected. 

 

1.6.2 Spectrum simulation 

In SSNMR study, several simulation software packages are developed to assist in explaining 

the results. Among them, NUTs is usually used for NMR data processing such as Fourier 

transformation, phase correction and line broadening;
61

 WSolids and dmfit software packages are 

used to derive NMR parameters such as chemical shift parameters δiso, Ω and κ,
62,63

 quadrupolar 

parameters CQ and ηQ, and dipolar coupling constant D. EXPRESS (EXchange Program for 

RElaxing Spin Systems) simulation based on Matlab platform is generally used to predict the 

dynamics of guest molecules.
64

 The principle of EXPRESS simulation is to virtually apply 
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certain degree and rate of rotations to the PAS of the guest species, which then give rise to 

corresponding simulated NMR spectrum. Two simultaneous sets of rotation are involved in 

simulating the dynamics of guest molecules in this work. Firstly, the PAS of EFG/CSA tensors 

are brought into alignment with an intermediate jumping frame by three consecutive rotations 

involving angles α, β and γ, known as the Euler angle.
65

 This operation is considered to be 

equivalent to a localized rotation of the guest molecules upon single adsorption site. Secondly, 

the intermediate jumping frame is rotated to different orientations in the crystal fixed frame, 

which is considered to be equivalent to non-localized hopping between the adsorption sites. The 

above-mentioned software packages are all used in this study. 
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1.7 Outline of thesis 

Conducting SSNMR experiments at various temperatures (VT) is extremely useful for 

investigating guest-host interactions, particularly gas adsorption behavior in this work. With the 

help of conventional simulation packages, the NMR parameters such as chemical shift 

parameters, dipolar coupling constant, and quadrupolar coupling constant, as well as the 

dynamics of guest molecules at different temperatures can be obtained. In the second chapter of 

this study, CO2 adsorbed in α-Mg formate
 
is studied. 

13
C NMR is used to analyze CO2 mobility 

from 173 K to 393 K, and 
1
H-

13
C CP experiments were carried out to investigate the adsorption 

site in α-Mg formate. Molecular dynamic simulations conducted by our collaborators provide 

complementary results about CO2 distribution in the framework. The third chapter of this work 

focuses on ethylene adsorbed in different types of MOFs, including α-Mg formate and 

CPO-27-M (M = Mg and Zn). 
2
H NMR is adopted to show mobility changes of deuterium 

enriched ethylene from 173 K to 393 K in three types of MOFs. Among these MOFs, CPO-27-M 

with Mg and Zn are isostructural, so the similarities and differences in adsorption properties are 

compared. Single crystal X-ray diffraction is performed upon ethylene adsorbed α-Mg formate as 

a complementary method to comprehend the adsorption behavior. By the end of chapter 3, the 

origin of the different adsorption behaviors of CO2 and C2H4 in α-Mg formate is also discussed 

in this chapter. The last chapter of this work discusses future work and conclusions.  
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Chapter 2 Dynamic study of 
13

CO2 in α-Mg formate using 
13

C 

SSNMR 

2.1 Introduction 

Among all MOFs, those containing s block metals are especially attractive in comparison 

with transition metals due to their cheap cost, light weight, and high natural abundance.
1,2

 

Previously reported microporous α-magnesium formate (α-Mg3(HCOO)6) MOF is 

easily-prepared, inexpensive, and structurally stable for a wide range of temperature.
3,4

 Among 

all its analogues containing different metal centres,
5
 α-Mg formate is the only commercially 

available formate MOF (trade name Basosiv M050, BASF), which possesses large one 

dimensional channels that have made it particularly interesting for gas adsorption studies.
6
 In this 

chapter, 
13

C SSNMR in conjunction with molecular dynamic simulation is used to study CO2 

adsorption behavior in α-Mg formate at various temperatures. 

Three types of Mg formate with slight variations in structure have been reported.
3
 

α-Mg-formate crystallizes in monoclinic space group P21/n, whereas β and γ-Mg-formate 

crystallize in orthorhombic space group Pca21 and Pbcn. Due to the simple synthesis route of 

α-Mg formate and the difficulty in preparing pure phase β and γ-Mg-formate,
3,7

 α-Mg-formate is 

chosen as the focus of this work. According to previous reports, a simple solvothermal reaction 

takes place at moderate temperatures over a short period of time was adopted to prepare α-Mg 

formate. A follow-up activation process is performed at relatively high temperature, which would 

remove the leftover solvent molecules present in the pores thereafter exposing the channels. The 

structure of activated α-Mg-formate is shown in Figure 2.1.  

In the activated structure of α-Mg formate, two types of chemically independent oxygen η
1
 

and η
2 

are present,
8
 which correspond to the oxygen atoms that bound to one or two Mg sites. 
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Four distinct types of Mg are found in the structure, and each Mg site is octahedrally coordinated 

by six oxygen atoms. The four types of Mg sites can be differentiated by the number and types of 

oxygen they are connected to. Mg1 is bound with six η
2
 oxygen; Mg2 and Mg4 are both 

connected with two η
2
 oxygen and four η

1
 oxygen; Mg3 is connected with four η

2
 oxygen and 

two η
1
 oxygen. As shown in Figure 2.1 b.  

To form 3D porous structure, Mg1-O6 and Mg3-O6 octahedra are connected in an 

edge-shared fashion, forming zigzag chains. The parallel zigzag chains are interconnected by 

Mg2-O6 and Mg4-O6 octahedra in a vertex-shared fashion, creating 1D channels down 

crystallographic b axis with channel size of 4.5 Å × 5.5 Å.  

 

Figure 2.1 - Mg formate 3D structure viewed down crystallographic b axis (a) and 2D structure 

viewed down c axis (b). Blue arrows indicate the zigzag chains formed by Mg1O and Mg3O 

octahedra; black arrows indicate Mg2O or Mg4O octahedra that bridge two zigzag chains. For 

clarity, oxygen and hydrogen atoms are omitted in (b). 

 

Unlike MOFs that possess unsaturated metal sites exposing to the channels, which usually 

exhibit exceptional uptake of guest molecules,
9
 α-Mg formate MOF does not possess any 

unsaturated metal sites or S- or N- containing functional groups that serve as strong electron 

(a) (b) 
Mg1/3 Mg2/4 
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acceptor.
10

 Therefore, no strong electronic donor-acceptor interaction could take place during 

guest-host interaction. The Mg sites in α-Mg formate are fully coordinated to six oxygen atoms 

and hidden at the centre of Mg-O octahedra and are inaccessible to guest species. On the other 

hand, the 3D structure in Figure 2.1 shows that the hydrogen atoms from the formate anions are 

pointing toward the 1D channels, which have direct access to guest species. Therefore, it is 

reasonable to examine the possibility of hydrogen atoms along the interior of the framework to 

be the adsorption sites in this type of MOF. 

Only a few studies have demonstrated the guest-host interaction of α-Mg formate due to its 

relatively small pore size compared to other types of MOFs.
11

 In Kimoom Kim’s work,
 6 

α-Mg 

formate shows exceptional selectivity of C2H2 over other guest molecules including CO2, H2, N2, 

O2 and CH4, which results from the strong van der Waals interaction between the hydrogen atoms 

from C2H2 and oxygen atoms from the framework wall. In addition, the single crystal structure of 

the C2H2 adsorbed MOF reported by this work shows two independent positions of C2H2 in the 

zigzag channels. Our group has also done some research regarding α-Mg formate. In one of our 

recent works,
12

 a pressure induced irreversible phase change was observed in α-Mg formate 

based on Raman results. When guest molecules such as DMF and benzene are loaded into the 

framework, no such phase transition was observed. Another work of our group successfully 

resolved the adsorption sites of pyridine, benzene and DMF adsorbed in α-Mg formate by means 

of 
1
H MAS as well as the dynamics of the guest molecules by 

2
H SSNMR, which have provided 

strong structural evidence with regards to this guest-host system when single crystal data is not 

available.
13

 To the best of our knowledge, only one publication so far has shown the CO2 uptake 

of α-Mg formate. R. Banerjee’s study shows the CO2 uptake at one bar of α-Mg formate is 70 

cm
3
/g.

3
 No previous studies have been conducted on the adsorption mechanisms of guest 

molecules in this type of MOF. As a result, the adsorption sites and CO2 dynamics in this type of 

MOF remain elusive.  

SSNMR has been widely used to study guest-host interactions in MOFs due to its sensitivity 
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to molecular dynamics.
14-18

 Under different thermal conditions, CO2 molecules undergo different 

types of motion, resulting in very different NMR line shape. A previous study shows that the 

nearly stationary CO2 molecules at 20 K would give rise to a broad axially symmetric powder 

pattern with δ11 = δ22 = 245 ppm, δ33 = -90 ppm, and δiso = 132 ppm,
19

 as shown in Figure 2.2a 

(bottom). As for completely mobile CO2, the NMR spectrum is a single sharp peak with an 

isotropic chemical shift of 125 ppm, resulting from the averaged NMR interactions due to fast 

molecular tumbling, as shown in Figure 2.2a (top). In some special cases such as CO2 being 

trapped in porous materials, the movement of CO2 molecules is limited due to its interaction with 

the interior of the frameworks. Under such circumstances, the observed NMR line shape lies 

between the two extreme conditions, as shown in Figure 2.2a (middle). The shape and width of 

CSA powder pattern depend on the rate and type of motion of CO2 molecules. As a result, the 

NMR line shapes are not necessarily axial symmetric any more. Therefore, it is very interesting 

to study CO2 molecules throughout a wide temperature range, which would provide more insight 

about the adsorption behavior in this specific type of MOF.  

 

Figure 2.2 - 
13

C spectra of mobile CO2 (a top); CO2 with certain motions (a middle); completely 

stationary CO2 (a bottom). Enlarged 
13

C spectrum of CO2 with certain motions (b).  

(a) (b) 
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Simulation software packages such as NMR-WEBLAB and EXPRESS are able to predict 

the effect of motions on NMR active nuclei.
20,21

 Certain motions upon the principal axis system 

would give rise to distinct NMR line shapes. In this work, EXPRESS simulation is used to 

predict the molecular motion of CO2 loaded α-Mg formate. 

 

2.2 Experimental 

2.2.1 Synthesis 

α-Mg3(HCOO)6 was synthesized on a simple solvothermal procedure reported elsewhere 

previously.
4
 0.77 g Mg(NO3)2·6H2O (Sigma-Aldrich, 99%) was dissolved in a mixed solution 

contained 10 ml N,N dimethylformamide (DMF) and 0.23 ml formic acid (Alfa Aesar, 97%) in a 

23 ml Teflon inlet. The Teflon inlet was then dropped into an autoclave, sealed and placed in the 

oven under 110°C for 72 hours. The white powdery product was washed repeatedly with DMF 

and recovered by vacuum filtration, marked as the “as-made” sample. In order to remove the 

solvent molecules in the pores as much as possible and expose the channels, the as-made sample 

was placed on a watching glass and activated in an oven under 150°C for 24 hours, denoted as 

the activated sample. 

2.2.2 Gas adsorption  

A gas adsorption apparatus consisting of a home-built Schlenk line (total volume of 82.7 mL) 

attached to a vacuum pump and a pressure gauge was used to further activate the sample and 

monitor the gas adsorption process. First, approximately 0.13 - 0.15 g activated α-Mg3(HCOO)6 

was packed into the horizontal bottom of a 5 mm L-shaped glass tube (to fit the 5 mm SSNMR 

coil). A small amount of glass fiber was then stuffed tightly on top of the powder sample to 

prevent spatter under vacuum conditions. Subsequently, the glass tube was attached to the 
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Schlenk line and kept under vacuum condition for 5 hours under 150°C as further sample 

activation. A round bottom flask containing pressurized 
13

CO2 was also attached to the apparatus 

after the activation process, and a known amount of gas was released into the Schlenk line. In 

this study, an adsorption amount of 0.1 CO2/Mg was chosen. The loading amount was 

represented by molar ratio between CO2 and Mg. Since the amount of sample in the L-shape tube 

is known, the amount of gas required can be calculated into pressure by ideal gas law, which can 

be directly observed from the pressure gauge. The L-shape tube was then immersed into liquid 

nitrogen and the gas in Schlenk line was adsorbed into the MOF sample. After this step, the 

L-shape tube was flame-sealed and kept in a glass vial for further NMR use. 

2.2.3 Powder X-ray diffraction 

Powder X-ray diffraction (pXRD) was used to determine the composition of the product. In 

this study, pXRD data was collected by a Rigaku diffractometer using Co Kα radiation 

(λ=1.7902). All samples were scanned between 5°- 45° at a scan rate of 10° per min, with a 0.02° 

increment.  

2.2.4 SSNMR characterization 

SSNMR experiments were carried out by a Varian infinity plus 400 spectrometer (magnetic 

field 9.4 T). An attached temperature control unit was used to adjust temperature within the 

theoretical range of 123 K to 423 K. The Depth spectrum was collected using double channel 5 

mm static probe from 173 K to 393 K with a 20°C increment. In order to achieve thermal 

equilibrium of the whole system, there was 20 minutes elapsed time between each two 

acquisitions. The optimized 90° pulse length and pulse delay for 
13

C was 2.25 μs and 6 s, and the 

acquisition number was 256. For static CP experiments, a contact time array of 0.5 ms, 3 ms, 6 

ms, 8 ms and 10 ms were carried out at 173 K, 293 K for both the 
13

CO2 adsorbed and activated 

α-Mg formate to determine the adsorption sites. All spectra were referenced to methylene carbon 

of CH3CH2OH at 56.83 ppm from Tetramethylsilane (TMS), which has δiso = 0. NUTs software 
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was used to process NMR raw data such as Fourier transformation (FT), phase correction, and 

line broadening.
22

 WSolids and dmfit software packages were used to extract NMR parameters 

such as δiso, Ω and κ that define NMR line shapes.
23,24

 A successful simulation was accepted 

when no visible difference between the experimental spectra and the simulated ones can be 

observed. EXPRESS simulation package based in Matlab platform accounted for the 

interpretation of molecular motions of CO2 in the framework based on the fact that different 

motions produce distinct NMR line shape.
21

 The adopted principal axis system (PAS) of the 

stationary CO2 during EXPRESS simulation are: δiso = 125 ppm, Ω = 335 ppm and κ = 1.
19

 The 

motions are abbreviated as Cn, which stands for either n fold rotation upon an adsorption site or n 

fold hopping between sites. The rate of all motions is considered in a fast regime, which is 5 × 

10
8
 Hz. Visual comparison between the simulated spectra and experimental ones determines 

whether it is a successful simulation or not.  

 

2.3 Results and discussion 

The pXRD patterns of as-made and activated α-Mg formate are shown in Figure S2.1. Both 

are in good agreement with the simulated ones obtained from literature reported structures.
4
 

Figure 2.3 shows the result of 
13

C VT experiments of the CO2 loaded α-Mg formate sample. 

It is worth mentioning that the spectra shown here are solely contributed by the adsorbed CO2 

molecules, not from the MOF itself since only CO2 is 
13

C enriched, not the framework carbon 

atoms.  

At 173 K, the NMR spectrum is a broad powder pattern. As temperature increases up to 313 

K, the spectrum gradually gets narrower. In addition, the NMR line shape undergoes a 

continuous “flip”, which means that δ22 of the powder pattern progressively moves to the more 

shielded side as temperature increases. This change in NMR line shape is a result of the change 

in molecular motion of CO2 under different thermal conditions. From 313 K, a second resonance 
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near 125 ppm starts emerging, which is ascribed to free CO2 signal. As temperature keeps 

increasing to 393 K, this resonance has become more and more evident, indicating more mobile 

CO2 molecules present in the system. Interestingly, a third resonance at 145 ppm becomes more 

significant during the heating process, and the NMR line width is abnormally broadened at 393 

K.  

Due to the distinct NMR behavior at temperature below and above room temperature, low 

temperature results (LT, 173 K- 293 K) and high temperature results (HT, 293 K- 393 K) will be 

discussed separately in this chapter.  

 

Figure 2.3 - 
13

C VT spectra of 
13

CO2 adsorbed α-Mg formate from 173 K to 393 K. 
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2.3.1 Low temperature experiment 

Before studying the CO2 loaded MOF, it is important to verify the degree of activation and 

the structural stability of α-Mg formate within the experimental temperature range. Therefore, CP 

static experiments with the use of a contact time array of activated α-Mg formate were conducted 

at both 173 K and 293 K. If there were DMF molecules not completely removed by the 

activation process, or a change in local environment occurs, severe difference would be observed 

between short contact time CP spectra and long contact time ones. The results are shown in 

Figure 2.4. 

 

Figure 2.4 - 
13

C CP spectra of the activated α-Mg formate with the use of different contact time at 

173 K (a) and 293 K (b). 

The “volcano” shape spectra of the activated α-Mg formate are the results of overlapping 

signals from six crystallographically non-equivalent carbon atoms from the framework, which 

have already been resolved in previous work of our group.
13

 No severe change is observed 
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between the spectra acquired at 173 K and 293 K with the use of the same contact time, 

indicating the good structural stability of this type of MOF within this temperature range. In 

addition, CP spectra remain constant upon the use of contact time from 0.5 ms to 10 ms at both 

temperatures, indicating a complete activation of the framework. No leftover solvent molecules 

can be detected in the system.  

Figure 2.5 shows the LT static spectra of CO2 loaded in α-Mg formate and the simulated 

NMR spectra using dmfit software from 173 K to 293 K. The derived CSA parameters are 

summarized in Table 2.1. 

 

Figure 2.5 - 
13

C LT experimental (a) and simulated spectra (b) of 
13

CO2 loaded in α-Mg formate. 

In this temperature range, δiso remains constant at 125 ppm. As mentioned in chapter 1, Ω 

reflects the width of NMR spectrum. The broadest spectrum observed in this work was at 173 K, 

with Ω value of 69 ppm. The discrepancy between the literature value of Ω for stationary CO2 in 

solid form (335 ppm at 20 K) and our experimental result suggests that the molecular motion of 

CO2 is restricted,
19

 but far from stationary in this temperature range. As temperature increases, 

the decrease of Ω suggests that CO2 molecules experience higher degree of motional freedom. 

The continuous change of κ from positive to negative values result from the gradual flip of δ22 

from the more shielded to less shielded side. Originally at 173 K, δ22 is at 138 ppm. As the 

(a) (b) 
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temperature increases to 293 K, δ22 has shifted to 116 ppm. This interesting phenomenon is 

associated with the significant difference in CO2 molecular motions, which will be discussed 

later in this chapter. 

Table 2-1 Derived CS parameters for LT spectra of 
13

CO2 loaded in α-Mg formate.  

 173 K 193 K 213 K 233 K 253 K 273 K 293 K 

δiso (ppm) 125(1) 125(1) 125(1) 125(1) 125(1) 125(1) 125(1) 

Ω (ppm) 69(1) 57(1) 47(1) 39(1) 34(1) 32(1) 30(1) 

κ 0.64(1) 0.58(1) 0.43(1) 0.24(1) -0.05(1) -0.31(1) -0.58(1) 

In the structure of α-Mg formate, three types of hydrogen atoms are pointing towards the 

channels and have direct access to guest species (H1, H5 and H6), which make them the possible 

adsorption sites during guest-host interactions. Therefore, CP experiments employed a contact 

time array from 0.5 ms to 10 ms were conducted upon CO2 loaded α-Mg formate to study the 

spatial connectivity between framework hydrogen atoms and carbon atoms. As mentioned in 

Chapter 1, CP is mediated by the 
1
H-

13
C dipolar interaction, which is strongly dependent on the 

inter-nuclear distance. Only the carbon atoms close enough to protons will give rise to significant 

resonance.
25

 The use of longer contact time allows the detection of 
13

C nuclei far from 
1
H. When 

shorter contact times are employed, only 
13

C nuclei in close proximity to 
1
H are detected.  

The static spectra of CO2 loaded α-Mg formate along with the CP spectra of activated α-Mg 

formate are stacked for comparison purposes. From the results summarized in Figure 2.6, the 

spectra obtained with a contact time of 0.5 ms at both 173 K and 293 K show almost identical 

NMR line shapes to those of empty frameworks. When longer contact time was employed at 

both temperatures, an additional resonance at more shielded direction becomes more and more 

significant. This resonance in the 10 ms contact time spectrum shows an almost identical line 

shape with the overlaid 
13

CO2 spectrum, indicating it results from the adsorbed CO2 molecules. 

Since the carbon atoms in CO2 molecules are further from the hydrogen atoms than the 
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carboxylic carbon atoms, the adsorbed CO2 signal cannot be observed in spectrum that employed 

a short contact time of 0.5 ms, resulting in the similarity between the CP spectra of CO2 adsorbed 

and activated α-Mg formate. With increasing contact time, the resonance associated with CO2 

gradually emerges from the “volcano-shape” resonance from the activated framework, 

suggesting the weak dipolar coupling between the hydrogen atoms from the framework and 

carbon atoms from CO2 molecules is successfully detected by the use of longer contact time.  

 

Figure 2.6 – 
13

C CP spectra obtained at 173 K (a) and 293 K (b) with different contact times. Red 

and blue spectra are the CP spectra of activated α-Mg formate and CO2 loaded α-Mg fromate. 

Black spectra are 
13

C VT spectra of 
13

CO2 loaded MOF obtained at 173 K and 293 K, same with 

the ones shown in Figure 2.3. 
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These results have confirmed that 
13

C from guest molecules are able to be detected through 

CP experiments with the use of long contact time, indicating CO2 molecules are within close 

proximity to hydrogen atoms from the frameworks. Therefore, we can conclude that CP results 

have successfully confirmed the hypothesis that hydrogen atoms are the adsorption sites. 

 

Dynamic analysis of the adsorbed CO2 molecules using EXPRESS 

simulation 

After confirming the adsorption site to be hydrogen, the next step is to properly explain the 

interesting change in NMR line shapes and provide insight regarding the motions that CO2 

molecules possess at each temperature. EXPRESS simulation was carried out to fulfill this task.
21

 

Similar to a previous study,
16

 a combined motion of a localized rotation of CO2 molecules upon 

one hydrogen site, which can be modulated by a six-fold (C6) rotation in EXPRESS simulation, 

and a simultaneous non-localized twofold (C2) inter-sites hopping between two hydrogen sites is 

predicted. Based on this proposed model, the simulated spectra show closest resemblance to the 

experimental ones compared to other models, shown in Figure 2.8a and b. The combined motion 

is characterized by rotation angle θ and inter-sites hopping angle γ, and the rate of two motions 

remain at the fast limit throughout the whole temperature range, which is 5 × 10
8
 Hz. θ 

represents the angle between the localized rotation axis and the longitudinal axis of CO2 

molecule; γ is the angle between the rotation axis and the non-localized hopping axis. The 

EXPRESS derived θ and γ are summarized in Table 2.2, and the scheme of the combined motion 

is depicted in Figure 2.7. Previous reports about CO2 adsorption in MOFs have depicted an 

end-on adsorption upon the adsorption site.
14,26

 Therefore, the localized rotation of CO2 

molecules in this study is also assumed to occur upon hydrogen sites in an end-on way, and 

rotate in a cone-shape fashion. 



41 

 

 

 

The values of θ and γ derived from EXPRESS simulation suggest that both θ and γ become 

greater as temperature increases, and the change of γ is more severe in comparison to the 

relatively smaller variation of θ, indicating temperature affects the hopping motion more 

substantially than the uniaxial rotation motion. From 173 K to 293 K, γ experiences a drastic 

change from 23° to 42°, whereas θ only changes from 45° to 49°, indicating that at higher 

temperature during LT experiments, the localized rotation of CO2 molecules upon hydrogen sites 

takes place in a slightly larger cone, and the inter-sites hopping occurs between two hydrogen 

sites more distant from each other. 

 

Figure 2.7 - Schematic of localized rotation of CO2 molecule upon hydrogen and simultaneous 

two sites hopping between two hydrogen sites. 

Table 2-2 EXPRESS simulation derived localized rotation angle θ and non-localized hopping 

angle γ of 
13

CO2 loaded in α-Mg formate at LT. 

 173 K 193 K 213 K 233 K 253 K 273 K 293 K 

θ (°) 45(0.5) 47(0.5) 48(0.5) 48.5(0.5) 49(0.5) 49(0.5) 49(0.5) 

γ (°) 23(1) 23(1) 27(1) 32(1) 36(1) 39(1) 42(1) 

H 

C
2
 

γ 

θ 

H 

θ 
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EXPRESS simulation using a single motion of C6 localized rotation or a C2 inter-sites 

hopping were also conducted to verify the validity of the combined motion. The results are 

shown in Figure 2.8 c and d.  

It is clear that the ones using only C6 localized rotation or C2 inter-sites hopping deviate 

from the experimental spectra significantly, which has further confirmed the reliability of the  

C6 + C2 combined motion for the CO2 loaded α-Mg formate.  

 

Figure 2.8 - LT experimental 
13

C spectra of 
13

CO2 loaded α-Mg formate (a); EXPRESS 

simulations using the combined motion (b), only C6 localized rotation (c) and only C2 inter-sites 

hopping (d) of 
13

CO2.  

 

2.3.2 High temperature experiment 

The HT experiment demonstrates distinct results from the LT ones. Above 313 K, more than 

one powder pattern can be derived from the experimental spectra, indicating multiple 
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non-equivalent adsorption sites take place at higher temperature instead of the single one during 

LT experiments. For the sake of clarity, the deconvolution of spectrum obtained under 393 K 

using dmfit software is enlarged in Figure 2.9, and the deconvolution of spectra obtained at other 

temperatures during HT experiment are included in Figure 2.10 a.  

  

Figure 2.9 - Three-sites deconvolution of 
13

C VT spectrum of 
13

CO2 loaded α-Mg formate 

obtained at 393 K. The color code is shown as following: Site 1 - green; Site 2 - purple; Site 3 - 

black; Summation of the three-site simulation - red; Experimental - blue. 

From the deconvoluted spectrum, it is clear that the powder pattern resulting from the CO2 

molecules possessing the combined motion has changed continuously between 173 K and 393 K. 

This site is denoted as site 1. Since the LT behavior of this site has already been discussed during 

LT experiment section, only the high temperature behavior of this site will be discussed in this 

section. The derived spectra of site 1 at each temperature are shown in Figure 2.10 a.  

In addition to site 1, the signal emerging near 125 ppm from 313 K is ascribed to free CO2 

molecules (denoted as site 2). As temperature increases, site 2 becomes more and more 

significant, suggesting more CO2 molecules become free from the adsorption sites at higher 

temperatures. A third resonance (denoted as site 3) on the less shielded side appears when the 

ppm 
70 80 90 100 110 120 130 140 150 160 170 180 

1 

2 3 



44 

 

 

 

temperature reaches 333 K in addition to site 1 and 2. This resonance continuously gets more 

intense as temperature increases. The weight percentage of each site at each temperature is 

shown in Table 2.3. In this section, the three sites will be analyzed and discussed separately.  

 

Figure 2.10 Three-sites deconvolution of HT 
13

C spectra of 
13

CO2 loaded in α-Mg formate(a) and 

derived site 1 spectra (b). Color cold is the same with Figure 2.9. 

Table 2-3 Weight analysis of site 1, 2 and 3 in 
13

C HT spectra of 
13

CO2 loaded α-Mg formate 

 313 K 333 K 353 K 393 K 

Site 1 % 94(1) 91(1) 88(1) 85(1) 

Site 2 % - 2(1) 3(1) 8(1) 

Site 3 % 6(1) 7(1) 9(1) 7(1) 

Throughout the whole HT experiments, site 1 is the dominant composition in each spectrum. 

Due to the emergence of site 2 and 3, the population of site 1 decreases as temperature increases. 

Site 2 does not appear until 333 K and it keeps getting more significant. Site 3 gets larger until 

ppm 100 120 140 160 180 ppm 100 120 140 160 

313 K 

333 K 

353 K 

393 K 

293 K 

(a) (b) 
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353 K and experiences a bit decrease from 353 K to 393 K. 

The derived CS parameters of site 1 during HT experiments are shown in Table 2-4. δiso 

remains constant at 125 ppm from 293 K to 393 K, which is consistent with the LT experiment 

result. The derived Ω values have confirmed the broadening of NMR line shape at higher 

temperature. The values of κ also show similar result, which keep decreasing from -0.83 to 

almost -1 at 333 K and then increasing back to -0.61 at 393 K. These results suggest that the 

mobility of CO2 molecules is slightly more restricted at temperatures above 333 K than they are 

at room temperature.  

Table 2-4 CS parameters of site 1 evolved from HT experiments 

 313 K 333 K 353 K 393 K 

δiso 125(1) 125(1) 125(1) 125(1) 

Ω 29(1) 29(1) 32(1) 35(1) 

κ -0.83(1) -0.95(1) -0.82(1) -0.61(1) 

Similar results are also found for site 3. The derived CS parameters for site 3 are 

summarized in Table 2-5. δiso remains at 125 ppm, confirming site 3 results from the adsorbed 

CO2 molecules. The value of Ω becomes greater as temperature increases, indicating a similar 

broadening trend that is also observed in site 1. It is worth mentioning that the Ω values for site 3 

are almost two times greater than site 1, suggesting the degree of CO2 mobility associated with 

site 3 is significantly less mobile than that of site 1. The value of κ remains constant at 1, 

resulting in an axially symmetric powder pattern for all HT results of site 3.  

Table 2-5 CS parameters of site 3 during HT experiments 

Site 3 313 K 333 K 353 K  393 K 

δiso (ppm) 125(1) 125(1) 125(1) 125(1) 

Ω (ppm) 54(1) 59(1) 62(1) 63(1) 

κ 1.00(1) 1.00 (1) 1.00(1) 1.00(1) 
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To sum up the analysis on CSA parameters for site 1 and 3, the line widths of both sites get 

abnormally broad at higher temperatures. These results are contradictory to common knowledge 

that at higher temperature, gas molecules possess a higher degree of mobility, leading to 

significantly narrower NMR line shape. In addition, the population analysis shows that site 3 is a 

very small composition in HT spectra. We cannot rule out the possibility that experimental errors 

are responsible for this additional resonance and the abnormal line broadening at high 

temperature. Therefore, verifying the validity of the three sites deconvolution is necessary. 

 

Verifying the validity of three sites spectrum 

A series of examinations were conducted to examine this issue. Firstly, we suspected there 

was a problem with the pulse sequence we use. The use of depth sequence would sometimes 

cause the missing of the first few points in FID containing important information if the decay 

occurs too rapidly. As a result, NMR line shape distortion is sometime discovered along the use 

of depth pulse sequence. Therefore, echo pulse was employed to test the exact same sample due 

to its advantage of dealing with samples during rapid relaxation, and the results are shown in 

Figure 2.12.  



47 

 

 

 

 

Figure 2.11 - Comparison between 
13

C depth and echo spectrum of 
13

CO2 adsorbed in α-Mg 

formate obtained at 353 K. 

Even though the NMR spectrum obtained by echo sequence is slight different than the depth 

one, which is due to the line broadening added to the spectrum because of the poor signal to 

noise ratio coming along this pulse sequence, three distinct sites right around the same 

frequencies are still clearly detectable. These results have confirmed the reliability of three sites 

deconvolution based on the experimental spectra. Hence, the influence of pulse sequence is ruled 

out in this case. 

Secondly, we considered the possibility that α-Mg formate might undergo short term 

decomposition under high temperature, causing abnormal NMR line shape. Hence, we repeated 

the acquisition at room temperature after the sample was completely cooled down from HT 

experiments. The results are shown in Figure 2.12. 

The results shown in Figure 2.12 confirm that the spectra acquired before and after the HT 

experiments are identical. Therefore, no irreversible change of the framework should have 

occurred during the heating process.  
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Figure 2.12 – 
13

C spectrum obtained at 293 K of CO2 adsorbed α-Mg formate before and after HT 

experiments. 

CP experiments were also conducted upon the activated α-Mg formate at 353 K in order to 

examine the possibility of a reversible structural change. The results are shown in Figure 2.13. 

The CP spectra of activated α-Mg formate collected at 173 K and 293 K are stacked in Figure 

2.14b (bottom) for comparison purposes. It is clear that the CP spectra obtained at 173 K and 293 

K are identical, indicating no change in structure occurred in this temperature range, as already 

discussed in LT experiments section. However, the CP spectrum obtained at 353 K shows slight 

difference in comparison with the 293 K one: The strongest resonance near 173 ppm has shown a 

flat top; the left side of the volcano-shape spectrum at 226 ppm shifts to lower frequency side; 

the right side of the volcano-shape spectrum moves to the higher frequency side. The observed 

difference might have been the result of a subtle structural change taking place at high 

temperature.  

 

180 160 140 120 100 80 ppm 

Spectrum obtained at 293 K before HT experiment 

Spectrum obtained at 293 K after HT experiment 
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Figure 2.13 - 
13

C CP static spectra of the activated α-Mg formate obtained with 0.5 ms CT at three 

temperatures (a). Blue, black and red spectra are obtained at 173 K, 293 K and 353 K. Overlaid 

spectra of different temperatures are also present in (b) and (c) for comparison. 

Unfortunately, no previous reports have demonstrated a phase change occurring at higher 

temperature in this type of MOF, or any of its analogues. Accordingly, further work such as 

single crystal XRD would be performed as a complementary examination to confirm the 

structural change at high temperature for α-Mg formate.  

Based on the results obtained so far, we rule out the likelihood of experimental errors, and 

assume that the line broadening of site 1 and the emergence of site 3 during HT experiment is the 

result of subtle structural change of α-Mg formate MOF at high temperature, and this change is 

reversible. 
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Dynamic analysis of adsorbed CO2 molecules using EXPRESS 

simulation 

EXPRESS simulation was conducted to provide insights for motional change of CO2 

molecules during HT experiments. Site 1, as with LT experiments, results from a combined 

motion consisting of a localized rotation, which can be modeled by a C6 exchange, and a 

simultaneous twofold inter-sites hopping, shown in Figure 2.14a and b. The simulated uniaxial 

rotation angle θ and inter-site hopping angle γ are summarized in Table 2.6. The EXPRESS 

simulations using only C6 or C2 motion were also performed, and the results deviate from 

experimental spectra greatly, as shown in Figure 2. 14c and d.  

 

 

Figure 2.14 - LT experimental spectra (a), EXPRESS simulation using the combined motion 

modeled by C6 localized rotation and C2 inter-sites hopping (b), only C6 localized rotation (c) and 

only C2 inter-sites hopping (d). 
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Table 2-6 EXPRESS simulation derived localized rotation angles θ and non-localized hopping 

angles γ for site 1 from HT 
13

C spectra of 
13

CO2 loaded in α-Mg formate 

 293 K 313 K 333 K 353 K 393K 

θ (°) 49(0.5) 49(0.5) 48.5(0.5) 48(0.5) 47(0.5) 

γ (°) 42(1) 45(1) 45(1) 44(1)  42(1) 

θ remains at 49° for both 293 K and 313 K, while γ increases from 42° to 45°. Above 313 K, 

both θ and γ show a decreasing trend, and the decrease of γ is more severe than θ. The smaller 

values of θ and γ along with the increased Ω values at higher temperature all indicate that both 

the localized rotation and twofold hopping of CO2 molecules get restricted at higher 

temperatures.  

EXPRESS simulation was also performed for site 3, and the results are summarized in 

Figure 2.15 and Table 2-7. 

 

Figure 2.15 – Derived site 3 from 
13

C experimental HT spectra of 
13

CO2 loaded α-Mg formate (a) 
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and EXPRESS simulation (b). 

Table 2-7 EXPRESS simulation derived localized rotation angle θ for site 3 from HT 
13

C spectra 

of 
13

CO2 loaded in α-Mg formate 

 313 K 333 K 353 K 393K 

θ (°) 48.5(0.5) 48 (0.5) 47.5(0.5) 47.5(0.5) 

Unlike site 1, site 3 cannot be simulated using a combined motion. Instead, the site 3 spectra 

are the result of only a localized rotation, which can be modeled by a C6 exchange during 

EXPRESS simulation. No inter-sites hopping is observed based on the simulation. Interestingly, 

the values of rotation angles θ of this site are very close to the θ values from site 1, and also show 

a slight decreasing trend as temperature increases. Combined with the percentage analysis of the 

three sites, these results suggest that the structural change occur at higher temperature influence a 

small portion of CO2 greatly. The localized rotation of these CO2 molecules is slightly restricted, 

resulting in the observed line broadening of the spectra. The inter-sites hopping on the other hand, 

has been completely removed, which suggests that the channels in the framework may be more 

confined during the HT experiments. Therefore, a subtle shrinkage of the framework might occur 

at higher temperature, also known as negative thermal expansion. This effect has long been 

studied for MOF-5 and HKUST-1,
27,28

 where the unit cells of the materials shrink at higher 

temperatures. Conducting single crystal X-ray analysis of α-Mg formate at high temperature 

would be useful to confirm this hypothesis.  

To sum up the EXPRESS simulation for the whole VT experiments, Figure 2.16 summarizes 

how the localized rotation angle θ and non-localized twofold hopping angle γ of site 1 and 3 

change as a function of temperature from 173 K to 393 K.  
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Figure 2.16 – Localized rotation angle θ and non-localized twofold hopping angle γ of 
13

CO2 

loaded in α-Mg formate for site 1 and 3 as a function of temperature.  

Site 1 represents a combined motion of a localized rotation with angle θ and a simultaneous 

two-sites hopping with angle γ. All CO2 molecules undergo this type of motion during LT 

experiments. On the other hand, during HT experiments, there are three types of motion followed 

by CO2, as indicated by the three sites derived from HT spectra, though most CO2 molecules still 

possess this combined motion. Both θ and γ for site 1 increase as temperature gets up till 313 K, 

and both decrease from 333 K to 393 K. Site 3 appears from 313 K and is associated with a 

simple localized rotation with angle θ, which is proven to be inversely related to temperature. 

Both sites are more restricted at 393 K compared to 313K, reflected by the smaller values of the 

angles, indicating the structural change is more severe and have a stronger impact on the 

adsorbed CO2 molecules at higher temperatures.  



54 

 

 

 

Combined with CP results, a conclusion can be made based on the analysis so far: From 293 

K and below, all CO2 molecules possess the combined motion. Whereas at temperature 313 K 

and above, a subtle shrinkage of the channels take place, which not only dampers the combined 

motion, but also gives rise to a new resonance associated with CO2 molecules that only possess 

localized rotation. Though the majority of CO2 molecules still possess the combined motion 

other than the simple localized rotation. 

 

2.3.3 Discussion of possible CO2 adsorption sites within α-Mg 

formate framework based on MD simulation 

Molecular dynamic simulation was carried out to locate CO2 position in the porous structure. 

Figure 2.17 shows the carbon atom distribution near the minimum energy configuration within 

α-Mg formate at 253 K along three crystallographic axes. It is clear that two minimum energy 

configurations in the channels are observed. In the structure of α-Mg formate, a twofold screw 

axis sits at the centre of the channel along b axis. And those two minimum energy configurations 

are also related by the twofold screw axis. Therefore, the twofold non-localized hopping of CO2 

based on EXPRESS simulation might occur between the two minimum configurations when 

certain conditions are met.  

MD simulations at different temperatures were also conducted to provide a better 

understanding of how carbon distribution changes with respect to temperature. The results are 

shown in Figure 2.18. It is worth mentioning that the cone-shape distribution of carbon atoms 

might be owing to a cone shape rotation of CO2 molecules upon the adsorption sites, which is 

consistent with the end-on adsorption behavior we assumed earlier in this chapter.  
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Figure 2.17 - The distribution of carbon atoms of CO2 in α-Mg formate at 253K, projected on 

plane yz (a), xz (b) and xy (c). The gray area represents the channels. The color of C, H, O, Mg are 

in gray, white, red and green, respectively. 

 

Figure 2.18 - The distribution of carbon atom of CO2 in α-Mg formate projected on xy plane at 

different temperatures. (The structure of the framework is fixed at all temperatures during MD 

simulation) 

 

As temperature increases from 193 K to 313 K, the distribution of carbon atoms appears to 

be more delocalized, owing to CO2 molecules possessing higher degree of mobility therefore 

travelling in a larger area. This result is in accordance with EXPRESS simulation results, which 

(a) (b) (c) 

253K 313K 193K 
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has confirmed that the localized rotation angle θ gets bigger at higher temperature. Radial 

distribution function also directly confirms this by showing the distance between carbon/oxygen 

atoms in CO2 and hydrogen atoms from the framework at different temperatures, as shown in 

Figure 2.19.  

 

 

Figure 2.19 - The radial distribution function (RDF) of carbon (a) and oxygen (b) atoms in the 

adsorbed CO2 and framework H. 

The largest distribution of carbon and oxygen atoms is found to be at 3.8 Å and 3.2 Å 

respectively throughout the whole temperature range. For carbon atom, at higher temperature, the 

distribution at 3.8 Å decreases, while it increases at the area within close proximity (3 Å to 5 Å). 

A similar result is also observed for oxygen atoms, confirming that CO2 movements take place in 

a larger area at higher temperature. 

Combined with EXPRESS simulation discussed earlier in this chapter, a full picture of CO2 

movements inside the α-Mg formate for a wide temperature range is unveiled. In the structure of 

α-Mg formate, only three types of hydrogen atoms (H1, H5 and H6) are pointing toward the pore 

and accessible to CO2 molecules, and the hydrogen atoms “hidden” within the zigzag chains are 

not taken into account (H2, H3 and H4) in this work. The two minimum energy configurations 

(a) (b) 
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related by a twofold screw axis are labeled as position A and B in Figure 2.20, which are both in 

close proximity to two hydrogen groups consisting of H1, H5 and H6. The two sets of hydrogen 

atoms also related by a twofold screw axis. The distances between two hydrogen atoms among 

H1, H5 and H6 observed at each minimum configuration are shown as the followings: H1-H5: 

3.94 Å; H1-H6: 3.37 Å; H5-H6: 3.78 Å. During LT experiment, the hopping motion of CO2 

molecules tend to take place in a small area, reflected by the relatively small inter-sites hopping 

angles based on EXPRESS simulation, suggesting a small active area for CO2 molecules. 

Therefore under such circumstances, the two-sites hopping of CO2 molecules are most likely to 

occur between H1 and H5, H5 and H6 or H1 and H6 within one minimum energy configuration. 

Whereas at higher temperature, the hopping angle is as high as 45°, indicating the hopping 

motion takes place between two hydrogen sites more distant from each other. Considering the 

kinetic size of CO2 is about 3.3 Å along with the narrow pore size of α-Mg formate,
29

 

geometrically, the distance between any two hydrogen sites within one minimum configuration is 

too small for CO2 molecules to perform a large angle inter-sites hopping like this. Therefore, we 

considered the possibility that at higher temperature, the inter-sites hopping happens between 

two hydrogen sites that belong to different configurations. The distances of the same type of 

hydrogen sites, but belong to two configurations are shown as following: H1- H1: 7.117 Å, 

H5-H5: 7.320 Å, and H6-H6: 7.882 Å, which are significantly larger than the distances between 

hydrogen atoms within one configuration. Hence, we propose that under this condition, CO2 

molecules are more dynamic and the twofold hopping is more likely to take place down the 1D 

channel from position A to position B. The CO2 movement is summarized in Figure 2.20 and 

Figure 2.21, which are viewing down crystallographic b axis and the diagonal direction of a and 

c axes. 
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Figure 2.20 - Enlarged framework structure of α-Mg formate viewed down crystallographic b axis. 

Hydrogen 1 (H1) are labeled by purple circles, H5 and H6 are labeled by yellow and green circles. 

For the sake of clarification, the three types of hydrogen atoms are not labeled within one channel. 

The red area is the minimum energy configuration confirmed by MD simulation. The proposed 

CO2 motion of LT and HT are also shown in separate channels for clarification. During LT 

experiments, CO2 molecules follow the combined motion upon the hydrogen atoms at position A 

or B; during HT experiment, the twofold non-localized hopping occur between hydrogen atoms at 

position A and B. 

LT 

HT 

Position A 

Position B 
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Figure 2.21 - Crystal structure of α-Mg formate viewed down the diagonal direction between a 

and c axes. To show the shape of the channels, Mg2O6 and Mg4O6 octahedra are omitted for the 

middle part. For the sake of clarification, only hydrogen atoms that have direct access to guest 

species are drawn in this structure (H1, H5 and H6), as the black atoms in the channels. The carbon 

distribution is shown as the red cones in the channels. 

  

  

Zigzag channels 

(Mg2O6 and Mg4O6 are omitted)  

 

  

Mg2O6 and Mg4O6  

Mg2O6 and Mg4O6  

Mg3O6 and Mg1O6  

Mg3O6 and Mg1O6  
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2.4 Conclusion 

In this chapter, 
13

C SSNMR along with complementary molecular dynamic simulation have 

been employed to investigate CO2 adsorption behavior within α-Mg formate. Up to 313 K, CO2 

molecules obey a combined motion consisting of a localized rotation and a simultaneous 

two-sites hopping. Above 313K, a small portion of CO2 molecules undergo a single localized 

rotation, resulting from possible framework shrinkage. 
1
H-

13
C CP experiments suggest the 

adsorption sites are the hydrogen atoms from the framework, and the follow-up MD simulation 

has unveiled the spatial distribution of carbon/oxygen atoms in CO2 within the porous framework: 

(1) Within the porous structure of α-Mg formate, two minimum configurations (position A and B) 

of carbon atoms related by a two-fold screw axis are discovered, and each configuration is within 

close proximity with three proton sites, H1, H5 and H6; (2) carbon atoms are more delocalized at 

higher temperature; (3) an end-on adsorption of CO2 molecules is anticipated based on the 

cone-shape distribution. During LT experiments, CO2 molecules primarily adsorb on either H1, 

H5 or H6 at position A OR B, and two-sites non-localized hopping is likely to take place between 

two hydrogen sites within one minimum configuration. Whereas at higher temperature, CO2 

molecules become more mobile, and the two hydrogen sites where twofold hopping takes place 

might belong to different configurations (i.e. one hydrogen site is one of the H1, H5 and H6 from 

position A, the other hydrogen site is one of the H1, H5 and H6 from position B). 
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2.6 Appendix 

 

Figure S2.1 - Calculated and experimental PXRD results of as-made and activated α-Mg formate. 
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Chapter 3 Dynamic study of C2D4 in α-Mg formate and CPO-27-M 

(M = Mg and Zn) using 
2
H SSNMR 

3.1 Introduction 

Ethylene, as the simplest alkene, is widely involved in multiple important industrial 

processes including the production of polyethylene,
1
 ethylene glycol, and ethylene oxide.

2
 It is 

also extensively studied as a ripening agent which can be naturally emitted by many fruits 

including bananas, apples, peaches etc.
3
 Currently, the industrial production of ethylene is mostly 

hydrocracking of fossil fuels. As a result, the product is always a mixture of ethylene and other 

hydrocarbons such as ethane and propane, which has made the separation and storage of ethylene 

a popular research interest in recent years.
4,5

 The merits of MOFs such as high porosity, light 

weight, and structural stability have made them especially interesting regarding this issue.
6-9

 In 

this chapter, ethylene adsorption behaviors in α-Mg formate, CPO-27-Mg and -Zn are studied 

using 
13

C and 
2
H SSNMR as well as single crystal X-ray diffraction. 

To the best of our knowledge, no previous study has thoroughly explained the ethylene 

adsorption behaviors in α-Mg formate. However, an interesting experiment regarding this 

guest-host system caught our attention.
10

 This experiment qualitatively examined the adsorption 

of ethylene (naturally emitted by bananas) with the use of commercially available Basolite M050, 

i.e. α-Mg formate. In this experiment, two 600g bundles of bananas were sealed in two 

containers. One had the α-Mg formate in the container and the other did not. After twelve days, 

the bananas with MOF still “looked fresh, smelled sweet, and were edible without mold on the 

surface.” Meanwhile control samples without MOF in the container were smelly, moldy and 

inedible, indicating the excess C2H4 emitted by bananas were indeed adsorbed by α-Mg formate. 

However, no further quantitative analysis was done during this experiment therefore the details 

of ethylene adsorption behavior in this type of MOF still remains unknown. Previously reported 
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C2H2 adsorbed in α-Mg formate might be useful in understanding this mystery.
11,12

 In Fischer’s 

work, C2H2/CO2 selectivity in α-Mg formate was studied.
11

 Due to the van der Waals interaction 

between the hydrogen atoms in C2H2 and the oxygen atoms on the formate anions in the structure, 

α-Mg formate shows outstanding preferential adsorption towards C2H2 over CO2. In addition, the 

adsorbed C2H2 molecules occupy two independent positions in the zigzag channels with a 

population 0.75:0.25. Due to the structural similarity between ethylene and acetylene, a similar 

adsorption behavior is anticipated for ethylene.  

Compared to α-Mg formate, CPO-27-M is better studied both experimentally and 

computationally in terms of gas adsorption and separation due to its high porosity and high 

density of unsaturated metal sites which could serve as strong adsorption sites in the 

structures.
13-16

 CPO-27-M features of family of isostructural MOFs with a chemical formula of 

C4H11O8M, which is also often referred to as M-MOF-74 and M2(dobdc) (M = Fe, Mn, Mg, Co, 

Cu, Zn, Ni; dobdc
4-

 =  2,5-dioxido-1,4-benzenedicarboxylate). This type of MOF crystalizes in 

trigonal R-3 space group with a = b = 25.87 Å, and c = 6.628 Å. The crystal structure is shown in 

Figure 3.1. 

 

Figure 3.1 - Crystal structure of CPO-27-Zn viewed down crystallographic c axis. 
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CPO-27-M with various metal centres have been successfully synthesized and structurally 

resolved by means of single crystal X-ray diffraction and neutron diffraction.
17-20

 In the structure 

of CPO-27-M, the metal centres are octahedrally coordinated to six oxygen atoms, five of which 

are from four surrounding dobdc linkers, and the sixth one belonging to the adsorbed water 

molecule. Upon dehydration, the adsorbed water molecules are removed and the metal sites 

become five-coordinated and carry two positive charges, also known as the unsaturated/open 

metal sites. The square pyramids created by M
2+ 

and their five coordinated oxygen atoms are 

interconnected with each other in an edge-share fashion and related by a three-fold screw axis, 

creating helical chains down crystallographic c axis. The chains are interconnected by the dobdc 

linkers, creating one dimensional honeycomb-shape channels along c axis with a diameter about 

12 Å.  

The unsaturated metal sites in CPO-27-M are able to strongly bound to guest species through 

the electron donating and accepting interaction.
21

 In Z. Bao’s recent work,
21

 the adsorption 

behavior of ethane, ethylene, propane and propylene within CPO-27-Mg were predicted by 

Monte Carlo simulation. Among these hydrocarbons, propylene showed the strongest affinity to 

the Mg
2+

 sites due to its large dipole moment. Both ethylene and ethane do not possess dipole 

moments, but the π bond in ethylene resulted in higher binding strength with the open metal sites 

in comparison with ethane. Similar results were also found in another study regarding 

hydrocarbon adsorption in CPO-27-Fe,
22

 which showed an affinity to guest species of acetylene > 

ethylene > propylene > propane > ethane > methane in this type of MOF. 

Although the CPO-27-M MOFs with different metal centres are isostructural, the observed 

affinities between the guest molecules and host MOFs differ greatly due to the dissimilar 

electronic environments of the different unsaturated metal sites. In terms of ethylene adsorption, 

a previous study reported the affinity of C2H4 and CPO-27-M with different metal centres to be 

CPO-27-Fe > Mn > Mg > Co > Zn.
23

 In E. Bloch’s work, the use of neutron diffraction 

accurately pinpoints the location of ethylene molecules to be upon the Fe
2+ 

sites in CPO-27-Fe 
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with a side-on adsorption manner.
22

 Similar result was also observed in CPO-27-Co.
23

 

Interestingly, in Bao’s work,
21

 the grand canonical Monte Carlo simulation suggested that there 

might be an additional adsorption site in the middle of the honeycomb channels of CPO-27-Mg. 

Further experimental proof is needed to confirm this simulation.  

The adsorption behavior of ethylene in different MOFs is studied by means of deuterium 

NMR upon the deuterated ethylene loaded MOFs, which is able to clearly pinpoint the type of 

nuclear reorientation such as twofold and sixfold exchange, as well as the rate of the 

reorientation. The slow (< 10
3
 Hz), intermediate (10

3 
< rate < 10

7
 Hz), and fast limit regimes 

(rate > 10
7
 Hz) are generally used to differentiate how rapid the reorientation process is.

24
 The 

ultrahigh sensitivity of 
2
H NMR originates from the relatively small quadrupolar coupling 

constant CQ of deuterium nuclei.
25

 As a result, the produced Pake doublet spectrum changes 

drastically when the dynamic of 
2
H nucleus changes. 

To the best of our knowledge, very few reports have focused on using 
2
H SSNMR to study 

the ethylene dynamics in porous materials, most of which are with regard to zeolites. NaX is a 

well-studied X type zeolite that possesses typical faujasite structure.
26

 The framework consists of 

sodalite cages (or β-cage) connected through hexagonal prisms, giving rise to supercage (or 

α-cage) with size of 12 Å. Burmeister et al studied dynamics of ethylene molecules in this type 

of zeolite using 
2
H SSNMR,

27
 which has shown that the C2D4 molecules undergo fast isotropic 

reorientation, giving rise to a featureless Lorentzian-shape spectrum even at 77 K. With a 

replacement of 20% of the Na
+
 cations with Ag

+
, C2D4 molecules undergo a 180° flip from 167 

K and below, resulting in a very well-defined Pake doublet spectrum. These results indicated that 

the exchanged Ag
+
 cations in the structure were accounted for the enhancement in C2D4 affinity. 

Another work using Monte Carlo lattice dynamics simulation studied the C2D4 adsorption 

behavior in NaA zeolite.
28

 The structure of NaA is very similar to NaX except slight variation in 

the β-cages and pore size.
29

 Their work indicates that ethylene molecules are able to hop between 

six sites in the α-cage of zeolite NaA; no inter-sites jumping between the cages are observed. 
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Nevertheless, the use of 
2
H SSNMR and the associated simulation methods in studying the 

guest-host interactions between ethylene and MOFs is still fairly rare. 

In this chapter, 
13

C NMR results on the 
13

C2H4 loaded α-Mg formate are discussed first. Due 

to the difficulty in deriving motional information arising from severe line broadening, 
2
H NMR 

and the subsequent EXPRESS simulation were then performed to analyze the dynamics of 

ethylene molecules in two types of MOFs: α-Mg formate and CPO-27-M (M = Zn and Mg). At 

the end of this chapter, the results of CO2 and C2D4 adsorbed in α-Mg formate will be compared, 

as well as the results of C2D4 loaded in different types of MOFs. 

 

3.2 Experimental 

The synthesis of α-Mg formate was described in chapter 2 already. Therefore, only the 

synthesis route of CPO-27-M will be introduced in this chapter. In addition, the gas adsorption 

apparatus and procedures were already described in chapter 2. For the sake of simplicity, it is not 

reintroduced in this chapter.  

3.2.1 Synthesis of CPO-27-M 

 The preparation of CPO-27-M was achieved by a simple solvothermal synthesis following 

previous literature.
30

 First, 0.75 mmol 2,5-dioxido-1,4-benzenedicarboxylate (dobdc, 

Sigma-Aldrich) was dissolved in 10 ml tetrahydrofuran (THF, reagent grade, Caledon) in a 23 ml 

Teflon-lined inlet. Next, 3 ml of 1M NaOH solution was slowly added into the inlet with 

continuous magnetic stirring. 1.5 mmol magnesium/zinc nitrate hexahydrate (Mg(NO3)2·6H2O 

and Zn(NO3)2·6H2O, Sigma-Aldrich, 99%) was dissolved in 5 ml of deionized water and also 

added into reaction system. The Teflon inlet was then put into a stainless steel autoclave, sealed 

and placed in an oven under 110°C for 3 days. After filtration, the light yellow powder was 
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collected, denoted as the as-made samples. In order to obtain dehydrated samples, both 

CPO-27-Mg and CPO-27-Zn underwent an activation procedure after synthesis. For CPO-27-Zn, 

the activation process was simply placing the sample under dynamic vacuum for 10 hours at 

150°C. In the case of CPO-27-Mg, a relatively complicated methanol exchange prior to heating 

was needed. Methanol was added into the Teflon inlet along with 0.2 g of the as-made 

CPO-27-Mg. The inlet was then sealed in an autoclave and placed in the oven at 200°C. After 24 

hours, the autoclave was taken out from the oven and cooled down to room temperature. The 

mixture was then decanted, and another 10 ml of “fresh” methanol was added into the inlet. This 

whole process including mixing, heating and decanting was repeated 3 times before filtration. 

The obtained powder sample was then placed under dynamic vacuum and activated at 250°C for 

8 hours. The product of this step was once again, mixed with methanol, and put in a Teflon inlet. 

After another four times of methanol exchange, an activation at 250°C for 8 hours under 

dynamic vacuum took place until the final product was collected, denoted as the activated 

sample. 

3.2.2 SSNMR characterization 

 
13

C VT experiments were conducted upon the 
13

C2H4 loaded α-Mg formate from 173 K to 

393 K. All 
13

C spectra were referenced in the same way as mentioned in chapter 2. Depth 

decoupling pulse sequence was used to eliminate the influence of H-C dipolar coupling and the 

background signal from the NMR probe. The optimized 90° pulse length and pulse delay were 

2.5 μs and 7 s. The acquisition number was 256.  

2
H SSNMR was performed to study the adsorption behavior of C2D4 in α-Mg formate, 

CPO-27-Mg and Zn. Before acquiring spectrum from the MOFs samples, echo pulse was firstly 

applied to D2O sample for referencing purpose. The chemical shift of D2O was set to 4.8 ppm 

from Tetramethylsilane (TMS-d12),
31

 of which δiso is 0 ppm by convention. Secondly, deuterium 

enriched hexamethylbenzene (HMB) spectrum was then collected to provide a rough guideline 
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of the 90° pulse length of solid material. The adopted 90° pulse lengths were 1.9 μs, 4.0 μs and 

3.7 μs for CPO-27-Mg, CPO-27-Zn and α-Mg formate. A pulse delay of 3 s was used upon all 

three samples. The acquisition numbers was 1600 for CPO-27-M samples and 800 for α-Mg 

formate. As mentioned in chapter 2, NUTs software was used to process NMR spectrum. 

WSolids was used to derive the NMR parameters such as quadrupolar coupling constant CQ, 

asymmetry ηQ, and dipolar coupling constant D. EXPRESS simulation was conducted to derive 

the molecular motion of guest species in MOFs. The motions are sometimes abbreviated as Cn, 

standing for either n fold rotation upon an adsorption site or n fold hopping between sites. The 

rate of all motions of C2D4 molecule in α-Mg formate is considered in the fast regime, whereas in 

CPO-27-M, the rate changes as a function of temperature. Details will be provided in the 

discussion section. The adopted values of CQ and ηQ for stationary C2D4 is 230 kHz and 0 

according to literature.
32

  

3.2.3 Single crystal X-ray analysis 

The single crystal X-ray analysis was performed upon C2D4 loaded α-Mg formate. The sample 

was mounted on a Mitegen polyimide micromount with a small amount of Paratone N oil. All 

X-ray measurements were made on a Bruker Kappa Axis Apex2 diffractometer at a temperature of 

110 K. The unit cell dimensions were determined from a symmetry constrained fit of 9898 

reflections with 5.02° < 2θ < 63.04°. The data collection strategy was a number of scans which 

collected data up to 63.536° (2θ). The frame integration was performed using SAINT.
33

 The 

resulting raw data was scaled and absorption corrected using a multi-scan averaging of symmetry 

equivalent data using SADABS.
34

 The details of the single crystal analysis are included in the 

Appendix at the end of this chapter. 

The structure was solved by using the coordinates from the isomorphous structure of the 

activated framework.
35

 The ethylene atomic positions were derived from two predominant peaks 

in a difference Fourier of approximately 2 e
-
/Å

3
 in height. The framework hydrogen atoms were 
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introduced at idealized positions and were allowed to ride on the parent atom. The ethylene 

deuterium atom positions were obtained in the following way: One peak in the difference map was 

located at approximately the correct distance from C1X. This position was used to calculate the 

idealized positions of the remaining three hydrogen atom positions. These deuterium atom 

positions were allowed to ride on the parent carbon atom. The structural model was fit to the data 

using full matrix least-squares based on F
2
. The calculated structure factors included corrections 

for anomalous dispersion from the usual tabulation. The structure was refined using the 

SHELXL-2014 program from the SHELX suite of crystallographic software.
36

 Graphic plots were 

produced using the NRCVAX program suite.
37

  

 

3.3 Results and discussion 

3.3.1 
13

C2H4 in α-Mg formate 

Figure 3.2 shows the 
13

C spectra from 173 K to 393 K of the 
13

C2H4 loaded α-Mg formate. The 

sharp resonance that appears from 313 K near 122 ppm is associated with free ethylene signal, 

which gets more evident during the heating process. The observed NMR line shape is originated 

from the strong 
13

C-
13

C dipolar coupling interaction characterized by dipolar coupling constant D 

as well as CSA. The calculated D value for completely stationary 
13

C2H4 using equation 3 in 

chapter 1 is 3165 Hz. Ethylene molecules are more dynamic as temperature increases, resulting in 

much more averaged dipolar interaction and therefore much smaller D values at higher 

temperature. The biggest D value of 1900 Hz is derived from the spectrum obtained at 233 K, 

which is much smaller than the aforementioned value for stationary 
13

C2H4, indicating that the 

adsorbed ethylene molecules were not nearly stationary at 233 K. As temperature increases, the 

derived D value continuously becomes smaller and the smallest D value of 1350 Hz is observed at 

393 K. It is worth mentioning that due to the severe line broadening present in the spectrum of 213 
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K and below, the D values cannot be successfully derived by WSolids simulation. The derived CS 

parameters, weight analysis of the adsorbed and free ethylene, and derived D values are 

summarized in Table 3-1. 

 

Figure 3.2 - VT 
13

C experimental (a) and simulated (b) spectra of 
13

C2H4 loaded in α-Mg formate. 

Green line spectra in (b) are the derived free ethylene signal.  

(a) (b) 
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One of the most important subjects of this study is to understand the dynamics of ethylene in 

different types of MOFs. However, EXPRESS package does not support the dynamic studies when 

strong dipolar coupling is present. Therefore, deuterium NMR on C2D4 loaded α-Mg formate was 

proceeded since 
13

C SSNMR study on 
13

C2H4 loaded α-Mg formate would only provide limited 

information. 

Table 3-1. Derived CS parameters and D value of 
13

C VT experimental spectra of 
13

C2H4 adsorbed 

in α-Mg formate 

 δiso (ppm) Ω 

(ppm) 

κ D (Hz) Weight of the 

adsorbed 
13

C2H4 (%) 

Weight of the free 

13
C2H4 (%) 

393 K 122(1) 44(1.5) 1.00(1) 1350(50) 92(1) 8(1) 

373 K 122(1) 47(1.5) 1.00(1) 1400(50) 94(1) 6(1) 

353 K 122(1) 49(1.5) 1.00(1) 1450(50) 97(1) 3(1) 

333 K 122(1) 51(1.5) 1.00(1) 1500(50) 98(1) 2(1) 

313 K 122(1) 54(1.5) 1.00(1) 1550(50) 99(1) 1(1) 

293 K 122(1) 57(1.5) 1.00(1) 1650(50)   

273 K 122(1) 60(1.5) 1.00(1) 1700(50)   

253 K 122(1) 65(1.5) 1.00(1) 1800(50)   

233 K 122(1) 67(1.5) 1.00(1) 1900(50)   

 

3.3.2 C2D4 adsorption behavior within α-Mg formate 

Figure 3.3 shows the experimental and WSolids simulated 
2
H spectra of C2D4 loaded α-Mg 

formate from 173 K to 373 K.  
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Figure 3.3 - 
2
H NMR VT experimental (a) and simulated (b) of C2D4 loaded α-Mg formate. 

As temperature increases, the linewidth of the spectrum gradually gets narrower, resulting 

from higher degree of mobility that ethylene molecules possess at higher temperature. From 313 

K, a sharp resonance at 0 ppm associated with free C2D4 signal starts to emerge and becomes 

more significant during the heating process, suggesting that more C2D4 undergo free molecular 

tumbling without interacting with the framework. Two well-defined powder patterns can be 

deconvoluted from the experimental spectrum at each temperature based on WSolids simulations, 

marked as site 1 and 2. The spectrum obtained at 353 K shown in Figure 3.4 is used as an 

example to demonstrate the three sites deconvolution, and the derived site 1 and site 2 of the 

whole VT results are stacked in Figure 3.5. 
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Figure 3.4 – Three sites deconvolution of the 
2
H spectrum obtained at 353 K of the C2D4 loaded in 

α-Mg formate. Site 1, 2 and the signal of free ethylene are shown as green, purple, and black 

subspectrum in this figure. 

 

Figure 3.5 - Derived site 1 (a) and site 2 (b) VT spectra of C2D4 loaded in α-Mg formate 
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Table 3-2 Derived quadrupolar parameters of C2D4 loaded α-Mg fomrate 

 Site 1 CQ 

(kHz) 

Site 1 

ηQ 

Site 2 CQ 

(kHz) 

Site 2 

ηQ 

Population 

of Site 1 (%) 

Population 

of Site 2 (%) 

Population of 

free C2D4 (%) 

173 K 55(1) 0.50(1) 81(1) 0.00(1) 94(1) 6(1) - 

193 K 52(1) 0.49(1) 76(1) 0.00(1) 91(1) 9(1) - 

213 K 48(1) 0.50(1) 70(1) 0.00(1) 91(1) 9(1) - 

233 K 45(1) 0.50(1) 65(1) 0.00(1) 89(1) 11(1) - 

253 K 43(1) 0.49(1) 62(1) 0.00(1) 89(1) 11(1) - 

273 K 40(1) 0.49(1) 58(1) 0.00(1) 89(1) 11(1) - 

293 K 38(1) 0.49(1) 55(1) 0.00(1) 89(1) 11(1) - 

313 K 35(1) 0.49(1) 52(1) 0.00(1) 89(1) 11(1) 1(1) 

333 K 33(1) 0.49(1) 49(1) 0.00(1) 87(1) 11(1) 2(1) 

353 K 31(1) 0.49(1) 46(1) 0.00(1) 88(1) 11(1) 2(1) 

373 K 30(1) 0.49(1) 44(1) 0.00(1) 87(1) 10(1) 3(1) 

Site 1 and 2 show distinct line shapes that give rise to different quadrupolar parameters. The 

simulated CQ and ηQ of each site as well as the weight percentage are summarized in Table 3-2. 

The weight percentage analysis suggests that site 1 is the dominant site throughout the whole 

temperature range. Due to the emergence of site 2 and 3, its population decreases by 2 % from 

233 K to 373 K. Site 2 starts out as a very small composition in the spectrum of 173 K, only 6 %. 

As temperature increases to 233 K, the population of this site has increased to 11% and remains 

at the same value during the rest of the VT experiments. The population of free ethylene signal 

increases from 0.5% to 3% from 313 K to 393 K. The CQ values of both site 1 and 2 are 

inversely related to temperature, where the higher the experimental temperature is, the smaller 

the CQ values are for both sites, which indicates that the QI between 
2
H nuclei in ethylene and 

local EFG is more averaged due to the higher degree of mobility of the guest molecules.  

EXPRESS simulation was conducted for both site 1 and 2 to analyze the dynamics of 
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ethylene based on NMR line shape. The simulated spectra are shown in Figure 3.6, which 

suggests that site 1 is generated by C2D4 molecules undergoing localized rotation of and a 

simultaneous non-localized two-sites hopping. Site 2 on the other hand, is yielded by C2D4 

molecules only possess localized rotation.  

 

Figure 3.6 - EXPRESS simulation results of site 1 (a) and site 2 (b) of 
2
H NMR VT spectra of 

C2D4 loaded α-Mg formate. The dash lines are the derived site 1 and 2 from experimental spectra. 

For simplicity, only EXPRESS simulated spectra of 173 K, 293 K and 373 K are overlaid as red 

(site 1) and black (site 2) spectra here. 

The localized motion from both site 1 and 2 are characterized by rotation angle θ, and the 
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non-localized two-sites hopping only found in site 1 is characterized by inter-sites hopping angle 

γ. The as-mentioned adsorption mechanism is depicted in Figure 3.7, and the derived rotation 

angle θ and hopping angle γ are summarized in Table 3-3. As mentioned in the Experimental 

section, the rate of the motions ethylene molecules possess in this system is considered to be in 

the fast regime.  

 

Figure 3.7 – Schematic of the localized rotation derived from site 2 (a), and the combined motion 

consisting of a localized rotation with an angle θ and non-localized two-sites hopping with an 

angle γ derived from site 1 (b). The adsorption site will be discussed later in this chapter. 

As temperature increases from 173 K to 373 K, the θ values for both site 1 and 2 increase 

from 41 to 47°. The inter-sites hopping angle γ of site 1 remains unchanged at 28° throughout the 

VT experiment. The existence of two sites in NMR spectra suggests that two groups of ethylene 

molecules that obey the two distinct motions behind site 1 and 2 are present in the system. 

Additionally, the population analysis of the two sites in Table 3-2 indicates a majority of the 

θ θ 

C
2
 

γ 

Adsorption site in α-Mg formate  

(a) (b) 
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adsorbed ethylene molecules undergo the combined motion instead of the single localized 

rotation. In order to understand these interesting results, the structure of α-Mg formate has to be 

taken into consideration. As mentioned earlier in chapter 1, the α-Mg formate possesses 

zigzag-shaped and very narrow channels with a size of 4.5 × 5.5Å. Considering the reported 

kinetic diameter of ethylene is about 4.16 Å,
4
 it is possible that a small portion of ethylene 

molecules locating at certain parts of the channels do not have enough space to perform a 

twofold inter-sites hopping, whereas the majority of the adsorbed ethylene molecules locating at 

the slightly more spacious area in the framework are able to hop between two equivalent sites. As 

a result, two distinct Pake doublets are observed in 
2
H NMR spectra.  

Table 3-3 EXPRESS simulation derived localized rotation angle θ for site 1 and 2, and 

non-localized hopping angle γ for site 1. 

 Site 1 θ (°) Site 1 γ (°) Site 2 θ (°) 

173 K 41(0.5) 28(0.5) 41(0.5) 

193 K 41.5(0.5) 28(0.5) 42(0.5) 

213 K 42.5(0.5) 28(0.5) 43(0.5) 

233 K 43.5(0.5) 28(0.5) 44(0.5) 

253 K 44(0.5) 28(0.5) 44.5(0.5) 

273 K 44.5(0.5) 28(0.5) 45(0.5) 

293 K 45(0.5) 28(0.5) 45.5(0.5) 

313 K 46(0.5) 28(0.5) 46(0.5) 

333 K 46.5(0.5) 28(0.5) 46. 5(0.5) 

353 K 47(0.5) 28(0.5) 47(0.5) 

373 K 47(0.5) 28(0.5) 47(0.5) 

Although EXPRESS simulation provides a clear picture of the type of motion that ethylene 

molecules follow, how ethylene interact with the framework and the adsorption sites still remain 

unclear. Therefore, single crystal analysis was performed to provide accurate structural 
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information of this guest-host system. 

 

Single crystal analysis of C2D4 loaded α-Mg formate 

 Single crystal X-ray diffraction was conducted upon the ethylene loaded α-Mg formate as a 

complementary analysis to SSNMR results. The refined structure is shown in Figure 3.8. It is 

clear that all ethylene molecules are located inside the zigzag channels.  

 

Figure 3.8 - Single crystal structure of C2D4 loaded α-Mg formate viewed along the diagonal 

direction of a and c axes. Mg2O6 and Mg4O6 octahedra and hydrogen atoms are omitted for the 

channel in the middle in order to have a better view for ethylene sites. 

 

 

 

Channels  
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Discussion on the dynamics and adsorption sites of ethylene in α-Mg 

formate 

EXPRESS simulation suggests that there are two types of ethylene molecules that undergo 

different motions: some follow a combined motion consisting of a localized rotation and a 

non-localized twofold hopping between the adsorption sites; others undergo a simple localized 

rotation. The weight analysis suggests that the number of ethylene molecules possessing a 

localized rotation is significantly less than those follow the combined motion, reflected by a 

population ratio of 1:9. However, only one type of ethylene molecules is picked up by single 

crystal X-ray analysis. The discrepancy between X-ray analysis and SSNMR results might be 

due to the small occupancy of the ethylene molecules possessing only localized rotation. As a 

result, this portion of ethylene molecules could only be observed by 
2
H SSNMR due to its 

ultrahigh sensitivity. It is also possible that this small portion of ethylene reside at the narrower 

part of the zigzag channels, resulting in the failure of performing inter-sites hopping. However, 

this speculation needs further experimental proof. 

In previously reported single crystal structure of C2H2 adsorbed in α-Mg formate, the 

adsorption site is claimed to be oxygen atoms on the formate anions, and van der Waals 

interaction between the oxygen and H in C2H2 is the reason behind this guest-host interaction.
12

 

In protein chemistry, a typical H-O hydrogen bond in C-H……O-C system is about 2.1-2.3 Å,
38

 

and the shortest distance between H in C2H2 and O on the framework is about 2.51-2.66 Å in the 

reported structure. In the case of C2D4 loaded α-Mg formate, the shortest C-H……O-C distance 

of 3.34 Å is observed between D4 (one of the hydrogen atoms in ethylene) and O2 from the 

framework. This result clearly falls out of the threshold of a typical H-O van der Waals 

interaction. Therefore, oxygen unlikely to be the adsorption site of C2D4 loaded in α-Mg formate.  

Another possible adsorption mechanism is the interaction between hydrogen from the 

framework and the π electrons in ethylene. The H-π interactions between H and unsaturated 
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hydrocarbons have been widely researched.
39

 In the ethylene and acetylene matrix,
40

 two types of 

complexes are formed: one is that ethylene being the proton donor to the π cloud in acetylene; 

the other is that acetylene being the proton donor to the π cloud in ethylene. This conclusion is 

supported by the discovery of new IR bands when the matrix of ethylene and acetylene was 

being measured, and those bands are absent when acetylene and ethylene were measured 

separately. A similar result is also observed in ethylene-benzene matrix.
41

  

The above mentioned systems are all in liquid or gaseous phase, and most H-π interaction 

studied in solid forms focus on the interaction methyl hydrogen and aromatic rings in proteins. In 

Boisbouvier’s recent work, direct interactions between the methyl H and π electrons from the 

aromatic rings in a number of proteins were identified by 
1
H-

13
C heteronuclear multiple quantum 

coherence (HMQC) NMR experiments.
42

 Three criteria must be satisfied to form methyl H and π 

interaction in these proteins: distance between methyl C and π electrons is less than 4.3 Å; The 

angle between the C-H and ring centre - H vectors (φ) is greater than 120°; the angle between the 

six-fold rotation axis sitting at the centre of the ring and a H - ring centre vector (θ) is less than 

25 ,ͦ shown in Figure 3.9a.  

 

Figure 3.9 - Schematic showing the three parameters (d, φ and θ) used to describe methyl H/π 

interactions (a), and d, φ and θ values of C2D4 loaded α-Mg formate (b). 
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In the structure of C2D4 loaded α-Mg formate, H1 on the framework shows the shortest 

distances to both carbon atoms in ethylene, which are 3.198 Å to C1X and 3.631 Å to C2X. This 

geometry of H1 and two carbon atoms in ethylene gives rise to d = 4.1 Å, φ = 133.1°, and θ = 

31.8°, shown in Figure 3.9b. Both d and φ values met the criteria as they are within the 

acceptable range. θ is slightly larger than the reported upper limit, which is the result of an 

off-centered position of H1 upon the plane of ethylene molecule. Although, a ubiquitin protein 

reported previously shows a θ value of 50.3°,
42

 and it is considered to have possible H-π 

interaction. Therefore, the possible adsorption mechanism might be the interaction between 

hydrogen from the frameworks and the π electrons present in ethylene, shown in Figure 3.10. 

 

 

Figure 3.10 - Single crystal structure of ethylene loaded α-Mg formate viewed along b axis. H1 are 

marked as pink in the structure, and the weak H-π interaction between H1 and adsorbed ethylene is 

marked as pink dash lines. 

 

3.3.3 C2D4 adsorption behavior within CPO-27-M (M = Mg and Zn) 

The pXRD results of CPO-27-Mg and Zn before and after activation are shown in Appendix 
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Figure S3.1 and S3.2 by the end of this chapter, which are all in good agreements with the 

calculated powder patterns based previously reported structures.
17,19

 

 

Figure 3.11 - 
2
H VT experimental (a) and simulated NMR spectra (b) of C2D4 loaded in 

CPO-27-Mg. Green, purple and red spectrum in (b) represent the adsorbed C2D4 signal, free C2D4 

signal, and the summation of the two.  
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Figure 3.12 -
2
H VT experimental (a) and simulated NMR spectra (b) of C2D4 loaded in 

CPO-27-Zn. Green, purple and red spectrum in (b) represent the adsorbed C2D4 signal, free C2D4 

signal, and the summation of these two. 
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Due to the structural similarity between CPO-27-Mg and Zn, their results are compared and 

discussed together in this section. The experimental spectra of CPO-27-Mg and Zn are shown in 

Figure 3.11 and 3.12.  

The severe line broadening observed at low temperature in both cases causes difficulty in 

deriving quadrupolar interaction parameters CQ and ηQ. Below 233 K for Mg sample and 193 K 

for Zn sample, typical Pake doublets of 
2
H NMR are no longer present. Instead, broad featureless 

spectra take over. Therefore, the lowest temperature from which CQ values can be derived is at 

193 K for CPO-27-Zn, and 233 K for CPO-27-Mg, as summarized in Table 3-4. Above 293 K for 

Mg sample and 273 K for Zn sample, sharp resonances near 0 ppm appear and become more 

evident as temperature increases, which are associated with the free ethylene signal.  

Table 3-4 Derived QI parameters of C2D4 loaded in CPO-27-Mg and CPO-27-Zn 

 CQ of C2D4 in Mg 

sample (kHz) 

ηQ of C2D4 in Mg 

sample 

CQ of C2D4 in Zn 

sample (kHz) 

ηQ of C2D4 in Zn 

sample 

173 K - - - - 

193 K - - 20(1) 0.00(1) 

213 K - - 20(1) 0.00(1) 

233 K 21(1) 0.00(1) 21(1) 0.00(1) 

253 K 21(1) 0.00(1) 21(1) 0.00(1) 

273 K 21(1) 0.00(1) 21(1) 0.00(1) 

293 K 19(1) 0.00(1) 16(1) 0.00(1) 

313 K 19(1) 0.00(1) 16(1) 0.00(1) 

333 K 19(1) 0.00(1) 16(1) 0.00(1) 

353 K 19(1) 0.00(1) 16(1) 0.00(1) 

393 K 17(1) 0.00(1) 17(1) 0.00(1) 
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The derived CQ values for both Mg and Zn spectra are significantly smaller than the reported 

value for stationary ethylene, which is 230 kHz, indicating that even though the ethylene 

molecules are less dynamic at low temperature, significant degrees of motion are still present. 

From room temperature and above, the derived CQ values for Mg samples are all slightly larger 

than those of Zn sample, resulting in slightly broader NMR linewidth. In addition, the weight 

percentage analysis of both Mg and Zn samples from 293 K reveals that though the loading 

amount in CPO-27-Mg and CPO-27-Zn are the same (both 0.15 C2D4/M), the resonance 

corresponds to free ethylene in CPO-27-Zn weighs much more than in CPO-27-Mg at each 

temperature, which means that ethylene molecules are more dynamic in Zn sample than in Mg 

sample, as shown in Table 3-5. Figure 3.13 provides a clearer view of the line width difference 

by comparing the spectra of C2D4 in CPO-27-Mg and Zn obtained at 293 K. 

Table 3-5 Weight analysis of the adsorbed and the free C2D4 loaded in CPO-27-Mg and Zn from 

293 K to 393 K. 

 Adsorbed C2D4 in 

CPO-27-Zn (%) 

Free C2D4 in 

CPO-27-Zn (%) 

Adsorbed C2D4 in 

CPO-27-Mg (%) 

Free C2D4 in 

CPO-27-Mg (%) 

293 K 91(1) 9(1) 100(1) - 

313 K 89(1) 11(1) 98(1) 2(1) 

333 K 85(1) 15(1) 97(1) 3(1) 

353 K 80(1) 20(1) 95(1) 5(1) 

393 K 66(1) 34(1) 82(1) 18(1) 
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Figure 3.13 - Comparison between 
2
H NMR spectra of CPO-27-Mg and CPO-27-Zn obtained at 

293 K. 

Previous studies also reported similar results. The isosteric heat adsorption Qst is commonly 

used to describe the average enthalpy of the adsorption process for gas molecules.
43

 The bigger 

the absolute value is, the stronger the affinity of the guest species to the host. In the case of 

ethylene adsorbed in CPO-27-M, the Qst are -42 kJ/mol and -38 kJ/mol for CPO-27-Mg and 

CPO-27-Zn, indicating the binding strength/affinity between ethylene and the open metal site in 

weaker in CPO-27-Zn than CPO-27-Mg.
23

  

EXPRESS simulation was conducted for both CPO-27-Mg and Zn. The results suggest that 

ethylene molecules in both CPO-27-Mg and Zn undergo a localized rotation characterized by an 

angle θ as well as a non-localized inter-sites hopping, characterized by a hopping angle γ. The 

inter-sites hopping is likely to take place between six open metal sites along the wall of the 

honeycomb channels in the ab plane. θ is the angle between C-D bond in ethylene and the 

localized rotation axis; γ is the angle between the localized rotation axis and the non-localized 

hopping axis. The proposed mechanism is depicted in Figure 3.14. It is worth mentioning that the 

C2D4 molecules are assumed to be adsorbed upon the open metal sites with a side-on fashion, 

CPO-27-Mg 

CPO-27-Zn 

30 20 0 -10 -30 kHz 10 -20 
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which was previously confirmed by neutron diffraction in the case of CPO-27-Fe and Co. 

 

Figure 3.14 - Schematic of localized rotation (a) and six-sites hopping (b) of C2D4 in CPO-27-M. 

Red balls in (b) represent the unsaturated metal sites along the wall of the honeycomb channel. The 

schematic shown here is just an illustration of the inter-sites hopping angle γ. In real crystal 

structure of CPO-27-M, the six unsaturated metal sites are not in the same ab plane, which will be 

later discussed and shown in Figure 3.16 (a). 

The simulated θ, γ as well as the rate of inter-sites hopping are summarized in Table 3-6. The 

type of inter-sites hopping is abbreviated as Cn, and n stands for n-sites hopping. Unlike in α-Mg 

formate, the inter-sites hopping rate of C2D4 in CPO-27-M actually falls into an intermediate 

regime at low temperatures. As the rate of the localized rotation remains in the fast regime 

throughout the whole VT experiments in both cases, it is not included in the table. The simulated 

spectra are shown in Figure 3.15a and b. 

The rotation angle θ of ethylene adsorbed in both Mg and Zn sample only varies by 2° from 

173 K to 393 K, indicating a relatively strong affinity between ethylene and the open metal site 

that is barely influenced by thermal condition. The inter-sites hopping angle γ in both Mg and Zn 

samples remains exactly at 72° throughout the VT experiments. The non-90° value of inter-sites 

γ 

c axis/direction of the channel 

Non-localized hopping between unsaturated metal sites 

(a) (b) 

Localized rotation 
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hopping suggest that the ethylene molecules are not located right upon the metal centres but 

slightly tilted toward the centre of the channels in CPO-27-M, as shown in Figure 3.14b.  

 

Figure 3.15 – EXPRESS simulation of 
2
H NMR VT spectra of C2D4 loaded in CPO-27-Mg (a) and 

CPO-27-Zn (b). Blue and red dash spectra are the experimental spectra. For simplicity, only 

EXPRESS simulated spectra of 173 K, 293 K and 393 K are overlaid as black spectra here. 
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Table 3-6 EXPRESS simulation results for rotation angle θ, inter-sites hopping angle γ and the rate 

of the inter-sites hopping from 173 K to 393 K of C2D4 loaded in CPO-27-Mg and Zn. 

 CPO-27-Zn 

θ (°) 

CPO-27-Zn 

γ (°) 

Inter-sites 

hopping rate 

(Hz) 

CPO-27-Mg 

θ (°) 

CPO-27-Mg 

γ (°) 

Inter-sites 

hopping rate 

(Hz) 

173 K 45(0.5) 72(0.5) C3: 5×10
5
 46(0.5) 72(0.5) C3: 2×10

5
 

193 K 45(0.5) 72(0.5) C6: 5×10
8
 46(0.5) 72(0.5) C3: 3×10

5
 

213 K 45(0.5) 72(0.5) C6: 5×10
8
 46(0.5) 72(0.5) C3: 5×10

5
 

233 K 45(0.5) 72(0.5) C6: 5×10
8
 46(0.5) 72(0.5) C3: 6×10

5
 

253 K 45(0.5) 72(0.5) C6: 5×10
8
 45(0.5) 72(0.5) C6: 5×10

8
 

273 K 46(0.5) 72(0.5) C6: 5×10
8
 45(0.5) 72(0.5) C6: 5×10

8
 

293 K 47(0.5) 72(0.5) C6: 5×10
8
 45(0.5) 72(0.5) C6: 5×10

8
 

313 K 47(0.5) 72(0.5) C6: 5×10
8
 45(0.5) 72(0.5) C6: 5×10

8
 

333 K 47(0.5) 72(0.5) C6: 5×10
8
 46(0.5) 72(0.5) C6: 5×10

8
 

353 K 47(0.5) 72(0.5) C6: 5×10
8
 46(0.5) 72(0.5) C6: 5×10

8
 

393 K 46.5(0.5) 72(0.5) C6: 5×10
8
 47(0.5) 72(0.5) C6: 5×10

8
 

The most striking difference between the EXPRESS simulation results of Mg and Zn 

samples is the inter-sites hopping at low temperature. For CPO-27-Mg sample, from 233 K and 

below, the severe line broadening of the spectra has made EXPRESS simulation more 

complicated to perform. The best fit is obtained by a three-fold inter-sites hopping of C2D4 

within the intermediate regime. Whereas in CPO-27-Zn, the inter-sites hopping of C2D4 within 

intermediate regime can only be obtained at 173 K. It should be noted that the intermediate 

motion of ethylene molecules is discovered at lower temperature in Zn sample compared to Mg 

sample, which is in accordance with the fact that ethylene molecules are more mobile in 

CPO-27-Zn than CPO-27-Mg. The threefold inter-sites hopping along with intermediate jumping 

rate observed in both samples results from the reduced mobility of C2D4 molecules at low 

temperature. Under this circumstance, the ethylene molecules may hop between the three 
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unsaturated metal sites which are related by a C3 symmetry element in the same ab plane. In 

other words, the adsorbed ethylene molecules bypass the adjacent unsaturated metal sites and 

hop between every other one. The above mentioned schemes are summarized in Figure 3.16. 

 

Figure 3.16 - Schematic of six unsaturated metal sites within close proximity in the crystal 

structure of CPO-27-M (a), non-localized six-sites hopping (b), and possible non-localized 

three-sites hopping (c). Red and green balls in (a) represent the metals sites in two planes. The 

six-sites hopping shown in (b) takes place between the six metal adjacent to each other. Therefore, 

the hopping motion is represented by green and red arrows alternating. The three-sites hopping 

might take place between three metal sites in the same plane, represented by green or red arrows in 

the same plane in (c). 

 

3.3.4 Discussion of the different adsorption behaviors of C2D4 in 

α-Mg formate and CPO-27-M 

 The observed 
2
H NMR line shapes for C2D4 loaded in α-Mg formate and CPO-27-M 

samples differ from each other greatly, which originates from the different adsorption mechanism 

in these two types of MOFs. First of all, two distinguished adsorption behaviors are deduced 

from the two well-defined Pake doublets from C2D4 loaded α-Mg formate as discussed earlier in 

this chapter. One is the combined motion that consists of a localized rotation and a non-localized 

hopping between the adsorption sites. The other is a simple localized rotation. Whereas in the 

(a) (b) (c) 

c axis 
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case of C2D4 loaded CPO-27-M, only one adsorption behavior is discovered, which is a similar 

combined motion that consists of a localized rotation and a simultaneous non-localized hopping. 

This difference is attributed to the significant different shapes of the channels in these two types 

of MOFs. For CPO-27-M, the large honeycomb channels allow C2D4 molecules rotate upon, and 

hop between six unsaturated metal sites freely without significant restrictions from the 

framework. However in α-Mg formate, the very narrow and zigzag shape channels might limit 

the C2D4 molecules’ movements to different parts of the channels, giving rise to two types of 

motions.  

The localized rotation angle θ of C2D4 in α-Mg formate experiences a more dramatic 

increment from 173 K to 393 K than in CPO-27-M, which is undoubtedly attributed to the 

distinct adsorption site in the two MOFs. The electron donating and accepting interaction 

between the double bond in ethylene and unsaturated metal sites in CPO-27-M is much stronger 

than the proposed hydrogen-π interaction in α-Mg formate,
42,44

 and less dependent on the thermal 

condition. As a result, the rotation angle of C2D4 in α-Mg formate changes from 41° to 47° 

during VT experiments, opposite to a 2° difference observed in CPO-27-M. In addition, the 

inter-sites hopping angle γ in these two types of MOFs show very different values as well. In 

α-Mg formate, ethylene molecules hop between two adsorption sites with an angle of 28° during 

the entire VT experiment, whereas in CPO-27-M, the hopping angle is as big as 72°. In the 

structure of CPO-27-M, the unsaturated metal sites are all pointing towards the channels, and 

ethylene molecules locate slightly off-centered upon the metal sites, resulting in a large hopping 

angle, as shown in Figure 3.12 b. The small hopping angle of ethylene in α-Mg formate is most 

likely due to the restriction of the narrow and zigzag-shaped channels, which do not provide 

enough space for ethylene molecules to undergo inter-sites hopping between two adsorption sites 

further away from each other.  
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3.3.5 Discussion on the different adsorption behaviors of C2D4 and 

13
CO2 in α-Mg formate.  

As introduced in chapter 2, 
13

C NMR was used to examine the CO2 adsorption behavior in 

α-Mg formate. In this chapter, 
2
H NMR instead of 

13
C NMR was performed to examine the 

ethylene adsorption behavior in this type of MOF, which is due to the difficulty in interpreting 

13
C spectra. According to EXPRESS simulation, the adsorbed C2D4 and 

13
CO2 molecules in 

α-Mg formate both undergo two types of motion: 1. a combined motion consisting of a localized 

rotation and a non-localized inter-sites hopping; 2. a simple localized rotation. The difference 

between these two cases is the different thermal condition at which motion 2 appears. Among the 

adsorbed 
13

CO2 molecules, motion 2 cannot be observed until 313 K, which can be ascribed to 

the structural change occurring at high temperature, as proposed in chapter 2; Among the 

adsorbed C2D4, motion 2 is present during the entire VT experiment from 173 K to 373 K, which 

is speculated to originate from two types of ethylene molecules that locate at different positions 

of the channels. The ethylene molecules that only obey a localized rotation might reside at the 

narrower part of the channel that does not have enough space to perform inter-sites hopping. 

Therefore those ethylene molecules only follow motion 2. On the other hand, the ethylene 

molecules observed by single crystal X-ray analysis all lie along the direction of the channels, 

which provide them plenty of space to perform the inter-sites hopping and undergo the combined 

motion (motion 1). Although both motion 1 and 2 and be derived from C2D4 and 
13

CO2 adsorbed 

in α-Mg formate, their origins are different. 

One confusing result is that the 
13

C spectra of 
13

CO2 adsorbed in α-Mg formate are 

abnormally broader from 333 K and above, but 
2
H spectra of C2D4 are not. If the line broadening 

observed in 
13

C spectra is associated with structural change as discussed in chapter 2, a similar 

line broadening at higher temperature is anticipated in the 
2
H spectrum as well. So far, the 

experimental results seem to be contradictory to our speculation. Actually, the localized rotation 

angle θ of 
13

CO2 and C2D4 at higher temperature might shed some light on this issue. At 293 K, 
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the rotation angle θ is 49° and 45° for 
13

CO2 and C2D4, respectively, indicating a larger active 

area for 
13

CO2 molecules in comparison with ethylene. This is most likely due to the smaller 

kinetic size as well as the weaker affinity to the adsorption sites of 
13

CO2 molecules. As 

temperature increases from 313 K to 373 K, the θ of 
13

CO2 drops by 2° while increases by 1° for 

ethylene. Therefore, it is possible that the subtle structural change does not hinder the movement 

of ethylene molecules due to the smaller area the localized rotation takes place than that of 

13
CO2. 

Inter-sites hopping angle γ also shows interesting difference in the two cases. γ of 
13

CO2 

molecules adsorbed in α-Mg formate increases from 23° to 45° while the γ of ethylene remains at 

28° during the entire VT experiments. As discussed in chapter 2, this increasing value of γ 

observed in 
13

CO2 is due to the molecular hopping between two hydrogen sites more distant from 

each other. The inter-sites hopping of ethylene molecules is predicted to occur between two 

equivalent sites related by a twofold screw axis along b axis. There are two possible explanations 

regarding this issue. First, the binding strength between the framework and the adsorbed ethylene 

molecules is much stronger than that of 
13

CO2, giving rise to an inter-sites hopping between two 

fixed adsorption sites. Secondly, due to the large kinetic size of ethylene and the zigzag shape of 

the channels, it is possible that the inter-sites hopping is restricted between two specific 

adsorption sites throughout the entire VT experiment. Consequently, the inter-sites hopping angle 

is fixed to 28°.  
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3.4 Conclusion 

The ethylene adsorption behaviors through a wide temperature range in CPO-27-M (M = Zn 

and Mg) and α-Mg formate were successfully resolved by means of 
2
H SSNMR VT experiments.  

In α-Mg formate, two independent adsorption behaviors are observed, reflected by two 

well-defined Pake doublets in NMR spectra. The majority of the ethylene molecules undergo a 

localized rotation and simultaneously non-localized twofold inter-sites hopping, while the 

minorities undergo a localized rotation, no inter-sites hopping is observed. The weight analysis of 

the NMR spectra reveals a ratio of 9:1 between the former and the latter adsorption behaviors. 

The single crystal X-ray analysis suggests only one type of ethylene present in the system, which 

might be due to the small amount of the second type of ethylene. 

In CPO-27-M, both Mg and Zn samples exhibit only one type of motion: a rapid and 

localized rotation upon the unsaturated metal sites with a simultaneous inter-sites hopping 

between different metal centres. A three-sites hopping motion instead of six-sites within 

intermediate regime is deduced from 233 K and below for the Mg sample and only at 173 K for 

the Zn sample. These results are in accordance with the previously reported isosteric adsorption 

heat of CPO-27-Mg and Zn, confirming that the affinity between the Mg sample and ethylene 

molecules is strong than that of Zn sample.  

The difference in adsorption behavior between the two types of MOFs is the result of their 

structural difference. The narrow and the zigzag shape channel in α-Mg formate is responsible 

for the two distinct adsorption behaviors. Whereas the large honeycomb channel in CPO-27-M 

give rise to a straightforward adsorption behavior.  
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3.6 Appendix 
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Figure S3.1 - Calculated and experimental pXRD results of as-made and activated CPO-27-Zn 
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Figure S3.2 - Calculated and experimental pXRD results of as-made and activated CPO-27-Mg 
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Figure S3.3 - ORTEP drawing of asymmetric unit showing naming and numbering scheme. 

Ellipsoids are at the 50% probability level and hydrogen and deuterium atoms were drawn with 

arbitrary radii for clarity. 
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Figure S3.4 - ORTEP drawing of asymmetric unit. Ellipsoids are at the 50% probability level and 

hydrogen and deuterium atoms were drawn with arbitrary radii for clarity. 
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Figure S3.5 - Stereoscopic ORTEP drawing of C2D4 loaded α-Mg formate asymmetric unit. 

Ellipsoids are at the 50% probability level and hydrogen deuterium atoms were drawn with 

arbitrary radii for clarity. 
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Table S3.1 - Summary of crystal data for C2D4 loaded α-Mg formate 

Formula C8H6D4Mg3O12 

Formula Weight (g/mol) 375.11 

Crystal Dimensions (mm ) 0.163 × 0.103 × 0.041 

Crystal Color and Habit colourless plate 

Crystal System monoclinic 

Space Group P 21/n 

Temperature, K 110 

a, Å 11.310(4) 

b, Å  9.801(4) 

c, Å  14.518(6) 

α,° 90 

β,° 91.264(16) 

γ,° 90 

V, Å
3
 1609.0(11) 

Number of reflections to determine final unit cell 9898 

Min and Max 2θ for cell determination,° 5.02, 63.04 

Z 4 

F(000) 760 

ρ (g/cm) 1.549 

λ, Å, (MoKα) 0.71073 

μ, (cm
-1

) 0.244 
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Diffractometer Type Bruker Kappa Axis Apex2 

Scan Type(s) phi and omega scans 

Max 2θ for data collection,° 63.536 

Measured fraction of data 0.997 

Number of reflections measured 74782 

Unique reflections measured 5393 

Rmerge 0.0862 

Number of reflections included in refinement 5393 

Cut off Threshold Expression I > 2sigma(I) 

Structure refined using full matrix least-squares using F
2
 

Weighting Scheme w=1/[sigma
2
(Fo

2
)+(0.0454P)

2
+0.7460P] 

where P=(Fo
2
+2Fc

2
)/3 

Number of parameters in least-squares 211 

R1 0.0432 

wR2 0.0941 

R1 (all data) 0.0757 

wR2 (all data) 0.1067 

GOF 1.037 

Maximum shift/error 0.000 

Min & Max peak heights on final ΔF Map (e
-
/Å) -0.469, 0.506 

Where: 

R1 = ( |Fo| - |Fc| ) /  Fo 

wR2 = [( w( Fo
2
 - Fc

2
 )

2
 ) / (w Fo

4
 ) ]

½
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GOF = [( w( Fo
2
 - Fc

2
 )

2
 ) / (No. of reflns. - No. of params. ) ]

½
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Table S3.2 - Atomic coordinates for C2D4 loaded α-Mg formate 

Atom x y z Uiso/equiv 

Mg1 0.25633(4) 0.41882(5) 0.63473(4) 0.00991(12) 

Mg2 0.0000 0.5000 0.5000 0.01136(16) 

Mg3 0.26112(5) 0.10784(5) 0.68900(4) 0.01041(12) 

Mg4 0.5000 0.5000 0.5000 0.01158(16) 

O1 0.13009(9) 0.50217(11) 0.72091(8) 0.0115(2) 

O2 -0.03826(10) 0.50185(13) 0.63803(8) 0.0173(3) 

C1 0.01853(14) 0.51375(17) 0.71127(11) 0.0139(3) 

O3 0.15647(9) 0.24122(11) 0.61083(8) 0.0117(2) 

O4 0.01768(10) 0.29184(12) 0.50366(8) 0.0160(2) 

C2 0.07599(14) 0.21054(17) 0.55117(11) 0.0145(3) 

O5 0.39836(9) 0.34587(11) 0.56139(8) 0.0122(2) 

O6 0.38823(10) 0.12255(11) 0.59381(8) 0.0143(2) 

C3 0.43040(14) 0.22170(16) 0.55296(11) 0.0142(3) 

O7 0.19013(9) -0.20357(11) 0.75380(7) 0.0118(2) 

O8 0.18553(10) -0.06174(11) 0.63271(8) 0.0149(2) 

C4 0.16773(14) -0.17398(16) 0.66942(11) 0.0133(3) 

O9 0.18346(9) 0.52502(11) 0.52519(8) 0.0122(2) 

O10 0.35044(10) 0.60747(12) 0.46679(8) 0.0162(2) 

C5 0.24197(14) 0.60126(16) 0.47062(12) 0.0146(3) 

O11 0.34926(9) 0.57971(11) 0.69705(8) 0.0119(2) 
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O12 0.51831(10) 0.60516(12) 0.62217(8) 0.0170(3) 

C6 0.45191(14) 0.62985(17) 0.68598(12) 0.0149(3) 

C1X -0.2822(7) 0.5031(9) 0.8497(8) 0.212(5) 

D1 -0.2640 0.5804 0.8131 0.317 

D2 -0.2802 0.5105 0.9149 0.317 

C2X -0.3093(10) 0.3810(11) 0.8143(7) 0.257(6) 

D3 -0.3115 0.3731 0.7490 0.385 

D4 -0.3274 0.3043 0.8514 0.385 

H1 -0.0249 0.5332 0.7650 0.017 

H2 0.0595 0.1163 0.5426 0.017 

H3 0.4923 0.2036 0.5115 0.017 

H4 0.1346 -0.2439 0.6316 0.016 

H5 0.1976 0.6579 0.4295 0.018 

H6 0.4799 0.6924 0.7315 0.018 
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Table S3.3 - Anisotropic displacement parameters for C2D4 loaded α-Mg formate 

Atom u
11

 u
22

 u
33

 u
12

 u
13

 u
23

 

Mg1 0.0084(2) 0.0102(2) 0.0111(3) 0.00008(18) 0.00063(19) 0.0001(2) 

Mg2 0.0082(3) 0.0130(4) 0.0129(4) -0.0002(3) -0.0003(3) 0.0011(3) 

Mg3 0.0097(2) 0.0103(2) 0.0113(3) -0.00001(19) 0.00072(19) 0.0008(2) 

Mg4 0.0090(3) 0.0127(4) 0.0131(4) -0.0008(3) 0.0026(3) 0.0007(3) 

O1 0.0081(5) 0.0122(5) 0.0141(5) 0.0008(4) -0.0001(4) -0.0010(4) 

O2 0.0109(5) 0.0266(7) 0.0145(6) -0.0007(5) -0.0005(4) 0.0003(5) 

C1 0.0101(7) 0.0176(8) 0.0141(8) 0.0003(6) 0.0024(6) -0.0009(6) 

O3 0.0097(5) 0.0114(5) 0.0138(5) -0.0008(4) -0.0012(4) 0.0006(4) 

O4 0.0139(5) 0.0144(6) 0.0195(6) 0.0010(4) -0.0055(5) 0.0010(5) 

C2 0.0133(7) 0.0125(7) 0.0176(8) -0.0016(6) -0.0020(6) -0.0017(6) 

O5 0.0097(5) 0.0123(5) 0.0148(6) 0.0002(4) 0.0029(4) 0.0004(4) 

O6 0.0155(5) 0.0109(5) 0.0166(6) 0.0000(4) 0.0045(4) 0.0018(4) 

C3 0.0126(7) 0.0141(8) 0.0161(8) 0.0012(6) 0.0033(6) -0.0014(6) 

O7 0.0126(5) 0.0114(5) 0.0114(5) 0.0007(4) -0.0004(4) 0.0000(4) 

O8 0.0176(6) 0.0123(5) 0.0147(6) -0.0017(4) -0.0014(4) 0.0016(4) 

C4 0.0148(7) 0.0116(7) 0.0133(8) -0.0003(6) -0.0004(6) -0.0013(6) 

O9 0.0093(5) 0.0141(5) 0.0132(5) -0.0014(4) 0.0001(4) 0.0024(4) 

O10 0.0099(5) 0.0176(6) 0.0211(6) -0.0004(4) 0.0026(4) 0.0035(5) 

C5 0.0124(7) 0.0149(8) 0.0165(8) 0.0000(6) -0.0005(6) 0.0031(6) 

O11 0.0099(5) 0.0122(5) 0.0136(5) -0.0014(4) 0.0017(4) -0.0009(4) 
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O12 0.0126(5) 0.0219(6) 0.0165(6) -0.0041(4) 0.0040(4) -0.0021(5) 

C6 0.0121(7) 0.0182(8) 0.0145(8) -0.0039(6) 0.0006(6) -0.0019(6) 

C1X 0.107(5) 0.207(9) 0.324(14) 0.049(6) 0.078(7) 0.114(9) 

C2X 0.296(13) 0.261(12) 0.221(10) -0.005(10) 0.177(10) 0.025(9) 
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Table S3.4 - Bond lengths for C2D4 loaded α-Mg formate 

Mg1-O9 2.0576(13) Mg4-O5
4
 2.1079(12) 

Mg1-O5 2.0738(13) Mg4-Mg1
4
 3.5060(12) 

Mg1-O1 2.0857(13) O1-C1 1.2715(19) 

Mg1-O11 2.0900(13) O1-Mg3
1
 2.0558(13) 

Mg1-O7
1
 2.0932(13) O2-C1 1.236(2) 

Mg1-O3 2.0996(13) C1-H1 0.9500 

Mg1-Mg3 3.1483(14) O3-C2 1.2785(19) 

Mg1-Mg3
1
 3.1689(12) O4-C2 1.235(2) 

Mg1-Mg4 3.5060(12) C2-H2 0.9500 

Mg1-Mg2 3.5516(12) O5-C3 1.2765(19) 

Mg2-O4 2.0506(14) O6-C3 1.2394(19) 

Mg2-O4
2
 2.0506(14) C3-H3 0.9500 

Mg2-O2
2
 2.0594(14) O7-C4 1.279(2) 

Mg2-O2 2.0595(14) O7-Mg1
3
 2.0932(13) 

Mg2-O9
2
 2.1132(13) O7-Mg3

3
 2.0952(14) 

Mg2-O9 2.1132(13) O8-C4 1.241(2) 

Mg2-Mg1
2
 3.5516(12) C4-H4 0.9500 

Mg3-O6 2.0212(14) O9-C5 1.2834(19) 

Mg3-O8 2.0323(14) O10-C5 1.231(2) 

Mg3-O1
3
 2.0558(13) C5-H5 0.9500 

Mg3-O3 2.0829(13) O11-C6 1.2741(19) 
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Mg3-O7
1
 2.0952(14) O11-Mg3

1
 2.1125(14) 

Mg3-O11
3
 2.1125(14) O12-C6 1.229(2) 

Mg3-Mg1
3
 3.1690(12) C6-H6 0.9500 

Mg4-O10 2.0413(13) C1X-C2X 1.335(12) 

Mg4-O10
4
 2.0414(13) C1X-D1 0.9500 

Mg4-O12
4
 2.0579(13) C1X-D2 0.9500 

Mg4-O12 2.0579(13) C2X-D3 0.9501 

Mg4-O5 2.1079(12) C2X-D4 0.9500 

 

1.  -x+1/2, y+1/2,1+ -z+1/2 

2.  -x,1+ -y,1+ -z 

3.  -x+1/2,-1+ y+1/2,1+ -z+1/2 

4.  1-x,1+ -y,1+ -z 
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Table S3.5 - Bond angles for C2D4 loaded α-Mg formate 

O9-Mg1-O5 94.54(5) O8-Mg3-Mg1 133.34(5) 

O9-Mg1-O1 89.87(5) O1
3
-Mg3-Mg1 130.82(4) 

O5-Mg1-O1 172.43(5) O3-Mg3-Mg1 41.37(3) 

O9-Mg1-O11 98.16(5) O7
1
-Mg3-Mg1 41.24(4) 

O5-Mg1-O11 95.42(5) O11
3
-Mg3-Mg1 108.37(4) 

O1-Mg1-O11 77.83(5) O6-Mg3-Mg1
3
 130.67(4) 

O9-Mg1-O7
1
 172.55(5) O8-Mg3-Mg1

3
 79.25(5) 

O5-Mg1-O7
1
 89.15(5) O1

3
-Mg3-Mg1

3
 40.43(4) 

O1-Mg1-O7
1
 87.18(5) O3-Mg3-Mg1

3
 139.65(4) 

O11-Mg1-O7
1
 87.91(5) O7

1
-Mg3-Mg1

3
 102.49(5) 

O9-Mg1-O3 94.98(5) O11
3
-Mg3-Mg1

3
 40.79(3) 

O5-Mg1-O3 92.82(5) Mg1-Mg3-Mg1
3
 140.09(2) 

O1-Mg1-O3 92.92(5) O10-Mg4-O10
4
 180.0 

O11-Mg1-O3 163.86(5) O10-Mg4-O12
4
 89.30(5) 

O7
1
-Mg1-O3 78.35(5) O10

4
-Mg4-O12

4
 90.70(5) 

O9-Mg1-Mg3 133.44(4) O10-Mg4-O12 90.70(5) 

O5-Mg1-Mg3 77.61(4) O10
4
-Mg4-O12 89.30(5) 

O1-Mg1-Mg3 103.73(4) O12
4
-Mg4-O12 180.0 

O11-Mg1-Mg3 128.05(4) O10-Mg4-O5 90.74(5) 

O7
1
-Mg1-Mg3 41.29(3) O10

4
-Mg4-O5 89.26(5) 

O3-Mg1-Mg3 40.97(4) O12
4
-Mg4-O5 87.71(5) 
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O9-Mg1-Mg3
1
 107.30(5) O12-Mg4-O5 92.29(5) 

O5-Mg1-Mg3
1
 132.76(4) O10-Mg4-O5

4
 89.26(5) 

O1-Mg1-Mg3
1
 39.73(3) O10

4
-Mg4-O5

4
 90.74(5) 

O11-Mg1-Mg3
1
 41.32(4) O12

4
-Mg4-O5

4
 92.29(5) 

O7
1
-Mg1-Mg3

1
 74.50(5) O12-Mg4-O5

4
 87.71(5) 

O3-Mg1-Mg3
1
 125.12(4) O5-Mg4-O5

4
 180.00(4) 

Mg3-Mg1-Mg3
1
 111.40(3) O10-Mg4-Mg1

4
 114.12(4) 

O9-Mg1-Mg4 76.14(4) O10
4
-Mg4-Mg1

4
 65.88(4) 

O5-Mg1-Mg4 33.33(4) O12
4
-Mg4-Mg1

4
 72.43(4) 

O1-Mg1-Mg4 143.39(4) O12-Mg4-Mg1
4
 107.57(4) 

O11-Mg1-Mg4 71.11(4) O5-Mg4-Mg1
4
 147.28(3) 

O7
1
-Mg1-Mg4 110.11(4) O5

4
-Mg4-Mg1

4
 32.72(3) 

O3-Mg1-Mg4 121.50(4) O10-Mg4-Mg1 65.88(4) 

Mg3-Mg1-Mg4 110.484(19) O10
4
-Mg4-Mg1 114.12(4) 

Mg3
1
-Mg1-Mg4 112.43(3) O12

4
-Mg4-Mg1 107.57(4) 

O9-Mg1-Mg2 32.10(3) O12-Mg4-Mg1 72.43(4) 

O5-Mg1-Mg2 115.25(5) O5-Mg4-Mg1 32.72(3) 

O1-Mg1-Mg2 71.42(4) O5
4
-Mg4-Mg1 147.28(3) 

O11-Mg1-Mg2 117.78(4) Mg1
4
-Mg4-Mg1 180.0 

O7
1
-Mg1-Mg2 140.62(4) C1-O1-Mg3

1
 127.13(10) 

O3-Mg1-Mg2 70.44(4) C1-O1-Mg1 131.28(11) 

Mg3-Mg1-Mg2 111.349(19) Mg3
1
-O1-Mg1 99.84(6) 



115 

 

 

 

Mg3
1
-Mg1-Mg2 104.43(3) C1-O2-Mg2 136.20(11) 

Mg4-Mg1-Mg2 106.50(3) O2-C1-O1 125.59(15) 

O4-Mg2-O4
2
 180.0 O2-C1-H1 117.2 

O4-Mg2-O2
2
 89.66(5) O1-C1-H1 117.2 

O4
2
-Mg2-O2

2
 90.34(5) C2-O3-Mg3 127.52(11) 

O4-Mg2-O2 90.34(5) C2-O3-Mg1 132.79(11) 

O4
2
-Mg2-O2 89.66(5) Mg3-O3-Mg1 97.65(5) 

O2
2
-Mg2-O2 180.0 C2-O4-Mg2 134.98(11) 

O4-Mg2-O9
2
 89.07(4) O4-C2-O3 126.16(15) 

O4
2
-Mg2-O9

2
 90.93(4) O4-C2-H2 116.9 

O2
2
-Mg2-O9

2
 93.28(5) O3-C2-H2 116.9 

O2-Mg2-O9
2
 86.72(5) C3-O5-Mg1 127.06(10) 

O4-Mg2-O9 90.93(4) C3-O5-Mg4 118.95(10) 

O4
2
-Mg2-O9 89.07(4) Mg1-O5-Mg4 113.95(6) 

O2
2
-Mg2-O9 86.72(5) C3-O6-Mg3 132.08(11) 

O2-Mg2-O9 93.28(5) O6-C3-O5 126.06(15) 

O9
2
-Mg2-O9 180.0 O6-C3-H3 117.0 

O4-Mg2-Mg1 71.63(3) O5-C3-H3 117.0 

O4
2
-Mg2-Mg1 108.37(3) C4-O7-Mg1

3
 131.18(11) 

O2
2
-Mg2-Mg1 110.33(4) C4-O7-Mg3

3
 128.65(10) 

O2-Mg2-Mg1 69.67(4) Mg1
3
-O7-Mg3

3
 97.47(6) 

O9
2
-Mg2-Mg1 148.84(3) C4-O8-Mg3 128.54(11) 
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O9-Mg2-Mg1 31.16(3) O8-C4-O7 125.60(15) 

O4-Mg2-Mg1
2
 108.37(3) O8-C4-H4 117.2 

O4
2
-Mg2-Mg1

2
 71.63(3) O7-C4-H4 117.2 

O2
2
-Mg2-Mg1

2
 69.67(4) C5-O9-Mg1 124.64(10) 

O2-Mg2-Mg1
2
 110.33(4) C5-O9-Mg2 118.58(10) 

O9
2
-Mg2-Mg1

2
 31.15(3) Mg1-O9-Mg2 116.75(5) 

O9-Mg2-Mg1
2
 148.85(3) C5-O10-Mg4 141.75(11) 

Mg1-Mg2-Mg1
2
 180.0 O10-C5-O9 125.78(15) 

O6-Mg3-O8 94.74(5) O10-C5-H5 117.1 

O6-Mg3-O1
3
 92.65(6) O9-C5-H5 117.1 

O8-Mg3-O1
3
 94.84(6) C6-O11-Mg1 133.42(11) 

O6-Mg3-O3 89.25(5) C6-O11-Mg3
1
 127.18(11) 

O8-Mg3-O3 93.74(6) Mg1-O11-Mg3
1
 97.89(5) 

O1
3
-Mg3-O3 171.03(5) C6-O12-Mg4 134.15(11) 

O6-Mg3-O7
1
 91.33(5) O12-C6-O11 126.34(16) 

O8-Mg3-O7
1
 170.24(5) O12-C6-H6 116.8 

O1
3
-Mg3-O7

1
 92.50(5) O11-C6-H6 116.8 

O3-Mg3-O7
1
 78.68(5) C2X-C1X-D1 123.4 

O6-Mg3-O11
3
 170.52(5) C2X-C1X-D2 116.9 

O8-Mg3-O11
3
 87.57(5) D1-C1X-D2 119.7 

O1
3
-Mg3-O11

3
 77.98(5) C1X-C2X-D3 117.2 

O3-Mg3-O11
3
 99.79(5) C1X-C2X-D4 122.8 



117 

 

 

 

O7
1
-Mg3-O11

3
 87.69(5) D3-C2X-D4 120.0 

O6-Mg3-Mg1 76.61(4)   

 

1.  -x+1/2, y+1/2,1+ -z+1/2 

2.  -x,1+ -y,1+ -z 

3.  -x+1/2,-1+ y+1/2,1+ -z+1/2 

4.  1-x,1+ -y,1+ -z 
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Table S3.6 - Torsion angles for C2D4 loaded α-Mg formate 

Mg2-O2-C1-O1 -15.2(3) Mg3-O8-C4-O7 3.1(2) 

Mg3
1
-O1-C1-O2 145.80(14) Mg1

2
-O7-C4-O8 7.9(2) 

Mg1-O1-C1-O2 -16.0(3) Mg3
2
-O7-C4-O8 -149.13(13) 

Mg2-O4-C2-O3 -7.7(3) Mg4-O10-C5-O9 20.8(3) 

Mg3-O3-C2-O4 -177.60(12) Mg1-O9-C5-O10 11.0(2) 

Mg1-O3-C2-O4 -17.6(3) Mg2-O9-C5-O10 -166.98(13) 

Mg3-O6-C3-O5 -1.7(3) Mg4-O12-C6-O11 8.4(3) 

Mg1-O5-C3-O6 -6.7(2) Mg1-O11-C6-O12 12.0(3) 

Mg4-O5-C3-O6 170.94(13) Mg3
1
-O11-C6-O12 174.73(13) 

 

1.  -x+1/2, y+1/2,1+ -z+1/2 

2.  -x+1/2,-1+ y+1/2,1+ -z+1/2 
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Table S3.7 - Potential Hydrogen Bonds for C2D4 loaded α-Mg formate 

Hydrogen Bond D—H (Å) H···A (Å) D···A (Å) D—H···A (°) 

C2-H2···O8 0.95 2.59 3.161(2) 119.0 

C4-H4···O4
1
 0.95 2.63 3.437(2) 143.6 

 

1.  -x, -y,1+ -z 
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Chapter 4 Summary and Future Works 

4.1 Summary 

In this work, the dynamics of gas molecules in various MOFs have been investigated 

thoroughly by SSNMR. The results displayed in this thesis suggest that 
13

C NMR and 
2
H NMR 

are both very useful for the investigation of guest-host interactions within a wide temperature 

range.  

In chapter 2, CO2 adsorption behavior in α-Mg formate is analyzed by 
13

C VT experiment, 

and 
1
H-

13
C CP experiment is performed to determine the adsorption site, which has been 

confirmed to be hydrogen atoms from the framework. The 
13

C VT experimental spectra are 

subjected to EXPRESS simulation to predict the dynamics of the adsorbed CO2. Distinctive 

adsorption behaviors are found from LT and HT experiments. At low temperatures (293 K and 

below), all adsorbed CO2 molecules undergo a combined motion consisting of a localized 

rotation upon the adsorption sites and a non-localized inter-sites hopping between two hydrogen 

atoms. The results of HT experiment (313 K and above) suggest that the majority of the adsorbed 

CO2 molecules still undergo the combined motion, but a small portion of CO2 act differently 

since they only undergo a localized rotation, no inter-sites hopping between the hydrogen sites is 

found. The two types of motion are both restricted as temperature increases, reflected by the 

decline of rotation and inter-sites hopping angles. A subtle structural change of the framework at 

high temperature is proposed to be responsible for the emergence of the second adsorption site 

and the restricted mobility of CO2 molecules at high temperature. MD simulations done by our 

collaborators successfully pinpoint the minimum energy configurations of CO2 in the channels of 

α-Mg formate, which are all in close proximity to three types of hydrogen atoms H1, H5 and H6 

from the framework, indicating the adsorption takes place among these three types of hydrogen.  
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Chapter 3 introduces the ethylene adsorption behavior in α-Mg formate and CPO-27-M (M = 

Mg and Zn) investigated by 
2
H NMR. The adsorbed ethylene molecules in α-Mg formate 

undergo two different motions. The majority of ethylene molecules undergo a combined motion 

of localized rotation and a non-localized twofold hopping, while others follow a localized 

rotation. In both CPO-27-Mg and Zn, all ethylene molecules obey a similar combined motion 

consisting of a localized rotation and a non-localized six-sites hopping between the unsaturated 

metal centres. The affinity between ethylene molecules and unsaturated Mg
2+

 in CPO-27-Mg is 

found to be stronger than that of Zn
2+

 in CPO-27-Zn. The discrepancy between ethylene 

adsorbed in α-Mg formate and CPO-27-M is due to the significant difference of the porous 

structures in these two types of MOFs. 

 

4.2 Future work 

 In chapter 2 we propose a subtle structural change occurs at high temperature of α-Mg 

formate, which is deduced from the restricted motion of the adsorbed CO2 molecules during HT 

experiment. However, the obtained NMR results can only be considered as indirect evidence for 

this assumption. Preparing good quality single crystal of α-Mg formate and conducting single 

crystal X-ray diffraction at high temperature is going to be a follow-up work of this thesis. 

In chapter 3, we discuss the ethylene adsorption behavior in α-Mg formate. It will also be 

interesting to investigate the ethylene/ethane selectivity of α-Mg formate since its zigzag shape 

channels may have the same effect as molecular sieve, in addition to the potential H-π interaction 

between the framework hydrogen and the double bond in ethylene. 

The MOFs studied in this work all possess relatively simple structures. It will be very 

interesting to investigate the ethylene adsorption behaviors in more complicated MOFs which 

possess multiple binding sites or different types of channels in their structures. As mentioned in 

chapter 1, MIL-53-Al shows a unique breathing effect, the pore size changes accordingly as 
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pressure and temperature vary, which is different from both α-Mg formate and CPO-27-M. 

Therefore, it will be very interesting to study the dynamic of ethylene in this type of MOF since 

no such study has been reported so far.
1
 Recently reported MIL-101-Cr-SO3Ag shows high 

internal surface area and exceptional selectivity of ethylene over ethane that surpasses a number 

of benchmark solid adsorbents such as CPO-27-Mg and NaX.
2
 This significant enhancement is 

the result of a bifunctional adsorption mechanism that involves the π-complexation formed 

between the double bond in ethylene molecules and the Ag
 
(I) sites, as well as the electron 

donating-accepting interaction between the unsaturated Cr (III) and ethylene. The dynamics of 

ethylene adsorbed upon Ag (I) and Cr (III) sites are anticipated to be different since the 

adsorption mechanism are dissimilar, which can be easily confirmed by 
2
H SSNMR. However, 

due to the difficulty in performing SSNMR experiments upon paramagnetic materials, replacing 

Cr (III) with diamagnetic metal cations while the structure of MIL-101-Cr-SO3Ag still maintains 

will be one of the future works. Subsequently, dynamic analysis of guest molecules using 

SSNMR will also be performed. 

Incorporating functional groups into MOFs has become a common tactic to enhance the CO2 

uptakes. Recently reported amino functionalized MIL-101-Al shows good selectivity of CO2 

over methane,
3
 which is due to the strong electron donor-acceptor interaction between CO2 and 

the large number of amine groups present in the pores. Mg formate MOF has also been amino 

modified.
4
 Therefore, conducting dynamic studies of ethylene/CO2 adsorbed in amino 

functionalized Mg formate and compare the results with the pristine MOF will be very 

interesting. 
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