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Abstract 

 

Community acquired methicillin resistant Staphylococcus aureus (CA-MRSA) strain USA300 has 

rapidly achieved pandemic status in the community setting. To persist on human hosts, USA300 

requires mechanisms to overcome innate immune defenses of the skin, which include antimicrobial 

unsaturated free fatty acids (uFFAs). This study evaluated efflux mediated mechanisms of 

resistance to uFFA. tet38 encoding an efflux pump that was previously implicated in resistance to 

palmitoleic acid, was found to have no role in resistance to uFFA. Conversely, the farE encoded 

efflux pump conferred resistance to linoleic and arachidonic acid, but not palmitoleic acid. farE 

expression was induced by uFFA, but not other stresses, and in a fatty acid kinase deficient fakA 

mutant unable to incorporate uFFA into phospholipid, farE was constitutively expressed, resulting 

in increased resistance to uFFA. These findings establish that farE is expressed in response to the 

metabolism of exogenous uFFA in S. aureus, and confers an efflux-mediated mechanism of 

resistance.  

  

 

Keywords: Staphylococci, anti-microbial lipids, tet38, farE, fakA, efflux pumps 

  



iii 
 

Co-Authorship Statement 

 

The following people contributed to the work undertaken in this thesis: 

Heba Alnaseri, who created the original the USA300 farE::ΦNE strain, and was involved in the 

experiments shown in Figure 3.1 A. 

 

Zachariah Scinocca, who worked with me on the creation of the USA300 pGYfarE::lux strain 

and performed some preliminary experiments which were later repeated to produce Figure 3.3.  
  

 



iv 
 

  

Acknowledgments  

 

Firstly, I would like to acknowledge my laboratory colleagues in the McGavin and Heinrich’s labs, 

both past and present, for all their help, patience and friendship through these past two years. I 

learned many interesting things both inside and out of the lab. Notably, I would like to thank Heba 

Alnaseri for all of her support since my first day in the lab. 

I would also like to thank my advisory committee members, Dr. Jeremy Burton and Dr. Bryan 

Heit, for their advice and participation on my committee.  

This work was supported by NSERC Discovery grants to both the McGavin and Heinrichs labs, 

as well as funding from the Schulich School of Medicine and Dentistry to the McGavin lab. 

Additionally, I was also the recipient of an Ontario Graduate Scholarship award. To all these 

funding sources I am sincerely grateful.   

Finally, I would like to express gratitude to the most crucial people involved over my two years of 

work, my supervisors, Dr. Martin McGavin and Dr. David Heinrichs. Their guidance, insight and 

support have been essential to the completion of this project.  

 



v 
 

Table of Contents 

Abstract .............................................................................................................................. ii 

Co-Authorship Statement ............................................................................................... iii 

Acknowledgments ............................................................................................................ iv 

Table of Contents .............................................................................................................. v 

List of Tables .................................................................................................................... ix 

List of Figures .................................................................................................................... x 

List of Abbreviations ....................................................................................................... xi 

List of Units/SI Prefixes .................................................................................................. xii 

1 INTRODUCTION ........................................................................................................ 1 

1.1 Overview of Staphylococcus aureus ....................................................................... 1 

1.1.1 Description .................................................................................................. 1 

1.1.2 History of Antibiotic Resistance and USA300 ........................................... 2 

1.1.3 Medical Significance of USA300 ............................................................... 3 

1.2 USA300 Colonization and Invasion ....................................................................... 6 

1.2.1 USA300 Paradigm of Infection .................................................................. 6 

1.2.2 Skin Innate Immune Defenses .................................................................... 7 

1.2.3 Invasion and Formation of Abscesses ......................................................... 8 

1.2.4 Secreted Virulence Factors in Abscesses .................................................. 10 

1.2.5 Global Regulators and Stress Responses .................................................. 12 

1.3 Unsaturated Free Fatty Acids................................................................................ 15 

1.3.1 Mechanism of Antimicrobial Fatty acids and Resistance ......................... 15 

1.3.2 Major Facilitator Superfamily and tet38 ................................................... 16 

1.3.3 Resistance Nodulation Division Superfamily and farE ............................ 17 

1.3.4 Fatty Acid Metabolism ............................................................................. 18 



vi 
 

1.4 Rationale and Hypothesis ..................................................................................... 19 

2 MATERIALS AND METHODS .............................................................................. 21 

2.1 Storage and Growth of Strains .............................................................................. 21 

2.2 DNA Methodology ............................................................................................... 25 

2.2.1 Plasmid Isolation from E. coli .................................................................. 25 

2.2.2 Plasmid Isolation from S. aureus .............................................................. 25 

2.2.3 Chromosomal DNA Isolation from S. aureus........................................... 26 

2.2.4 Restriction Enzyme Digests ...................................................................... 26 

2.2.5 DNA Ligations .......................................................................................... 26 

2.2.6 in-vitro Recombination ............................................................................. 27 

2.2.7 Agarose Gel Electrophoresis..................................................................... 27 

2.2.8 Isolation of DNA Fragments From Agarose Gels .................................... 27 

2.2.9 Polymerase Chain Reaction (PCR) ........................................................... 27 

2.2.10 DNA Sequencing ...................................................................................... 28 

2.2.11 Computer Analyses ................................................................................... 28 

2.3 Transformation and Transduction Methodologies ................................................ 30 

2.3.1 Preparation of Transformation Competent E. coli .................................... 30 

2.3.2 Transformation of CaCl2 Competent E. coli ............................................. 30 

2.3.3 Preparation of Transformation Competent S. aureus ............................... 30 

2.3.4 Transformation of Electro-Competent S. aureus ...................................... 31 

2.3.5 Generation of an In-Frame Mutation ........................................................ 31 

2.3.6 Phage Transduction ................................................................................... 36 

2.3.7 Construction of a pGYfarE::lux Reporter Strain ...................................... 36 

2.3.8 Generation of a Double Knockout Mutation ............................................ 37 

2.3.9 Construction of a Complementation Vector ............................................. 37 



vii 
 

2.4 Experimental Methodologies ................................................................................ 39 

2.4.1 Growth Analysis ....................................................................................... 39 

2.4.2 Bactericidal Assays ................................................................................... 39 

2.4.3 Luciferase Assays ..................................................................................... 40 

2.4.4 Evaluation of non-uFFA inducers ............................................................. 40 

2.4.5 SDS-PAGE ............................................................................................... 41 

2.4.6 Hemolysis Assay ....................................................................................... 41 

2.4.7 Statistical Analysis .................................................................................... 42 

3 RESULTS ................................................................................................................... 43 

3.1 Relative Contributions of farE and tet38 Efflux mechanisms .............................. 43 

3.1.1 Importance of farE for Resistance to Linoleic Acid ................................. 43 

3.1.2 tet38 is Not Important for Palmitoleic Acid Resistance in USA300 ........ 45 

3.2 Inducers of farE expression .................................................................................. 47 

3.2.1 farE is Upregulated in Response to Exposure to Linoleic Acid ............... 47 

3.2.2 farE is Induced by Several uFFAs, Notably Arachidonic Acid ................ 49 

3.2.3 farE Expression is Not Induced by Non-uFFA Stressors ......................... 51 

3.2.4 Induction of farE Promoter is Not Altered in farE Deficient USA300 .... 53 

3.3 Evaluation of the Role of fakA in uFFA Tolerance and Survival ......................... 55 

3.3.1 Confirmation of Lack of α-Hemolysin Production in USA300ΔfakA ...... 55 

3.3.2 farE is Expressed Constitutively and is Not Inducible by Linoleic Acid in fakA 

Negative Strains ........................................................................................ 58 

3.3.3 USA300ΔfakA is Less Susceptible to Killing by Bactericidal Concentrations 

of Linoleic Acid ........................................................................................ 60 

3.3.4 farE is an Important Contributor to the Ability of fakA Deficient Strains to 

Resist Killing by Linoleic Acid ................................................................ 62 

4 DISCUSSION ............................................................................................................. 64 



viii 
 

5 REFERENCES ........................................................................................................... 71 

Curriculum Vitae .............................................................................................................. 83 

 

  



ix 
 

List of Tables 

Table 1.1 Regulation of virulence factors by sarA and agr .......................................................... 14 

Table 2.1 Strains and plasmids used in this study ........................................................................ 22 

Table 2.2 Oligonucleotides used in this study .............................................................................. 29 

 



x 
 

List of Figures 

Figure 1.1 Arginine mobile genetic element and SCCmec-IV ....................................................... 5 

Figure 2.1 Genes deleted with pKOR1 markerless mutagenesis. ................................................. 33 

Figure 2.2 pKOR1 structure and recombination. .......................................................................... 34 

Figure 2.3 PCR Confirmation of Gene Deletions ......................................................................... 35 

Figure 2.4 pGYlux reporter design ............................................................................................... 38 

Figure 3.1 farE, but not tet38, is involved in USA300 growth in linoleic acid ............................ 44 

Figure 3.2 tet38 not required for growth of USA300 in palmitoleic acid ..................................... 46 

Figure 3.3 Linoleic acid induces farE expression. ........................................................................ 48 

Figure 3.4 Role of different antimicrobial fatty acids on induction of farE. ................................ 50 

Figure 3.5 Role on Non-Fatty Acid Stressors on farE Expression ............................................... 52 

Figure 3.6 farE expression unchanged in farE deficient USA300 ............................................... 54 

Figure 3.7 Confirmation of reduction of fakA-dependent hemolysis activity .............................. 57 

Figure 3.8 farE is constitutively expressed in USA300ΔfakA ...................................................... 59 

Figure 3.9 USA300ΔfakA more resistant to killing by bactericidal concentrations of linoleic acid

....................................................................................................................................................... 61 

Figure 3.10 farE is an important contributor to USA300ΔfakA’s improved survival in linoleic 

acid ................................................................................................................................................ 63 

Figure 4.1 Proposed FakA-dependent Sensing of Exogenous Fatty Acids .................................. 69 

 

file:///C:/Users/James/Documents/First%20year%20law/M.Sc%20Thesis%20Defense/M.%20Sc%20Thesis%20-%20JAMES%20SCHNEIDER%20v2.46%20kerfoot.docx%23_Toc431771870
file:///C:/Users/James/Documents/First%20year%20law/M.Sc%20Thesis%20Defense/M.%20Sc%20Thesis%20-%20JAMES%20SCHNEIDER%20v2.46%20kerfoot.docx%23_Toc431771871
file:///C:/Users/James/Documents/First%20year%20law/M.Sc%20Thesis%20Defense/M.%20Sc%20Thesis%20-%20JAMES%20SCHNEIDER%20v2.46%20kerfoot.docx%23_Toc431771872
file:///C:/Users/James/Documents/First%20year%20law/M.Sc%20Thesis%20Defense/M.%20Sc%20Thesis%20-%20JAMES%20SCHNEIDER%20v2.46%20kerfoot.docx%23_Toc431771873
file:///C:/Users/James/Documents/First%20year%20law/M.Sc%20Thesis%20Defense/M.%20Sc%20Thesis%20-%20JAMES%20SCHNEIDER%20v2.46%20kerfoot.docx%23_Toc431771874
file:///C:/Users/James/Documents/First%20year%20law/M.Sc%20Thesis%20Defense/M.%20Sc%20Thesis%20-%20JAMES%20SCHNEIDER%20v2.46%20kerfoot.docx%23_Toc431771879
file:///C:/Users/James/Documents/First%20year%20law/M.Sc%20Thesis%20Defense/M.%20Sc%20Thesis%20-%20JAMES%20SCHNEIDER%20v2.46%20kerfoot.docx%23_Toc431771885


xi 
 

List of Abbreviations 

Amp Ampicillin 

ATc anhydrotetracycline 

Bp Base pair 

BLAST Basic Local Alignment Search Tool 

CA-MRSA Community Acquired Methicillin Resistant Staphylococcus aureus 

DMSO Dimethyl Sulfoxide  

DNA Deoxyribonucleic acid 

Erm Erythromycin  

HA-MRSA Healthcare Acquired Methicillin Resistant Staphylococcus aureus 

Km Kanamycin 

LB Luria Broth 

MGE Mobile Genetic Element 

OD600 Optical Density (determined at 600 nm) 

PAGE Polyacrylamide gel electrophoresis 

PCR Polymerase Chain Reaction 

SDS Sodium dodecyl sulphate 

TSB/TSA Tryptic soy broth / tryptic soy agar 

UV ultraviolet 

v/v Volume/volume (ratio)  



xii 
 

List of Units/SI Prefixes 
  

b nucleotide base 

oC degrees Celsius 

CFU colony forming units 

F farad 

k kilo (103) 

g gram 

× g gravitational force 

L litre 

M molar (1 mol/L) 

m milli (10-3) 

mol mol 

n nano (10-9) 

OD arbitrary unit of absorbance based on OD600 

Ω ohm 

PFU plaque forming unit 

μ micro (10-6) 

V volt 



1 
 

 

1 INTRODUCTION 

 

1.1 Overview of Staphylococcus aureus 

 

1.1.1 Description 

The Gram-positive bacterium Stapylococcus aureus has a long history, well befitting its role as 

the most pathogenic of the staphylococci. In the 1880s physician Alexander Ogston noted the 

appearance of what he termed micrococci in the pus of patients following surgeries and leading to 

blood poisoning, sepsis, and death. What Ogston called micrococci, or tiny balls, were later 

renamed Staphylococcus aureus in reference to their distinctive gold hue; the name aureus arising 

from the Latin ‘aurum’ (gold) (1-4).  The reason for this identifiable golden colour is the caretenoid 

pigment staphyloxanthin, which, in addition to providing S. aureus with its etymology, is an 

important contributor to S. aureus’ remarkable survival abilities, contributing to resistance to 

oxidative and osmotic stresses (5). S. aureus has historically been differentiated from other 

Staphylococci by its ability to produce the protein coagulase, which causes clotting through 

conversion of fibrinogen to fibrin (6). Since the 1940s, this trait has been important in a medical 

setting for identification, although it has since been discovered some S. aureus strains are 

coagulase-negative (6, 7). S. aureus is also known for its abilities to resist stress. S. aureus is 

capable of surviving in conditions of up to 3.5 M NaCl and pH conditions as low as 4.9, abilities 

which serve to make S. aureus a difficult to eliminate food pathogen (8, 9). A range of tolerances 

to various conditions has allowed S. aureus to be found in places such as food and small mammals; 

additionally, S. aureus is thought to colonize the anterior nares of almost 30% of humans (10, 11). 

These tolerances, combined with a large arsenal of virulence factors, have made S. aureus capable 

of causing a wide variety of infections and syndromes, such as carbuncles, scalded skin syndrome, 

toxic shock syndrome, and infective endocarditis (12). 
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1.1.2 History of Antibiotic Resistance and USA300 

S. aureus, in addition to its impressive abilities to survive stresses such as high salt or acidic 

conditions, has proven to be remarkably adept at accumulating resistances to medical antibiotics. 

The discovery of the antibiotic penicillin by Fleming was a watershed event, providing an effective 

antibiotic for the treatment of soldiers during the Second World War. Penicillin is a member of the 

β-lactam family; a class of bactericidal antibiotics which inhibit the last step in cell wall 

peptidoglycan synthesis by binding to the necessary transpeptidase (also referred to as a penicillin 

binding protein, PBP). By 1942, penicillin resistance was appearing in S. aureus, a trend which 

continued until by the 1960s, over 80% of community and hospital acquired S. aureus possessed 

resistance to this antibiotic (13-15). Penicillin resistance, arising from a penicillinase (a form of β-

lactamase) as first identified by Kirby, was originally only present in hospital strains, but it quickly 

moved into the community by the 60s, a trend remarkably similar to the current struggle with 

methicillin resistance (14, 16, 17).  

In 1959, a semi-synthetic derivative of penicillin was developed with resistance to penicillinases. 

This drug was known as methicillin and was expected at the time to give physicians a reprieve 

from the challenges of antibiotic resistance caused by the plasmid encoded of β-lactamase rapidly 

spread between strains (14, 18). However, in only two years, Methicillin Resistant S. aureus 

(MRSA) appeared through the acquisition of the mec cassette, an event which must have occurred 

prior to the original identification of MRSA in 1961 (19).  Notably, the mec cassette carries mecA, 

a gene encoding the penicillin-binding protein PBP2a, which has a low affinity to β-lactams and 

can thus replace the more susceptible PBP enzymes, which are essential for peptidoglycan cross 

linkage in S. aureus’s cell walls (20, 21). Throughout the 70s and 80s, strains of MRSA were 

mostly restricted to hospitals in large urban centres; however, during the early 90s, there was a 

large increase of appearances of MRSA in smaller hospitals and even the community (14).  

One of the major strains in the rise of community acquired MRSA was the strain USA300. 

USA300 was distinctive as it possessed a cassette known as the Arginine Catabolic Mobile 

Element (ACME), thought to have been acquired horizontally from Staphylococcus epidermidis 

(22). As will be discussed later, this cassette is hypothesized to increase the ability of S. aureus to 

colonize the human skin. This ACME cassette is adjacent to USA300’s mec cassette. Community 

acquired MRSA strains tend to have shorter mec cassettes, which have a lower fitness cost 
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compared to the longer hospital acquired MRSA mec cassettes. USA300 possessed the 

staphylococcal cassette chromosome mec- IV (SCCmec-IV), which was only 24 kilobases long 

(23). Researchers have theorized that the positioning of the mec and ACME cassette in USA300 

adjacent to one another might cause the methicillin resistance to ‘hitchike’ along with the fitness 

enhancing ACME cassette during horizontal gene transfer, thus giving rise to the large 

dissemination of USA300 in the community (Figure 1.1) (24).  By 2004, over 97% of skin and soft 

tissue infections in North America caused by MRSA were caused by strain USA300 (25).  USA300 

has thus become an epidemic strain in communities and is responsible for a wide variety of medical 

issues, which will be subsequently discussed.  

 

1.1.3 Medical Significance of USA300 

The increasing prevalence of strain USA300 in the community is of special concern to the medical 

establishment. In addition to possessing antibiotic resistance, USA300 is more virulent than other 

CA-MRSA strains, with greater expression of virulence factors, and causing more severe diseases 

than other epidemiological relevant strains such as USA400 (26). USA300 has been associated 

with and is one of the largest causative agents in invasive diseases such as infective endocarditis, 

necrotizing pneumonia and necrotizing fasciitis (27-29). A combination of factors, including a 

noted ability to survive attack by the immune system, contributes to this ability of USA300 to 

invade organs in a more aggressive manner than other S. aureus strains (30). In addition to causing 

serious damage to organs, the widespread dissemination of this strain has also contributed to 

MRSA strains being the leading cause of skin and soft tissue infections in the United States (31). 

A likely explanation for the spread of this strain is a greater ability to persist on human skin and in 

nares and thus to colonize and spread. It has been suggested that the ACME element acquired from 

S. epidermidis contributes to the ability of USA300 to survive and persist on the skin through 

producing enzymes to counter host polyamines found on the skin, while also countering host skin 

acidity by converting the amino acid L-arginine to carbon dioxide, ATP and ammonia to counteract 

acidity (32). Additionally, USA300 has the potential to be difficult to treat; in addition to the 

SCCmec providing resistance to methicillin and other β-lactams, USA300 has proven to be 

adaptable in evolving resistance to some drugs used to treat MRSA, such as vancomycin (33). 

Overall, USA300 is a bacterium of medical significance due to its antibiotic resistance, its 
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possession of hyper-virulent qualities during invasion, and its wide dispersal and ability to colonize 

skin (34). 

 

  



5 
 

 

  

Figure 1.1 Arginine mobile genetic element and SCCmec-IV 

The 31 kb ACME cassette is hypothesized to be the result of a horizontal gene transfer from S. epidermidis 

and is thought to provide increased ability to colonize human skin. It is directly adjacent to type IV 

Staphylococcal chromosomal cassette mec, leading some researchers to suggest that mec might spread 

through ‘piggybacking’ with ACME. In SCCmec-IV, mecA encodes the PBP2A gene which provides 

methicillin resistance, while ccrB2 and ccrA2 encode cassette chromosome recombinases. In ACME, the 

arc genes together encode an entire complete arginine deiminase pathway which converts L-arginine to 

carbon dioxide, ATP, and ammonia. The other large gene cluster in ACME are the oligopeptide permease 

(opp) genes, which increase virulence and fitness through a currently not understood mechanism. Figure 

adapted from Diep et al.  (22) 
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1.2 USA300 Colonization and Invasion 

 

1.2.1 USA300 Paradigm of Infection 

As discussed earlier, USA300 is a leading cause of soft tissue infections, which can lead to a 

metastatic infection. To better understand the infection and invasion process of S. aureus and thus 

USA300, the strategies of invasion can be examined in three major stages; colonization, 

invasion/abscess formation, and metastatic infection.  

Initially, there is colonization and attachment of bacteria on the skin, at which point bacteria must 

survive on the skin in the presence of the host innate immune defenses. Colonization of the skin is 

a common precursor to the next step, invasion. This has been demonstrated through patients often 

being colonized by the same strains isolated from the infections (10). The subsequent invasion 

often occurs from damage to the skin or hair follicles allowing S. aureus to breach the defenses of 

the skin (35). At this point, the bacteria form abscesses, which are formations of pus and bacteria, 

separated from healthy tissue by a fibrin barrier. It is at this point that S. aureus might escape from 

the abscesses to cause a metastatic infection, the third stage of invasion. Metastatic infection could 

lead to septicemia in the blood or invasion and abscess formation in other organs (35).  

This paradigm of infection also involves the expression of different virulence factors, which are 

differentially regulated throughout the different stages of infection and will be discussed through 

this review. Virulence factors are molecules expressed by bacteria which are able to increase their 

in vivo fitness and pathogenicity. In S. aureus, they correspond roughly to four major groups: 

adhesion factors, immune evasion factors, toxins, and tissue degrading enzymes. The regulation 

of these factors during the different stages of infection is critical to the success of S. aureus as 

pathogen. Interestingly, USA300 is considered to express more of certain virulence factors than 

other strains of MRSA such as USA400. This is considered by some researchers to contribute to 

the increased pathogenicity of this strain (26).  
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1.2.2 Skin Innate Immune Defenses 

The first line of defense encountered by pathogens such as S. aureus that colonize the skin are the 

innate defenses of the skin, which, depending on effectiveness, can limit survival and colonization 

ability. One such defense is the secretion polyamines, notably putrescine, spermidine, and 

spermine, which are polycationic compounds involved in the regulation of cellular processes such 

as growth, and are thus elevated in actively growing cells (36). While these amines are extremely 

important for Eukaryotic cell function and were previously believed to be made by all living things, 

S. aureus does not actually produce them and interestingly they exert bactericidal effects on S. 

aureus at the physiological concentrations encountered on skin (37). Although many bacteria 

benefit from exposure to polyamines, S. aureus is killed in an unclear mechanism involving the 

compound menaquinone; thus, the detoxification of these amines is important for S. aureus 

survival (37). USA300 is notably capable of growing despite these polyamines as a result of the 

speG found on the ACME cassette, which encodes a detoxifying spermidine acetyltransferase (37).  

Another antimicrobial defense on the skin is its acidic pH; skin and sweat naturally have a low pH 

(median 5.3), which is the result of many factors such as lactic acid, amino acids, ammonia levels, 

and fatty acids (38). This is well below the optimal pH of many bacteria, including S. aureus, 

which is at approximately 7.0; correspondingly, it has long been noted that patients with a higher 

natural skin pH are more susceptible to infections (39). USA300 is once again notable as having 

systems from the ACME cassette which enhance acid tolerance, encoding an arginine deiminase 

pathway, which counters the acidity of the skin through conversion of L-arginine into carbon 

dioxide and ammonia (32). 

The sebum secreted through sebaceous glands is another important aspect of the skin innate 

immune defenses; containing lipids in the form ceramides, trigylcerides, cholesterol esters and 

importantly, antimicrobial unsaturated free fatty acids (uFFAs). These antimicrobial free fatty 

acids contain the majority of the sebum antimicrobial activity, notably the saturated fatty acid 

lauric acid (12:0) and unsaturated fatty acid sapienic acid (16:1 cis-Δ6) (40). Similarly, fatty acids 

such as linoleic acid (18:2 cis, cis-Δ9 
,Δ

12) and arachidonic acid (20:4 cis,cis,cis,cis Δ5 
,Δ

8 Δ11 
,Δ

14
 

) are present in nasal secretions as innate antimicrobial defenses for the nares both as free fatty 

acids and cholesteryl esters (41). The role of uFFAs in prevention of S. aureus colonization is 

evident in studies finding that patients deficient in skin fatty acids are more susceptible to 
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colonization (42). The importance of uFFAs and their mechanism of action will be discussed in 

greater detail at a later point in this review.  

Recent research continues to identify additional innate immune responses to S. aureus within the 

skin. Notably, adipocytes in the subcutaneous adipose tissue have been demonstrated to have a 

role in preventing S. aureus infection through the release of antimicrobial cathelicidins (43). This 

finding was of particular interest as adipocytes are not normally considered to be cells involved in 

the immune system.  

Together, the various innate immune defenses discussed here serve to create an environment on 

the skin which is inhospitable to undesired microbes. For S. aureus to be successful in colonization, 

the first step of the model of invasion, it must be capable of surviving and overcoming innate 

immune defenses.  

 

1.2.3 Invasion and Formation of Abscesses 

When S. aureus is able to overcome the barrier of the skin and establish a soft tissue infection, it 

commonly takes the form of an abscess which is a small build-up of pus. Abscesses in the skin and 

soft tissues develop when S. aureus is able to breach the local skin defenses through cuts or trauma 

to hair follicles and enter underlying tissues (35). From these initial abscesses, S. aureus can either 

disseminate back onto the skin surface to establish more infection on the skin, or move into the 

circulating blood to cause a metastatic infection with the formation of abscesses at new sites (44). 

 

When S. aureus breaches the innate immune barrier of the skin and accesses underlying tissue, its 

first step is attachment to host tissue. To accomplish this, S. aureus uses adhesion factors associated 

with the cell wall such as microbial surface components recognizing adhesive matrix molecules 

(MSCRAMMs), which include the fibronectin binding protein (FnBP)(45). These proteins allow 

S. aureus to bind tissue proteins within the extracellular matrix. This attachment step allow 

assembly of high numbers of bacteria, which is crucial for the next step of abscess formation. 

 

S. aureus also utilizes virulence factors at this step to resist the innate immune system. One 

important example is the Staphylococcal protein A (Spa), a cell-wall anchored surface protein that 
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can bind IgG and make S. aureus less susceptible to opsonophagocytosis, which has been linked 

with more severe disease outcome (46, 47). Other immune evasion factors include the chemotaxis 

inhibitory protein of S. aureus (CHIPS), an excreted protein encoded on a bacteriophage which 

impairs neutrophil and monocyte response to complement and bacterial formylated peptides, and 

the multiple peptide resistance factor (MprF), which modifies bacterial membranes to resist 

binding of antimicrobial defensins (48, 49). The expression of different immune evasion factors is 

important to prevent the innate system from killing invading S. aureus before they can establish 

large enough numbers. 

 

After S. aureus has assembled in high enough numbers within the extracellular matrix, changes in 

gene regulation cause it to largely change the expression of its virulence factors. Adhesion factors 

begin to be downregulated and cleaved by proteases, and toxins and tissue degrading enzymes 

begin to be increased in their expression (35, 50, 51). These toxins serve to both assist in tissue 

invasion and provide nutrients for S. aureus. The destruction they cause gives rise to the pus and 

begins forming the abscess. The regulation and specific virulence factors expressed at this point 

will be discussed in further detail in the following section.  

 

As the abscess forms, pro-inflammatory cytokines cause neutrophils to invade the site of S. aureus 

infection, degrading the tissue and causing liquefaction necroses (52). The host also surrounds 

abscesses with fibrin to attempt to limit the spread of inflammation into healthy tissue, creating a 

more contained abscess environment (53). S. aureus also secretes coagulases to drive the 

conversion of fibrinogen to fibrin. The overall effect of these responses is while S. aureus is 

contained in the center of the abscess lesion, it is also shielded from host immune cells by the fibrin 

deposits (54). Within this pseudocapsule is pus, formed from the death of leukocytes and the 

surrounding tissues and correspondingly made up of their degraded components, including 

membrane phospholipids. Free fatty acids have also been demonstrated to be found within 

abscesses (55). These are thought to arise from degradation of host tissue and fatty acid release. 

Erythrocyte membranes are composed of large amounts of saturated fatty acids, such as palmitic 

acid (16:0) comprising of about 20% and stearic acid (18:0) at 14%, as well as unsaturated fatty 

acids, such as oleic acid (18:0 cis-Δ9) at 15%, linoleic acid at 13%, and arachidonic acid at 13% 

(56). Although these values were determined from phospholipids, the hydrolysis of triglycerides 
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by leukocyte or staphylococcal lipases within the abscess would cause these fatty acids to also be 

released as uFFAs (55, 57). Within the abscess S. aureus grows in an environment restricted from 

immune cells and to some extent antibiotics, whereupon it can either disseminate into the blood or 

continue to enlarge the abscess (58). As USA300 causes a large number of community onset S. 

aureus soft tissue infections, the environment it would encounter within an abscess is extremely 

important to understand the ability of this strain to invade and cause disease.  

 

1.2.4 Secreted Virulence Factors in Abscesses   

S. aureus strains have a wide and varied arsenal of secreted virulence factors with which they can 

both interact with and kill host cells; in CA-MRSA, large numbers of virulence factors contribute 

to its virulence and success as a pathogen (59, 60). Virulence factors are molecules produced by 

pathogens that contribute to their in vivo growth and survival through several different 

mechanisms. Within the abscesses, S. aureus reduces its expression of adhesion proteins, and 

produces large amounts of immune evasion factors, toxins, and tissue degrading enzymes.  

One of the most important characteristics that allows USA300 to invade human hosts is an ability 

to avoid killing by neutrophils, which are first responding phagocytic cells from the innate immune 

system (60). One proposed explanation for this ability is USA300’s acquisition of certain mobile 

genetic elements (MGE) encoding virulence factors. One common group of MGEs are those 

encoded on bacteriophage, the Panton-Valentine leucocidin (PVL) is a notable virulence factor 

encoded on this type of MGE (61).  PVL is a two-component toxin which forms pores in 

leukocytes, causing destruction as well as liberating nutrients; additionally, it causes the release of 

pro-inflammatory mediators such as IL-8 which drive inflammation (62, 63). Production of PVL 

has been linked to the increased ability for S. aureus strains to form abscesses (62). 

 In addition to acquisition of mobile genetic elements, USA300 is also known to express its core-

genomic encoded virulence genes at higher levels, notably α-hemolysin (Hla; also known as alpha 

toxin) and the phenol-soluble modulins (PSM) (64). The secreted protein α-hemolysin binds 

cellular membranes and forms pores that destroy erythrocytes, liberating nutrients in what is 

termed alpha hemolysis (65).  At lower concentrations, α-hemolysin forms a complex with protein 

ADAM10 (A Disintgrin And Metalloproteinase), which allows it form a pore in the membrane 

and causes subsequent apoptosis (66). The literature also notes that at higher concentrations, α-
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hemolysin non-specifically absorbs into cellular membranes and causes the release of calcium ions 

and subsequent necrosis (67). The secretion of this factor is an important determinant of virulence 

in some CA-MRSA models and correspondingly is expressed at greater levels in the USA300 

strain than in less pathogenic S. aureus strains (68).  

Additional core genomic virulence factors expressed at higher levels in USA300 include the 

phenol soluble modulins PSMs, which contribute to destruction of neutrophils through membrane 

damage (69). It is likely that the expression of secreted toxins from mobile genetic elements and 

the increase in expression of core genomic toxin genes both contribute to the remarkable 

pathogenicity of USA300.  

S. aureus strains also secrete enzymes to degrade tissue. One important group of these are the 

extracellular proteases, secreted enzymes which hydrolyze the peptide bonds that form 

polypeptides. These secreted proteases have been identified as important contributors to virulence, 

degrading important host proteins such as cathelicidins (antimicrobial peptides), elastin (an 

important component of connective tissue) and complement (70-72).  In addition to degrading host 

protein, extracellular proteases also are capable of degrading staphylococcal proteins to effect a 

change from an adhesive to an invasive state, through acting upon the previously mentioned 

attachment molecules such as Spa and FnBP (50, 73). As a result, the secretion of proteases is an 

important step in the formation of abscesses. Several of the S. aureus extracellular proteases are 

expressed as inactive pro-enzymes which can be subsequently activated in a sequence known as 

the Staphylococcal protease cascade pathway (SPC) (74). This pathway is induced in response to 

unsaturated free fatty acids, such as those which may be encountered on skin, or in abscesses, thus 

acting as an environmental signal-response pathway which responds with increased virulence (74). 

As a result, proteases make up an inducible and varied group of virulence factors in the already 

large arsenal of USA300. As will be discussed in the next section, the ability of S. aureus to sense 

changes in the environment and correspondingly alter its virulence expression is tightly regulated 

and extremely important for successful invasion. 
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1.2.5 Global Regulators and Stress Responses 

S. aureus may encounter several different conditions during colonization and invasion, and often 

needs to induce specific response mechanisms to continue growth and survival in these conditions.  

In the invasion strategy of S. aureus, it is important to downregulate attachment factors and 

increase production of toxins and tissue degrading enzymes as S. aureus moves into abscess 

formation. Additionally, S. aureus needs systems in place to tolerate environment stresses it might 

encounter. To accomplish this, several systems are in place to regulate genes for virulence and 

respond to environmental stresses, such as global regulators and sigma factors.  

Numerous global regulators, including (but not limited to) accessory gene regulator (agr), 

staphylococcal accessory regulator (sarA) and S. aureus exoprotein expression (sae) systems play 

important roles in the regulation of virulence factors for S. aureus during invasion. Some of these 

systems, such as agr and sae, are regulated through two component regulatory system. These 

systems allow response to environmental signals through autophosphorylation of a sensor histidine 

kinase in response to stimuli, which begins a cascade terminating with the response regulator 

binding to specific DNA sequences (75, 76). In the agr system, the histidine sensor (AgrC) senses 

an auto-inducing peptide (AIP), leading to phosphorylation of response regulator (AgrA). This 

response regulator binds to a specific DNA sequence, encoding the effectors of the system; in the 

agr system, this effector is RNAIII, a small RNA which modulates the expression of numerous 

virulence genes (76). As AIP is produced by S. aureus, and induces the agr system in high enough 

concentrations, it thus acts as a quorum sensing system to sense for sufficient numbers of S. aureus 

(77). It has been observed that this quorum sensing system is important for the establishment of S. 

aureus abscesses; some research has found abscesses are unable to form when the autoinducing 

peptide is interfered with (78).  The regulation of sarA is controlled through its growth phase, 

reaching greatest expression during late exponential phase, which would correspond to 

establishment in abscesses. Additionally, sarA is capable of binding to agr promoter regions and 

activating agr. As a result of these systems, agr and sarA routinely function simultaneously, such 

as in S. aureus establishing abscesses. The agr and sarA systems are important mediators of 

virulence, upregulating production of a number of virulence factors such as α-hemolysin, PVL, 

and toxic shock syndrome toxin (TSST1), while downregulating attachment factors such as Spa 

(Table 1.1) (51, 76, 79-81). The sae system is also involved in expression of secreted virulence 

factors such as α-hemolysin in a system thought to be independent of agr and sarA (76).  Together, 
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these systems, and others, allow S. aureus to become mobile and establish abscesses with virulence 

factors. Importantly, sarA also has a role in resistance to stressors such as heat or acid (82).  

Another important regulator involved in the expression of virulence genes and stress resistance are 

the sigma factors S. aureus uses to direct transcription, notably the alternative sigma factor σB 

(alternatively ςB
).  (83, 84). This factor is both expressed in stationary phase cells and is a part of 

the response of S. aureus to various external stresses such as osmotic stress, acid stress, and 

oxidative stress (85). Interestingly, studies found that when resistance to either temperature, 

oxidative or acid stress is induced, S. aureus would subsequently possess cross-protection to the 

other stresses (86). As these stresses are thought to be resisted using different mechanisms, σB 

appears to be involved in a generalized stress resistance (82). There is also a connection between 

σB and global regulator sarA; both are involved in the production of staphyloxanthin, a pigment 

involved in resistance to osmotic and oxidative stresses (5, 87). Correspondingly, σB is able to 

promote expression of virulence factors through increased expression of sarA; demonstrating the 

connection between environmental stressors and expression of virulence factors (84). Relevant to 

this study, σB and sarA have also both been identified as upregulated in response to exposure to 

linoleic and oleic acids, which likely caused the upregulation of several genes involved in general 

stress responses, notably the class three general stress (CtsR) operon and the genes associated with 

staphyloxanthin production. These findings suggest that aspects of the S. aureus response to fatty 

acid genes are regulated through these two important and connected systems (88).  

 

While σB is the most studied of the alternative S. aureus sigma factors, it is notable that recent 

research has identified another stress response sigma factor, σS, which is involved in response to 

starvation and heat shock but not the other stresses (89). Together with σB, these two factors are 

able to induce protective responses against a wide range of stressors.   Overall, it is the integration 

of these different global regulators and sigma factors that serves to both connect environmental 

stress to virulence expression and provide a system for global stress regulation. These connections 

would be beneficial in the colonization and invasion lifestyle of S. aureus, where hostile 

environments such as the skin comprise of multiple stressors, and virulence factor expression is 

important for abscess formation. 
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Table 1.1 Regulation of virulence factors by sarA and agr 

Virulence Factor sarA agr 

 

Aureolysin (metalloproteinase) 

 

- 

 

+ 

 

α-hemolysin 

 

+ 

 

+ 

 

β-hemolysin 

 

+ 

 

+ 

 

SspB (cysteine protease) 

 

- 

 

? 

 

SspA (V8 serine protease) 

 

- 

 

+ 

 

Toxic Shock Syndrome Toxin I (TSST-I) 

 

+ 

 

+ 

 

Panton-Valentine luekocidin (PVL) 

 

+ 

 

+ 

 

Coagulase 

 

+ 

 

- 

 

Protein A (SpA) 

 

- 

 

- 

 

Fibronectin-binding protein (FnBP) 

 

+ 

 

- 
 

+ upregulated,  - downregulated, ? unknown 
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1.3 Unsaturated Free Fatty Acids  

 

1.3.1 Mechanism of Antimicrobial Fatty acids and Resistance 

Antimicrobial free fatty acids are a type of host defense used by a wide variety of hosts, including 

animals and plants, against an equally wide selection of targets, from bacteria to viruses to fungi 

(90-92). As discussed earlier, antimicrobial unsaturated free fatty acids such as linoleic acid, 

palmitoleic acid, and arachidonic acid, are encountered by S. aureus both on the skin and in the 

nasal secretions, and additionally during the formation of abscesses (55, 93). Free fatty acids are 

chains of carbon atoms capped at one end by carboxyl groups and on the other with a methyl group, 

making the overall structure amphiphatic. Free fatty acids are routinely produced through the 

actions of lipases, which cleave fatty acids from their lipid headgroups. Unsaturated free fatty 

acids, uFFAs, have one or more degrees of unsaturation as a result of double bonds. When these 

bonds are cis, it causes the fatty acid chain to bend and these unsaturated free fatty acids are notably 

more bactericidal than similar saturated ones (94). Although different mechanisms have been put 

forward for the bactericidal effects of uFFAs, in S. aureus, the main mechanism appears to be 

membrane disruption and correspondingly the collapse of energy metabolism, which relies on a 

proton gradient involving the membrane (95). Recent research has expanded this idea, suggesting 

that the accumulation of unsaturated free fatty acids such as palmitoleic acid (16:1 cis-Δ9), which 

possess surfactant properties, disrupt the phospholipid bilayer to such an extent that solutes such 

as ATP, and even larger proteins, are able to diffuse out. This leads to subsequent collapse of all 

cellular metabolism and cell death (96).  

To prevent death, S. aureus has several different strategies to resist uFFAs.  Through the expression 

of teichoic acid, a polysaccharide which contributes to the structure of cell wells, these walls are 

thought to be both better able to prevent fatty acids from entering cells, as well as minimizing 

damage by slowing the leakage of cellular components through destroyed membranes (96, 97). 

Another strategy involves the protein iron surface determinant A (IsdA), which functions to render 

S. aureus more hydrophilic and negatively charged, preventing the function of uFFAs, which 

require hydrophobic interactions (98). One study on S. aureus response to uFFA exposure found 

an increase in the expression of sarA and σB and increases in the expression of pigment 

staphyloxanthin, which has been shown to contribute to membrane stability. Additionally, this 
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study found that S. aureus alters regulation of many pathways involved in cellular energetics, 

possibly a response to the impact on energy production from membrane damage (88). Additionally, 

some bacteria also possess efflux pumps for which fatty acids are thought to be substrates (99). 

Use of efflux pumps to remove toxic fatty acids before they reach high concentrations could 

represent a strategy of uFFA tolerance, which will be examined in this study. As fatty acids are an 

important part of the skin’s innate immune response, the balance between the ability of uFFAs to 

effect bacterial killing and the ability of S. aureus to resist is an important determinant in the ability 

of S. aureus to colonize the skin.   

 

1.3.2 Major Facilitator Superfamily and tet38 

One mechanism to remove toxic fatty acids from the cytoplasm of a cell involves utilization of an 

efflux pump, of which multiple different families exist. One family is the Major Facilitator 

Superfamily (MFS), which is the largest known family of secondary active-transport carriers. This 

family has a broad range of members, several of which are involved in the efflux of antibiotics and 

other antimicrobial agents (100). Researchers have identified several efflux pumps from the Major 

Facilitator Superfamily that are upregulated in abscesses, including a gene encoding a pump called 

tet38 (101).  The Tet38 protein, as evidenced by its name, was originally identified as providing 

tetracycline resistance through efflux, and has a 46% similarity to another tetracycline efflux 

pump, TetK (102). The contributions of tet38 to fatty acid resistance were analyzed in S. aureus 

strain MW2, an isolate of USA400. Through minimum inhibitory concentration (MIC) 

experiments, tet38 deficient mutants demonstrated MICs half that of wild-type MW2 (≈19 µM and 

38 µM respectively) in regards to palmitoleic acid, while having no differences in MIC of linoleic 

acid. Interestingly, it was also found through over-expression of tet38, the MIC of linoleic acid, 

but not palmitoleic, could be doubled (103). Taken together, these results suggested that the tet38 

encoded efflux pump had specificity towards palmitoleic acid, but when produced in large enough 

amounts, it would also be capable of transporting similar uFFAs. Similarly, tet38 was found to be 

induced by sub-inhibitory levels of palmitoleic acid, and to a lesser extent, linoleic acids (2 fold 

and1.5 fold inductions respectively). The researchers suggested these results showed that fatty 

acids, and not tetracycline, might be the native ligand of this efflux pump.  In a subsequent animal 

colonization model, tet38 deficient mutants showed five-fold lower survival on mouse skin relative 
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to wild-type strains, supporting its purported role in toxic fatty acid removal (103). However, this 

study did not consider the role of tet38 in the strain USA300, a strain well adapted for colonization 

of the skin. Prior to this study, this role in USA300 was uncharacterized. 

 

1.3.3 Resistance Nodulation Division Superfamily and farE 

Another family of transporters that may have valuable roles in fatty acid efflux is the Resistance 

Nodulation Division (RND) superfamily, a broad family of efflux pumps which catalyze substrate 

efflux with an H+ antiporter mechanism. The RND superfamily is often involved in the efflux of 

toxic molecules, and members capable of moving fatty acids have been identified in other species, 

such as AcrAB in E. coli (104-106). Additionally, it has been suggested that RND transporters 

capture their substrates when they are partially inserted in the lipid bilayer, which is where toxic 

uFFAs congregate (107). Recent research has identified a gene encoding an RND superfamily 

member which has been implicated in fatty acid efflux, and was subsequently named fatty acid 

resistance, effector (farE)(108). This gene was identified through investigation of a single 

nucleotide polymorphism (SNP) in a divergently transcribed gene which conferred greater 

resistance to fatty acids. Analysis of the gene possessing the SNP predicted, with greater than 99% 

confidence, that it resembles known AcrR family regulators, causing the gene to subsequently be 

named as a regulator of fatty acid resistance (farR)(108). The divergently transcribed effector-

regulator pair bears a strong resemblance to acrB/acrR paradigm in E.coli, in which acrB is 

repressed by AcrR protein through DNA binding to the arcB promoter element. In this model, 

when AcrR interacts with toxic compounds, it stops repressing acrB, allowing its expression, thus 

acting as an environmental sensor (109)(110). This model is further supported by the strong 

similarity between AcrB and FarE, which was modelled with 80% similarity (108). The role of 

farE/farR as a regulated efflux system for fatty acids was further supported when exposure to 

palmitoleic acid was found to significantly upregulate farE expression (108). Together, this system 

is the first description of an inducible RND mechanism of fatty acid resistance in a gram positive 

bacteria. However, the specific inducers of this mechanism and the connection between this 

mechanism and other efflux pumps, global regulators, and fatty acid metabolism, remained 

unexplored prior to this study. 
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1.3.4 Fatty Acid Metabolism 

While uFFAs possess anti-microbial effects and are aspects of the innate immune system, it is 

important to also recognize that uFFAs, like other fatty acids, can be incorporated into S. aureus 

and become involved in S. aureus fatty acid metabolism (111). 

Fatty acids are one of the fundamental building blocks of life; in bacteria, they are essential for the 

phospholipids which comprise the cell membranes. All bacteria utilize the bacterial fatty acid 

synthase II (FASII) system, a multi-enzyme system, to produce fatty acids. (112-115). Fatty acids 

generated through the FASII process can subsequently be incorporated by different 

acyltransferases into phosphatidic acid, a precursor to all membrane phospholipids. Notably, S. 

aureus lacks a fatty acid desaturase such as the one encoded by des in Bacillus subtilis, and thus 

does not produce unsaturated fatty acids (116) .  To maintain membrane fluidity, S. aureus instead 

produces branched chain fatty acids, which account for 55-65% of the fatty acids in S. aureus 

membranes (117). S. aureus is also capable of taking up and incorporating exogenous fatty acids, 

which might provide energy saving advantages (115). Some bacteria such as Escherichia coli are 

capable of utilizing fatty acids as a source of energy by breaking them down utilizing β-oxidation. 

However, according to the annotated genome sequence, S. aureus lacks enzymes for fatty acid 

catabolism and thus it is unlikely that it would use exogenous fatty acids for energy (22, 118, 119).  

As a result, the metabolic fate of fatty acids produced from exogenous sources is thought to be 

incorporation into phospholipids.  

Until recently, it was not known how exogenous fatty acids were incorporated into S. aureus. This 

changed with the identification of a two-protein enzyme, fatty acid kinase (Fak). This enzyme is 

composed of FakA, a kinase domain protein, and a fatty acid binding protein, either FakB1 or 

FakB2, of which the latter was found to demonstrate specificity towards unsaturated fatty acids. 

After exogenous fatty acids flip across to the inner leaflet of the membrane by the pH gradient, 

they are bound by FakB and subsequently phosphorylated by FakA (120). The resulting acyl-PO4 

can then either be used by acyltransferases for phospholipid synthesis, or delivered to the FASII 

cycle for extension (111). It is through this process that exogenous fatty acids, including 

unsaturated fatty acids, may be incorporated into the membranes of S. aureus. 

The identification of this fatty acid kinase raises several interesting questions about the nature of 

this kinase and the role of incorporation of exogenous fatty acids in S. aureus. The gene encoding 
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the fatty acid kinase A, fakA, was originally identified in a transposon mutant with altered 

resistance to the antibiotic dermicidin (121). The gene was named dak2 due to its predicted 

similarity to dihydroxyacetone kinase. Interestingly, these mutants demonstrated an altered 

phospholipid composition, with significantly lower amounts of diphosphatidylglycerol 

(DPG)(121). Later studies identified fakA as the second gene in a two gene operon, where it was 

subsequently named vfrB after the role of this operon in virulence factor regulation. vfrA, the first 

gene in the operon, belonged to a family of alkaline shock proteins, and had a very small effect on 

expression of α-hemolysin. Interestingly, fakA (vfrB) was found to be a potent modifier of toxin 

production; mutants deficient in fakA had no expression of α-hemolysin when grown on solid 

medium, but were found to over-express extracellular proteases, suggesting a fakA role in 

promoting hemolysis and repressing proteases. In an animal model of skin and soft tissue infection, 

the fakA mutant demonstrated a more virulent phenotype, producing abscesses significantly larger 

in size (122). Intriguingly, the specific mechanism of how fakA affects toxin regulation and 

virulence remains unknown; additionally, it remains unclear whether this regulation is independent 

of its role in fatty acid metabolism. 

 

1.4 Rationale and Hypothesis 

The goal of this research was to elucidate the specific role and regulation of the farE mechanism 

within the USA300 response to uFFAs. Previous studies had identified another fatty efflux pump, 

tet38, although its role had not been characterized in USA300. Additionally, a mutant deficient in 

the gene fakA, an essential gene for exogenous fatty acid incorporation, had been demonstrated in 

USA300 to be more virulent and produce larger abscesses. These two studies suggest a complex 

role of uFFAs in metabolism, efflux and virulence. With this preliminary data in mind, we 

hypothesized that S. aureus resistance to unsaturated free fatty acids on the skin and in abscesses 

is a multifactorial response involving the regulation of fatty acid specific efflux proteins as well as 

through the incorporation of fatty acids into phospholipids. To test this hypothesis, we pursued 

three different objectives. The first objective of this study was to evaluate the relative contributions 

of tet38 and farE in resistance to long chain uFFAs to identify their specificity and importance. To 

accomplish this, mutants deficient in these two pumps were evaluated for deficiencies in their 

growth in uFFAs. The second objective was to identify specific inducers and substrate specificity 
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of FarE through the testing of different fatty acids and other inducers, and evaluating these changes 

in expression utilizing a promoter-reporter expression system. Finally, the third objective was to 

evaluate the role of fakA in uFFA tolerance and survival and identify how FakA might be involved 

in the regulation of FarE. To do this, both farE expression and tolerance to uFFAs were examined 

in a strain deficient in fakA. Overall, these interconnected objectives allowed us to explore different 

strategies and factors involved in the S. aureus response to uFFAs.  
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2 MATERIALS AND METHODS 

 

2.1 Storage and Growth of Strains 

 

Bacterial strains used in this study are defined in Table 2.1. Strains were maintained in tryptic soy 

broth (DifcoTM TSB) and 20% glycerol at -80o C. To generate single colonies, strains were streaked 

from freezer cultures onto tryptic soy agar plates (1.5% DifcoTM Agar) with relevant antibiotics 

when required. Unless otherwise noted, overnight cultures were generated through selection of 

single colonies which were subsequently innoculated into 3 mL of TSB in 13 mL culture tubes 

(Sarstedt), and incubated at 37o C with vigorous shaking (200 RPM) for 18 hours. For strains 

carrying resistance genes, antibiotics were also added at the following concentrations; 

chloramphenicol (10 µg/mL) and erythromycin (5 µg/mL) for growth of S. aureus strains; 

ampicillin (100 µg/mL) and kanamycin (40 µg/mL) for growth of E. coli strains.  
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Table 2.1 Strains and plasmids used in this study 

Strain or plasmid  Descriptiona
 Source 

 

Strains 

 

S. aureus: 

 

  

USA300  

 

CA-USA300 LAC cured of antibiotic resistant 

plasmid 

 

(74) 

RN4220 

 

Restriction endonuclease deficient lab strain (123) 

NE2336 

 

Transposon insertion in SAUSA300_2489 (farE), 

Ermr 

 

(124) 

USA300 

farE::ΦNE 

 

USA300 recipient of transposon insertion from 

NE2336, Ermr 

(108) 

NE1354 Transposon insertion in SAUSA300_1058 (hla), 

Ermr 

 

(124) 

USA300 Δtet38 USA300 with markerless deletion of tet38 

(SAUSA300_0139) 

 

This study 

USA300 Δtet38-

farE::ΦNE 

 

USA300 Δtet38 recipient of farE:: ΦNE, Ermr This study 

USA300 ΔfakA USA300 with markerless deletion of fakA 

(SAUSA300_1119) 

 

This study 

USA300 ΔfarE USA300 with markerless deletion of farE 

(SAUSA300_2489) 

 

This study 

USA300 

ΔfakA(pfakA) 

USA300 ΔfakA complemented with native fakA, 

cloned in pALC2073, Cmr 

This study 
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USA300 

ΔfakA(pfakAREV) 

USA300 ΔfakA with a non-complementing,  

reversed orientation fakA, cloned in pALC2073, 

Cmr 

 

This study 

 

E. coli: 

 

  

DH5α 

 

λ− ϕ80dlacZΔM15 Δ(lacZYA-argF)U169 recA1 

endA1 hsdR17(rK
− mK

−) supE44 thi-1 gyrA relA1 

Invitrogen 

  

 

 

 

Plasmids 

 

  

pGYlux  E. coli-S. aureus shuttle vector carrying a 

promoterless luxABCDE operon 

 

(125) 

pGYfarE::lux E. coli-S. aureus shuttle vector carrying a 

putative farE promoter for luxABCDE operon 

 

This study 

pKOR-1 E. coli-S. aureus shuttle vector. contains xyl-tetO, 

promoter to express antisense secY RNA 

 

(126) 

pKORΔtet38 pKOR-1 containing upstream and downstream 

flanking sequences for deletion of tet38 

 

This study 

pKORΔfakA pKOR-1 containing upstream and downstream 

flanking sequences for deletion of fakA 

 

This study 

pKORΔfarE pKOR-1 containing upstream and downstream 

flanking sequences for deletion of farE 

 

This study 

pALC2073 E. coli-S. aureus shuttle vector with  xyl/tetO 

promoter-operator region 

 

(127) 

pALfakA(+) 1.8 kb promoterless fakA gene segment cloned in 

KpnI site (+ orientation) for expression from 

xyl/tetO promoter of pALC2073  

 

This study 
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pALfakA(-) 1.8 kb promoterless fakA gene segment cloned in 

KpnI site (- orientation); no proper protein 

expression from xyl/tetO promoter of pALC2073. 

Acts as negative control.  

This study 

   

 

  

aAbbreviations: Ermr denotes resistance to Erythromycin, Cmr denotes resistance to 

Chloramphenicol 
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2.2 DNA Methodology 

 

2.2.1 Plasmid Isolation from E. coli 

All plasmids used in this study are listed in Table 2.1. Plasmid DNA from E.coli was prepared 

using the PrestoTM Mini Plasmid Kit (Geneaid) following the manufacturer’s instructions. Briefly, 

1.5 mL of stationary phase E. coli culture were pelleted via centrifugation in a microcentrifuge 

tube and then resuspended in 200 μL of Solution I /RNase (50mM Tris, pH 8.0, 20 mM EDTA, 

100 μg/mL of RNaseA). Cells were then lysed through addition of 200 μL Solution II (200 mM 

NaOH, 1% (w/v) SDS), and incubated for 2 minutes until lysate was homogenous. The solution 

was then neutralized with the addition of 300 μL Solution III (guanidine hydrochloride with acetic 

acid) and inverted several times until a flocculent precipitate formed. Subsequently, the 

microcentrifuge tube was centrifuged for 8 minutes at 12,300 x g to pellet the insoluble precipitate. 

The supernatant was then transferred to column and centrifuged for 1 minute. 600 μL of Wash 

Buffer diluted with absolute ethanol was then added to the column and centrifuged for 1 minute. 

This step was repeated to remove any protein contamination, and then it was subsequently 

centrifuged for 3 minutes at 13,000 ×g to dry the column and remove any remaining ethanol 

contamination. Plasmid DNA was then eluted into a new microcentrifuge tube by addition of 30 

μL of warmed (70oC) elution buffer (10 mM Tris-HCl, pH 8.5) to the column and subsequent 

centrifugation at 13,000 ×g for one minute.  

 

2.2.2 Plasmid Isolation from S. aureus 

Plasmid DNA isolation from S. aureus was accomplished following the same protocol as described 

for E. coli with one modification. Cells resuspended in 200 μL Solution I were supplemented with 

50 μg/mL of lysostaphin and incubated at 37oC for 30 minutes to allow lysis prior to addition of 

Solution II. 
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2.2.3 Chromosomal DNA Isolation from S. aureus 

Chromosomal DNA from S. aureus was prepared using the GenEluteTM Bacterial Genomic DNA 

Kit (SIGMA) following the manufacturer’s instructions. Briefly, 750 μL of stationary phase S. 

aureus cultures were pelleted via centrifugation in a microcentrifuge tube and resuspended in 200 

μL of 2.1 × 106 unit/mL solution of Lysozyme supplemented with 50 μg of lysostaphin which was 

incubated for 30 minutes at 37oC. Cells were then lysed with the addition of 20 μL Proteinase K 

and 200 μL Lysis Solution C, which was subsequently vortexed and incubated at 50oC for 10 

minutes. Simultaneously, a GenElute Miniprep Binding Column was prepared with the addition 

500 μL Column Preparation Solution and subsequent centrifugation at 13,000 ×g. The lysate was 

then prepared for binding by the addition of 200 μL of absolute ethanol, and vortexed for 10 

seconds, and was then loaded into the Binding Column. The column was subsequently centrifuged 

at 5000 ×g. To wash away protein contaminants, the column was then loaded with 500 μL Wash 

Solution 1, centrifuged at 5000 ×g, and then loaded with Wash Solution Concentrate (containing 

70% ethanol) which was centrifuged for 3 minutes at 13,000 ×g to dry the column. Genomic DNA 

was then eluted into a new microcentrifuge tube by addition of 100 μL of elution solution to the 

column and subsequent centrifugation a 5000 ×g for one minute. 

 

2.2.4 Restriction Enzyme Digests 

Restriction enzymes were purchased from New England Biolabs (NEB). Digestions occurred in 

25 μL volumes for 2-4 hours at 37oC. Digested DNA was cleaned using a GenepHlowTM Gel/PCR 

Kit (Geneaid) according to manufacturer’s instructions.  

 

2.2.5 DNA Ligations 

DNA ligations were accomplished using a T4 DNA ligase Rapid Ligation Kit (Roche Diagnostics) 

following the manufacturer’s instructions. Briefly, DNA fragments were ligated in 20 μL reaction 

volumes for 2-4 hours at room temperature, utilizing a 10:1 molar ratio of insert to vector. 
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2.2.6 in-vitro Recombination 

DNA fragments possessing attB1/attB2 sites were recombined into pKOR-1 plasmid utilizing 

Gateway® BP Clonase II (Life Technologies) following the manufacturer’s instructions. Briefly, 

DNA fragments were recombined in a 10 μL reaction volume containing 15-150 ng attB product, 

1 μL BP Clonase II,150 ng plasmid, and TE buffer, for 1 hour at room temperature. 

 

2.2.7 Agarose Gel Electrophoresis 

Agarose gel electrophoresis was used for separation and visualization of DNA fragments. Agarose 

gels (0.8% w/v) were prepared using a 1× TAE buffer (40 mM Tris acetate, 1 mM EDTA) 

supplemented with 1.5 μg/mL of ethidium bromide to allow visualization. To run gels, DNA 

samples (typically 5 μL) were mixed with loading buffer and loaded into wells in the gel. 

Electrophoresis was carried out utilizing a BioRad PowerPac 300 at 110 V for 30-40 minutes. A 1 

kb ladder (NEB) was utilized to determine DNA fragment size. DNA fragments were visualized 

using a Syngene G-Box. 

 

2.2.8 Isolation of DNA Fragments From Agarose Gels 

To isolate specific DNA fragments from restriction enzyme digests, fragments were visualized 

with UV light and excised from agarose gels utilizing razor blades. DNA fragments were then 

cleaned using a GenepHlowTM Gel/PCR Kit (Geneaid) according to manufacturer’s instructions. 

 

2.2.9 Polymerase Chain Reaction (PCR) 

PCR reactions were carried out in reactions of either 50 μL (generating DNA for cloning) or 25 

μL volume (screening mutants) following protocols outlined by GenScript. Briefly, a 50 μL 

reaction was composed of 5 μL 10× Taq buffer containing Mg2+, 1 μL 10 mM dNTP, 1 μL forward 

primer (100 μM), 1 μL reverse primer (100 μM), 1 μL template (1-100 ng/μL), 41.5 μL sterile 

Milli-Q water and 0.5 μL Taq polymerase (5 units/μL). 25 μL volume reactions maintained the 

same ratio with all components halved. Oligonucleotides utilized as primers in reactions are listed 
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in Table 2.2. PCR was carried out utilizing a PTC-100 Programmable Thermal Controller (MJ 

Research Inc) optimized for specific annealing temperatures and fragment lengths.  

 

2.2.10 DNA Sequencing 

DNA sequencing was done at the London Regional Genomics facility of the Robarts Research 

Institute (London, ON) with samples prepared according to their specifications. 

 

2.2.11 Computer Analyses 

Analyses of sequenced DNA and primer design were done utilizing MacVector (MacVector, Inc, 

Cambridge, United Kingdom). Protein and DNA BLAST searches were performed utilizing the 

National Center for Biotechnology Information website (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 
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Table 2.2 Oligonucleotides used in this study 

Primer name Sequencea 

Tet38 UP FPb attB1-GAAACGGTTCTATTGCCAG 

Tet38 UP RPc ggacctccgcggGTTTAAGTCATCAGCAATGGCTACAG 

Tet38 DW FPc ggacctccgcggGTCAGCTTAAATCGTTGGACAC 

Tet38 DW RPd attB2-CGCCACCTGATGCTTTTACTTCTAC 

GYfarE_Fe  cccggatccTTGTACGGTGTACGAGTGCG 

GYfarE_Rf cccgtcgacCGGTGCATTTGTAGCAAGTG 

FarE UP FORb attB1-CAGTTGTTTTAATAGCGATAAGCACG 

FarE UP REVc cgacctccgcggCACTATCCATGCAATGACCGC 

FarE DW FORc ggacctccgcggCAAGAAGTGAAACAGCAATCAGCA 

FarE DW REVd attB2-TTCTCTACCGTTACGCCACTCCAG 

JB13/fakA UP FORb attB1-GCGTGTGAACGTCTGTTACCAGTCGAAGC 

JB8/fakA UP REVc ggacctccgcggCATTTCAAGTTGTCCTCCTAAGCTTTCTTGC 

JB3/fakA DW FORc ggacctccgcggGTTCATGAAGGTGGACAACCAATTTATC 

JB4/fakA DW REVd attB2-GATGACTTTTCTAATCTATTTAGCCATTGC 

fakA_COMP-FORh tttggtaccACAGGCAAGAAAGCTTAGGAGGAC  

fakA_COMP-REVh tttggtaccGCAACTCGAGAACGATACTTTTAACC 

  

aLower case denotes 5’-additions. Restriction sequences are underlined.  

battB1 site GGGGACAAGTTTGTACAAAAAAGCAGGCT for cloning in pKOR-1 

cSacII  

dattB2 site GGGGACCACTTTGTACAAGAAAGCTGGGT for cloning in pKOR-1. 

eBamHI 

fSalI 

gSacI 

hKpnI 
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2.3 Transformation and Transduction Methodologies 

 

2.3.1 Preparation of Transformation Competent E. coli 

CaCl2 competent E. coli DH5α cells were prepared for transformation following established lab 

protocol. Calcium chloride promotes plasmid DNA binding to LPS, increasing the capability of 

cells to transform. Briefly, overnight stationary phase DH5α cells, prepared as described above, 

were used to inoculate 400 mL of LB to an OD600 of 0.01.  When this culture reached mid-

exponential phase (OD ≈0.5), it was placed on ice for 20 minutes to cool cells. The culture was 

subsequently centrifuged at 4000 ×g to pellet out cells, which were washed through resuspension 

in 100 mL of 0.1 M CaCl2, 15% glycerol (v/v). This mixture was subsequently left on ice for 30 

minutes before centrifugation again. After centrifugation, the supernatant was discarded and the 

pellet suspended in 4 mL 0.1 CaCl2, 15% glycerol (v/v) for aliquoting into 100 μL volumes. The 

competent cells were flash frozen and placed in a -80 oC freezer for storage until use. 

 

2.3.2 Transformation of CaCl2 Competent E. coli 

CaCl2 competent E. coli DH5α cells were transformed with plasmid preparations constructed 

through previously described DNA techniques. 10 μL of plasmid preparation were added to an 

aliquot of thawed competent cells and incubated on ice for half an hour to allow DNA to bind. 

Subsequently, cells were heat shocked at 42oC for 2 minutes to allow DNA to enter the cells, 

followed by a 2 minute incubation on ice. Heat shocked cells then received a 900 μL addition of 

LB containing relevant antibiotics at a 1/10 dilution of normal to allow resuscitation. These cells 

were incubated for 1 h to allow recovery before plating on LB agar containing selective antibiotics. 

Plates were grown overnight and examined for colonies the following day. 

 

2.3.3 Preparation of Transformation Competent S. aureus 

Electro-competent S. aureus (RN4220, USA300 and USA300 derivatives) were prepared for 

transformation utilizing established lab protocols. Briefly, overnight stationary phase S. aureus 
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cells were used to inoculate 400 mL of TSB to an OD600 of 0.01.  When this culture reached mid-

exponential phase (OD ≈0.5), it was placed on ice for 10 minutes to cool cells. The culture was 

subsequently centrifuged at 4000 ×g at 4o C to pellet cells, which were then re-suspended in 40 

mL of ice cold 0.5 M sucrose to wash cells. Subsequent incubation on ice, centrifugation, and 

resuspension steps, in 5 mL and then 4 mL of 0.5 M sucrose, allow cells to be rinsed of any salts. 

After cells were re-suspended in 4 mL of 0.5 M sucrose they were aliquoted into 100 μL aliquots, 

flash frozen, and placed in a -80oC freezer for storage until use.  

 

2.3.4 Transformation of Electro-Competent S. aureus 

Electro-competent S. aureus cells were transformed with plasmid minipreps prepared from other 

cells. Importantly, RN4220, a restriction endonuclease deficient S. aureus strain, could be 

transformed with plasmid from E. coli DH5α. USA300 and its isogenic variants were transformed 

with plasmid DNA prepared from RN4220 or USA300 strains.  3 μL of plasmid preparation were 

added to an aliquot of thawed competent cells and incubated on ice for half an hour. Subsequently, 

cells are moved to a cold 2 mm electroporation cuvette (VWR) and electro-porated utilizing a Bio-

Rad Gene Pulser II set to 2.5 KV, 200 Ω, and 25 μF. Electro-porated cells then received 900 μL 

TSB containing relevant antibiotics at a 1/10 dilution of normal to allow resuscitation. These cells 

were incubated for 1 hour to allow recovery before plating on tryptic soy agar containing selective 

antibiotics. Strains transformed with larger plasmids were plated utilizing top agar (0.8% agar) to 

provide a slower introduction to antibiotics. Plates were grown overnight and examined for 

colonies the following day. 

 

2.3.5 Generation of an In-Frame Mutation 

Deletion of genes fakA, farE and tet38 were generated utilizing the temperature sensitive plasmid 

pKOR-1 (126) (Fig 2.1). This plasmid possesses several important features to allow in-frame 

deletion of genes. Briefly, the cat gene to allow chloramphenicol resistance for positive selection, 

attP sequences to allow recombination with genetic material possessing attB sequences, and the 

repF gene encodes a temperature sensitive protein RepF, which permits replication at 30o C but 

not at 42oC. It also possesses a tetR and secY570 cassette to allow for negative selection utilizing 
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anhydrotetracyline, which via tetR drives production of antisense secY, which is lethal to cells. The 

use of this plasmid for the deletion of genes is briefly described here utilizing tet38 as an example. 

Briefly, for construction of a tet38 mutant two sequences of approximately 1000 bp flanking the 

tet38 gene were amplified with the primers Tet38 UP FP (attB1-GAAACGGTTCTATTGCCAG) 

and Tet38 UP RP (ggacctccgcggGTTTAAGTCATCAGCAATGGCTACAG) (upstream), and 

Tet38 DW FP (ggacctccgcggGTCAGCTTAAATCGTTGGACAC) and Tet38 DW RP (attB2-

CGCCACCTGATGCTTTTACTTCTAC) (downstream) (Figure 2.1). These products were 

digested with SacII and ligated to produce a fusion of the upstream and downstream regions 

flanking tet38. This construct was then cloned into pKOR1 through site-specific recombination 

between the attP and attB, sites utilizing BP Clonase II (Life Technologies). BP Clonase II was 

utilized according to manufacturer’s instructions; briefly, 150 ng of the tet38 

upstream/downstream ligation and 150 ng of pKOR vector were combined in a 10 µL reaction and 

incubated at room temperature for 1 hour. The plasmid was subsequently transformed into E.coli 

DH5α, and after verification of the correct structure through restriction enzyme digests and 

sequencing of the cloned DNA fragment, was then transformed into strain RN4220 as described 

previously. After selection for Cmr colonies at 30oC, plasmid was isolated and was then 

transformed into USA300 through electroporation. To promote integration of the pKOR vector 

into the target gene via homologous recombination, 3 mL cultures were incubated at 32oC for two 

hours, after which the temperature was shifted to 42.3oC. After overnight incubation, cells were 

then plated on TSA + Cm and incubated at 42.3oC to selection for integration of the plasmid with 

the target gene (Fig 2.2). Single colonies were then selected to grow at 30oC in 3mL cultures with 

shaking at 180 rpm, allowing pKOR1 to excise from the chromosome. These cultures were then 

plated on TSA + ATc to select for colonies cured of pKOR1, as the lethal antisense secY on pKOR1 

was induced by ATc. Colonies were subsequently screened for sensitivity to chloramphenicol, 

confirming the removal of pKOR1. Deletion of tet38 was then confirmed through PCR and 

sequencing (Fig 2.3). 
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Figure 2.1 Genes deleted with pKOR1 markerless mutagenesis.  

Map of farE (SAUSA300_2489) (A), tet38 (SAUSA_0139) (B), and fakA (SAUSA300_1119) (C), 

with primers annotated. Regions between upstream reverse and downstream forward primers will 

be excised as the upstream and downstream genes are ligated following SacII digestion. attB sites 

are located on upstream forward and downstream reverse primers. 
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C 

A B 

Figure 2.2 pKOR1 structure and recombination.  

A. Map of the pKOR1 plasmid. bla encodes a β-lactamase to provide ampicillin resistance. Cat 

encodes chloramphenicol resistance. tetR and secY570 together form a cassette in which expresses 

antisense secY, which is lethal to cells when exposed to ATc. AttP sequences allow recombination with 

AttB sequences (126). B. Map of pKOR1 with Δtet38 fusion inserted. Not to scale. attP sites are lost 

with recombination. C. Hypothetical recombination and resolution with Δtet38. ‘A’ and ‘B’ represent 

two points of recombination. i. Plasmid and genomic DNA both present in cell. ii. Following heat shift, 

pKOR1 recombines into genome at ‘1’.iii. Plasmid is excised along with genomic tet38 through ‘2’, 

leaving Δtet38 fusion in the genome. Further selection eliminates pKOR1 plasmid. 
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Figure 2.3 PCR Confirmation of Gene Deletions 

Wild-type and deletion mutant genomic DNA was used as a template for PCR with 

primers flanking the deleted genes. Difference in sizes correspond to deletions. 

Genes; fakA (A), farE (B), and tet38 (C). 
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2.3.6 Phage Transduction 

Phage transduction was utilized to generate mutants deficient in target genes by inserting large 

genetic elements into the middle of genes and correspondingly disrupting gene expression. 

Transduction is accomplished through shuttling the bursa aurealis transposon from the USA300 

JE2 Nebraska Transposon Mutant Library into recipient laboratory strains (124). Transducing 

phage lysate from NTML strains were produced using the phage Φ80. Donor cells were grown to 

exponential phase at 37oC with shaking (OD600≈1.0) and then mixed with dilutions of phage Φ80 

in phage buffer (1 mM MgSO4, 4 mM CaCl2, 40 mM Tris, pH 7.8, 0.1 M NaCl, 1 g/L gelatin). 

After incubation for 5 minutes at room temperature, these mixtures were plated with top agar on 

TSA plates containing 4 mM CaCl2. Phage was recovered by gently rocking the plates with 5 mL 

phage buffer, and then disrupting the top agar with a scraper before centrifuging out cells and agar 

and filtering the mixture through a 0.45 μM membrane filter. Phage titre of the transducing lysate 

was then determined using USA300 as an indicator. For transduction, recipient strains were grown 

overnight in TSB-C (TSB containing 0.5 mM CaCl2). Subsequently, strains were sub-cultured into 

50 mL of TSB-C, and then grown to exponential phase at 37oC with shaking. After determination 

of OD600, the cells were centrifuged and the pellet was re-suspended in TSB-C to achieve a cell 

density of 5 × 1010 cfu/mL. Subsequently 0.6 mL aliquots were centrifuged and re-suspended in 

0.6 mL of transducing phage at 5 × 109 pfu/mL, to achieve a multiplicity of infection of 0.1. After 

a 10 minute incubation at room temperature, 1.5 mL of TSB-C was added. After a 20 minute 

incubation at 37oC, 1.0 mL of 2 mM sodium citrate was added to chelate calcium, and the cells 

were harvested by centrifugation, re-suspended in 1 mL TSB-C, and then plated on tryptic soy 

agar containing 2.0 mM sodium citrate and 10 μg/mL erythromycin. The plates were incubated 

overnight and evaluated for growth. Single colonies were then selected and transposons confirmed 

through PCR utilizing primers on flanking regions.  

 

2.3.7 Construction of a pGYfarE::lux Reporter Strain 

To construct a pGYfarE::lux reporter strain where the farE promoter directly promotes expression 

of the luciferase operon, a 396-bp fragment containing the promoter site (the intergenic region 

between farE and farR) was amplified with the primers GYfarE_F and GYfarE_R. After PCR 

clean-up and digestion with endonucleases BamHI and SalHI (described above), this segment was 
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ligated into pGYlux (Fig. 2.4) which had previously been digested with BamHI and SalHI. This 

plasmid was then transformed into DH5α, RN4220, USA300, and USA300 derivatives, in this 

order (described above).   

 

2.3.8 Generation of a Double Knockout Mutation  

To generate mutants which were deficient in two separate genes, the one gene was deleted with 

markerless mutagenesis utilizing pKOR, while the subsequent gene was inactivated utilizing phage 

transduction of a transposon (both described above). This methodology was utilized to produce 

USA300 Δtet38-farE::ΦNE as well as USA300 ΔfakA-farE::ΦNE.  

 

2.3.9 Construction of a Complementation Vector 

To restore a deleted gene to a strain and demonstrate that an observed phenotype is 

complementable, the vector pALC2073 was used to restore fakA. Briefly, PCR utilizing primers 

fakA_COMP-FOR and fakA_COMP-REV were used to generate the fakA gene. This product was 

then digested with KpnI and ligated into the pALC2073 shuttle vector. After transformation into 

E. coli DH5α, transformants were screened through restriction enzyme digest and sequencing to 

determine the orientation of the fakA insert with respect to the xyl/tetO promoter. Plasmid 

pALfakA(+) contained the 1.8 kb insert cloned into the + orientation for proper expression from 

the xyl/tetO promoter, while pALfakA(-) contained the insert with the opposite (-) orientation, and 

was used as a negative control.  
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Figure 2.4 pGYlux reporter design 

A. Map of the pGYlux plasmid. bla encodes a β-lactamase to provide ampicillin 

resistance. luxAB encode bacterial luciferase, while luxCDE encode proteins which 

protein a fatty acid aldehyde substate. cat encodes chloramphenicol resistance. 

Promoters are cloned between the SalI and BamHI (125). B. Map of pGYfar::lux. 

Intergenic region between farE (SAUSA300_2489) and farR (SAUSA300_2490) 

suspected to contain farE promoter cloned to drive expression of luciferase genes with 

farE promoter activity 
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2.4 Experimental Methodologies 

 

2.4.1 Growth Analysis 

To evaluate the effect of antimicrobial fatty acids on growth of S. aureus USA300 or its isogenic 

variants, overnight cultures were inoculated into 25 mL volumes of TSB (OD600=0.01) 

supplemented with the indicated concentrations of fatty acids. Briefly, concentrations of 20 μM 

linoleic acid (25 μM palmitoleic) were utilized for what this paper describes as sub-inhibitory 

concentrations, which are concentrations which slightly retard growth. 100 μM linoleic was 

utilized for bactericidal concentrations, which, while not entirely inhibitory, are effective to kill 

large amounts of the population. Optical density of overnight cultures, prepared as described 

above, were determined using a spectrophotometer set at 600 nm (OD600). Unless otherwise 

indicated, all growth assays were conducted in 125 mL Pyrex Erlenmeyer flasks containing 25 mL 

of TSB and incubated in a 37oC incubator with orbital shaking at 180 RPM.. For supplementation, 

a stock solution of 5 mM was produced by diluting pure fatty acids in 5 mL TSB with 0.1% DMSO 

(v/v) and vigorous vortexing. These stocks were then utilized to supplement the cultures to 

appropriate concentrations. Growth cultures also were supplemented with 0.1% DMSO (v/v) to 

ensure fatty acid dissolution. Measurements of OD600 were taken hourly utilizing a Varian 50 Bio 

spectrophotometer. 

 

2.4.2 Bactericidal Assays 

Overnight pre-cultures grown under conditions described above were inoculated in 25 mL TSB 

cultures with or without fatty acids as previously explained. These cultures were then grown to 

mid-exponential phase (2-3 hours; OD ≈0.5 under conditions outlined in Growth Analysis). These 

cultures were then inoculated into 25 mL TSB flask cultures with bactericidal (100 µM) 

concentrations of uFFAs and 0.1% (v/v) DMSO and grown with conditions described previously. 

Cultures were prepared as quadruplicate. To determine bactericidal activity, aliquots were 

withdrawn hourly, diluted and plated at 100-10-3 on TSA with quadruplicate technical replicates. 

After growth overnight colonies were then counted and viable CFU/mL counts determined.  
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2.4.3 Luciferase Assays 

Luciferase assays were conducted under growth assay conditions described above. Cultures 

possessing the pGYfarE::lux plasmid were prepared in either triplicate or quadruplicate as 

specified in figure legends. At specified time points, aliquots were removed from each culture for 

determination of OD600 while concurrently 4 × 200 µL technical replicates were withdrawn from 

each flask for quantification of luciferase activity. Specifically, each 200 µL aliquot was added to 

individual wells of an opaque white 96 well micro titre plate (Greiner Bio-One). The wells were 

then supplemented with 20 µL of 0.1% (v/v) decanal in 40% ethanol, followed by immediate 

measurement of luminescence utilizing a Biotek Synergy H4 Hybrid Reader, with 1 second of 

integration and a gain of 200. Background was removed from the relative light units through 

averaging the technical replicates and subtracting the observed relative light units from a 

promoterless pGYlux reporter. This data was then standardized by dividing with optical density to 

produce RLU/OD measurements. 

2.4.4 Evaluation of non-uFFA inducers 

To determine analyze the level of induction of the pGYfarE::lux promoter reporter in non-uFFA 

conditions, conditions had to be developed which would be comparable to uFFA exposure. 

Conditions for these stressors were empirically determined through growth of triplicate USA300 

pGYfarE::lux cultures in 20 μM linoleic acid and in three variations of the stressor conditions, 

approximated based upon previous observed literature. The conditions which retarded growth, 

determined as described above, to levels comparable to 20 μM linoleic acid were selected for use 

in luciferase assays. The assays were subsequently repeated under the determined optimal 

conditions and levels of expression measured as explained previously. 

Several different non-uFFA stressors were selected based upon the literature which are briefly 

outlined here. Elevated concentrations of sodium chloride were used to examine osmotic stress, 

which occurs when osmotic environments are abruptly altered (85). Ethanol was utilized to 

evaluate the effects of alcohols, which possess antimicrobial properties likely through membrane 

damage and protein denaturation (130).  Hydrogen peroxide was utilized to test oxidative stress, 

which involves free radicals damaging cellular components (85). Hydrochloric acid buffered with 

MES was utilized to test acid stress, which involves a low pH which can damage cellular 

components (85). Culture tubes with limited headspace were utilized to test oxygen limitation, 
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which limits oxygen as an external electron acceptors for S. aureus energy production (131). 

Cadmium chloride was utilized to test toxic heavy metals, which damage membranes, DNA 

structure, and enzyme functions (132). Deoxycholic acid was utilized to test bile acids, which act 

as detergents to damage membranes (133). Tetraycline was utilized to test the effects of protein 

synthesis inhibitor antibiotics (134). Daptomycin was utilized to test membrane disrupting 

antibiotics, which disrupts membrane fluidity and charge (135). Finally, the oil of Melaleuca 

alternifolia (tea tree) was tested, which acts to disrupt membranes (136). Together, these various 

conditions provided a broad selection of challenges, many of which have already characterized 

stress responses. 

2.4.5 SDS-PAGE 

To analyze the secreted proteins, supernatants were assessed utilizing sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE). Secreted proteins were acquired from the 

supernatants of 25 mL cultures shaking at 180 rpm at 37oC for 24 hours. The cultures were 

centrifuged at 3000 ×g for 20 minutes, and then the supernatants are removed for use. A volume 

of supernatant equivalent to 3.0 OD600 units was extracted and incubated on ice for 1 hour with an 

equal volume of tricholoacetic acid (TCA) to precipitate supernatant proteins. These pellets were 

then spun at 13,000 ×g for 15 minutes. They were then washed twice utilizing 70% ethanol and 

dried before being resuspended in 25 μL of 1 × Laemmli buffer. The solutions were then boiled 

for 5 minutes at 100oC before being centrifuged for 1 minute to collect any evaporated buffer. The 

entire samples were then loaded into 8% bis-acrylamide gels and run at 120 volts for approximately 

90 minutes. The gel was then stained with Coomassie blue for 18 hours (128). Gels were destained 

with a buffer composed of 40% methanol, 10% acetic acid and 50% dH2O (by volume) and 

visualized.  

 

 

2.4.6  Hemolysis Assay 

For hemolysis assays, overnight cultures were diluted in TSB to achieve an optical density of 1.0 

(OD600). 1 µL of this suspension was then pipetted onto a tryptic soy agar plate containing 5% 

defibrinated rabbit blood. These plates were subsequently incubated for 37oC for 24 h and then 

imaged.  
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2.4.7 Statistical Analysis 

All data generated by the assays described below were plotted using Graphpad PRISM software, 

version 6.0f. Significance at specific time points was determined using unpaired one-tailed 

Student`s t-tests, and ANOVA tests followed by Tukey’s Range Tests, utilizing the statistics 

package of Graphpad PRISM.  
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3 RESULTS 

 

3.1 Relative Contributions of farE and tet38 Efflux mechanisms 

 

3.1.1 Importance of farE for Resistance to Linoleic Acid 

One of the objectives of this project was to determine the roles of the efflux pumps encoded by 

genes farE and tet38 (108).  Previous research involving tet38 had determined that tet38 had an 

important role in the efflux of palmitoleic acid (16:1 cis-Δ9), while the wild-type had an MIC of 

38 μM PA, it was only 19 μM PA in tet38 deficient strains (103). Based on previous research 

regarding farE being important for survival in linoleic acid, it was hypothesized that the two pumps 

might have parallel functions, with farE and tet38 playing roles in the efflux of linoleic and 

palmitoleic acid respectively (108). Growth experiments with USA300 and USA300 farE::ΦNE 

confirm the importance of farE for growth in sub-inhibitory concentrations of 25 μM LA. While 

USA300 is also slowed compared to growth in TSB alone, USA300 farE::ΦNE has a lengthy 10 

hour lag phase before it begins growing when inoculated into TSB containing 25 μM LA (Figure 

3.1 A). This difference in growth in sub-inhibitory LA was not seen in a USA300Δtet38, consistent 

with the literature suggesting no changes to the MIC (Figure 3.1 B). 
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Figure 3.1 farE, but not tet38, is involved in USA300 growth in linoleic acid 

Growth analysis of USA300 and USA300farE::ΦNE or USA300Δtet38 cultured in TSB or in 

TSB–25 μM linoleic acid. Each data point represents the mean value of quadruplicate cultures. 

Error bars represented by the Standard Error of the Mean. *, p < 0.05, **, p < 0.01, ***, p 

<0.001 
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3.1.2 tet38 is Not Important for Palmitoleic Acid Resistance in USA300 

As previous research had described the role of tet38 in palmitoleic acid efflux in the MW2 

(USA400) strain of S. aureus, we attempted to replicate this finding in USA300. To evaluate the 

role of tet38 in USA300 growth in palmitoleic acid, we constructed a tet38 in-frame deletion as 

described in the Materials and Methods section. In an attempt to elucidate this phenotype, 

USA300, USA300Δtet38 and USA300 farE::ΦNE were grown in a sub-inhibitory concentration 

of palmitoleic acid (25 μM). While our interpretation of this data reinforced the hypothesis that 

farE does not have a strong role in survival in palmitoleic acid, unexpectedly, there was no 

difference in growth between the USA300 and USA300Δtet38 strains (Figure 3.2). Moreover, 

when palmitoleic acid concentrations were increased to a point where they began to slow wild-

type USA300 growth (40 μM), there remained no detectable difference between the growth of 

USA300 and USA300Δtet38. To evaluate whether this absence of phenotype was the result of 

farE and tet38 compensating for one another, a strain deficient in farE and tet38 was constructed 

by transducing the farE::ΦNE mutation into USA300Δtet38. This strain USA300Δtet38- 

farE::ΦNE was evaluated utilizing the same conditions the single mutants were evaluated with 

(Figure 3.2). Once again, no difference in growth was detected in palmitoleic acid, indicating that 

farE does not compensate for the deletion of tet38. The absence of any growth phenotype for 

USA300Δtet38 in palmitoleic acid at these different concentrations indicated that tet38 is not 

required for growth in the presence of sub-inhibitory concentrations of palmitoleic acid in 

USA300.   
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Figure 3.2 tet38 not required for growth of USA300 in palmitoleic acid  

Growth analysis of USA300, USA300Δtet38, USA300farE::ΦNE and USA300Δtet38- 

farE::ΦNE, cultured in TSB, TSB-25 μM palmitoleic acid or in TSB–40 μM palmitoleic acid. 

Each data point represents the mean value of triplicate cultures. 
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3.2 Inducers of farE expression 

 

3.2.1 farE is Upregulated in Response to Exposure to Linoleic Acid 

It has been demonstrated that farE is not only important for resistance to the uFFA linoleic acid, 

but that a resistance to uFFAs can be induced through growth in sub-inhibitory concentrations 

(108). In respect to this, we became interested in the manner by which farE expression is regulated 

in USA300 growing both in TSB alone and in the presence of uFFAs. To evaluate the level of 

expression, the putative promoter of farE was fused to the luciferase operon luxABCDE on the 

plasmid pGYlux and transformed into USA300. Through monitoring luciferase activity at different 

time points in growth, we were able to evaluate the expression of farE at these different times in 

growth. Interestingly, we found the level of farE expression in USA300 growing in TSB alone to 

be low but still present, supporting previous transcriptome data (Figure 3.3)(108). This expression 

was also noted to be highest while USA300 was at an OD600 between 0.1 and approximately 0.5, 

corresponding roughly to the mid-logarithmic growth phase. As anticipated, the expression of farE 

in response to a sub-inhibitory concentration of linoleic acid was found to be significantly higher 

at every time point measured with the exception of the first. This is likely due to the large amount 

of background relative to the small number of cells at this point. Similar to the un-induced 

condition, USA300 in sub-inhibitory LA expressed farE at highest levels during the mid-

logarithmic growth phase, although it did continue expressing farE at significant levels even as it 

entered stationary phase. In this experiment, USA300 in the presence of 20 µM LA was 

demonstrated again to be capable of growth, although at a slightly slower rate than when USA300 

was grown in TSB alone. This experiment confirmed the role of sub-inhibitory concentrations of 

linoleic acid as an inducer of farE.  
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Figure 3.3 Linoleic acid induces farE expression.  

Growth (OD600; open symbols) and relative luminescence units normalized by OD (RLU/OD; 

closed symbols) of USA300 carrying the pGYfarE::lux reporter vector are graphed. USA300 

was grown in TSB alone or in TSB supplemented with 20 μM linoleic acid. Each value 

represents the mean and standard deviation of results of three separate cultures, and each culture 

was subjected to quadruplicate luminescence readings at each time point. Error bars represented 

by the Standard Error of the Mean.  *, p < 0.05, **, p < 0.01, ***, p < 0.001 determined by one 

tailed Student’s t-test.  
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3.2.2 farE is Induced by Several uFFAs, Notably Arachidonic Acid 

Upon confirming the induction of farE expression by antimicrobial linoleic acid, as well as 

identifying the point in growth where optimal expression occurs, we evaluated the specificity of 

farE induction in relation to other uFFAs which S. aureus would encounter on skin and in 

abscesses. As discussed earlier, S. aureus is likely to encounter uFFAs both during colonization of 

the skin or nares and during invasion and abscess formation. As abscesses have been shown to 

contain large amounts uFFAs due to the action of lipases and the degradation of membrane 

phospholipids and triglycerides, we wanted to evaluate levels of induction from fatty acids present 

in the phospholipid membranes. Phospholipid membranes contained large amounts of stearic, 

oleic, linoleic and arachidonic acids, and to a lesser extent linolenic acid (55, 57). The saturated 

fatty acid lauric acid and unsaturated fatty acid sapienic acid are both thought to be present in large 

concentrations in the sebum while linoleic acid and arachidonic acid are located within nasal 

secretions (40)(41). Small amounts of the uFFA linolenic acid are also present on skin (129).  

To evaluate the specificity of farE induction, USA300 + pGYfarE::lux was grown to an OD600 of 

≈ 0.5 in either TSB or TSB supplemented with 20 μM fatty acid and assayed for luciferase activity 

(Figure 3.4). There was a large difference in levels of induction within the 18 carbon fatty acids, 

such that neither stearic acid nor oleic acid caused any significant induction, while linoleic acid 

and linolenic acid induced significantly greater amounts of farE expression. Notably, linoleic acid 

was able to induce significantly higher farE expression than linolenic acid. Additionally, 16 carbon 

fatty acids palmitoleic acid and sapienic acid were found capable of inducing farE expression, 

although at significantly lower levels than linoleic acid. The 12 carbon medium chain saturated 

lauric acid, despite having an antimicrobial effect, did not induce any farE expression. Strikingly, 

the 20 carbon uFFA arachidonic acid was the strongest inducer of any fatty acid tested, having 

significantly greater expression over the next closest, linoleic acid. These findings suggest that 

linoleic acid is one of the main inducers of farE expression while also identifying arachidonic acid, 

as another important inducer and possible substrate. Additionally, these results demonstrate that 

palmitoleic acid and sapienic acid are inducers of farE expression although this expression is 

significantly lower than linoleic acid.  

. 
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Figure 3.4 Role of different antimicrobial fatty acids on induction of farE.  

Quantification of pGYfarE::lux dependent luciferase in USA300 grown to an OD600 of  ≈0.5 in 

TSB alone or TSB supplemented with 20 µM of indicated fatty acid. Each value represents the 

mean of quadruplicate measurements from each of four replicate cultures. P values indicate 

significant differences in activity compared to TSB alone, or a significant difference between the 

activity of two different fatty acids. Error bars represented by the Standard Error of the Mean.   

***, p < 0.001, ****, p < 0.0001  determined by one way ANOVA followed by Tukey’s 

multiple comparison test (not all significant differences shown).   
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3.2.3 farE Expression is Not Induced by Non-uFFA Stressors 

Upon determining the role of unsaturated free fatty acids on induction of farE, we became 

interested in examining if this response was specific to antimicrobial fatty acids or an aspect of a 

more generalized stress response. To evaluate this, we compared the levels of farE induction by 

fatty acids to that of non-fatty acid stressors. Several different stressors which inhibit S. aureus 

though different mechanisms were selected, some of which, such as acid, osmotic stress, and 

oxidative stress, have also been linked to expression of σB
,
 an important stress response mediator 

also shown to be upregulated from exposure to uFFAs (88). These conditions were specifically 

designed through empirical testing to retard growth to the same extent as 20 µM linoleic acid. 

Interestingly, none of these stressors was found to induce farE expression to a significant level 

(Figure 3.5). This suggests that the induction of farE is not connected to any generalized stress 

response but is in response to uFFAs through some unknown sensing mechanism.  
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Figure 3.5 Role on Non-Fatty Acid Stressors on farE Expression 

Quantification of pGYfarE::lux dependent luciferase in USA300 grown to an OD600 of  ≈0.5 in 

TSB alone, TSB supplemented with 20 µM of linoleic acid, or TSB grown under various conditions 

to provide comparable stress (noted on graph labels). Each value represents the mean of 

quadruplicate measurements from each of four replicate cultures. Error bars represented by the 

Standard Error of the Mean.  No significance determined by one tailed Student’s t-test.  
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3.2.4 Induction of farE Promoter is Not Altered in farE Deficient USA300 

To better understand the mechanism of regulation of farE, induction of the farE promoter was next 

evaluated in a strain unable to produce FarE. We were interested in determining whether the 

inability to produce FarE would alter the level of induction of farE compared to a wild-type, which 

might suggest farE is involved in auto-regulation or in a negative feedback loop. To accomplish 

this, pGYfarE::lux was transformed into USA300farE::ΦNE and monitored for farE expression 

during growth in TSB in the presence and absence of sub-inhibitory levels of linoleic acid (Figure 

3.6). Interestingly, it was found that farE expression is not significantly different in the farE 

deficient mutant than in wild-type. The expression patterns between these two different strains are 

very similar to one another, suggesting that the inability to produce FarE does not alter the 

induction of farE.  
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Figure 3.6 farE expression unchanged in farE deficient USA300 

Quantification of pGYfarE::lux ¬dependent luciferase in USA300 and USA300farE::ΦNE grown 

to an OD600 of  ≈0.5 in TSB alone or TSB supplemented with 20 µM of indicated fatty acid. Each 

value represents the mean of quadruplicate measurements from each of four replicate cultures. P 

values indicate significant differences between USA300farE::ΦNE and USA300farE::ΦNE + 20 

LA. Error bars represented by the Standard Error of the Mean.  *, p < 0.05, **, p < 0.01, ***, p < 

0.001 determined by one tailed Student’s t-test.  
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3.3 Evaluation of the Role of fakA in uFFA Tolerance and Survival 

 

3.3.1 Confirmation of Lack of α-Hemolysin Production in USA300ΔfakA  

Recent literature suggests that fakA (also referred to as vfrB and dak2) has important roles in both 

S. aureus virulence and fatty acid metabolism; mutants deficient in this gene possessed different 

membrane compositions and formed larger abscesses in in vivo invasion models (121, 122). 

Additionally, a recent study demonstrated that FakA is a component of the fatty acid kinase S. 

aureus utilizes which is necessary to phosphorylate exogenous fatty acids, leading to their 

incorporation (111). As discussed earlier, farE was found to be induced by exposure to fatty acids; 

however, it is unknown whether the induction requires free fatty acids or if it requires 

phosphorylated fatty acids that have been incorporated into S. aureus. We became interested in 

how farE senses fatty acids, and whether its induction requires phosphorylated fatty acids, and 

opted to evaluate the role fakA might have in tolerance to antimicrobial uFFAs and induction of 

farE.  

Previous literature described mutants deficient in fakA as causing minimal α-hemolysin production 

when grown on solid media (122). As a result, the first step was to create USA300ΔfakA and 

evaluate the α-hemolysis of this strain to confirm the correctness of this mutation. This 

USA300ΔfakA mutant was then transformed with either pALfakA(+), a complementation plasmid, 

or pALfakA(-), a control plasmid containing inverted and thus non-functional fakA gene. To 

confirm the previously described α-hemolysis phenotype for the USA300ΔfakA generated by this 

study, its α-hemolysis activity was also evaluated through 24 hours of growth on a tryptic soy agar 

plate containing 5% defibrinated rabbit blood (Figure 3.7). USA300ΔfakA + pALfakA(-) 

demonstrated almost no clearing, with a profile similar to the USA300hla::ΦNE mutant. The 

USA300hla::ΦNE (NE1354) is unable to produce α-hemolysin and functions as a positive control 

for loss of hemolysis activity. These findings matched those of the previous studies. Additionally, 

complementation of fakA utilizing the pALC2073 vector, as described in the Materials and 

Methods, was sufficient to restore the wild-type phenotype.  Additionally, to evaluate if farE has 

any impact on α-hemolysin production, a USA300farE::ΦNE mutant was also evaluated. It was 
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found to demonstrate clearing comparable to the wild-type, suggesting farE is unrelated to α-

hemolysin production. 

.  
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Figure 3.7 Confirmation of reduction of fakA-dependent hemolysis activity 

Hemolytic activities of: USA300, USA300ΔfakA with either complementation plasmid 

pALfakA(+) or reversed and non-functional complementation plasmid, pALfakA(-), 

USA300ΔfakA- farE::ΦNE, NE1354 (hla) and USA300farE::ΦNE. Hemolysis is seen in rings of 

clearance on TSA containing 5% defibrinated rabbit blood, corresponding to destruction of 

erythrocytes.   
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3.3.2 farE is Expressed Constitutively and is Not Inducible by Linoleic 

Acid in fakA Negative Strains 

After confirming the ΔfakA strain demonstrated the phenotype described by previous literature, 

we focused next on examining the expression of farE in the ΔfakA deficient mutant. As fakA is 

necessary to phosphorylate exogenous fatty acids, we wanted to evaluate whether this step was 

important for farE expression, and thus evaluate if expression was different from that exhibited by 

wild-type USA300. To accomplish this, the pGYfarE::lux plasmid was transformed into 

USA300ΔfakA, as described in the materials and methods. USA300 + pGYfarE::lux and 

USA300ΔfakA + pGYfarE::lux were subsequently both grown in TSB and sub-inhibitory 

concentrations of linoleic acid. Strikingly, when USA300ΔfakA was grown in TSB under non-

inducing conditions, it exhibited significantly elevated farE::lux activity in mid-exponential 

growth compared to wild-type USA300. However, when USA300ΔfakA was grown in TSB + 20 

µM LA, there was no additional increase in farE::lux activity beyond that of the non-induced 

growth condition, whereas wild-type USA300 exhibited strong induction of farE::lux activity. 

Cumulatively, this data shows that farE is both constitutively expressed in USA300ΔfakA, and is 

not further induced by the presence of uFFAs.  
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Figure 3.8 farE is constitutively expressed in USA300ΔfakA  

Growth (OD600; open symbols) and relative luminescence units normalized by OD (RLU/OD; 

closed symbols) of USA300 and USA300ΔfakA carrying the pGYfarE::lux reporter vector are 

graphed. Strains was grown in TSB alone or in TSB supplemented with 20 μM linoleic acid. Each 

value represents the mean and standard deviation of results of three separate cultures, and each 

culture was subjected to quadruplicate luminescence readings at each time point. Error bars 

represented by the Standard Error of the Mean. Significance values shown between USA300 and 

USA300ΔfakA (lower) and USA300 + 20 μM LA and USA300ΔfakA + 20 μM LA. *, p < 0.05, 

**, p < 0.01, ***, p < 0.001 determined by one tailed Student’s t-test.  
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3.3.3 USA300ΔfakA is Less Susceptible to Killing by Bactericidal 

Concentrations of Linoleic Acid  

After identifying that farE is constitutively expressed in USA300ΔfakA, we wanted to determine 

next if USA300ΔfakA might have greater resistance to killing by antimicrobial fatty acids. To 

assess the role of fakA in resistance to uFFAs, a bactericidal assay was conducted utilizing linoleic 

acid. Wild-type USA300, USA300ΔfakA + pALfakA(+), and USA300ΔfakA + pALfakA(-) were 

grown to exponential phase in TSB alone and then inoculated into flasks containing 100 µM 

linoleic acid, a bactericidal concentration. Interestingly, the USA300ΔfakA + pALfakA(-) mutants 

demonstrated significantly higher survival at every time point compared to the wild-type and 

complement (Figure 3.8). This data shows that mutants which are deficient in fakA are less 

susceptible to killing by bactericidal uFFAs such as linoleic acid. Complementation of fakA 

restored cell killing to levels not significantly different from wild-type USA300.  
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Figure 3.9 USA300ΔfakA more resistant to killing by bactericidal concentrations of linoleic 

acid 

Bactericidal activity of 100 μM linoleic acid measured with USA300, USA300ΔfakA + 

pALfakA(+) and USA300ΔfakA + pALfakA(-), prepared by growth to mid-exponential phase in 

TSB. Each data point represents the mean value of quadriplicate cultures. P values for 

comparison of USA300 and USA300ΔfakA + pALfakA(-) cells are indicated by asterisks (**, P 

< 0.01, ***, P < 0.001). 
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3.3.4 farE is an Important Contributor to the Ability of fakA Deficient 

Strains to Resist Killing by Linoleic Acid  

Upon determining that fakA deficient mutants had significantly higher survival in bactericidal 

concentrations of uFFA than wild-type S. aureus, we became interested in whether the constitutive 

expression of farE was involved in this phenotype. Prior research had demonstrated that when 

induced in sub-inhibitory concentrations of uFFAs, farE deficient strains were significantly more 

susceptible to killing by bactericidal concentrations of uFFA than wild-type USA300 (108). To 

evaluate the role of farE in the USA300ΔfakA resistance, a strain deficient in farE and fakA was 

constructed by transducing the farE::ΦNE mutation into USA300ΔfakA, as described in the 

Materials and Methods. Bactericidal assays utilizing USA300, USA300ΔfakA and USA300ΔfakA-

farE::ΦNE were carried out under the same conditions as previously utilized. Interestingly, 

USA300ΔfakA-farE::ΦNE had significantly lower viability than USA300ΔfakA (Figure 3.9), 

while still having significantly higher viability than wild-type USA300. Taken together, this data 

shows that farE is an aspect of the fakA resistance to uFFAs, although it is not the only contributor.  
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Figure 3.10 farE is an important contributor to USA300ΔfakA’s improved survival in 

linoleic acid 

Bactericidal activity of 100 μM linoleic acid measured with USA300, USA300ΔfakA and 

USA300ΔfakA- farE::ΦNE, prepared by growth to mid-exponential phase in TSB. Each data 

point represents the mean value of quadriplicate cultures. P values for comparison of induced 

USA300 and induced FAR7 cells are indicated by asterisks (**, P < 0.01, ***, P < 0.001). 
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4 DISCUSSION 

 

The rise in USA300 as an epidemic strain of S. aureus is thought to be largely the result of its 

remarkable ability to overcome innate immune defenses on the skin, notably skin acidity and 

polyamines (32). Patients deficient in the production of uFFAs are more susceptible to certain S. 

aureus caused skin diseases (42). With this in mind, it seems likely USA300 would have an ability 

to overcome uFFAs encountered on the skin, as well as in abscesses, through several different 

strategies. 

Previous research by Truong-Bolduc et al. identified a member of the Major Facility Superfamily 

encoded by the gene tet38 as having the ability to transport palmitoleic acid (103). Palmitoleic acid 

(16:1 cis-Δ9) is a fatty acid present in most human tissues, and importantly, its isomer sapienic 

acid (16:1 cis-Δ6) is a major uFFA in human sebum (40). It was found that deletion of this gene in 

strain MW2 halves the MIC of palmitoleic acid, while over-expression of this gene doubles the 

MIC of linoleic acid (103). When we generated a deletion mutant of this gene in USA300 during 

this study however, we did not detect any significant differences in the ability of USA300 to grow 

and survive in palmitoleic acid. Hypothesizing that expression of farE could compensate for the 

deficiency of tet38, we generated a mutant deficient in both of these genes. However, we once 

again detected no differences in survival to palmitoleic acids, suggesting that the reason we did 

not detect a similar effect is not as a result of farE, but likely tet38 functions in a strain-specific 

context. Truong-Bolduc et al. evaluated MW2, also known as USA400, and the laboratory strain 

RN6390, a σB
 deficient mutant derived from S. aureus NCTC8325(137). USA300 is a member of 

a different clonal complex (CC 8) than USA400 (CC1), and despite them together comprising a 

majority of CA-MRSA infection in the United States, there is a large evolutionarily distance 

between these two strains (138-140). The MFS is an extremely broad group of transporters and 

many members are capable of efflux of multiple substrates, even substrates which are not 

structurally related (141).  

The protein Tet38 was originally discovered for its role in tetracycline efflux in MW2 (102). 

Interestingly, tet38 is located within a cluster of genes annotated for nucleoside and 

deoxynucleoside catabolic enzymes, flanked on one side by deoD and the other by deoC and deoB 

(22). These genes act together to degrade ribonucleosides and deoxynucleosides as an additional 
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source of energy (142). The location of tet38 within this cluster might suggest the original role of 

tet38 could be involved in efflux of compounds arising from nucleotide metabolism. Overall, it 

appears that different S. aureus strains are capable of utilizing this transporter for different 

substrates. Further research might be necessary to elucidate what the native role of tet38 truly is.  

Additionally, while farE promotes resistance to linoleic acid, neither farE nor tet38 were found to 

have important roles in resistance to palmitoleic acid (108). These findings are consistent with our 

analysis of the fatty acid induction data, which showed that palmitoleic acid induces significantly 

lower farE expression than linoleic acid or arachidonic acid. This data provides evidence that farE 

is not significantly involved in palmitoleic acid resistance. Interestingly, research in our laboratory 

has demonstrated that USA300 grown to exponential phase in sub-inhibitory concentrations of 

palmitoleic acid has a significant resistance to killing by bactericidal concentrations of palmitoleic 

acid which suggests that there is an inducible response to palmitoleic acid (unpublished data, 

McGavin).  Whether this response is from a mechanism specific to palmitoleic acid or part of a 

broader uFFA resistance could be a focus of future research.  

While our results show that farE does not have a role in resistance to palmitoleic acid, despite 

modest induction by palmitoleic acid and its isomer sapienic acid, one of the most striking findings 

is the farE response to certain uFFAs, notably linoleic acid and arachidonic acids. The large level 

of induction from linoleic acid supports that linoleic acid is one of the main inducers of farE 

expression. These findings also identify an important and previously unexamined role for 

arachidonic acid, a major component of cellular membranes but not large component of skin sebum 

uFFAs. Interestingly, arachidonic acid is present in erythrocyte membranes, comprising about 13% 

of the fatty acids in membranes, in lymphocytes, which would respond to invasion, it is present in 

higher concentrations, composing up to 18% of the fatty acids present (56, 143). Thus, arachidonic 

acid would be present during S. aureus invasion and abscesses formation. Subsequent research 

from our laboratory has confirmed the importance of farE in inducible survival in bactericidal 

concentrations of linoleic and arachidonic acids, as well as confirming linoleic acid as a substrate 

of FarE (108).  Both linoleic acid and arachidonic acid are aspects of the innate antimicrobial 

uFFAs in nasal secretions (41). Nasal carriage is extremely important for S. aureus, and is thought 

to be ubiquitous in S. aureus carriers (10).  As a result, it appears farE would have an important 

role in the ability of USA300 to colonize human hosts through tolerance of these fatty acids. 

Additionally, farE might have an important role in USA300 invasion and survival in abscesses. 
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Fatty acids are found in large concentrations within abscesses, including linoleic acid in murine 

abscesses (55). Additionally, arachidonic acid and linoleic acids both make up a large component 

in cellular membranes (56). Through hydrolysis of triglycerides by leukocyte or staphylococcal 

lipases these fatty acids could be released as uFFAs (55, 57). As a result, linoleic acid and 

arachidonic acid could comprise a large component of the uFFAs encountered by S. aureus within 

abscesses, making it noteworthy that these are the two strongest inducers of farE expression. These 

suggest farE might be a natural evolutionary response specific to the unsaturated fatty acids 

linoleic and arachidonic, which are encountered during invasion, first within the nares, and then 

within abscesses. Confirming this through in vivo experiments evaluating both ability of farE 

mutants to persist on skin, and establish abscesses, would be a reasonable next step in evaluating 

this role.   

While several different uFFAs were found by this study to induce farE expression, strikingly, no 

non-uFFA stressors were capable of inducing even modest farE expression. Other research has 

identified that uFFA exposure leads to expression of of σB and the corresponding stress response 

factors, suggesting that one aspect of the S. aureus response to uFFA is a generalized stress 

response (88). Several of the stressors tested for farE induction, such as acid, osmotic stress, and 

oxidative stress, have also been identified as capable of inducing a σB response (85, 87); however, 

none of these were capable of inducing farE expression. Stressors which would damage 

membranes, the proposed method of anti-microbial action by uFFAs, such as tea tree oil, were 

similarly unable to induce farE expression.  These findings suggest that farE regulation is distinct 

from global response and stress regulators such as σB and mediated through a fatty acid specific 

sensing mechanism. Similarly, expression of farE was found to be at its highest levels during mid-

exponential phase of growth; in S. aureus, the global regulators agr and sarA are most involved in 

regulation during the stationary phase (76). Taken together, these findings suggest that the 

expression of farE is distinct from global regulators and stress responses and controlled through a 

uFFA specific mechanism. This study also identified that farE expression in USA300 deficient in 

farE was the same as in wild-type USA300 when exposed to uFFAs. It was originally theorized 

that in the absence of farE, fatty acids might accumulate to higher concentrations within the cell 

and lead to correspondingly higher levels of farE expression; interestingly, this was not the case. 

Our interpretation of this result is that farE regulation levels are not based simply on sensing the 

concentration of free fatty acids, but instead through another mechanism. This is also consistent 
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with the observation that the same concentrations of linoleic and arachidonic acid were capable of 

inducing significantly different levels of farE expression at the same molar concentrations.  

Another finding of this study was the role of fakA, which encodes an essential component of the 

fatty acid kinase, in farE induction. fakA, along with either fakB1 or fakB2, encode a fatty acid 

kinase which allows exogenous fatty acids to be incorporated (111). As discussed previously, the 

metabolic fate of these exogenous fatty acids is thought to be incorporation into the membrane 

phospholipids. A study by Li et al found that fakA deficient mutants possessed resistance to 

dermicidin, an antimicrobial which damages membranes. The resistance to this antimicrobial, 

which binds to and damages membrane, was thought to be to the result of an altered phospholipid 

composition. Specifically, the fakA mutant exhibited less branched chain fatty acids and more 

straight chain fatty acids, as well as less diphosphatidylglycerol (cardiolipin), one of the three 

phospholipid species (121). Li et. al. suggested that the change in fatty acid composition might 

have protected against the membrane damaging effects of dermicidin. A different study by Bose 

et. al identified that fakA mutants had greater growth in abscess models and differentially regulated 

virulence factors, producing less α-hemolysin (122). An abscess contains large amounts of uFFAs; 

as a consequence, our observations of a fakA mutant possessing greater resistance to uFFAs would 

be consistent with these previous findings (55). As our study identified USA300ΔfakA- 

farE::ΦNE, fakA mutants do possess some farE-independent resistance to uFFA; a component of 

this phenotype could be explained through the alterations in membrane structure. However, our 

study also found that USA300ΔfakA expresses farE at a constitutive level, independent of fatty 

acid exposure, and that USA300ΔfakA has significantly higher survival in bactericidal fatty acids 

than USA300ΔfakA- farE::ΦNE. Taken together, these findings support that farE is involved in 

fakA tolerance to uFFAs, and that fakA has a role in farE expression. 

The exact role of fakA on farE expression in S. aureus has not been determined but there are some 

findings in the literature which could help explain this relationship. One simple solution could be 

FakA acts as a repressor of farE, such that when FakA is absent, farE is expressed constitutively. 

However, this idea still raises some questions, as USA300ΔfakA is also unable to upregulate farE 

when exposed to uFFAs and as a result expresses farE at levels significantly lower than wild-type 

USA300, a result which would not be anticipated in FakA served only as a repressor. Instead, we 

propose a slightly more complex involvement for fakA in farE regulation. As discovered by 

Parsons et al., fakA is an integral part of the fatty acid kinase, which carries out the first step of 
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incorporating fatty acids into the cell by phosphorylating them into Acyl-PO4 (111).  Previous 

work in our lab supports that farR, which is divergently transcribed from farE, encodes a regulator 

of farE (108). It is possible that this regulation of farE requires specific forms of Acyl-PO4 and 

not free fatty acids to promote farE expression. This would be consistent with the observation that 

farE induction is not promoted by uFFAs in USA300ΔfakA. Additionally, regulation of farE might 

occur through sensing of bacterial membrane composition. The bacterium Pseudomonas 

aeruginosa has systems in place which sense membrane composition, using DesT, a transcriptional 

regulator which senses fatty acid composition in the acyl-coenzyme A pool and regulates 

expression of a desaturase (144, 145). If S. aureus had a similar, unidentified mechanism, it might 

require fakA to incorporate uFFAs into the cell in order for the uFFAs to be sensed. In S. aureus, 

the global regulator system sae is of note; recent studies have shown that component SaeS senses 

currently unidentified human signals, and regulates genes correspondingly (146). Interestingly, 

SaeS is an intramembrane-sensing histidine kinase, which lacks an extracellular sensory domain 

(147). As a result, SaeS could act to sense membrane composition and affect regulation through 

the sae system. Strikingly, Parsons et al. identified that the genes modified in the fakA mutant are 

also thought to be regulated through this sae system (111). If farE regulation required sensing of 

fatty acids which had already been incorporated, it could explain the lack of change in farE 

expression between USA300ΔfakA grown in TSB or in sub-inhibitory fatty acids (Figure 4.1). 

Additionally, as USA300ΔfakA was shown to have different membrane phospholipid composition, 

this could additionally explain the constitutive farE expression in TSB alone.  Interestingly, in 

some species, RND family transporters are thought to be utilized to replace fatty acids from 

membranes as part of maintaining homeostasis (148). Although the mechanism is currently not 

understood, what is known is that farE is constitutively expressed in fakA deficient mutants, and 

this level of expression is not altered by exposure to fatty acids. This contributes in part, although 

not exclusively, to the greater survival of USA300ΔfakA in linoleic acid. Identifying the other 

aspects of USA300ΔfakA survival, and specific regulation of farE, remains as a future area of 

study. 

In summary, we have examined the S. aureus resistance to unsaturated free fatty acids and the 

multifactorial response involved in its survival. This study demonstrated that the palmitoleic acid 

efflux pump encoded by tet38 in CA-MRSA strain MW2 is not involved in the USA300 tolerance 

of palmitoleic or linoleic acids. Additionally, it identified that farE, which encodes a fatty acid  
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Figure 4.1 Proposed FakA-dependent Sensing of Exogenous Fatty Acids 

In this proposed system, exogenous fatty acids can by sensed by SaeS 

subsequent to their phosphorylation by Fak. It is unclear at which point 

SaeS evaluates composition of fatty acids, although it is noteworthy in P. 

aeriginosa DesT senses Acyl-PO4 composition. SaeS then acts through 

effector SaeR to effect farE regulation, possibly involving farR, as well as 

other SaeR regulated genes. Figure adapted from Parsons et al. (111).   
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efflux pump, is induced specifically by uFFAs, notably linoleic and arachidonic acid, two fatty 

acids found in nasal secretions and abscesses, but not by other stressors which induce a general 

stress response. farE is constitutively expressed in mutants deficient in fakA, a gene which encodes 

a kinase to incorporate exogenous fatty acids. This USA300ΔfakA mutant was also maintained 

significantly higher viability in bactericidal concentrations of uFFAs than wild-type USA300. 

While the specific mechanisms underlying farE expression remain undefined, this study has 

identified the specificity of the farE response to uFFAs which S. aureus would encounter in 

colonization and invasion.   
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