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Abstract

Cluster randomized trials (CRTs) involve the random assignment of intact social units

rather than independent subjects to intervention groups. Time-to-event outcomes often are

endpoints in CRTs where the intracluster correlation coefficient (ICC) serves as a descriptive

parameter to assess the similarity among outcomes in a cluster. However, estimating the ICC in

CRTs with time-to-event outcomes is a challenge due to the presence of censored observations.

The ICC is estimated for two CRTs using the censoring indicators and observed outcomes.

A simulation study explores the effect of administrative censoring on estimating the ICC.

Results show that the ICC estimators derived from censoring indicators and observed outcomes

are negatively biased for positively correlated outcomes. Analytic work further supports these

results. Censoring indicators may be preferred to estimate the ICC under moderate frequency

of administrative censoring while the observed outcomes may be preferred under minimal fre-

quency of administrative censoring.

Keywords: Cluster randomized trials; intracluster correlation coefficient; correlated time-

to-event outcomes; multivariate exponential distribution.
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Chapter 1

Introduction

Randomized trials are prospective studies designed to evaluate the effectiveness of a given

intervention (Friedman et al., 2010). The random assignment of individual subjects ensures

that, on average, the intervention groups are comparable with respect to both known and un-

known baseline risk factors. In addition, random assignment helps to prevent selection bias

that may originate from participants or investigators who may have a preference for one of the

interventions being evaluated.

1.1 Cluster randomized trials

Investigators may at times choose to randomize intact social units (or clusters) instead of

individual subjects (Donner and Klar, 2000, p. 5). Some possible benefits of randomizing

clusters include reduced treatment contamination, increased administrative convenience, and

improved participant compliance. In one example, investigators chose to randomize Hutterite

colonies to evaluate the effect of influenza vaccine on infection rates (Loeb et al., 2010). The

adoption of this design assured that possible treatment contamination of influenza vaccine ef-

fects under individual randomization is minimized in each colony.

The development of cluster randomization trials (CRTs) has independently arisen in var-
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Chapter 1. Introduction 2

ious disciplines including medicine, social science, psychology and educational research. In

the medical literature, there was an early recognition of decreased precision associated with

CRTs, e.g. Mainland (1952, p. 114). Despite this early acknowledgment, many researchers

continue to face difficulties with the design and analysis of CRTs. This is demonstrated in sev-

eral methodological reviews including Simpson et al. (1995), Smith et al. (1997), and Walleser

et al. (2011). In many instances, investigators may not be aware of the need to account for

clustering and thus inappropriately choose standard statistical procedures to evaluate the inter-

vention effect. However, it has been shown numerous times that the results derived from naı̈ve

methods ignoring clustering can often be misleading (Donner and Klar, 2000, p. 85, 113, 129).

This is because the fundamental assumption of independence among outcomes no longer holds

and therefore the use of standard statistical procedures is invalid. In particular, the estimated

variance obtained from standard statistical procedures assuming all outcomes are independent

underestimates the true variance and this leads to exaggerated effects of statistical significance.

The design of CRTs can also be severely hampered if the sample size is estimated through

standard statistical procedures because this may give rise to an inconclusive study with low

power.

The most common experimental designs used in CRTs include the completely randomized,

pair-matched and stratified designs. The completely randomized design randomly assigns clus-

ters to the intervention groups without any matching or stratification. This design is most suit-

able when a large number of clusters are available since in this case effective randomization

can ensure that both known and unknown baseline risk factors are, on average, balanced across

the intervention groups. An example of a completely randomized design comes from a study

of neonatal intensive care units where 114 hospitals were randomized to the intervention or

control group (Horbar et al., 2004). The pair-matched design involves matching clusters on the

basis of relevant baseline characteristics and then for each pair of matched clusters assigning
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one cluster at random to the intervention group and the other cluster to the control group. As

an example, 14 nursing homes were pair-matched on the basis of total number of beds and geo-

graphical proximity to evaluate an intervention program designed to prevent injuries among the

residents (Ray et al., 1997). The stratified design is simply an extension of the pair-matched

design where several clusters within each stratum are randomly assigned to the intervention

group or control group. For example, each Hutterite colony within the seven health regions

classified as a strata were randomized to one of the two treatment groups (Loeb et al., 2010).

The rationale for adopting the pair-matched and stratified designs is that the probability of im-

balance on important baseline characteristics can be substantially greater in trials randomizing

clusters than for individually randomized trials with the same number of participants (Donner,

1992). Although an extensive literature exists on each of these designs, the focus here will be

limited to the completely randomized design.

Many CRTs involve the collection of correlated data consisting of the time to a specified

event. For example, Loeb et al. (2010) examined the time to laboratory confirmed influenza

cases among the members of Hutterite communities. Outcomes were considered to be ad-

ministratively censored if a given individual did not acquire influenza during the follow up of

the trial. In addition, censored observations could arise if clusters or individual participants

were lost to follow-up, chose to dropout or acquired a competing event which precluded ob-

serving the primary endpoint. For the sake of simplicity, the focus in this thesis is limited to

administrative censoring where the assumption of non-informative censoring is satisfied. Non-

informative censoring can be defined as independence between event times and the censoring

mechanism possibly conditioned on a set of covariates (Wax et al., 1993). As a consequence,

this assumption ensures that the probability of being censored does not depend on the prognosis

of a subject or a cluster (Kleinbaum and Klein, 2012).

There are at least four types of accrual schemes in CRTs. Zou et al. (2005) noted three
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types of accrual schemes in CRTs: (1) recruiting clusters sequentially while recruiting subjects

simultaneously, (2) recruiting clusters simultaneously while recruiting subjects sequentially

and (3) recruiting both clusters and subjects sequentially in relation to randomization. In an

ideal design of CRT, the identification and recruitment of participants must be done prior to

the random assignment (Eldridge et al., 2009). This design feature reduces the possibility

of selection bias which may arise from differential rates of recruitment across intervention

groups. Hence the focus in this thesis is limited to the accrual scheme where both the clusters

and subjects are assumed to be available at the start of the trial. This focus in combination with

limiting attention to administrative censoring simplifies the design and analysis of simulation

study described in chapters 4 and 5. As an example, subjects within each Hutterite communities

were recruited prior to the randomization of the study (Loeb et al., 2010). In addition, trial

researchers (e.g. recruiters, assessors etc.) and subjects should also be blinded (whenever

ethically possible) to the allocation status to reduce other sources of systematic error.

1.2 Intracluster correlation coefficient
The lack of independence among outcomes observed on cluster members creates statistical

challenges that may be accounted for using an estimator of the parameter ρ, where ρ mea-

sures the degree of similarity among outcomes within a cluster and is known as the intracluster

correlation coefficent (ICC). The ICC has a rich history of application in various fields of

research (Haggard, 1958). For example, it may be used to measure familial resemblance in

epidemiological studies, heritability of traits in genetic studies, and reliability of assessors in

psychological studies (Donner, 1986). The ICC was first defined as a descriptive measure “to

determine the resemblance for any series of characters of the individuals of sub-classes. . . as

compared to the random pairs from the population (or universe) which they constitute” (Har-

ris, 1913). Although the estimation of ICC’s was first established for continuous endpoints

(Donner, 1986), several researchers have extended it to alternative endpoints including binary
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(Ridout et al., 1999) and time-to-event (Xie and Waksman, 2003).

1.2.1 Continuous outcomes

Pearson product-moment correlation can be used to estimate the ICC for continuous out-

comes and it is defined in the present context as the pairwise correlation between any two

members of the same cluster where each distinct pair of members is counted twice. However,

as noted by Donner (1986), the pairwise correlation loses efficiency when substantial variation

exists in the size of the clusters. For example, consider the Loeb et al. (2010) trial where the

total number of subjects per cluster varied from 11 to 123. In this case, the group consisting

of 123 subjects would be weighted approximately 136 times more than the group consisting

of 11 subjects
(
i.e. (

123
2 )

(11
2 )
� 136

)
. The magnitude of this weight is the ratio of two permutations

that enumerate the total number of pairs. In order to overcome this disadvantage, a weighted

pairwise correlation can be constructed as proposed by Karlin et al. (1981). The weights may

be constructed so that (i) each pair of observations has equal weight, (ii) each group has equal

weight regardless of their sizes, or (iii) each pair is weighted depending on the total number of

pairs in which the given individual appears.

Fisher (1925) recognized that the ICC “merely measures the relative importance of two

groups of factors causing variation” and hence introduced analysis of variance (ANOVA) to

estimate the ICC based on what now is denoted a one-way random effects model. The ANOVA

partitions the overall variance into two factors: (1) within-cluster and (2) between-cluster

variance and directly estimates the ICC as the proportion of total variation accounted for by

between-cluster variation. In the case of fixed cluster size (i.e. same number of subjects per

cluster), the ANOVA estimator of variance components has many appealing properties. For

example, the ANOVA estimators of variance components are unbiased and under normality

have the minimum variance among all unbiased estimators (Searle et al., 1992, p. 129, 175

). However, the ANOVA estimator of ICC is inherently biased given that the expected ratio
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of variance components does not equal to the ratio of expected variance components (Ponzoni

and James, 1978). Furthermore, in the case of variable cluster size where the between-cluster

variance component is greater than the within-cluster variance component or equivalently ρ is

greater than half, the performance of the ANOVA estimator of ICC is noted to be inadequate

as compared to the maximum likelihood estimator (Swallow and Monahan, 1984).

Furthermore, maximum likelihood (ML) estimation can be used to obtain variance com-

ponent estimators when the underlying continuous endpoints follows the multivariate normal

distribution (Donner and Koval, 1980). Unlike the ANOVA estimator, the ML estimator en-

sures that the non-negativity constraints of between-cluster variance component is met when

the likelihood function is maximized over its parametric space (Harville, 1977). However, the

ML estimation of variance components does not take into account the degrees of freedom as-

sociated with fixed effects. Thus the restricted maximum likelihood (REML) estimation of

variance components may be used to overcome this disadvantage (Searle et al., 1992, p. 41).

The REML estimator first partitions the likelihood function to separate the fixed effects from

random effects and subsequently maximizes the portion of the likelihood function containing

the terms of the random effects. Computation of ML and REML estimator requires iterations

when clusters are of variable size. The ML and REML estimators of variance components are

asymptotically optimal and asymptotically equivalent for fixed and variable cluster sizes when

the random errors are independent and normally distributed with fixed variance. In the case of

fixed cluster size, the pairwise and ML estimator of ICC are asymptotically equivalent to the

ANOVA estimator of ICC (Appendix A.1).

1.2.2 Binary outcomes

Several ICC estimators for binary endpoints have been reviewed by Ridout et al. (1999).

Some of the estimators used in their study are directly adopted from methods used for continu-

ous endpoints, including the ANOVA estimator and the unweighted and weighted pairwise es-
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timators. Ridout et al. (1999) showed that the ANOVA, unweighted pairwise, and kappa-type

estimators of ICC performed well as their bias and mean square error (MSE) was compara-

tively low in relation to the other estimators. As noted by Elston (1977), ANOVA provides a

consistent estimator of ICC for dichotomous outcomes.

Kappa statistics are used in reliability studies to estimate the degree of agreement among

pairs of raters corrected for chance. These measures of agreement may be defined so that raters

have the same probability of an event (Ridout et al., 1999), i.e. marginal homogeneity. This

version of kappa, known as Scott’s π (Scott, 1955) is equal to an ICC applied to binary outcome

data. Furthermore, for studies where there are more than two raters, Fleiss and Cuzick (1979)

described an extension of Scott’s π. In either case these statistics are equivalent to the Pearson

pairwise estimator with constant weights in the case of fixed cluster size (Zou and Donner,

2004).

1.2.3 Time-to-event outcomes

A standard method of estimating the ICC for correlated time-to-event outcomes remains

unclear (Jahn-Eimermacher et al., 2013). The current literature suggests that the ICC can be

estimated from the binary indicators (i.e. censored: yes vs. no) and observed outcomes (i.e.

omitting censored endpoints). For example, Xie and Waksman (2003) and Jahn-Eimermacher

et al. (2013) used censoring indicators while Segal and Neuhaus (1993) and Williams (1995)

used the observed outcomes to estimate the ICC.

The ICC estimator proposed by Xie and Waksman (2003) only uses the information avail-

able from censoring indicators and completely ignores the information available from the ob-

served time-to-event outcomes. Similarly, Jahn-Eimermacher et al. (2013) defined an ICC

parameter using the information available from only the censoring indicators. According to

Xie and Waksman (2003) , an attractive feature of estimating the ICC from censoring indica-

tors is its analogous relationship with the binary estimators of ICC which have been extensively
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studied by many researchers.

In contrast, Gangnon and Kosorok (2004) noted that ICC parameter should not only de-

pend on censoring indicators but also on the correlated time-to-event outcomes. Gangnon and

Kosorok (2004) suggest performing the sample size calculation from conservative estimates of

the ICC that are derived from a plausible event time distribution and the censoring distribu-

tions. Moreover, several researchers including Jung and Jeong (2003) and Su et al. (2011) have

developed an expression for the ICC using information available from correlated time-to-event

outcomes and censoring indicators. The relationship between estimating the ICC from censor-

ing indicators and estimating it from observed time-to-event outcomes is further discussed in

chapter 2.

1.3 Variance inflation factor
Even though the ICC can be interpreted as a descriptor of dependence within clusters,

it also has considerable implication for the design and analysis of CRTs. For example, the

variance inflation factor (VIF) is routinely used as a correction factor to adjust the estimated

sample size (Donner et al., 1981) and test statistics for continuous (Donner and Klar, 1994a)

and binary endpoints (Donner and Klar, 1994b). The early derivation of VIF in the context of

clustered sampling was described by Hansen and Hurwitz (1942). The VIF is defined as the

function of both the ICC and cluster size: [1 + (m− 1)× ρ], where m is the fixed cluster size.

With this definition of VIF, it can be reflected that CRTs are less efficient than the individually

randomized trials.

However, the derivation of VIF is complicated for correlated time-to-event outcomes. This

is evident as Segal and Neuhaus (1997) note the absence of a VIF for the analysis of cor-

related time-to-event outcomes. Williams (1995) has shown that the Greenwood’s formula

underestimates the true variance of the survival function when the time-to-event outcomes are

positively correlated within each cluster. More recently, Gangnon and Kosorok (2004) derived
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a sample size formula for correlated time-to-event outcomes where the VIF was used as the

adjustment factor. Unfortunately, limited attention has been given to the design and analysis of

CRTs with time-to-event outcomes (Campbell and Walters, 2014, p. 63, 139). In spite of many

challenges associated with the construction of confidence intervals, the estimation of ICC for

time-to-event outcomes in CRTs is crucial to reduce the possibility of misleading inference

from standard statistical procedures.

1.4 Objectives of the study
The focus of this study is limited to the estimation of ICC for correlated time-to-event

outcomes. In particular, the ANOVA estimator of the ICC using the censoring indicators is

compared with the ANOVA estimator of the ICC using the observed time-to-event outcomes.

A Monte Carlo simulation study is conducted to compare the bias, variance, MSE, between-

cluster and within cluster variance components of these two ICC estimators. A sign test is also

conducted to compare the two ICC estimators with respect to how closely they estimate the

ICC parameter.

1.5 Organization of the thesis
This thesis contains seven chapters. Chapter two provides more information on correlated

survival data along with methods available for estimating the ICC from censoring indicators,

observed outcomes and joint information. Chapter three provides some analytic results for the

multivariate exponential model which is further used to design the simulation study. Chapter

four describes the design of the simulation study and chapter five describes the results obtained

from this investigation. Estimation of the ICC based on data from two published CRTs (Binka

et al., 1996; Daly et al., 1995) is carried out in chapter six using the methods described in chap-

ter four. Chapter seven summarizes key results and provides suggestions for future research.



Chapter 2

Literature Review

This chapter discusses the importance of estimating the ICC for correlated time-to-event

outcomes. There are six sections in this chapter. Section 2.1 describes the key assumptions

of the thesis. Section 2.2 introduces the notation that is used throughout the thesis. Section

2.3 describes the use of censoring indicators while section 2.4 describes the use of observed

outcomes to estimate the ICC parameter. Section 2.5 describes the use of both censoring in-

dicators and observed outcomes to estimate the ICC parameter. Section 2.6 summarizes the

chapter.

2.1 Thesis assumptions
The focus of this thesis is limited to estimating the ICC using either censoring indicators or

observed outcomes where the following assumptions are satisfied:

1. Intervention arm: control group of CRTs with time-to-event outcomes.

2. Cluster size: fixed number of subjects within each cluster at the start of the trial.

3. Hazard rate: constant event rate throughout the follow-up period of the trial.

4. Accrual period: all clusters and subjects are available at the start of the trial.

10
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5. Censoring: all subjects who did not have the outcome by the end of the study follow-up

are administratively censored.

2.2 Notation
For randomized trials, time-to-event or survival data are obtained by following subjects

over time from a defined time origin (i.e. random assignment) to the occurrence of an event or

until they are censored, e.g. end of study. Generally there are three required components for

time-to-event data in CRTs: (1) time origin, (2) a positively valued random variable Ti j , and

(3) a censoring indicator ∆i j, where i = 1, ...,k denotes the ith cluster and j = 1, ...,m denotes

the jth individual within the ith cluster. The Ti j are continuous random variables recorded once

for each subject over the specified follow-up period of the trial. If Ti j is not observed then the

time-to-event outcome is administratively censored using the following censoring indicator

∆i j =


1 if Ti j ≤ tc

0 if Ti j > tc
(2.1)

where tc denotes the total follow-up period of the study beyond which all the unobserved events

are censored. The observed outcomes are defined as T ∗i j = Ti j for mi failure times < tc. The

censored observations only arise if the outcome of interest is not observed during the follow-

up period of the study. This is analogous to the type I censoring mechanism in individually

randomized trials (Kalbfeisch and Prentice, 2002, p. 5).

Let the cumulative distribution function of random variable Ti j be F(t) = Pr(T ≤ t) and the

probability density function be f (t) = ∂
∂t F(t), where the boldface t denotes the correlated time-

to-event outcomes within each cluster. The relationship between the survival function S (t) and

hazard function λ(t) can be established as

S (t) = exp

−
t∫

0

λ(u)∂u

 (2.2)
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In this study, the hazard rate is restricted to be constant with respect to time and denoted

as λ. Furthermore, the equivalence between the survival function S (t) = P(T > t) and per-

centage of censored observations c can be noted with the assumption of no accrual period and

administrative censoring. Without loss of generality, equation (2.2) can be expressed as

c = exp

−
tc∫

0

λ∂u

 = exp (−λtc) . (2.3)

There is no standard method of estimating the ICC for time-to-event outcomes (Jahn-

Eimermacher et al., 2013). This is evident as several investigators used the censoring indi-

cators, observed outcomes or the information from both sources to show the expression of the

ICC. Furthermore, the literature review suggest that the ICC has been used to adjust for the

effects of clustering for correlated time-to-event outcomes (see Table 2.1).

2.3 Censoring indicators
Censoring indicators, in this thesis, provide information about the occurrence or non-

occurrence of an event within the study period. The proportion of dichotomized time-to-event

outcomes may depend on the pre-specified follow-up period of the study. For example, in-

creasing the follow-up period of the study may increase the proportion of recorded outcomes.

Furthermore, this dichotomization only utilizes partial information because information about

the exact occurrence of an event at time t is lost.

Lui (2000) used ANOVA to estimate the ICC from censoring indicators. With the one-way

random effects model (see Appendix A.1), the ANOVA estimator of the ICC for fixed clusters

of size m can be expressed as

ρ̂A =
σ̂2

b

σ̂2
b + σ̂2

w
=

MS B–MS W
MS B+ (m−1)MS W

(2.4)

where σ̂2
b and σ̂2

w are between and within cluster variance component estimators, respectively.

In the context of binary endpoints (i.e. censoring indicators), the between mean sums of squares
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(MSB) and within mean sums of squares (MSW) are

MS B = 1
k−1

(∑k
i=1

∆2
i·

m −
1
N

(∑k
i=1 ∆i·

)2
)

MS W = 1
N−k

(∑k
i=1 ∆i.−

∑k
i=1

∆2
i·

m

)
where ∆i· =

∑m
j=1 ∆i j and N = km. The use of the ANOVA ICC estimator does not require any

distributional assumptions to ensure consistency, at least in the absence of censoring.

The focus of this thesis is limited to continuous time-to-event outcomes. However, discrete

time-to-event outcomes may arise in CRTs when the outcomes are recorded in time intervals

(Meorbeek, 2012). For example, time intervals may be defined as academic sessions to record

student graduation. Lui (2000) considered discrete time-to-event outcomes when comparing

survival curves using the log-rank test. Furthermore, Lui (2000) claims that the log-rank test

must account for ICC since the classical log-rank test may contribute to inflated Type I error

rates.

Xie and Waksman (2003) used the following ICC estimator

ρ̂1 =

∑k
i=1

∑m
j,l(∆i j− p̂)(∆il− p̂)

p̂(1− p̂)(km)(m−1)
(2.5)

where p̂ is the overall event rate observed in the study and it is defined as

p̂ =

∑k
i=1

∑m
j=1 ∆i j

km
.

It is shown in Appendix (A.2) that ρ̂1 is the binary analogue of the ML estimator derived from

Gaussian outcomes in the case of fixed cluster sizes and thus it is equivalent to the ANOVA

estimator in equation (2.4).

Jahn-Eimermacher et al. (2013) derived a sample size formula for correlated time-to-event

outcomes where the ICC parameter was defined using the information available from censoring

indicators. This ICC parameter was simplified using the method of moments and using the

assumption of independence between ∆i j and ∆il (where j, l) conditional on the shared gamma
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frailty (Zi). The shared frailty induces the within-cluster correlation as it is shared among the

members of the same cluster (Wienke, 2011).

2.4 Observed time-to-event outcomes
The observed time-to-event outcomes provide an alternative approach to estimate the ICC

where censored observations are omitted. Segal and Neuhaus (1993) used the ANOVA estima-

tor to compute the within-cluster correlation of observed outcomes. In the context of observed

time-to-event outcomes, the ANOVA estimator of ICC must take into account the variable

number of outcomes (mi) recorded in the ith cluster due to the omission of censored observa-

tions. Hence the ANOVA estimator for observed time-to-event outcomes (T ∗i j) is defined as in

equation (2.4) by replacing m with

mo =

(
1

r−1

)N∗−
r∑

i=1

m2
i

N∗

 = m−
r∑

i=1

(mi−m)2

N∗(r−1)
(2.6)

where m = 1
r
∑r

i=1 mi. Note that r is the total number of clusters in which at least one outcome

is recorded and thus in this context the total number of observations (N∗) are defined as the

sum of mi outcomes within r clusters. The between and within mean sums of squares are

MS B = 1
r−1

∑r
i=1

∑mi
j=1

(
T
∗

i.−T
∗

··

)2

MS W = 1
N∗−r

∑r
i=1

∑mi
j=1

(
T ∗i j−T

∗

i·

)2

where T
∗

i· =
∑mi

j=1
T ∗i j
mi

and T
∗

·· =
1

N∗
∑r

i=1
∑mi

j=1 T ∗i j are the cluster-specific and overall means of

survival outcomes, respectively.

Segal and Neuhaus (1993) explored the limitation of transferring the dependence structure

of an observed outcomes to censoring indicators. Segal and Neuhaus (1993) suggested that

the censoring indicators will inherit the appropriate dependence structure if both the censoring

and survival time of a given individual in the ith cluster depends on the same frailty term

(Zi). Segal and Neuhaus (1997) were interested in estimating the design effect (i.e. variance
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inflation factor). Williams (1995) showed that the Greenwood’s formula underestimates the

true variance of the survival function in the presence of correlated outcomes. Jung and Jeong

(2003) and Jeong and Jung (2006) were interested in examining the validity of the log-rank test

for correlated time-to-event outcomes. An expression of the ICC parameter is derived using

different types of models (see Table 2.1).

2.5 Joint information
Gangnon and Kosorok (2004) noted that ICC parameters should not only depend on the

censoring distribution but also on the dependence between the observed outcomes within

the clusters. Gangnon and Kosorok (2004) used the event-driven design of CRTs which in-

volves conducting a trial until pre-specified number of events are observed. Using this design,

Gangnon and Kosorok (2004) defined an ICC parameter which is derived from the counting

process of observed events. Furthermore, Jung (2007) described an ICC estimator that jointly

uses the information from censoring indicators and observed outcomes. More recently, Jung

(2008) noted that the ICC parameter proposed by Gangnon and Kosorok (2004) does not sepa-

rate the dependence of paired survival outcomes from censoring indicators. Thus, Jung (2008)

derived an ICC parameter using the joint information of censoring indicators and survival out-

comes (see Table 2.1).

2.6 Summary
The literature review indicates that the ICC can be estimated from censoring indicators

or observed outcomes. Regardless of which source of information is chosen, the estimation

of ICC has considerable implications for the design and analysis of CRTs with time-to-event

outcomes. This is evident as many researchers have used the ICC to adjust the sample size

in the trial design (Xie and Waksman, 2003; Gangnon and Kosorok, 2004; Jahn-Eimermacher

et al., 2013) and variance of the log-rank test in the analysis (Jeong and Jung, 2006; Lui, 2000).
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Table 2.1: Literature review for the use of ICC

Censoring Indicators

Author Model used Motives

Lui (2000) Dirichlet-multinomial model Validity of log-rank test

Xie and Waksman (2003) Marginal proportional hazard model Sample size estimation

Jahn-Eimermacher et al. (2013) Conditionally shared gamma frailty model Sample size estimation

Observed time-to-event outcomes

Segal and Neuhaus (1997) Marginally positive stable frailty model Dependence estimation

Williams (1995) Log-survival model Variance of survival probability

Jung and Jeong (2003) Marginally shared gamma frailty model Validity of log-rank test

Su et al. (2011) Clayton-Oakes model Variance of survival probability

Joint information

Gangnon and Kosorok (2004) Marginal proportional hazard model Sample size estimation

Jung (2007) Extension of Lin and Ying (1993) model Sample size estimation

Jung (2008) Positive stable frailty model Sample size estimation



Chapter 3

A multivariate exponential distribution

This chapter contains four sections. Section 3.1 describes a multivariate exponential distri-

bution that is further used to generate the data as described in chapter 4. Section 3.2 derives

the ICC parameter in the absence of censoring while section 3.3 derives the ICC parameter in

the presence of administrative censoring using censoring indicators and observed outcomes,

respectively. Section 3.4 summarizes this chapter.

3.1 Moran Algorithm

A multivariate exponential distributions can be used to model correlated time-to-event out-

comes. However, as shown by Fréchet (1951), there are infinitely many multivariate exponen-

tial distributions. Gumbel (1960) presents one of the first such extensions of the bivariate ex-

ponential distribution. Some models (for e.g. positive stable frailty model (Segal and Neuhaus,

1997)) are ruled out from this simulation study since the dependence parameter is in the form

of Kendall’s τ (i.e. not the usual form of an ICC). However, marginally shared gamma frailty

model (Jung and Jeong, 2003) may still be alternatively pursued as it meets the pre-specified

criteria of this thesis (see section 2.1).

A marginal exponential model, first described by Moran (1967) using a simple algorithm,

17
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has been used by several researchers (e.g. Kang and Koehler (1997), Jung (2008), Lee et al.

(2007) and Su et al. (2011)) interested in correlated time-to-event outcomes. Furthermore, the

dependence parameter in this model is in the form of an ICC (denoted as ρ) which is defined

to be non-negative. For these reasons, Moran’s algorithm is used to generate the correlated

time-to-event outcomes in chapter 4.

The Moran (1967) algorithm is initiated from two mutually independent vectors:

A =

(
Ai,1 . . . Ai,m

)
and

B =

(
Bi,1 . . . Bi,m

)
.

Both vectors are generated from multivariate normal distributions:

A,B ∼ N



0 1
√
ρ . . .

√
ρ

0
√
ρ 1 . . .

√
ρ

... ,
...

...
. . .

...

0
√
ρ
√
ρ . . . 1


.

The two vectors can be transformed to define the marginally exponential random variable Ti j

with hazard rate λ where

Ti j =
A2

i j + B2
i j

2λ
for i = 1, ..,k and j = 1, ...,m. (3.1)

The probability density funtion of Ti j derived from Moran’s algorithm is described by Kotz

et al. (2000, Chapter 47). Since the Moran-Downton multivariate exponential distribution is

an extension of the bivariate case (Balakrishnan and Ng, 2001), the focus here is limited to

bivariate exponential distribution for the sake of simplifying the presentation. Furthermore, the

exchangeable correlation structure among outcomes within a cluster of arbitrary size can be

described using the following bivariate probability density function:

PT1,T2(t1, t2) =
λ2

1−ρ
I0

(
2λ
√
ρt1t2

1−ρ

)
exp

(
−
λ(t1 + t2)

1−ρ

)
(3.2)
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where t1, t2 > 0, λ > 0 and 0 ≤ ρ ≤ 1. Note that I0(·) is the modified Bessel function of the first

kind of order zero and in this context it is defined as

I0

(
2λ
√
ρt1t2

1−ρ

)
=

∞∑
q=0

(
1

2q!
2λ
√
ρt1t2

1−ρ

)2q

.

Furthermore, Balakrishnan and Lai (2009) derived the following cumulative distribution func-

tion of this bivariate probability density function:

F(t1, t2) = (1− e−t1)(1− e−t2) + t1t2e−(t1+t2)
∞∑

q=0

ρq+1

(q + 1)2 L(1)
q (t1)L(1)

q (t2) (3.3)

where L(1)
q (·) is Laguerre polynomial (Koekoek, 1990) and is defined as

L(1)
q (t) =

q∑
s=0

(−1)s
(
q + 1
q− s

)
ts

s!
.

If ρ = 0 then the equation (3.2) simplifies to the product of two marginally exponential

probability density functions. This is also reflected in the cumulative density function (equation

3.3) as it simplifies to F(t1, t2) = (1− e−t1)(1− e−t2). With this framework, the ICC parameter

can now be derived in the absence and presence of administrative censoring.

3.2 Absence of censoring
If the time-to-event outcomes follow Moran (1967) algorithm as described in section 3.1,

then the variance of Ti j in the absence of censoring can be computed as

Var(Ti j) = Var

A2
i j + B2

i j

2λ


=

1
4λ2

(
Var(A2

i j) + Var(B2
i j) + 2Cov(A2

i j,B
2
i j)

)
=

1
4λ2

(
Var(A2

i j) + Var(B2
i j)

)
Since A2

i j |= B
2
i j

=
1

4λ2 (2 + 2) Since Var(χ2
1) = 2

=
1
λ2 .
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Similarily the expectation of Ti j can be computed as

E(Ti j) = E

A2
i j + B2

i j

2λ


=

1
2λ

(
E(A2

i j) + E(B2
i j)

)
=

1
λ

Since E(χ2
1) = 1.

The product expectation can also be computed as

E(A2
i jB

2
il) = E(A2

i j)E(B2
il) A2

i j |= B
2
i j =⇒ Cov(A2

i j,B
2
i j) = 0

= 1 Since E(χ2
1) = 1.

The following transformation can be used to find the E(A2
i jA

2
il):

(Ai j,Bi j) = (Ai j,
√
ρAi j + aCi j)

where a2 = 1− ρ and (Ai j,Ci j) are independent and identically distributed standard normal

random variables. With this transformation, the product moment of A2
i jA

2
il can be computed as:

E
(
A2

i jA
2
il

)
= E

(
A2

i j

(√
ρAi j + aCi j

)2
)

= E
(
ρA4

i j + 2a
√
ρCi jA3

i j + a2A2
i jC

2
i j

)
= E

(
ρA4

i j + a2A2
i jC

2
i j

)
Since Ai j |= Ci j and E(Ci j) = 0

= 3ρ+ a2 Since E(χ2
1) = 1

= 2ρ+ 1 Since a2 = 1−ρ

The results shown above can be used to find the expression of ICC parameter in the absence of

censoring:

Corr(Ti j,Til) =
Cov(Ti j,Til)√

Var(Ti j)Var(Til)
j , l

= λ2
(
E(Ti jTil)−E(Ti j)E(Til)

)
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= λ2
(

1
4λ2

(
E(A2

i jA
2
il) + E(A2

i jB
2
il) + E(B2

i jA
2
il) + E(B2

i jB
2
il)

)
−

1
λ2

)
= λ2

(
1

4λ2
(4ρ+ 4)−

1
λ2

)
= ρ as needed �

Since Var(Ti j) = 1
λ2 and ρ =

σ2
B

σ2
B+σ2

W
, it can be shown that σ2

B =
ρ

λ2 and σ2
W =

1−ρ
λ2 in the absence

of censoring.

3.3 Presence of censoring
The focus of this study is limited to administrative censoring where all subjects and clusters

are available at the start of the study. The analytic expression for the ICC parameter using cen-

soring indicators and observed outcomes, respectively, are described in the next two sections.

3.3.1 Censoring indicators

The censoring indicators are defined in equation (2.1), where ∆i j = 0 denotes censored

observation and ∆i j = 1 denotes observed outcomes within the specified follow-up period of

the study (tc). Since the marginal probability of censoring is specified in advance to be c, it can

be noted that

Pr(T1 > tc) = Pr(T2 > tc) = c.

Table 3.1: The joint and marginal probabilities of censoring indicators

∆i j = 0 ∆i j = 1

∆il = 0 Pr(T1 < tc,T2 < tc) + 2c−1 1− c−Pr(T1 < tc,T2 < tc) c

∆il = 1 1− c−Pr(T1 < tc,T2 < tc) Pr(T1 < tc,T2 < tc) 1-c

c 1-c 1

As shown by Molenberghs et al. (1996) and by Klar et al. (2000), the ICC parameter for
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binary outcomes (i.e. censoring indicators) can be defined as

ρc =
Pr(T1 > tc,T2 > tc)−Pr(T1 > tc)Pr(T2 > tc)

√
Pr(T1 > tc)(1−Pr(T1 > tc))Pr(T2 > tc)(1−Pr(T2 > tc))

=
Pr(T1 > tc,T2 > tc)− c2

c(1− c)
.

Using the cross-classification probabilities (Table 3.1) and cumulative distribution function

(equation 3.3), the joint probability can be found as

Pr(T1 > tc,T2 > tc) = 2c−1 + Pr(T1 < tc,T2 < tc)

= 2c−1 + (1− c)2 + (c× ln(c))2
∞∑

q=0

ρq+1

(q + 1)2

[
L(1)

q (−ln(c))
]2

= c2 + (c× ln(c))2
∞∑

q=0

ρq+1

(q + 1)2

[
L(1)

q (−ln(c))
]2

Now the ICC parameter using the censoring indicators can be expressed as the function of

the true ICC (ρ) and the probability of administrative censoring (c):

ρc =
c2 + (c× ln(c))2 ∑∞

q=0
ρq+1

(q+1)2

[
L(1)

q (−ln(c))
]2
− c2

c(1− c)

=
c2× ln2(c)

∑∞
q=0

ρq+1

(q+1)2

[
L(1)

q (−ln(c))
]2

c(1− c)

=
c× ln2(c)

∑∞
q=0

ρq+1

(q+1)2

[
L(1)

q (−ln(c))
]2

1− c

Furthermore, the ICC parameter can be approximated using the third-order expansion of the

Laguerre polynomial (where q ≥ 3 is omitted) as:

ρc =

c2× ln2(c)
(
ρ+

ρ2

4 (2 + ln(c))2 +
ρ3

9

(
3 + 3ln(c) + 1

2 ln(c)ln(c)
)2

)
c(1− c)

. (3.4)

If ρ is fixed in equation 3.4 and the amount of administrative censoring (c) is allowed to vary

from 1% to 99% then ρc becomes negatively biased with respect to ρ. The disparity between

the mean ANOVA ICC estimator using the censoring indicators (̂ρc) and its analytic expression

(ρc) is defined as ρ̂c − ρc. This disparity is further explained in chapter 4 and examined in

chapter 5.
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3.3.2 Observed outcomes

The time-to-event outcomes are recorded only if the event occurs within the length of the

study follow-up (tc). For the sake of simplicity, the hazard rate is assumed to be one event per

year. The conditional expectation of observed time-to-event outcome T ∗i j can be found using

the results of the marginal exponential distribution found in Moran (1967) algorithm:

E(Ti j|Ti j ≤ tc) = E(T ∗i j) =
1

F(tc)−F(0)

∫ tc

0
T ∗i jexp(−T ∗i j)∂T ∗i j

Using integration by parts and after some algebraic manipulation, the expectation of T ∗i j can be

shown as:

E(T ∗i j) =
1− (1 + tc)exp(−tc)

1− exp(−tc)
.

Similarly, the variance of T ∗i j can also be found using integration by parts:

Var(T ∗i j) = E(T ∗i j)
2−

(
E(T ∗i j)

)2

=
2− (tc(tc + 2) + 2)exp(−tc)

1− exp(−tc)
−

(
1− (1 + tc)exp(−tc)

1− exp(−tc)

)2

The covariance of T ∗i j and T ∗il (where j , l) can be numerically integrated as:

Cov(T ∗i j,T
∗
il) = E(T ∗i jT

∗
il)−E(T ∗i j)E(T ∗il)

=
1

1−ρ

∫ tc

0
T ∗i jexp

 T ∗i j

1−ρ

∫ tc

0
T ∗ilexp

( T ∗il
1−ρ

)
I0


2
√

T ∗i jT
∗
ilρ

1−ρ

∂T ∗i j∂T ∗il

−

(
1− (1 + tc)exp(−tc)

1− exp(−tc)

)2

.

With this information, the ICC parameter using the observed outcomes can be found as:

ρt = corr(T ∗i j,T
∗
il) =

cov(T ∗i j,T
∗
il)√

var(T ∗i j)var(T ∗il)
for j , l. (3.5)

The method of numerical integration to find the ICC parameter using observed outcomes is not

pursued in this thesis. Instead, the small sample properties of the ICC estimator using observed

outcomes (̂ρt) are examined by the simulation study alone.
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3.4 Summary
The Moran (1967) algorithm is used to generate the correlated time-to-event outcomes in

chapter 4. The small sample properties of ICC parameter using censoring indicators (equation

3.4) are further evaluated in chapter 5. However, the ICC estimators using observed outcomes

are only examined by the simulation study alone.



Chapter 4

Design of the Simulation Study

There are five sections in this chapter. Section 4.1 describes and justifies the selected pa-

rameter combinations. Section 4.2 explains how the data are generated using the multivariate

exponential model. Section 4.3 describes the ICC estimators used in this simulation study.

The criterion used to assess the performance of the ICC estimators are outlined in section 4.4.

Finally section 4.5 summarizes the key issues described in this chapter.

4.1 Parameters

According to Burton et al. (2006), the parameter values should ideally represent the most

common circumstances. Small and positive values of ICC are most commonly observed in

CRTs (Donner and Klar, 2000, p. 9) and thus the parameter values of ICC are chosen accord-

ingly (Table 4.1). In addition, as noted in chapter 2, a balanced study design with only one

follow-up group is considered. This would be akin to using data from the control group of a

completed CRT to estimate the ICC for a new trial. Forty clusters are chosen to evaluate the

performance of each ICC estimator. The choice for the total number of clusters (k) and cluster

sizes (m) is motivated by the following trials: Binka et al. (1996); Daly et al. (1995). Data from

these trials are used as examples in chapter 6.

25



Chapter 4. Design of the Simulation Study 26

In this simulation study, the assumptions of no accrual period and constant marginal hazard

rate (λ) simplify the relationship between study follow-up time (tc) and percentage of admin-

istratively censored observations (c) as shown in equation (2.3). The assumption of constant

hazard rate is in agreement with the prior simulation studies (Jung and Jeong, 2003; Su et al.,

2011). Furthermore, a change in constant hazard rate implies a linear transformation of time-

to-event outcomes (see section 3.1). Since the estimation of ICC is unaffected by linear trans-

formation of the outcomes (Solomon and Taylor, 1999), the hazard rate is a nuisance factor in

this simulation study and thus restricted to be one event per person-year.

Table 4.1: Parameter combinations of the simulation study
Parameter Description Values
ρ ICC 0, 0.01
k Number of clusters 40
m Cluster size 200, 2
λ Hazard rate (per person-year) 1
c (†) Percent censored (%) 1% to 99% in increment of 1%
† also investigate the scenarios where the censoring mechanism is ignored (see section 4.4.5).

Since all subjects enter the study at the same point in time and since only administrative

censoring is imposed, the censored observations are determined by dichotomizing the corre-

lated time-to-event outcomes at the termination point of the study. The parameter values of

percent censoring encapsulate the entire domain. For example, the primary outcome of early

childhood mortality in Binka et al. (1996) is rare (high percent censored) while the primary

outcome of tube failure in Daly et al. (1995) is common (low percent censored). The marginal

hazard rate and amount of anticipated censoring is specified in advance to fix the length of

the study. The length of the study ranges from 3.6 days (with 99% censored observations)

to 4.61 years (with 1% censored observations). A factorial design is used to generate 396

(= 2×1×2×1×99) scenarios, which are derived from the parameter values listed in Table 4.1.

Each scenario involves the generation of 1,000 independent datasets.
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4.2 Data generation
Moran’s algorithm is used to generate the correlated time-to-event outcomes, Ti j . This

algorithm is initiated with the k replicates of two independent vectors A and B as described in

section 3.1. The simulation study is conducted using SAS V. 9.4 (SAS Institute Inc., 2012).

The generation of random numbers for the multivariate normal distribution is performed using

the RANDNORMAL command for the clusters of size 200 and 2. In addition, a unique starting

seed is specified for each scenario to ensure its independence with respect to other scenarios

and its replication for future research. The SAS code used to generate the data is provided in

Appendix B.

4.3 Estimation of the ICC
The ANOVA ICC is estimated using (1) censoring indicators and (2) observed outcomes

(i.e. omitting the censored observations). The censoring indicators dichotomize the occurrence

of time-to-event outcomes as shown in equation (2.1). The observed time-to-event outcomes

are recorded only if the event occurs within the follow-up period of the study.

4.3.1 Truncation of the ICC estimator

Even though the ICC parameter is non-negative, a negative estimate of ICC can arise due to

sampling error. The probability of obtaining a negative ICC estimate is inversely proportional

to the number of clusters, the cluster size and the ICC parameter (Wang et al., 1992). For

example, a relatively small number of clusters coupled with a smaller ICC parameter may lead

to a substantial increase in the probability of obtaining a negative ICC estimate. Hence, many

researchers (e.g. Lui (2000); Chakraborty et al. (2009)) considered the truncated ICC estimator,

which involves truncating negative ICC estimates to zero. Although the use of truncated ICC

estimators is often not recommended (Wang et al., 1992), such estimates are reported in this

simulation study for the purpose of comparison with non-truncated ICC estimates.
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4.3.2 Removal of singletons

The ICC estimator derived from observed outcomes involves the removal of censored ob-

servations and this will give rise to clusters of variable size. At times there may be only one

member per cluster especially when m = 2. Even though this singleton provides an extra degree

of freedom, it does not provide any additional information with respect to the within-cluster

variance component of the ICC estimator. Thus the effect of removing a singleton is also as-

sessed for the ICC estimator derived from observed time-to-event outcomes. It must be noted

that the presence of singletons may increase the estimated variance when the values of the ICC

are specified to be small (Swiger et al., 1964). The ICC estimator obtained from censoring

indicators uses the information from fixed cluster sizes (m = 200 and 2) and thus the omission

of singletons is not then applicable.

The conditions of truncating and of omitting singletons give rise to six ICC estimators in

the simulation study, as listed in Table 4.2. There are four ICC estimators using observed

outcomes: ρ̂t, ρ̂∗t , ρ̂t∼ and ρ̂∗t∼. The asterisk (∗) indicates truncation of the ICC estimator while

tilda (∼) indicates omission of clusters with a single observation. On the contrary, there are

two ICC estimators derived from censoring indicators: ρ̂c and ρ̂∗c.

Table 4.2: The ANOVA ICC estimators of the simulation study
ICC estimator Source (c, t) Negative estimates (∗) Omitting singletons (∼)
ρ̂c
ρ̂∗c

Censoring Indicators Included
Truncated

N/A
N/A

ρ̂t
ρ̂∗t

Observed time-to-event
outcomes

Included
Truncated

No
No

ρ̂t∼
ρ̂∗t∼

Included
Truncated

Yes
Yes

4.3.3 Undefined ICC estimators

The ICC estimator derived from censoring indicators is undefined when all subjects either

have the event during follow-up or all subjects have censored outcomes because then MSB
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and MSW are zero. Similarly, the ICC estimator derived from observed outcomes is undefined

when all observations are censored. The probability of obtaining such results is increased when

the percent censoring is close to zero or one. Such replicates are recorded as failed samples and

thus discarded from this simulation study. Furthermore, the failed replicates may contribute to

biased and imprecise results (Burton et al., 2006). Hence, the results are only reported for

scenarios with less than 10% failed samples.

4.4 Performance of the ICC estimators
It is important to assess the performance of an estimator using more than one criterion

(Burton et al., 2006). Hence, the performance of the six ICC estimators described in Table

4.2 is assessed using bias, variance, MSE and a sign test measurng the relative frequency with

which one estimator is closer to the true value of the ICC as compared to the other.

4.4.1 Bias

Bias is assessed by measuring the deviation of the mean ICC estimate in relation to the

ICC parameter: δ = ρ̂v − ρ, where ρ̂v

(
=

∑n
w=1

ρ̂v,w
n

)
denotes the mean ICC estimate derived

from censoring indicators or observed outcomes with appropriate conditions of truncation and

removal of singletons (Table 4.2).The index w is used to denote, n, the number of successful

replications (see section 4.3.3). Note that n is only reported for scenarios with less than 10%

failure rate of estimating the ICC (i.e. n ≥ 900).

This definition of bias is chosen because the results of relative bias are uninterpretable

when the ICC parameter is specified to be zero. However, the bias is standardized to establish

the 10% relative bias as a criterion for acceptable amount of bias in this simulation study

when ρ , 0 (Wang et al., 1992). The biases of between
(
σ2

B

)
and within

(
σ2

W

)
cluster variance

components are also assessed to gain more insight on the bias of ICC estimators. Since the

hazard rate is restricted to be one event per person year, σ2
B and σ2

W are a function of the ICC

parameter where σ2
B = ρ and σ2

W = 1−ρ (see section 3.2). For the sake of simplicity, the biases



Chapter 4. Design of the Simulation Study 30

of only non-truncated variance components are assessed.

4.4.2 Variance

In this simulation study, the variance of the ICC estimators is computed as:

Var(̂ρv) =

n∑
w=1

(̂ρv,w− ρ̂v)2

n−1
.

4.4.3 Mean square error

MSE is used to measure the accuracy of ICC estimators. MSE is estimated as the sum of

variance and square of the bias (Wackerly et al., 2008, pg. 393). Equivalently, MSE is also

defined as:

MSE(̂ρv) =
1
n

n∑
w=1

(̂
ρv,w−ρ

)2 .

4.4.4 Sign test

A sign test is used to construct a criterion for the within-run comparison of the ICC esti-

mators (Rosner et al., 1977) derived from censoring indicators and observed outcomes. The

purpose of this test is to determine which ICC estimator tends to be consistently closer to

ρ. The non-truncated ICC estimator using the censoring indicators
(̂
ρc

)
is compared with the

non-truncated ICC estimator using the observed outcomes
(̂
ρt

)
. Hence only one test statistic

of the sign test (dc,t) is constructed since the other four ICC estimators (Table 4.2), involving

truncation and omission of singletons, intrinsically depend on ρ̂t and ρ̂c.

An indicator variable is defined using the following expression:

η = |̂ρc−ρ| − |̂ρt −ρ|

for each of the n replicates. If η is positive for a particular replicate then it is coded one;

otherwise it is coded zero. Furthermore, the proportion dc,t is computed as the average of the

indicator variables over n replicates. The two-sided P-value is obtained from the binomial
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distribution testing for the deviation of the proportion dc,t from 0.5. It can be deduced that if

dc,t < 0.5 then ρ̂c is estimating the ICC parameter more closely than ρ̂t.

4.4.5 Other exploratory measures

The consistency of the non-truncated ANOVA estimator is explored in the absence of cen-

soring mechanism to ensure the validity of this simulation study. The disparity between the

ICC parameter using the censoring indicators (equation 3.4) and the mean ICC estimator using

the censoring indicators
(̂
ρc

)
is evaluated to show agreement between the analytic work and

the results of the simulation study. In addition, the correlation between the non-truncated ICC

estimators using censoring indicators and observed outcomes is assessed (in the presence of

administrative censoring) to discern the relationship between the two methods of estimating

the ICC.

4.5 Summary
The primary focus of this simulation study is to compare the performance of six ICC esti-

mators (Table 4.2) under the factorial combinations of five parameters (Table 4.1). The bias,

variance and MSE of ICC estimators are obtained for all the investigated scenarios where the

failure rate of estimating the ICC is less than 10%. In addition, a sign test is performed to

determine which ICC estimator tends to be closer to ρ.



Chapter 5

Results of the simulation study

There are five sections in this chapter. Section 5.1 discusses how the results are formulated.

Section 5.2 explores the consistency of ANOVA ICC estimator in the absence of censoring.

Section 5.3 describes the performance of ICC estimators in the presence of administrative

censoring. The criteria of bias, variance, MSE and sign test are used to assess the performance

of ICC estimators. Section 5.4 describes some exploratory results of this study. Section 5.5

summarizes this chapter.

5.1 Formulation of results

The results of this simulation study are divided into four cases based on the factorial com-

binations of ρ (= 0 and 0.01), m (=200 and 2) and k (=40) specified in Table 4.1. Each case

consist of 99 scenarios where percent censoring is specified from 1% to 99% in the increments

of 1%. The results of scenarios with more than 10% failure rate of estimating the ICC are

excluded (see section 4.3.3).

Series plots are used to compare the performance of the ICC estimators over the entire

domain of percent censoring. The truncated estimators are labeled with dotted lines while the

non-truncated estimators are labeled with solid lines. The results of the sign test are also shown

32
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using the series plot where the shaded region imply statistical significance at the nominal level

of 0.05 and 0.001. In particular, the upper half of the shaded region indicates that the ANOVA

ICC estimator using the observed outcomes estimated the true parameter more closely than the

ANOVA ICC estimator using the censoring indicators. The lower half of the shaded region

indicates the opposite.

5.2 Absence of censoring

The ANOVA ICC is estimated using the data generated from the Moran’s algorithm (i.e.

without imposing any administrative censoring). One thousand replicates are nested within

each scenario (denoted as θ) and 99 scenarios are nested within each case. Hence, Table 5.1

provide the overall summary of estimating the ICC in the absence of censoring for 396 param-

eter combinations of this simulation study.

Table 5.1: Mean bias of ANOVA ICC estimator in the absence of censoring
Parameter combinations Mean bias

Case ρ m k θ † Minimum Median Maximum
1 0 200 40 99 -0.00007 0.0000007 0.0001
2 0.01 200 40 99 -0.0005 -0.0001 0.0003
3 0 2 40 99 -0.01 0.0007 0.01
4 0.01 2 40 99 -0.01 ‡ -0.002 0.02 ‡
† corresponds to the 99 scenarios in the presence of administrative censoring.
‡ violates the criteria of 10% relative bias.

5.3 Presence of administrative censoring

Administrative censoring is imposed for the four cases listed in Table 5.1. Only the non-

truncated ICC estimators (̂ρc, ρ̂t) are reported for the first two cases because the effects of trun-

cating the ICC estimators and of omitting singletons are negligible when m = 200. However,

the effects of truncating the ICC estimators and of omitting singletons are substantial when

m = 2. Thus, the six ICC estimators listed in Table 4.2 are reported when m = 2.
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5.3.1 Time-to-event outcomes in community trials (m = 200)

The mean bias of non-truncated ICC estimators using censoring indicators (̂ρc) and ob-

served outcomes (̂ρt) is summarized in Table 5.2. Furthermore, the mean bias of ρ̂c and ρ̂t

over the entire domain of percent censoring is shown in Figure 5.1 when ρ = 0; Figure 5.7

when ρ = 0.01. The mean bias of ρ̂c and ρ̂t is symmetrically distributed around zero when

ρ = 0. However, the mean bias of ρ̂c follows a negative quadratic relationship with respect to

administrative censoring when ρ = 0.01. In contrast, the gradual increase in the magnitude of

negative bias is evident for ρ̂t with the increasing frequency of administrative censoring when

ρ = 0.01.

Table 5.2: The summary of mean bias when m = 200
Mean bias

ρ Source ICC estimator Minimum Median Maximum
0 Censoring indicators ρ̂c -0.001 0.00001 0.0001
0 Observed outcomes ρ̂t -0.004 -0.00001 0.001
0.01 Censoring indicators ρ̂c -0.01 ‡ -0.006 ‡ -0.003 ‡
0.01 Observed outcomes ρ̂t -0.01 ‡ -0.01 ‡ -0.002 ‡
‡ violates the criteria of 10% relative bias.

The following description of results is applicable to case where ρ = 0.01. The variance

of ρ̂c remains fairly constant while the variance of ρ̂t increases with respect to administrative

censoring (see Figure 5.8). The MSE of ρ̂c is greater than MSE of ρ̂t under low frequency of

administrative censoring (see Figure 5.9). However, the MSE of ρ̂c is consistently lower than

MSE of ρ̂t under moderate to high frequency of administrative censoring. The between-cluster

and within-cluster variance components of ρ̂c and ρ̂t are negatively biased (see Figure 5.10

and Figure 5.11, respectively) . The results of sign test indicate that ρ̂t estimates the true ρ

more closely than ρ̂c under minimal frequency of administrative censoring (see Figure 5.12).

However, ρ̂c consistently estimates the true ρ more closely than ρ̂t under moderate to high

frequency of administrative censoring.
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Figure 5.1: Mean ICC estimate for case 1: ρ = 0, m = 200, k = 40



C
h
a
pt
e
r

5.
R
e
su
lt
s
o
f
t
h
e
sim
u
lat
io
n
st
u
d
y

36

Figure 5.2: Variance of ICC estimators for case 1: ρ = 0, m = 200, k = 40
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Figure 5.3: Mean square error of ICC estimators for case 1: ρ = 0, m = 200, k = 40
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Figure 5.4: Mean between-cluster variance component for case 1: ρ = 0, m = 2, k = 40
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Figure 5.5: Mean within-cluster variance component for case 1: ρ = 0, m = 200, k = 40
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Figure 5.6: Sign test for case 1: ρ = 0, m = 2, k = 40
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Figure 5.7: Mean ICC estimate for case 2: ρ = 0.01, m = 200, k = 40
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Figure 5.8: Variance of ICC estimators for case 2: ρ = 0.01, m = 200, k = 40
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Figure 5.9: Mean square error of ICC estimators for case 2: ρ = 0.01, m = 200, k = 40
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Figure 5.10: Mean between-cluster variance component for case 2: ρ = 0.01, m = 200, k = 40
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Figure 5.11: Mean within-cluster variance component for case 2: ρ = 0.01, m = 200, k = 40
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Figure 5.12: Sign test for case 2: ρ = 0.01, m = 200, k = 40



Chapter 5. Results of the simulation study 47

5.3.2 Bivariate time-to-event outcomes (m = 2)

The non-truncated ICC estimators using censoring indicators (̂ρc) and observed outcomes

(̂ρt) are negatively biased when ρ = 0.01 (see Figure 5.19). However, ρ̂t and ρ̂c are symmetri-

cally distributed around zero when ρ = 0 (see Figure 5.13). In general, the truncated ANOVA

estimators {̂ρ∗c, ρ̂
∗
t , ρ̂
∗
t∼} have greater bias but lower variance and MSE as compared to their non-

truncated counterparts {̂ρc, ρ̂t, ρ̂t∼}. The positive bias of truncated estimators generally increases

with the increasing frequency of administrative censoring. The omission of singletons further

increases the amount of negative bias as compared to ρ̂t. The variance of ρ̂t, ρ̂
∗
t , ρ̂t∼, ρ̂

∗
t∼ in-

creases with the increasing frequency of administrative censoring (see Figure 5.14 and 5.20).

However, the variance of ρ̂c and ρ̂∗c remains fairly constant with respect to administrative cen-

soring. The MSE of the ICC estimators using the observed outcomes increases exponentially

under high rate of administrative censoring while the MSE of ICC estimators derived from cen-

soring indicators remained fairly constant (see Figure 5.15 and 5.21). The results of variance

components and sign test are similar to the cases where m = 200.

Table 5.3: The summary of mean bias when m = 2
Mean bias

ρ Source ICC estimator Minimum Median Maximum
0 Censoring indicators ρ̂c -0.01 -0.00003 0.01
0 ρ̂∗c 0.03 0.06 0.07
0 Observed outcomes ρ̂t -0.02 0.001 0.03
0 ρ̂∗t 0.06 0.1 0.3
0 ρ̂t∼ -0.05 -0.002 0.02
0 ρ̂∗t∼ 0.06 0.1 0.2

0.01 Censoring indicators ρ̂c -0.02 ‡ -0.006 ‡ 0.01 ‡
0.01 ρ̂∗c 0.008 ‡ 0.05 ‡ 0.07 ‡
0.01 Observed outcomes ρ̂t -0.04 ‡ -0.007 ‡ 0.03 ‡
0.01 ρ̂∗t 0.06 ‡ 0.1 ‡ 0.2 ‡
0.01 ρ̂t∼ -0.09 ‡ -0.01 ‡ 0.005 ‡
0.01 ρ̂∗t∼ 0.05 ‡ 0.09 ‡ 0.2 ‡
‡ violates the criteria of 10% relative bias
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Figure 5.13: Mean ICC estimate for case 3: ρ = 0, m = 2, k = 40



C
h
a
pt
e
r

5.
R
e
su
lt
s
o
f
t
h
e
sim
u
lat
io
n
st
u
d
y

49

Figure 5.14: Variance of ICC estimators for case 3: ρ = 0, m = 2, k = 40
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Figure 5.15: Mean square error of ICC estimators for case 3: ρ = 0, m = 2, k = 40
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Figure 5.16: Mean between-cluster variance component for case 3: ρ = 0, m = 2, k = 40
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Figure 5.17: Mean within-cluster variance component for case 3: ρ = 0, m = 2, k = 40
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Figure 5.18: Sign test for case 3: ρ = 0, m = 2, k = 40
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Figure 5.19: Mean ICC estimate for case 4: ρ = 0.01, m = 2, k = 40
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Figure 5.20: Variance of ICC estimators for case 4: ρ = 0.01, m = 2, k = 40
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Figure 5.21: Mean square error of ICC estimators for case 4: ρ = 0.01, m = 2, k = 40
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Figure 5.22: Mean between-cluster variance component for case 4: ρ = 0.01, m = 2, k = 40
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Figure 5.23: Mean within-cluster variance component for case 4: ρ = 0.01, m = 2, k = 40
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Figure 5.24: Sign test for case 4: ρ = 0.01, m = 2, k = 40
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5.4 Exploratory results
The results of this simulation study are confirmed with the analytic work shown in chap-

ter 3. In addition, the correlation between the non-truncated ICC estimators using censoring

indicators and observed outcomes is assessed.

5.4.1 Agreement with analytic work

The mean of non-truncated ICC estimator derived from censoring indicators (̂ρc) is com-

pared with its analytic expression (ρc) over the entire range of administrative censoring. Figure

5.25 (a)-(d) and Table 5.5 summarizes the results of measuring the disparity between the ρ̂c

and ρc for the four cases considered in this simulation study.

Table 5.4: Summary of disparity (= ρ̂c−ρc) for the four cases.
Parameters Disparity (= ρ̂c−ρc)

Case ρ m k Minimum Median Maximum
1 0 200 40 -0.00007 0.000007 0.0001
2 0.01 200 40 -0.0002 -.00001 0.0002
3 0 2 40 -0.01 0.00003 0.01
4 0.01 2 40 -0.01 -0.001 0.02

5.4.2 Corr(̂ρc, ρ̂t)

The correlation between non-truncated ICC estimator using censoring indicators (̂ρc) and

observed outcomes (̂ρt) is assessed for the 396 parameter combinations of this simulation study.

Figure 5.26 (a)-(d) and Table 5.5 summarizes the correlation between ρ̂c and ρ̂t.

Table 5.5: Summary of Corr(̂ρc, ρ̂t)
Parameters Corr(̂ρc, ρ̂t)

Case ρ m k Minimum Median Maximum
1 0 200 40 -0.08 -0.007 0.09
2 0.01 200 40 -0.06 0.06 0.48
3 0 2 40 -0.2 0.0002 0.2
4 0.01 2 40 -0.2 -0.007 0.07
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Figure 5.25: The mean of non-truncated ICC estimator (solid gray line) and ICC parameter (solid black line) derived from censoring
indicators

(a) Case 1: ρ = 0, m = 200, k = 40 (b) Case 2: ρ = 0.01, m = 200, k = 40

(c) Case 3: ρ = 0, m = 2, k = 40 (d) Case 4: ρ = 0.01, m = 2, k = 40
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Figure 5.26: The correlation between non-truncated ICC estimators using censoring indicators and observed outcomes

(a) Case 1: ρ = 0, m = 200, k = 40 (b) Case 2: ρ = 0.01, m = 200, k = 40

(c) Case 3: ρ = 0, m = 2, k = 40 (d) Case 4: ρ = 0.01, m = 2, k = 40
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5.5 Summary
The results of this simulation study showed that the non-truncated ANOVA estimator of

ICC derived from censoring indicators (̂ρc) and observed outcomes (̂ρt) are both negatively

biased when ρ , 0. The negative bias is also evident for between cluster and within cluster

variance components of ρ̂c and ρ̂t. In addition, the sign test shows that ρ̂t estimates the ICC

parameter more closely than ρ̂c under minimal frequency of administrative censoring when

ρ , 0. However, ρ̂c estimates the ICC parameter more closely than ρ̂t under moderate to high

frequency of administrative censoring. The analytic work in chapter 3 supports the results of

this simulation study. The correlation between ρ̂t and ρ̂c is negligible when ρ = 0 or m = 2.

However, substantial amount of correlation is observed when ρ , 0 and m = 200.



Chapter 6

Examples

This chapter describes the analyses of two CRTs with time-to-event outcomes. The first trial

involved the randomization of large clusters of variable size while the second trial involved

the randomization of small clusters each with a fixed number of observations. Background

information and descriptive analysis are provided for each CRT in the first two sections. The

purpose of this chapter is to estimate the ICC using the methods described in chapter 4. The

estimation of ICC is carried out using observed outcomes and censoring indicators. Finally,

section 6.3 provides some concluding remarks comparing ICC estimated using data from the

two CRTs.

6.1 Malaria induced childhood mortality

Malaria is a mosquito-borne infectious disease caused by the protozoan belonging to the

genus Plasmodium (Rodrigues et al., 2008). This infection is most common at the end of

the rainy season when mosquitoes are breeding. According to the World Health Organization

(2014), 90% of all global deaths due to malaria occur in Africa. Furthermore, children under

the age of 5 account for 78% of all malaria deaths in Africa. Several studies have shown that

transmission of malaria can be reduced by having children sleep under mosquito nets (Abdulla
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et al., 2001; Binka et al., 1996).

The purpose of this trial was to assess the impact of insecticide inpregnated bednets on

child mortality in relation to the control group (Binka et al., 1996). This trial was conducted

in Ghana (Africa) from July 1993 to June 1995. The rural population in the study area lived in

dispersed settlements of compounds which were composed of related individuals. Before the

start of this trial, all members within the study area were enumerated and relevant information

about their socioeconomic status was recorded. An open lottery system was used to randomly

provide 48 of the 96 clusters (defined as geographic areas) with mosquito nets which were

impregnated with permethrin every 6 months. During the study follow-up, each compound was

visited every three months to record information on birth, migration and death. In addition, a

field supervisor visited randomly selected clusters to evaluate compliance in the use of bednets.

The primary outcome of child mortality due to malaria was ascertained by three independent

physicians. Each death was classified to a particular category if at least 2 of the 3 physicians

agreed; otherwise the cause of death was classified as undetermined.

6.1.1 Descriptive analysis

The greatest impact on child mortality was recorded for children under the age of three as

they were most vulnerable to malaria (Binka et al., 1996). Hence attention is limited to children

under 36 months of age when they started the trial. There were 8,816 children randomly

assigned to the permethrin impregnated bednet group while 9,115 children were randomly

assigned to the control group.

The minimum and maximum number of children per cluster assigned to the bednet group

ranged from 119 to 268 and 102 to 298 in the control group. Heavy censoring was observed

in both groups as mortality was rare. Figure 6.1 shows decreased childhood mortality in the

bednet group as compared to the control group during the entire follow-up of the study.
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Table 6.1: Summary statistics for the control and bednet group.
Summary statistics Control group Bednet group
Total children 8816 9115
Minimum cluster size 102 119
Mean cluster size 190 184
Maximum cluster size 298 268
Censoring rate (%) 95.1 96.0

Figure 6.1: Cumulative-incidence of childhood mortality in bednet and control group.
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6.1.2 Estimation of the ICC

The ICC is estimated for both intervention groups using the observed time of death and cen-

soring indicators. The ICC estimate in the control group was 0.004 using censoring indicators

and -0.022 using observed time of child death. In contrast, the ICC estimate in permethrin im-

pregnated bednet group was 0.001 using censoring indicators and 0.006 using observed time

of child death. Furthermore, after the omission of a cluster where only one child death was

recorded (cluster 39 in control group), the ICC estimate was -0.024. The negative ICC esti-

mates may be truncated to zero as the ICC parameter is non-negative (Wang et al., 1992).

The ICC estimates in Table 6.2 may lead to different interpretations. For example, the

outcome of child death within each cluster is positively correlated using censoring indicators

while being negatively correlated using observed outcomes. These inconsistent results may be
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explained, in part, due to the lack of correlation between ρ̂c and ρ̂t for time-to-event outcomes

in community trials where high frequency of administrative censoring is imposed. This is

shown in chapter 5.

Table 6.2: The ANOVA ICC estimates of control and bednet group.
Source ICC estimator Control group Bednet group
Censoring indicators ρ̂c 0.004 0.001

ρ̂∗c 0.004 0.001
ρ̂t -0.022 0.006

Observed outcomes ρ̂∗t 0 0.006
ρ̂t∼ -0.024 0.006
ρ̂∗t∼ 0 0.006

* denotes truncated ICC estimator
∼ denotes omission of singletons

6.2 Time-to-tube failure in children with otitis media

Inflammation of the middle ear (otitis media) is the most common illness among young

children (Le and Lindgren, 1996). Many patients and physicians turn to surgical interventions

such as placement of ventilating tube in the eardrum to reduce the incidence of otitis media

episodes.

The purpose of this trial was to extend the life of ventilating tubes with a two week in-

tervention of prednisone and sulfamethoprin as compared to the placebo group (Daly et al.,

1995). From Feburary 1987 to January 1990, eighty children between the age of 6 months to

8 years were enrolled with documented history of otitis media. After the surgical placement

of ventilating tubes in both ears, 41 children were randomized to the treatment group while

39 children were randomized to the placebo group. Subjects were initially examined before

and two weeks after the surgical treatment. In addition, subjects were examined every three

months for the entire duration of the study follow-up until the primary outcome of tube failure

(blockage or extrusion) was observed.
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6.2.1 Descriptive analysis

Le and Lindgren (1996) studied the correlated time-to-tube failure for 78 children as two

children were excluded from the analysis. One subject was omitted from the analysis as only

one ear received a ventilating tube. The amount of censoring for 38 subjects in the placebo

group and 40 subjects in the prednisone and sulfamethoprim group was similar and relatively

low (Table 6.3). Furthermore, Figure 6.2 shows the decreased incidence of tube-failure in

prednisone and sulfamethoprim group as compared to placebo group during the entire length

of follow-up after randomization.

Table 6.3: Summary statistics for prednisone and sulfamethoprim, and placebo group
Summary statistics Placebo group Prednisone and sulfamethoprim group
Total children 38 40
Censoring rate (%) 9.2 6.3

Figure 6.2: Cumulative-incidence of tube failure in prednisone and sulfamethoprim, and
placebo group.
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6.2.2 Estimation of the ICC

The ICC is estimated for both groups using observed failure times of ventiliating tubes

and censoring indicators. The ICC estimate in the placebo group was 0.54 using censoring
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indicators and 0.48 using tube failure times. In contrast, the ICC estimate in prednisone and

sulfamethoprim group was -0.05 using censoring indicators and 0.24 using tubal-failure times.

After the removal of singletons, the ICC estimate was 0.49 in placebo group and 0.26 in pred-

nisone and sulfamethoprim group. Similar to the previous example, the negative ICC estimates

may be truncated to zero (Wang et al., 1992).

As shown in Table 6.4, the outcome of tube failure in prednisone and sulfamethoprim group

is positively correlated using observed outcomes while being negatively correlated using cen-

soring indicators. These inconsistent results of estimating the ICC using censoring indicators

and observed outcomes may be explained due to lack of correlation between ρ̂c and ρ̂t for bi-

variate time-to-event outcomes (as shown in chapter 5). Furthermore, increased instability of

estimating the ICC due to smaller cluster size may also contribute to these inconsistent results.

Table 6.4: The ANOVA ICC estimates of Placebo and prednisone and sulfamethoprim group.
Source ICC estimator Placebo group Prednisone and sulfamethoprim group
Censoring indicators ρ̂c 0.54 -0.05

ρ̂∗c 0.54 0
ρ̂t 0.48 0.24

Observed outcomes ρ̂∗t 0.48 0.24
ρ̂t∼ 0.49 0.26
ρ̂∗t∼ 0.49 0.26

* denotes truncated ICC estimator
∼ denotes omission of singletons

6.3 Summary
The ICC estimates computed from observed outcomes and censoring indicators were quite

different in both examples. The inconsistency of estimating the ICC from observed outcomes

and censoring indicators may further contribute to misleading description of results. The in-

consistent reults may be described due to the lack of correlation between ρ̂c and ρ̂t.
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Discussion

This chapter contains four sections. Section 7.1 highlights the discussion of estimating

the ICC for time-to-event outcomes. Section 7.2 describes some limitations of the simulation

study. Section 7.3 provides scope for future research. Section 7.4 summarizes this chapter and

also provides some recommendations for estimating the ICC in CRTs time-to-event outcomes.

7.1 Key findings

Gao et al. (2015) recommended using the binary outcomes (i.e. censoring indicators) to

estimate the ICC in CRTs because “ICC is difficult to estimate for survival data”. Our study

was primarily designed to gain more insight about the performance of ICC estimators in the

presence of administrative censoring. The key findings are summarized below according to the

performance criteria of bias, variance, MSE and sign test.

The ICC parameter using the censoring indicators (ρc) is a function of true ICC (ρ) and per-

cent administratively censored (c) (see section 3.3.1). As a consequence, ρc remains unaffected

with any changes in total number of clusters (k), cluster size (m) or hazard rate (λ). Hence, a

substantial deviation in negative bias may not be observed if variable cluster size is considered

in this simulation study. It may also be noted that the analytic expression of ρc simplifies to
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zero when ρ = 0. However, in the presence of positively correlated outcomes, ρc displays an

asymmetric quadratic relationship with respect to administrative censoring. This relationship

can be explained with the following equation (i.e. in absence of Laguerre polynomial):

c2× ln2(c)
c(1− c)

.

The Newton-Raphson method (Lachin, 2011) can be used to show that this equation is maxi-

mized at 20% censoring. The addition of Laguerre polynomial further attenuates the negative

quadratic relationship depending on the value of ρ and c. However, more importantly, the an-

alytic expression of ρc demonstrates that the censoring indicator approach leads to negatively

biased estimation when ρ , 0. Exploratory results of this simulation study also confirm that an

increase in the total number of clusters does not reduce the amount of negative bias of the ICC

estimators using either the censoring indicators or observed outcomes.

Negative bias for non-truncated ICC estimators using the observed outcomes increases pro-

portionally with the relative frequency of administrative censoring when ρ , 0. This is because

administrative censoring systematically removes the outcomes with longer event times. As a

result, the between-cluster (σ̂2
b) and the within-cluster (σ̂2

w) variance estimators become nega-

tively biased. For example, consider the case where 1% administrative censoring is imposed

for 40 clusters of size 200. On average, one might expect eighty out of eight thousand obser-

vations (= 40×200) to be administratively censored. This corresponds to negligible change in

the denominators of σ̂2
b and σ̂2

w (equation 2.4) which include the terms of total number of clus-

ters (r) and average cluster size with the penalty factor (mo). However, the omission of longer

event times decreases the overall mean of observed outcomes
(
T
∗

··

)
. The cluster-specific mean

of observed outcomes
(
T
∗

i·

)
decreases only if a longer event time is censored within a particu-

lar cluster. This leads to substantial reduction in the sums of squared difference of MSB and

MSW. The combined effect of omitting longer event times on r, k, mo, T
∗

·· and T
∗

i· ultimately

attenuates ρ̂t towards zero as the amount of administrative censoring is increased.
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The increase in cluster size to two hundred reduces the variance of all ICC estimators in re-

lation to the cases where cluster size is two (Ukoumunne, 2002). The smaller variance further

reduces the disparity between non-truncated and truncated ICC estimators as the occurrence

of negative ICC estimates is reduced when m = 200. A decrease in variance of ICC estimator

using the censoring indicators is recorded at the extreme values of percent censoring. This may

be explained due to the ICC parameter using the censoring indicators being close to zero at the

extreme values of percent censoring. Under moderate frequency of administrative censoring,

the variance of all ICC estimators using the censoring indicators remains unchanged. However,

the variance of all ICC estimators derived from observed outcomes increases with respect to

administrative censoring. This may be explained due to the reduction in total number of events

being recorded as the frequency of administrative censoring is increased. Furthermore, a de-

crease in variance is noted for the ICC estimators where singletons are omitted and this is in

agreement with previous studies (Swiger et al., 1964).

Since MSE incorporate the information of variance and bias, similar results are also re-

flected in the performance criteria of MSE. For example, MSE is increased for all ICC estima-

tors using observed outcomes with the increasing frequency of administrative censoring. The

truncated ICC estimators have lower MSE than their non-truncated counterparts possibly due

to reduction in estimated variance (Bellhouse, 2015).

The sign test is used to determine which ICC estimator tends to be closer to ρ over n

replicates. The non-truncated ICC estimator using observed outcomes (̂ρt) is compared to the

non-truncated ICC estimator using censoring indicators (̂ρc). As expected, ρ̂t estimate ρ more

closely than ρ̂c under minimal frequency of administrative censoring (≤ 5%). In contrast, ρ̂c

estimates ρ more closely than ρ̂t under moderate to high frequency of administrative censoring

(> 5%). In spite of substantial amount of negative bias observed in both estimators, ρ̂c estimates

ρ more closely than ρ̂t primarily due to v̂ar
(̂
ρc

)
≤ v̂ar

(̂
ρt

)
.
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7.2 Limitations
The ANOVA estimator is negatively biased in the absence of censoring (as shown in section

5.2). However, the amount of negative bias is negligible as compared to the amount of bias

observed in the presence of censoring for all six ICC estimators. Furthermore, the negative

bias of the ANOVA estimator decreases with the increase in total number of clusters; thus

implying that ANOVA is a consistent estimator of ICC (Lehmann and Casella, 1998).

The administrative censoring is imposed from 1% to 99% in increments of 1%. This gives

rise to replicates where clusters of size one (singletons) are predominant, especially when

m = 2. If a particular replicate consist of only singletons then the ANOVA ICC estimator

using observed outcomes (̂ρt) would equate to one. In addition, ρ̂t is observed to be less than

-1 when singletons are predominant within a replicate. The occurence of ρ̂t less than -1 may

be explained using the following inequality which describes the distributional range of ICC

estimates (Wang et al., 1992):

1
mo−1

≤ ρ̂t ≤ 1.

If 1 <mo < 2 where mo is defined on page 14 then the theoretical lower bound of ρ̂t is less than

-1. An appropriate solution is to either use the truncated ICC estimator (̂ρ∗t ) or to use the ICC

estimator where singletons are omitted (̂ρt∼).

7.3 Future research
The focus of this thesis was limited to estimating the ICC for time-to-event outcomes using

the multivariate exponential model as described by Moran (1967). Furthermore, attention was

restricted to the following set of conditions: (1) accrual prior to randomization of the control

group, (2) administrative censoring and (3) constant hazard rate with respect to time. The

first two conditions allowed the time-to-event outcomes to be dichotomized at the termination

point (tc) of the study. Donner and Eliasziw (1994) evaluated the effect of dichotomizing
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an inherently continuous outcome (under normality) on sample size estimation in reliability

studies. A possible next step may be to explore the impact of using the ICC derived from

observed outcomes and censoring indicators on sample size estimation in CRTs with time-to-

event outcomes.

The future research may also encompass different type of censoring mechanism and accrual

scheme. For example, He and Nagaraja (2011) and Lin et al. (2013) considered Type II cen-

soring mechanism while Manatunga and Chen (2000) restricted attention to uniform censoring

mechanism. Jung (2008) explored uniform accrual period to estimate the sample size for CRTs

with bivariate survival outcomes.

A plausible next step may be to construct a new bias-corrected ICC estimator that accom-

modates censoring in time-to-event outcomes. This may share some similarity with the bias-

corrected estimators for binary (Saha and Paul, 2005) and continuous outcomes (Atenafu et al.,

2012). The use of ML estimation for Moran (1967) algorithm may utilize all the available in-

formation from time-to-event outcomes. Future studies may also examine the use of Kendall’s

τ to measure the degree of association among outcomes within a cluster (Lakhal et al., 2009).

7.4 Summary
This study showed that the use of censoring indicators or observed outcomes lead to neg-

atively biased estimation of the ICC parameter. However, censoring indicators and observed

outcomes may still be preferred to estimate the ICC under certain circumstances. For example,

if moderate frequency of administrative censoring (e.g. 5% < c < 25%) is recorded then cen-

soring indicators are preferred to estimate the ICC. On the other hand, if minimal frequency of

administrative censoring (e.g. c ≤ 5%) is recorded then observed outcomes are preferred to es-

timate the ICC. Ultimately, neither approach can be recommended in general due to substantial

amount of negative bias in the presence of administrative censoring.
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Appendix A

ICC estimators

Appendix A contains two section. Section A.1 limits the attention to clusters of fixed size

to show the equivalence among ANOVA, ML and pairwise estimators of the ICC. Section

A.2 derives the binary analogue of Gaussian ML estimator that uses censoring indicators to

estimate the ICC.

A.1 Equivalence among ANOVA , ML and pairwise estima-

tors of the ICC
Consider a one-way random effects model:

Yi j = µ+αi + εi j, i = 1, ...,k, j = 1, ...,m.

where αi ∼ N(0,σ2
B) is the cluster-specific random effect and εi j ∼ N(0,σ2

W) is the residual

error term. Moreover, αi and εi j are assumed to be independent. Suppose also that there are k

clusters each with a fixed size of m members. The ICC parameter can be expressed as

ρA = Corr(Yi j,Yil) for j , l

=
Cov(Yi j,Yil)√

Var(Yi j)Var(Yil)
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=
E(Yi j−µ)(Yil−µ)√

E(Yi j−µ)2E(Yil−µ)2

=
E(αi + εi j)(αi + εil)√

E(αi + εi j)2E(αi + εil)2

=
E(α2

i )√
E(α2

i + ε2
i j)E(α2

i + ε2
il)

=
σ2

B

σ2
B +σ2

W

Using a one-way random effects model (Table A.1), the ANOVA estimator of ICC can be

expressed as:

ρ̂A =
MS B−MS W

MS B+ (m−1)MS W
(A.1)

The between sum of squares (SSB) and within sum of squares (SSW) are defined as:

MS B =
1

k−1
S S B =

m
k−1

k∑
i=1

(
Y i·−Y ··

)2

MS W =
1

k(m−1)
S S W =

1
k(m−1)

k∑
i=1

m∑
j=1

(
Yi j−Y i·

)2

where Y ·· =
∑k

i=1
∑m

j=1 Yi j

km and Y i· =

∑m
j=1 Yi j

m

Table A.1: One-way random effects model
Source Sum of squares Degrees of freedom Mean square Expected

mean square
Between clusters SSB k-1 MSB mσ2

B +σ2
W

Within clusters SSW k(m-1) MSW σ2
W

Total SST* mk-1
* where total sum of squares (SST)

In the case of fixed cluster sizes, Rosner et al. (1977) derived the ML estimator of ICC under

normality and also showed that it is equivalent to pairwise estimator of ICC. The asymptotic

equivalence of ML estimator and pair-wise estimator to the ANOVA estimator can also be
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established for a large number of k clusters:

ρ̂PW = ρ̂ML =

∑k
i=1

∑m
j=1

∑m
l=1

(
Yi j−Y ··

) (
Yil−Y ··

)
(m−1)

∑k
i=1

∑m
j=1

(
Yi j−Y ··

)2 for j , l

=

∑k
i=1

∑m
j=1

(
Yi j−Y ··

)∑m
l=1

(
Yil−Y ··

)
−

∑k
i=1

∑m
j=1

(
Yi j−Y ··

)2

(m−1)(S S B+ S S W)

=

∑k
i=1 m2

(
Yi·−Y ··

)
− (S S B+ S S W)

(m−1)(S S B+ S S W)

=
m

∑k
i=1

∑m
j=1

(
Yi·−Y ··

)2
− (S S B+ S S W)

(m−1)(S S B+ S S W)

=
m(S S B)− (S S B+ S S W)

(m−1)(S S B+ S S W)

=
(m−1)S S B+ S S W

(m−1)(S S B+ S S W)

=
m−1
m−1

×
(k−1)MS B+ k(MS W)

(k−1)MS B+ k(m−1)MS W

=

k−1
k MS B+ MS W

k−1
k MS B+ (m−1)MS W

≈
MS B+ MS W

MS B+ (m−1)MS W

= ρ̂A as needed �

Hence, the equivalence among ANOVA, ML and the pairwise ICC estimator is shown for

continuous outcomes where there are equal number of subjects per cluster.

A.2 Binary analogue of Gaussian ML estimator

In the context of binary outcomes (i.e. censoring indicators), the ML estimator is written

as:

ρ̂ML =

∑k
i=1

∑m
j=1

∑m
l=1(∆i j− p̂)(∆il− p̂)

(m−1)
∑k

i=1
∑m

j=1(∆i j− p̂)2
=

∑k
i=1

∑m
j,l(∆i j− p̂)(∆il− p̂)

(m−1)
∑k

i=1
∑m

j=1(∆i j− p̂)2
(A.2)

where ∆i j is defined in equation 2.1 and p̂ = 1
mk

∑k
i=1

∑m
j=1 ∆i j. Furthermore, equation A.2 is

algebraically manipulated to show that the estimator proposed by Xie and Waksman (2003) is
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equivalent to this binary analogue of the ML estimator. The denominator of equation A.2 is

manipulated as

= (m−1)
m∑

i=1

k∑
j=1

(∆i j− p̂)2

= (m−1)
m∑

i=1

k∑
j=1

∆2
i j−2∆i j

1
mk

m∑
i=1

k∑
j=1

∆i j +

 1
mk

m∑
i=1

k∑
j=1

∆i j


2

= (m−1)

 m∑
i=1

k∑
j=1

∆2
i j−

1
mk

 m∑
i=1

k∑
j=1

∆i j


2

Since

∆i j =


1 if Ti j ≤ tc

0 if Ti j > tc

it can be noted that
m∑

i=1

k∑
j=1

∆2
i j =

m∑
i=1

k∑
j=1

∆i j.

With this assertion, the denominator can be further simplified as

= (m−1)

 m∑
i=1

k∑
j=1

∆i j−
1

mk

 m∑
i=1

k∑
j=1

∆i j


2

= (m−1)

 m∑
i=1

k∑
j=1

∆i j


1− 1

mk

m∑
i=1

k∑
j=1

∆i j


= mk(m−1)(p̂)(1− p̂) as needed �

Therefore, the equivalence between the estimator proposed by Xie and Waksman (2003) and

binary analogue of Guassian ML estimator is shown as:

ρ̂ML =

∑k
i=1

∑m
j=1

∑m
l=1(∆i j− p̂)(∆il− p̂)

(m−1)
∑k

i=1
∑m

j=1(∆i j− p̂)2
=

∑k
i=1

∑m
j,l(∆i j− p̂)(∆il− p̂)

mk(m−1)(p̂)(1− p̂)
= ρ̂2



Appendix B

Data generation

The data is generated using SAS V. 9.4 (SAS Institute Inc., 2012). The code of the SAS

macro (generatedata) is shown below. Note that the time-to-event outcomes (labelled as

‘Time’) in dataset (&out) are not right truncated at the termination point of the study. Hence

the dataset (&out) provides the user with the failure times simulated directly from Moran’s

algorithm. Furthermore, the time-to-event outcomes are dichotomized at the termination point

of the study to determine the censoring indicators. The censoring indicators are labelled as

‘censortime’ in dataset ‘&out’ where 0 denotes censored observations and 1 denotes observed

outcomes.

B.1 SAS macro
/*************************************************************************

SAS macro for generating the data using Moran’s algorithm:

1) seed= unique seed to generate the data

2) rep= total number of replications

3) rho= true ICC value

4) m= cluster size

5) k= number of clusters

6) hazard= constant hazard rate (per year)

7) percentcensor= administrative censoring (percent decimal: zero to one)

8) out= name of the dataset

*************************************************************************/
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%macro generatedata (seed=,rep=,rho=,m=,k=,hazard=,percentcensor=,out=);

proc iml;

call randseed(&seed);

*censoring time;

censortime=(-1/&hazard)*(log(&percentcensor));

call symputx(’censortime’,censortime);

*mean of multivariate normal;

Mean = j(1,&m,0);

*variance-covariance matrix of multivariate normal distribution;

a = j(&m,&m,sqrt(&rho));

b= I(&m)*(1-sqrt(&rho));

Cov= a + b;

*Moran algorithm;

*Two independent vectors from multivariate normal distribution;

Aij = RandNormal(&k*&rep, mean, Cov);

Bij = RandNormal(&k*&rep, mean, Cov);

*indicators for replicates and cluster;

replicate = shape( repeat(T(1:&rep), 1, &k), &k*&rep );

cluster = shape( repeat(T(1:&k), &rep, 1), &k*&rep );

*Marginal exponential random variables;

Tij= (Aij##2 + Bij##2)/(2*&hazard);

*concatenation of indicators and Tij;

T= replicate|| cluster || Tij;

varNames = ( "replicate" )||( "cluster" )||

("T1":("T"+strip(char(ncol(Cov))))) ;

*generation of the dataset;

create wideform from T [colname=VarNames];

append from T;

close wideform;

quit;

*converting wideform to longform;

proc transpose data= wideform out=longform (RENAME=(_NAME_= Tij COL1=Time));

by replicate cluster;

run;
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proc sort data=longform;

by replicate;

run;

*labelling the dataset with subject ID, cluster ID, censoring indicators;

data dataset;

set longform;

by replicate;

if first.replicate then ID=0; ID+1;

cluster= ceil(ID/&m);

if Time <= &censortime then censoring = 1;

else censoring = 0;

run;

proc sql;

create table &out as select

replicate, ID , cluster, Time, censoring

from dataset;

quit;

%mend;

%generatedata (seed=,rep=,rho=,m=,k=,hazard=,percentcensor=,out=);
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