September 2015

Real Time Testing and Validation of a Novel Short Circuit Current (SCC) Controller for a Photovoltaic Inverter

Vishwajitsinh H. Atodaria
The University of Western Ontario

Supervisor
Dr. Rajiv K. Varma
The University of Western Ontario

Graduate Program in Electrical and Computer Engineering

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Engineering Science

© Vishwajitsinh H. Atodaria 2015

Follow this and additional works at: http://ir.lib.uwo.ca/etd
[Part of the Power and Energy Commons](http://ir.lib.uwo.ca/etd)

Recommended Citation
http://ir.lib.uwo.ca/etd/3166

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca.
REAL TIME TESTING AND VALIDATION OF A NOVEL SHORT CIRCUIT CURRENT (SCC) CONTROLLER FOR A PHOTOVOLTAIC INVERTER

(Thesis format: Monograph)

by

Vishwajitsinh Atodaria

Graduate Program in Electrical and Computer Engineering

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Engineering Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario
London, Ontario, Canada

© Vishwajitsinh Atodaria 2015
Abstract

About 45% applications from PV solar farm developers seeking connections to the distribution grids in Ontario were denied in 2011-13 as the short circuit current (SCC) capacity of several distribution substations had already been reached. PV solar system inverters typically contribute 1.2 p.u. to 1.8 p.u. fault current which was not considered acceptable by utility companies due to the need for very expensive protective breaker upgrades. Since then, this cause has become a major impediment in the growth of PV based renewable systems in Ontario.

A novel predictive technique has been patented in our research group for management of short circuit current contribution from PV inverters to ensure effective deployment of solar farms. This thesis deals with the real time testing and validation of a short circuit current (SCC) controller based on the above technique. With this SCC controller, the PV inverter can be shut off within 1-2 milliseconds from the initiation of any fault in the grid that can cause the short circuit current to exceed the rated current of the inverter. Therefore, the power system does not see any short circuit current contribution from the PV inverter and no expensive upgrades in protective breakers are required in the system.

The performance of the PV solar system with the short circuit current controller is simulated and tested using (i) industry grade electromagnetic transients software PSCAD/EMTDC (ii) real time simulation studies on the Real Time Digital Simulator (RTDS) (iii) physical implementation on dSPACE board to generate firing pulses for the inverter. The validation of controller is done on dSPACE board with actual PV inverter short circuit waveforms obtained from Southern California Edison Short Circuit Testing Lab. This novel technology is planned to be showcased on a physical 10 kW PV solar system in Bluewater Power Distribution Corporation, Sarnia, Ontario. This proposed technology is expected to remove the technical hurdles which caused the denials of connectivity to several PV solar farms, and effectively lead to greater connections of PV solar farms in Ontario and in similar jurisdictions, worldwide.
Keywords

Dedicated to my

Family and Friends
Acknowledgments

I would like to express my sincere gratitude to my supervisor, Dr. Rajiv K. Varma, for his generous support, valuable suggestions, and constructive guidelines in every step of my graduate career at Western University. I feel very proud to have had the opportunity to work under his kind supervision and to have the opportunity to work within industry that has enriched my knowledge and built my confidence to succeed in my future career. No words are adequate to express my gratefulness to him. I, herewith, convey my sincere and warmest regards to him.

I am highly obliged to Tim Vanderheide, Chief Operating Officer, Bluewater Power (BWP) Corporation to have provided me the rare opportunity to work closely with industrial people. I convey my profound respect to him as well. I would also like to thank Maureen Glaab, Energy Services Coordinator, BWP, for her very co-operative and friendly manner which made my working environment much more informal.

I would like to gratefully acknowledge Mr. Richard J. Bravo and Mr. Steven Robles for providing actual short circuit results for commercial inverters from Southern California Edison Short Circuit Testing Lab. I am also thankful to Dr. Vijay Parsa for the valuable discussions and suggestions in the initial part of this project.

I also acknowledge the Ontario Centres of Excellence (OCE), Hydro One Networks Inc., Bluewater Power Corp., and Natural Sciences and Engineering Research Council (NSERC) for their financial support for two years.

I am deeply thankful to all my friends Sibin, Diwash, Sridhar, Ehsan, Hesam, Mohammed, and Reza for their constant encouragement and support during my stay at Western University.

I would like to express my affectionate appreciation to my family for their unwavering faith and continuous encouragement to work hard during my academic education. It would not have been possible without their love.

VISHWAJITSINH ATODARIA
Table of Contents

Abstract .. ii
Acknowledgments .. v
Table of Contents .. vi
List of Tables .. xi
List of Figures ... xii
List of Appendices .. xvii
List of Abbreviations .. xviii
List of Symbols ... xx
CHAPTER 1 ... 1
INTRODUCTION ... 1

1.1 GENERAL ... 1

1.2 PV INVERTER MODELING ... 2

1.2.1 PV Inverter Configuration .. 2

1.2.2 Control Schemes for PV Inverter ... 4

1.2.3 Inverter Firing Strategy ... 4

1.3 SHORT CIRCUIT CURRENT CONTRIBUTION OF GRID CONNECTED PV SOLAR SYSTEM.... 4

1.4 CONDITIONS FOR DISCONNECTING PV INVERTER ... 5

1.5 FAULT DETECTION TECHNIQUES ... 6

1.6 SIMULATION STUDIES ... 8

1.6.1 Electromagnetic Transients Software Simulation Studies .. 9

1.6.2 Real Time Digital Simulation Studies .. 9
1.6.3 Implementation on Digital Controller Board ... 10
1.7 MOTIVATION OF THESIS ... 10
1.8 OBJECTIVE AND SCOPE OF THESIS ... 11
1.9 OUTLINE OF THESIS .. 12

CHAPTER 2 ... 14
MODELING OF THREE PHASE GRID CONNECTED PHOTOVOLTAIC SYSTEM WITH SHORT CIRCUIT CURRENT CONTROLLER .. 14
2.1 INTRODUCTION ... 14
2.2 SYSTEM MODEL .. 15
 2.2.1 System Description .. 15
 2.2.2 PV Source Model .. 17
 2.2.3 Inverter Control Modeling ... 17
 2.2.4 DC Link Capacitor .. 27
 2.2.5 LCL Filter Modeling and Design ... 29
 2.2.6 Step Up Transformer ... 31
2.3 SHORT CIRCUIT CURRENT CONTROLLER DESIGN 32
 2.3.1 Concept .. 32
 2.3.2 Short Circuit Current Controller Module ... 32
 2.3.3 Performance of Short Circuit Current Controller Module 37
2.4 CONCLUSION .. 41

CHAPTER 3 ... 42
ELECTROMAGNETIC TRANSIENTS SIMULATION USING PSCAD SOFTWARE .. 42
3.1 INTRODUCTION ... 42
3.2 SYSTEM MODEL .. 42
3.3 IMPLEMENTATION OF SCC CONTROLLER IN PSCAD SOFTWARE 44
3.4 ASYMMETRICAL FAULT STUDIES ... 48
3.4.1 Single Line - Ground Fault ... 48
3.4.2 Line - Line Fault .. 51
3.4.3 Line - Line - Ground Fault ... 55
3.5 SYMMETRICAL FAULT STUDIES ... 55
3.5.1 Line - Line - Line Fault .. 55
3.5.2 Line - Line - Line Ground Fault .. 59
3.6 FAULT STUDIES AT DIFFERENT TIME INSTANTS 59
3.6.1 Asymmetrical Fault ... 59
3.6.2 Symmetrical Fault .. 63
3.7 RESPONSE TIME OF SCC CONTROLLER FOR FAULTS AT DIFFERENT
 TIME INSTANTS .. 67
3.8 LOAD SWITCHING .. 68
3.9 CONCLUSION ... 69

CHAPTER 4 .. 71
REAL TIME SIMULATION USING REAL TIME DIGITAL SIMULATOR (RTDS)
... 71
4.1 INTRODUCTION ... 71
4.2 OVERVIEW OF REAL TIME DIGITAL SIMULATOR 71
 4.2.1 Concept .. 71
 4.2.2 Hardware Structure .. 72
4.3 SYSTEM MODEL .. 75
4.4 IMPLEMENTATION OF SCC CONTROLLER IN RTDS 75
4.5 ASYMMETRICAL FAULT STUDIES .. 77
 4.5.1 Single Line - Ground Fault .. 77
 4.5.2 Line - Line Fault ... 81
4.5.3 Line - Line - Ground Fault ... 84
4.6 SYMMETRICAL FAULT STUDIES .. 85
 4.6.1 Line - Line - Line Fault ... 85
 4.6.2 Line - Line - Line - Ground Fault .. 89
4.7 FAULT STUDIES AT DIFFERENT TIME INSTANTS 92
 4.7.1 Asymmetrical Fault .. 92
 4.7.2 Symmetrical Fault .. 96
4.8 LOAD SWITCHING ... 100
4.9 COMPARISON BETWEEN RTDS AND PSCAD RESULTS 101
4.10 CONCLUSION ... 102

CHAPTER 5 ... 104

VALIDATION OF SHORT CIRCUIT CURRENT CONTROLLER ON dSPACE 104
 5.1 INTRODUCTION .. 104
 5.2 CONCEPT OF dSPACE SIMULATION .. 104
 5.3 OVERVIEW OF dSPACE PLATFORM .. 105
 5.3.1 dSPACE Software ... 105
 5.3.2 dSPACE Controller Board ... 106
 5.4 ANALYSIS OF ACTUAL SHORT CIRCUIT CURRENT WAVEFORMS 107
 5.4.1 Single - Line Ground Fault .. 108
 5.4.2 Line - Line Fault .. 110
 5.4.3 Line - Line - Ground Fault .. 112
 5.5 IMPLEMENTATION OF SCC CONTROLLER ON dSPACE BOARD 114
 5.6 dSPACE RESULTS .. 117
 5.6.1 Single Line - Ground Fault .. 118
 5.6.2 Line - Line Fault .. 121
5.6.3 Line - Line - Ground Fault ... 124

5.7 COMPARISON BETWEEN dSPACE AND RTDS RESULTS 127

5.8 ACTUAL IMPLEMENTATION OF SCC CONTROLLER 127

5.8.1 TMS320F28335 eZdsp Board ... 128

5.8.2 Current Sensor .. 129

5.8.3 DC Switch .. 130

5.8.4 AC Switch .. 130

5.8.5 Interfacing Circuits ... 131

5.8.6 Hardware Implementation of the Short Circuit Current Controller 134

5.8.7 Customization .. 134

5.9 CONCLUSION .. 135

CHAPTER 6 ... 137

CONCLUSIONS AND FUTURE WORK .. 137

6.1 INTRODUCTION ... 137

6.2 A NOVEL SHORT CIRCUIT CURRENT CONTROLLER FOR PV SOLAR SYSTEM .. 138

6.3 ELECTROMAGNETIC TRANSIENT SIMULATION USING PSCAD SOFTWARE .. 138

6.4 REAL TIME SIMULATION USING RTDS .. 139

6.5 VALIDATION OF SHORT CIRCUIT CURRENT CONTROLLER ON dSPACE .. 140

6.6 THESIS CONTRIBUTIONS .. 141

6.7 PUBLICATIONS .. 142

6.8 FUTURE WORK .. 142

REFERENCES .. 143

APPENDIX: System Data .. 152
List of Tables

Table 1.1: Voltage Range and Maximum Clearing Time ..5

Table 1.2: Frequency Range and Maximum Clearing Time6

Table 3.1: Response Time of SCC Controller during LL Fault67

Table 3.2: Response Time of SCC Controller during LLL Fault67

Table 5.1: Oscillation Frequencies of the Inverter Current during SLG Fault109

Table 5.2: Oscillation Frequencies of the Inverter Current during LL Fault111

Table 5.3: Oscillation Frequencies of the Inverter Current during LLG Fault113
List of Figures

Figure 1.1: Cumulative installed PV capacity 2000-2013 ... 1

Figure 1.2: Typical PV solar farm inverter .. 3

Figure 2.1: Single Line Diagram of System Model ... 15

Figure 2.2: Detailed PV System Inverter and Conventional Controller with Incorporated Short Circuit Current Controller ... 16

Figure 2.3: General VSI based PV Inverter Controller ... 18

Figure 2.4: Vector Representation of Three Phase Electrical Variables in Stationary (abc) and Rotating Reference (dq) Frame ... 20

Figure 2.5: Schematic Diagram of PV Inverter Connected to Grid ... 21

Figure 2.6: Block Diagram of Inner Loop VSI Current Controller ... 26

Figure 2.7: Sinusoidal Pulse Width Modulation Technique for VSI .. 27

Figure 2.8: Block Diagram of SCC Controller Module ... 33

Figure 2.9: Flow Chart of SCC Controller ... 36

Figure 2.10: Inverter Output Current for SLG Fault (a) Phase A (b) Phase B 38

Figure 2.11: Inverter Output Current for LL Fault (a) Phase A (b) Phase B 39

Figure 2.12: Inverter Output Current for LLG Fault (a) Phase A (b) Phase B 40

Figure 3.1: System Model with PV System Inverter, Conventional Controller and the incorporated Short Circuit Current Controller in PSCAD/EMTDC 43

Figure 3.2: Implementation of SCC Controller in PSCAD .. 44
Figure 3.3: (a) Inverter Fault Current at $t = 2$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller ... 49

Figure 3.4: Zoomed Waveforms of (a) Inverter Fault Current at $t = 2$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller ... 50

Figure 3.5: (a) Inverter Fault Current at $t = 2$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller .. 53

Figure 3.6: Zoomed Waveforms of (a) Inverter Fault Current at $t = 2$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller ... 54

Figure 3.7: (a) Inverter Fault Current at $t = 2$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller .. 57

Figure 3.8: Zoomed Waveforms of (a) Inverter Fault Current at $t = 2$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller ... 58

Figure 3.9: (a) Inverter Fault Current at $t = 4.5$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller .. 61

Figure 3.10: Zoomed Waveforms of (a) Inverter Fault Current at $t = 4.5$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller ... 62

Figure 3.11: (a) Inverter Fault Current at $t = 5$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller .. 65

Figure 3.12: Zoomed Waveforms of (a) Inverter Fault Current at $t = 5$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller ... 66

Figure 3.13: (a) PV Inverter Current with 60 MW, 0.9 pf Load Switching (b) Triggering Signals from SCC Controller .. 69

Figure 4.1: RTDS Hardware .. 74

Figure 4.2: Implementation of SCC Controller in RSCAD .. 76
Figure 4.3: D Flip-Flop ... 76

Figure 4.4: (a) Inverter Fault Current at \(t = 2 \) sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller ... 78

Figure 4.5: Zoomed Waveforms of (a) Inverter Fault Current at \(t = 2 \) sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller ... 80

Figure 4.6: (a) Inverter Fault Current at \(t = 2 \) sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller ... 82

Figure 4.7: Zoomed Waveforms of (a) Inverter Fault Current at \(t = 2 \) sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller ... 84

Figure 4.8: (a) Inverter Fault Current at \(t = 2 \) sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller ... 86

Figure 4.9: Zoomed Waveforms of (a) Inverter Fault Current at \(t = 2 \) sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller ... 88

Figure 4.10: (a) Inverter Fault Current at \(t = 2 \) sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller ... 90

Figure 4.11: Zoomed Waveforms of (a) Inverter Fault Current at \(t = 2 \) sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller ... 91

Figure 4.12: (a) Inverter Fault Current at \(t = 5.0018 \) sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller ... 94

Figure 4.13: Zoomed Waveforms of (a) Inverter Fault Current at \(t = 5.0018 \) sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller ... 95

Figure 4.14: (a) Inverter Fault Current at \(t = 3.5077 \) sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller ... 98
Figure 4.15: Zoomed Waveforms of (a) Inverter Fault Current at $t = 3.5077$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller .. 99

Figure 4.16: (a) PV Inverter Current with 60 MW, 0.9 pf. Load Switching (b) Triggering Signals from SCC Controller .. 101

Figure 5.1: Block Diagram of dSPACE Software System .. 105

Figure 5.2: Block Diagram of dSPACE Hardware System 106

Figure 5.3: FFT of Inverter Fault Current during SLG Fault 108

Figure 5.4: FFT of Inverter Fault Current during LL Fault 110

Figure 5.5: FFT of Inverter Fault Current during LLG Fault 112

Figure 5.6: Implementation of SCC Controller on dSPACE 115

Figure 5.7: Filter Delay .. 116

Figure 5.8: dSPACE Test Set Up ... 117

Figure 5.9: (a) Inverter Fault Current (b) Filtered Inverter Fault Current (c) Triggering Signal and (d) Inverter Fault Current with SCC Controller .. 119

Figure 5.10: Performance of SCC Controller in Yokogawa during SLG Fault 120

Figure 5.11: (a) Inverter Fault Current (b) Filtered Inverter Fault Current (c) Triggering Signal and (d) Inverter Fault Current with SCC Controller 122

Figure 5.12: Performance of SCC Controller in Yokogawa during LL Fault 123

Figure 5.13: (a) Inverter Fault Current (b) Filtered Inverter Fault Current (c) Triggering Signal and (d) Inverter Fault Current with SCC Controller .. 125

Figure 5.14: Performance of SCC Controller in Yokogawa during LLG Fault 126

Figure 5.15: Implementation of SCC Controller on a 10 kW PV Solar System 128
Figure 5.16: TMS320F28335 eZdsp Board ... 129
Figure 5.17: Current Sensor LA 55-P ... 130
Figure 5.18: DC Switch .. 131
Figure 5.19: AC Switch .. 131
Figure 5.20: Interfacing between Current Sensor and TMS320F28335 eZdsp Board ... 132
Figure 5.21: Interfacing between TMS320F28335 eZdsp Board and Gating Signals.... 133
Figure 5.22: Interfacing Circuit between TMS320F28335 eZdsp Board and DC Switch .. 134
Figure 5.23: Hardware of the Short Circuit Current Controller............................... 135
List of Appendices

APPENDIX: System Data ..152
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DG</td>
<td>Distributed Generation</td>
</tr>
<tr>
<td>DDAC</td>
<td>Digital to Digital Analog Converter</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processor</td>
</tr>
<tr>
<td>EMTDC</td>
<td>Electromagnetic Transient including DC</td>
</tr>
<tr>
<td>EMTP</td>
<td>Electromagnetic Transient Program</td>
</tr>
<tr>
<td>FACTS</td>
<td>Flexible AC Transmission System</td>
</tr>
<tr>
<td>FCL</td>
<td>Fault Current Limiter</td>
</tr>
<tr>
<td>Fortran</td>
<td>Formula Translation</td>
</tr>
<tr>
<td>GTDI</td>
<td>Gate Transceiver Digital Input</td>
</tr>
<tr>
<td>GTO</td>
<td>Gate Turn Off Thyristor</td>
</tr>
<tr>
<td>HIL</td>
<td>Hardware-in-the-Loop</td>
</tr>
<tr>
<td>HV</td>
<td>High Voltage (winding)</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical & Electronics Engineers</td>
</tr>
<tr>
<td>IGBT</td>
<td>Insulated Gate Bipolar Transistor</td>
</tr>
<tr>
<td>IIR</td>
<td>Infinite Impulse Response</td>
</tr>
<tr>
<td>LV</td>
<td>Low Voltage (winding)</td>
</tr>
<tr>
<td>LVRT</td>
<td>Low Voltage Ride Through</td>
</tr>
<tr>
<td>LL</td>
<td>Line to Line Fault</td>
</tr>
<tr>
<td>LLG</td>
<td>Line to Line to Ground Fault</td>
</tr>
<tr>
<td>LLL</td>
<td>Line to Line to Line Fault</td>
</tr>
<tr>
<td>LLLG</td>
<td>Line to Line to Line to Ground Fault</td>
</tr>
<tr>
<td>MPPT</td>
<td>Maximum Power Point Tracking</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ON</td>
<td>Ontario</td>
</tr>
<tr>
<td>PCC</td>
<td>Point of Common Coupling</td>
</tr>
<tr>
<td>PI</td>
<td>Proportional Integral</td>
</tr>
<tr>
<td>PLL</td>
<td>Phase Locked Loop</td>
</tr>
<tr>
<td>PSCAD</td>
<td>Power System Computer Aided Design</td>
</tr>
<tr>
<td>p.u.</td>
<td>per unit</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaic</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
<tr>
<td>SCC</td>
<td>Short Circuit Current</td>
</tr>
<tr>
<td>SCE</td>
<td>Southern California Edison</td>
</tr>
<tr>
<td>SLG</td>
<td>Single Line to Ground Fault</td>
</tr>
<tr>
<td>SPICE</td>
<td>Simulation Program with Integrated Circuit Emphasis</td>
</tr>
<tr>
<td>SPWM</td>
<td>Sinusoidal Pulse Width Modulation</td>
</tr>
<tr>
<td>STC</td>
<td>Standard Test Condition</td>
</tr>
<tr>
<td>TDD</td>
<td>Total Demand Distortion</td>
</tr>
<tr>
<td>THD</td>
<td>Total Harmonic Distortion</td>
</tr>
<tr>
<td>VAr</td>
<td>Reactive Volt Ampere</td>
</tr>
<tr>
<td>VSC</td>
<td>Voltage Source Converter</td>
</tr>
<tr>
<td>VSI</td>
<td>Voltage Source Inverter</td>
</tr>
</tbody>
</table>
List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>Instantaneous angle between a-axis and d-axis</td>
</tr>
<tr>
<td>Ω</td>
<td>Grid frequency (377 rad/s)</td>
</tr>
<tr>
<td>Δ</td>
<td>Transformer winding configuration (delta)</td>
</tr>
<tr>
<td>Ω</td>
<td>Ohm unit</td>
</tr>
<tr>
<td>µ</td>
<td>Micro unit</td>
</tr>
<tr>
<td>τ</td>
<td>Time constant</td>
</tr>
<tr>
<td>m</td>
<td>Millisecond</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 GENERAL

Renewable energy sources are being increasingly implemented worldwide for environmental considerations. Solar energy is the most widely available source of nonpolluting energy. Although photovoltaic (PV) technology (converts sunlight into electricity) is expensive, it is receiving strong encouragement through various global incentives programs [1,2]. An unprecedented growth of photovoltaic system has been seen over the past few years both in Canada and worldwide. On a global scale, approximately 39,000 MW of new PV were added during 2013, raising the total installed capacity to 138.9 GW [3]. Figure 1.1 shows the evolution of a global PV installation capacity from 2000 to 2013.

![Figure 1.1: Cumulative installed PV capacity 2000-2013 [3]](image-url)
Integration of more Distributed Generators (DGs) in the power system network presents several challenges such as voltage variations, reverse power flows and increase in the short circuit current contribution of the DGs during faults [4,5]. Hence, utility companies, especially in Ontario, Canada, are limiting the connections of DGs into their networks where the short circuit current capacity limits has already been reached [6]. This is done due to the apprehension that short circuit current contribution from DGs may overload the breaker equipment and necessitate expensive breaker protective upgrades [6,7]. A novel technique has been developed and patented for management of short circuit contribution from PV inverters [8,9]. This thesis deals with the comprehensive testing of a short circuit current (SCC) controller based on the above technique through Real Time Digital Simulation (RTDS), dSPACE simulation and validation with actual short circuit current signals obtained from the Southern California Edison (SCE) Short Circuit Testing Lab. The developed SCC controller disconnects the PV inverter from the grid within 1-2 milliseconds from the initiation of any fault in the grid that is likely to cause the short circuit current to exceed the rated inverter current. With this technique, the power system does not experience any short circuit current contribution from the PV inverter and hence the electrical system is protected from any potential damage caused by high magnitude of fault currents.

1.2 PV INVERTER MODELING

1.2.1 PV Inverter Configuration

In PV power plants, there are a number of PV arrays connected to the power converter depending on the size of PV inverters. PV systems of low power level i.e., less than 10 kW are usually configured with a single phase inverter or three phase inverter. However, PV solar systems in the power range of 10 kW to 100 kW are configured with a three phase inverter at a line voltage of 480 V [12]. The output voltage of the PV inverters is transformed to a higher voltage internally or externally to the inverter through step-up transformers [12].

There are two types of inverter configurations employed presently in solar farms. They are string inverters and micro inverters. In string inverter technology, several modules in string
configuration are fed into a single large inverter and are grouped together to feed into a large grid [13,14]. Micro-inverter is also known as AC module technology. Each module has its own inverter and the output of all micro-inverters are integrated together to feed the grid [15,16].

Numerous inverter topologies have been employed for grid connected PV solar farms. They are single state topology for single modules [17], two state topology for multiple modules [18], multilevel inverter topology [19,20], fly-back type inverter [21], fly-back current fed inverter [22] and resonant inverter [23]. Performance of different topologies used by several commercial manufacturers are compared in review of PV modules [24,25].

To construct inverter circuits, manufacturers use Metal-Oxide Semiconductor Field Effect Transistor (MOSFET), Gate Turn-Off (GTO) thyristor, and Insulated Gate Bipolar Transistor (IGBT) switches [26]. Mostly manufacturers use IGBT switches because of their low loss and ease of switching [26,27]. A typical solar farm inverter is a six pulse inverter comprised of 6 IGBT switches as shown in Figure 1.2 [28], with associated snubber circuits for smooth switching operations. The firing pulses to trigger the IGBT switches are generated from the inverter controller.

![Figure 1.2: Typical PV solar farm inverter](image-url)
1.2.2 Control Schemes for PV Inverter

Typically, the controller of a PV solar system is a combination of two control loops: Outer and Inner Control Loop. The outer control loop can be of different types depending upon the operational objectives from the PV system [29,30]. This loop can be used for controlling real and reactive power, AC voltage, DC voltage, etc. The reference currents are generated by the outer control loop. The inner control loop tracks these reference currents. This loop is a current control loop, generating signals for the switching pulse generation module to generate firing pulses for the inverter switches.

1.2.3 Inverter Firing Strategy

Various techniques are used to generate firing pulses for the IGBTs in the inverter such as Sinusoidal Pulse Width Modulation (SPWM), Sinusoidal Vector Pulse Width Modulation (SVPWM) and Hysteresis control [31,32]. Among all these techniques, the SPWM technique is widely used for high power PV inverter applications [31]. In SPWM [32], generation of desired output voltage is achieved by comparing the desired reference waveform with a high frequency triangular carrier wave.

1.3 SHORT CIRCUIT CURRENT CONTRIBUTION OF GRID CONNECTED PV SOLAR SYSTEM

About 45% applications from PV solar farm developers seeking connections to the distribution grids in Ontario were denied during the period 2011-13 as the short circuit current capacity of the substations was already reached [33]. The short circuit current contribution from a PV system inverter is in the range of 1.2 times the rated current for the large size inverter (1MW), 1.5 times for the medium size inverter (500kW) and 2 - 3 times for the smaller inverters [32,33]. Further this short circuit current contribution continues for a period ranging from 4 to 10 cycles [31,34]. Although this amount of short circuit current is small for each PV solar system, the total amount of fault contribution becomes unacceptably large for a distribution line that has a large number of PV systems [33,35]. This was not considered acceptable by utility companies due to the need of very expensive upgrades of protective breakers [31]. This has resulted into the substantial loss of
opportunity to integrate more PV based renewable generation at least in the Ontario network.

1.4 CONDITIONS FOR DISCONNECTING PV INVERTER

According to several grid interconnection standards [38,39,40], regardless of fault level, it is required to disconnect the PV solar farms or any other DGs upon detection of fault on the system. Therefore, it is not only important to detect the faults rapidly, but also to disconnect the DGs from the network as quickly as possible. IEEE Standard 1547 standardizes the rules for connecting distributed generation including PV inverters to the distribution network. This Standard is intended to ensure that Distributed Generators do not violate some of the basic rules of the distribution system for safe and reliable operation of an electrical system. PV inverter manufacturers strive to comply with IEEE 1547 [38], implement anti-islanding operation and ensure that PV inverters stay connected within allowable voltage time and frequency time operating region [12]. Table 1 lists the operating voltage and maximum clearing time and Table 2 lists the operating frequency and maximum clearing time for distributed generation as specified in IEEE 1547 [38].

<table>
<thead>
<tr>
<th>Voltage Range</th>
<th>*Max. Clearing Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(% Nominal)</td>
<td>(seconds)</td>
</tr>
<tr>
<td>V < 50%</td>
<td>0.16</td>
</tr>
<tr>
<td>50% < V < 88%</td>
<td>2</td>
</tr>
<tr>
<td>V > 120%</td>
<td>0.16</td>
</tr>
<tr>
<td>110% < V < 120%</td>
<td>1</td>
</tr>
</tbody>
</table>

(*) For DER ≤ 30 kW; default clearing times for DER > 30 kW

Table 1.1: Voltage Range and Maximum Clearing Time [12]
<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Max. Clearing Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Hz)</td>
<td>(seconds)</td>
</tr>
<tr>
<td>f > 60.5</td>
<td>0.16</td>
</tr>
<tr>
<td>* f < 57.0</td>
<td>0.16</td>
</tr>
<tr>
<td>** 57.0 < f < 59.8</td>
<td>0.16 - 300</td>
</tr>
</tbody>
</table>

(*) 59.3 Hz if DER ≤ 30 kW; (**) for DER > 30 kW

Table 1.2: Frequency Range and Maximum Clearing Time [12]

There are also additional disconnection requirements included in IEEE 1547 [12]:

- Detect island condition and cease to energize within 2 seconds of the formation of an island, which is known as anti-islanding.
- Cease to energize for faults on the area of electrical power system (EPS) circuit.
- Cease to energize prior to circuit reclosure.

1.5 FAULT DETECTION TECHNIQUES

During a short circuit fault in the grid, the fault current from the PV inverter can potentially damage the breakers and other customer equipment in the power system network. Therefore, it is necessary to detect the faults and disconnect the DGs from the network at a very rapid rate. This issue has not been adequately addressed in literature. Various techniques have been developed to detect short circuit condition in PV solar system. All these techniques are described below.

As a first step, adequate modeling of PV solar plants for predicting their short circuit current contributions during network faults is essential [41,42]. The traditional relay technologies mainly use overvoltage, undervoltage and overcurrent signals to detect the faults and subsequently operate the protective breakers. A DG generating more than 1 MW is required for transfer-trip, according to DG interconnection requirement by a utility [39]. Instantaneous over current relay used by the utility takes 17 ms to detect the fault and 5-10
ms to transfer the trip signal [39]. The operating time of traditional breaker is 83 ms. Therefore, the current practice of detecting the fault and disconnecting DGs from network through transfer trip method takes around 105-110 ms. However, by that time the short circuit current continues to flow for 7-8 cycles and exceeds its maximum permissible limit [39].

Grid connected inverters are required to operate at a power factor of unity [43]. However, during the event of short circuit fault in distribution line, a larger amount of fault current generally flows through the distribution line. Due to this, the phase angle and the absolute value of the voltage on the distribution line changes significantly by the effect of line impedance of distribution line at the short circuit fault [44]. A technique has been proposed for quick detection of fault through the monitoring of change in the voltage phase angle [45]. However, this method is not effective because in most parts of the distribution line the voltage phase change was less than 3°. Also, it cannot detect a short circuit fault with high fault resistance. Therefore, combined voltage phase and magnitude [44] technique was designed for PV systems to detect short circuit fault with high fault resistance. The drawback of this design was that it was not able to restrain the fault current completely at substation. Also, the operation of controller during capacitor and transformer energization effect was not taken into account.

The occurrence of grid fault can be identified by using Continuous Wavelet Transform (CWT) [46]. The technique processes voltage and current transients for calculating the change in supply impedance. The fault can be identified within half a cycle and decision is made if the fault requires a DG to be disconnected. A four stage fault protection scheme has been proposed [47] against short circuit fault for inverter based DGs. The inverter is initially controlled as a voltage source, which changes to current controlled mode on detection of fault, thereby limiting the inverter output current.

A protection scheme based on detecting variation in d-q components [48] of voltage magnitude at the point of common coupling is proposed. This method depends on detecting the oscillations in the voltage waveform which will increase the difficulty of the fault detection. Therefore, it fails to detect all types of faults. In [49,50] the positive sequence
component of fundamental voltage is monitored to protect the grid against faults. There is a time delay after the fault because of the positive sequence transformation, d-q reference frame transformation and filter process. This affects the time to detect the fault [49]. It also requires a complicated protection circuitry.

As per the technique reported in [12], when the voltage at any one of the phases of output power of an inverter is less than 50%, the protective relay is set to disconnect the PV inverter after 5 cycles. However, till 5 cycles, the PV inverter continues to contribute short circuit current in the grid which is not acceptable.

A protection scheme based on harmonics detection during short circuit faults is proposed in [51]. However, inverters manufactured nowadays try to keep the Total Harmonic Distortion (THD) as low as possible. If the inverter filtering effect is good, and the magnitude of harmonics generated is less than the threshold value, the fault can neither be detected nor will the tripping signal be generated.

Electronically triggered fault current limiters have been used effectively to limit short circuit currents. A concept of rate of change of current has been proposed as a minimum fault-current change rate limit to prevent nuisance current limiter operation [52,51]. The technique proposed in [50] contradicts with its suggestion stating rate of change of current setting that permits tripping on symmetrical value of current, but blocks it for the same threshold value of asymmetrical current. The technique suggested in [51] does not consider the performance of the proposed controller during high impedance faults in the system.

So far, all the above fast fault detection techniques have been used for protection of networks and DGs; and for asymmetrical fault detection in fault current limiters. However, such techniques have not been used to prevent any short circuit current contribution in excess of the rated or utility acceptable current output of PV solar inverters.

1.6 SIMULATION STUDIES

Development of new power electronic technologies needs to be analyzed comprehensively to understand their operating characteristics and impact on power systems. The control system is an essential part of a power electronic system which needs to be evaluated
thoroughly before installing it in the network. A formal procedure needs to be carried out to transfer the simulation model to the final hardware implementation. This procedure includes: Electromagnetic Transients Software simulation, Real-time simulation, implementation on a digital controller board, and finally, the commissioning of the device [54,55]. These procedures are described below.

1.6.1 **Electromagnetic Transients Software Simulation Studies**

The initial studies for the design of a prototype hardware model are done by using an electromagnetic transients simulation software. This is an efficient tool for the designer to learn about the designed power electronic system and its controller. The performance of controller during fault or any abnormal conditions, along with steady-state operation in power system environment can be predicted from these simulation studies. Different types of commercial softwares are available to simulate power electronic systems such as PSPICE [56], MATLAB/SIMULINK [57] and PSCAD/EMTDC [58], etc. PSPICE is generally used for the simulation of low power electronic applications. Similarly, MATLAB/SIMULNIK and PSCAD/EMTDC are employed for low and high power electronic applications [59].

1.6.2 **Real Time Digital Simulation Studies**

Electromagnetic transients simulation software offers a wide range of power system models for different type of studies. However, the main disadvantage of these tools is that they operate in non-real time. It means that more time is taken by the software to simulate the system phenomenon than the actual real time of the phenomena [60,61]. For instance, a five-cycle fault may take several seconds or minutes of simulation time depending upon the size of the system. Recent advancements in technology have enabled to simulate the power system models in real-time [62,63]. This has become possible due to improvement of parallel-processing computer hardware, digital signal processing and sophisticated power system modeling techniques.

The most popular real-time digital simulation platforms available in market are RTDS and OPAL-RT [64,65]. Real-Time Digital Simulator (RTDS) is a digital power system simulator used widely in the application of power system controls and protection
equipment for performing real time and Hardware-in-the loop (HIL) simulations [66,67]. RTDS is a unique state-of-the-art simulator having multiprocessor architecture designed specifically to simulate electrical power systems in real time [68,69]. This means that a physical phenomenon of 1 sec. in power systems is simulated within 1 sec. of simulation time. The power electronic converters having PWM carrier frequency of 5-10 kHz require a smaller time step to validate the performance of the system. RTDS with its small time step simulation feature has the capability to simulate power electronics controllers in less than 2 µs [64].

1.6.3 Implementation on Digital Controller Board

The power systems network incorporated with short circuit current (SCC) controller is simulated in real time in RTDS. Therefore, a real time hardware controller platform is needed for a physical implementation of the SCC controller which gives real trip signals and not simulated signals.

For rapid prototype developments, different types of real time controller platforms are used such as dSPACE [70], National Instruments [71] and xPC targets [72]. dSPACE is a digital controller board used extensively in several industrial applications due to its various advantages such as visualization tools, different hardware and extensive array of software options [73,74]. It is adopted by various industries and research centers for testing control systems and protective relays [73,75]. The performance of the SCC controller can be validated by testing it on dSPACE controller board. It presents an actual environment to the control system running with real hardware, and exchanges signals in a realistic manner. A dSPACE has a Graphical User Interface (GUI) software known as Control Desk which is used to monitor the program variables during the run time of the simulation [70].

1.7 MOTIVATION OF THESIS

Since a significant number of applications seeking solar farm connections were denied in Ontario, there was a substantial loss of opportunity to integrate PV based renewable generation. Also, solar farms need to be disconnected rapidly when a fault is detected in order to conform to technical connection requirements of the utilities. As stated in literature search (Section 1.5), no technique has been developed so far for fast fault detection and
disconnection of PV solar systems. Therefore, an improved fault current management technique is needed to ensure effective deployment of solar farms.

A novel technique has been developed and patented [10,11] according to which the PV inverter is shut off within 1-2 milliseconds from the initiation of any fault in the grid without the inverter current exceeding its rated peak value. The technique is based on the rate of rise of current together with the current magnitude in a PV solar system based DG. The power system network therefore does not see any short circuit current contribution from the PV inverter, and no protective upgrades are required in the system. The objective of this thesis to test, validate and implement this novel technique in Lab environment, leading to a field demonstration of this technique.

It is emphasized that the objective of this thesis is not to detect the occurrence of any fault in the network but only to identify such fault conditions during which the inverter current is likely to exceed its rated magnitude. This technique is also not intended to provide Low Voltage Ride Through (LVRT) capability to PV inverter [4]. This novel technology is expected to remove the technical hurdles which caused the denials of connectivity to PV solar farms, and effectively lead to greater connections of PV solar farms in Ontario and worldwide.

1.8 OBJECTIVE AND SCOPE OF THESIS

The objective and scope of the thesis are as follows:

- To model and design a short circuit current (SCC) controller which disconnects a PV solar farm from the power system network before the inverter current exceeds its rated peak value during a grid fault.

- To perform various simulation studies of the short circuit current controller using industry grade electromagnetic transients software PSCAD/EMTDC on a typical feeder used in Ontario-Canada.

- To test the performance of the short circuit current controller on a Real Time Digital Simulator (RTDS).
• To validate the performance of developed controller on a Digital Signal Processor (DSP) based dSPACE system with actual PV inverter short circuit waveforms obtained from Southern California Edison Short Circuit Testing Lab.

1.9 OUTLINE OF THESIS

A chapter-wise summary of this thesis is given below:

Chapter 2 explains the modeling of a three phase grid connected 7.5 MW photovoltaic solar system. It includes designing of the inverter control, DC link capacitor, LCL filter and step-up transformer. This chapter also presents the concept of the developed short circuit current controller and fault current management technique based on monitoring of slope and magnitude of inverter output current.

Chapter 3 demonstrates the electromagnetic transients simulation studies using PSCAD software for 7.5 MW PV solar system with the SCC controller incorporated. To understand the performance of controller, case studies are performed by applying different types of faults at PCC. The effectiveness of controller is analyzed during occurrence of faults at different time instants and load switching event.

Chapter 4 presents real time simulation studies of short circuit current controller with three phase grid connected solar system using Real Time Digital Simulator (RTDS). The performance of the short circuit controller is evaluated by applying different types of faults at the inverter terminals. Case studies are performed to understand the effectiveness of controller for faults at different time instants and also during load switching event.

Chapter 5 presents the implementation of the SCC controller on dSPACE platform. The performance of the controller is validated on dSPACE board with actual PV inverter short circuit waveforms obtained from Southern California Edison (SCE) Short Circuit Testing Lab in California. The dSPACE results are investigated thoroughly for asymmetrical fault cases. Finally, the hardware of SCC controller is developed with TMS320F28335 eZdsp board and various interfacing circuits. This will lead to the demonstration of this technology on a 10kW PV solar system at Bluewater Power Distribution Corporation, Sarnia, Canada.
Chapter 6 concludes the entire thesis, and presents the thesis contribution and recommendation for future work.
CHAPTER 2
MODELING OF THREE PHASE GRID CONNECTED PHOTOVOLTAIC SYSTEM WITH SHORT CIRCUIT CURRENT CONTROLLER

2.1 INTRODUCTION

This chapter presents the modeling of a three phase grid connected photovoltaic system incorporated with a novel patented predictive technique of short circuit current management controller from PV inverters. The study system model consists of a typical feeder used in Ontario, Canada. It is assumed that the short circuit current capacity has already reached its limit in this study system. A grid connected 7.5 MW PV solar farm is represented which is connected to the electrical network at the point of common coupling (PCC). The DC power generated by PV solar panels based on solar insolation and temperature is given to the DC-AC converter. The maximum DC power can be obtained at particular solar insolation and temperature by incorporating it with Maximum Power Point Tracking (MPPT) algorithm. With inverter switching, input DC power is transformed into AC power which is supplied to the grid through PCC. A filter is used to maintain power quality by removing unwanted high frequency harmonics. The output voltage of the inverter is stepped up with transformer and transferred to the grid. The modeling of all the above components of the grid connected PV solar system is described in this chapter.

The design of the short circuit current controller as proposed in [8.9] is discussed in this chapter. This novel technique is based on the rate of rise of current together with the magnitude in a PV solar system based DG. The proposed controller promises to shut off the PV inverter within 1-2 milliseconds from the initiation of any fault in the grid without exceeding maximum rated value of inverter current. Therefore, the power system network does not see any short circuit current contribution from PV inverters. This strategy can alleviate the problem of denial of connectivity of solar farms to the Ontario electrical network whose short circuit current capacity has already reached to its limit.
Section 2.2 describes the system model; Section 2.3 delineates the modeling of short circuit current controller. Finally, Section 2.4 concludes the chapter.

2.2 SYSTEM MODEL

The system model comprises a typical distribution network of Ontario, Canada, connected with a PV solar farm at the end of the feeder [76]. The short circuit current limit for this distribution network has already been reached without the PV solar farm being connected. The modeling and design of the different components of the network are described below.

2.2.1 System Description

Figure 2.1 depicts the single line diagram of study system model. The 27.6 kV overhead distribution line is supplied by a substation of two 47 MVA transformers with an impedance of 18.5% each [76]. The distribution line spans over 25 km with a total load of around 15 MVA [76]. Also, a 60 MW adjacent feeder load at 0.9 pf (power factor) is lumped as a single load as shown in the Figure. A 7.5 MW solar farm is connected at the end of feeder. The system data is given in Appendix-A.

![Figure 2.1: Single Line Diagram of System Model](image-url)
Figure 2.2 illustrates the detailed PV system inverter and conventional controller with the short circuit current controller incorporated.

The system consists of a 7.5 MW solar farm as shown in Figure 2.2(a), voltage source inverter as illustrated in Figure 2.2(b), LCL filter as demonstrated in Figure 2.2(c), and the inverter controller as depicted in Figure 2.2(d). The novel controller for management of short circuit current from PV inverter is shown in Figure 2.2(e). Figure 2.2(f) represents...
the GTO based switch used to isolate the solar panels during short circuit scenarios. The modeling of all the above mentioned components is described in subsequent sections.

2.2.2 PV Source Model

The power generating modules in a photovoltaic solar system are PV panels. A number of PV panels are connected in series to form a string. These strings are then connected in parallel to form an array. PV panels consist of various cells connected in series and shunt configuration. These cells produce DC current which is provided to the input terminals of an inverter and corresponding voltage is produced through DC link capacitor.

The generalized model of a photovoltaic panel used is described in [14,77]. The PV panel is modeled by using the parameters provided in the manufacturers’ datasheet as mentioned in Appendix-B. The solar farm consists of 12905 parallel modules and 8 series modules to generate 7.5 MW of power. The module parameters such as series resistance, shunt resistance and diode ideality factor are modeled at Standard Temperature Conditions (STCs) without any repetitive iteration method. The equations used to model PV source are described in [77]. The output of PV module I_{pv} is given to the current controlled source which is connected across the DC link capacitor of an inverter. Thus, DC voltage is regulated and given to the input terminals of an inverter.

To obtain maximum power, voltage is adjusted at PV array terminals with Maximum Power Point Tracking (MPPT) algorithm. The incremental conductance algorithm is used to get reference voltage for MPPT [14]. MPPT algorithm monitors the change in current and voltage at PV module output with a certain time interval known as sampling interval. The current produced by PV (I_{pv}) and voltage generated across DC link capacitor (V_{DC}) are given as an inputs to MPPT block. This MPPT block is available in the library of PSCAD/EMTDC software. The output of MPPT algorithm is V_{mpreff}.

2.2.3 Inverter Control Modeling

The Voltage Source Inverter (VSI) is composed of six IGBT switches associated with snubber circuits as shown in Figure 2.2(b). Sinusoidal Pulse Width Modulation Technique (SPWM) [32] is used to transform DC power to AC. The sinusoidal modulating signals
obtained from the controller are compared with triangular wave, also known as carrier wave, having a switching frequency of 5 kHz. The reason for choosing this switching frequency is to avoid switching losses and noise in the audible range. The result of comparison of the two waves generates the firing pulses to trigger IGBTs of an inverter for injecting PV solar farm power into the AC grid at unity power factor and also controls the DC link voltage. The output power of the inverter can be controlled by controlling the modulating signal, which in turn controls the switching pulse width and the switching instants of the pulses.

Figure 2.3: General VSI based PV Inverter Controller

Figure 2.3 shows the general VSI current controller used for solar farm [78]. The three phase voltages \(V_{AP}, V_{BP}, V_{CP} \) and currents \(I_{AP}, I_{BP}, I_{CP} \) obtained from PCC are converted into \(d-q \) components of voltages \(V_d, V_q \) and currents \(I_d, I_q \) through Park’s transformation [79]. The synchronization angle ‘theta (\(\theta \))’, used in Park’s transformation process is obtained from the PCC voltage through a Phase Lock Loop (PLL) oscillator. The detailed controller configuration to generate modulation signals is explained in the following subsections.

2.2.3.1 Transformation from abc to dq Reference Frame

For balanced three-phase systems, either voltage, current or flux linkage can be represented by a vector. The vector representation of instantaneous three phase variables in stationary
reference frame is given in [80,81]. Figure 2.4 represents the vector representation of three phase electrical variables in stationary (abc) and rotating reference (dq) frame, where:

\[f_a(t) = A \cos(\theta) \]
\[f_b(t) = A \cos \left(\theta - \frac{2\pi}{3} \right) \]
\[f_c(t) = A \cos \left(\theta - \frac{4\pi}{3} \right) \]
\[\theta = \omega t + \phi \quad (2.1) \]

Here, \(f \) represents either instantaneous voltage or current signals
\(\omega = 2\pi f \) is the angular frequency
\(\theta \) is synchronization angle
\(\phi \) is phase angle

Space vector \(\vec{f} \) is given by

\[\vec{f}(t) = \frac{2}{3} \left(f_a(t) + f_b(t)e^{j\frac{2\pi}{3}} + f_c(t)e^{-j\frac{2\pi}{3}} \right) \quad (2.2) \]

The above equation represents a space vector which rotates with speed \(\omega \) with respect to the stationary reference frame. Hence, the three phase variables \(abc \) in stationary reference frame can be transformed into two phase variables in a rotating reference frame: \(d \) (direct) axis and \(q \) (quadrature) axis. Both of these reference frames rotate with the same speed \(\omega \) of the space vector and therefore the transformed quantities appeared to be DC. The \(abc \) to \(dq \) park’s transformation is done as follows [79]:
Figure 2.4: Vector Representation of Three Phase Electrical Variables in Stationary (abc) and Rotating Reference (dq) Frame

\[
\begin{bmatrix}
 f_d \\
 f_q
\end{bmatrix}
= \frac{2}{3}
\begin{bmatrix}
 \cos(\theta) & \cos(\theta + \frac{2\pi}{3}) & \cos(\theta - \frac{2\pi}{3}) \\
 -\sin(\theta) & -\sin(\theta + \frac{2\pi}{3}) & -\sin(\theta - \frac{2\pi}{3})
\end{bmatrix}
\begin{bmatrix}
 f_a(t) \\
 f_b(t) \\
 f_c(t)
\end{bmatrix}
\] (2.3)

Hence,

\[
\tilde{f}(t) = (f_d + jf_q)e^{j(\theta - \phi)}
\]

During d-q voltage transformation, low pass filters are added at the output to obtain noise free fundamental voltage for feedback control.
2.2.3.2 Mathematical Model of PV Inverter Controller

Figure 2.5 illustrates the schematic diagram of PV inverter connected to the power system to obtain the plant transfer function in terms of functional block diagram for analysis purposes. In Figure 2.5, R_s includes switching losses and loss component of the current on DC side i.e. due to I_{loss}. L_s is the leakage reactance and I_a, I_b, and I_c are the phase currents flowing out of an inverter. V_s and V_i shows PCC voltage and VSI output voltage, respectively.

The phase voltages at PCC are denoted as V_{AP}, V_{BP}, and V_{CP}. The output phase voltages of VSI are given as V_{ta}, V_{tb}, and V_{tc}. Then, the AC side dynamic equations can be written as:

$$L_s \frac{dI_a}{dt} = V_{ta} - V_{ap} - R_s I_a \quad (2.4)$$

$$L_s \frac{dI_b}{dt} = V_{tb} - V_{bp} - R_s I_b \quad (2.5)$$

$$L_s \frac{dI_c}{dt} = V_{tc} - V_{cp} - R_s I_c \quad (2.6)$$

![Figure 2.5: Schematic Diagram of PV Inverter Connected to Grid](image-url)

Now, combining (2.4), (2.5) and (2.6), results in,
\[
p \begin{bmatrix}
I_a \\
I_b \\
I_c
\end{bmatrix} = \begin{bmatrix}
-R_s \\
0 \\
0
\end{bmatrix} \begin{bmatrix}
I_a \\
I_b \\
I_c
\end{bmatrix} + \begin{bmatrix}
0 \\
-R_s \\
L_s
\end{bmatrix} \begin{bmatrix}
V_{ta} - V_{ap} \\
V_{tb} - V_{bp} \\
V_{tc} - V_{cp}
\end{bmatrix}
\]

(2.7)

where, \(p \) is operator for \(\frac{d}{dt} \). Applying transformation equation (2.3) for \(abc \) reference frame to \(dq \) synchronous rotating reference frame on (2.7), the following equation is obtained:

\[
L_s \frac{d}{dt} \begin{bmatrix}
I_d \\
I_q
\end{bmatrix} = \begin{bmatrix}
-R_s & L_s \omega \\
-L_s \omega & -R_s
\end{bmatrix} \begin{bmatrix}
I_d \\
I_q
\end{bmatrix} + \begin{bmatrix}
V_{td} - V_d \\
V_{tq} - V_q
\end{bmatrix}
\]

(2.8)

Subscript ‘\(d \)’ and ‘\(q \)’ represent electrical quantities in direct axis and quadrature axis reference frame, respectively.

2.2.3.3 Phase Locked Loop (PLL) Oscillator Design

The PCC voltages \((V_{AP}, V_{BP}, \text{ and } V_{CP}) \) are given to the PLL block available in PSCAD/EMTDC software to obtain the synchronization angle \(\theta \). The offset angle of 1.57 rad (90 degree) has been used to make the alignment of direct axis component \((V_d) \) with the voltage vector in \(abc \) frame. Therefore, in steady state quadrature axis component \((V_q) \) of AC voltage can be considered as zero.

2.2.3.4 Real and Reactive Power Output Control from VSI

According to (2.3), output power equations of a voltage source inverter are calculated. Therefore, real power \((P) \) and reactive power \((Q) \) in \(dq \) frame is as follows:

\[
P = \frac{3}{2} (V_d I_d + V_q I_q)
\]

(2.9)

\[
Q = \frac{3}{2} (V_q I_d - V_d I_q)
\]

(2.10)
As mentioned in Section 2.2.3.3, the alignment of direct axis component \((V_d)\) with the voltage vector in \(abc\) frame makes \(V_{sq} = 0\) through PLL. Hence, equations (2.9) and (2.10) can be rewritten as

\[
P = \frac{3}{2} (V_d I_d)
\]

\[
Q = -\frac{3}{2} (V_d I_q)
\]

Now, the power output from VSI will be controlled by \(I_d\) and \(I_q\) as \(V_d\) is the grid voltage and does not change significantly. To have unity power factor correction, the reference value of reactive power output of the inverter is set to zero. Hence, according to equation (2.12), \(Q = 0\). The desired current output from VSI to get reference power \(P_{ref}\) and \(Q_{ref}\) become:

\[
I_{dref} = \frac{2}{3V_d} P_{ref}
\]

\[
I_{qref} = 0
\]

2.2.3.5 Output Voltage Vector of VSI in Synchronous Reference Frame

After employing sinusoidal pulse width modulation (SPWM) technique [32] for generating firing pulses for switches, the output voltage from VSI in Figure 2.5 is as follows:

\[
V_{ta} = m_a(t) \frac{V_{dc}}{2}
\]

\[
V_{tb} = m_b(t) \frac{V_{dc}}{2}
\]

\[
V_{tc} = m_c(t) \frac{V_{dc}}{2}
\]
Here, \(m_a, m_b, m_c \) are the modulation indexes of the inverter and \(V_{dc} \) is the voltage of DC link capacitor.

Further, fundamental components of the switching pulses are as follows:

\[
m_{a_1} = k \sin(\omega t + \alpha) \quad \text{(2.18)}
\]
\[
m_{b_1} = k \sin(\omega t + \alpha - \frac{2\pi}{3}) \quad \text{(2.19)}
\]
\[
m_{c_1} = k \sin(\omega t + \alpha + \frac{2\pi}{3}) \quad \text{(2.20)}
\]

where, \(k \) is the modulation index, which should be less than 1 for linear operation of inverter. After neglecting voltage harmonics produced by VSI, the fundamental output voltage from Figure 2.5 is

\[
V_{ta_1} = m_{a_1}(t) \frac{V_{dc}}{2} \quad \text{(2.21)}
\]
\[
V_{tb_1} = m_{b_1}(t) \frac{V_{dc}}{2} \quad \text{(2.22)}
\]
\[
V_{tc_1} = m_{c_1}(t) \frac{V_{dc}}{2} \quad \text{(2.23)}
\]

Therefore, the net output voltage obtained after applying abc to dq transformation (2.3) is

\[
\bar{V}_t(t) = (V_{td} + jV_{tq})e^{j\omega t} \quad \text{(2.24)}
\]

where,

\[
V_{td} = \frac{V_{dc}}{2} m_d \quad \text{(2.25)}
\]

and
\[V_{tq} = \frac{V_{dc}}{2} m_q \]

(2.26)

2.2.3.6 Inner Current Control Loop

Substituting values of \(V_{td} \) and \(V_{tq} \) from (2.25) and (2.26) in (2.8) results in:

\[
L_s \frac{dI_d}{dt} = -R_s I_d + L_s \omega I_q + \frac{V_{dc}}{2} m_d - V_d
\]

(2.27)

\[
L_s \frac{dI_q}{dt} = -R_s I_q - L_s \omega I_d + \frac{V_{dc}}{2} m_q - V_q
\]

(2.28)

The control of \(I_d \) and \(I_q \) needs to be decoupled to have decoupled control of output power. The term \(L_s \omega \) in above equations represents coupling in a system. Now, by decoupling \(I_d \) and \(I_q \), the equation for \(m_d \) and \(m_q \) is:

\[
m_d = \frac{2}{V_{dc}} \left(U_d - L_s \omega I_q + V_d \right)
\]

(2.29)

\[
m_q = \frac{2}{V_{dc}} \left(U_q + L_s \omega I_d + V_q \right)
\]

(2.30)

In the above equations, \(U_d \) and \(U_q \) are control inputs, and \(L_s \omega I_d \) and \(L_s \omega I_q \) are decoupling feed forward inputs. The equation then simplifies to:

\[
L_s \frac{dI_d}{dt} = -R_s I_d + U_d
\]

(2.31)

\[
L_s \frac{dI_q}{dt} = -R_s I_q + U_q
\]

(2.32)

Equations (2.31) and (2.32) describe two first order decoupled systems. Figure 2.6 shows the block diagram of an inner loop control of inverter controller. Here, \(I_{dref} \) is compared with \(I_d \) which gives an error signal. This error signal is fed to PI-1 controller whose resultant
is U_d. Here, $I_{d\text{ref}}$ and $I_{q\text{ref}}$ are reference currents for real and reactive power, respectively. The PI controller parameters K_p and T_i for PI-1 are selected by systematic trial and error method to meet the specific requirements. These specific requirements are to obtain a quick rise time, minimum settling time and a peak overshoot less than 10% in the reactive power output of PV solar farm. Equation (2.29) is implemented with U_d to get m_d. Similar procedure is carried out by using equation (2.30) for obtaining $m_q[79]$. The PI control parameters for PI-2 are also selected by systematic trial and error method meet the specific objectives which are a quick rise time, minimum settling time and a peak overshoot less than 10% in the real power output of PV solar farm. Two limiters are used to limit the modulation indexes m_d and m_q. The values of PI controllers are mentioned in Appendix-D.

![Figure 2.6: Block Diagram of Inner Loop VSI Current Controller](image)

2.2.3.7 Sinusoidal Pulse Width Modulation (SPWM) Technique [32]:

The output modulation signals of the inner loop control m_d and m_q are fed to dq to abc block to get the three phase modulation signals m_a, m_b and m_c. This transformation is done by inverting the matrix given in (2.3). The dq to abc transformation matrix is as follows:
\[
\begin{bmatrix}
m_a(t) \\
m_b(t) \\
m_c(t)
\end{bmatrix} = \begin{bmatrix}
\cos(\theta) & -\sin(\theta) \\
\cos\left(\theta + \frac{2\pi}{3}\right) & -\sin\left(\theta + \frac{2\pi}{3}\right) \\
\cos\left(\theta - \frac{2\pi}{3}\right) & -\sin\left(\theta - \frac{2\pi}{3}\right)
\end{bmatrix}
\begin{bmatrix}
m_d \\
m_q
\end{bmatrix}
\]

Here, \(\theta\) is the synchronization angle obtained from PLL. Figure 2.7 is reproduced from [80]. It demonstrates the Sinusoidal Pulse Width Modulation (SPWM) technique from VSI.

The modulation signals \(m_a, m_b\) and \(m_c\) are compared with triangular wave, also known as carrier wave having a switching frequency of 5 kHz. If modulation signal is greater than triangular wave then it gives \(+\frac{V_{dc}}{2}\) and when modulation signal is smaller than triangular wave then it gives \(-\frac{V_{dc}}{2}\). Hence, taking an average over carrier wave time period, the output voltage appears as a sinusoidal output.

![Figure 2.7: Sinusoidal Pulse Width Modulation Technique for VSI [82]](image)

2.2.4 DC Link Capacitor

The main role of DC link capacitor in PV solar system is not only to maintain constant DC voltage but also to govern the power quality on DC side which ultimately affects the power
quality on AC side [83]. The size of DC link capacitor must be carefully chosen while using converter-less MPPT system. A ripple free DC current and voltage is required at the input of an inverter for its smooth operation. A very high value of capacitor results in pulsated power while very low value for capacitor results in power ripples. Therefore, the DC link capacitor needs to be properly modeled and control.

2.2.4.1 DC Link Capacitor Modeling

A large size DC link capacitor is used for handling maximum power \(P_{\text{max}} \) [83]. The total energy \(P_{\text{max}} \) for a period of one cycle for handling maximum power at frequency \(f \) is:

\[
E_{\text{max}} = \frac{P_{\text{max}}}{f}
\]

(2.34)

Equation (2.34) represents the total energy supplied by DC link capacitor in worst case. It does not allow the voltage to go below the minimum DC voltage margin i.e. \(V_{\text{dcmi}} \). Therefore, total energy can be expressed as:

\[
E_{\text{max}} = \frac{C(V_{\text{dc}}^2 - V_{\text{dcmi}}^2)}{2}
\]

(2.35)

The size of DC link capacitor from equation (2.34) and (2.35) is as follows:

\[
C = \frac{2P_{\text{max}}}{fV_{\text{dc}}^2(1 - K^2)} \text{ Farad}
\]

(2.36)

Here, \(K \) is known as ripple factor given by:

\[
K = \frac{V_{\text{dcmi}}}{V_{\text{dc}}}
\]

(2.37)

Equation (2.36) is chosen such that by tuning of inverter controller parameters \(K_p \) and \(T_i \), the controllability of source current can be achieved at all operating points. Here, it is assumed that the output of current is ripple free in determination of the size of DC link capacitor.
2.2.4.2 DC Link Voltage Control

As shown in Figure 2.2(d), DC link voltage (V_{dc}) is maintained constant at a reference set by comparing with MPPT reference voltage (V_{mpref}). The output of this is fed to PI-3 controller. The controller parameters K_p and T_i for PI-3 are selected by systematic trial and error method to meet the specific requirements. These specific requirements are to obtain a quick rise time, minimum settling time and a peak overshoot less than 10% in V_{dc}. The output of PI-3 is the direct axis current control reference I_{dref}.

2.2.5 LCL Filter Modeling and Design

Figure 2.2(c) depicts the LCL filter. The inverter output generates harmonics along with the fundamental component depending on the size of DC link capacitor and switching frequency. Therefore, AC side of inverter output needs to be filtered properly to avoid unwanted harmonics. The net harmonics in the filtered output are expressed in terms of Total Harmonic Distortion (THD) and Total Demand Distortion (TDD). These quantities should comply with grid code requirements as set by IEEE 519 [84], IEEE 1547 [38], etc.

There are different types of filter configurations that can be used for filtering inverter output such as L filter comprising only series inductor, LC filter having series inductor with shunt capacitor and LCL filter comprising two series inductors and a shunt capacitor in ‘T’ configuration. Out of these, the LCL filter is widely used due to its advantages [85,86]. LCL filter achieves better attenuation than LC filter along with cost savings and overall reduction of the number of components [87]. LCL filter can prevent inrush current at grid interconnection point by providing inductive output compared to LC filter. By using small values of inductors and capacitors in LCL filter, good performance can be obtained up to hundreds of kW [88]. Therefore, LCL filter is used in this thesis.

In modeling the LCL filter, certain characteristics must be considered such as filter size, switching ripple attenuation and current ripple. IGBT switching and conduction losses depend on current ripple. Therefore, smaller ripple current results in lower switching and conduction losses. Also, a large size of inductor results in high coil and core losses. Hence,
the inductor needs to be designed properly as a trade-off is seen between size of an inductor and different types of losses. The base impedance and base capacitance are defined as [89]

\[Z_b = \frac{V_{LL}^2}{P_n} \]

\[C_b = \frac{1}{\omega_g Z_b} \]

Here, \(\omega_g = 2\pi f_g \) where \(f_g \) is grid frequency 60 Hz

\(V_{LL} \) is line to line output voltage on AC side of an inverter = 230 V

\(P_n \) is maximum rated power of an inverter = 7.5 MW

Maximum power factor variation seen by load is considered as 5%. Therefore, while designing the filter capacitance, maximum base impedance of the system is as follows:

\[C_f = 0.05C_b \]

Hence from equation (2.40), the value of filter capacitance is found to be 1.88 mF.

Typically, ripple current can be chosen as 10\% \textasciitilde 20\% of the rated current [87]. Here, we have considered it as 10\%. The maximum current ripple at the output of VSI is given as [87]:

\[\Delta I_{Lmax} = 0.1I_{max} \]

where,

\[I_{max} = \frac{P_n \sqrt{2}}{3V_{ph}} \]

and

\[\Delta I_{Lmax} = \frac{V_{DC}}{6f_{sw}L_1} \]
Here, V_{DC} is DC link voltage, V_{ph} is the phase voltage on AC side of an inverter and f_{sw} is switching frequency of 5 kHz. Therefore, from (2.41), (2.42) and (2.43), value of L_1 can be found out. This results in L_1 to be 6.79 µH. The harmonics generated by the inverter into the grid is found out as follows [87]:

$$\frac{I_2(h)}{I_1(h)} = \frac{1}{1 + r[1 - L_1 C_b \omega_{sw}^2 x]} = k_a$$

(2.44)

and

$$L_2 = \frac{\sqrt{\frac{1}{k_a^2} + 1}}{C_f \omega_{sw}^2}$$

(2.45)

Here, k_a is the desired attenuation and is set to 10%. Hence, the value of L_2 is found to be 0.5 µH. There will be a resonance or ringing effect in the system due to presence of L and C together. To avoid this, a resistor is connected in series with capacitor known as damping resistor R_f [87]:

$$R_f = \frac{1}{3\omega_{res} C_f}$$

(2.46)

where,

$$\omega_{res} = \sqrt{\frac{L_1 + L_2}{L_1 L_2 C_f}}$$

(2.47)

At resonant frequency, the capacitor filter impedance should be three times of value of damping resistor [87]. For this, the value of resonant frequency must be within the range of $10f_g$ and $0.5f_{sw}$.

2.2.6 Step Up Transformer

Figure 2.2 illustrates the step up transformer. The output voltage of a VSI is 230 V while it is connected to the 27.6 kV grid at PCC. Therefore, a coupling transformer known as step up transformer is connected between the inverter and grid. As per utility connection requirements [90], the inverter side coupling transformer should be delta and grid side should be wye grounded. The advantages of such connections are described in [91]. DC
terminal is grounded to have equal DC voltage across each IGBT valves. Zero sequence current flowing through IGBT valves are prevented during SLG fault on AC side of an inverter by using delta connection on AC side of an inverter. Therefore, in this thesis Δ-Y (inverter-grid) step up transformer is considered. The transformer parameters are specified in Appendix-C.

2.3 SHORT CIRCUIT CURRENT CONTROLLER DESIGN

2.3.1 Concept

Short circuits are typically characterized by a substantially high magnitude and distortion of the current waveform. Hence these can be critical features for detecting a short circuit condition. Rise in magnitude of current from its maximum allowable limit confirms that there is some kind of an undesirable event taking place in the system (except transformer energization, capacitor switching or overload). A novel solar inverter short circuit current management technique has been patented [10,11] according to which the SCC controller detects a short circuit or fault condition and shuts off the PV inverter within 1-2 milliseconds. This technique is based on the slope and magnitude of the inverter current just after the inception of the fault. When a fault occurs, if the slope of the current waveform exceeds the maximum limit under normal operation (under no fault) the fault is detected and the inverter is shut off. Further, if the inverter current magnitude exceeds the rated inverter current, the fault is detected and the inverter is shut off in less than 1 cycle.

2.3.2 Short Circuit Current Controller Module

The block diagram of short circuit current controller as proposed in [8,9] is shown in Figure 2.8. The short circuit current controller consists of three identical channels to measure the instantaneous output currents of an inverter; I_A, I_B and I_C for phase A, B and C, respectively. These currents are passed through a low pass filter to reject all higher order frequencies due to PV inverter injection, transformer energization and capacitor switching, etc [92]. A time delay of typically 1 second is added through a comparator to avoid a false operation of the controller due to start up transient of a solar farm. The output of the comparator becomes HIGH when time is greater than 1 second.
The current will not flow through to Section B until zero crossing synchronization is not achieved. This synchronization ensures that the operation of controller will start from zero crossing instant of the current. If this synchronization is not achieved then detectors in Section B will see sudden change in current or high rate of rise of current and will give false triggering signal. A D flip-flop is used at the output of comparator to achieve zero crossing. The clock signal of D flip-flop is twice the fundamental frequency which is implemented through a zero crossing detector. This ensures that synchronization is achieved either at two positive or two negative going zero crossing. After 1 sec., the output of comparator becomes HIGH and D flip-flop waits for zero crossing synchronization. As soon as synchronization is achieved, flip-flop retains its output state to HIGH. Thus, current starts flowing through Section B.

Section B consists of two parallel paths: magnitude and slope comparators. Current compares its slope and magnitude with their references. Slope is the derivative \(\frac{di}{dt} \) of a current signal. The threshold limit of \(\frac{di}{dt} \) for a given rated current can be obtained as:

\[
i = I_m \sin \omega t
\]

\[
\frac{di}{dt} \approx k\omega I_m \cos \omega t
\]
\[
\left| \frac{di}{dt} \right|_{\text{max}} \approx k \omega I_m
\]

(2.48)

In the equation (2.48), \(\cos \omega t = 1 \) for maximum \(\frac{di}{dt} \)

\(k \) is the tolerance constant

\(\omega = 2\pi f \) is the angular frequency

\(I_m \) is the maximum rated current

The value of magnitude reference is considered by choosing an arbitrarily tolerance constant. The value of \(k \) can be chosen depending on the value of utility requirements. This can be any value above 100\% or 1 p.u. of rated current. Two absolute value or modulus detectors has been used prior to slope comparator and one modulus block before magnitude comparator to avoid its comparison with negative signals.

If any one of the six possible signals from all the three channels violates or exceeds their threshold limits then signal from the comparator is passed to their respective OR\textsubscript{a} gate. Its output is followed by D flip-flop and finally the signal is passed through OR\textsubscript{b} gate to generate ‘Trip’ signal. However, before passing it through OR\textsubscript{b} gate, an intentional delay of few microseconds (\(\mu s \)) is added. It has been noted that current signals from transient events such as transformer energization, load switching and capacitor energization which are not completely filtered out by low pass filter can cause high \(\frac{di}{dt} \) for a short period of time. Therefore, to avoid the generation of an undesired tripping signal, an intentional delay of few \(\mu s \) is added to clock of D flip-flop. After considering this, the output from D flip-flop is generated. Once the process of fault detection gets completed, triggering signals from all the three phases (whichever exceeds their reference limits) are sent to the input of OR\textsubscript{b} gate. The output of OR\textsubscript{b} gate will result in ‘Trip’ signal. The salient feature of the short circuit current controller is that only one trip signal is needed to disconnect the inverter based DGs from the grid.
The firing pulses along with ‘Trip’ signal are applied to the gating signals of an inverter through AND gate as shown in Figure 2.2. As soon as the 'Trip' signal becomes high upon detection of fault, gating signals to all IGBTs of an inverter generated through inverter controller are immediately turned off through ANDing operation. As a result, within a few hundred microseconds no power is transferred from the PV solar inverter to the grid.

Once the gating signals of an inverter are turned off, it is expected that the DC voltage across capacitor will start increasing due to incoming current from PV module. According to the PV module I-V characteristics, the output current from PV panel gradually decreases with the increase in voltage and eventually stops at the open rated circuit voltage of the PV module. Therefore, to reduce the voltage stress across each IGBT switch, and also across the DC link capacitor, the same triggering signal ‘Trip’ is utilized to disconnect the PV modules from the PV inverter. This is achieved by applying the Trip signal to disconnect the gate turn-off (GTO) thyristors based solid state breaker shown in Figure 2.2(f).

It is necessary to isolate the AC filter capacitor to prevent high ringing currents between filter capacitance and inductance of the distribution network. Hence, back-to-back GTOs are connected as shown in Figure 2.2(c) to disconnect AC filter capacitor. As a result, upon detection of fault, the ‘Trip’ signal is applied to these GTO switches for isolating AC filter capacitor from inductor.

After the fault is cleared, a reset signal (not shown) is given to the controller to reset all triggering signals as well as the flip-flops to bring the PV system back to normal operation. The entire operation of fault current controller is depicted in the flowchart as shown in Figure 2.9.
PV Inverter Starts.
Fault Current Controller is Disabled

Inverter output current IA, IB, IC passes through filter

Time Delay 1 sec.

Zero crossing synchronization of current through D flip flop and fault current controller is enabled

PV system generates power with synchronized fault detector

Monitoring of PV inverter output current through di/dt and peak magnitude comparators

\[\text{di/dt > Preset value or } |I| > I_{\text{rated}} \]

No

'Trip Signal' remains Low

Yes

After certain amount of time delay in clock signal of D flip-flop, 'Trip' Signal becomes High

'Trip' signal disconnects gating signals, PV modules from inverter and AC filter capacitor

PV inverter disconnected from grid

Figure 2.9: Flow Chart of SCC Controller
2.3.3 Performance of Short Circuit Current Controller Module

Actual short circuit current waveforms for commercial inverters are obtained from Southern California Edison Testing lab. These waveforms are utilized to confirm the successful operation of the short circuit controller. The concept of this short circuit controller is illustrated below.

Figure 2.10(a) and 2.10(b) demonstrate the SCE lab results of inverter output current during single line to ground fault for phase A and phase B, respectively. In Figure 2.10(a) and 2.10(b), the green waveform shows the recreated healthy current (no fault condition), red waveform shows the original fault current and blue waveform shows the fault current which is filtered (as per the procedure described later). An arrow is drawn in Figure 2.10(a) and (b), which shows the point of fault inception. It is noticed from Figure 2.10(a) that the magnitude of the inverter output current increases from 32.0A to 42.8A which is 1.34 p.u. Furthermore, it is easily observed from the Figures below that the slope of the original faulted current waveform changes after the instant of fault inception. Under no fault condition, the current should actually follow the path of recreated healthy waveform. It is noted that after fault occurs, the original current waveform becomes very noisy and distorted. Therefore the original fault current waveform is filtered to remove high frequency noise components and unwanted spikes. It is seen from the Figure 2.10(a) and (b) that filtered faulted signal (blue waveform) also changes its slope after the occurrence of the fault. This change in slope is utilized by the short circuit controller to detect the fault and shut off the inverter.

Similarly, Figures 2.11 and 2.12 depict the SCE lab results of inverter output current for LL and LLG fault. In both the fault cases, rise in magnitude and change in slope of current waveform can be noticed from the point of fault inception. Thus, if the slope and magnitude of inverter current are monitored continuously, the fault can be detected and accordingly the inverter can be shut off without injecting any short circuit current into the grid.
2.3.3.1 Single-Line Ground Fault

Figure 2.10: Inverter Output Current for SLG Fault (a) Phase A (b) Phase B
2.3.3.2 Line - Line Fault

![Graph of Inverter Output Current for LL Fault](image)

- Green - Recreated Healthy Waveform
- Red - Original Faulted Waveform
- Blue - Filtered Faulted Waveform

Figure 2.11: Inverter Output Current for LL Fault (a) Phase A (b) Phase B
2.3.3.3 Line - Line - Ground Fault

Green - Recreated Healthy Waveform
Red - Original Faulted Waveform
Blue - Filtered Faulted Waveform

(a) Figure 2.12: Inverter Output Current for LLG Fault (a) Phase A (b) Phase B
2.4 CONCLUSION

This chapter presents the modeling and design of a 7.5 MW PV solar system incorporated with a novel patented short circuit current controller. The study system model is a typical feeder used in Ontario-Canada for which the short circuit current contribution has already reached to its maximum limit. The inverter control modeling, selection of filter parameters and DC link capacitor are explained.

The concept and operation of short circuit current controller for PV inverter based DGs have been described. The SCC controller technique is based on monitoring of the slope ($\frac{di}{dt}$) of current along with the magnitude $|I|$. As soon as the tripping signal is generated on the detection of fault that may lead to a short circuit current contribution from the inverter beyond the rated inverter current, it (a) disables firing pulses of an inverter (b) disconnects PV solar farm from the inverter and (c) isolate the filter capacitor from PCC. The SCC controller will shut off the PV inverter within 1-2 milliseconds from the initiation of any fault in the grid without exceeding maximum rated value of inverter current at PCC. Therefore, the power system network does not see any short circuit current contribution from PV inverter.
CHAPTER 3
ELECTROMAGNETIC TRANSIENTS SIMULATION USING PSCAD SOFTWARE

3.1 INTRODUCTION
This chapter presents the implementation of short circuit current (SCC) controller based on the rate of rise of current detection and the current magnitude detection in a PV solar system based DG. The performance of SCC controller is analyzed in electromagnetic transient simulation software - PSCAD/EMTDC. Case studies are performed by applying different types of faults at PCC with fault current controller enabled. To understand the effectiveness of SCC controller, faults are applied at different time instants and their results are investigated. Moreover, a large load switching is simulated to ensure that the controller does not respond to such an event since it is expected to respond only to faults.

Section 3.2 describes the system model; Section 3.3 details the implementation of short circuit current controller in PSCAD software; Sections 3.4 and 3.5 depict the simulation results for asymmetrical and symmetrical faults, respectively, with the SCC controller incorporated. In Section 3.6, a study of faults at different time instants is presented; Section 3.7 shows the response of proposed controller during load switching events. Finally, Section 3.8 concludes the outcome of this work.

3.2 SYSTEM MODEL
A typical 27.6 kV feeder in Ontario, Canada, that is 25 km long as described in Section 2.2, is considered here as the study system. A 7.5 MW PV solar system is connected at the end of a feeder. Figure 3.1 presents the detailed PV inverter system with incorporated short circuit current controller module. The system consists of the solar farm as shown in Figure 3.1 (a), voltage source inverter in Figure 3.1 (b), LCL filter as described in Figure 3.1 (c), inverter controller as depicted in Figure 3.1 (d).
Figure 3.1: System Model with PV System Inverter, Conventional Controller and the incorporated Short Circuit Current Controller in PSCAD/EMTDC
The modeling of PV source, inverter control and LCL filter are described in Sections 2.2.2, 2.2.3 and 2.2.5, respectively. The PV inverter output of 230 V connects to the grid through a 0.23/27.6 kV, 7.5 MVA step up transformer. The parameters of LCL filter are described in Section 2.6. A novel controller for restricting short circuit current from PV inverter is incorporated with the conventional PV inverter controller as shown in Figure 3.1 (e). Figure 3.1 (f) represents the GTO based switch used to isolate the solar panels during short circuit scenarios. The output of short circuit current controller module is given to the firing pulses of an inverter and AC filter. As soon as the fault condition is established that can cause the inverter current to exceed its rated magnitude, firing pulses are disabled and the filter gets disconnected from the network.

3.3 IMPLEMENTATION OF SCC CONTROLLER IN PSCAD SOFTWARE

Figure 3.2 shows the implementation of short circuit current controller as proposed in [10,11] in PSCAD software. The Figure consists of two sections: Section A and Section B. Also, it has three identical channels: Channel - 1, 2 and 3 are for inverter output phase currents IA, IB and IC, respectively. The detailed implementation of Channel - 1 corresponding to phase A current is described below.

![Figure 3.2: Implementation of SCC Controller in PSCAD](image-url)
The inverter output current IA passes through transfer function filter \(H = \frac{G}{1 + s\tau} \), which acts as a low pass filter. The parameters of LPF filter are Gain (G) = 1 and Time Constant (\(\tau \)) = 0.0001 second. The filter parameters are very much sensitive to the fault. The value of time constant should be selected appropriately such that it should not respond to any switching spike. The use of G = 1 does not suppress or increase the magnitude of inverter output current. Hence, the actual inverter current magnitude can be seen from the output of low pass filter. The value of time constant is determined through cut-off frequency (\(f_c \)) of 1kHz \((\tau = \frac{1}{2\pi f_c}) \). The cut-off frequency is selected in such a way that filter introduces less delay and gives good filtering performance. The delay introduced by the filter can either be calculated through group or phase delay. The group delay is defined as the derivative of the phase with respect to angular frequency and is a measure of the distortion in the signal introduced by phase differences for different frequencies. Phase delay is a measure of the time delay of the phase experienced by each sinusoidal component of the input signal. Therefore, the delay introduced by the filter at 60 Hz frequency is calculated as follows:

\[
\text{Phase Delay} = \tan^{-1}(\omega RC)
\]

As \(\tau = RC \),

\[
\text{Phase Delay} = \tan^{-1}(\omega \tau)
\]

\[
\text{Phase Delay} = 2.16^\circ \tag{3.1}
\]

where, \(\omega \) is the angular grid frequency \(2\pi f = 377 \text{ rad/sec} \)

\(\tau \) is the time constant = 0.0001 sec

The time period of a 60 Hz signal for one cycle (360°) is 16.67 ms. The presence of low pass filter gives an extra phase delay of 2.16° which is equivalent to a delay of 0.1 ms at 60 Hz frequency.

An intentional delay of 1 second is added to comparator to avoid any false operation due to the start-up transient of solar farm. No current passes through Section B until zero
crossing synchronization is achieved in Section A. A zero crossing detector is introduced in the clock signal of D flip-flop. This circuitry guarantees that this controller starts operating at the zero crossing of current after one second. If this zero cross detector is not used there will be a mismatch at the beginning between \(\frac{di}{dt} \) and the input. As soon as the zero crossing synchronization is achieved, current starts flowing through Section B. Subsequently, current flows in two parallel paths: magnitude and slope comparator. The magnitude and slope of the inverter current are compared with their reference values or maximum permissible limits.

The peak magnitude of the inverter current for 7.5 MW PV solar system connected to the LT side of the coupling transformer having voltage level of 230 V is calculated as follows:

\[
I_m = \frac{\sqrt{2} P_m}{\sqrt{3} V_{LL}} = 26.6 \, kA
\]

where, \(P_m \) is the maximum rated power = 7.5 MW

\(V_{LL} \) is the line to line inverter output voltage = 230 V

\(I_m \) is the maximum rated current

\(P_m V_{LL} \). The maximum allowable limit of the slope of an inverter current is evaluated as follows:

\[
\left| \frac{di}{dt} \right|_{max} = k\omega I_m
\]

\[
\left| \frac{di}{dt} \right|_{max} = 10640 \, \text{amps per sec.}
\]

where, \(k \) is tolerance constant = 1.06

\(\omega \) is angular frequency = 377 rad/sec

\(I_m \) is the maximum rated current = 26.6 kA
As shown in Figure 3.2, a rate limiter has been used for slope comparison. The rate limiter outputs a duplicate of the input function as long as the rate of change of the input \(\frac{di}{dt} \) does not exceed the specified limits. If the rate of change does exceed the limits, the output falls ahead or behind the input, confining its rate of change within specified limits. An absolute value or modulus detector has been used prior to comparators to avoid its comparison with negative signals. If current exceeds any of its allowable limits (slope or magnitude) then output of comparator becomes 1 or logical high. The output of magnitude and slope comparators is followed by D flip-flops D1 and D2, respectively. Now, the signal flows through D flip-flop with an intentional delay of 10 µs introduced into the clock of flip-flop. The reason of providing this delay is explained in Section 2.3.2. The outputs of D1 and D2 flip-flops are 'Ma' and 'Triga', respectively. These outputs become high (i.e. 1) on the detection of fault. Ma, Mb and Mc are the triggering signals of magnitude detectors for phase A, B and C, respectively. 'MagTrigger' is the output of the ORa gate having input Ma, Mb and Mc. Thus, output from flip-flops of all the three phase channels are given to the input of ORb gate to generate the final output triggering signal 'Trip'. This signal will become high if any of the phase current of inverter output at PCC exceeds its permissible limits.

Finally, on the fault detection, 'Trip' signal disables firing pulses of an inverter, disconnects PV solar farm from the inverter and isolates the filter capacitor from PCC as shown in Figure 3.1, 3.1 (f) and 3.1 (c), respectively.

Studies are performed by applying different types of faults on 7.5 MW PV solar system connected to the grid with short circuit current controller enabled. Both symmetrical and asymmetrical faults are applied on PCC at \(t = 2 \) second for a duration of 0.1 second or 6 cycles. Studies are also performed by applying different types of faults at different time instants to study the effectiveness of the SCC controller. Load switching is simulated to ensure that controller does not respond to such an event and can successfully discriminate between a fault and an overload condition. The simulation results for each case are described from Section 3.4 to 3.7.
3.4 ASYMMETRICAL FAULT STUDIES

3.4.1 Single Line - Ground Fault

Figure 3.3 shows (a) inverter output current at PCC for single line to ground fault at $t = 2$ second, (b) generation of triggering signals from SCC controller upon detection of fault and (c) inverter fault current at PCC with controller enabled.
Figure 3.3: (a) Inverter Fault Current at $t = 2$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller

Figure 3.4 depicts the zoomed waveforms of (a) inverter output current for single line to ground fault at $t = 2$ second, (b) triggering signals of fault current limiter and (c) inverter fault current at PCC with short circuit current controller enabled. The waveforms are then zoomed to understand more clearly the behavior of fault current at PCC and operation of enabled fault current controller during single line to ground fault.
Figure 3.4: Zoomed Waveforms of (a) Inverter Fault Current at $t = 2$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller

Figure 3.3(a) demonstrates that the magnitude of inverter output current at PCC increases from 1 p.u. to 1.3 p.u. during single line to ground fault. It can be seen from Figure 3.4(a) that no large transients are observed from initiation of fault at $t = 2$ second. In Figures 3.3(b) and 3.4(b), $Triga$, $Trigb$ and $Trigc$ are the triggering signals or output of slope
comparator for phase A, B and C, respectively. 'MagTrigger' is the resultant output of magnitude detector of all the three phases. If magnitude of any of the three phases exceeds the rated value then 'MagTrigger' gets high. The delay introduced by the filter at 60 Hz frequency is 0.1ms. The controller will be able to recognize the fault after 0.1ms of its occurrence. It is noticed from Figure 3.4(b) that 'Trigb' signal has become high after 1.1 ms from the initiation of fault in the grid, as slope of phase B current \((\frac{di}{dt})\) has exceeded its maximum allowable limit. Later, \(MagTrigger\) and other triggering signals get high. However, the noticeable feature of the SCC controller is that only one triggering signal is needed to disconnect the PV inverter from the grid. As soon as the 'Trigb' signal becomes high, inverter fault current at PCC starts decreasing as shown in Figure 3.4(c). Finally, it can be concluded from Figure 3.4 (c) that the PV inverter current at PCC becomes zero within 1.8 ms upon the response of slope detector. This means that no short circuit current (in excess of the rated value) flows from the PV inverter to the grid. Therefore, power system network does not see any short circuit current contribution from PV inverter.

3.4.2 Line - Line Fault

Figure 3.5 shows cases (a) inverter output current at PCC for line to line or line to line to ground fault at \(t = 2\) second, (b) generation of triggering signals ('Triga, Trigb, Trigc and MagTrigger') from SCC controller upon detection of fault and (c) inverter fault current at PCC with controller enabled.

To understand the behavior of fault current at PCC and operation of enabled fault current controller during LL fault, Figure 3.6 illustrates the zoomed waveforms of (a) inverter output current for LL fault at \(t = 2\) second with SCC controller disabled, (b) triggering signals of fault current limiter and (c) inverter fault current at PCC with controller enabled.
Figure 3.5: (a) Inverter Fault Current at $t = 2$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller
Figure 3.6: Zoomed Waveforms of (a) Inverter Fault Current at \(t = 2 \) sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller

Figure 3.5(a) shows that magnitude of inverter output current at PCC reaches upto 1.4 p.u. The large transients or distortion of the faulted current waveform can be seen in Figure 3.6(a) after the inception of fault at \(t = 2 \) second. The delay introduced by the filter at 60
Hz frequency is 0.1 ms. It is observed in Figure 3.6(b) that with the SCC controller enabled, 'Trigb' signal has become high within 0.2 ms from the initiation of fault at $t = 2$ seconds. Phase B has violated the maximum permissible limit of rate limiter $\frac{di}{dt}$, so 'Trigb' signal rises from 0 to 1. 'Trigb' signal is given to gating signals of a PV inverter, solar farm and AC filter capacitor. PV solar farm modules stop transferring current to the grid within 0.7 ms from the initiation of fault in the grid as shown in Figure 3.6(c). It is also noticed from Figure 3.6(c), that the current has not exceeded its maximum rated value i.e. 1 p.u.

3.4.3 Line - Line - Ground Fault

The behavior of inverter output current during LLG fault at $t = 2$ second is found to be similar to LL fault case (Section 3.4.2). Hence, the simulation results are not presented for the LLG case.

3.5 SYMMETRICAL FAULT STUDIES

3.5.1 Line - Line - Line Fault

Figure 3.7 depicts (a) Inverter fault current at PCC for LLL fault at $t = 2$ second with SCC controller disabled, (b) triggering signals ($Triga, Trigb, Trigc$ and MagTrigger) from SCC controller upon detection of fault and (c) inverter fault current at PCC with SCC controller enabled.

Figure 3.8 represents the zoomed waveforms of (a) inverter output current at PCC for LLL fault at $t = 2$ second with SCC controller disabled, (b) triggering signals of fault current limiter upon detection of fault and (c) inverter fault current at PCC with SCC controller enabled. These waveforms are zoomed to understand more precisely the behavior of fault current at PCC and operation of fault current controller during symmetrical fault.
Figure 3.7: (a) Inverter Fault Current at t = 2 sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller
Figure 3.8: Zoomed Waveforms of (a) Inverter Fault Current at $t = 2$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller

Figure 3.8(a) demonstrates that the magnitude of inverter output current at PCC during symmetrical fault increases up to 1.45 p.u. In Figures 3.7(b) and 3.8(b), $Triga$, $Trigb$ and
Trigc are the triggering signals or output of slope comparator for phase A, B and C, respectively. 'MagTrigger' is the equivalent output of magnitude detector of all the three phases. The delay introduced by the filter at 60 Hz frequency is 0.1 ms. It is noticed from Figure 3.8(b) that 'Trigc' signal becomes high within 0.3ms from the initiation of fault in the grid, as slope of phase C \(\frac{di}{dt}\) has violated its permissible limit. Finally from Figure 3.8(c), it is concluded that magnitude of inverter output current at PCC goes to zero in 0.8 ms. This means that no current flows from PV inverter to the grid. In addition, inverter current does not exceed its maximum rated value. Therefore, power system network does not see any short circuit current contribution from PV inverter.

From all the above cases (Section 3.4 and 3.5.1), it is observed that response of slope detector is faster than the magnitude detector. Hence, if the primary slope detector technique fails to respond the magnitude detector will acts as a secondary detection technique and would never allow the fault current to exceed its maximum rated value.

3.5.2 Line - Line - Line Ground Fault

Inverter output current during LLLG fault at \(t = 2\) second for 7.5 MW PV solar system connected to the 27.6 kV grid bus exhibits very similar type of fault current behavior when LLL fault occurs at PCC. Hence, the simulation results shown in Section 3.5.1 also hold true for LLLG fault case.

3.6 FAULT STUDIES AT DIFFERENT TIME INSTANTS

In Section 3.4 and 3.5, different types of faults are applied at \(t = 2\) second and response of short circuit current controller is studied for same time instant of occurrence. To ensure the effectiveness of SCC controller, both symmetrical and asymmetrical faults are applied at different time instants and their results are analyzed. The simulation results are described below.

3.6.1 Asymmetrical Fault

Figure 3.9 shows (a) Inverter fault current at PCC for LLG fault at \(t = 4.5\) second with SCC controller disabled, (b) generation of triggering signals of fault current limiter upon
detection of fault and (c) inverter fault current at PCC with SCC controller enabled. The fault occurs at $t = 4.5$ second close to the peak instant of PV inverter current.

(a)

(b)
Figure 3.9: (a) Inverter Fault Current at $t = 4.5$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller
To clearly understand the behavior of fault current at PCC and operation of enabled fault current controller during LLG fault, Figure 3.10 illustrates the zoomed waveforms of (a) inverter output current for LLG fault at $t = 4.5$ second (close to current peak) with SCC controller.
controller disabled, (b) triggering signals of fault current limiter and (c) inverter fault current at PCC with SCC controller enabled.

Figure 3.9(a) demonstrates that the magnitude of inverter output current at PCC increases from 1 p.u. to 1.45 p.u. during single line to ground fault. It is seen from Figure 3.10(a) that in this case the fault occurs near the peak instant of an inverter current. In Figures 3.9(b) and 3.10(b), Triga, Trigb and Trigc are the output of slope comparator for phase A, B and C, respectively. 'MagTrigger' is the equivalent output of magnitude detector of all the three phases. The delay introduced by the filter at 60 Hz frequency is 0.1 ms. It is noticed from Figure 3.10(a) that inverter current goes above 1 p.u. after the fault occurs. As soon as the magnitude of phase B current ($|I|_{max}$) exceeds its allowable limit, 'MagTrigger' signal gets high within 0.7 ms from the initiation of fault in the grid. Inverter fault current at PCC starts decreasing immediately upon detection of fault as shown in Figure 3.10(c). Finally, it is concluded from Figure 3.10(c) that inverter current at PCC reaches zero within 1.3 ms based on the response of magnitude detector. Hence, if the fault occurs near the peak instant, the response of magnitude detector may be faster than the slope detector and the inverter current is not allowed to exceed its maximum rated value. Therefore, there is no apprehension of short circuit current contribution from PV inverter.

3.6.2 Symmetrical Fault

Figure 3.11 demonstrates (a) inverter output current at PCC for LLLG fault at $t = 5$ second, (b) generation of triggering signals from SCC controller upon detection of fault and (c) inverter fault current at PCC with SCC controller enabled. The symmetrical fault occurs at the positive going zero crossing of phase A, close to the current peak of phase B, and between the negative going zero crossing and current peak of phase C.

Figure 3.12 depicts the zoomed waveforms of (a) inverter output current at PCC for LLLG fault at $t = 5$ second, (b) triggering signals of fault current limiter and (c) inverter fault current at PCC with SCC controller enabled. The waveforms are zoomed to understand more clearly the behavior of fault current at PCC and operation of enabled fault current controller during LLLG fault.
Figure 3.11: (a) Inverter Fault Current at $t = 5$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller
Figure 3.11(a) shows that magnitude of inverter output current at PCC reaches up to 1.3 p.u. The large transients or distortion of the faulted current waveform can be seen in Figure 3.12(a) after the inception of fault at $t = 5$ second. The delay introduced by the filter at 60
Hz frequency is 0.1 ms. It is observed from Figure 3.12(b) that with the SCC controller enabled, 'Trigc' signal becomes high within 0.2 ms from the initiation of fault at \(t = 5 \) second. Phase C has violated the maximum permissible limit of rate limiter \(\frac{di}{dt} \), so 'Trigc' signal rises from 0 to 1. Slope detector responds quickly before the current exceeds its peak rated value. PV inverter is disconnected from the grid within 1 ms from the initiation of fault in the grid as shown in Figure 3.11(c). It is also noticed from Figure 3.12(c), that the current has not exceeded its maximum rated value i.e 1 p.u.

3.7 RESPONSE TIME OF SCC CONTROLLER FOR FAULTS AT DIFFERENT TIME INSTANTS

Table 3.1 shows the response time of short circuit current controller for a line-to-line (LL) fault at different time instants.

<table>
<thead>
<tr>
<th>LL Fault at Different Time Instant</th>
<th>Response Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Crossing</td>
<td>2 ms</td>
</tr>
<tr>
<td>Between Zero Crossing and Positive Peak</td>
<td>0.8 ms</td>
</tr>
<tr>
<td>Between Zero Crossing and Negative Peak</td>
<td>0.3 ms</td>
</tr>
</tbody>
</table>

Table 3.1: Response Time of SCC Controller during LL Fault

Table 3.2 shows the response time of short circuit current controller for a line-to-line-to-line (LLL) fault at different time instants.

<table>
<thead>
<tr>
<th>LLL Fault at Different Time Instant</th>
<th>Response Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Crossing</td>
<td>2 ms</td>
</tr>
<tr>
<td>Between Zero Crossing and Positive Peak</td>
<td>0.3 ms</td>
</tr>
<tr>
<td>Between Zero Crossing and Negative Peak</td>
<td>0.9 ms</td>
</tr>
</tbody>
</table>

Table 3.2: Response Time of SCC Controller during LLL Fault
3.8 LOAD SWITCHING

Figure 3.13(a) illustrates the PV inverter output current for a load switching event at time instant $t = 1.8$ second. Figure 3.13(b) demonstrates the triggering signals for the short circuit current controller enabled. It is observed that the enabled controller does not respond to a load switching event of a large feeder load of 60 MW, 0.9 pf. The steep rate of change in current during the load switching is considered as the slope of high frequency spike which does not last long. These spikes will be removed by low pass filter (Fig. 3.2).

Even after the filtering, if spikes are not cleared then the time delay introduced in the clock of D flip-flop will not allow the triggering signal output from OR$_a$ gate (Fig. 3.2) to pass through during this transient event. Hence, a false triggering is avoided at this load switching event, as discussed earlier in Section 2.3.2 and 3.3. This demonstrates that the SCC controller can successfully discriminate between a fault and an overload event.
3.9 CONCLUSION

In this chapter, the performance of the short circuit current controller is validated in electromagnetic transient simulation software PSCAD on a 7.5 MW PV solar system connected in a typical distribution feeder of Ontario. The SCC controller technique is based on monitoring of the slope \(\frac{di}{dt}\) of current along with the magnitude \(|I|\). Following conclusions are drawn:

- Different types of asymmetrical faults – SLG, LL, and LLG fault, are applied on the point of common coupling (PCC) with the SCC controller enabled. PV solar farm modules stop transferring current to the grid within maximum of 1.8 ms from the initiation of fault in the grid without exceeding maximum rated value. In these case studies, slope detector \(\frac{di}{dt}\) responds faster than the magnitude detector on the detection of fault.
Studies are also performed for symmetrical faults which occurs rarely in a transmission line but can potentially cause a severe damage on occurrence. It is found that PV inverter is disconnected from the grid within maximum 0.8 ms from the initiation of fault in the grid without exceeding the maximum permissible limit. Triggering signal is generated on the response of slope detector \(\frac{dl}{dt} \).

Time instant of fault occurrence is changed to understand the performance of SCC controller more effectively. An asymmetrical fault (LLG) occurs on grid close to current peak, the magnitude of inverter output current tends to go beyond its maximum allowable limit instantly. In this case, the magnitude detector \(|I|_{\text{max}} \) responds faster than the slope detector on the detection of fault. PV solar farm modules stop transferring current to the grid within 0.7 ms. Furthermore, a symmetrical fault occurs at the negative going zero crossing. Here, the SCC controller restricts the PV inverter current completely in 1 ms on the response of slope detector \(\frac{dl}{dt} \) without exceeding maximum rated value.

The SCC controller is shown to effectively distinguish between large load switching event and a fault condition. Hence, the generation of undesired tripping signal is avoided.

The new SCC controller can successfully disconnect the PV solar farm within 1-2 milliseconds regardless of any type of fault or location of fault on the distribution system that can possibly cause short circuit current to exceed the rated inverter current. Hence, the PV inverter is prevented to contribute any short circuit current to the grid in excess of the rated inverter current.
CHAPTER 4
REAL TIME SIMULATION USING REAL TIME DIGITAL SIMULATOR (RTDS)

4.1 INTRODUCTION

This chapter represents real time simulation studies of short circuit current controller with three phase grid connected solar system using Real Time Digital Simulator (RTDS). The system modeled in Real-time Simulation Computer Aided Design (RSCAD) software is interfaced with RTDS to validate the SCC controller performance. In RSCAD, transmission line model and control system are modeled in large time step environment while PV inverter switching circuits are modeled in small time step environment. The performance of the short circuit controller is evaluated by applying different types of faults at PCC. To acknowledge the effectiveness of controller, faults are applied at different time instants and their results are analyzed. Finally, a load switching is simulated to ensure that the controller does not respond to such an event.

Section 4.2 gives overview of the RTDS system; Section 4.3 introduces the study system model; Section 4.4 describes the implementation of short circuit current controller in RSCAD software; Sections 4.5 and 4.6 present the simulation results for asymmetrical and symmetrical faults, respectively, with the SCC controller enabled. Section 4.7 includes the studies of faults at different time instants; and Section 4.8 illustrates the response of SCC controller during load switching events. Finally, Section 4.9 concludes the chapter.

4.2 OVERVIEW OF REAL TIME DIGITAL SIMULATOR

4.2.1 Concept

Real-Time Digital Simulator (RTDS) is a digital power system simulator used widely in the application of power system controls and protection equipment for performing real time and Hardware-in-the loop (HIL) simulations. RTDS testing is the final industry-accepted and industry-grade testing to validate the performance of new power electronic controllers.
in power systems. RTDS is a unique state-of-the-art simulator having multiprocessor architecture designed specifically to simulate electrical power systems in real time. In electromagnetic transient simulation software such as in PSCAD, a physical phenomenon of 1 sec in power system typically takes several seconds or minutes to complete the simulation. However, in RTDS, a physical phenomenon of 1 sec in power systems is simulated within 1 sec of simulation time. It is a custom parallel-processing hardware architecture assembled in modular units called racks [64,68]. There are two such RTDS racks in Power Systems lab of University of Western Ontario. Racks consist of various digital signal processors cards along with communication processors. For real time simulations, the system model is designed in RSCAD (the software of RTDS) and then executed on various processor cards. The RSCAD is a graphical user interface (GUI) simulation software which allows developers to build power system models using various power system blocks and also provides an environment to analyze the simulation output.

4.2.2 Hardware Structure

Figure 4.1 shows the RTDS hardware structure. The RTDS rack used in this study has different types of processor cards available such as: one Gigabit Transceiver Workstation Interface Card (GTWIF), Giga Processor Card (GPC) and 2 Processor Cards (PB5). These cards are interfaced with various types of GT I/O cards such as GTAO (analogue output), GTAI (analogue input), GTDO (digital output) and GTDI (digital input) [64]. The brief function of each processor card is explained below.

The GTWIF card allows building an interface between the RTDS simulator and computer at workstation. Workstation computers can be configured with simulator either through Local Area Network (LAN) or wireless by assigning a unique IP address. It allows loading new simulation cases as well as to start and stop the simulations. The executed program will keep running continuously in real time on GTWIF until a STOP command is assigned. The communication of data between processors over the rack’s backplane is coordinated by GTWIF. It also performs self-testing and diagnostic run on other cards installed in its rack. The diagnostics are automatically run at power up and may also be initiated by the user. Diagnostic test results are accessible from RSCAD.
The GPC card allows to model small time step simulations having time step of each model less than 2 µs. PV inverter switching circuits need to be modeled in small time step environment to ensure accuracy and convergence. The GPC card also provides simulation for standard power system and network models [64]. Each GPC card consumes a maximum of 55 Watt.

The PB5 card consists of two identical Reduced Instruction Set Computing (RISC) cards. This card solves the equations representing power system and control system components having large time step of 50 µs modeled within RTDS. Each PB5 card includes two Freescale PowerPC MPC7448 processors running at 1.7 GHz. Various power system components like transmission lines, machines, transformers, loads, etc. simulated in RSCAD software are processed by the PB5 card. A PB5 card within a rack is generally assigned to handle some control system components modeled within the RTDS. Since this simulation study involves a large number of controller components, two PB5 cards are used to allocate all the components of the study system. Similar to GPC card, PB5 cards are also used to connect various types of I/O cards. Each PB5 card consumes a maximum power of 80 Watt.

The Gigabit Transceiver Analogue Output (GTAO) card is used to interface analogue signals from the RTDS to external devices. All GT I/O cards are mounted on a rail located in the rear of RTDS cubicle and connected to a GPC processor card via an optical cable. The GTAO card includes twelve, 16 bit analogue output channels with an output range of +/- 10 volts. The 16 bit DACs provide a wide dynamic range. This wide dynamic range is often required when providing measured current signals to protection devices. Analogue output signals connected to terminal blocks are available on the GTAO card.

The GT Analogue Input (GTAI) card is used to interface analogue signals from an external device to the RTDS. It includes 12 analogue input channels with each channel configured as a differential input with an input range of +/- 10 volts. Sixteen bit A/D converters are used on the GTAI card. All 12 analogue channels are sampled synchronously with new samples sent to the GPC card every 6 µs. Analogue input signals connected to terminal blocks are available on GTAI card.
The GT Digital Output (GTDO) card is used to interface digital signals from the RTDS to external equipment. The GTDO card includes 64 optically isolated digital output channels which are arranged into two banks of 32 channels each. Each bank of 32 channels may be
operated at a different voltage level in the range of +5V to +24Vdc. External power supplies are required to provide the output voltage source. Digital output signals connect to terminal blocks available on the GTDO card. This card also includes digital output time stamp function which allows digital output signals to change at a given instant within a simulation time step. GTDO is used to provide tripping signals through an external controller.

The GT Digital Input (GTDI) card is used to interface digital signals from an external device to the RTDS. It includes 64 optically isolated digital input channels. GTDI card can be used to read time critical firing pulses from an external controller. The GTDI card will send the required timing information to the RTDS software. All these GT I/O cards can be daisy chained among themselves. The first connector (port 1) is used to connect GPC card and port 2 can be used for connection to a subsequent GT I/O card in the chain.

4.3 SYSTEM MODEL

The 7.5 MW PV solar system designed in RSCAD is same as that of the system model described in Sections 2.2 and 3.2. Modeling of solar farm, inverter and filter are designed as described in Sections 2.2.2, 2.2.3 and 2.2.5, respectively. The system modeled in RSCAD is then configured with RTDS to perform real time simulation studies. The output of short circuit current controller module is given to the firing pulses of the inverter, AC filter and solar panels.

4.4 IMPLEMENTATION OF SCC CONTROLLER IN RTDS

Figure 4.2 shows the implementation of short circuit current controller as proposed in [8,9] in RSCAD to perform real time studies using RTDS. The controller modeled in RSCAD is almost similar to that of PSCAD model as depicted in Figure 3.2 except for one difference. It is the designing of D flip-flop with the help of T flip-flop and XOR gate as RSCAD does not have D flip-flop component in its library. Figure 4.3 represents the circuit diagram of D flip-flop modeled in RSCAD. Though, the operation and objective of SCC controller remains exactly identical to that described in Section 4.5. The parameters of LPF filter are $G = 1$ and $\tau = 0.0001$ second. The delay introduced by the filter at 60 Hz frequency is 0.1
ms as described in Section 3.3. For magnitude detector, the peak rated value is chosen as 26.6 kA. Similarly, the maximum allowable limit for slope detector is calculated as 10640 amperes per sec. including a tolerance constant of 1.06. The procedure of calculating permissible limit values is described in Section 4.5.

Figure 4.2: Implementation of SCC Controller in RSCAD

The final triggering signal 'Trip' becomes high if any of the phases of an inverter current exceeds its preset or rated values.

Figure 4.3: D Flip-Flop
4.5 ASYMMETRICAL FAULT STUDIES

4.5.1 Single Line - Ground Fault

Figure 4.4 shows (a) inverter output current at PCC for single line to ground fault at \(t = 2 \) second, (b) generation of triggering signals from short circuit current controller upon detection of fault and (c) inverter fault current at PCC with SCC controller enabled.

Figure 4.5 depicts the zoomed waveforms of (a) inverter output current for single line to ground fault at \(t = 2 \) second, (b) triggering signals of fault current limiter and (c) inverter fault current at PCC with SCC controller enabled. The waveforms are zoomed to understand more clearly the behavior of fault current at PCC and operation of enabled SCC controller during single line to ground fault.
Figure 4.4: (a) Inverter Fault Current at $t = 2$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller
Figure 4.5: Zoomed Waveforms of (a) Inverter Fault Current at $t = 2$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller

Figure 4.4(a) demonstrates that the magnitude of inverter output current at PCC increases from 1 p.u. to 1.3 p.u. during single line to ground fault. It is seen from Figure 4.5(a) that in this case the fault occurs near peak instant of an inverter current. In Figures 4.4(b) and 4.5(b), $Triga$, $Trigb$ and $Trigc$ are the triggering signals or output of slope comparator for phase A, B and C, respectively. 'MagTrigger' is the equivalent output of magnitude detector of all the three phases. The delay introduced by the filter at 60 Hz frequency is 0.1 ms. It is noticed from Figure 4.5(a) that inverter current goes above 1 p.u. after the fault occurs. As soon as the magnitude of phase A current ($|I|_{max}$) exceeds its allowable limit, 'MagTrigger' signal becomes high within 0.3 ms from the initiation of fault in the grid. Inverter fault current at PCC starts decreasing immediately upon detection of fault as shown in Figure 4.5(c). Finally, it is noted that the PV inverter current at PCC becomes zero within 1.7 ms on the response of magnitude detector. Hence, if the fault occurs near the peak instant and magnitude of an inverter current goes above its limits immediately, then response of magnitude detector will be faster than that of the slope detector. In conclusion, the inverter current never exceeds its maximum rated value. Therefore, power system network does not see any short circuit current contribution from the PV inverter.
4.5.2 Line - Line Fault

Figure 4.6 showcases (a) inverter output current at PCC for LL fault at $t = 2$ second, (b) generation of triggering signals ($Triga, Trigb, Trigc and MagTrigger$) from SCC controller upon detection of fault and (c) inverter fault current with short circuit current controller enabled.

To better understand the behavior of fault current at PCC and operation of enabled short circuit current controller during LL fault, Figure 4.7 illustrates the zoomed waveforms of (a) inverter output current for LL fault at $t = 2$ second with SCC controller disabled, (b) triggering signals from SCC controller and (c) inverter fault current at PCC with SCC controller enabled.
Figure 4.6: (a) Inverter Fault Current at $t = 2$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller
(a) Instantaneous PCC Current (actual)

(b) Trigger Level

Triga Trigb Trigc MagTrigger
Figure 4.7: Zoomed Waveforms of (a) Inverter Fault Current at $t = 2$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller

Figure 4.6(a) shows that the magnitude of inverter output current at PCC reaches up to 2 p.u. The large transients or distortion of the faulted current waveform can be seen in Figure 4.7(a) after the inception of fault from $t = 2$ second. It is observed from Figure 4.7(b) that with the SCC controller enabled, 'Trigb' signal becomes high in 0.2 ms from the initiation of fault at $t = 2$ second. Phase B has violated the maximum permissible limits of rate limiter $\left(\frac{di}{dt}\right)$, so 'Trigb' signal rises from 0 to 1. Slope detector responds instantly before the current exceeds its peak rated value. 'Trigb' signal is given to gating signals of a PV inverter, solar farm and AC filter capacitor. PV solar farm modules stop transferring current to the grid within 1.6 ms from the initiation of fault in the grid as shown in Figure 4.7(c). It is also noticed from Figure 4.7(c), that the current does not exceed its maximum rated value i.e. 1 p.u.

4.5.3 Line - Line - Ground Fault

The behavior of inverter output current during LLG fault at $t = 2$ second is found to be identical to LL fault case (Section 4.5.2). The operation of the short circuit current
controller will therefore be the same for both these types of fault cases. Hence, the simulation results will be same as described in Section 4.5.2. and are not repeated here.

4.6 SYMMETRICAL FAULT STUDIES

4.6.1 Line - Line - Line Fault

Figure 4.8 depicts (a) Inverter fault current at PCC for LLL fault at $t = 2$ second with SCC controller disabled, (b) triggering signals ($Triga$, $Trigb$, $Trigc$ and $MagTrigger$) of fault current limiter upon detection of fault and (c) inverter fault current at PCC with SCC controller enabled.

Figure 4.9 represents the zoomed waveforms of (a) inverter output current at PCC for LLL fault at $t = 2$ second with SCC controller disabled, (b) triggering signals of fault current limiter upon detection of fault and (c) inverter fault current at PCC with SCC controller enabled. These waveforms are zoomed to understand more precisely the behavior of fault current at PCC and operation of enabled fault current controller during LLL fault.

(a)
Figure 4.8: (a) Inverter Fault Current at $t = 2$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller
LLL fault is a symmetrical fault which occurs rarely in a transmission line but can potentially cause a severe damage on occurrence. Figure 4.8(a) demonstrates that the magnitude of inverter output current at PCC during symmetrical fault increases till 2 p.u. In Figures 4.8(b) and 4.9(b), Triga, Trigb and Trigc are the triggering signals or output of slope comparator for phase A, B and C, respectively. 'MagTrigger' is the equivalent output of magnitude detector of all the three phases. It is noticed from Figure 4.9(b) that 'Triga' signal has become high after 0.1 ms from the initiation of fault in the grid, as slope of phase A \(\frac{di}{dt}\) has gone beyond its permissible limits. Later, MagTrigger and other triggering signals violate their limits. However, the salient feature of the SCC controller is that only one triggering signal is needed to disconnect the PV inverter from the grid. Finally from Figure 4.9(c), it is concluded that magnitude of inverter output current at PCC becomes zero in 1.5 ms after the fault occurs. This means that no short circuit current gets transferred from PV inverter to the grid. In addition, inverter current does not exceed its maximum rated value. Therefore, power system network does not see any short circuit current contribution from PV inverter.
4.6.2 Line - Line - Line - Ground Fault

Figure 4.10 shows (a) inverter output current at PCC for LLLG fault at $t = 2$ second, (b) generation of triggering signals ($Triga, Trigb, Trigc$ and $MagTrigger$) from SCC controller upon detection of fault and (c) inverter fault current at PCC with short circuit current controller enabled.
Figure 4.10: (a) Inverter Fault Current at $t = 2$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller
To better understand the behavior of fault current at PCC and operation of enabled short circuit current controller during LLLG fault, Figure 4.11 illustrates the zoomed waveforms of (a) inverter output current for LLLG fault at $t = 2$ second with SCC controller disabled,
(b) triggering signals of fault current limiter and (c) inverter fault current at PCC with SCC controller enabled.

Figure 4.10(a) exhibits that the magnitude of inverter output current at PCC rises from 1 p.u. to 1.95 p.u when LLLG fault occurs in grid. Large transients or distortion of the faulted current waveform are seen in Figure 4.11(a) after the inception of fault from \(t = 2 \) second. It is observed in Figure 4.11(b) that with the SCC controller enabled, 'Triga' signal becomes high in 0.3 ms from the initiation of fault at \(t = 2 \) second. Phase A has violated the maximum permissible limits of rate limiter \(\frac{di}{dt} \), so 'Triga' signal rises from 0 to 1. Slope detector responds quickly before the current exceeds peak rated value. PV inverter is disconnected completely from the grid within 1.7 ms from the initiation of fault in the grid as shown in Figure 4.11(c) without the inverter current exceeding its rated value.

4.7 FAULT STUDIES AT DIFFERENT TIME INSTANTS

Fault studies are also performed by applying different types of faults at different time instants to ensure that controller will respond in the expected manner regardless of any type of fault at any time instant. The simulation results are shown below.

4.7.1 Asymmetrical Fault

Figure 4.12 shows (a) Inverter fault current at PCC for LLG fault at \(t = 5.0018 \) second with SCC controller disabled, (b) generation of triggering signals (Triga, Trigb, Trigc and MagTrigger) of fault current limiter upon detection of fault and (c) inverter fault current at PCC with SCC controller enabled. Figure 4.12(a) demonstrates that the LLG fault occurs between the zero crossing and close to current peak for both phase A and B.
Figure 4.12: (a) Inverter Fault Current at $t = 5.0018$ sec. (b) Triggering Signals (c) Inverter Fault Current with SCC Controller
To clearly understand the behavior of fault current at PCC and operation of enabled fault current controller during LLG fault, Figure 4.13 illustrates the zoomed waveforms of (a) inverter output current for LLG fault at $t = 5.0018$ second with SCC controller disabled,
(b) triggering signals of fault current limiter and (c) inverter fault current at PCC with SCC controller enabled.

Figure 4.12(a) demonstrates that the magnitude of inverter output current at PCC during LLG fault rises till 1.95 p.u. Large transients are observed in Figure 4.13(a) from the initiation of fault at $t = 5.0018$ second. It is noticed from Figure 4.13(b) that 'Triga' signal becomes high within 0.2 ms from the initiation of fault in the grid, as slope of phase A ($\frac{di}{dt}$) has exceeded its maximum allowable limits. Later, MagTrigger and other triggering signals get high. As soon as the 'Triga' signal becomes high, inverter fault current at PCC starts decreasing as shown in Figure 4.13(c). Finally, it is concluded from Figure 4.13(c) that instantaneous current at PCC becomes zero within 1.6 ms upon the response of slope detector. This means that no current gets transferred from PV inverter to the grid. In addition, inverter current does not exceed its maximum value. Therefore, the power system network does not see any short circuit current contribution from PV inverter.

4.7.2 Symmetrical Fault

Figure 4.14 demonstrates (a) inverter output current at PCC for LLL fault at $t = 3.5077$ second, (b) generation of triggering signals ('Triga, Trigb, Trigc and MagTrigger') from SCC controller upon detection of fault and (c) inverter fault current at PCC with short circuit current controller enabled. The symmetrical fault occurs above the positive going zero crossing of phase A, close to the peak current of phase B, and near negative going zero crossing of phase C.

Figure 4.15 depicts the zoomed waveforms of (a) inverter output current at PCC for LLLG fault at $t = 3.5077$ second, (b) triggering signals of fault current limiter and (c) inverter fault current at PCC with SCC controller enabled. The waveforms are zoomed to understand more clearly the behavior of fault current at PCC and operation of the SCC controller during single line to ground fault.
Figure 4.14: (a) Inverter Fault Current at $t = 3.5077$ sec. (b) Triggering Signals
(c) Inverter Fault Current with SCC Controller
Figure 4.15: Zoomed Waveforms of (a) Inverter Fault Current at $t = 3.5077$ sec.
(b) Triggering Signals (c) Inverter Fault Current with SCC Controller

Figure 4.14(a) shows that the magnitude of inverter output current at PCC reaches up to 2 p.u. Large transients or distortion of the faulted current waveform are seen in Figure 4.15(a) after the inception of fault from $t = 3.5077$ second. It is observed in Figure 4.15(b) that with the SCC controller enabled, 'Trigb' signal becomes high in 0.2 ms from the initiation
of fault. Phase B has violated the maximum permissible limits of rate limiter \(\frac{di}{dt}\), so 'Trigb' signal rises from 0 to 1. 'Trigb' signal is given to the gating signals of a PV inverter, solar farm and AC filter capacitor. At \(t = 3.5095\) sec, instantaneous current at PCC goes to almost zero as shown in Figure 4.15(c). Thus, PV inverter is disconnected from the grid within 1.8 ms from the point of fault inception without exceeding the maximum rated value of current.

Hence, the SCC controller is successful in disconnecting the PV inverter from the grid regardless of any type of fault or location of fault on the distribution system, which can possibly cause short circuit current to exceed the rated inverter current.

4.8 LOAD SWITCHING

Figure 4.16(a) depicts the PV inverter output current for a load switching event for a time instant at \(t = 5.0035\) second. Figure 4.16(b) demonstrates the triggering signals for the short circuit current controller enabled. It is observed that the enabled controller does not respond to a load switching event of a large feeder load of 60 MW. The steep rate of change in current during the load switching is considered as the slope of high frequency spike which does not last long. These spikes will be removed by low pass filter (Fig.3.2).
If the spikes are not cleared even after filtering then the intentional time delay of 10 µs introduced in the clock of D flip-flop will take care of this transient event as described in Section 2.3.2 and 3.3. Hence a false triggering is avoided at this switching event. This ensures the effectiveness of SCC controller during load switching events.

4.9 COMPARISON BETWEEN RTDS AND PSCAD RESULTS

The similarities and differences of RTDS and PSCAD simulation results are as follows:

Similarities: The performance of SCC controller in RTDS is seen to be similar to that of PSCAD simulation results. The SCC controller successfully shuts off the PV inverter in maximum of 2 ms from the initiation of fault in the grid for all asymmetrical (SLG, LL, and LLG) and symmetrical (LLL, LLLG) fault cases without exceeding maximum rated value of current.
Differences: For LL and LLL fault case studies, RTDS results (Fig. 4.6(a) and 4.8(a)) show larges transients during fault condition as compared to PSCAD simulation results (Fig. 3.5(a) and 3.7(a)). The magnitude of inverter current during LL and LLL fault increases upto 2 p.u. in RTDS. While in PSCAD, magnitude of inverter current reaches 1.45 p.u. This is because, component models (inductor, capacitor, etc.) in RTDS are programmed differently than in PSCAD. Therefore, the behavior of inverter current during short circuit scenario will not be same.

Another difference is when the SCC controller shuts off the PV inverter through GTO switches, inverter current in RTDS decreases immediately on detection of fault but continues to oscillate for few milliseconds and then settles to zero. While in PSCAD, inverter current decreases gradually and settles to zero without oscillating. However, this entire process takes place within 2 ms for both RTDS and PSCAD simulation results.

Nevertheless, RTDS results seem to be more realistic and accurate compared to PSCAD simulation results. Overall, the PSCAD results are considered to be validated with RTDS.

4.10 CONCLUSION

In this chapter, performance of short circuit current controller is validated on a Real Time Digital Simulator (RTDS). Such a testing is typically performed in the final stages of controller validation by commercial equipment manufacturers. The SCC controller is based on the slope \(\frac{di}{dt} \) and magnitude \(|I| \) of the PV inverter output current computation. The studies are performed on the model of a typical distribution of Ontario, Canada. Following conclusions are drawn.

- Studies are performed for different types of asymmetrical faults - SLG, LL, and LLG fault, with the SCC controller enabled. PV inverter is disconnected form the grid within maximum 1.7 ms from the initiation of fault in the grid without exceeding the maximum rated value. For majority of the cases, triggering signal is generated on the response of slope detector \(\frac{di}{dt} \).
• Symmetrical faults such as LLL and LLLG faults are applied on the point of common coupling (PCC) with the SCC controller enabled. PV solar farm modules stop transferring current to the grid within maximum of 1.6 ms from the initiation of fault in the grid without exceeding maximum permissible limits. In these case studies, slope detector ($\frac{dt}{dt}$) responds faster than the magnitude detector on the detection of fault.

• Different types of fault are applied on PCC at different time instants to ensure the effectiveness of SCC controller. Both asymmetrical and symmetrical fault occurs between the zero crossing and peak instant of the current, hence, slope detector generates triggering signal upon detection of the fault. The PV inverter current is limited in maximum of 1.8 ms on the response of slope detector.

• The SCC controller is shown to effectively distinguish between large load switching and fault current. Therefore, the generation of undesired tripping signal is avoided.

Hence, real time simulation studies using RTDS has proved that the short circuit current controller disconnects the PV inverter from the grid within 2 milliseconds regardless of any type of fault or location of fault on the distribution system. Hence, PV inverter does not contribute any short circuit current to the grid.
CHAPTER 5
VALIDATION OF SHORT CIRCUIT CURRENT CONTROLLER ON dSPACE

5.1 INTRODUCTION

This chapter presents the hardware implementation of the short circuit current controller on the dSPACE controller board. The performance of the SCC controller is subsequently validated on dSPACE controller board with actual PV inverter short circuit waveforms obtained from Southern California Edison Short Circuit Testing Lab. The hardware of the SCC controller is developed with TMS320F28335 eZdsp board and various interfacing circuits. The generation of triggering signals from controller is monitored for different fault conditions. The performance of SCC controller is monitored and validated for the desired operation utilizing ScopeCorder Yokogawa DL850E.

Section 5.2 briefs about the concept of dSPACE; Section 5.3 gives an overview on the dSPACE platform; Section 5.4 represents the generation of transients from PV inverter current waveforms obtained from SCE lab; Section 5.5 depicts the implementation of SCC controller on dSPACE board; and Section 5.6 illustrates the dSPACE test results. The actual implementation of short circuit current controller is explained in Section 5.7. Finally, the outcome of this work is concluded in Section 5.8.

5.2 CONCEPT OF dSPACE SIMULATION

For rapid prototype developments, different types of real time controller platforms are used such as dSPACE [70], National Instruments [71] and xPC targets [72]. dSPACE is used extensively in several industrial applications due to its various advantages such as visualization tools, different hardware and extensive array of software options [73,74]. Hence, dSPACE platform is used here for the validation of SCC controller.

The SCC controller is designed in MATLAB/Simulink environment. Then, it is transformed on to the dSPACE controller board through Real Time Interface (RTI)
libraries available in Simulink to perform real time simulations. The SCE lab results are sampled at a rate of 50 μs and subsequently passed through the controller. dSPACE reads these signals and performs appropriate control actions to generate a triggering signal to shut down / disconnect the inverter, AC filter capacitor and solar panels.

5.3 OVERVIEW OF dSPACE PLATFORM

5.3.1 dSPACE Software

![Block Diagram of dSPACE Software System](image)

Figure 5.1: Block Diagram of dSPACE Software System

Figure 5.1 describes about the block diagram of dSPACE software system. The SCC controller is modeled in MATLAB/Simulink with the help of different components available in its library. The simulink model (.mdl file) is transformed into custom C code by Simulink coder specific to the dSPACE controller board. PPC compiler combines this developed C code with RTI libraries which executes the developed model on the dSPACE controller board using the MATLAB library functions MLIB/MTRACE. RTI libraries provide Simulink/dSPACE blocks as well as an input/output interface between Simulink and the dSPACE controller. This will enable a model to run in a specific dSPACE hardware platform. Control Desk is a Graphical User Interface (GUI) software which is used to monitor the program variables during the run time of the simulation. An interface to access
the dSPACE controller board from the Control Desk software or MATLAB/Simulink environment is provided by device driver. The detailed software architecture is provided in the dSPACE software manual [70].

5.3.2 dSPACE Controller Board

Figure 5.2 demonstrates the dSPACE controller hardware subsystems. The dSPACE controller board consists of DS1103 controller board, CLP1103 connector panel and link boards - DS814 and DS817 to communicate between host PC and the PX4 expansion box. Ethernet crossover cable is used to connect the host PC or computer work station to dSPACE controller board. The detailed hardware architecture is outlined in the dSPACE hardware manual [70].

![Figure 5.2: Block Diagram of dSPACE Hardware System](image)

5.3.2.1 PX4 Expansion Box

A PX4 expansion box houses the power supply units, DS1103 controller board and DS814 link board.
5.3.2.2 DS1103 Controller Board

DS1103 controller board is an essential part of the dSPACE system where the SCC controller runs. This board is comprised of two types of controllers: Master and Slave controller. The master controller is a Motorola Power PC (PPC) processor running at a clock rate of 333MHz. The slave controller is a Texas instrument based on Digital Signal Processor (DSP) microcontroller TMS320F240 operating at a clock rate of 20MHz.

5.3.2.3 CLP1103 Connector Panel

The CLP1103 controller panel features the input and output signals to access I/O units of DS1103 controller board. The connector panel is equipped with BNC (Bayonet Neill–Concelman) connectors to access analog and digital signals. Similarly, sub-D connectors are used to provide connections for the interface signals.

5.3.2.4 DS814 Link Board

The DS814 is an Industry Standard Architecture (ISA) bus interface card which is used to communicate between the DS1103 controller board and the DS817 card installed in the PC. This link board is installed in PX4 expansion box.

5.3.2.5 DS817 Link Board

The DS817 link board is used to communicate between the PC and the DS814 link board installed in the PX4 expansion box. It is an interface card installed in the PC.

5.4 ANALYSIS OF ACTUAL SHORT CIRCUIT CURRENT WAVEFORMS

The real time data for commercial PV inverters during asymmetrical - SLG, LL and LLG faults are obtained from Southern California Edison (SCE) lab. All the faults are noted to occur at different time instants. Upon examination, it is found out that the short circuit current waveforms include many transients. To examine the transients, a Fast Fourier Transform (FFT) is performed on all the obtained SCE lab results.
5.4.1 Single-Line Ground Fault

FFT is performed on the inverter current data for SLG fault obtained from SCE lab to examine the transients. Figure 5.3 demonstrates the RMS value of an inverter current at various frequencies up to 10 kHz obtained through FFT operation. The RMS value of fundamental component of the inverter current at 60 Hz frequency during SLG fault is found to be 18 A. To understand it more clearly, Table 5.1 shows the magnitude of oscillation frequencies in p.u. up to 1.92 kHz. It is observed that all the frequencies of oscillations are multiples of fundamental frequency (60Hz). Although not shown in Table 5.1, the frequencies above 1.92 kHz are also noticed to be the multiples of fundamental frequency. This implies that the transients seen in an inverter fault current waveform are all harmonics. Table 5.1 depicts that the inverter generates 3rd harmonic of about 2.34% of fundamental component. The inverter produces very low harmonic currents of maximum about 0.16% of the fundamental component for harmonics up to the 50th (3 kHz). However, this inverter generates higher order current harmonics up to 10 kHz which are well within the IEEE 1547 limits [38]. These harmonics may possibly be due to incomplete filtering of the inverter pulse width modulation switching frequency.

![Figure 5.3: FFT of Inverter Fault Current during SLG Fault](image-url)
\[
\begin{array}{|c|c|c|c|}
\hline
\text{No.} & \text{Oscillation Frequency (Hz)} & \text{Harmonic Order} & \text{Mag (p.u.)} \\
\hline
1. & \text{DC} & - & 0.0011 \\
2. & 120 & 2^{\text{nd}} & 0.0016 \\
3. & 180 & 3^{\text{rd}} & 0.0234 \\
4. & 240 & 4^{\text{th}} & 0.0004 \\
5. & 300 & 5^{\text{th}} & 0.0025 \\
6. & 360 & 6^{\text{th}} & 0.0009 \\
7. & 420 & 7^{\text{th}} & 0.0007 \\
8. & 480 & 8^{\text{th}} & 0.0006 \\
9. & 540 & 9^{\text{th}} & 0.00053 \\
10. & 600 & 10^{\text{th}} & 0.00054 \\
11. & 660 & 11^{\text{th}} & 0.0003 \\
12. & 720 & 12^{\text{th}} & 0.00055 \\
13. & 780 & 13^{\text{th}} & 0.0011 \\
14. & 840 & 14^{\text{th}} & 0.0003 \\
15. & 900 & 15^{\text{th}} & 0.0007 \\
16. & 960 & 16^{\text{th}} & 0.00051 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{No.} & \text{Oscillation Frequency (Hz)} & \text{Harmonic Order} & \text{Mag (p.u.)} \\
\hline
17. & 1020 & 17^{\text{th}} & 0.00062 \\
18. & 1080 & 18^{\text{th}} & 0.00041 \\
19. & 1140 & 19^{\text{th}} & 0.0020 \\
20. & 1200 & 20^{\text{th}} & 0.00032 \\
21. & 1260 & 21^{\text{st}} & 0.00044 \\
22. & 1320 & 22^{\text{nd}} & 0.00039 \\
23. & 1380 & 23^{\text{rd}} & 0.0007 \\
24. & 1440 & 24^{\text{th}} & 0.0040 \\
25. & 1500 & 25^{\text{th}} & 0.00083 \\
26. & 1560 & 26^{\text{th}} & 0.00024 \\
27. & 1620 & 27^{\text{th}} & 0.0008 \\
28. & 1680 & 28^{\text{th}} & 0.00022 \\
29. & 1740 & 29^{\text{th}} & 0.0001 \\
30. & 1800 & 30^{\text{th}} & 0.0007 \\
31. & 1860 & 31^{\text{st}} & 0.0002 \\
32. & 1920 & 32^{\text{nd}} & 0.00033 \\
\hline
\end{array}
\]

Table 5.1: Oscillation Frequencies of the Inverter Current during SLG Fault
5.4.2 Line - Line Fault

FFT is now performed on the inverter current data for LL fault obtained from SCE lab to investigate the transients. Figure 5.4 depicts the result of an FFT operation of an inverter current for various frequencies up to 10 kHz. The RMS value of fundamental component of an inverter current at 60 Hz frequency during SLG fault is 11 A. To understand it more precisely, Table 5.2 shows the magnitude of oscillation frequencies in p.u. up to 1.92 kHz. It is observed that all the frequencies of oscillations are multiples of fundamental frequency (60Hz). Although not shown in Table 5.2, the frequencies above 1.92 kHz are also found to be the multiples of fundamental frequency. This implies that the transients seen in an inverter fault current waveform are all harmonics. It can be observed from Table 5.2 that inverter generates 3rd harmonic current of 2.34% of the fundamental component. Inverter produces very low harmonic currents of maximum about 0.41% of the fundamental component on harmonics up to the 50th (3 kHz). The inverter further generates higher order current harmonics up to 10 kHz which are less than the IEEE 1547 Standard limits [38].

![Figure 5.4: FFT of Inverter Fault Current during LL Fault](image-url)
<table>
<thead>
<tr>
<th>No.</th>
<th>Oscillation Frequency (Hz)</th>
<th>Harmonic Order</th>
<th>Mag (p.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>DC</td>
<td>-</td>
<td>0.0020</td>
</tr>
<tr>
<td>2.</td>
<td>120</td>
<td>2nd</td>
<td>0.0008</td>
</tr>
<tr>
<td>3.</td>
<td>180</td>
<td>3rd</td>
<td>0.0234</td>
</tr>
<tr>
<td>4.</td>
<td>240</td>
<td>4th</td>
<td>0.00003</td>
</tr>
<tr>
<td>5.</td>
<td>300</td>
<td>5th</td>
<td>0.0041</td>
</tr>
<tr>
<td>6.</td>
<td>360</td>
<td>6th</td>
<td>0.0012</td>
</tr>
<tr>
<td>7.</td>
<td>420</td>
<td>7th</td>
<td>0.0009</td>
</tr>
<tr>
<td>8.</td>
<td>480</td>
<td>8th</td>
<td>0.0006</td>
</tr>
<tr>
<td>9.</td>
<td>540</td>
<td>9th</td>
<td>0.0005</td>
</tr>
<tr>
<td>10.</td>
<td>600</td>
<td>10th</td>
<td>0.00061</td>
</tr>
<tr>
<td>11.</td>
<td>660</td>
<td>11th</td>
<td>0.0007</td>
</tr>
<tr>
<td>12.</td>
<td>720</td>
<td>12th</td>
<td>0.00052</td>
</tr>
<tr>
<td>13.</td>
<td>780</td>
<td>13th</td>
<td>0.00071</td>
</tr>
<tr>
<td>14.</td>
<td>840</td>
<td>14th</td>
<td>0.00053</td>
</tr>
<tr>
<td>15.</td>
<td>900</td>
<td>15th</td>
<td>0.0009</td>
</tr>
<tr>
<td>16.</td>
<td>960</td>
<td>16th</td>
<td>0.00053</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Oscillation Frequency (Hz)</th>
<th>Harmonic Order</th>
<th>Mag (p.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.</td>
<td>1020</td>
<td>17th</td>
<td>0.0008</td>
</tr>
<tr>
<td>18.</td>
<td>1080</td>
<td>18th</td>
<td>0.0003</td>
</tr>
<tr>
<td>19.</td>
<td>1140</td>
<td>19th</td>
<td>0.00062</td>
</tr>
<tr>
<td>20.</td>
<td>1200</td>
<td>20th</td>
<td>0.00036</td>
</tr>
<tr>
<td>21.</td>
<td>1260</td>
<td>21st</td>
<td>0.00076</td>
</tr>
<tr>
<td>22.</td>
<td>1320</td>
<td>22nd</td>
<td>0.00044</td>
</tr>
<tr>
<td>23.</td>
<td>1380</td>
<td>23rd</td>
<td>0.00078</td>
</tr>
<tr>
<td>24.</td>
<td>1440</td>
<td>24th</td>
<td>0.0003</td>
</tr>
<tr>
<td>25.</td>
<td>1500</td>
<td>25th</td>
<td>0.00077</td>
</tr>
<tr>
<td>26.</td>
<td>1560</td>
<td>26th</td>
<td>0.00031</td>
</tr>
<tr>
<td>27.</td>
<td>1620</td>
<td>27th</td>
<td>0.00072</td>
</tr>
<tr>
<td>28.</td>
<td>1680</td>
<td>28th</td>
<td>0.00029</td>
</tr>
<tr>
<td>29.</td>
<td>1740</td>
<td>29th</td>
<td>0.00041</td>
</tr>
<tr>
<td>30.</td>
<td>1800</td>
<td>30th</td>
<td>0.0009</td>
</tr>
<tr>
<td>31.</td>
<td>1860</td>
<td>31st</td>
<td>0.0011</td>
</tr>
<tr>
<td>32.</td>
<td>1920</td>
<td>32nd</td>
<td>0.00038</td>
</tr>
</tbody>
</table>

Table 5.2: Oscillation Frequencies of the Inverter Current during LL Fault
5.4.3 Line - Line - Ground Fault

Figure 5.5 represents the result of the FFT operation on the inverter current during LLG fault to examine the transients in the inverter fault current waveform. Figure 5.5 shows the RMS value of an inverter current at various frequencies up to 10 kHz. The RMS value of fundamental component of an inverter current at 60 Hz frequency during SLG fault is 15 A. Table 5.3 shows the magnitude of oscillation frequencies in p.u. up to 1.92 kHz. It is observed that all frequencies of oscillations are multiples of fundamental frequency (60Hz). Although not shown in Table 5.3, the frequencies above 1.92 kHz are also found to be the multiples of fundamental frequency. This confirms that the transients seen in an inverter fault current waveform are harmonics. It can be observed from Table 5.3 that inverter generates 3rd harmonic current of 2.34% of the fundamental component. The inverter produces very low harmonic currents of maximum about 0.37% of the fundamental component for harmonics up to the 50th (3 kHz). The inverter generates higher order current harmonics up to 10 kHz which are once again below the IEEE 1547 Standard limits [38].

![Figure 5.5: FFT of Inverter Fault Current during LLG Fault](image-url)
Table 5.3: Oscillation Frequencies of the Inverter Current during LLG Fault

<table>
<thead>
<tr>
<th>No.</th>
<th>Oscillation Frequency (Hz)</th>
<th>Harmonic Order</th>
<th>Mag (p.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DC</td>
<td>-</td>
<td>0.0009</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>2<sup>nd</sup></td>
<td>0.0016</td>
</tr>
<tr>
<td>3</td>
<td>180</td>
<td>3<sup>rd</sup></td>
<td>0.0234</td>
</tr>
<tr>
<td>4</td>
<td>240</td>
<td>4<sup>th</sup></td>
<td>0.00032</td>
</tr>
<tr>
<td>5</td>
<td>300</td>
<td>5<sup>th</sup></td>
<td>0.0037</td>
</tr>
<tr>
<td>6</td>
<td>360</td>
<td>6<sup>th</sup></td>
<td>0.0011</td>
</tr>
<tr>
<td>7</td>
<td>420</td>
<td>7<sup>th</sup></td>
<td>0.0008</td>
</tr>
<tr>
<td>8</td>
<td>480</td>
<td>8<sup>th</sup></td>
<td>0.00052</td>
</tr>
<tr>
<td>9</td>
<td>540</td>
<td>9<sup>th</sup></td>
<td>0.0002</td>
</tr>
<tr>
<td>10</td>
<td>600</td>
<td>10<sup>th</sup></td>
<td>0.0007</td>
</tr>
<tr>
<td>11</td>
<td>660</td>
<td>11<sup>th</sup></td>
<td>0.0005</td>
</tr>
<tr>
<td>12</td>
<td>720</td>
<td>12<sup>th</sup></td>
<td>0.00055</td>
</tr>
<tr>
<td>13</td>
<td>780</td>
<td>13<sup>th</sup></td>
<td>0.00086</td>
</tr>
<tr>
<td>14</td>
<td>840</td>
<td>14<sup>th</sup></td>
<td>0.00058</td>
</tr>
<tr>
<td>15</td>
<td>900</td>
<td>15<sup>th</sup></td>
<td>0.0009</td>
</tr>
<tr>
<td>16</td>
<td>960</td>
<td>16<sup>th</sup></td>
<td>0.0004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Oscillation Frequency (Hz)</th>
<th>Harmonic Order</th>
<th>Mag (p.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>1020</td>
<td>17<sup>th</sup></td>
<td>0.00083</td>
</tr>
<tr>
<td>18</td>
<td>1080</td>
<td>18<sup>th</sup></td>
<td>0.0004</td>
</tr>
<tr>
<td>19</td>
<td>1140</td>
<td>19<sup>th</sup></td>
<td>0.00063</td>
</tr>
<tr>
<td>20</td>
<td>1200</td>
<td>20<sup>th</sup></td>
<td>0.00044</td>
</tr>
<tr>
<td>21</td>
<td>1260</td>
<td>21<sup>st</sup></td>
<td>0.00065</td>
</tr>
<tr>
<td>22</td>
<td>1320</td>
<td>22<sup>nd</sup></td>
<td>0.00036</td>
</tr>
<tr>
<td>23</td>
<td>1380</td>
<td>23<sup>rd</sup></td>
<td>0.00088</td>
</tr>
<tr>
<td>24</td>
<td>1440</td>
<td>24<sup>th</sup></td>
<td>0.00038</td>
</tr>
<tr>
<td>25</td>
<td>1500</td>
<td>25<sup>th</sup></td>
<td>0.0008</td>
</tr>
<tr>
<td>26</td>
<td>1560</td>
<td>26<sup>th</sup></td>
<td>0.0003</td>
</tr>
<tr>
<td>27</td>
<td>1620</td>
<td>27<sup>th</sup></td>
<td>0.0008</td>
</tr>
<tr>
<td>28</td>
<td>1680</td>
<td>28<sup>th</sup></td>
<td>0.00035</td>
</tr>
<tr>
<td>29</td>
<td>1740</td>
<td>29<sup>th</sup></td>
<td>0.00083</td>
</tr>
<tr>
<td>30</td>
<td>1800</td>
<td>30<sup>th</sup></td>
<td>0.0004</td>
</tr>
<tr>
<td>31</td>
<td>1860</td>
<td>31<sup>st</sup></td>
<td>0.0007</td>
</tr>
<tr>
<td>32</td>
<td>1920</td>
<td>32<sup>nd</sup></td>
<td>0.0003</td>
</tr>
</tbody>
</table>
5.5 IMPLEMENTATION OF SCC CONTROLLER ON dSPACE BOARD

Figure 5.6 depicts the implementation of the short circuit current controller on dSPACE board. The Simulink software environment along with MATLAB-dSPACE block sets are used to develop SCC controller. RTI1103 and Simulink libraries contain real time library interface block sets. These libraries get initialized in the Simulink software once MATLAB starts running [57].

The SCE lab results for commercial inverters are available in MATLAB workspace. This discrete data is transferred to Simulink environment with a block called “From Workspace” available in Simulink library. The input signals are discretized at a sample rate of 50 µs. The input signals contain harmonics as described in Section 5.4. Therefore, a digital filter is designed to remove these harmonics. The critical issue while designing the filter is the delay introduced by it. The designed filter should introduce minimum delay with a good filtering performance for the short circuit current controller to respond in 1-2 ms during short circuit scenarios. Group delay can be reduced by increasing cut off frequency at same sampling frequency but the performance of the filter will be poor. So there is a tradeoff between cutoff frequency and filter performance. Therefore, a discrete 4th Order IIR (Infinite Impulse Response) Low Pass Butterworth filter [91] has been designed. The sampling and cut-off frequency of the filter are chosen as 20 kHz and 500 Hz, respectively. A Butterworth filter has been chosen due to its several characteristics such as maximally flat magnitude response in the pass band, step response having moderate overshoot and ringing lower than Chebyshev filter, and rate of attenuation better than Bessel filter [92]. The main advantage of Butterworth filter is that it eliminates the noise without affecting the amplitude of input signal. With the help of filter visualization tool in MATLAB, group delay response of the designed filter is plotted. Figure 5.7 illustrates the group delay introduced by the designed filter at various frequencies. IIR filter is a frequency dependent delay filter. Therefore, filter delay will not be constant. Filter gives a delay of 0.83 ms at 60 Hz frequency as shown in Figure 5.7. Thereafter, the input signals are passed through the digital filter using Simulink block sets.
Figure 5.6: Implementation of SCC Controller on dSPACE
Figure 5.7: Filter Delay

After a time delay of 1 second, the inputs are passed through slope and magnitude comparators. These modules and their operations are already discussed in Section 2.3.2 and 3.3. The parameters for magnitude and slope comparators are 32.0A and 12060 amperes per second, respectively. The output of the SCC controller as modeled in Simulink is the 'Trip' signal. This output signal is then given to dSPACE DAC channel. The DAC channel converts Simulink output in the range of -10 to 10 volts. Therefore, 'Trip' signal in Simulink is multiplied with a gain of 0.1 to get the same output signal from DAC channel.

Figure 5.8 shows the dSPACE test set up to analyze the performance of short circuit current controller. The DAC channel from dSPACE board is connected to Yokogawa DL850E via BNC connectors to examine the output signal as shown in Figure 5.8. This DL850E ScopeCorder is a powerful portable data acquisition recorder and oscilloscope that can capture and analyze transient events. It is able to trigger on electrical power related and other calculations in real time. Similarly, the input discrete signals are multiplied with gain of 0.1 and corresponding DAC channels are assigned. Simulink model (.mdl file) is transformed into a custom C code (.sdf file) by Simulink coder specific to the dSPACE controller board on compilation. Thereafter, .sdf file is loaded into Control Desk software.
Once the software starts running, the input and output signals connected to Yokogawa are analyzed to understand the performance of the short circuit current controller.

![Figure 5.8: dSPACE Test Set Up](image)

5.6 dSPACE RESULTS

SCE lab data of PV inverter current during asymmetrical faults at different time instants are passed through the short circuit current controller implemented on dSPACE board, which is further connected to Yokogawa DL850E [95]. The peak rated value of an inverter current for all the fault cases is 32.0A. To understand the performance of the SCC controller more precisely, the results are extracted from Yokogawa and plotted in MATLAB. The test results are shown below.
5.6.1 Single Line - Ground Fault

Figure 5.9 represents the performance of short circuit current controller on dSPACE board during SLG fault. Figure 5.9 depicts (a) original inverter current during SLG fault, (b) filtered inverter fault current, (c) generation of triggering signal from SCC controller and (d) inverter fault current with SCC controller enabled. Figure 5.10 shows the validation results of SCC controller in Yokogawa for SLG fault.

According to SCE lab data, PV inverter current increases up to 1.34 p.u. during SLG fault as demonstrated in Figure 5.9(a). Here, the fault occurs at $t = 6.8194$ second near zero crossing. The impedance and location of fault is not known. The original short circuit current waveform is filtered with 4th order IIR Low Pass Butterworth filter as seen in Figure 5.9(b). The filter introduces a delay of 0.83 ms at 60 Hz frequency. Therefore, controller can sense the short circuit condition only after 0.83 ms of its occurrence due to filter delay. It is noticed from Figure 5.9(b) that the slope of the current waveform increases when SLG fault occurs. Therefore, the triggering signal is generated by the SCC controller upon the detection of fault as illustrated in Figure 5.9(c). The triggering signal goes high on the response of slope detector $\left(\frac{di}{dt}\right)$ as slope of phase B (black waveform) has exceeded its maximum allowable limits. The inverter current is inhibited as soon as the triggering signal goes high. It goes to zero at $t = 6.8207$ second as shown in Figure 5.9(d). This means that SCC controller takes 1.3 ms to limit the PV inverter current without exceeding the peak rated value or 1 p.u.
Figure 5.9: (a) Inverter Fault Current (b) Filtered Inverter Fault Current (c) Triggering Signal and (d) Inverter Fault Current with SCC Controller
Figure 5.10: Performance of SCC Controller in Yokogawa during SLG Fault
5.6.2 Line - Line Fault

Figure 5.11 presents (a) original inverter current during LL fault, (b) filtered inverter fault current, (c) generation of triggering signal from SCC controller and (d) inverter fault current with SCC controller enabled. Figure 5.12 demonstrates the snapshot of validation results of SCC controller in Yokogawa when LL fault occurs.

Figure 5.11(a) demonstrates that the PV inverter current rises from 1 p.u. to 2.2 p.u. during LL fault. The fault occurs at \(t = 3.8482 \) second after crossing the peak instant. For this case also, the impedance and location of fault is not known. Figure 5.11(b) shows the filtered inverter fault current with a minimum delay of 0.83ms at 60 Hz frequency. Therefore, the controller will respond to the fault condition after 0.83 ms of its occurrence due to filter delay. The slope of the current waveform changes due to LL short circuit as seen in Figure 5.11(b). The short circuit current controller generates triggering signal on the response of slope detector \(\frac{di}{dt} \) as observed in Figure 5.11(c). Phase A signal has violated its maximum permissible limit. Hence, triggering signal is generated within 1 ms from the initiation of fault in the grid. It is noticed from Figure 5.11(d) that the inverter current goes to zero around \(t = 3.84921 \) second. Thus, PV inverter current is limited within 1.1 ms during LL fault by the SCC controller without exceeding the rated value.
Figure 5.11: (a) Inverter Fault Current (b) Filtered Inverter Fault Current (c) Triggering Signal and (d) Inverter Fault Current with SCC Controller
Figure 5.12: Performance of SCC Controller in Yokogawa during LL Fault
5.6.3 Line - Line - Ground Fault

Figure 5.13 depicts (a) original inverter current during LLG fault, (b) filtered inverter fault current, (c) generation of triggering signal from SCC controller and (d) inverter fault current with SCC controller enabled. Figure 5.14 illustrates the performance validation of SCC controller in Yokogawa for LLG fault.

Figure 5.13(a) demonstrates that the PV inverter current increases till 1.56 p.u. during LLG fault. The fault occurs at $t = 5.7276$ second between peak instant and zero crossing. The impedance and location of fault is not known. The original fault current waveform is filtered with discrete IIR Low Pass Butterworth filter as shown in Figure 5.13(b). The delay introduced by filter at 60 Hz frequency is 0.83 ms. Therefore, the SCC controller will respond to the fault condition after 0.83 ms of its occurrence due to filter delay. The slope of the current waveform changes after LLG fault occurs as seen in Figure 5.13(b). The short circuit current controller generates triggering signal within 2 ms on the response of slope detector ($\frac{di}{dt}$) as observed in Figure 5.13(c). The PV inverter current goes to zero at $t = 5.7297$ second as seen in Figure 5.13(d). It is noticed that in this case, the SCC controller takes more time to generate triggering signal for LLG fault case compared to the other two cases (Section 5.5.1 and 5.5.2). The SCC controller does not see any increase in magnitude during fault in filtered inverter fault current as observed in Figure 5.13(b). Therefore, magnitude detector will not respond. Now, the filtered inverter fault current (Fig. 5.13(b)) takes time to reach near zero crossing and by that time original inverter fault current (Fig. 5.13(a)) has already crossed the zero crossing. The SCC controller detects the fault when it measures the high change in slope near zero crossing. Finally, for this worst case fault condition also, the PV inverter current is limited within 2 ms by the SCC controller without exceeding the maximum permissible value of current.
Figure 5.13: (a) Inverter Fault Current (b) Filtered Inverter Fault Current (c) Triggering Signal and (d) Inverter Fault Current with SCC Controller
Figure 5.14: Performance of SCC Controller in Yokogawa during LLG Fault
5.7 COMPARISON BETWEEN dSPACE AND RTDS RESULTS

The similarities and differences of dSPACE and RTDS simulation results are as follows:

Similarities: The performance of SCC controller in dSPACE is seen to be similar to that of RTDS simulation results. The SCC controller limits the PV inverter current completely in a maximum of 2 ms for all asymmetrical faults (SLG, LL, and LLG) cases.

Differences: In both RTDS and dSPACE results during LL fault case study (Fig. 4.6(a) and 5.11(a)), the fault occurs between zero crossing and peak instant of an inverter current. The SCC controller in dSPACE system with a filter delay of 0.83 ms at 60 Hz frequency restricts the PV inverter current in 1.1 ms. While, the SCC controller in RTDS with a filter delay of 0.1 ms detects the fault condition and disconnects the PV inverter within 1.6 ms from the initiation of fault in the grid.

Hence, SCC controller is seen to be respond faster and is more accurate in dSPACE environment compared to the RTDS system.

5.8 ACTUAL IMPLEMENTATION OF SCC CONTROLLER

A dSPACE system is used in research centers to test and validate the performance of a designed controller. The dSPACE system is bulky in size as shown in Figure 5.8 and therefore not feasible to implement in actual field. Moreover, the cost of dSPACE system is very high. Hence, the predictive technique of short circuit current controller as proposed in [8,9] is physically implemented on a TMS320F28335 eZdsp board [96] which costs few hundred dollars and also the size of the board is very small as shown in Figure 5.16. The SCC controller is planned to be showcased at Bluewater Power Distribution Corporation, Sarnia, where a 10 kW PV solar system is installed on their office premises. The short circuit fault will be mimicked through the inception of sudden extremely large load changes. Figure 5.15 depicts the implementation of physical SCC controller on TMS320F28335 eZdsp board along with various interfacing circuits for a 10 kW PV solar system at Bluewater Power. The test procedure is described in detail in the following sections.
5.8.1 TMS320F28335 eZdsp Board

Figure 5.16 represents the hardware of TMS320F28335 eZdsp board. The F28335 eZdsp kit is a complete software development platform for TMS320F2833x digital signal controllers. The board consists of expansion headers that provide access to all F28835 I/O signals, 12 bit ADC channels with 16 input channels, RS232 interfaces, 512 KB on-chip flash memory, 68 KB on-chip RAM, USB interface to host PC and a universal power supply [94]. The operating frequency of TMS320F28335 is 150 MHz. The power supply needed for the board is +5V. The TMS320F28335 supports +3.3V input/output levels. The software features contain Code Composer Studio integrated development software. It includes C compiler, assembler, linker, and real-time debug support and data visualization.

![Diagram of 10 kW PV Solar System](image)

Figure 5.15: Implementation of SCC Controller on a 10 kW PV Solar System

The model of SCC controller is developed in MATLAB/Simulink environment as shown in Figure 5.6. The detailed description of model design is provided in Section 5.5. The digital filter designed here is same as described in Section 5.5. Simulink model (.mdl file) is transformed into custom C code file by Simulink coder specific to the F28335 DSP board on compilation. Thereafter, the compiled file is loaded into the Code Composer Studio (CCS) software. The file from CCS software is loaded on the DSP board through USB
cable. The controller is permanently stored on the DSP board until a new file has been loaded on it. If any parameters need to be change in controller, then MATLAB/Simulink file can be modified and it can be again reloaded on DSP board via USB cable.

Figure 5.16: TMS320F28335 eZdsp Board

5.8.2 Current Sensor

The output of PV inverter current needs to be monitored continuously to generate triggering signal from the SCC controller on the detection of fault in the grid. For this, a current sensor or transducer is required. Figure 5.17 shows the current sensor LA 55-P [99] used for monitoring the PV inverter current. LA 55-P has been used due to its several advantages such as excellent accuracy, very good linearity, optimized response time, no insertion losses and current overload capability [95]. The primary current measuring range is from 0 to 70A. The measuring of primary nominal current RMS is up to 50A. The quintessential point in selecting LA 55-P transducer is its 1 µs response time. The output voltage of current sensor is ±10V.
5.8.3 DC Switch

A DC switch is required to isolate solar panels from the inverter on the generation of triggering signal from SCC controller on fault detection. The reason for disconnecting the solar farm is described in Section 2.4.2. The DC side voltage of an inverter at 10kW PV solar system is 400V at 25A. Figure 5.18 depicts the DC switch used in 10 KW PV solar system to isolate the solar panels. The SC800-25-12 DC switch [100] is an IGBT based solid state relay having an operating voltage range from 0 to 800VDC at 25A. The input voltage for this switch is 12 VDC. The minimum turn-on voltage is 8VDC. The maximum turn-on and turn-off time taken by DC switch at 12 VDC is 1 ms [96].

5.8.4 AC Switch

An AC switch is required to isolate filter capacitor on the generation of triggering signal from SCC controller on fault detection. The reason for disconnecting the filter capacitor is described in Section 2.4.2. Figure 5.19 demonstrates the AC switch used in 10 kW PV solar systems to isolate the filter capacitor. The D53TP250 AC switch [101] is a three phase solid state relay having an input voltage range from 4 to 32VDC at 50A. The minimum turn-on voltage is 4VDC. The maximum turn-on and turn-off time taken by AC switch is 1/2 cycle (ms) [97].
5.8.5 Interfacing Circuits

It can be noticed from above sub-sections that the input and output voltages of sensor, switches and DSP board are different. Therefore, extra circuits are needed to interface them with each other as shown in Figure 5.15. The design of various interfacing circuits is described below.
5.8.5.1 Interfacing Circuit -1

As depicted in Figure 5.15, the current will flow from the output of current sensor LA 55-P to the input of F28335 DSP board. The output voltage of current sensor is ±10V as mentioned in Section 5.7.2. Likewise, the input voltage of DSP board is 0 to 3.3V. Figure 5.20 illustrates the interfacing circuit between current sensor and F28335 DSP board. The circuit consists of an operational amplifier IC 741 having dual voltage supply of ±12V. The input voltage is ±10V. The value of R1 and R2 is 100k ohm. The value of R3 and R4 is 15k ohm. The dc voltage of 1.5V is applied along with R3 at positive terminal of IC 741 to provide level shifting of voltage. The output voltage is 0-3V. The DSP board will consider 3V as maximum input instead of 3.3V.

![Diagram of Interfacing Circuit](image)

Figure 5.20: Interfacing between Current Sensor and TMS320F28335 eZdsp Board

5.8.5.2 Interfacing Circuit -2

The generation of triggering signal from F28335 DSP board on the detection of fault is transferred to the gating signals of an inverter to shut it off as illustrated in Figure 5.15. The output voltage of DSP board is 3.3VDC and input voltage for the gating drivers of an IGBT switches is 15VDC.
Figure 5.20 demonstrates the interfacing circuit between DSP board and gating signals of an inverter. The operational amplifier IC 741 having dual voltage power supply of ±12V has been used here. The values of R1 and R2 are 280 ohm and 1k ohm, respectively. Finally, 15VDC output voltage from the IC 741 is obtained to drive IGBT switches.

5.8.5.3 Interfacing Circuit -3

The triggering signal from the output of F28335 DSP board goes to DC switch to isolate solar panels from the inverter as shown in Figure 5.15. The output voltage of DSP board is 3.3VDC and input voltage of DC switch is 12VDC. Figure 5.22 depicts the interfacing circuit between DSP board and DC switch. The operational amplifier IC 741 having dual voltage power supply of ±12V is used. The input voltage to op-amp is 3.3V. The values of R1 and R2 are 380 ohm and 1k ohm, respectively. Finally, the output voltage from the IC 741 is 12VDC.

5.8.5.4 Interfacing Circuit -4

The triggering signal from the output of F28335 DSP board goes to DC switch to isolate solar panels from the inverter as shown in Figure 5.15 board goes to AC switch to disconnect AC filter during fault as shown in Figure 5.15. The output voltage of DSP board is 3.3VDC and input voltage of AC switch is 4 - 32VDC as mentioned in Section 5.8.4. The circuit designed in Figure 5.22 can be used for interfacing circuit - 4. As the output voltage is 12VDC, it will meet the input voltage requirement of AC switch.
Figure 5.22: Interfacing Circuit between TMS320F28335 eZdsp Board and DC Switch

5.8.6 Hardware Implementation of the Short Circuit Current Controller

Figure 5.23 demonstrates the hardware of SCC controller. The hardware consists of TMS320F28335 eZdsp Board and various interfacing circuits as described in Section 5.8.1 and 5.8.5, respectively. The SCC controller program is loaded on DSP board via USB cable. The current sensor inputs are given to the hardware of SCC controller through banana cables and finally, output signal ‘Trip’ is given to the gating signals of PV inverter, solar panels, and AC filter capacitor.

5.8.7 Customization

The interfacing circuits designed in Section 5.8.5 will be utilized on the actual implementation of the SCC controller on 10kW PV solar system at Bluewater Power, Sarnia.

For implementation on any other PV inverter, all the interfacing circuits can be redesigned easily depending on the type of AC or DC switch being used and the voltage level of gating signals for IGBT switches. In addition, as mentioned in Section 5.8.1, the program loaded on TMS320F28335 eZdsp board can be modified by connecting USB cable from the board to workstation PC and making few changes in Simulink model. Thus, the SCC controller can be customized to every PV solar farm application depending on the requirements.
5.9 CONCLUSION

This chapter represents the hardware implementation of the short circuit current controller on dSPACE board. The SCC controller is validated by testing it with short circuit current waveforms from SCE lab obtained from actual commercial inverters. The output of dSPACE controller system is monitored by Yokogawa DL850E where the performance of the SCC controller is analyzed. Following conclusions are drawn.

- Single Line-to-Ground fault occurs close to zero crossing of an inverter current signal. The SCC controller restricts the PV inverter current completely in 1.3 ms on the response of slope detector ($\frac{dl}{dt}$) without exceeding maximum rated value.

- Likewise, line-to-line fault occurs close to zero crossing of an inverter current. In this case study, PV inverter current is limited within 1 ms from the initiation of fault
in the grid. Triggering signal is generated on the response of slope detector \(\frac{di}{dt} \) upon detection of the fault.

- Line-to-Line-to-Ground fault is noticed to be a worst fault case condition as the fault occurs between zero crossing and peak instant of an inverter current without increasing its magnitude above rated value. However, SCC controller succeeded in limiting the PV inverter current in 2 ms on the response of slope detector \(\frac{di}{dt} \), that also, without exceeding the maximum permissible limit of rated current.

Finally, the hardware of SCC controller is developed by transferring it on to TMS320F28335 eZdsp board. The novel patented predictive technique of short circuit current controller is planned to be showcased on 10 kW PV solar system at Bluewater Power. The TMS320F28335 eZdsp board is configured with various interfacing circuits to disconnect PV solar farm modules, to disable gating signals of an inverter, and to isolate AC filter capacitor from the PCC.
CHAPTER 6
CONCLUSIONS AND FUTURE WORK

6.1 INTRODUCTION

More than 45% applications seeking connections of PV solar farms have been denied during 2011-2013, in Ontario, Canada, due to their potential of injecting short circuit currents into the grid during system faults. The distribution utilities were apprehensive that these PV inverter short circuit currents could damage expensive circuit breakers and other customer equipment if the PV solar farms were connected at substations where the short circuit current limits were already reached. An improved fault current management technique was therefore needed to ensure effective deployment of solar farms.

A novel technique for the management of short circuit current contribution from PV inverters has been developed and patented in [10, 11], which will effectively disconnect the PV solar farms if the inverter current during any short circuit fault on the grid is likely to exceed the inverter rated current. The short circuit current controller as proposed in [8,9] is based on the detection of rate of rise or slope \((d/dt)\) of inverter current and the peak magnitude of current. This thesis deals with the implementation and validation of the short circuit controller (SCC) based on the above predictive technique. The performance of the SCC controller is demonstrated through simulation studies using PSCAD/EMTDC software and commercial grade Real Time Digital Simulator (RTDS). The controller is subsequently implemented in hardware on dSPACE controller board and its performance is validated with actual PV inverter short circuit waveforms obtained from Southern California Edison Short Circuit Testing Lab. This novel technology is intended to be showcased on a 10kW PV solar system of Bluewater Power Distribution Corporation, Sarnia, Ontario.

This Chapter presents the overall conclusions of the research work performed in this thesis.
6.2 A NOVEL SHORT CIRCUIT CURRENT CONTROLLER FOR PV SOLAR SYSTEM

In Chapter 2, a typical network of Ontario, Canada obtained from Natural Resource Canada (NRCan) is used as the study system, which is comprised of 25 km radial feeder having approximately 75 MW load. A 7.5 MW PV solar system is connected at the end of feeder. This chapter describes the design of inverter control, LCL filter and DC link capacitor of the PV solar system.

The concept and design of the short circuit current (SCC) controller for PV inverter based DGs is then presented. The SCC controller technique is based on monitoring of the slope \(\left(\frac{di}{dt} \right) \) of current along with the magnitude \(|I|\). As soon as the tripping signal is generated on the detection of a system fault condition under which the inverter current is likely to exceed its rated or acceptable value, the SCC controller: (a) disables firing pulses of an inverter (b) disconnects PV solar farm from the inverter, and (c) isolates the filter capacitor from PCC. The SCC controller is so designed that that the PV inverter shuts down within 1-2 milliseconds from the initiation of any fault in the grid without the inverter current exceeding its maximum value. Therefore, the power system network does not see any short circuit current contribution from the PV inverter, which could be harmful for circuit breakers.

6.3 ELECTROMAGNETIC TRANSIENT SIMULATION USING PSCAD SOFTWARE

Chapter 3 presents the electromagnetic transients simulation of the operation of the SCC controller with a 7.5 MW PV solar system in PSCAD software. Different types of faults are applied at the point of common coupling (PCC) of the PV inverter, for 6 cycles with the SCC controller enabled. The faults include asymmetrical faults: Single-Line-to-Ground (SLG), Line-to-Line (LL), Line-to-Line-to-Ground (LLG); and symmetrical faults: Line-to-Line-to-Line (LLL) and Line-to-Line-to-Line-to-Ground (LLLLG).
It is demonstrated for both asymmetrical and symmetrical faults that the SCC controller can disconnect the PV inverter from the grid in 1-2 milliseconds from the initiation of grid fault.

To ensure the effectiveness of the SCC controller, different types of faults (LLG and LLLG) are applied on the PCC at different time instants. In most cases the triggering signal is generated on the response of slope detector \(\frac{di}{dt} \). However, if the fault occurs at a time instant when the inverter current is close to its peak, the SCC controller responds based on the triggering signal from the magnitude detector (\(|I|_{max} \)). If the slope detection is delayed due to the time delay of the filter, the magnitude detector takes precedence.

It is further confirmed that the SCC controller can effectively distinguish between large load switching and fault current. This avoids the generation of undesired tripping signal when there is no grid fault.

It is finally demonstrated that with the SCC controller enabled, the PV inverter does not contribute any short circuit current to the grid.

6.4 REAL TIME SIMULATION USING RTDS

Chapter 4 depicts the implementation of a 7.5 MW PV solar system incorporated with the short circuit current controller on a Real Time Digital Simulator (RTDS). The fault studies are performed in real time. This means that the actual physical phenomenon of 1 second in power system network is simulated within 1 second of simulation time. Different types of faults are applied at PCC for 6 cycles with SCC controller enabled. The faults include asymmetrical faults: Single-Line-to-Ground (SLG), Line-to-Line (LL), Line-to-Line-to-Ground (LLG); and symmetrical faults: Line-to-Line-to-Line (LLL) and Line-to-Line-to-Line-to-Ground (LLLG).

Different types of faults (LLG and LLL) are applied at different time instants with the SCC controller enabled. This is done to demonstrate the effectiveness of SCC controller. PV inverter current is limited within 2 ms from the point of fault inception for both asymmetrical and symmetrical fault cases.
Moreover, the performance of the SCC controller in RTDS is seen to be similar to that of the PSCAD simulation. Hence, PSCAD results are considered to be validated by RTDS results which are more realistic and accurate.

This chapter also illustrates that in real time simulations the enabled controller can effectively distinguish between fault current and loads switching.

The real time simulation studies using RTDS prove that the short circuit current controller disconnects the PV inverter from the grid within 2 milliseconds regardless of any type of fault or location of fault on the distribution system. Hence, power system network does not see any short circuit current contribution from PV inverter.

6.5 VALIDATION OF SHORT CIRCUIT CURRENT CONTROLLER ON dSPACE

A real time controller platform is needed to have physical SCC controller which gives real signals and not simulated signals in real time as RTDS. Chapter 5 describes the validation of the performance of the short circuit current controller in hardware on dSPACE board with actual short circuit waveforms obtained from SCE labs in California, for commercial inverters.

For asymmetrical fault cases, the triggering signal is generated on the response of slope detector ($\frac{di}{dt}$). Subsequently, due to triggering signal, PV inverter current is limited within 1-2 ms from the initiation of fault.

The performance of the SCC controller in dSPACE is seen to be more realistic and accurate than those from of the PSCAD simulations as well as RSCAD simulations.

This SCC controller is planned to be showcased on 10 kW PV solar system of Bluewater Power Distribution Corporation, Sarnia, Ontario. The short circuit fault will be mimicked through the inception of sudden extremely large load changes. The hardware of short circuit current controller is developed through TMS320F28335 eZdsp board. This board is configured with various interfacing circuits to disconnect the PV solar farm modules, gating signals of an inverter, and AC filter capacitor from the PCC.
The software program of the SCC controller is general in nature and can be implemented on any PV inverter. The SCC software can be uploaded on the DSP board and the design of interfacing circuits can be customized depending on the application requirements.

6.6 THESIS CONTRIBUTIONS

This thesis presents a novel patented predictive technique for PV solar farm which can bring significant benefits to power systems. Following are the main contributions of this thesis:

- The new short circuit current controller disconnects the PV solar farm within 1-2 milliseconds if a fault occurs in the distribution system, which can cause the inverter short circuit current to exceed its rated magnitude.

- During short circuit conditions, the SCC controller does not allow the inverter current at PCC to exceed the rated value.

- Since the power system network does not see any short circuit current contribution from the PV inverter no expensive circuit breaker upgrades are required in the system when the PV solar farm is allowed connectivity.

- This developed SCC controller can be applied on any PV solar system connected in any grid network.

- It is clarified that the technique proposed in [8,9] is not a general technique to detect any type of faults in the network, nor is it a technique to provide Low Voltage Ride through (LVRT) capability to solar inverters. It is only intended to eliminate the possibility that the PV solar systems will cause any short circuit current contributions in excess of their rated current, which was the prime reason for denial of their connections.

- **Significance:** It is expected that implementation of this or similar short circuit current mitigation technique on PV inverters will prevent any adverse short circuit current
contributions from solar farms, thereby creating an opportunity to integrate more PV solar systems in the grid. The large number (~ 45%) of solar connectivity applications in Ontario which were previously denied can now seek connections if this or any similar technique is adopted.

6.7 PUBLICATIONS

The following journal paper is being prepared as a result of this thesis:

6.8 FUTURE WORK

The following tasks are proposed as future work emanating from this thesis:

- Due to availability constraints of DC and AC switches in this work, switches having less turn-off time can be used in future to achieve faster disconnection of PV solar farm from inverter and AC filter capacitor from the PCC.

- Since staged faults are difficult to create in an actual distribution network, the proposed SCC controller operation can be validated in Labs capable of performing short circuit testing, such as SCE Labs.

- The proposed SCC can be implemented in large solar farms having multiple PV inverters and their coordinated operation can be tested and validated.
REFERENCES

[38] Inverters, Converters, Controllers and Interconnection System Equipment for Use with Distributed Energy Resources, UL 1741, November 7, 2005.

[82] http://linuxgazette.net/118/misc/sreejith/pwm.png

[92] http://www.etc.tuiasi.ro/cin/Downloads/Filters/Filters.htm

APPENDIX: System Data

- **Line Data:**
 The distribution network is all overhead and is constructed with ACSR 336.4 kcmil conductors.
 Positive sequence resistance = 0.0682E-3 ohm/m
 Positive sequence inductive reactance = 0.3636E-3 ohm/m
 Positive sequence capacitive reactance = 251.395 Mohm*m
 Zero sequence resistance = 0.1643E-3 ohm/m
 Zero sequence inductive reactance = 1.1062E-3 ohm/m
 Zero sequence capacitive reactance = 559.252 Mohm*m.

- **Transformer**
 Base MVA = 7.5 MVA
 HT Side Voltage (Wye Side) = 27.6 kV
 LT Side Voltage (Delta Side) = 230 V
 Positive Sequence Leakage Reactance = 0.1 p.u.

 HT Side of Transformer:
 Base Power \(P_{\text{base}} \) = 7.5 MW
 Base Voltage \(V_{\text{base}} \) = 22.53 kV
 Base Current \(I_{\text{base}} \) = 0.22 kA

 LT Side of Transformer:
 Base Power \(P_{\text{base}} \) = 7.5 MW
 Base Voltage \(V_{\text{base}} \) = 230 V
 Base Current \(I_{\text{base}} \) = 26.6 kA
 Base Impedance \(Z_{\text{base}} \) = 7.054 m ohm
 Base Angular Frequency \(\omega_{\text{base}} \) = 377 rad/sec
 DC Base Voltage \(V_{dc} \) = 460 V
• **PV Module Parameters:**

At STC, AM = 1.5, T = 25° C and G = 100watt/m²

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Datasheet Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Power (±5%)</td>
<td>72.6</td>
</tr>
<tr>
<td>Voltage at (P_{MPP})</td>
<td>67.9</td>
</tr>
<tr>
<td>Current at (P_{MPP})</td>
<td>1.07</td>
</tr>
<tr>
<td>Open Circuit Voltage</td>
<td>90.0</td>
</tr>
<tr>
<td>Short Circuit Current</td>
<td>1.19</td>
</tr>
<tr>
<td>Temperature Co-efficient of (P_{MPP})</td>
<td>-0.25</td>
</tr>
<tr>
<td>Temperature Co-efficient of (V_{oc}) High temp > 25° C</td>
<td>-0.25</td>
</tr>
<tr>
<td>Temperature Co-efficient of (V_{oc}) Low temp (-40°C to +25° C)</td>
<td>-0.2</td>
</tr>
<tr>
<td>Temperature Co-efficient of (I_{sc})</td>
<td>0.045</td>
</tr>
<tr>
<td>Cell Type</td>
<td>Cds/CdTe with 116 active cells</td>
</tr>
</tbody>
</table>

Table A1: Electrical Specification For PV Module At Standard Test Condition (STC)

- Number of Series Modules = 8 and Number of Parallel Modules = 12905
PI Controller Parameters

<table>
<thead>
<tr>
<th>PI Controller</th>
<th>K_p</th>
<th>T_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI-1</td>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>PI-2</td>
<td>2</td>
<td>0.015</td>
</tr>
<tr>
<td>PI-3</td>
<td>10</td>
<td>0.015</td>
</tr>
</tbody>
</table>
CURRICULUM VITAE

Name: Vishwajitsinh Atodaria

Post-secondary Education and Degrees:

The University of Western Ontario
London, Ontario, Canada
2013-2015 M.E.Sc. in Electrical Engineering

Birla Vishwakarma Mahavidyalaya, GTU Ahmedabad, Gujarat, India
2009-2013 B.Eng.in Electronics Engineering

Honors and Awards:

Natural Science and Engineering Research Council (NSERC-IPS1) Canada. 2014-2015

Western Graduate Research Scholarship Canada. 2014-2015

Related Work Experience:

Research Associate
Bluewater Power Distribution Corporation, Sarnia, ON
May 2015 - August 2015

Graduate Research Assistant
The University of Western Ontario
May 2014 - August 2015

Intern
Dexter Solutions, Ahmedabad, India
July 2012 - May 2013

Intern
Bombardier Transportation India Ltd., Vadodara, India
May 2012 - June 2012

Publications:
