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Abstract 

Currently, there is no way to assess apoptotic cell death in living organisms. We have 

developed a novel contrast agent targeted toward the detection of caspase-3 activity, the key 

enzymatic mediator of apoptosis. Our contrast agent consists of a dual magnetic resonance 

imaging/fluorescent probe coupled to a cell penetrating peptide (CPP) sequence by a peptide 

backbone containing a caspase-3 cleavage site. The CPP allows the agent to cross cell 

membranes and the blood brain barrier. In cells undergoing apoptosis, activated caspase-3 

will cleave the agent removing the CPP and trapping the imaging probes inside the cell.   

The purpose of this study was to test the ability of our contrast agent to label apoptotic cells 

in cultured neurons and to explore its potential to detect apoptosis in vivo. Using multiple 

methods, we demonstrated that our contrast agent selectively labeled apoptotic but not 

healthy or necrotic neurons in culture. Furthermore, using a caspase-3 inhibitor we 

demonstrated that uptake and retention of the contrast agent was dependent on apoptosis and 

caspase-3 activation.  

To test our contrast agent in vivo, we examined the 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine mouse model of Parkinson’s disease to induce apoptosis in the 

dopaminergic neurons of the substantia nigra. At the time the mice were sacrificed, there was 

little evidence of apoptosis in the substantia nigra and we were not able to identify any cells 

with significant retention of the agent. Nonetheless, this data demonstrates that our agent 

effectively detects apoptosis in cultured neurons and reinforces its potential to image 

apoptosis in vivo. 
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Chapter 1  

1  Introduction  

Since its discovery in 1972 by Kerr et al., the process of programmed cell death, 

otherwise known as apoptosis, has been intensely investigated. Years of research have 

gone into uncovering the molecular events and signaling pathways involved in this mode 

of cell death. Although we have come extremely far in the past 40 years, there is still no 

robust way of detecting apoptosis in living organisms. Additionally, there are limited 

techniques available to detect and label unfixed living apoptotic cells in culture. 

This thesis presents a novel contrast agent for the in vivo detection of apoptosis. We 

present evidence in primary neuron culture that demonstrates the potential to allow the 

direct imaging of cells and tissues undergoing apoptosis in intact animals and humans. 

This imaging technique may prove to be very useful in the assessment of neuronal injury 

or the early diagnosis of neurodegenerative disease. 

The following chapter reviews the process of programmed cell death or apoptosis, 

discusses common cell culture and mouse models used to investigate apoptosis and 

highlights current methods available for detecting apoptosis in vitro and in vivo. Finally, 

the chapter concludes with an introduction and description of our novel contrast agent for 

the in vivo detection of apoptosis.  

 

1.1  Apoptosis  

1.1.1  Overview of Programmed Cell Death  

Apoptosis, or programmed cell death, is a regulated form of cell death that results in the 

systematic destruction and removal of a cell (Elmore, 2007). In contrast to necrosis, or 

accidental cell death, apoptotic cells play an active role in their own demise. Cellular 

destruction is carried out by an energy-dependent mechanism, involving a molecular 
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cascade of enzymes and proteases (Zimmermann and Green, 2001). Apoptosis is 

characterized by a series of morphological events, including cell shrinkage, chromatin 

condensation and nuclear fragmentation (Kerr et al., 1972). During the later stages of 

apoptosis the cellular and nuclear contents are packaged into membrane-bound vesicles 

called apoptotic bodies (Savill, 1997). The apoptotic bodies bud from the cell surface and 

are subsequently engulfed by surrounding macrophages and scavengers (Platt et al., 

1998). Due to the controlled nature of this form of cell death, the cell is destroyed and 

removed without releasing its cellular contents into the extracellular space, avoiding any 

unwanted immune response (Savill and Fadok, 2000).  

1.1.2 Caspases: The Mediators of Apoptosis 

Caspases are a family of cysteine proteases that orchestrate the process of programmed 

cell death. They are synthesized in all cells and exist as inactive zymogens within the 

cytoplasm (McIlwain et al., 2013). In their inactive form, they contain a variable length 

pro-domain followed by a large and small subunit. Cleavage and subsequent release of 

the pro-domain causes activation of the caspase (Cohen, 1997). Activated caspases 

recognize specific tetrapeptide sequences on their substrates. Once activated, they cleave 

other caspases and downstream substrates after aspartic acid residues (Stennicke and 

Salvesen, 1998). 

The caspases involved in apoptosis can be divided into two main groups: initiator 

caspases and effector caspases. The initiator caspases-8 and -9 are the primary caspases 

responsible for propagating the apoptotic signal through the apoptotic cascade and 

activating the pro-forms of the effector caspases (McIlwain et al., 2013). Once caspase-8 

and -9 have been activated, they quickly cleave the effector caspases resulting in their 

activation (Stennicke et al., 1998; Slee et al., 1999).  

The effector caspases are the central mediators of apoptosis: they are responsible for 

causing the morphological and biochemical changes seen in apoptosis. The effector 

caspases include caspase-3, -6, and -7, however, caspase-3 is considered the most 
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important executioner (McIlwain et al., 2013). Caspase-3 recognizes its substrates based 

on the tetrapeptide sequence DEVD (Stennicke and Salvesen, 1998). Once activated, 

caspase-3 is responsible for cleaving, and thereby activating, the enzymes that will 

dismantle and destroy the cell (Nicholson, 1999). Once caspase-3 has been activated 

within a cell, it is committed to die. 

1.1.3 Molecular Signaling Pathways of Apoptosis  

Apoptosis is a highly complex process involving alternate signaling pathways and 

numerous proteins and enzymes. There are a number of different ways to trigger 

apoptosis, and as a result, there are different signaling pathways that can be activated. 

The two main apoptotic pathways are the extrinsic or death receptor pathway and the 

intrinsic or mitochondrial pathway (Fig. 1). These two pathways eventually converge on 

a common pathway resulting in the activation of caspase-3, the key mediator of apoptosis 

(Zimmermann and Green, 2001). 

1.1.3.1 Extrinsic Pathway 

As the name suggests, the extrinsic pathway or death receptor pathway involves the 

binding of extracellular death ligands to their respective death receptors at the cell 

surface. The death receptors involved in this pathway are members of the tumour necrosis 

factor (TNF) receptor superfamily. These receptors all contain what is known as the death 

domain – a cytoplasmic domain that allows the death receptor to transmit the apoptotic 

signal from the extracellular environment to the intracellular environment (Ashkenazi, 

2002). Some of the main death receptors and their respective ligands include FasR/FasL, 

TNF-α/ TNFR1, Apo2L/DR4 and Apo2L/DR5 (Nair et al., 2014).  

Binding of a death ligand to its respective receptor results in the clustering and 

recruitment of adapter proteins on the cytoplasmic side of the receptor (Kischkel et al., 

1995). This activity results in the formation of a complex called the death-inducing 

signalling complex (DISC) that incorporates caspase-8. Formation of DISC results in the 

autocatalytic activation of caspase-8 (Medema et al., 1997). Activated caspase-8 then  
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Figure 1. Schematic representation of the two main apoptotic pathways. In the 
extrinsic pathway binding of an extracellular death ligand to its respective death receptor 
leads to the formation of the DISC complex and activation of caspase-8. In the intrinsic 
pathway intracellular stressors lead to the release of cytochrome c from the mitochondria 
and the formation of the apoptosome and activation of caspase-9. Caspase-8 and caspase-
9 activate caspase-3 leading to the destruction of the cell. Adapted from 
impactaging.com.  

 

proceeds to propagate the apoptotic signal by cleaving and activating the executioner 

caspase-3 (Stennicke et al., 1998).  

1.1.3.2 Intrinsic Pathway 

The intrinsic or mitochondrial pathway is initiated through mitochondrial sensors for 

cellular distress. A variety of insults can disrupt mitochondrial function and activate this 
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pathway. These include the withdrawal of growth factors or hormones, radiation, toxins, 

hyperthermia, oxidative stress or DNA damage (Harmon et al., 1990; Clutton, 1997; 

Wadia et al., 1998; Watters, 1999). All of these insults are able to induce changes in the 

inner mitochondrial membrane that result in the opening of the mitochondria 

permeability transition (MPT) pore and loss of transmembrane potential (Green and 

Kroemer, 2004). Loss of the mitochondrial transmembrane potential causes the release of 

cytochrome c and other pro-apoptotic proteins from the intermembrane space of the 

mitochondria. The release of these proteins allows the formation of a caspase-activating 

structure called the apoptosome. The apoptosome is a large multimeric protein structure 

that incorporates and is responsible for activating caspase-9 (Zou et al., 1999). Following 

the formation of the apoptosome, activated caspase-9 proceeds to cleave and activate 

caspase-3, propagating the apoptotic signal through the pathway (Slee et al., 1999).  

1.1.3.3 Execution Pathway  

Activation of caspase-3 marks the end of both the extrinsic and intrinsic apoptotic 

pathways and the beginning of the execution pathway and degradation phase. It is during 

this phase that the cellular proteins responsible for dismantling and packaging up the cell 

become activated (Elmore, 2007). Once caspase-3 has been activated, the typical series of 

morphological changes leading to destruction and removal of the cell take place. These 

include cell shrinkage, chromatin condensation, nuclear fragmentation, plasma membrane 

blebbing, and finally the formation of apoptotic bodies (Kerr et al., 1972; Ziegler and 

Groscurth, 2004).  

Caspase-3 is responsible for activating the proteolytic enzymes that will dismantle and 

destroy the cell. For example, caspase-3 is responsible for activating caspase-activated 

deoxyribonuclease (CAD), which will breakdown and degrade chromosomal DNA. CAD 

exists in the cytoplasm of cells as a complex with the inhibitor of caspase-activated 

deoxyribonuclease (ICAD). In apoptotic cells, caspase-3 cleaves ICAD releasing and 

activating CAD (Sakahira et al., 1998). Caspase-3 also activates enzymes and proteases 

that will degrade the cytoskeleton and nuclear lamina. Another substrate of caspase-3 is 
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gelsolin, an actin-binding protein that regulates actin filament assembly and disassembly. 

In apoptotic cells, cleavage of gelsolin by caspase-3 leads to disruption of the actin 

cytoskeleton contributing to the morphological changes observed in apoptosis (Kothakota 

et al., 1997).  

1.1.4 Morphological and Biochemical Hallmarks of Apoptosis 

Due to the regulated nature of apoptosis, cells undergoing this mode of cell death follow 

a typical sequence of morphological changes that lead to the destruction of the cell (Kerr 

et al., 1972). The first morphological change that can be observed in apoptotic cells is 

retraction and rounding up of the cell body. In the earliest stages of apoptosis the cell 

severs attachments to other cells and the extracellular matrix. Proteolysis and destruction 

of the cytoskeleton by caspase-3 and its substrates contributes to cell rounding (Taylor et 

al., 2008). This process of retraction and rounding can be easily seen in adherent cells 

grown in culture. 

Following retraction and rounding, there is a reduction in cell volume, referred to as cell 

shrinkage. The cytoplasm becomes more dense and the organelles become more tightly 

packed (Bortner and Cidlowski, 1998). In the nucleus, chromatin condensation, or 

pyknosis, occurs. Cells undergoing chromatin condensation display compact round nuclei 

and can be easily identified with a nuclear stain. In contrast, healthy cells exhibit oval-

shaped nuclei with more diffuse staining (Saraste and Pulkki, 2000; Ziegler and 

Groscurth, 2004).   

As apoptosis progresses, membrane blebbing and fragmentation of the nucleus occurs. 

Cytoplasmic protrusions extend outwards from the cell surface giving a ruffled 

appearance to the plasma membrane. In a process called karyorrhexis, the nucleus is 

broken up and becomes fragmented (Saraste and Pulkki, 2000; Ziegler and Groscurth, 

2004). Like pyknosis, this is one of the major hallmarks of apoptosis and can be easily 

visualized with a nuclear stain.  
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During the final stages of apoptosis, intact organelles and nuclear content are packaged 

into sealed membrane vesicles called apoptotic bodies. These apoptotic bodies bud from 

the blebbing plasma membrane (Saraste and Pulkki, 2000; Ziegler and Groscurth, 2004). 

Finally, the apoptotic bodies and remaining cell fragments are engulfed and digested by 

macrophages and other phagocytes. This allows the cell to be completely degraded and 

removed while maintaining membrane integrity (Platt et al., 1998). This is essential in 

avoiding an unwanted inflammatory response that would result from the release of 

cellular contents into the extracellular space (Savill and Fadok, 2000).  

In addition to the characteristic morphological changes that occur during apoptosis, 

apoptotic cells undergo a number of characteristic biochemical changes. One of the major 

biochemical hallmarks of apoptosis is the externalization of the phospholipid 

phosphatidyl serine (PS) to the outer leaflet of the plasma membrane. This is an early 

event in the apoptotic cascade, occurring before any major morphological changes 

(Martin et al., 1995).  Under normal circumstances, PS is restricted to the inner leaflet of 

the plasma membrane (Balasubramanian and Schroit, 2003). In cells undergoing 

apoptosis, this phospholipid is externalized and acts as a recruitment signal that allows 

phagocytes to recognize and engulf the apoptotic cell (Fadok et al., 1992).  

Another biochemical hallmark of apoptosis is the controlled degradation of nuclear DNA 

into small fragments of equal length. Within the nucleus, double-stranded DNA is 

digested into internucleosomal fragments of approximately 180 base pairs by 

endonucleases (Duke et al., 1983; Wyllie et al., 1984). These endonucleases produce 

double-stranded DNA fragments with blunt ends and single base 3’ overhangs (Alnemri 

and Litwack, 1990; Didenko and Hornsby, 1996). This process occurs after caspase-3 

activation and contributes to nuclear pyknosis and fragmentation.  

1.1.5 Differentiating Apoptosis from Necrosis 

In terms of cell death, apoptosis is often compared to its counterpart necrosis. Apoptosis 

is an active process: it is a managed form of cell death that relies on an energy dependent 
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mechanism and involves a proteolytic cascade and caspase activation. In contrast, 

necrosis is a passive process: it is an unregulated and accidental form of cell death that is 

energy-independent (De Saint-Hubert et al., 2009). Necrosis can result from a number of 

different insults, such as metabolic failure or mechanical trauma (Majno and Joris, 1995). 

Apoptosis and necrosis differ in their morphological and biochemical features. Apoptotic 

cells display a typical progression of morphological changes including cell shrinkage, 

nuclear condensation, nuclear fragmentation, and the formation of apoptotic bodies (Kerr 

et al., 1972; Saraste and Pulkki, 2000). Cellular organelles remain intact throughout the 

destruction process and nuclear DNA undergoes internucleosomal fragmentation (Wyllie 

et al., 1984; Elmore, 2007). Necrotic cells on the other hand undergo cell swelling which 

eventually ruptures the plasma membrane leading to cell lysis. In this uncontrolled form 

of cell death organelles are disrupted and irregular DNA fragmentation occurs (Trump et 

al., 1997).  

Apoptosis and necrosis also differ in their resulting immune response. Cells undergoing 

necrosis quickly lose their membrane integrity. Loss of membrane integrity and 

consequent release of cellular content triggers an inflammatory response. In contrast, 

cells undergoing apoptosis maintain their membrane integrity throughout the entire death 

process. Without the release of cytosolic material and proteolytic enzymes an 

inflammatory reaction does not occur (Savill and Fadok, 2000).  

1.1.6 Apoptosis in Physiology and Pathology 

Programmed cell death plays an indispensible role during development and is crucial for 

maintaining cell populations and normal physiology in adult organisms (Brill et al., 1999; 

Miura, 2011). The ability to safely eliminate and destroy cells without initiating an 

immune response is of great use to a multicellular organism (Platt et al., 1998). The 

formation of the human hand highlights the essential role that apoptosis plays during 

development. During embryonic development, the human hand begins as a paddle-like 

structure. As development progresses, apoptosis is triggered in the cells that lie between 
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fingers, leading to the development of a hand with five separate digits (Mori et al., 1995). 

If apoptosis is not effectively initiated, congenital deformities may result. One such 

deformity is syndactyly, where two or more digits fail to separate and are left fused 

together (Chong, 2010). Apoptosis also plays an essential role in adult organisms. For 

example, the epithelial cells of the small intestine are continually renewing themselves. In 

order to make room for new cells, older cells must undergo apoptosis and die (Shmuel, 

1992).  

It is clear that programmed cell death is essential for multicellular organisms. However, 

the apoptotic process requires a delicate balance: too little or too much apoptosis can 

have detrimental effects on an organism. Too little apoptosis can lead to uncontrollable 

tumour growth (Wong, 2011). Under normal circumstances, DNA damage will lead to 

the violation of cell cycle checkpoints, triggering apoptosis and preventing the mutated or 

damaged cell from surviving. In cancer, cells are able to overstep cell cycle checkpoints 

and evade apoptosis (Levine, 1997; Agarwal et al., 1998; Roos and Kaina, 2006). The 

evasion of apoptosis is fundamental to tumour development and resistance to anti-cancer 

therapy (Wong, 2011).  

At the other end of the spectrum, too much apoptosis can be just as detrimental. In the 

brain, where neurons are not capable of regenerating, an excess of apoptosis can have 

severe consequences. In stroke patients, the ischemic penumbra is a surrounding zone of 

brain tissue that is not as severely affected by the stroke. It receives just enough oxygen 

and nutrients to survive, but not enough for normal function. Hours to days after the 

stroke, some cells found within this region undergo apoptosis, leading to more neuron 

loss and cognitive damage (Choi, 1996; Broughton et al., 2009).  

1.1.6.1 Apoptosis and Neurodegenerative Disease 

An excess of apoptosis can also contribute to neurodegeneration and has been implicated 

in a variety of neurodegenerative disorders, including Alzheimer’s disease (AD), 

Parkinson’s disease (PD) and Huntington’s disease (HD). AD is a chronic brain disorder 
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that is characterized by progressive cognitive impairment and memory loss. On a cellular 

level, it is associated with neurofibrillary tangles, amyloid plaques, the loss of synapses, 

and the death of hippocampal and cortical neurons (Querfurth and Laferla, 2010). A 

number of studies have demonstrated a role for apoptotic-related neuron loss in AD. Post-

mortem examination of brain tissue from patients with AD demonstrates increased DNA 

damage and caspase activation in neurons associated with amyloid deposits (Su et al., 

1994; Masliah et al., 1998). Additionally, it has been shown that exposure of cultured 

neurons to amyloid-β can induce apoptosis directly (Loo et al., 1993). 

PD is a movement disorder that is characterized by the progressive loss of dopaminergic 

neurons within the substantia nigra (SN). By the time of death, individuals affected by 

PD have lost 50-70% of their dopaminergic neurons within the SN (Davie, 2008). 

Apoptosis has been implicated as an important mechanism for neuron loss in PD. Post-

mortem examination of brain tissue from patients with PD implicate apoptosis-related 

DNA damage and gene activation in the loss of dopamine neurons of the substantia nigra 

(Mochizuki et al., 1996; Jenner and Olanow, 1998). Additionally, mouse models and cell-

culture models of PD implicate caspase-dependent modes of cell death in the loss of 

dopaminergic nigral neurons (Viswanath et al., 2001).  

HD is another movement disorder characterized by the expansion of the CAG repeat in 

the huntingtin gene. HD involves the degeneration of striatal neurons resulting in motor 

impairment and uncontrolled body movements (Roos, 2010). Like AD and PD, there 

have been a number of studies that implicate an apoptotic mechanism in the loss of 

neurons. Analyses of brain tissue from patients with varying grades of HD demonstrated 

apoptosis-related DNA fragmentation in neurons and oligodendrocytes throughout the 

striatum (Portera-Cailliau et al., 1995). Furthermore, transgenic mouse models of HD 

show neuronal loss and apoptotic DNA fragmentation in the same regions observed in 

human patients. This is in comparison to wild-type mice that show no evidence of 

apoptotic DNA fragmentation in the same regions (Reddy et al., 1998).  
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1.2 Models of Apoptosis 

1.2.1 Inducing Apoptosis in Cell Culture 

There are a variety of ways to trigger apoptosis and therefore there are a number of 

different ways to induce apoptosis in cells grown in culture. One of the most common 

methods to induce apoptosis is with the use of chemicals or drugs. A number of drugs 

that induce apoptosis have been discovered as the result of anti-cancer drug research 

efforts. Camptothecin is a pro-apoptotic drug that was isolated from plant extracts in the 

1950’s and found to have anti-tumour activity (Wall and Wani, 1996). The compound 

induces apoptosis by inhibiting the DNA enzyme topoisomerase I. This causes DNA 

damage in the cell leading to the induction of apoptosis (Liu et al., 1996). Doxorubicin 

and etoposide are also anticancer drugs that can induce apoptosis in culture. They inhibit 

topoisomerase II causing DNA damage and inducing cell death (Karpinich et al., 2002; 

Mizutani et al., 2005). Additional drugs include staurosporine and tunicamycin. 

Staurosporine is a protein kinase inhibitor that induces apoptosis (Tamaoki et al., 1986). 

Tunicamycin blocks N-linked glycosylation and causes endoplasmic reticulum stress-

induced apoptosis (Shiraishi et al., 2006).  

It is also possible to trigger apoptosis in culture using the death receptor pathway. There 

are a number of different death receptors and their respective ligands can be used to 

induce apoptosis. Additionally, cross-linking a death receptor with an agonist anti-body 

can be used to stimulate the extrinsic pathway and induce apoptosis. The anti-Fas 

antibody is routinely used to induce apoptosis via the death receptor pathway (Gottlieb et 

al., 1996).  

Serum withdrawal is another method used to induce apoptosis in cells grown in culture. 

The loss of growth factors triggers apoptosis via the mitochondrial pathway (Charles et 

al., 2005). Radiation has also been found to induce apoptosis in cells grown in culture. 

Radiation-induced DNA damage triggers apoptosis in these cells, however, it should be 

noted that this method can also cause necrosis (Balcer-Kubiczek, 2012).  
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1.2.2 Mouse Models of Apoptosis 

In order to study apoptosis in vivo, a number of mouse models have been developed. The 

mouse models that will be outlined in this section include the induction of hepatic 

apoptosis via the injection of anti-Fas antibody, treatment of mouse tumor cells with anti-

tumor drugs, cerebral stroke models and the 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) mouse model of Parkinson’s disease.   

1.2.2.1 Fas-Mediated Hepatic Apoptosis 

In 1993, Ogasawara et al. reported the lethal effect of the anti-Fas antibody in mice. 

Intraperitoneal injection of the anti-Fas monoclonal antibody was found to rapidly induce 

apoptosis in hepatocytes. Histological analysis revealed that the majority of hepatocytes 

displayed pyknotic nuclei only 2 hours after injection with the antibody. The induction of 

apoptosis was extensive and occurred extremely rapidly killing the majority of mice 

within 6 hours (Ogasawara et al., 1993).  

The mouse model of Fas-mediated hepatic apoptosis is now the most frequently used 

model to study apoptosis (Blankenberg et al., 1999; Keen et al., 2005; Luo et al., 2005). 

This model provides an excellent method for rapidly inducing widespread apoptosis in 

living organisms. Quantitatively, 63.7% of cells in anti-Fas treated livers stained positive 

for activated caspase-3 compared to normal livers that had 18.3% positive staining (De 

Saint-Hubert et al., 2009).  

1.2.2.2 Treatment of Tumor Models with Anticancer Drugs 

Treatment of tumor bearing tissue in mice with anti-cancer drugs can be used to model 

apoptosis in vivo. Tumor xenograft models are commonly used to produce tumors in 

mice. Tumor cells are injected subcutaneously or intramuscularly leading to the 

development of a tumor (Morton and Houghton, 2007). Mice can then be treated with 

anti-tumor chemotherapeutic drugs, such as doxorubicin, to induce apoptosis in the tumor 

(Hossain et al., 2012). Orthotopic lymphoma models have also been used to model 

apoptosis in vivo. Orthotopic tumors can be initiated by the intravenous injection of 
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lymphoma cells. Treatment with doxorubicin causes massive tumor cell loss within 24 

hours of treatment and almost complete tumor regression within 4 days (Mandl et al., 

2004). Cyclophosphamide has also been used to treat lymphoma in mice. Histological 

analysis revealed virtually complete (>95%) apoptosis in tumors treated with 

cyclophosphamide compared to <5% apoptotic cells in untreated control tumors 

(Blankenberg et al., 1998).  

 

1.2.2.3 Cerebral Stroke Models 

In the hours to days following an ischemic stroke, some neurons within the penumbra 

undergo apoptosis (Broughton et al., 2009). A number of different mouse stroke models 

exist, providing a method to recreate ischemia-induced apoptosis. The most utilized 

stroke model in mice has been the middle cerebral artery (MCA) occlusion. The MCA 

can be occluded either transiently or permanently producing a stroke; however, apoptotic 

cell death has been found to be more extensive after transient occlusion (Love, 2003). 

Histological analysis has revealed that apoptosis peaks 24-48 hours after reperfusion in 

the transient stroke model (Linnik et al., 1995; Chen et al., 1997).  

Cerebral stroke models provide a valuable tool for studying apoptosis in vivo within the 

central nervous system (CNS). A major limitation of this model is the mixture of necrosis 

and apoptosis that occurs after stroke. After ischemic stroke, the most severely affected 

area dies rapidly via necrosis and forms the ischemic core (Kaufmann et al., 1999). The 

combination of necrosis and apoptosis make it difficult to isolate apoptotic cell death. 

1.2.2.4 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Mouse 
Model of Parkinson’s Disease 

The MPTP mouse model of Parkinson’s disease provides a more “pure” method for 

studying apoptosis in the CNS. MPTP is a potent neurotoxin that selectively targets the 

dopaminergic neurons of the SN (Heikkila et al., 1984). It is a lipid-soluble compound 

that can easily penetrate the blood brain barrier (BBB). Once in the CNS, MPTP is taken 
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up by astrocytes and converted to its toxic form 1-methyl-4-phenylpyridinium (MPP+) by 

monoamine oxidase B (MAO-B). MPP+ is then released into the extracellular space and 

taken up by dopaminergic neurons via the dopamine transporter (Tipton and Singer, 

1993). Once in the cell, MPP+ acts to inhibit complex I of the electron transport chain, 

interfering with oxidative phosphorylation in the mitochondria (Watanabe et al., 2005). 

Primary neuronal culture treated with MPP+ display apoptotic nuclear morphology and 

stain positively for activated caspase-3 (Viswanath et al., 2001). Intraperitoneal (IP) 

injection of MPTP selectively destroys the dopaminergic neurons of the SN in mice and 

causes Parkinsonian-like symptoms. Tatton and Kish demonstrated that a total 

cumulative dose of 150 mg/kg of MPTP delivered over five consecutive days 

reproducibly induces apoptosis in the dopaminergic neurons of the SN in C57Bl mice. 

Histological analysis revealed apoptotic DNA fragmentation and chromatin condensation 

in the dopaminergic neurons of the SN. They found that apoptotic cell death was initiated 

72 hours after the first MPTP injection and peaked 24 hours after the final injection 

(Tatton and Kish, 1997).  

The same protocol used by Tatton and Kish can be replicated to provide a mouse model 

for apoptosis within the CNS. Neurons were documented to die primarily via an apoptotic 

mechanism and the time of peak cell death is well documented. A limitation of this 

method is the small size of the SN and limited number of dopaminergic cells found 

within the mouse brain.    

 

1.3 Methods for Detecting Apoptosis in Vitro  

Since apoptosis was first discovered in 1972, a variety of methods have been developed 

for detecting this unique form of cell death. These techniques utilize the morphological 

and biochemical changes that take place in apoptotic cells (Fig. 2). This section will 

review the current techniques available for detecting apoptosis in vitro and in vivo, 

highlighting the advantages and pitfalls of each technique.  
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1.3.1 Cytomorphological Detection  

Using electron microscopy, Kerr et al. closely observed and characterized the 

morphological features exhibited by apoptotic cells. They noticed that these cells 

appeared to undergo a programmed form of cell death that followed a characteristic 

progression of morphological events. This was in contrast to what was seen traditionally 

in necrosis. Using electron microscopy, they observed the characteristic morphological 

features in multiple types of tissue samples from various organisms (Kerr et al., 1972).  

Today, electron microscopy is considered the gold standard for identifying apoptotic cells 

based on nuclear morphology. Electron microscopy boasts extremely high spatial 

resolution that is ideal for detecting the ultrastructural changes seen in apoptosis 

(Martinez et al., 2010). The same cytomorphological features that Kerr et al. described in 

1972 are still used as benchmarks to identify apoptotic cells. Nuclear fragmentation and 

the formation of apoptotic bodies can be used to identify late apoptotic cells (Fig. 2). 

High spatial resolution also makes it possible to detect some of the morphological 

changes associated with early apoptosis, such as chromatin condensation (Watanabe et 

al., 2002; Martinez et al., 2010). On the downside, electron microscopy is very expensive 

and requires a high degree of training. The labour and time involved in visualizing 

samples with electron microscopy makes screening large numbers of cells very difficult. 

Additionally, cells must be fixed in order to visualize with electron microscopy, making 

cells no longer viable after detection (Huerta et al., 2007). 

While not as sensitive as electron microscopy, light microscopy and fluorescence 

microscopy have become the most popular methods for identifying apoptotic cells based 

on morphology. Using light microscopy, cells in culture and tissue samples can be 

stained with hematoxylin and eosin (H&E) to visualize apoptotic morphology. After 

fixation, it is possible to detect nuclear condensation and fragmentation as well as 

apoptotic bodies using H&E stains (Jolly et al., 1997). The ability to detect apoptotic 

cells can be improved with the use of fluorescent dyes and fluorescence microscopy. The 
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Figure 2. Time progression of the major morphological and biochemical events in 
apoptosis. A variety of methods have been developed to analyze apoptotic cell death 
based on the morphological and biochemical events that take place during apoptosis. 
Some assays target early apoptotic events, such as changes in the plasma membrane 
composition, and are useful for detecting early apoptosis. In contrast, some assays target 
late apoptotic events, such as DNA fragmentation, and are only capable of detecting late 
apoptosis.  

 

use of fluorescent DNA-binding dyes like Hoechst 33342 make it much easier to identify 

pyknotic and fragmented nuclei. Hoechst 33342 is membrane permeable allowing 

researchers to stain living cells. Propidium iodide (PI) is a membrane-impermeable DNA-

binding dye. It can be used in conjunction with Hoechst 33342 to exclude necrotic cells 

that have lost their membrane integrity, increasing specificity for apoptotic cells (Huerta 

et al., 2007). Due to the low spatial resolution of light microscopy and fluorescence 
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microscopy, it is only possible to detect late apoptotic cells that display considerable 

nuclear condensation and fragmentation (Fig. 2). Another limitation of light microscopy 

and fluorescence microscopy, as seen in electron microscopy, is difficulty in screening 

large numbers of cells. Additionally, electron microscopy, light microscopy and 

fluorescence microscopy are only able to capture apoptosis at a specific point of time. 

Apoptosis occurs in an asynchronous manner and proceeds rapidly once it has reached 

the degradation phase. As a result, it can be difficult to detect a large number of apoptotic 

cells using this method (Elmore, 2007; Huerta et al., 2007; Martinez et al., 2010).  

1.3.2 DNA Fragmentation 

Degradation of nuclear DNA into fragments of approximately 180 base pairs is a major 

biochemical hallmark of apoptosis. DNA is cleaved at internucleosomal sites by 

endonucleases that become activated by caspase-3 (Duke et al., 1983; Wyllie et al., 

1984). Several methods have been developed to detect apoptosis based on DNA 

fragmentation. DNA laddering was developed to visualize DNA fragmentation when run 

on a gel. In this technique, genomic DNA is isolated from cells or tissue samples and 

electrophoresed on an agarose gel. Cells or tissues undergoing apoptosis will demonstrate 

a characteristic ladder of DNA fragments resulting from the regular cleavage of DNA at 

180 base pair intervals (Daniel et al., 1999). This is in contrast to DNA isolated from 

necrotic cells, which demonstrate a smear when run on an agarose gel, resulting from 

random, non-uniform DNA degradation (Wyllie et al., 1984). DNA laddering is a good 

method for characterizing a population of cells as apoptotic; however, this technique has 

many limitations. In order to see the characteristic ladder, cells must be in the late stages 

of apoptosis, allowing enough time for adequate DNA fragmentation to take place 

(Collins et al., 1997). As a result, this method is not suitable for detecting cells in the 

early stages of apoptosis (Fig. 2). Another major disadvantage of DNA laddering is that it 

is qualitative and not quantitative. Laddering is only able to tell you if apoptosis is 

occurring in a population of cells and not the extent of apoptosis (Watanabe et al., 2002; 

Martinez et al., 2010).  
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In 1992, Gavrieli et al. developed the terminal deoxynucleotidyl transferase-dUTP nick 

end labelling (TUNEL) assay for the detection of apoptotic cells based on DNA 

fragmentation. In this technique, free 3’OH ends of DNA fragments are labelled 

enzymatically by terminal deoxynucleotidyl transferase (Tdt). The signal is then 

amplified and can be detected using light microscopy, fluorescence microscopy or flow 

cytometry (Gavrieli et al., 1992). The major advantage of this technique is the ability to 

provide in situ detection of DNA fragmentation. Using the TUNEL method, individual 

cells from tissue samples or culture can be identified as apoptotic. A variety of 

commercially available kits make this a quick and easy way to detect DNA 

fragmentation. The major disadvantage associated with this technique is that it is not 

completely specific to apoptosis. Random DNA fragmentation can occur in necrotic cells, 

resulting in false positives. Additionally, cells must be fixed prior to TUNEL staining, 

leaving cells no longer viable and making this an end point measurement (Elmore, 2007; 

Huerta et al., 2007; Martinez et al., 2010).  

1.3.3 Annexin V 

The externalization of PS from the inner leaflet to the outer leaflet during apoptosis is 

another major biochemical hallmark of apoptosis (Fadok et al., 1992). In 1994, Koopman 

et al. reported the ability of Annexin V to bind to externalized PS on the membrane of 

apoptotic cells. Annexin V is an endogenous anticoagulant protein that has an extremely 

high affinity for negatively charged phospholipids like PS (Tait et al., 1989). In the 

Annexin V binding assay, living cells are incubated with labeled Annexin V. Apoptotic 

cells that have externalized PS will bind labeled Annexin V allowing for detection using 

FM or flow cytometry (Koopman et al., 1994). A major limitation of this technique is that 

Annexin V alone is not able to discriminate between apoptosis and necrosis. The loss of 

membrane integrity is a defining feature of necrosis. Annexin V is consequently able to 

penetrate necrotic cells and label the inner leaflet of the membrane. In order to 

distinguish between apoptosis and necrosis, this assay requires the addition of a 

membrane impermeable nucleic acid dye such as propidium iodide (PI). PI will only label 

the nuclei of necrotic cells that have lost their membrane integrity, allowing for the 
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discrimination between apoptotic and necrotic cells (Annexin V positive and PI negative 

cells are classified as apoptotic; Annexin V positive and PI positive cells are classified as 

necrotic). Despite the inability of Annexin V to label and distinguish apoptotic cells on its 

own, this assay has some notable advantages. The first is the ability to observe apoptosis 

in living cells without the need of fixation. The second is the ability to detect cells in the 

early stages of apoptosis, as the externalization of PS to the outer leaflet is an early 

apoptotic event (Fig. 2) (Martin et al., 1995).   

1.3.4 Detection of Apoptotic Mediators 

The molecular cascade involved in the apoptotic pathway provides a number of targets 

for detecting apoptosis in vitro. Antibodies that target the cleaved form of caspase-3 or 

the cleavage products of caspase-3 substrates have been developed to detect apoptosis 

(Bressenot et al., 2009). These antibodies can be used in applications such as western 

blotting, immunocytochemistry, immunohistochemistry, and flow cytometry. Antibodies 

to the cleaved form of caspase-3 are commonly used to identify cells with activated 

caspase-3 in culture and tissue samples. Antibodies to the cleavage products of poly 

ADP-ribose polymerase (PARP), a direct substrate of caspase-3, can also be used as a 

marker of apoptosis in culture and in tissue samples (Bressenot et al., 2009). PARP is a 

nuclear protein that binds to DNA strand breaks, acting as a signal for the enzymatic 

machinery that will repair the DNA break. In cells undergoing apoptosis, caspase-3 

directly cleaves PARP into two smaller fragments, rendering it inactive (O’Brien et al., 

2001). Immunostaining for activated-caspase-3 and PARP provide in situ detection of 

apoptosis, allowing the identification of individual apoptotic cells (Srinivasan et al., 

1998). Western blotting provides an easy method of quantifying apoptosis in populations 

of cells (Janicke, 1998). Antibodies have been developed against a variety of targets in 

the apoptotic pathway, allowing flexibility in choosing whether you target an early or late 

apoptotic mediator. A limitation of this technique is the need to fix cells, leaving them no 

longer viable.  
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A variety of fluorogenic caspase substrates have also been developed to detect caspase 

activation as a marker of apoptosis (Liu et al., 1999; Cai et al., 2001; Wang et al., 2005). 

These substrates come in various forms with different tetrapeptide cleavage sequences 

allowing the detection of specific individual caspases. This technique involves incubating 

cell lysate with the fluorogenic substrate. The fluorogenic substrates shift their 

fluorescence emission maximum after cleavage by caspase-3 and are quantified using a 

fluorometer or fluorescence microtiter plate reader (Wang et al., 2005). This technique 

provides a quick and reliable method for quantifying caspase activation and apoptosis. 

This technique also offers the ability to target different caspases. A major limitation, 

however, stems from the fact that caspases exist as cytoplasmic enzymes. This requires 

lysis of the cells destroying the integrity of the sample.  

1.3.5 Cytochrome C and Mitochondrial Detection Methods 

The final method for apoptosis detection in vitro that will be discussed is targeted 

specifically at the mitochondrial or intrinsic apoptotic pathway. The major biochemical 

features of mitochondrial apoptosis are the opening of the MPT pore, loss of the 

mitochondrial transmembrane potential, and subsequent release of cytochrome c and 

other apoptotic proteins from the mitochondrial intermembrane space (Zimmermann and 

Green, 2001; Green and Kroemer, 2004). A variety of detection methods have been 

developed that target these molecular events. These assays are used to identify early 

apoptotic cells, as mitochondrial changes occur early on in the progression of apoptotic 

events (Fig. 2). Additionally, as these techniques are specific for the mitochondrial 

apoptotic pathway, they cannot detect apoptosis initiated through the external or death 

receptor pathway.  

In healthy cells, cytochrome c is confined to the intermembrane space of the 

mitochondria. In cells undergoing apoptosis, cytochrome c is released from the 

intermembrane space to the cytosol where it becomes part of the apoptosome (Zou et al., 

1999). Antibodies for cytochrome c provide a tool for the localization of cytochrome c 

through immunoblotting or immunostaining. Western blotting can compare cytochrome c 
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levels between cytosolic and mitochondrial fractions. Cytosolic fractions from cells 

undergoing apoptosis show an increase in cytochrome c staining compared to healthy 

cytosolic fractions (Bossy-Wetzel and Green, 2000). Additionally, subcellular 

distribution of cytochrome c can be analysed by immunostaining for cytochrome c. 

Healthy cells display punctate cyctochrome c staining within the mitochondria whereas 

apoptotic cells show more diffuse staining throughout the cytoplasm (Heiskanen et al., 

1999). As with many of the assays discussed so far, cells are no longer left viable making 

this an end point for detection.  

Another method for the detection of apoptosis based on mitochondrial changes involves 

tracking changes in the mitochondrial membrane potential. The opening of the MPT pore 

and loss of mitochondrial transmembrane potential is one of the earliest events in the 

intrinsic apoptotic pathway (Green and Kroemer, 2004). Cationic lipophilic dyes 

accumulate within the mitochondrial membrane as a result of the negative 

transmembrane potential produced during oxidative metabolism (Ehrenberg et al., 1988). 

The opening of the MPT pore and loss of transmembrane potential correlates to a loss of 

fluorescent dye due to the diminished capacity of the mitochondria to retain the probe 

(Johnson et al., 1981). The dye can be added to living cells and mitochondrial events can 

be imaged over time using FM or laser-scanning confocal microscopy. A major 

advantage of this technique is the ability to track mitochondrial changes associated with 

apoptosis in living cells in real time. A disadvantage of this technique is that disruption of 

the mitochondrial transmembrane potential can sometimes occur in necrosis, making this 

technique non-specific to apoptosis (Tsujimoto and Shimizu, 2007). Additionally, loss of 

membrane potential is a very early event in the apoptotic cascade, and its occurrence does 

not guarantee apoptosis will be carried out (Green and Kroemer, 2004). 
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1.4 Methods for Detecting Apoptosis in Vivo 

1.4.1 Molecular Imaging 

The development of molecular imaging techniques provides an opportunity to detect and 

image apoptosis in vivo. Molecular imaging can be defined as the non-invasive 

visualization of biochemical events at the cellular level in intact living organisms 

(Weissleder and Mahmood, 2001). In the past, in vivo imaging modalities have focused 

primarily on imaging gross anatomy. Disease progression and treatment outcomes were 

detected as structural changes and abnormalities using conventional techniques, such as 

X-ray, computed tomography (CT) imaging or magnetic resonance imaging (MRI) 

(Vernooij and Smits, 2012). More recently, advanced MRI techniques have probed brain 

function using functional MRI, structural connectivity using diffusion-weighted MRI, 

and metabolism using MR (magnetic resonance) spectroscopy (Lowe et al., 2000; 

Maheshwari et al., 2000; Hagmann et al., 2008; Bullmore et al., 2009; van den Heuvel 

and Hulshoff Pol, 2010). Now, with the emergence of new imaging contrast agents, it is 

possible to non-invasively image specific molecular targets in living, intact organisms. 

These targeted contrast agents can be used to visualize complex biochemical processes at 

the cellular level. Imaging can be performed in real-time, making it possible to follow 

molecular targets throughout the body and monitor changes in activity or consumption 

(James and Gambhir, 2012).   

1.4.2 Molecular Imaging Modalities 

There are a variety of imaging modalities that can be used for molecular imaging. The 

imaging modalities that are of specific interest in relation to this thesis include MRI and 

nuclear imaging techniques such as positron emission tomography (PET) and single-

photon emission computed tomography (SPECT).   

1.4.2.1 Magnetic Resonance Imaging  

MRI has traditionally been used for structural imaging, and is capable of providing 

detailed anatomical information with excellent soft tissue contrast in the brain. This 
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imaging method uses radio frequency waves in the presence of a powerful magnetic field 

to obtain information about specific nuclei found within the body (Katti et al., 2011).  

Due to their high concentration in water molecules in the body, MRI images are primarily 

formed from hydrogen nuclei (1H).  The specific magnetic properties of these hydrogen 

nuclei are tissue specific and therefore can be used to produce detailed anatomical images 

(James and Gambhir, 2012).  

The development of contrast agents (CA) has made it possible to use MRI for molecular 

imaging. CAs or imaging probes are exogenous substances that produce a bright signal, 

or a signal void in the MR image. They are usually injected into the body of the living 

organism and can be localized to particular tissues or areas within the body (James and 

Gambhir, 2012). The most commonly used MRI CAs are gadolinium (Gd) based and 

highlight vessels or regions of vascular permeability (Caravan et al., 1999). To provide 

meaningful biochemical information, contrast agents must be targeted toward specific 

biochemical events. For example, Gd-based CA can be fused to certain peptide 

sequences, antibodies, or targeting moieties (Park et al., 2008; Bort et al., 2014).  

The major advantage associated with MRI is the extremely high spatial and temporal 

resolution. This makes it possible to track biomarkers inside the body and identify their 

exact position. The major limitation associated with this imaging technique is its low 

sensitivity, meaning a high concentration of CA must accumulate in the tissue before 

detection is possible (James and Gambhir, 2012).  

1.4.2.2 Radionuclide Imaging  
 

PET and SPECT imaging use unstable radionuclides to image biochemical events in 

living organisms. PET imaging utilizes unstable radioactive isotopes that decay via 

positron emission or beta decay. As the isotopes decay, they release gamma particles in 

opposite directions, which can be observed by detector pairs (coincidence counters) built 

in a ring surrounding the patient.  The number of counts observed by each detector pair is 

used to compute a tomographic image (Basu et al., 2011). The most commonly used 
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radionuclide for PET imaging is fluorine-18 (18F) (Alauddin, 2012). SPECT imaging uses 

the same fundamental principals to visualize physiological processes but different 

radioactive isotopes that emit gamma radiation. Gamma cameras are used to detect the 

radiation. The gamma cameras rotate around the patient to acquire multiple projections 

that are used to reconstruct tomographic images (Khalil et al., 2011). The most common 

radionuclides used for SPECT imaging are technetium-99m (99mTc), iodine-123 (123I), 

and indium-111 (111In) (Rudin and Weissleder, 2003).  

Like MRI, in order to provide information on biochemical processes, the radiolabeled 

imaging agent must be targeted to specific molecular events. This can be achieved by 

labeling specific molecules, peptides, enzymes, or antibodies with radioactive isotopes. In 

the clinic, the most commonly used PET imaging agent is a radiolabelled analog of 

glucose, fluorodeoxyglucose (FDG). FDG is taken up by cells in living organisms and 

accumulates in cells with high metabolic activity. Generally, cancer cells have higher 

than normal glucose requirements and consequently take up more FDG than other tissues. 

This allows the visualization of tumors and cancer in living organisms using FDG and 

PET imaging (Gambhir, 2002).  

The main advantage associated with radionuclide imaging is its excellent sensitivity. PET 

and SPECT imaging are much more sensitive than MRI, allowing for the use of 

nanomolar concentrations of imaging agent. Unfortunately, what PET and SPECT 

imaging gain in sensitivity they lose in spatial resolution (James and Gambhir, 2012).  

1.4.3 Molecular Imaging of Apoptosis  

The proteolytic cascade and biochemical hallmarks associated with apoptosis provide a 

number of potential targets for the molecular imaging of apoptosis. Despite the diverse 

array of targets, an adequate method ready for clinical use has yet to be developed for the 

in vivo detection of apoptosis. This section will outline some of the existing methods for 

detecting apoptosis in living organisms and discuss their shortcomings.  
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1.4.3.1 Radiolabelled Annexin V 

To date, the most successful method for imaging apoptosis has been the use of 

radiolabelled Annexin V (Tait, 2008). This is a direct extension of the in vitro imaging 

technique that uses fluorescently labeled Annexin V to bind to PS on the outer leaflet of 

apoptotic cells.  

In 1998, Blankenberg et al. were the first group to demonstrate the ability to detect 

apoptosis in vivo using radiolabeled Annexin V. Using 99mTc-labelled Annexin V they 

demonstrated the ability to detect apoptosis in three different mouse models of apoptosis. 

Imaging showed a two- to six-fold increase in the uptake of radiolabelled Annexin V at 

the sites of apoptosis in all three models. The most impressive results were seen in 

cyclophosphamide treated murine B-cell lymphomas. Twenty hours after the injection of 

radiolabelled Annexin V cyclophosphamide treated tumours displayed 3-4 times higher 

uptake than controls (Blankenberg et al., 1998).  

In 2002, Belhocine et al. conducted one of the first human studies using radiolabelled 

Annexin V to predict tumour response to chemotherapy in individuals with cancer. Many 

chemotherapeutic drugs work by inducing apoptosis in target tumours; however, some 

tumours can show greater resistance to chemotherapy than others. In this study, the 

authors predicted that 99mTc-labelled Annexin V uptake in tumors, indicative of 

apoptosis, would correlate to tumor response to treatment. Fifteen patients presenting 

with either lung cancer, lymphoma or breast cancer were administered 99mTc-labelled 

Annexin V before and within 3 days of receiving their first dose of chemotherapy. FDG 

and PET scans were used to evaluate tumor response 3 months after chemotherapy 

treatment. For all individuals in the study, no agent uptake was observed in the tumor 

during the first scan before receiving chemotherapy. Following chemotherapy, the 7 

patients who showed 99mTc labeled Annexin V uptake at the tumor site, had complete (n 

= 4) or partial response (n = 3). In contrast, 6 of the 8 patients who did not show 

significant Annexin V uptake had progressive disease. This study demonstrated the 

ability of 99mTc-labelled Annexin V to localize to tumor sites following chemotherapy 
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and suggests its ability to predict tumor outcome in response to treatment. This study also 

demonstrated the safety of using 99mTc-labelled Annexin V in humans. While this study 

showed some success, the target-to-background ratio of the agent was low. The liver and 

kidneys demonstrated much higher uptake of 99mTc-labelled Annexin V compared to the 

uptake seen in the tumor (Belhocine et al., 2002).  

Radiolabelled Annexin V has also been used to image stroke in rodents and humans 

(Blankenberg et al., 2006; Lorberboym et al., 2006).  Lorberboym et al. evaluated the 

potential of radiolabelled Annexin V to image ischemic injury in human patients with 

acute cerebral stroke. Compared to control patients, eight out of twelve stroke patients 

displayed abnormal uptake of 99mTc-labelled Annexin V in the infarct regions. The 

integrity of the BBB was also evaluated using 99mTc labeled diethylene-triamine-

pentaacetate (DTPA). All of the patients who underwent DTPA imaging showed 

breakdown of the BBB (Lorberboym et al., 2006). Although this study demonstrated the 

ability of 99mTc labeled Annexin V to detect ischemic injury in patients with acute 

cerebral stroke, it raised some red flags for the use of this imaging agent in the CNS. 

First, the ability of radiolabelled Annexin V to cross the BBB is questioned in this study. 

The patients who underwent DTPA imaging all demonstrated breakdown of the BBB. 

Without breakdown of the BBB, labeled Annexin V may not be capable of entering the 

CNS. This limits the ability of this agent to image cell death in situations where the BBB 

is intact. Additionally, Annexin V will bind to both apoptotic and necrotic cells and is 

unable to differentiate the two. While this is useful for detecting stroke where both types 

of cell death occur, it does not offer the potential to image purely apoptotic cell death. 

The ability to distinguish apoptosis from necrosis in vivo could be very valuable in 

understanding the role that programmed cell death plays in a variety of pathological 

conditions.  
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1.4.3.2 Labeled Caspase-3 Substrates 
 

Although caspase imaging probes have great potential, there has been limited work done 

in animals and no human studies. Bullok et al. reported the ability of a caspase-

activatable probe to detect parasite-induced apoptosis in human colon xenograft and liver 

abscess mouse models. Their caspase-3 probe consisted of a cell penetrating peptide 

conjugated to a caspase-3 cleavage site that was flanked by a fluorophore-quencher pair. 

Cleavage by caspase-3 resulted in release of the quencher and emergence of fluorescent 

signal (Bullok et al., 2007). Although their caspase-activatable probe was able to image 

apoptosis in mice, fluorescence imaging is not possible in deeper tissues, limiting the 

clinical application of this probe.  

 

1.5 Rationale and Hypothesis  

Although important in normal development, apoptosis can contribute to 

neurodegeneration and has been associated with a number of neurodegenerative 

disorders, including AD, PD, and HD (Mattson, 2000). As Canada’s population ages and 

the incidence of neurodegenerative disorders rapidly increases, there is a critical need to 

improve the early detection and diagnosis of neurodegenerative disease (Mayeux, 2003). 

A contrast agent capable of detecting apoptosis in vivo may prove to be very useful in the 

early diagnosis of neurodegenerative disease. The ability to detect neurodegeneration 

before the onset of symptoms would significantly impact treatment therapies and help 

alleviate the economic burden of the disease. 

We have developed a novel contrast agent for the detection of apoptosis in vivo. The 

contrast agent is targeted toward the detection of caspase-3, the key enzymatic mediator 

of apoptosis. The agent incorporates both a caged lanthanide metal ion for MRI detection 

and Oregon Green for optical/fluorescent detection. This imaging agent is coupled to a 

cell-penetrating peptide derived from the Tat sequence of the HIV virus, by a peptide 

backbone containing a caspase-3 cleavage site (Fig. 3). The cell-penetrating peptide 
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allows the contrast agent to cross cell membranes and the blood brain barrier in both 

directions. In cells undergoing apoptosis, activated caspase-3 will cleave the agent at the 

caspase-3 cleavage site, releasing the cell-penetrating peptide and trapping the imaging 

probes inside the cell. One single activated-caspase-3 protein can cleave multiple contrast 

agent molecules, leading to the accumulation of the contrast agent inside the cell or blood 

brain barrier, and resulting in the amplification of observed signal.  

We hypothesize that a contrast agent targeted toward the detection of caspase-3 can be 

used to image apoptosis in vivo. The objective of this project was to test the ability of the 

contrast agent to label apoptotic cells in culture and explore its potential to detect 

apoptosis in vivo. 

 

Figure 3. Schematic representation of our contrast agent. Our contrast agent consists 
of a dual magnetic resonance imaging/fluorescent probe coupled to a cell penetrating 
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peptide (CPP) sequence by a peptide backbone containing a caspase-3 cleavage site. In 
cells undergoing apoptosis, activated caspase-3 will cleave the agent at the caspase-3 
cleavage site, releasing the CPP and trapping the imaging probes inside the cell. 
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Chapter 2  

2  Methods  
All animal studies were conducted in accordance with the guidelines of the 

Subcommittee on Animal Care at the University of Western Ontario, and conformed to 

the Canadian Council on Animal Care guide for the care and use of laboratory animals. 

2.1  Contrast Agent Synthesis  

The contrast agent, Gd3+-DOTA-Cas-3, was synthesized and characterized by high 

resolution electron spray ionization mass spectrometry in a similar manner as described 

by Suchy et al. To synthesize Gd3+-DOTA-Cas-3 the peptide sequence for the caspase-3 

cleavage site (DEVD) was used instead of the peptide sequence for the cathepsin-D 

cleavage site. Purified Gd3+-DOTA-Cas-3 was dissolved in water (1mM stock), 

aliquoted, and stored at -20°C.  

2.2 Fluorescence Microscopy  

All images were acquired using a Zeiss Axiovert 100 inverted fluorescence microscope 

and AxioCam HRm camera (Carl Zeiss, Germany). A Zeiss 40× 0.6 numerical aperture 

dry lens was used to acquire images for experiments analyzing contrast agent uptake in 

individual cells and to characterize apoptosis. A Zeiss 20× 0.5 numerical aperture dry 

lens was used to acquire images for experiments analyzing contrast agent uptake in 

populations of cells. A Zeiss 10× 0.3 numerical aperture dry lens was used to acquire 

images of tyrosine hydroxylase staining in the substantia nigra (SN). A Zeiss 63× 1.4 

numerical aperture oil immersion lens was used to image contrast agent uptake in the SN.  

The contrast agent was visualized using a 450-490 nm excitation band pass filter set and 

515-565 nm emission band pass filter set. Hoechst 33342 was visualized using a 365/12 

nm excitation band pass filter set and 397 nm long pass filter set. PI, Alexafluor 546 

secondary antibody, and Alexa Fluor 594 TUNEL stain were imaged using a 546/12 nm 
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excitation band pass filter set and 575-640 nm emission band pass filter set. DAB 

staining was visualized using transmitted light.  

2.3 N2A Cell Culture 

The neuro-2A (N2A) mouse neuroblastoma cell line was purchased from ATCC 

(Manassas, Virginia). Cells were maintained in minimal essential media (MEM; 

Invitrogen, Grand Island, NY) supplemented with 10% heat-inactivated fetal bovine 

serum (Hyclone, Logan, UT) and 100 µg/mL penicillin-streptomycin (Invitrogen, Grand 

Island, NY). Cells were seeded in 4-well plates (Thermo Scientific, Mississauga, ON) at 

a concentration of 1 × 105 N2A cells per well. Cells were grown at 37°C in an atmosphere 

of 5% CO2. Cells were treated with camptothecin (CPT), 1-methyl-4-phenylpyridinium 

(MPP+), tunicamycin and staurosporine 2-3 days after plating (all from Sigma Aldrich, 

Oakville, ON). Drugs were diluted in culture media immediately before adding to 

cultures. Stock solutions of CPT, tunicamycin and staurosporine were stored at -20°C and 

fresh MPP+ stock was made before each addition to cell media. Control cells were 

incubated in regular culture medium without the addition of a pro-apoptotic stimulus. 

Following treatment, cells were fixed and stained with an antibody against cleaved 

caspase-3 (1:400 dilution; Cell Signaling, Beverly, MA) and counterstained with DAPI 

(4’,6-Diamidino-2-Phenylindole; Invitrogen, Grand Island, NY). The primary antibody 

was detected using an Alexafluor 546 secondary antibody (Invitrogen, Grand Island, 

NY).  

2.4 Primary Neuronal Culture  

Cortical neurons were dissociated and prepared from E15.5 mouse embryos as previously 

described by Fortin et al.. Cells were plated onto poly-L-ornithine-coated (Sigma 

Aldrich, Oakville, ON) 4-well plates and 35 mm glass-bottomed confocal dishes (Thermo 

Scientific, Mississauga, ON) at a density of 2.5 × 105 cells per well and 1 × 106 cells per 

dish, respectively. Cells were grown in serum-free Neurobasal medium supplemented 

with B27, N2, 2 mM GlutaMax (l-glutamine) and 50 µg/mL penicillin-streptomycin 
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(Invitrogen, Grand Island, NY) at 37°C in 5% CO2. After 3 days, one-half of the media 

was removed and replaced with fresh culture media. Cells were used for experiments on 

days 4-7 of culture. 

 To determine the proportion of cells in primary culture that were neurons, cells were 

fixed and stained with an antibody against NeuN (1:200; Abcam, Toronto, ON) and 

counterstained with DAPI (Invitrogen, Grand Island, NY). The primary antibody was 

detected using an Alexafluor 546 secondary antibody (Invitrogen, Grand Island, NY). 

The proportion of NeuN positive cells as a percentage of total cell number was 

determined. 

2.5 Induction of Apoptosis in Primary Cortical Neurons 

Cortical neurons were seeded in confocal dishes and treated with 10 µM CPT (Sigma 

Aldrich, Oakville, ON) for 24 hours to induce apoptosis. Control neurons remained in 

regular culture medium for 24 hours. Following treatment, cells were fixed and stained 

with antibodies against cleaved caspase-3 (1:400 dilution; Cell Signaling, Beverly, MA) 

and counterstained with DAPI (Invitrogen, Grand Island, NY). The primary antibody was 

detected using an Alexafluor 546 secondary antibody (Invitrogen, Grand Island NY).  

2.6 Optimization of Contrast Agent Concentration and 
Exposure Time 

Cortical neurons seeded in 4-well plates were treated with 10 µM CPT (Sigma Aldrich, 

Oakville, ON) for 24 hours to induce apoptosis. Cells were then exposed to different 

concentrations of the contrast agent for varying lengths of time. Before imaging, cells 

were washed 3 times with warm Hanks buffered saline solution (HBSS; Invitrogen, 

Grand Island, NY).  

2.7 Contrast Agent Toxicity 

To evaluate the toxicity of the contrast agent, neurons were exposed to the working 

concentration of the contrast agent (10 µM) for increasing lengths of time. Primary 
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neurons seeded in 4-well plates were incubated with 10 µM of the contrast agent for 4, 8, 

or 24 hours. Control cells were incubated in regular culture media without the addition of 

contrast agent. At the end of the incubation period, Hoechst 33342 (1.62 µM; Sigma 

Aldrich, Oakville, ON) and PI (500 nM; Sigma Aldrich, Oakville, ON) were added 

directly to the culture medium and cells were not washed before imaging. Cell viability 

was assessed using Image J software to determine the proportion of nuclei that exhibited 

PI negative staining. A minimum of 800 cells was scored for each treatment and the data 

represent the mean and standard error from three different experiments. 

2.8 Cellular Uptake and Retention of Contrast Agent in 
Apoptotic Neurons 

Primary neurons were seeded in confocal dishes and treated with either CPT or MPP+ 

(both from Sigma Aldrich, Oakville, ON) at 10 µM concentration for 24 h. Stock 

solutions of CPT and MPP+ were diluted in culture media immediately before adding to 

cultures. CPT stock was stored at -20°C and fresh MPP+ stock was made before each 

addition to cell media. Control cells remained in regular culture medium for 24 hours. For 

inhibitor studies, 50 µM of the caspase-3 inhibitor Z-DEVD-FMK (EMD Millipore, 

Etobicoke, ON) was added to culture media 1 hour prior to treatment with either CPT or 

MPP+.  

Neurons were incubated with 10 µM contrast agent for 4 h prior to imaging (20 h after 

adding CPT or MPP+). The contrast agent was diluted in culture media before adding to 

cultures. Before imaging, neurons were washed three times with warm HBSS (Invitrogen, 

Grand Island, NY) to remove free-floating contrast agent and reduce background. Cells 

were subsequently stained with Hoechst 33342 (1.62 µM; Sigma Aldrich, Oakville, ON) 

and PI (500 nM; Sigma Aldrich, Oakville, ON) and imaged live.  

To evaluate the ability of our contrast agent to selectively label apoptotic cells, confocal 

dishes were treated with 10 µM of CPT for 24 h to generate a combination of apoptotic, 

living and dead cells. Images were taken using the 40× objective lens and living, 
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apoptotic and dead cells were defined by examining nuclear morphology in Hoechst 

33342 and PI stained cells. Cells exhibiting pyknotic and/or fragmented nuclei with 

negative PI staining were characterized as apoptotic. Cells displaying healthy diffuse 

nuclei with negative PI staining were characterized as healthy. Cells with positive PI 

staining (regardless of nuclear morphology) were considered dead. The proportion of 

cells retaining contrast agent within each population of apoptotic, living or dead cells was 

quantified by analyzing the number of cells in each population that retained the contrast 

agent and appeared bright green. A minimum of 200 cells was characterized as apoptotic, 

living or dead in each experiment and assessed for contrast agent uptake. The data 

represent the mean and standard error of the percentage of neurons retaining the contrast 

agent within each population from four independent experiments.  

To compare contrast agent uptake between control neurons, neurons induced to undergo 

apoptosis and neurons induced to undergo apoptosis in the presence of a caspase-3 

inhibitor, images were acquired using the 20× objective lens. Image J was used to count 

the total number of nuclei in each image field. The proportion of cells that retained the 

contrast agent was quantified by counting the number of cells that appeared bright green 

and dividing by the total number of nuclei. A minimum of 500 cells was counted for each 

treatment and the data represent the mean and standard error from three different 

experiments. To evaluate apoptosis in each condition, images were acquired using the 

40× objective lens. The proportion of nuclei displaying negative PI staining and typical 

apoptotic nuclear morphology was scored. A minimum of 160 cells was evaluated for 

each treatment and the data represent the mean and standard error from three different 

experiments.  

2.9 Cellular Uptake and Retention of Contrast Agent in 
Necrotic Neurons 

For the induction of necrosis in primary culture, cells were treated with 500 µM of N-

methyl-D-aspartate (NMDA; Sigma Aldrich, Oakville, ON) for 6 h. Two hours after the 

addition of NMDA, cells were incubated with 10 µM of the contrast agent for 4 hours. 
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Immediately before imaging, cells were washed three times with warm HBSS 

(Invitrogen, Grand Island, NY) and subsequently stained with Hoechst 33342 (1.62 µM; 

Sigma Aldrich, Oakville, ON) and PI (500 nM; Sigma Aldrich, Oakville, ON). Image J 

was used to count the total number of nuclei and PI positive nuclei in each image field. 

The proportion of cells that retained the contrast agent was quantified by counting the 

number of cells that appeared bright green and dividing by the total number of nuclei. A 

minimum of 650 cells was counted for each treatment and the data represent the mean 

and standard error from four different experiments. 

2.10 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Injections  

Ten to twelve week old male C57Bl/6 mice weighing 25-30 g were used for the MPTP 

injections (Charles River, Wilmington, MA). Mice were habituated for 7 days prior to 

starting injections. Animals were housed 2-4 per cage in a temperature-controlled room 

in a 12 h light/12 h dark cycle with free access to food and water. 

MPTP-HCl (Sigma Aldrich, Oakville, ON) was dissolved in sterile 0.9% NaCl. 

Experimental mice received intraperitoneal (IP) injections of 30 mg/kg MPTP once per 

day for five consecutive days. Control mice were injected IP with 0.9% NaCl. Three days 

after the final MPTP injection mice were injected with the contrast agent. 

Mice were anesthetized with 4% isofluorane and oxygen. A tail-vein catheter was 

established and a saline flush was performed to ensure that the catheter was accurately 

placed. Mice were injected intraveneously with 80 µL of 1 mM contrast agent. One 

mouse from each the MPTP-treated and control group was not injected with contrast 

agent to allow for comparison of background auto-fluorescence.  

Following contrast agent injection, one mouse from each the MPTP-treated and control 

group was sacrificed at 1 and 2 hours to analyze cell death and contrast agent distribution 

throughout the brain. The mice were deeply anaesthetized with a cocktail of ketamine and 

xylazine (0.1ml/10g) and perfused via the left ventricle with 0.1 M ice-cold phosphate-

buffered saline (PBS; Invitrogen, Grand Island, NY) followed by 4% ice-cold 
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paraformaldehyde (PFA; Sigma Aldrich, Oakville, ON). The brains were dissected and 

fixed by immersion in PBS/4% paraformaldehyde for 24 h at 4°C.  

2.11  Histological Analysis of MPTP-Treated and Control 
Mice  

Following fixation, mouse brains were paraffin embedded. A Microm HM 335 E 

Microtome (Thermo Scientific, Mississauga, ON) was used to coronally cut through the 

SN at a thickness of 5 µM. Sections were mounted on glass slides and stained with an 

antibody against tyrosine hydroxylase (1:500; Abcam, Toronto, ON). Primary antibody 

was detected with a secondary antibody conjugated to horseradish peroxidase and 

developed with a diaminobenzidine (DAB) stain using Vectastain ABC kit (Vectorlabs). 

To detect DNA fragmentation, slides were stained with the Click-iT Alexa Fluor 594 

TUNEL assay (Invitrogen; Grand Island, NY) according to manufacturers instructions. 

To analyze contrast agent distribution, slides were counterstained with hematoxylin.  

2.12 Statistical Analysis 

Data are presented as the mean ± SEM with n values representing the number of 

independent cell cultures or individual animals. For cellular experiments, each n value 

was obtained by averaging at least 8 images taken from random fields in each 

experiment. For animal experiments, each n value was obtained by imaging at least 4 

brain sections from one mouse. Image J was used to analyze cell counts. GraphPad Prism 

6 was used to analyze data, using unpaired student's t-test or one-way ANOVA followed 

by Tukey's post hoc to determine statistical significance.  
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Chapter 3  

3 Results  

3.1 N2A Cells Do Not Easily Undergo Chemical-Induced 
Apoptosis  

To evaluate the ability of our contrast agent to label apoptotic cells we needed a method 

for inducing apoptotic cell death in culture. N2A cells are a mouse neuroblastoma cell 

line that demonstrate neuronal morphology (Tremblay et al., 2010). It has previously 

been shown that it is possible to induce apoptosis in N2A cells using a variety pro-

apoptotic drugs (Sheehan et al., 1997; Ito et al., 2004; Li et al., 2007; Galehdar et al., 

2010; Wang et al., 2010). Therefore, we treated N2A cells with different pro-apoptotic 

drugs and evaluated their ability to induce apoptosis. After treatment with the drugs, cells 

were fixed and stained for activated caspase-3 and counterstained with 4’,6-Diamidino-2-

Phenylindole (DAPI). Apoptosis was assessed based on nuclear morphology and caspase-

3 activation.  

In our study, cells treated with previously suggested (Sheehan et al., 1997; Ito et al., 

2004; Li et al., 2007; Galehdar et al., 2010; Wang et al., 2010) concentrations of 

camptothecin (CPT; 10 µM), 1-methyl-4-phenylpyridinium  (MPP+; 10 µM), 

staurosporine (10 µM) or tunicamycin (2 µg/mL) did not display apoptotic nuclear 

morphology (pyknotic or fragmented nuclei) or caspase-3 activation (Fig. 4). When the 

concentration of drugs was increased by a factor of 5 (CPT, 50 µM; MPP+, 50 µM; 

staurosporine, 50 µM; tunicamycin 10 µg/mL) apoptotic nuclear morphology and 

caspase-3 activation were still not observed (Fig. 4). In the event that 24 hours was not 

long enough for the induction of apoptosis, the treatment period with the drugs was 

extended to 36 and 48 hours. Even with an extended incubation period with the pro-

apoptotic drugs there was almost no evidence of apoptosis (data not shown). 
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Figure 4. N2A cells do not display apoptotic nuclear morphology or caspase-3 
activation in response to pro-apoptotic drugs. N2A cells were treated with CPT (10 
µM, 50 µM), MPP+ (10 µM, 50 µM), staurosporine (10 µM, 50 µM), or tunicamycin (2 
µg/mL, 10 µg/mL) for 24 hours. Control neurons were left untreated and remained in 
regular culture medium. Cells were fixed and stained for activated caspase-3 and 
counterstained with DAPI. Similar to control cells, treated N2A cells did not display 
pyknotic or fragmented nuclei characteristic of apoptosis. In addition, treated N2A cells 
did not display caspase-3 activation. 
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3.2 Mouse Primary Cortical Neurons Undergo Chemical-
Induced Apoptosis 

In the previous study, the N2A neuroblastoma cell line displayed significant resistance to 

regular apoptotic stimuli. In order to develop a model for inducing apoptosis in culture 

we turned to mouse primary cortical neurons. Primary neurons are known to be more 

sensitive to cell death and apoptotic stimuli than cell lines, making them a better 

candidate to model apoptosis. Figure 5 displays a representative image depicting NeuN 

immunostaining in the primary neuronal culture. Immunostaining for NeuN demonstrated 

that > 95% of the nuclei counted in the primary culture stained positive for NeuN, 

confirming that the majority of cells in primary culture were neurons. 

When treated with 10 µM CPT for 24 hours, mouse primary cortical neurons appeared to 

readily undergo apoptosis. Immunocytochemistry with an antibody against activated 

caspase-3 demonstrated widespread caspase-3 activation throughout CPT-treated 

neurons. The nuclear stain DAPI revealed many neurons with pyknotic and fragmented 

nuclei, typical of apoptosis (Fig 6A). This was in contrast to control neurons that 

displayed healthy, diffuse nuclear staining and minimal caspase-3 activation (Fig. 6A). 

Additionally, high power images (40×) revealed that caspase-3 activation was specific to 

neurons that displayed either pyknotic or fragmented nuclei (Fig. 6B). This confirms our 

ability to assess apoptosis and caspase-3 activation based on nuclear morphology.   

3.3 Contrast Agent Optimization  

The purpose of the next experiment was to determine the optimal contrast agent 

concentration and exposure time to detect apoptosis in culture. We have demonstrated the 

ability to induce apoptosis in primary neurons by treating them with 10 µM camptothecin 

for 24 hours. Therefore, we induced apoptosis under the same conditions and compared 

contrast agent uptake and retention in neurons exposed to varying concentrations of the 

contrast agent for different lengths of time. We compared uptake and retention in neurons 

exposed to 5, 10, 25, and 50 µM of the contrast agent for 1, 2 and 4 hours.  
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Figure 5. NeuN immunostaining in mouse primary cortical neuron culture. Primary 
cortical neurons were fixed and immunostained for NeuN and counterstained with DAPI. 
More than 95% of nuclei stained positive for NeuN, demonstrating that the majority of 
cells in culture were neurons. 

 

Figure 7 displays representative images of contrast agent uptake at each concentration 

and at each length of time. All images were taken using the same settings and intensity. 

Agent uptake appeared to occur in a concentration dependent manner and increasing the 

incubation period with the contrast agent increased the number of cells that retained the 

agent. Increasing the contrast agent concentration beyond 10 µM greatly increased the 

amount of background fluorescence. For this reason it was determined that exposing 

neurons to 10 µM of the contrast agent for 4 hours were the optimal conditions for 

detecting apoptosis.  

3.4 Cell Viability Studies 

Toxicity is a major concern when developing contrast agents for future work with 

animals and humans. For a preliminary assessment of the toxicity of our contrast agent, 

primary cortical neurons in culture were exposed to the working concentration of our 

contrast agent (10 µM) for varying lengths of time. Neurons were stained with Hoechst 

33342 and propidium iodide (PI) to determine the proportion of viable and dead cells. 

Negative PI staining was used to identify the nuclei of living cells and positive PI 
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Figure 6. Mouse primary cortical neurons undergo apoptosis and caspase-3 
activation in response to camptothecin treatment. Primary cortical neurons were 
treated with 10 µM CPT for 24 hours. Control neurons remained untreated. Neurons were 
fixed and immunostained for activated caspase-3 and counterstained with DAPI. A. 
Neurons treated with CPT demonstrate caspase-3 activation and display pyknotic and 
fragmented nuclei characteristic of apoptosis. B. High power image demonstrating that 
neurons with pyknotic or fragmented nuclei demonstrate caspase-3 activation. 
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Figure 7. Optimization of contrast agent concentration and incubation time. Primary 
cortical neurons were treated with 10 µM CPT for 24 hours to induce apoptosis. Neurons 
were then incubated with the indicated concentration of contrast agent for the indicated 
amount of time. Cells were then washed and imaged live using a fluorescent microscope. 
All images were acquired at the same settings and intensity. Increasing the exposure time 
to the contrast agent increased the number of cells that retained the contrast agent. Cells 
incubated with 10 µM of contrast agent for 4 hours demonstrated adequate contrast agent 
uptake with reduced background. 
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staining was used to identify the nuclei of dead cells.  

Figure 8 displays that at 4, 8, and 24 hours, 70 ± 5, 75 ± 5, and 70 ± 3 % of neurons, 

respectively, were viable. Control neurons incubated in regular culture medium for 24 

hours were 74 ± 4 % viable. One-way ANOVA revealed that there were no significant 

differences between the percentage of neurons surviving in control conditions and 

neurons exposed to the contrast agent for up to 24 hours. 

3.5 Evaluation of Contrast Agent Uptake in Individual 
Neurons 

The primary goal of this study was to evaluate the ability of our contrast agent to label 

apoptotic cells. By treating neurons with CPT for 24 hours we were able to compare 

contrast agent uptake and retention on a cell-by-cell basis between living, apoptotic and 

dead cells. This allowed us to evaluate the ability of our contrast agent to selectively label 

apoptotic cells over living or dead cells.  

Treatment of primary neurons with CPT for 24 hours yields a combination of living, 

apoptotic and dead cells. Neurons are classified as dead when they have lost their 

membrane integrity and stain positive for PI. Apoptotic cells are PI negative (still 

maintaining membrane integrity) and exhibit pyknotic or fragmented nuclei characteristic 

of apoptosis. Living cells are also PI negative but display healthy nuclear morphology.  

Primary neurons were treated with 10 µM CPT for 24 hours. During the last 4 hours of 

treatment 10 µM of contrast agent was added to the neuron medium. At the end of the 

incubation period the neurons were washed to remove free-floating contrast agent and 

stained with Hoechst 33342 and PI. Cells were imaged live using fluorescence 

microscopy. Based on the criteria described above, cells were characterized as living, 

apoptotic or dead. The proportion of cells that retained the contrast agent in each  
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Figure 8. Exposure to contrast agent for up to 24 hours does not affect cell viability. 
Primary cortical neurons were incubated with 10 µM contrast agent for the indicated 
amount of time. Control neurons were left in regular culture medium for 24 hours. Cells 
were imaged live using fluorescence microscopy and stained with Hoechst 33342 and 
propidium iodide (PI). The proportion of PI negative cells was used to assess cell 
viability (n=3). There were no statistically significant differences in cell viability between 
any of the time points. Error bars represent standard error of the mean. 

 

population was quantified by counting the number of cells that demonstrated bright green 

fluorescent signal within each population (Fig. 9A). 

In this study, over 500 cells from 4 independent experiments were characterized as 

apoptotic and 55 ± 5 % of them retained the contrast agent. In contrast, we counted over 

200 living and 200 dead cells, of which 2 ± 1 % of the living cells retained the contrast 

agent and 17 ± 3 % of the dead cells retained the contrast agent. One-way ANOVA 

followed by Tukey’s post-hoc demonstrated that a significantly greater proportion of 

apoptotic cells retained the contrast agent in comparison to healthy or dead cells (Fig. 9B; 

p < 0.0001). These results indicate that our contrast agent is capable of selectively 

labeling and detecting apoptotic cells in culture. 
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Figure 9. Apoptotic neurons selectively retain the contrast agent. Mouse primary 
cortical neurons were treated with CPT and exposed to 10 µM contrast agent for 4 hours. 
Neurons were stained with Hoechst 33342 and propidium iodide (PI) and imaged live 
using fluorescence microscopy. Cells exhibiting pyknotic and/or fragmented nuclei with 
negative PI staining were characterized as apoptotic. Cells displaying healthy diffuse 
nuclei with negative PI staining were characterized as healthy. Cells with positive PI 
staining, regardless of nuclear morphology, were considered dead. A. Neurons displaying 
typical apoptotic morphology preferentially take up and retain the contrast agent in 
comparison to healthy and dead neurons. B. Quantification of contrast agent uptake in 
live, apoptotic and dead neurons. Cell counting was performed to analyze the percentage 
of neurons retaining the contrast agent for each cell population. At least 200 cells were 
counted per experiment (n = 4). Error bars represent standard error of the mean. (* p < 
0.05, **** p < 0.0001). 
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3.6 Apoptosis and Contrast Agent Uptake is Caspase-3 
Dependent 

Next we set out to confirm that uptake of our agent was due to caspase-3 activation.  

Cellular uptake and retention of the contrast agent was compared between neurons that 

were induced to undergo apoptosis and control neurons that were left untreated. To 

determine whether retention of the agent was truly dependent on cleavage by caspase-3, 

we also compared the uptake and retention of the contrast agent in neurons that were 

induced to undergo apoptosis in the presence of an irreversible caspase-3 inhibitor.  

Primary neurons were treated with 10 µM CPT for 24 hours to induce apoptosis. To 

inhibit caspase-3 activation, 50 µM of the irreversible caspase-3 inhibitor Z-DEVD-FM 

was added 1 hour prior to the addition of CPT. Control neurons remained in regular 

culture medium 24 hours. During the last 4 hours of treatment, 10 µM of contrast agent 

was added to the neuron medium. At the end of the incubation period the neurons were 

washed and stained with Hoechst 33342 and PI. Cells were imaged live using 

fluorescence microscopy.  

To compare agent uptake and retention between the three conditions the proportion of 

cells that retained the contrast agent was determined by counting the number of cells that 

appeared bright green and dividing by the total number of nuclei (Fig. 10B). At least 

3000 cells from 3 independent experiments were counted in each condition to evaluate 

contrast agent uptake and retention. To correlate contrast agent retention and apoptosis, 

the proportion of apoptotic cells in each condition was determined. A minimum of 900 

cells from 3 independent experiments were counted for each condition and the proportion 

of cells that were PI negative and displayed apoptotic nuclear morphology was scored 

(Fig. 10C).  

In these experiments, 19 ± 3 % of the CPT-treated neurons retained the contrast agent in 

comparison to 2 ± 1 % of the untreated (control) neurons. Of the neurons treated with 
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CPT in the presence of a caspase-3 inhibitor, 3 ± 1 % of neurons retained the contrast 

agent. Statistical analysis revealed that significantly more cells retained the contrast agent 

when treated with the pro-apoptotic drug CPT compared to control neurons and neurons 

treated with CPT in the presence of a caspase-3 inhibitor (p < 0.01). To correlate agent 

retention to apoptosis, the proportion of apoptotic cells in each condition was quantified. 

CPT-treated, control, and CPT/caspase-3 inhibitor-treated neurons displayed 56 ± 5, 5 ± 

1, and 10 ± 5 % apoptotic neurons, respectively. Statistical analysis revealed that 

significantly more CPT-treated neurons underwent apoptosis compared to control 

neurons and neurons treated with CPT in the presence of a caspase-3 inhibitor (p < 

0.0001). These results demonstrate the ability of our contrast agent to detect apoptosis 

and indicate that uptake was dependent on caspase-3 activation. 

To confirm that our agent was responding to apoptosis, we tested a variety of different 

stimuli that can induce apoptosis. We repeated the above experiment using MPP+ to 

demonstrate the ability of our contrast agent to detect apoptosis in response to a different 

apoptotic stimulus. In contrast to the DNA damage-inducing agent CPT, MPP+ inhibits 

complex I of the electron transport chain interfering with oxidative phosphorylation 

(Watanabe et al., 2005).  

The experiment proceeded in the same manner as outlined above except to induce 

apoptosis neurons were exposed to 10 µM MPP+ for 24 hours instead of CPT. At least 

2400 cells from 3 independent experiments were counted in each condition to evaluate 

contrast agent uptake and retention. To evaluate apoptosis, at least 700 cells from 3 

independent experiments were counted in each condition. Figure 11A shows 

representative images comparing the retention of the contrast agent in control, MPP+-

treated and MPP+/caspase-3 inhibitor-treated neurons. Similar to the experiment 

conducted with CPT, a significantly larger proportion of neurons treated with MPP+ 

retained the contrast agent compared to control or MPP+/caspase-3 inhibitor-treated 

neurons (Fig. 11B; p < 0.001). In these experiments, 10 ± 1 % of MPP+-treated neurons 

retained the contrast agent. This was in comparison to 2 ± 1 % of control neurons that  
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Figure 10. CPT increases the proportion of neurons retaining the contrast agent and 
is blocked with the addition of a caspase-3 inhibitor. Mouse primary cortical neurons 
were treated with either 10 µM CPT or 10 µM CPT plus 50 µM of the irreversible 
caspase-3 inhibitor Z-DEVD-FMK for 24 hours. During the last 4 hours of the incubation 
period cells were exposed to 10 µM contrast agent. Control neurons remained in regular 
culture medium. Neurons were stained with Hoechst 33342 and propidium iodide and 
imaged live using fluorescence microscopy. A. CPT-induced apoptosis increases the 
number of neurons retaining contrast agent. This effect is reversed in the presence of a 
caspase-3 inhibitor. B. Quantification of contrast agent uptake in control, CPT-treated, 
and CPT/inhibitor-treated neurons. Cell counting was performed to analyze the 
percentage of neurons taking up the contrast agent in the three groups. Images were 
acquired using a 20× lens and a minimum of 800 cells were counted per treatment per 
experiment (n = 3). C. Quantification of apoptotic neurons in control, CPT-treated, and 
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CPT/inhibitor-treated neurons. Cell counting was performed to determine the percentage 
of neurons that were PI negative and dispayed either condensed or fragmented nuclei. 
Images were acquired using a 40× lens and a minimum of 160 cells were analyzed per 
treatment per experiment (n = 3). Error bars represent standard error of the mean. (** p < 
0.01, *** p < 0.001, **** p < 0.0001). 

 

retained the contrast agent and 3 ± 1 % of neurons treated with MPP+ in the presence of a 

caspase-3 inhibitor. 

Again, the proportion of apoptotic cells in each condition paralleled contrast agent 

retention. As depicted in Figure 11C, there was a significantly greater proportion of 

apoptotic neurons when treated with MPP+ compared to untreated control neurons or 

neurons treated with MPP+ in the presence of a caspase-3 inhibitor (p < 0.05). When 

treated with MPP+, 20 ± 3 % of neurons were apoptotic. This was in comparison to 5 ± 1 

% of control neurons and 8 ± 2 % of neurons treated with MPP+ in the presence of a 

caspase-3 inhibitor. These results further demonstrate the ability of our contrast agent to 

detect apoptosis. 

3.7 Evaluation of Contrast Agent Retention in Necrotic 
Neurons 

Radiolabeled Annexin V, the most successful method available at the current time for 

imaging apoptosis in vivo labels both apoptotic and necrotic cells and is unable to 

distinguish the two (Brauer, 2003; Blankenberg, 2008). Retention of our contrast agent 

relies on cleavage by caspase-3, and therefore should specifically label the apoptotic 

mode of cell death. To test this, we used N-methyl-D-aspartate (NMDA) to induce 

excitotoxicity in primary neurons and evaluated the retention of our contrast agent. Over-

activation of NMDA receptors is toxic to neurons eventually leading to the disruption of 

ionic gradients across the plasma membrane. This causes cell swelling and eventually cell 

lysis (Wang and Qin, 2010).  
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Figure 11. MPP+ increases the proportion of neurons retaining the contrast agent 
and is blocked with the addition of a caspase-3 inhibitor. Mouse primary cortical 
neurons were treated with either 10 µM MPP+ 

or 10 µM MPP+ plus 50 µM of the 
irreversible caspase-3 inhibitor Z-DEVD-FMK for 24 hours. During the last 4 hours of 
the incubation period cells were exposed to 10 µM contrast agent. Control neurons 
remained in regular culture medium. Neurons were stained with Hoechst 33342 and 
propidium iodide and imaged live using fluorescence microscopy. A. MPP+-induced 
apoptosis increases the number of neurons retaining contrast agent. This effect is reversed 
in the presence of a caspase-3 inhibitor. B. Quantification of contrast agent uptake in 
control, MPP+-treated, and MPP+/inhibitor-treated neurons. Cell counting was performed 
to analyze the percentage of neurons taking up the contrast agent in the three groups. 



51 

 

 

 

Images were acquired using a 20× lens and a minimum of 500 cells were counted per 
treatment per experiment (n = 3). C. Quantification of apoptotic neurons in control, 
MPP+-treated, and MPP+/inhibitor- treated neurons. Cell counting was performed to 
analyze the percentage of neurons showing either condensed or fragmented nuclei. 
Images were acquired using a 40× lens and a minimum of 170 cells were analyzed per 
treatment per experiment (n = 3). Error bars represent standard error of the mean. (* p < 
0.05, ** p < 0.01, *** p < 0.001). 

 

Primary cortical neurons were treated with 500 µM of NMDA for 6 hours to induce 

excitotoxicity. Control neurons remained in regular culture medium. During the last 4 

hours of the treatment period 10 µM of the contrast agent was added. At the end of the 

incubation period the neurons were washed and stained with Hoechst 33342 and PI. Cells 

were imaged live using fluorescence microscopy (Fig. 12A and 12B). To compare agent 

uptake and retention between NMDA-treated and control neurons, the proportion of cells 

that retained the contrast agent was determined by counting the number of cells that 

appeared bright green and dividing by the total number of nuclei (Fig. 12C). At least 

5000 cells from 4 independent experiments were counted in each condition to evaluate 

contrast agent uptake and retention. To quantify the number of necrotic cells in each 

condition, the proportion of PI positive cells was scored (Fig. 12D). At least 1500 cells 

from 4 independent experiments were counted in each condition to quantify necrosis.  

Figure 12A displays representative images comparing contrast agent uptake and PI 

staining between NMDA-treated and control neurons. Figure 12B displays a 

representative image of neurons that have been treated with NMDA. The neurons imaged 

display cell swelling typical of excitotoxicity. The swollen cells do not retain the contrast 

agent. When treated with NMDA to induce excitotoxicity, 2 ± 1 % of neurons retained 

the contrast agent. This was no different from the 2 ± 1 % of untreated control neurons 

that retained the contrast agent. In comparison, 53 ± 4 % of NMDA treated neurons were 

PI positive compared to 30 ± 1 % of control neurons. The proportion of NMDA-treated 

PI positive cells was significantly  
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Figure 12. Necrotic cells do not retain the contrast agent. Mouse primary cortical 
neurons were treated with 500 µM of NMDA for 6 hours. For the last 4 hours 10 µM of 
contrast agent was added. Neurons were stained with Hoechst 33342 and propidium 
iodide (PI) and imaged live using fluorescence microscopy. A. Neurons treated with 
NMDA to induce excitotoxic cell death do not retain the contrast agent. B. Neurons 
treated with NMDA display cell swelling typical of excitotoxic cell death. C. 
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Quantification of contrast agent uptake in control and NMDA-treated neurons. Cell 
counting was performed to analyze the percentage of neurons taking up the contrast agent 
in the two groups. Images were acquired using a 20× lens and a minimum of 650 cells 
were counted per treatment per experiment (n = 4). D. Quantification of PI positive cells 
(dead) in control and NMDA-treated neurons. Images were acquired using a 40× lens and 
a minimum of 300 cells were analyzed per treatment per experiment (n = 4). Error bars 
represent standard error of the mean. (** p < 0.01). 
 

 

greater than control neurons (p < 0.01). As there was no difference between contrast 

agent retention in excitotoxic cells and control cells, this indicates that our contrast agent 

does not label necrotic cells and provides additional support for its specificity for the 

detection of apoptosis. 

3.8 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Mouse 
Model 

To evaluate the ability of the contrast agent to detect apoptosis in vivo, the 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease was 

used. MPTP is a potent neurotoxin that induces apoptosis in the dopaminergic neurons of 

the substantia nigra (Watanabe et al., 2005). For preliminary assessment of the contrast 

agent in vivo, agent uptake and retention were compared between MPTP-treated and 

control mice. Based on a protocol developed by Tatton and Kish, mice were given 

intraperitoneal injections of MPTP for five consecutive days. Control mice received 

saline injections. Three days after the final injection, mice were intravenously injected 

with 80 µL of 1 mM contrast agent. One mouse from each the MPTP-treated and control 

group were sacrificed at 1 and 2 hours to evaluate contrast agent distribution throughout 

the brain and analyze cell death.  

Coronal sections were stained for tyrosine hydroxylase, a marker for dopaminergic 

neurons, to evaluate neuron loss in the substantia nigra (Fig. 13A). Dopaminergic cells 

were quantified by counting the number of tyrosine hydroxylase positive cells in the 

substantia nigra (Fig. 13B). The mean tyrosine hydroxylase positive cell count for control 
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brains was 49 ± 5 cells per section, compared to 27 ± 3 cells per section in the MPTP-

treated brains. Statistical analysis revealed that there was a significant loss of tyrosine 

hydroxylase positive (dopaminergic) cells in MPTP-treated mice (p < 0.001).  

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was 

used to identify apoptotic cells in the substantia nigra (Fig. 13 C). Fluorescence 

microscopy was used to capture images across the substantia nigra of MPTP-treated and 

control mice and the number of TUNEL positive cells in the substantia nigra of each slice 

was quantified (Fig. 13 D). To our surprise, there were extremely few TUNEL positive 

cells within the substantia nigra of MPTP-treated brains 3 days after the last MPTP 

injection. The mean TUNEL positive cell count for MPTP-treated brains was 1.5 ± 0.25 

cells per section, compared to 0.75 ± 0.3 cells per section in control brains. The number 

of TUNEL positive cells in MPTP-treated and control mice were not statistically 

different. Additionally, examination of nuclear morphology revealed healthy looking 

nuclei in both MPTP-treated and control mice. 

Finally, contrast agent distribution was analyzed by imaging brain sections using 

fluorescence microscopy. Contrast agent distribution was compared between MPTP-

treated and control mice sacrificed at 1 and 2 hours. Additionally, one MPTP-treated and 

one control mouse were not injected with contrast agent to compare background 

fluorescence. To compare agent uptake, images were acquired using the green channel of 

a fluorescence microscope (Fig. 13E). We attempted to measure fluorescence, however, 

there was substantial background florescence even in the control, non-injected mouse, 

and therefore we were unable to produce convincing images of a difference in signal 

between the injected and control animals.  
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Figure 13. Evaluation of contrast agent uptake in MPTP-treated and control mice. 
Mice were injected IP with MPTP for 5 consecutive days to induce apoptosis in the 
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dopaminergic neurons of the substantia nigra. Control mice received saline injections. 
Three days after the last injection mice received an IV injection of 80 µM of 1 mM 
contrast agent. Mice were sacrificed at 1 and 2 hours post-injection to analyze contrast 
agent distribution and cell death throughout the brain. One mouse from each group was 
not injected with contrast agent to compare background fluorescence. Coronal sections 
were stained with tyrosine hydroxylase to identify dopaminergic neurons in the substantia 
nigra. Apoptosis was evaluated by TUNEL staining. Contrast agent distribution was 
analyzed by imaging the substantia nigra using fluorescence microscopy. A. 
Representative images displaying tyrosine hydroxylase staining in half of the substantia 
nigra in MPTP-treated and control mice. B. Dopaminergic cells were quantified by 
counting the number of tyrosine hydroxylase positive cells in the substantia nigra. Three 
mice were analyzed from each condition and at least four sections were analyzed per 
mouse (n=3). C. Representative image displaying two TUNEL positive cells in the 
substantia nigra of an MPTP-treated mouse. D. Apoptosis was evaluated by counting the 
number of TUNEL positive cells in the substantia nigra. Three mice were analyzed from 
each condition and at least four sections were analyzed per mouse (n=3). E. 
Representative images acquired in the green channel to visualize the contrast agent (n=1). 
Error bars represent standard error of the mean. (** p < 0.001). 
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Chapter 4  

4  Discussion  

We have developed a novel contrast agent for the in vivo detection of apoptosis. The 

primary goal of this study was to test the ability of our contrast agent to label apoptotic 

cells in culture and we hoped to also explore its potential to detect apoptosis in vivo. By 

inducing apoptosis in mouse primary cortical neurons, we demonstrated the ability to 

label apoptotic cells in culture. When we analyzed neurons on a cell-by-cell basis, our 

contrast agent selectively labeled apoptotic cells, and was not retained within healthy or 

necrotic cells. Additionally, retention of the contrast agent was eliminated when 

apoptosis was blocked with a caspase-3 inhibitor. Finally, treatment of neurons with 

NMDA to induce excitotoxicity, demonstrated the ability of our agent to specifically 

label the apoptotic mode of cell death over the necrotic mode of cell death.  

To test our contrast agent in vivo, the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP) mouse model of Parkinson’s disease was used to induce apoptosis in the 

dopaminergic neurons of the substantia nigra (SN). MPTP-treated and control mice were 

injected intravenously with our contrast agent and sacrificed to evaluate contrast agent 

distribution and cell death. While we were able to induce a significant loss of 

dopaminergic neurons in MPTP-treated compared to control mice, at the time the mice 

were sacrificed, there was little evidence of apoptosis. Fluorescence microscopy was used 

to evaluate contrast agent distribution throughout the brains. Unfortunately, there was 

substantial background autofluorescence even in uninjected mice and we were not able to 

identify any cells with significant retention of the agent within the SN of MPTP-treated 

or control mice.  
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4.1 Apoptosis in Tumor Cell Lines  

Initially we had invested significant effort in using immortalized neural cell lines to 

evaluate the ability of our contrast agent to label apoptotic cells in culture.  This would 

have provided easy access to large numbers of cells for our studies.  Unfortunately, it 

proved to be very difficult to induce apoptosis in our cell lines, even when using 5 times 

the published dose of several agents.  Therefore, we had to switch to primary neuronal 

cultures.  While this was technically more demanding and produced fewer cells, these 

cells underwent apoptosis and necrosis easily.  

4.2 Cell Viability Studies 

Incubation of primary cortical neurons with 10 µM contrast agent for up to 24 hours was 

found to have no affect on cell viability. While further studies will be needed to 

demonstrate the safety of our agent in vivo, this cellular work provides a promising 

indication of our agent’s safety. In comparison, TcapQ, a caspase-activatable probe 

developed by Bullok et al. for the detection of apoptosis was found to significantly affect 

the viability of HeLa cells in culture. This agent produced a 50% loss of cell viability 

when incubated with 10 µM for 24 hours and a 90% loss of cell viability when incubated 

with 25 µM for 24 hours (Bullok et al., 2007). This demonstrates the high toxicity that 

some intracellular enzymatic probes may confer and highlights the negligible toxicity of 

our agent in vitro.   

4.3 Apoptotic Neurons Selectively Retain the Contrast 
Agent 

Individual cell analysis revealed that when our contrast agent was exposed to a 

combination of apoptotic, living and dead cells, it was selectively retained only within 

apoptotic cells. The importance of this result is twofold. First it indicates that our agent 

accumulates in cells undergoing apoptosis, producing detectable contrast. Second, it 

demonstrates the specificity of our agent to selectively label apoptotic cells and 

distinguish them from healthy and dead cells. These results are very important when 
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evaluating the potential of our contrast agent to detect apoptosis in vivo. The selective 

accumulation of our agent in apoptotic cells suggests its ability to detect apoptosis in 

pathological processes in vivo where there is an increase in apoptosis.  

When we analyzed contrast agent uptake in individual neurons, approximately 50% of 

apoptotic neurons retained the contrast agent and appeared bright green. We anticipate 

that only half of the apoptotic cells were labeled due to the asynchronous fashion and 

rapid progression of apoptosis. In our study, cells characterized as apoptotic 

demonstrated chromatin condensation and/or nuclear fragmentation while maintaining 

membrane integrity. Video microscopy studies have revealed that the execution phase of 

apoptosis—where the morphological changes such as chromatin condensation and 

nuclear fragmentation are observed—proceeds very rapidly and occurs within a 2-hour 

time span (Messam and Pittman, 1998). Additionally, initiation of the execution phase is 

highly asynchronous and at any time point only a small fraction of cells are entering the 

execution phase of apoptosis (Messam and Pittman, 1998). The result is a relatively short 

time window at which you can “catch” and label an apoptotic cell.  

The length of contrast agent exposure is also an important variable. In our study, 

unlabeled cells that display apoptotic morphology have likely just entered the execution 

phase of apoptosis and have not had enough time to accumulate contrast agent. In our 

optimization studies, we saw an increase in agent retention when neurons were exposed 

to the contrast agent for longer periods of time. This suggests that it takes a sufficient 

amount of time to accumulate enough agent in an apoptotic cell before it can be 

visualized by fluorescence microscopy.  

The induction of secondary necrosis in very late apoptotic cells will also limit the 

proportion of apoptotic cells labeled by our contrast agent. In vitro, without the presence 

of macrophages, apoptosis ultimately concludes in a process known as secondary 

necrosis, where the cell lyses and releases its cellular contents (Silva, 2010). In these 

cells, any accumulated agent would leak out. In vivo, where macrophages exist to engulf 

the apoptotic cells, the signal would be retained within the bodies of macrophages. 
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4.4 Apoptosis and Contrast Agent Retention is Caspase-3 
Dependent 

We further evaluated the ability of our contrast agent to detect apoptosis by comparing 

uptake between three different populations: i) neurons induced to undergo apoptosis, ii) 

neurons induced to undergo apoptosis in the presence of a caspase-3 inhibitor, and iii) 

healthy control neurons. Evaluation of contrast agent uptake and retention demonstrated 

that a significantly greater proportion of neurons were labeled in conditions where they 

were induced to undergo apoptosis in comparison to control neurons. Additionally, when 

apoptosis was blocked with the addition of a caspase-3 inhibitor, we did not observe an 

increase in the number of cells labeled by our agent. This was demonstrated in two 

separate studies that each used a different apoptotic stimulus to induce apoptosis. These 

results indicate that our agent is capable of detecting when there is an increase in 

apoptosis in vitro. They also indicate that apoptosis, and subsequent retention of our 

contrast agent, is dependent on caspase-3 activation and provide additional support for 

the ability or our agent to label apoptotic cells.  

When neurons were treated with 1-methyl-4-phenylpyridinium (MPP+) there was a small 

increase the number of cells undergoing apoptosis (20% of MPP+-treated neurons were 

apoptotic compared to 5% of control neurons). Despite the small increase in apoptotic 

cells, we still observed a significant increase in the number of neurons labeled by our 

agent. This ability to detect minor increases in apoptosis demonstrates the sensitivity of 

our agent. This is very important when it comes to detecting apoptosis in vivo, where in 

pathological situations there may only be a slight increase in the number of cells 

undergoing apoptosis. The natural rate of apoptosis in normal tissue is less than 2% 

(Brauer, 2003). In chronic diseases, where apoptosis is involved, the proportion of cells 

undergoing apoptosis at any one time is unlikely to exceed 10% (Brauer, 2003). 

Consequently, when developing a contrast agent for the detection of apoptosis, it is 

important that the agent is sensitive and capable of detecting very minor fluctuations or 

increases in apoptosis. 
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4.5 Necrotic Neurons Do Not Retain the Contrast Agent 

When we treated primary cortical neurons with NMDA to induce excitotoxicity, a form 

of necrotic cell death, our contrast agent was not retained. This indicates that our contrast 

agent does not label necrotic cells and demonstrates the specificity of or agent for the 

apoptotic mode of cell death. At present, the most promising agent available for detecting 

apoptosis in vivo is radiolabelled Annexin V (Blankenberg, 2008; Tait, 2008; Niu and 

Chen, 2010). Annexin V has an extremely high affinity for phosphatidyl serine (PS), a 

phospholipid that is usually restricted to the inner leaflet of the plasma membrane but 

becomes exposed when cells undergo apoptosis (Martin et al., 1995). While this agent 

has made it to multiple clinical trials in humans and demonstrates some ability to detect 

apoptosis in vivo, it has a major limitation (Blankenberg et al., 1999; Belhocine et al., 

2002). In addition to binding externalized PS on apoptotic cells, Annexin V also binds to 

PS on necrotic cells that have lost their membrane integrity (van Engeland et al., 1998). 

As a result, this agent is unable to discriminate between apoptosis and necrosis. While 

marketed as an agent for the detection of apoptosis, this probe really just detects cell 

death, both apoptotic and necrotic.  

Our probe was designed to detect enzymatic caspase-3 activity. Activation of caspase-3 is 

unique to apoptotic cell death, and therefore provides a desirable target for the specific 

detection of apoptosis. Our results demonstrating that necrotic cells do not retain our 

contrast agent provide convincing evidence for the ability of our agent to specifically 

detect apoptosis. The ability to specifically detect apoptosis in vivo would provide a very 

valuable research tool for studying apoptosis. A probe allowing us to specifically image 

apoptosis in living organisms would help us further our understanding of how apoptosis 

contributes to a variety of pathological processes. 

4.6 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Mouse 
Model 

For the preliminary assessment of our contrast agent in vivo, mice were injected with 

MPTP to induce apoptosis in the dopaminergic neurons of the SN. Originally, we hoped 
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that this would be an ideal system, because it produced neuronal loss almost exclusively 

by apoptosis (Tatton and Kish, 1997).  MPTP-treated and control mice were then injected 

intravenously with 80 µL of 1 mM contrast agent. Finally, mice were sacrificed at 1 and 2 

hours post injection and histological sections of the SN were generated to analyze 

contrast agent distribution and cell death.  

Tyrosine hydroxylase was used to stain and visualize the dopaminergic neurons of the 

SN. Cell counts analyzing the number of tyrosine hydroxylase positive cells revealed that 

we were successfully able to induce neuron death in the SN of MPTP-treated mice. 

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was then used 

to identify apoptotic cells with DNA fragmentation. When we analyzed brain sections of 

MPTP-treated mice, only 1-2 cells in each section of the SN were TUNEL positive. Due 

to the extreme toxicity of MPTP, we were required by our Health and Safety Officer to 

wait 3 days after the last MPTP injection for the toxic compound to clear from the mice 

before we were able to inject them with our contrast agent. Accordingly, this may be one 

of the reasons we did not observe significant apoptosis. At the time at which we injected 

the mice with our contrast agent and then subsequently sacrificed them, it was likely too 

late to detect any neurons undergoing apoptosis. In retrospect, we realized that it has been 

demonstrated that apoptosis peaks 24 hours after the final MPTP injection (Tatton and 

Kish, 1997).  However, when we examined this data in detail, even 24 hours after the last 

MPTP injection, when apoptosis is documented to peak, the number of neurons 

undergoing apoptosis is extremely low (Tatton and Kish, 1997). Therefore, it appears that 

this system is not robust enough (does not produce enough synchronized apoptosis) to be 

useful for in vivo studies.  

To evaluate the distribution of the contrast agent throughout the brain, we used the green 

channel of a fluorescence microscope. Looking at the SN, we were not able to identify 

any cells that retained our contrast agent in MPTP-treated or control mice. There are a 

number of possibilities for why we were unable to detect our contrast agent. One 

possibility is that the contrast agent was not able to cross the blood brain barrier (BBB) 
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and never gained access to the SN. However, previous work from our lab using a contrast 

agent with the exact same structure but different enzymatic cleavage site was detected in 

the brains of mice within 60 minutes of injection (Ta et al., 2013). It is therefore unlikely 

that the current contrast agent was not able to penetrate the BBB and make it into the 

central nervous system vasculature.  

Another possible explanation for the lack of detectable contrast agent is that it was 

washed away during perfusion or subsequent preparation of the brain tissue sections. Our 

contrast agent is extremely small and does not fix well. When we attempted to fix 

neurons that had retained our contrast agent in vitro, it is possible that the contrast agent 

did not fix well and was washed away. Therefore, we think it is highly likely that some of 

the agent was lost during perfusion and tissue preparation. In the future, it may be wise to 

snap freeze unperfused brains and then analyze agent distribution.  

It is also possible that our contrast is present throughout the substantia nigra, but we are 

simply unable to detect it using fluorescence microscopy. The background fluorescence 

in the green channel was high, even in uninjected mice. It is possible, therefore, that we 

are unable to detect fluorescence coming from our contrast agent over the background. 

This could be overcome by changing the colour of the fluorophore in our contrast agent 

or by switching to a more sensitive imaging modality. Another way of boosting the signal 

intensity would be to deliver consecutive injections of our contrast agent to mice or by 

administering the agent via intraperitoneal injections, thereby allowing more time for the 

agent to accumulate in apoptotic cells. 

4.7 Future Studies 

In the future, it will be necessary to switch to a different model of apoptosis, where there 

are a larger proportion of cells undergoing apoptosis at any one time. Although cerebral 

stroke models induce a mixture of apoptosis and necrosis, they may provide a better 

model for testing our contrast agent in vivo. Histological analyses from cerebral stroke 

models in rats have revealed widespread apoptosis and TUNEL staining (Linnik et al., 
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1995; Chen et al., 1997). Chen et al. demonstrated that 72 hours after a transient 1-hour 

middle cerebral artery occlusion, hundreds of cells within the piriform cortex, caudate 

nucleus and putamen are TUNEL positive within the rat brain. This suggests that a 

cerebral stroke model may provide a more robust model (greater number of cells 

undergoing apoptosis at the same time) for inducing apoptosis in vivo. 

Following the establishment of an adequate model for apoptosis in vivo, it will be 

necessary to establish the appropriate timing and dose for the injection of our contrast 

agent. As mentioned earlier, we may find it beneficial to administer multiple doses of our 

contrast agent, allowing for greater accumulation in apoptotic cells. Additionally, as 

apoptosis is rare a rare event in vivo, even under pathological circumstances, we may find 

ourselves moving towards a more sensitive imaging modality, such as positron emission 

tomography (PET) (Brauer, 2003). 

4.8 Conclusion  

This thesis presents the first step in the development of a contrast agent to detect 

apoptosis in vivo. We demonstrated the ability to reliably label apoptotic cells generated 

using several different methods. In addition, we demonstrated the selectivity or our agent 

for apoptotic cells over necrotic or lysed cells. Unfortunately, we were unable to evaluate 

the ability of our contrast agent to detect apoptosis in vivo using MPTP to induce 

apoptosis in the dopaminergic neurons of the SN in mice. In the future, it will be 

necessary to switch to a new model of apoptosis with more robust cell death. 

Nonetheless, we have provided convincing data for the ability to label apoptotic cells in 

vitro using our contrast agent and believe it holds the potential to provide a non-invasive 

method to image apoptosis in vivo. We hope that this imaging technique will be very 

useful in the assessment and early diagnosis of neurodegenerative disease. 
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