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ABSTRACT 
Obstructive sleep apnea (OSA) is a significant risk factor for developing atrial 

fibrillation (AF) in clinical populations, but the underlying mechanisms are unknown. 

Intermittent hypoxia (IH), as elicited by nocturnal airway obstructive events in OSA 

patients, has been implicated as the mediator of OSA-related cardiovascular 

outcomes. However, the role of IH in OSA-related atrial arrhythmogenesis has not 

been reported. For the first time, this thesis demonstrates AF promotion in a rodent 

model of OSA using IH to mimic hypoxic events, and investigates the underlying 

vulnerable substrates of induced AF. Rats exposed to IH for 7 days had significantly 

enhanced AF vulnerability compared to control animals exposed to normoxic 

conditions using both programmed electrical stimulation and atrial burst pacing to 

evaluate AF susceptibility. Enhanced AF vulnerability was accompanied by a 

number of atrial substrate changes that have not been reported previously in an IH 

model of OSA, including (1) lowered atrial Cx 43 content, (2) heightened cholinergic 

sensitivity with increased muscarinic receptor protein expression, and (3) alterations 

in adrenergic function characterized by enhanced responses to propranolol and 

blunted responses to isoproterenol. These findings highlight a potential causal role 

for chronic IH in OSA-related AF susceptibility and in the formation of AF-promoting 

vulnerable substrates. 
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1.1 Introduction 

Atrial fibrillation (AF) is the most common cardiac arrhythmia and a global 

health burden. The presently available therapeutic options carry considerable risks 

and are not effective for most patients, highlighting the need for new approaches to 

treatment. Rarely a primary electric disorder, AF most often arises as a 

manifestation of a host of predisposing diseases. The development of improved 

treatment modalities is limited by an incomplete appreciation of the mechanisms of 

AF, particularly with respect to its underlying risk factors, although the importance of 

the autonomic nervous system has been demonstrated in a variety of scenarios, 

both clinically and with the use of animal models. In addition to a number of 

conditions classically associated with AF, the common sleep breathing disorder, 

Obstructive Sleep Apnea (OSA), is being increasingly recognized as an important 

AF risk factor, but the underlying mechanisms are not known. Intermittent hypoxia 

(IH) is a critical pathophysiological component of OSA and is used to model the 

disease, primarily in rodents. The use of these models has implicated IH in 

mediating many OSA-related cardiovascular outcomes, but IH has not been used in 

investigations of atrial arrhythmias. IH also causes profound autonomic dysfunction 

found in the human disease which, given the role of the autonomic nervous system 

in predisposing the atria to AF, may be arrhythmogenic in the context of OSA. 

This thesis focuses on the role of IH in predisposing the atria to AF (in vivo) 

through the creation of AF substrates. This first chapter will provide an overview of 

AF, highlighting the role of autonomic influences and connexins in AF 

pathophysiology. This is followed by a description of OSA, emphasizing the role of 
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IH and its effects on the autonomic nervous system and the use of IH models to 

elucidate mechanisms of OSA-related cardiovascular outcomes. 

 

1.2 Atrial fibrillation 

Atrial fibrillation (AF) is the most common cardiac arrhythmia encountered by 

the general practitioner (Benjamin et al., 1998). It is characterized by rapid, chaotic 

atrial activation, manifesting as an undulating isoelectric line in place of regular P 

waves on the electrocardiogram (ECG). This is accompanied by an “irregularly 

irregular” QRS pattern (an irregular QRS rhythm with no apparent pattern of 

irregularity, Krummen et al., 2006), as the extremely rapid atrial rates during AF 

exceed the impulse carrying capacity of the atrioventricular node (AVN), resulting in 

uncontrolled ventricular responses related to AVN hysteresis. Initially AF episodes 

are often self-terminating and limited in duration (less than one week), which is 

termed paroxysmal AF, but over time, the episodes can become longer, and AF 

forms will often progress from paroxysmal to persistent (episodes lasting longer than 

1 week and are routinely successfully terminated by cardioversion), or permanent 

(AF is continually present and a strategy of rhythm control is not advisable) (January 

et al., 2014). AF is most often the result of one or more predisposing pathologies, 

and the progression to more advanced forms is often associated with advancement 

of these underlying diseases. The progressive nature of AF is also partially caused 

by AF itself, as rapid rates during AF cause alterations of the atria that favour 

chronicity of the arrhythmia (“AF begets AF”; Wijffels et al., 1996; Morillo et al., 1995; 

Thijssen et al., 2000).  
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1.2.1 Clinical relevance: The global AF burden 

AF is a major health care burden, due to complications and deaths. The 

current evidence suggests that AF affects about 1% of the general population 

(Kannel et al., 1998). However, the prevalence of AF increases with age, affecting 

over 10% of individuals over the age of 75 (Nixon, 2011). The prevalence of AF 

more than doubled from 1993 to 2007 (Piccini et al., 2012), and is expected to 

continue to rise due to the aging of the population (January et al., 2014). In adults 

between the ages of 40 and 55, the lifetime risk for developing AF has been 

estimated to be 22-26% (Heeringa et al., 2006). 

Largely as a risk factor for stroke and heart failure, AF is associated with 

significant morbidity and increases mortality in affected individuals across a wide 

range of ages independent of preexisting conditions (Benjamin et al., 1998). AF is 

the cause of 20-25% of all strokes (Miyasaka et al., 2005) and AF-related strokes 

are nearly twice as likely to be fatal than strokes of other origins (Lin et al., 1996).  

AF also increases the risk of developing heart failure three-fold (Camm et al., 2012) 

and worsens prognosis in patients hospitalized for heart failure (Schotten et al., 

2011).  

In spite of active research efforts, there continues to be a lack of satisfactory 

therapeutic interventions that improve prognosis in AF patients (Nattel et al., 2002b). 

One therapeutic approach is the use of antiarrhythmic drugs that restore and 

maintain sinus rhythm by altering cardiac electrophysiology. However, these drugs 

are not specific for atrial electrophysiology and increase the risk of life-threatening 

ventricular arrhythmias such as Torsade de pointes (Nattel, 1998; January et al., 

2014). Direct current cardioversion (delivery of an electric shock synchronized with 
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the “R wave” of the heart) can also restore sinus rhythm, but AF reoccurrence is 

likely in most patients without attempts to maintain sinus rhythm (January et al., 

2014; Lundstrom and Ryden, 1988). Other non-pharmacological approaches to AF 

treatment include targeted ablation or electrical isolation of arrhythmia generating 

tissue (often the pulmonary veins) and the reduction and fragmentation of atrial 

contiguous surface area (e.g. the MAZE procedure), the later of which is highly 

effective in AF prevention, but is a highly invasive procedure that is not applicable to 

most patients (Nattel et al., 2002b). Ablative therapies are primarily only relevant for 

patients with focal AF and the risk of recurrent AF after a single ablation procedure is 

still 47% in paroxysmal AF patients and 58% in non-paroxysmal AF patients at long-

term follow-up, as highlighted by a recent meta-analysis (Ganesan et al., 2013). 

Thus, AF remains a challenge with respect to its treatment, and a growing problem 

for health care systems due to its growing prevalence, significant mortality and costs 

associated with its adverse outcomes.  

 

1.2.2 Mechanisms of AF 

1.2.2.1 Overview  

AF involves three major processes: initiation of the arrhythmia, arrhythmia 

maintenance and progression toward more severe forms (Heijman et al., 2014). 

Each episode of AF requires a trigger for initiation, together with a vulnerable 

substrate for maintenance of the arrhythmia. In the context of AF, substrates refer to 

the underlying electrical or structural alterations of the atria that support arrhythmia 

vulnerability. Abnormal electrical wavefronts emerging spontaneously from regions 

such as the pulmonary veins are the most common source of AF triggers 
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(Haissaguerre et al., 1998; Jalife et al., 2009). These ectopic atrial foci are thought to 

arise primarily as a result of triggered activity, due to either early afterdepolarizations 

(EAD)s or delayed afterdepolarizations (DAD)s. Either way, the trigger alone cannot 

initiate AF; electrical wavefronts must also propagate through a suitable 

arrhythmogenic substrate characterized by reduced refractoriness, enhanced spatial 

heterogeneity of refractoriness, conduction abnormalities and/or structural 

heterogeneities (Jones et al., 2012; Nattel et al., 2002a), giving rise to re-entry and 

AF maintenance. Functional substrates can occur transiently in structurally normal 

atria, such as in paroxysmal AF or in AF induced in experimental animals (Jalife et 

al., 2009). However, as AF progresses to more severe forms (i.e. from paroxysmal 

to persistent and permanent AF) the atria develop substantially altered substrates 

involving both altered ion channel function and/or expression and irreversible 

structural changes (Iwasaki et al., 2011). This is due in part to atrial remodelling 

induced by AF itself (Thijssen et al., 2000). Once initiated, the rapid rates during AF 

(Nattel 2002a) cause progressive changes in the atria that facilitate maintenance of 

the arrhythmia and re-initiation should it terminate spontaneously or by interventions 

(“AF begets AF”; Wijffels et al., 1995; Morillo et al., 1995).  

There are also a number of factors that promote the initial development of a 

vulnerable substrate necessary for re-entry and AF maintenance. AF is a highly 

heterogeneous condition, occurring most often as a consequence of a wide range of 

predisposing diseases. AF that occurs in the absence of any demonstrable disease 

has been classically called “lone AF” (Rosiak et al., 2010), but increasingly the use 

of the term has been discouraged in clinical practice (January et al., 2014). Although 

once thought to occur in roughly 30% of all AF patients (Wolf et al., 1991; Roy et al., 
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2008), long-term data revealed that lone AF accounts for only 2% of all AF cases 

(Schoonderwoerd et al., 2008; Jahangir et al., 2007; Rosiak et al., 2010). Long-

established AF risk factors that promote substrate vulnerability include hypertension, 

heart failure, valve disease and thyroid disease (January et al., 2014). There are 

also a number of newly emerging risk factors including congenital heart disease, 

predisposing gene variants, and, according to increasing evidence, OSA. Although 

new risk factors for AF continue to be identified, the mechanisms underlying their 

relations to AF are not well understood. One hope is that an improved understanding 

of AF mechanisms and its underlying its risk factors may enable discovery of novel 

AF therapies that target the specific problem in affected individuals.  

The mechanisms of AF are somewhat controversial but it is widely accepted 

that two major pro-arrhythmic mechanisms are involved: triggered activity and re-

entry. In the presence of a vulnerable substrate that is conducive to AF 

maintenance, triggered activity can initiate AF, followed by re-entry maintenance, or 

maintain AF as a driver when arising from an ectopic focus firing rapidly and 

repetitively. Alternatively, AF can be maintained by re-entry, in the form of a single 

localized re-entry circuit or multiple functional re-entry circuits. In multiple circuit re-

entry, the irregular atrial activity that defines AF is a direct consequence of the 

primary arrhythmia mechanism. In AF driven by ectopic foci or a single re-entry 

circuit, irregular atrial activity is thought to be due to fibrillatory conduction of 

wavefronts spawned from the primary arrhythmia generator (the ectopic focus or 

primary re-entry circuit) due to spatially variable refractory properties of atrial tissue. 

The following sections will describe the mechanisms underlying triggered activity 

and re-entry, with specific emphasis on the relationships between basic arrhythmia 
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mechanisms, the initiation and maintenance of AF and the autonomic nervous 

system.  

 

1.2.2.2 Triggered activity and AF initiation 

Ectopic atrial foci that participate in the initiation and maintenance of AF are 

thought to be primarily due to triggered activity (Andrade et al., 2014). Triggered 

activity arises from depolarizing membrane potential oscillations that occur during or 

after normal action potentials, called afterdepolarizations. Afterdepolarizations that 

are large enough to reach threshold trigger new action potentials, which can in turn 

elicit more action potentials, resulting in self-sustaining runs of triggered activity. 

Depending on the phase of the action potential in which they occur, 

afterdepolarizations are classified as either “early afterdepolarizations” (EADs) or 

“delayed afterdepolarizations” (DADs). DADs are membrane potential oscillations 

that occur following repolarization of the action potential (phase 4) while EADs occur 

during the action potential plateau (phase 2) or during the late phase 3 

repolarization. DADs are the most common contributors to focal ectopic activity in 

the atria (Heijman et al., 2012) and are favoured by conditions that promote 

intracellular calcium overload, such as β-adrenergic stimulation, hypertrophy and 

ischemia (Jalife et al., 2009). Excess diastolic calcium is handled primarily by the 

sodium calcium exchanger (NCX), which extrudes 1 calcium ion for 3 sodium ions, 

causing a net depolarizing current, the transient inward current, which underlies 

DADs (Heijman et al., 2014; Wakili et al., 2011). \ 

EADs are favoured by conditions promoting action potential duration (APD) 

prolongation, such as with a loss of repolarizing outward K+ currents or an increase 
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of inward currents (Jalife et al., 2009). The inward current most likely responsible for 

the generation of EADs is the calcium window current (Jalife et al., 2009). These 

currents occur when sufficient time has passed for the L-type calcium current (ICaL) 

to recover from inactivation (such as during prolonged action potentials). As a result, 

any abnormal depolarizing current can activate L-type calcium channels from a 

closed state (Schotten et al., 2011; January and Riddle, 1989), resulting in a 

transient inward current that can lead to EADs.  

 

1.2.2.3 Mechanisms of AF maintenance and re-entry 

Re-entry arises when an electrical impulse persistently reactivates an area of 

tissue, often due to circular conduction around a circuit (circus movement re-entry). 

Re-entry circuits may form around fixed anatomic obstacles, such as those formed 

by the venae cavae, pulmonary veins or a region of inexcitability caused by scar 

tissue. Re-entry requires initiation by a trigger, often in the form of a premature 

ectopic beat, and depends on the occurrence of unidirectional block so that 

activation only occurs in one direction within the circuit (Jalife et al., 2009). Re-entry 

also requires that the conduction time around the circuit is longer than the refractory 

period to permit the recovery of excitability within the circuit. Therefore, a relatively 

long circuit, short RP and slow conduction velocity of the impulse make re-entry 

more likely. In other words, the wavelength (equal to the refractory period x 

conduction velocity) must be shorter than the path length of the circuit (Jalife et al., 

2009). If the wavelength is greater than the length of a potential circuit, the impulse 

will traverse the circuit in a time shorter than the refractory period, forcing it to 

encounter its refractory tail and be extinguished (Nattel, 2002).  
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Re-entry occurring in the absence of a fixed anatomical substrate is termed 

functional re-entry, when a premature impulse encounters localized refractoriness 

and re-enters around this functional barrier (Heijman et al., 2012). For many years, 

the most widely accepted hypothesis to explain functional re-entry was the leading 

circle model of Allessie et al. (1973). More recently, the spiral wave hypothesis has 

become much more widely accepted. According to the leading circle model, re-entry 

circuits establish themselves in the smallest possible pathway that can sustain re-

entry (i.e. In a pathlength equal to the wavelength). Shortened refractory period and 

reduced conduction velocity reduce wavelength, allowing a greater number of 

simultaneous re-entry circuits to be accommodated thus promoting leading circle re-

entry. In contrast, according to the spiral wave model, re-entry circuits adopt the 

shape of a rotor that propagates around an excitable but unexcited core (Jalife et al., 

2009). 

Re-entry, substrate vulnerability and AF are favoured by short refractory 

periods, slow impulse conduction, structural heterogeneities and enhanced spatial 

dispersion of refractoriness (Jones et al., 2012). Refractory period is governed by 

APD, which is determined by the balance of inward and outward currents during the 

action potential plateau (Nattel et al., 2002a). Ion channel dysfunction characterized 

by increased plateau outward K+ currents and/or reduced inward ICaL accelerates 

repolarization, shortening APD and refractoriness, thereby facilitating re-entry 

(Schotten et al., 2011; Wakili et al., 2011). For example, AF-induced remodeling 

reduces ICaL and causes pronounced shortening of APD and refractory period (Yue 

et al., 1997).  
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Cardiac conduction velocity is determined by (1) electrical coupling through 

gap junction channels and (2) the maximum upstroke velocity of the phase 0 inward 

Na+ current (INa+). Gap junctions, comprised of transmembrane proteins called 

connexins, are the subcellular structures that permit electrical continuity between 

adjescent cells, and are critical for atrial impulse propagation. The heart expresses 

four primary connexin isoforms but in the atrial myocardium, the dominant isoforms 

are Connexin 43 (Cx 43) and Connexin 40 (Cx 40) are the dominant isoforms. 

Impaired gap junction coupling and connexin dysfunction, as occurs in animal 

models of AF-induced remodeling (Van der velden et al., 2000) and in human AF 

associated with fibrosis (Luo et al., 2007), reduce conduction velocity and promote 

re-entry. Cx 43 appears to play a particularly important role in AF. Lowered atrial Cx 

43 is found in chronic AF patients (Kostin et al., 2002) and animal models of AF 

(Igarashi et al., 2012) and predisposes the atrium to AF (Thibodeau et al., 2010; 

Tuomi et al., 2011). Because altered connexin proteins are both observed widely in 

AF and also serve as important substrates promoting arrhythmia maintenance (in 

the case of Cx 43), connexins were a useful marker for AF substrate and inducibilty 

in this thesis.  

Re-entry is also favoured by enhanced spatial heterogeneity of refractoriness, 

such as during vagally-mediated AF (Wang et al., 1996; Liu and Nattel., 1997). 

Dispersion of refractoriness introduces functional obstacles that promote fibrillatory 

conduction and stabilize the leading sources of re-entry circuits (rotors).  
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1.2.3 Role of the autonomic nervous system in the pathogenesis of AF 

1.2.3.1 Atrial autonomic innervation 

The autonomic nervous system of the heart includes both extrinsic and 

intrinsic components (Armour, 2004), both of which have been implicated in atrial 

arrhythmogenesis. Extrinsic sympathetic influences on the heart include both 

circulating catecholamines from the adrenal medulla and sympathetic efferent 

innervation originating from cervical, stellate and thoracic ganglia (Kawashima, 

2005). The efferent parasympathetic nerve supply consists of vagal nerves that 

originate from medullary nuclei such as the nucleus ambiguus (Linz et al., 2013). 

In addition to the extrinsic cardiac ANS, the heart is also innervated by an 

extensive intrinsic cardiac autonomic nervous system (ICANS). The ICANS forms a 

complex neural network consisting of ganglionated plexi (GP) housed within a 

number of interconnected epicardial fat pads (Armour et al., 1997). The GP contain 

both parasympathetic and sympathetic elements (Ardell, 1994) but acetyltransferase 

immunostaining of all neurons in guinea pig posterior GP indicates major cholinergic 

input to the myocardium (Mawe et al., 1996; Tuomi et al., 2010). The GP receive 

both sympathetic and parasympathetic extrinsic innervation and may modulate the 

interactions between the extrinsic and intrinsic cardiac autonomic nervous systems, 

acting as a “mini brain” on the heart (Hou et al., 2007). 

 

1.2.3.2 Autonomic regulation of atrial electrophysiology and AF 

During parasympathetic stimulation, acetylcholine released from cholinergic 

nerve terminals binds to and activates muscarinic receptors expressed by the atrial 

myocardium. Five muscarinic receptor subtypes, M1-M5, have been cloned. M1, M3 
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and M5 receptors are Gαq-coupled, while M2 and M4 receptors are coupled to 

Gαi/o (Jones et al., 2012). In the atria, M2 receptors are the most abundantly 

expressed (Krejci & Tucek, 2002) and, traditionally, have been considered the sole 

cardiac muscarinic receptor subtype. More recently, it has been established that 

atrial M3 receptors have numerous physiological functions (Shi et al., 1999b; Wang 

et al., 2007; Wang et al., 2004). The M2 and M3 subtypes activate distinct potassium 

currents: the acetylcholine-activated inward rectifying K+ current (IKACh) by M2 

receptors (Reuveny et al., 1994) and the M3 receptor-mediated potassium current 

(IKM3) by M3 receptors (Shi et al., 1999a, 1999c; Shi et al., 2004). M3 receptors may 

also contribute to the activation and desensitization of IKACh (Wang et al., 2007). 

Activation of IKACh facilitates an outward hyperpolarizing K+ current that shortens 

APD and AERP, thereby facilitating re-entry and AF (Kovoor et al., 2001). M3 

receptor-mediated activation of IKM3 results in membrane hyperpolarization and APD 

shortening (Shi et al., 2003; Shi et al., 1999a; Wang et al., 1999), which may 

facilitate re-entry in a manner similar to IKACh. Studies of transgenic mice have 

shown that both enhanced M2 (Posokhova et al., 2013) and M3 (Tuomi et al., 2010) 

receptor function in the atria are associated with enhanced susceptibility to 

electrically induced AF. 

Owing to the heterogeneous distribution of vagal innervation, muscarinic 

receptors and/or IKACh (Lomax et al., 2003) in the atria, the effect of cholinergic 

stimulation on refractory period is spatially heterogeneous (Liu and Nattel, 1997). 

The spatially heterogeneous effect of acetylcholine on refractoriness has been 

shown to promote fibrillatory conduction and spiral wave re-entry in a detailed 

mathematical model of vagal AF (Kneller et al., 2002; Schotten et al., 2011). 
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Similarly, findings from optical mapping studies of sheep atria suggest that vagally-

induced AF is maintained by a high-frequency mother rotor in the left atrium with 

fibrillatory conduction towards the right (Mandapati et al., 2000; Skanes et al., 1998; 

Mansour et al., 2001; Jalife et al., 1998; Jalife et al., 2009). Acetylcholine 

administration has also been shown to produce AF composed of multiple wavelets 

wandering through the atria in a chaotic pattern without a single source dominating 

the activation pattern (Schotten et al., 2011; Allessie et al., 1985).  

Adrenergic regulation of atrial electrophysiology occurs primarily via β1- (β1-

AR) and β2-adrenergic receptors (β2-AR), with β1-AR comprising 70-80% of all 

adrenergic receptors in the atria (Arora, 2012). Catecholamine binding to β-

adrenergic receptors causes activation of adenyl cyclase, leading to cAMP 

production and subsequent protein kinase A (PKA)-mediated phosphorylation of 

several Ca2+ handling proteins and ion channels, including L-type Ca2+ channels, 

phospholamban (PLN) and ryanodine type 2 receptors (RYR2) (Bers, 2002). 

Adrenergic stimulation also increases Ca2+ binding to calmodulin, leading to 

activation of Ca2+/calmodulin-dependent protein kinase type II (CaMKII), which 

phosphorylates many of the same substrates as PKA, thereby amplifying the 

adrenergic response (Chen et al., 2014). Phosphorylation of L-type Ca2+ channels 

by PKA increases Ca2+ influx via ICa,L while Phosphorylation of PLN augments 

sarcoplasmic reticulum (SR) Ca2+ loading via dissinhibition of the SR Ca2+-ATPase 

(SERCA2a) by PLN, responsible for reuptake of Ca2+ into the SR. As a result of 

RYR2 phosphorylation and greater SR Ca2+, the β-adrenergic response increases 

RYR2 channel opening probability (Bers, 2002). Together these actions increase the 

systolic Ca2+ transient and promote abnormal spontaneous sarcoplasmic reticulum 
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(SR) Ca2+ release events (Ca2+ sparks; Marx et al., 2000; Ogrodnik and Niggli, 

2010). Ca2+ sparks have been shown to promote DADs (Johnson et al., 1986; Wit 

and Boyden, 2007), suggesting a role for β-adrenergic activity in DAD-related 

triggered activity, although evidence for DAD-related triggered activity in AF is 

lacking. However, combined sympathovagal coactivation (during which APD is 

shortened by IKACh and the Ca2+ transient is enhanced) has been shown to cause 

late phase 3 EADs, triggered activity and AF initiation (Patterson et al., 2006; 

Burashnikov and Antzelevitch, 2003). 

 

1.2.3.3 Autonomic activity and AF: review of the evidence  

The importance of the autonomic nervous system (ANS) in the initiation and 

maintenance of AF has been demonstrated in many settings. In studying patients 

with paroxysmal AF, Coumel et al. (1996) noted two patterns: vagally mediated AF 

was common in young patients with structurally normal hearts while sympathetically 

mediated AF typically occurred in the presence of heart disease, and often during 

exercise or states of emotional stress. More recently, adrenergic triggers (associated 

with exercise or emotion), vagal triggers (mostly at night) and combined adrenergic 

and vagal triggers commonly preceded AF episodes in a large study of over 1,500 

patients (De Vos et al., 2008). Studies involving direct nerve recordings have 

demonstrated that simultaneous sympathovagal activation (Tan et al., 2008; Ogawa 

et al., 2007) and intrinsic cardiac nerve activity (Choi et al., 2010) are common 

triggers of AF paroxysms in animal models. A high incidence of sympathovagal co-

activation at baseline is associated with a high vulnerability to pacing-induced 
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sustained AF, suggesting that the ANS has a role in the development of persistent 

AF (Shen et al., 2011).  

The pulmonary veins and pulmonary vein-left atrial (PV-LA) junction are 

heavily innervated by GP (Tan et al., 2006; Chou et al., 2005) and several studies 

have highlighted a role for these intrinsic nerves in promoting AF. Enhanced activity 

from the PV-LA junction GP has been implicated in triggering that arises from the 

pulmonary veins (Patterson et al., 2005; Patterson et al., 2006) and their ablation 

suppresses or eliminates focal AF from PVs (Lu et al., 2009). Stimulation of the PV-

LA junction GP provides the substrate to convert PV firing to AF (Scherlag et al., 

2005) which may involve EAD-related triggered activity induced by adrenergic 

stimulation combined with vagally mediated APD and refractory period shortening 

(Patterson et al., 2005).  

 

1.3 Obstructive sleep apnea (OSA) 

1.3.1 Definition of OSA 

Obstructive sleep apnea (OSA) is a disorder in which episodes of pharyngeal 

collapse cause temporary cessations in breathing during sleep. These episodes can 

be complete (apneas) or partial (hypopneas), although both are sufficient to cause 

intermittent hypoxia (IH) and significant hypoxemia, as well as carbon dioxide 

retention. Apneas/hypopneas and their accompanying IH lead to arousals with sleep 

fragmentation, episodic intrathoracic pressure reductions from inspiration against an 

occluded airway and surges of autonomic activity with each episode. Excessive 

daytime sleepiness is the main symptom of OSA, but some patients also present 

with frequent snoring, choking or gasping during sleep, recurrent arousals from 
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sleep and/or impaired concentration (Parati et al., 2012). However, evidence 

suggests that a large proportion of OSA patients are asymptomatic (Duran et al., 

2001).  

OSA is identified based on symptoms and clinical findings, but a definitive 

diagnosis requires attended overnight polysomnography in a sleep laboratory. 

During polysomnography, sleep stages, heart rate and rhythm, limb movements, 

arterial oxygen saturation, and respiratory movements and/or respiratory effort are 

recorded. These parameters enable determination of the number of obstructive 

respiratory events (lasting >10s) per hour, which is used to determine the apnea-

hypopnea index (AHI). OSA is defined as an AHI of at least 5 (Parati et al., 2012), 

and the severity of OSA is defined as: mild OSA, AHI of 5-15/h; moderate OSA, AHI 

of 15-30/h, or severe OSA, AHI >30/h; Parati et al., 2012. Reduction in blood-oxygen 

saturation by at least 90% has also been described as an important indicator of OSA 

severity as it is correlated with susceptibility to cardiovascular events (Nieto et al., 

2000). 

 

1.3.2 Clinical relevance of OSA 

Data from large scale population studies in Wisconsin (Young et al., 1993), 

Pennsylvania (Duran et al., 2001) and Spain (Bixler et al., 1998) conducted using 

polysomnography suggest that OSA of at least mild severity (AHI > 5) affects 17-

26% of men and 9-28% of women. However, these studies likely underestimated the 

true disease burden of OSA, as over 85% of patients with OSA remain undiagnosed 

(Young et al., 1997; Kapur et al., 2002). The prevalence of OSA increases with age 

in both men and women (Duran et al., 2001; Young et al., 2004). Obesity is also a 
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major OSA risk factor, as a 10% increase in weight corresponds with a 6-fold 

increased risk of developing OSA of at least moderate severity and a 32% increase 

in the AHI (Peppard et al., 2000a).  

OSA has been linked to the development of a multitude of complications 

including cardiovascular, metabolic and neurocognitive consequences. In particular, 

the cardiovascular consequences of OSA contribute significantly to population 

morbidity and mortality. OSA has been recognized as an independent risk factor for 

hypertension (Peppard et al., 2000b; Nieto et al., 2002), stroke (Arzt et al., 2005), 

and coronary artery disease (Sorajja et al., 2008; Mooe et al., 2001). OSA is 

associated with increases in rates of cardiovascular morbidity and mortality 

independent of other risk factors (Marin et al., 2005; Yaggi et al., 2005; Campos-

Rodriguez et al., 2012) and treatment of OSA with continuous positive airway 

pressure (CPAP) has been demonstrated to reduce cardiovascular risk (Marin et al., 

2005; Campos-Rodriguez et al., 2012). 

OSA is also an independent risk factor for AF (Mehra et al., 2006). The 

prevalence of OSA was 20% greater among AF patients compared to healthy 

individuals matched for age, sex, BMI, prevalent hypertension and heart failure 

(Gami et al., 2004). Similarly, the prevalence of AF was 5 times greater in adults with 

OSA than in those without the syndrome (4.8% vs 0.9%; Mehra et al., 2006). OSA is 

also associated with increased AF reoccurrence rates after cardioversion and 

ablation (Ng et al., 2011). The finding that treatment of OSA with continous positive 

airway pressure reduces the risk of recurrence of AF suggests a causal role for OSA 

in the pathogenesis of AF (Kanagala et al., 2003; Fein et al., 2013; Naruse et al., 

2013), but the underlying mechanisms are unknown. 
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1.3.3 Intermittent hypoxia in OSA 

 OSA is a multicomponent disorder involving IH, sleep fragmentation, 

intrathoracic pressure swings and obstructed respiratory efforts. Together, these 

components contribute to the disease progression and development of OSA-related 

comorbidities (For review, see Dempsey et al., 2010). However, the widespread use 

of IH in animals to model OSA has enabled the recognition that IH is likely the most 

critical component underlying its cardiovascular complications (Dematteis et al., 

2009).  

 

1.3.3.1 IH model 

 Since their introduction over 20 years ago (Fletcher et al., 1992a, 1992b, 

1992c), animal models employing IH have been used widely to investigate the 

pathophysiology of OSA and its consequences. Animals, typically rodents, are 

exposed to intermittent cycles of hypoxia-reoxygenation during their sleep cycles to 

emulate the oxygen desaturations caused by obstructive apneas. The IH stimulus is 

typically applied during the day, throughout the sleep cycle of nocturnal animals 

such as rodents, but with significant differences with respect to the duration of 

daytime exposure, number of cycles per hour and level of fraction of inspired O2 

(FiO2). The IH stimulus may be applied up to 60 (Campen et al., 2005; Polotsky et 

al., 2006) or 120 (Fletcher et al., 1992c) times per hour, with FiO2 levels typically in 

the range of 5-10% (Fletcher et al., 1992c; Soukhova-O’Hare et al., 2006). These 

oxygen desaturations are well correlated with those observed in OSA patients (Jun 

et al., 2010; Louis and Punjabi, 2009), and reliably produce the same physiological 
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perturbations that occur in the human disease, including profound effects on 

autonomic activity, heart rate and blood pressure.  

 

1.3.3.2 Effects of IH on the autonomic nervous system and the heart  

Hypoxia is sensed by specialized structures located in the carotid bodies 

known as peripheral chemoreceptors, which become activated during apneic 

episodes. The activation of these structures sets in motion a cascade of acute 

autonomic adjustments to maintain homeostasis during hypoxia, collectively referred 

to as the peripheral chemoreflex (For review, see Prabhakar, 2000). Paradoxically, 

chemoreceptor activation results in simultaneous activation of both vagal and 

sympathetic outflows to the heart in both dogs (Kollai and Koizumi, 1979) and rats 

(Boscan et al., 2001). The net response of the heart to chemoreceptor stimulation is 

profound bradycardia (Braga et al., 2008), indicating that the vagal effect overrides 

positive chronotropism of the sympathetic activation, and a positive inotropic 

response that is sympathetically mediated (Braga et al., 2007). In addition to these 

primary effects on cardiac autonomic activity, chemoreflex activation also causes 

sympathetically mediated vasoconstriction, resulting in acute surges in blood 

pressure (Haibara et al., 1995; Braga et al., 2008). These surges are detected by 

mechanosensitive arterial baroreceptors in the aortic arch, triggering activation of the 

associated arterial baroreflex which elicits sympathoinhibitory effects on the 

vasculature while further increasing parasympathetic activation of the heart (Braga 

et al., 2008). Thus, during IH and episodes of apnea the atria are bombarded by 

both sympathetic and parasympathetic activity. 
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Chronic repetition of these acute nocturnal hypoxic episodes leads to 

substantial autonomic dysfunction. As occurs in patients with OSA (Narkiewicz et al., 

1999), peripheral chemoreflex sensitivity and the hemodynamic responses to 

peripheral chemoreceptor activation are potentiated in rodents exposed to chronic 

repetitive IH (Braga et al., 2006; Huang et al., 2009). At the same time, arterial 

baroreflex sensitivity and/or baroreflex control of sympathetic activity is reduced in 

OSA patients (Carlson et al., 1996; Narkiewicz et al., 1998) and following exposure 

to IH in animal models (Lin et al., 2007). As a result, subjects with repetitive sleep 

apneic events exhibit persistently elevated sympathetic tone and hypertension even 

during awake hours when there is an absence of apneas (Narkiewcz et al., 1999; 

Sajkov et al., 1994). Accordingly, chronic IH exposure leads to hypertension 

(Fletcher et al., 1992a; Fletcher et al., 1992c), elevated plasma catecholamines 

(Zoccal et al., 2007; Gonzalez-Martin et al., 2009; Peng et al., 2014), and elevated 

cervical (Greenberg et al., 1999), renal (Huang et al., 2009), splanchnic (Dick et al., 

2007; Xing and Pilowsky, 2010), thoracic (Zoccal et al., 2008) and lumbar (Marcus et 

al., 2010) sympathetic nerve activity in rodent IH models of sleep apnea. The chronic 

effects of IH on parasympathetic nervous activity (PNA) are less well understood, 

but enhanced vagal efferent control of heart rate following chronic IH in rats (Gu et 

al., 2007) and mice (Lin et al., 2007) suggests that activity of peripheral vagal 

neurons become upregulated, to compensate for the loss of baroreflex control of the 

heart.  
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1.3.3.3 Implications for atrial arrhythmias 

IH exerts a myriad of effects on the autonomic nervous system with potential 

implications for atrial arrhythmogenesis. During sleep, bouts of hypoxia cause 

repetitive oscillations in parasympathetic and sympathetic cardiac outflow that may 

predispose the atria to autonomically triggered arrhythmias. As previously 

mentioned, simultaneous sympathovagal activation (Tan et al., 2008; Ogawa et al., 

2007; de Vos et al., 2008) and activity of intrinsic cardiac nerves (Choi et al., 2010) 

are common triggers of AF episodes. Moreover, AF can be initiated by stimulation of 

GPs (Scherlag et al., 2005), β-adrenergic agonists (Sharifov et al., 2004) and 

cholinergic agonists (Sharifov et al., 2004; Mandapati et al., 2000; Skanes et al., 

1998; Mansour et al., 2001; Jalife et al., 1998; Allessie et al., 1985). In addition to 

having substantial acute effects on autonomic activity, repeated and chronic 

exposure to IH results in sustained autonomic dysfunction during wakefulness, 

which may give rise to atrial electrophysiological alterations and provide the 

necessary triggers and vulnerable substrate for AF. Abnormal autonomic function 

and/or changes in autonomic tone are associated with electrophysiological substrate 

development and AF in animal models (Jayachandran et al., 2000; Chang et al., 

2001; Guasch et al., 2013) and human patients (Nguyen et al., 2009). The setting of 

autonomic dysfunction caused by IH may operate similarly to augment substrate 

vulnerability and AF susceptibility. 

 

1.4 RATIONALE 

Although substantial evidence from epidemiological and clinical studies 

suggests a causal role for OSA in the pathogenesis of AF, the use of animal IH 
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models to characterize this relationship is lacking and the underlying mechanisms 

have not been adequately investigated. IH has been implicated in mediating many 

consequences of OSA including substantial autonomic dysfunction and enhanced 

sympathetic drive, but the role of IH in predisposing to AF is not known. Given that 

IH bombards the atria with autonomic activity and augments chronic autonomic 

dysfunction, both of which have been implicated in AF promotion, IH may augment 

substrate formation and predispose the atria to AF.  

 

1.5 HYPOTHESIS AND OBJECTIVES 

We hypothesized that IH augments formation of electrophysiological and 

autonomic substrates for AF and increases susceptibility to electrically induced AF. 

 

Specific objectives of this thesis were to determine in the rat: 

1. the effect of IH on the expression of adrenergic and muscarinic receptor 

mRNA and protein in the atria; 

2. the effect of IH on atrial connexin mRNA and protein expression; 

3. the effect of IH on atrial effective refractory period (AERP) and the 

susceptibility to electrically-induced AF;, and 

4. the role of the autonomic nervous system in mediating atrial 

electrophysiological alterations and enhanced AF susceptibility induced by 

IH. 
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2.1 Animals 

All procedures were in accordance with the Guidelines on the Care and Use 

of Laboratory Animals of the Canadian Council on Animal Care and the Animal Use 

Committee at the University of Western Ontario (Protocol #’s 2006-122, 2008-030 & 

2014-053). A total of 149 adult, male Sprague-Dawley rats (Charles River, Canada) 

weighing 275 – 400 g were included in this study. Rats were housed at a 

temperature of 22 ± 1 °C with 60% relative humidity, under 12/12 hour light/dark 

cycle. Food and water were provided ad libitum, except during exposure to IH or 

normoxic conditions. 

 

2.2 Intermittent hypoxia model of Obstructive Sleep Apnea 

OSA was modeled by exposing rats to repetitive cycles of hypoxia-

reoxygenation during their sleep cycles (9 am to 5 pm) to mimic that caused by 

obstructive apneas, as described previously (Moreau and Ciriello, 2013). For 8 hours 

per day (9 am to 5 pm), rats were placed in plexiglass® chambers containing 4 

tubes in which they were allowed to move freely. In the IH chamber, computerized 

solenoid valves which regulated the inflow of pressurized air and nitrogen were 

programmed to produce cycles of 80 seconds of hypoxia (6.5-7% O2) followed by 

120 seconds of reoxygenation (21% O2 ; Figure 1.1A).  This particular regimen 

emulates a moderate form of OSA, based on the apnea-hypopnea index (AHI; 

Moreau and Ciriello, 2013; Parati et al., 2012). Fans pushed the gasses through a 

mixing chamber prior to entering the chamber containing the animal tubes (Figure 

1.1B). Sensors on the chamber continuously monitored oxygen and carbon dioxide 

levels, which allowed the computer to ensure proper cycling and maintaince of 
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eucapnic conditions (<0.1% CO2). Normoxic control animals were placed in identical 

chambers through which only pressurized room air cycled through the system. To 

observe acute, intermediate and chronic effects of the model, animals were exposed 

to IH or normoxic conditions for an overall exposure duration of 1, 7 or 95 days, 

respectively (Messenger et al., 2013; Moreau and Ciriello, 2013). There were no 

obvious differences in sleep patterns between the IH and normoxia-exposed rats in 

the chambers.  

 

2.3 Animal subgroups 

For real-time PCR analysis, atrial mRNA from IH and normoxia-exposed rats 

were compared immediately after 1 day (n = 7 per group), 16 hours after 1 day (n = 

5 normoxic rats, n = 6 IH rats), 16 hours after 7 days (n = 8 per group) and 

immediately after 95 days of exposure (n = 8 per group). For western blot analysis, 

atrial protein levels from IH and normoxia exposed rats were compared immediately 

following 1 day (n = 7 per group), 16 hours after 1 day (n = 5 normoxic rats, 6 IH 

rats), immediately after 7 days (n = 7 per group) and 16 hours after 7 days of 

exposure (n = 7 per group). Rats exposed to IH (n = 27) or normoxia (n = 27) for 7 

days underwent intracardiac electrophysiological studies immediately after 

exposure.  
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Figure 2.1 Intermittent hypoxia exposure model and chamber 

(A) O2 nadir (%) in the hypoxia chamber during a single cycle. (B) Schematic 

representation of the chamber used for IH exposures. Thick black lines represent 

tubing and thin black lines represent electrical connections. Arrows indicate direction 

of air flow. Animals are housed within the hypoxia chamber (1), which was attached 

to a zero-pressure escape valve (2) that prevented pressure changes within the 

chamber. Fans (3) promoted air flow from the animal chamber to the mixing 

chamber (4) which included baffles to encourage mixing of fresh gases with gases 

flowing through the system. The inflow of 100% compressed nitrogen (5) and 

pressurized room air (6) into the mixing chamber was controlled by solenoid valves 

(7) controlled by a computerized timing box (8) that received feedback from O2 (9) 

and CO2 (10) sensors. Taken with permission from Moreau, 2013.  
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2.4 Tissue collection  

Rats subjected to IH or normoxic conditions for 1, 7 or 95 days were 

sacrificed and the hearts exposed using a thoracotomy approach. Right and left atria 

were excised and collected in Eppendorf tubes, rapidly immersed in liquid nitrogen 

and then stored at -80 °C until mRNA or protein analysis. Samples of total atria were 

partitioned into two halves to be further processed for isolation of RNA and protein. 

 

2.5 RNA isolation and real-time PCR 

Total atrial RNA was isolated using TRIZOL reagent (Life Technologies, 

Railey, UK) and RNA concentrations were determined with a NanoDrop2000 UV-vis 

spectrophotometer (ThermoFisher Scientific, Toronto, ON). RNA integrity was 

evaluated by visual assessment of ethidium bromide-stained agarose denaturing 

gels. cDNA was synthesized from extracted RNA using qScript cDNA SuperMix 

(Quanta BioSciences, Gaithersburg, MD). Oligonucleotide primer sequences for the 

M2 receptor, M3 receptor, Cx 40, Cx 43, β1-AR, β2-AR and ribosomal subunit 18S 

are shown in Table 1. Real-time PCR was carried out in triplicate parallel reactions 

on a Bio-Rad CFX384 (Bio-Rad, Hercules, CA) using the SsoFast EvaGreen 

Supermix system (Bio-Rad). Amplification was performed at 95ºC for 3 min, followed 

by 39 cycles at 95ºC for 15 s, 59ºC for 15 s and 72ºC for 15 s. Signal detection and 

analysis were performed using Bio-Rad CFX384 software (Bio-Rad). Amplification 

specificity was assessed based on the presence of a single, narrow melting curve 

peak for each assay. Fold differences, normalized to ribosomal subunit 18S were 

determined using the comparative ∆∆ CT method. 
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Table 2.1 Primer sequences used for real time PCR 
Gene   Primer sequence 
  

 
  

M2 receptor Forward 5'-GCCCCAGCCATTCTCTTCTG-3' 
Reverse 5’-TATTCTGCTCTTGCTCGCCCG-3’ 

   M3 receptor Forward 5’-TGCCTGGGTCTCTTAATTCC-3’  
Reverse 5’-CTTCACATGGGATCTGGATG-3’ 

   Cx 43 Forward 5’-TCCTTGGTGTCTCTCGCTTT-3’ 
Reverse 5’-GAGCAGCCATTGAAGTAGGC-3’ 

! ! !Cx 40 Forward 5’-ATGGGTGACTGGAGCTTCCTGGGG-3’ 
Reverse 5’-TCACACTGACAGGTCATCTGACCT-3’ 

! ! !
β1-AR 

Forward 5′-ACCCCAAGTGCTGCGATTTCGT-3′ 
Reverse 5′-GCTCGCAGCTGTCGATCTTCTT-3′ 

! ! !
β2-AR 

Forward 5′-TTCTGTGCCTTCGCCGGTCTTCTT-3′ 
Reverse 5′-ATGCCAGGGGCTTCCTCACAAA-3′ 

! ! !18S Forward 5’-GTGACGGGGAATCAGGGTT-3’ 
Reverse 5’-CCTTCCTTGGATGTGGTAGCC-3’ 

!! !! !!
 

 

 

 

 

 

 

2.6 Protein isolation and western blot 
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Protein lysates were prepared in RIPA buffer (50 mM Tris, 150 mM sodium 

chloride, 0.1% SDS, 1% Triton-X 100, 0.5% sodium deoxycholate, 1mM EDTA, 1mM 

sodium orthovanadate, 1 mM sodium fluoride, 25 mM β-glycerophosphate, pH 7.5) 

with a protease inhibitor cocktail Tablet (Roche Applied Science; Laval, PQ). Tissue 

homogenization was performed on ice, with delivery of 3, 15-second bursts from a 

Kinematica polytron homogenizer set to 60% (Brinkmann Instruments; Rexdale, 

ON). Homogenates were then sonicated over 3 passages for 15 seconds each on 

ice (55%; Sonic Dimembrator Model 150; Fisher Scientific) and then centrifuged at 

4°C for 30 min at 14 500 x g. Protein concentrations were determined using the Bio-

Rad DC protein assay kit (Bio-Rad; Hercules, CA).  

Samples containing 20-30 µg protein were heated at 75ºC for 5 minutes prior 

to being loaded onto 10% polyacrylamide gels and subjected to electrophoretic 

separation by size in the Mini-Protean II cell from Bio-Rad. Dose-response curves of 

various protein amounts (0.1-33 µg) were generated to ensure that the chosen 

amount of total protein was in the linear range of detection. Resolved proteins were 

transferred onto polyvinylidene fluoride (0.45 µm) membranes (Millipore; Billerica, 

MA) in a Mini Trans-Blot Transfer Cell (Bio-Rad). Buffer containing 5% skim milk, 

Tris-buffered saline with 0.01% Tween-20 (TBS-T; 20 mM Tris, 0.5 M NaCl, 0.1% 

Tween-20; pH 8.0) was used to reduce nonspecific binding and for the dilution of 

primary and secondary antibodies. Using routine procedures, (Moreau and Ciriello, 

2013) membranes were probed overnight with primary antibodies at 4ºC, including 

rabbit anti-connexin 43 (1:10,000; C6219, Sigma-Aldrich, St. Louis, Missouri), rabbit 

anti-connexin 40 (1:8000; AB101929, Abcam Inc., Cambridge, MA), rabbit anti-β1-

adrenergic receptor (1:2000; PA1-049, ThermoFisher Scientific; Rockford, IL), rabbit 
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anti-M2 muscarinic acetylcholine receptor (1:800; AB5166; Millipore; Billerica, MA), 

and polyclonal rabbit anti-M3R (1:1000; sc-9108, Santa Cruz Biotechnology; Santa 

Cruz, CA). After washing, membranes were probed again for 1 hour at room 

temperature with horseradish peroxidase-conjugated goat anti-rabbit IgG (1:10,000; 

CLCC27007, Cedarlane Laboratories, Burlington, ON) as the secondary antibody. 

Bands were detected using SuperSignal West Pico Chemiluminescent Substrate 

(ThermoFisher Scientific; Toronto, ON), visualized using a VersaDoc imaging 

system (Bio-Rad Labortories; Hercules, CA) and analyzed using QuantityOne 

version 4.6.6 software (Bio-Rad Laboratories; Hercules, CA). Membranes were 

exposed for 10-40 seconds. This software highlights saturated pixels, which enabled 

us to ensure that exposure never reached saturation.  

To control for differences in protein loading, following detection of the initial 

protein, membranes were incubated with stripping buffer (200 mM Glycine, 6.9 mM 

SDS, 0.01% Tween-20, pH 2.2) and immunoblotting was performed again, using 

mouse anti-β-tubulin (1:2000, T8328; Sigma-Aldrich, St. Louis, Missouri) as the 

primary antibody followed by horseradish peroxidase-conjugated goat anti-mouse 

IgG (1:8000, 170-6516, Bio-Rad Laboratories; Hercules, CA) as the secondary 

antibody with chemiluminescence detection as described above.  

 

2.7 Preoperative procedures 

A subset of rats underwent in vivo intracardiac electrophysiological studies 

following exposure to IH (n = 27) or normoxia (n = 27) for 7 days.  At the end of the 

exposure period, rats were anesthetized with an intraperitoneal injection of a mixture 

of ketamine (100 mg/kg) and xylazine (10 mg/kg) and fixed in a supine position over 
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a heated water blanket. A small animal rectal probe (YSI-402; Yellow Springs 

Instruments, Yellow Springs, OH) was used for continuous monitoring of body 

temperature, which was maintained within the normal physiological range (36.5–

38°C) by adding or removing heat from lamps and heated water-filled gloves.  

 

2.8 Electrocardiogram (ECG) Recordings 

Standard ECG limb leads I, II, III, aVR, aVL and aVF were recorded 

continuously throughout the study using four 25-gauge subcutaneous platinum 

electrodes (Grass Instrument, Quincy, MA) placed at the base of each limb. ECG 

signals were sampled at 1.5 kHz and filtered (0.05 – 100 Hz) with an ECG 100 

preamplifier connected to an MP100 recording system (BIOPAC Systems, Biolynx, 

Montreal, PQ, Canada).  

 

2.9 Intracardiac electrophysiological studies 

A 2-Fr octapolar stimulation/recording/drug infusion catheter (CIB’ER Mouse, 

NuMED, Hopkinton, NY) was inserted through the right jugular vein and advanced 

into the right atrium. The catheter was placed at the site where the amplitude of the 

atrial deflection exceeded that of the ventricular deflection in the intracardiac 

electrograms recorded from the two proximal pairs of bipolar electrodes. Bipolar 

pacing used 2-ms pulses at twice the diastolic threshold, delivered through a Grass 

SIU5 stimulus isolation unit, connected to a Grass S88 stimulator, programmed with 

a custom-built timer, as previously described (Tuomi et al., 2010). Atrial effective 

refractory period (AERP) measurements were made using cycle lengths of 150 ms 

and 100 ms in a conditioning train of 8 basic drive stimuli (S1 x 8) followed by a 
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premature extrastimulus (S2). The S2 was delivered at decrements of 10 ms, 

followed by 1 ms decrements as AERP was approached. AERP was defined as the 

longest S1-S2 coupling interval that failed to elicit an atrial response.  

Both programmed electrical stimulation (PES) and burst pacing (2 ms pulses 

at 50 Hz applied for 1 second, up to 10 times per atrial site) were used to determine 

susceptibility to atrial arrhythmia induction. AF was identified based on the presence 

of intra-atrial electrogram fractionation and characteristics of the surface lead 

electrograms: lack of regular P waves and “irregularly, irregular” ventricular 

responses. 

 

2.10 In vivo electrophysiological study design  

After performing electrophysiological studies at baseline as described above, 

pacing protocols were repeated following administration of muscarinic and 

adrenergic receptor agonists and antagonists. IH or normoxia-exposed rats were 

assigned to 1 of 3 groups, each receiving a different drug regimen. In IH (n = 10) or 

normoxia (n = 9) exposed rats assigned to group 1, electrophysiological 

measurements were made sequentially at baseline, then in the presence of 

isoproterenol, then again at baseline after a 40 minute washout period, followed by 

in the presence of propranolol, then isoproterenol. In group 2 (n = 8 per condition), 

measurements were made at baseline, followed by in the presence of carbachol, 

then at baseline after a 60 minute washout period, followed by in the presence of 

atropine, then carbachol. In IH (n = 6) or normoxia (n = 5) exposed rats assigned to 

group 3, the measurements were made at baseline, followed by in the presence of  
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Figure 2.2 Electrophysiology protocol and experimental design 

Flow chart showing the electrophysiological protocol (EP; panel A) and experimental 

design (panel B). AERP, atrial effective refractory period; AF, atrial fibrillation; PES, 

programmed electrical stimulation. 
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carbachol, again at baseline after 60 minutes for washout, followed by in the 

presence of darifenacin, then carbachol. The electrophysiological protocol and 

experimental design are shown in Figure 2.1. 

 

2.11 Adrenergic and muscarinic receptor drugs 

All drug doses and routes of administration were selected based on previous 

literature and the results of pilot studies undertaken to observe heart rate responses 

to cumulative doses within ranges expected to produce moderate (10-30%) changes 

in heart rate (please see the appendix for details). In individual rats, responses to at 

least two doses of each drug or dose-response relationships were observed (refer to 

the appendix). The M3 receptor-selective antagonist darifenacin hydrobromide (1.0 

mg/kg; Cedarlane Laboratories, Markham, ON) was dissolved in a vehicle containing 

isotonic saline and DMSO (in a 1:1 v/v ratio) and administered intravenously. All 

other drugs, including the nonselective muscarinic agonist carbachol (0.05 mg/kg; 

Sigma, Mississauga, ON), the nonselective muscarinic antagonist atropine (1.0 

mg/kg; Sigma), the nonselective β-agonist isoproterenol (0.1 mg/kg; Sigma) and the 

nonselective β-antagonist propranolol (10 mg/kg; Sigma) were dissolved in isotonic 

saline and administered intraperitoneally.  

 

2.12 Statistical analysis 

All values are expressed as mean ± standard error of the mean. For protein 

and gene expression analyses, comparisons between IH and normoxia exposed 

animals at the different time points were made using unpaired, two-tailed Student t-

tests (GraphPad Prism 6; GraphPad Software, San Diego, CA). Discrete data were 
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analyzed by Chi squared analysis (GraphPad Prism 6; GraphPad Software, San 

Diego, CA). Drug and groupwise comparisons used two-way ANOVA using 

GraphPad Prism 6 software. In all comparisons, a p-value < 0.05 was considered 

statistically significant. 
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3.1 Expression of muscarinic receptors 

Figure 3.1 shows that atrial M2 receptor protein was significantly higher 

immediately following both 1 (P < 0.01) and 7 (P < 0.05) days of IH exposure 

compared to normoxic controls. However, no significant differences were present 

between the IH and normoxia-exposed rats approximately 16 hours after the end of 

the exposure periods, suggesting that this effect is reversible at the 1 and 7 day time 

points. As shown in Figure 3.2, M2 receptor mRNA levels were not significantly 

different following IH exposure for 1, 7 or 95 days, indicating that elevated M2 

receptor protein content in the IH rats was not due to increased gene expression; 

rather, reduced protein degradation and/or an increase in translation may be 

responsible for the changes we observed. Compared to normoxic controls, M3 

receptors were also higher in 1 day IH-exposed rats at the protein level (Figure 3.3; 

P < 0.01) and at the mRNA level (Figure 3.4; P < 0.05).  

 

3.2 Expression of adrenergic receptors 

Rats exposed to 1 or 7 days of IH exhibit no change in β1-adrenergic receptor 

content at the protein (Figure 3.5) or mRNA (Figure 3.6) level. However, β1-

adrenergic receptor mRNA was significantly lower in rats exposed to IH for 95 days 

compared with normoxic controls (Figure 3.5; P < 0.05). On the other hand, in the 

atria of IH-exposed rats, β2-adrenergic receptor mRNA levels were not significantly 

different from normoxic controls at any of the exposure lengths studied (Figure 3.7) 

and corresponding protein levels were not investigated.  
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Figure 3.1 Effect of intermittent hypoxia on atrial M2 receptor protein 

expression 

Bar graphs (A) and representative blots (B-E) showing M2 muscarinic receptor 

(M2R) protein expression as a ratio of β-tubulin in the atria of adult male rats 

exposed to intermittent hypoxia or normoxic conditions for 8 hours per day for 1 or 7 

days. Rats were sacrificed immediately after IH or normoxia exposure (1 dayi and 7 

daysi) or the day after exposure, following a 16 hour delay (1 dayd and 7 daysd), and 

each time point was run on separate gels. Data shown are means ± SEM. *, P < 

0.05; **, P < 0.01; N.S., not significant. 
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Figure 3.2 Effect of intermittent hypoxia on atrial M2 receptor mRNA 

expression 

Bar graphs showing no difference in M2 muscarinic receptor (M2R) mRNA 

expression as a ratio to 18S in the atria of adult male rats exposed to intermittent 

hypoxia or normoxic conditions for 8 hours per day for 1, 7 or 95 days. Rats were 

sacrificed immediately after IH or normoxia exposure (1 dayi) or the day after 

exposure, following a 16 hour delay (1 dayd, 7 daysd and 95 daysd). Data shown are 

means ± SEM. N.S., not significant. 
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Figure 3.3 Effect of intermittent hypoxia on atrial M3 receptor protein 

expression 

Bar graphs (A) and representative blots (B-E) showing M3 muscarinic receptor 

(M3R) protein expression as a ratio of β-tubulin in the atria of adult male rats 

exposed to intermittent hypoxia or normoxic conditions for 8 hours per day for 1 or 7 

days. Rats were sacrificed immediately after IH or normoxia exposure (1 dayi and 7 

daysi) or the day after exposure, following a 16 hour delay (1 dayd and 7 daysd) and 

each time point was run on separate gels. Data shown are means ± SEM. **, P < 

0.01; N.S., not significant. 
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Figure 3.4 Effect of intermittent hypoxia on atrial M3 receptor mRNA 

expression 

Bar graphs showing M3 muscarinic receptor (M3R) mRNA expression relative to 

18S in the atria of adult male rats exposed to intermittent hypoxia or normoxic 

conditions for 8 hours per day for 1, 7 or 95 days. Rats were sacrificed immediately 

after IH or normoxia exposure (1 dayi) or the day after exposure, following a 16 hour 

delay (1 dayd, 7 daysd and 95 daysd). Data shown are means ± SEM. *, P < 0.05; 

N.S., not significant. 
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Figure 3.5 Effect of intermittent hypoxia on atrial β1-adrenergic receptor 

protein expression 

Bar graphs (A) and representative blots (B-E) showing β1-adrenergic receptor (β1-

AR) protein expression as a ratio of β-tubulin in the atria of adult male rats exposed 

to intermittent hypoxia or normoxic conditions for 8 hours per day for 1 or 7 days. 

Rats were sacrificed immediately after IH or normoxia exposure (1 dayi and 7 daysi) 

or the day after exposure, following a 16 hour delay (1 dayd and 7 daysd), and each 

time point was run on separate gels. Data shown are means ± SEM. N.S., not 

significant. 
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Figure 3.6 Effect of intermittent hypoxia on atrial β1-adrenergic receptor 

mRNA expression 

Bar graphs showing β1-adrenergic receptor (β1-AR) mRNA expression as a ratio of 

18S in the atria of adult male rats exposed to intermittent hypoxia or normoxic 

conditions for 8 hours per day for 1, 7 or 95 days. Rats were sacrificed immediately 

after IH or normoxia exposure (1 dayi) or the day after exposure, following a 16 hour 

delay (1 dayd, 7 daysd and 95 daysd). Data shown are means ± SEM. *, P < 0.05; 

N.S., not significant. 
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Figure 3.7 Effect of intermittent hypoxia on atrial β2-adrenergic receptor 

mRNA expression 

Bar graphs showing β2-adrenergic receptor (β2-AR) mRNA expression as a ratio of 

18S in the atria of adult male rats exposed to intermittent hypoxia or normoxic 

conditions for 8 hours per day for 1, 7 or 95 days. Rats were sacrificed immediately 

after IH or normoxia exposure (1 dayi) or the day after exposure, following a 16 hour 

delay (1 dayd, 7 daysd and 95 daysd). Data shown are means ± SEM. N.S., not 

significant. 
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3.3 Expression of connexins 

Figure 3.8 shows that protein expression of Cx 43 was significantly lower the 

next day in the atria of rats exposed to IH for 7 days compared to normoxic controls 

(P < 0.05). This is likely at least partially due to a reduction in gene transcription, 

since lowered Cx 43 protein was accompanied by similar reductions in Cx 43 mRNA 

content, as shown in Figure 3.9 (P < 0.05). With more prolonged exposures for 95 

days, IH rats had significantly lower Cx 43 mRNA compared to normoxic controls 

(Figure 3.9; P < 0.05). IH exposure for 1 day and sacrificed immediately was 

paradoxically associated with transiently higher Cx 43 protein (Figure 3.8, P < 0.05), 

with no change in mRNA (Figure 3.9). This suggests that elevated Cx 43 protein 

content immediately following 1 day of IH was not due to increased gene expression; 

rather, reduced protein degradation and/or an increase in translation may be 

responsible. The opposing changes in Cx 43 protein at 1 versus 7 days indicates 

that the effects of IH in the atria may be biphasic, as has been demonstrated for 

numerous proteins in cardiac tissues exposed to IH (for review, see Yin et al., 2012). 

Levels of Cx 40 protein (Figure 3.10) and mRNA (Figure 3.11) were not significantly 

different in IH or normoxia exposed animals at any of the time points investigated. 

 

3.4 Electrophysiological characteristics 

After 7 days of exposure, P-wave duration, PQ interval and QT interval were 

not significantly different in IH rats compared to normoxic controls (Table 3.1). QRS 

duration could not be measured because QRS complexes were often “buried” within 

the T waves on the ECGs of rapidly beating rat hearts. However, the QT interval can 

still provide an index for ventricular conduction, since the QT represents the duration 
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of ventricular depolarization and repolarization. IH caused a trend to increase heart 

rate in IH rats (248±6 BPM versus 262±6 BPM) compared to normoxic controls was 

noted but this difference was not statistically significant (P = 0.14). 
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Figure 3.8 Effect of intermittent hypoxia on atrial connexin 43 protein 

expression 

Bar graphs (A) and representative blots (B-E) showing Connexin 43 (Cx 43) protein 

expression as a ratio of β-tubulin in the atria of adult male rats exposed to 

intermittent hypoxia or normoxic conditions for 8 hours per day for 1 or 7 days. Rats 

were sacrificed immediately after IH or normoxia exposure (1 dayi and 7 daysi) or the 

day after exposure, following a 16 hour delay (1 dayd and 7 daysd), and each time 

point was run on separate gels. Data shown are means ± SEM. *, P < 0.05, N.S., not 

significant. 
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Figure 3.9 Effect of intermittent hypoxia on atrial connexin 43 mRNA 

expression 

Bar graphs showing Connexin 43 (Cx 43) mRNA expression as a ratio of 18S in the 

atria of adult male rats exposed to intermittent hypoxia or normoxic conditions for 8 

hours per day for 1, 7 or 95 days. Rats were sacrificed immediately after IH or 

normoxia exposure (1 dayi) or the day after exposure, following a 16 hour delay (1 

dayd, 7 daysd and 95 daysd). Data shown are means ± SEM. *, P < 0.05, N.S., not 

significant. 
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Figure 3.10 Effect of intermittent hypoxia on atrial connexin 40 protein 

expression 

Bar graphs (A) and representative blots (B-E) showing Connexin 40 (Cx 40)  protein 

expression as a ratio of β-tubulin in the atria of adult male rats exposed to 

intermittent hypoxia or normoxic conditions for 8 hours per day for 1 or 7 days. Rats 

were sacrificed immediately after IH or normoxia exposure (1 dayi and 7 daysi) or the 

day after exposure, following a 16 hour delay (1 dayd and 7 daysd), and each time 

point was run on separate days. Data shown are means ± SEM. N.S., not significant. 
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Figure 3.11 Effect of intermittent hypoxia on atrial connexin 40 mRNA 

expression 

Bar graphs showing Connexin 40 (Cx 40)  expression as a ratio of 18S in the atria of 

adult male rats exposed to intermittent hypoxia or normoxic conditions for 8 hours 

per day for 1, 7 or 95 days. Rats were sacrificed immediately after IH or normoxia 

exposure (1 dayi) or the day after exposure, following a 16 hour delay (1 dayd, 7 

daysd and 95 daysd). Data shown are means ± SEM. N.S., not significant. 
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Table 3.1: Electrophysiological characteristics measured from the surface lead 

electrograms recorded from rats exposed to 7 days of IH or normoxia. 

 

Values are means ± SEM; n, number of rats. BPM, beats per minute.  
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3.5 Atrial effective refractory periods  

In both normoxia and IH-exposed rats, AERPs were spatially heterogeneous, 

with longer AERPs occurring in the high-right atrium (HRA) compared with the mid-

right atrium (MRA) at basic drive train cycle lengths of 100 ms (P < 0.01; Figure 

3.12A) and 150 ms (P < 0.05; Figure 3.12B). This finding is consistent with results of 

previous studies in which right atrial PES was performed in mice (Tuomi et al., 2010; 

Tuomi et al., 2011). Right atrial ERPs measured in IH-exposed rats at baseline were 

not significantly different from those of normoxic controls (Figure 3.12).  

 

3.6 Effects of autonomic receptor drugs on AERPs 

All measurements of AERP in IH- or normoxia-exposed rats in the presence 

and absence of carbachol, atropine, darifenacin, isoproterenol and propranolol are 

summarized in Table 3.2. Treatment with the nonselective muscarinic receptor 

agonist carbachol shortened AERP by 18-20% in normoxia-exposed rats and by 29-

31% in rats exposed to IH (Table 3.2). With carbachol administration, IH rats had a 

lower average AERP than normoxic controls at both atrial sites and drive cycle 

lengths, but these differences were not statistically significant (Figure 3.13). Two-

way ANOVA revealed a significant interaction between drug (carbachol) and 

treatment (IH versus normoxia), suggesting that rats exposed to IH may have 

enhanced cholinergic sensitivity. In contrast, the nonselective muscarinic receptor 

antagonist atropine caused similar increases in AERPs in all animals (Figure 3.14; 

Table 3.2). Following carbachol administration, AERP was measured again in the 

absence and presence of the selective M3 receptor antagonist, darifenacin, to  
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Figure 3.12 Effect of intermittent hypoxia on atrial effective refractory period 

Atrial effective refractory period (AERP) measured using programmed electrical 

stimulation (PES) with (A) 100 ms and (B) 150 ms drive trains in rats exposed to IH 

or normoxic conditions for 7 days.  AERP was measured in both the high-right atrium 

(HRA) and mid-right atrium (MRA). Values represent means ± SEM. **, P < 0.01; 

N.S, not significant. 
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Figure 3.13 Effect of intermittent hypoxia on atrial effective refractory period in 

the presence and absence of carbachol 

Atrial effective refractory period (AERP) measured using programmed electrical 

stimulation (PES) with (A, B) 100 ms (AERP100) and (C, D) 150 ms (AERP150) drive 

trains in rats exposed to IH or normoxic conditions for 7 days. AERP was measured 

in both the high-right atrium (HRA; A, C) and mid-right atrium (MRA; B, D) in the 

absence (baseline) and presence of carbachol. Two-way ANOVA and Bonferroni’s 

multiple comparisons test revealed that carbachol significantly reduced AERP in all 

rats and that there was a significant interaction between drug and treatment on MRA 

ERP100 (B) and MRA ERP150 (D). Values represent means ± SEM. **, P < 0.01; ***, 

P < 0.001; N.S., not significant. 



56 
!

! !

 

Figure 3.14 Effect of intermittent hypoxia on atrial effective refractory period in 

the presence and absence of atropine 

Atrial effective refractory period (AERP) measured using programmed electrical 

stimulation (PES) with a 100 ms drive train (AERP100) in rats exposed to IH or 

normoxic conditions for 7 days. AERP was measured in both the high-right atrium 

(HRA; A) and mid-right atrium (MRA; B) in the absence (pre-drug baseline) and 

presence of atropine. Pre-drug baseline values represent AERPs measured 

immediately before atropine injection, after a 60-minute washout period for 

carbachol. Atropine prolonged ERP at both atrial sites in all rats. Values represent 

means ± SEM. **, P < 0.01; N.S., not significant. 
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Table 3.2: Right atrial effective refractory periods (in ms) rats exposed to 7 

days of IH or normoxia measured in the presence and absence of carbachol, 

atropine, darifenacin, isoproterenol and propranolol.  

 

 

 

Values are means ± SEM; n, number of rats. HRA ERP, high-right atrial effective 

refractory period; MRA ERP, mid-right atrial effective refractory period. The 

subscripts 100 and 150 indicate basic drive cycle lengths of 100 ms and 150 ms, 

respectively. *, P < 0.05; †, P < 0.01 for intermittent hypoxia-exposed rats compared 

to normoxic controls within each drug group. ‡, significant interaction effect (P < 

0.05) between drug and treatment. 
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determine the role of the M3 receptor in modulating AERP in IH and normoxia- 

exposed rats. We found that darifenacin caused similar increases in AERP in both 

groups (AERP increased by about 14 ms in IH-exposed rats and by 11 ms in 

normoxic control rats; Figure 3.15), suggesting similar contributions of the M3 

receptor to AERP in the two groups. The nonselective β-adrenergic receptor agonist 

isoproterenol reduced AERP of the MRA from 41 ± 3 to 33 ± 2 in normoxic animals 

and from 41 ± 4 to 35 ± 3 in IH-exposed rats (Figure 3.16). Two-way ANOVA 

revealed a significant interaction between drug (isoproterenol) and treatment, 

suggesting that IH-exposed animals may be less sensitive to isoproterenol (Figure 

3.16; Table 3.2). Figure 3.17 shows that treatment with the nonselective β-

adrenergic receptor antagonist propranolol resulted in significantly longer AERPs in 

animals exposed to IH compared to normoxic control rats in both high (P < 0.01) and 

mid-right atrial sites (P < 0.05). Since AERPs were not significantly different prior to 

propranolol administration, this suggests that the effects of propranolol were greater 

in IH-exposed rats, possibly as a result of increased basal adrenergic activation. 

 

3.7 Atrial fibrillation inducibility and effects of autonomic receptor drugs 

Atrial burst pacing (Figure 3.18A) and PES (Figure 3.19) induced atrial 

arrhythmias with features that define AF: rapid, chaotic atrial activation patterns and 

irregularly irregular ventricular responses. All atrial arrhythmias with these 

characteristics were labelled as AF in this study, although a true diagnosis of AF 

requires high density mapping techniques and recording from both left and right atria 

(Tuomi et al., 2010). In normoxia-exposed control animals, AF was not inducible with 

PES (0 of 27, 0%). Burst pacing is a more provocative stimulus for arrhythmia  
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Figure 3.15 Effect of intermittent hypoxia on atrial effective refractory period in 

the presence and absence of darifenacin 

Atrial effective refractory period (AERP) measured using programmed electrical 

stimulation (PES) with (A, B) 100 ms (AERP100) and (C, D) 150 ms (AERP150) drive 

trains in rats exposed to IH or normoxic conditions for 7 days. AERP was measured 

in both the high-right atrium (HRA; A, C) and mid-right atrium (MRA; B, D) in the 

absence (pre-drug baseline) and presence of darifenacin. Pre-drug baseline AERPs 

were measured immediately before darifenacin injection, following a 60-minute 

washout period for carbachol. Two-way ANOVA and Bonferroni’s multiple 

comparisons test revealed that darifenacin prolonged ERP at both atrial sites in all 

rats. Values represent means ± SEM. **, P < 0.01; N.S., not significant. 
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Figure 3.16 Effect of intermittent hypoxia on atrial effective refractory period in 

the presence and absence of isoproterenol 

Atrial effective refractory period (AERP) measured in the high-right atrium (HRA; A) 

and mid-right atrium (MRA; B) in the absence (baseline) and presence of 

isoproterenol using programmed electrical stimulation (PES) with a 100 ms drive 

train (AERP100) in rats exposed to IH or normoxic conditions for 7 days. Two-way 

ANOVA and Bonferroni’s multiple comparisons test revealed that isoproterenol 

shortened ERP of the HRA (A) in normoxic, but not in IH rats, and there was a 

significant drug and treatment interaction in both high (A) and mid (B) right atrial 

sites. Values represent means ± SEM. *, P < 0.05; ***, P < 0.001; N.S., not 

significant. 
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Figure 3.17 Effect of intermittent hypoxia on atrial effective refractory period in 

the presence and absence of propranolol 

Atrial effective refractory period (AERP) measured using programmed electrical 

stimulation (PES) with a 100 ms drive train (AERP100) in rats exposed to IH or 

normoxic conditions for 7 days. AERP was measured in the high-right atrium (HRA; 

A) and mid-right atrium (MRA; B) in the absence (pre-drug baseline) and presence 

of propranolol. Pre-drug baseline values represent the AERP measured immediately 

before propranolol administration, following a 40-minute washout period for 

isoproterenol. Propranolol prolonged ERP of the MRA in IH, but not in normoxic rats 

(B). Values represent means ± SEM. *, P < 0.05; **, P < 0.01; N.S., not significant. 
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Figure 3.18 AF induction with atrial burst pacing 

(A) Characteristic burst-induced atrial fibrillation (AF) in a rat exposed to 7 days of 

IH. Note the absence of P-waves and the irregular QRS responses on limb lead 1 

(LL1), and the rapid, irregular atrial activation patterns and fractionation on the intra-

atrial electrograms (LRA, low-right atrium; MRA, mid-right atrium; HRA, high-right 

atrium). (B) For comparison, a representative recording of failure to induce AF with 

burst pacing in a 7 day normoxia-exposed rat.  
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Figure 3.19 Characteristic recording of AF induced by PES 

Characteristic recording of atrial fibrillation (AF) induced by programmed electrical 

stimulation (PES) with a single extrastimulus (S2) in a rat exposed to 7 days of IH. 

Note the rapid, irregular atrial activation patterns on the intra-atrial electrograms 

(LRA, low-right atrium; MRA, mid-right atrium; HRA, high-right atrium), in particular 

the different tachycardia rates in HRA compared to MRA and LRA. Irregularly 

irregular ventricular responses and the absence of P-waves can be seen on limb 

lead 1 (LL 1). Susceptibility to PES-induced AF indicates that IH-exposed rats have 

a highly vulnerable atrial substrate. Normoxia exposed rats were completely 

insensitive to arrhythmia induction with PES. 
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induction, but induced AF in only 4 of 27 (15%) normoxia-exposed rats. In contrast, 

IH-exposed rats were quite sensitive to AF induction with burst pacing (14 of 27, 

52%) and were moderately susceptible to AF induction with PES (7 of 27, 26%). Chi-

squared analysis revealed that IH-exposed rats were more sensitive to AF induction 

with both PES (P < 0.01; Figure 3.20) and burst pacing (P < 0.01; Figure 3.20) 

compared to normoxic controls. All rats that were susceptible to AF induction had 

short-lived, nonsustained AF (<10 seconds), with the exception of two rats in the IH 

group that were highly susceptible to PES-induced AF. One rat consistently had self-

terminating AF episodes lasting approximately 3 minutes on average; the other 

remained in sustained AF for over an hour until exogenous termination was 

attempted with injection of atropine (1 mg/ml, i.p.).  

Previous studies have used carbachol to enhance AF inducibility and duration 

(Tuomi et al., 2011; Tuomi et al., 2010) but surprisingly, carbachol did not 

significantly affect AF susceptibility in normoxia-exposed rats with either PES (0/13 

without versus 0/13 with carbachol; Figure 3.21A) or burst pacing (1/13 without 

versus 2/13 with carbachol; Figure 3.21A). On the other hand, in IH-exposed rats 

carbachol significantly increased susceptibility to burst-induced AF (from 5/13 at 

baseline to 10/13 with carbachol, P < 0.05; Figure 3.21A). Carbachol increased the 

number of IH-exposed rats that were susceptible to AF induced by PES (2/13 

without carbachol versus 6/13 with carbachol, P = 0.089; Figure 3.21A) but this 

difference was not statistically significant. Muscarinic receptor blockade with atropine 

completely prevented AF inducibility in IH-exposed rats with both PES (P = 0.055; 

Figure 3.21B) and burst pacing (P < 0.001; Figure 3.21B). Darifenacin also 

prevented AF inducibility in all IH rats with both pacing modalities (Figure 3.21C), but  
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Figure 3.20 Effect of intermittent hypoxia on the inducibility of AF using 

different methods of stimulation 

Incidence of AF induced with programmed electrical stimulation (PES) or burst 

bacing (burst) in rats exposed to IH or normoxic conditions for 7 days. IH increased 

susceptibility to AF induction with both pacing modalities compared to normoxic 

controls. **, P < 0.01.  
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Figure 3.21 Effect of muscarinic receptor drugs on AF inducibility  

Incidence of AF induced with programmed electrical stimulation (PES) or burst 

bacing (burst) in rats exposed to IH or normoxic conditions for 7 days in the 

presence and absence of carbachol (A), atropine (B) or darifenacin (C). In IH-

exposed rats with burst pacing, carbachol enhanced susceptibility to AF induction 

and atropine completely prevented inducibility of AF. *, P < 0.05; ***, P < 0.001; 

N.S., not significant.  
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Figure 3.22 Effect of adrenergic drugs on AF inducibility 

Incidence of AF induced with programmed electrical stimulation (PES) or burst 

bacing (burst) in rats exposed to IH or normoxic conditions for 7 days in the 

presence and absence of isoproterenol (A) or propranolol (B). Isoproterenol 

significantly increased susceptibility to AF induction with burst pacing in normoxic 

rats but had no effect on AF susceptibility in IH-exposed rats with either pacing 

method. *, P < 0.05; N.S., not significant.  



68 
!

! !

these differences were not statistically significant. Interestingly, isoproterenol 

significantly increased susceptibility to AF induction with burst pacing in normoxic 

rats (P < 0.05; Figure 3.22A) but had no effect on AF susceptibility in IH-exposed 

rats with either pacing method (Figure 3.22A). In IH-exposed rats, β-adrenergic 

receptor blockade with propranolol reduced the incidence of AF induced by PES (P 

= 0.121) and burst pacing (P = 0.074; Figure 3.22B) but these differences were not 

stastically significant. Propranolol also prevented AF induction with burst pacing in 

one of the normoxia-exposed rats (reduced the incidence of AF from 3/9 to 2/9; P = 

0.510; Figure 3.22B). 
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4.1 Overview 

This study, to our knowledge, is the first to demonstrate AF promotion in an 

animal model of OSA, using IH alone to mimic obstructive apneas. This matches the 

enhanced AF susceptibility seen in OSA patients and, for the first time, 

demonstrates a role for IH in atrial arrhythmogenesis. We found substantially 

enhanced AF vulnerability in IH-exposed rats compared to control animals exposed 

to normoxic conditions using both PES and burst pacing to induce AF. Susceptibility 

to AF induction with PES indicates that IH rats have a highly vulnerable atrial 

substrate; on the other hand, control animals were insensitive to PES-induced AF. 

We investigated the underlying pathological determinants of the AF-promoting 

substrate and identified a number of atrial substrate changes that have not been 

reported previously in an IH model of OSA, including (1) lowered atrial Cx 43 

content, (2) heightened cholinergic sensitivity with increased muscarinic receptor 

protein expression and (3) alterations in adrenergic function characterized by 

enhanced responses to propranolol and blunted responses to isoproterenol. 

Atropine completely prevented AF inducibility, and the sensitivity to carbachol-

induced AF was enhanced, in IH-exposed rats, indicating that parasympathetics 

were critical for AF inducibility. Adrenergic activation also played a role, since 

propranolol prevented burst-induced arrhythmias in a third of IH-exposed rats that 

were inducible at baseline. These findings highlight a causal role for chronic IH in 

OSA-related AF susceptibility and in the formation of AF-promoting vulnerable 

substrates. 

 



71 
!

! !

4.2 Considerations of the model 

The first overarching aim of this thesis was to establish that an IH model of 

OSA had enhanced AF inducibility to facilitate investigation of the underlying 

vulnerable substrates. We used an IH regimen composed of repeated 80-second 

cycles of hypoxia alternated with 120-second cycles of normoxia, resulting in 

exposure of rats to 18 events per hour, thereby emulating a moderate form of OSA 

based on the AHI (AASM Task force, 1999). The IH stimulus was applied for 8 hours 

per day, during the diurnal sleep period of the rat, and based on behavioural 

assessment, our rats slept normally during this time, with the polyphasic pattern 

characteristic of rats (Simasko and Mukherjee, 2009). Specifically, rats appeared to 

be sleeping for most of the exposure duration, with the exception of microarousals 

typically observed in laboratory conditions (for example, 396 wake-ups on average in 

a 12 hour diurnal period; Clancy et al., 1978). In IH rats, respiration rate increased 

during phases of hypoxia, which was not due to hypercapnia since eucapnic 

conditions were maintained within the chambers. This observation is an indication 

that the fractional inspired O2 within the chambers was producing intermittent 

hypoxemia, since hypoxia in the blood induces hyperventilation (Bisgard and 

Neubauer, 1995). Overall, this suggests that our results were due to IH.    

  The usefulness of our IH model of OSA can be understood from previously 

reported characteristics (Moreau and Ciriello, 2013, 2015) and an appreciation of the 

critical pathophysiological role of IH, enabled by over two decades of OSA research 

using numerous variants of the basic paradigm. Earlier studies have demonstrated 

that our IH model displays many features of human OSA, including significant 
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alterations in body energy balance (Moreau and Ciriello, 2013) as well as blood 

pressure elevation and reduced baroreflex gain with 95-day exposures, indicating 

substantial cardiovascular dysfunction (Moreau and Ciriello, 2015). Studies of 

laboratory rodents subjected to diurnal IH are the most frequently used OSA 

paradigm, even though rodents do not experience the intrathoracic pressure swings 

or hypercapnea (Fletcher et al., 1992a) that occur in OSA patients during apnea (for 

review, see Dempsey et al., 2010). The focus on IH is based on the hypothesis 

(Dematteis, 2009) that among the three pathophysiological components of OSA, IH 

is the most important in the development of cardiovascular complications. Indeed, IH 

by itself generates sympathetic hyperactivity (Gonzalez-Martin et al., 2009; Zoccal et 

al., 2008) and hypertension (Allahdadi et al., 2008; Zoccal et al., 2008; Zoccal et al., 

2007) in experimental animals. Thus, although our model does not include all 

attributes of human OSA, our findings provide important lessons for understanding 

the human counterpart and address previously unanswered questions about the role 

of IH in atrial arrhythmogenesis. 

 

4.3 Principal findings 

Although IH has been used extensively to study numerous OSA-related 

comorbidities, this study is the first to examine the effects of an IH model on atrial 

arrhythmia susceptibility. We found that repeated bouts of IH, as occur due to OSA, 

are sufficient to significantly enhance AF susceptibility after just 7 days. Two 

different pacing protocols were used to identify AF susceptibility: PES with a single 

extrastimulus and atrial burst pacing. PES is thought to initiate AF as it occurs 
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physiologically, since AF episodes are often preceeded by premature atrial beats 

(Hoffman et al., 2006). On the other hand, atrial burst pacing more reliably induces 

AF by promoting cardiac electrical instability (Jones et al., 2008). Susceptibility to AF 

induced by PES was previously not reported in the rat, but in other small animals 

such as wild-type mice, AF is rarely induced by PES with a single extrastimulus 

(Tuomi et al., 2010). Thus, it was expected to be similarly non-inducing in the rat. 

Indeed, we found that AF could not be induced with PES in normoxia-exposed 

control rats (0%, 0/27), but IH exposure significantly increased AF inducibility with 

PES (26%, 7/27, P < 0.01). Susceptibility to AF induction with PES indicates that IH-

exposed rats possess a highly vulnerable atrial substrate, demonstrating the 

profound effect and early latency of chronic IH during the sleep period, as it occurs 

in OSA of moderate severity.  

Since PES is thought to more readily induce re-entry than triggered activity 

(Jalife et al., 2009), PES-induced AF susceptibility suggests a re-entrant mechanism 

underlying the enhanced atrial arrhythmias in IH rats. This is supported by the fact 

that AF was more readily induced in the MRA, where AERP was significantly shorter 

than in the HRA since myocardial regions with shorter refractory periods (Jalife et 

al., 2009) and enhanced spatial dispersion of refractoriness (Allessie et al., 1976) 

are more vulnerable to reentry. These observations are important because they are 

consistent with recent studies demonstrating significantly diseased reentry 

substrates in the atria of OSA patients (Dimitri et al., 2012). Compared to patients 

with AF only, those with both OSA and AF demonstrate site-specific conduction 

abnormalities, areas of low voltage and regions of electrical silence, suggesting 

underlying conduction dissociation, with no difference in refractory period at rest 
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(Dimitri et al., 2012). In this study, highly variable activation patterns were recorded 

simultaneously from high and mid-right atrial sites during AF, indicating areas of 

conduction block and underlying structural and/or electrical heterogeneities, 

consistent with OSA patients. This observation also provides further support for 

reentry, since activation heterogeneities and areas of conduction block are key 

determinants underlying the initiation of reentry in the right atrium in particular 

(Aslanidi et al., 2009). Moreover, substrate vulnerability in our IH rats was not due to 

lowering of AERP in the resting state, similar to OSA patients (Dimitri et al., 2012). 

Taken together, this suggests that the electrophysiological substrate in our IH rats 

resembles that found in OSA patients. 

Having successfully established an IH model of OSA-related AF promotion, 

the remaining objectives of this thesis were to investigate the responsible underlying 

vulnerable substrates. We noted a number of atrial substrate changes that may 

serve as pathological determinants of AF susceptibility; however, parasympathetic 

activation was found to be particularly important for AF promotion in our model. 

Atropine consistently suppressed AF inducibility in IH-exposed rats. Moreover, IH-

exposed rats had significantly enhanced sensitivity to AF induction in the presence 

of carbachol with both PES and burst pacing, similar to models of AF associated 

with enhanced cardiac parasympathetic function (Guasch et al., 2013; Tuomi et al., 

2010). Very little is known of the effects of chronic IH on atrial parasympathetic 

function, so we used muscarinic receptor agonist and antagonist drugs as tools to 

identify potential changes in the atrial cholinergic responses to stimulation and 

antagonism. Cholinergic enhancement may be due to (1) an increase in 

parasympathetic activation of the myocardium, either from elevated vagal tone or as 
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a result of changes in local circuit neurons of the ICANS, or (2) increased cholinergic 

sensitivity at the end-organ level. From the findings of this thesis, IH-exposed rats 

had significantly enhanced responses to cholinergic stimulation with carbachol 

compared to normoxic controls with no difference in sensitivity to muscarinic 

receptor blockade with atropine between the two groups. These results can be 

interpreted to mean that, while not affecting the resting level of cholinergic activation, 

IH exposure augments cholinergic sensitivity. This was probably at least partially 

due to an increase in muscarinic receptor number, since we found significantly 

higher atrial M2 muscarinic receptor protein in 7 day IH-exposed rats. Given the 

ability of atropine to prevent AF induction and the higher incidence of carbachol-

induced arrhythmias in the IH group, this enhanced cholinergic sensitivity likely 

contributed significantly to the enhanced AF susceptibility we observed in these 

animals. Studies of transgenic mice have shown that both enhanced M2 (Posokova 

et al., 2013; Guasch et al., 2013) and M3 (Tuomi et al., 2010) receptor function in 

the atria are associated with enhanced susceptibility to electrically-induced AF, 

which is consistent with the current data. In these models, cholinergic enhancement 

was due to a lack of RGS proteins, which normally limit muscarinic receptor 

signalling. In addition to the increase in atrial muscarinic receptor protein content 

that we observed, it is possible that reductions in RGS proteins may also play a role 

in the enhanced cholinergic responses and carbachol-induced AF susceptibility. 

Characterizing changes in RGS protein expression in our model would be an 

interesting experiment for future study. 

The enhanced cholinergic sensitivity we observed is a very interesting and 

novel finding, and may have implications for earlier reports that chronic IH 
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attenuates baroreflex control of the heart rate but enhances heart rate responses to 

vagal stimulation (Lin et al., 2007; Gu et al., 2007). These observations could be 

explained by our findings, although relatively long exposure lengths in these studies 

and differences in methodology make extrapolation of our findings to theirs difficult. 

In addition to cholinergic enhancement, we used pharmacological tools to 

identify novel changes in atrial adrenergic function in the IH-exposed rats, which 

agree with and extend observations from previous models of IH. After 7 days, we 

observed enhanced responses to adrenergic receptor blockade with propranolol in 

IH-exposed rats compared to normoxic controls. This effect is likely a reflection of an 

increase in baseline adrenergic receptor activation due to IH-mediated potentiation 

of sympathetic outflow (Dick et al., 2007; Xing and Pilowsky, 2010). Although we did 

not record nerve activity, previous studies have shown that IH augments tonic 

sympathetic nerve activity beginning during the first day of IH exposure (Dick et al., 

2007; Xing and Pilowsky, 2010). With increasingly chronic exposures, the 

manifestations of IH-induced sympathetic potentiation mirror those seen in OSA 

patients (Narkiewicz et al., 1999; Carlson et al., 1996; Narkiewicz et al., 1998; 

Sajkov et al., 1994), including elevated plasma catecholamines (Gonzalez-Martin et 

al., 2009), increased tonic sympathetic nerve firing (Zoccal et al., 2007, 2008), 

increased chemoreflex control of sympathetic activity (Braga et al., 2006; Huang et 

al., 2009) and the loss of baroreflex control of sympathetic activity (Yamamoto et al., 

2013), all of which result in hypertension. Elevated plasma catecholamines 

(Gonzalez-Martin et al., 2009) and increased sympathetic nerve activity (Zoccal et 

al., 2007, 2008) have been reported as early as day 8 and 15 of IH exposure, 

respectively, and blood pressure elevation can occur as early as day 7 or 8 (Fletcher 



77 
!

! !

et al., 1999; Sica et al., 2000). More recently, chronic radiotelemetry studies indicate 

that MAP is significantly increased during both day and night by the third day of IH 

exposure and continues to rise until day 7, with concomitant loss of baroreflex 

control of sympathetic activity (Yamamoto et al., 2013). These studies suggest that 

the enhanced responses to propranolol we observed at day 7 were due to early 

sympathetic potentiation.  

Early potentiation of sympathetic activity may also explain the blunted 

responses to adrenergic receptor stimulation with isoproterenol observed in IH-

exposed rats. Although speculative, IH-mediated sympathetic enhancement may 

cause functional agonist-dependent adrenergic receptor desensitization that 

underlies the isoproterenol insensitivity. As sympathetic activation becomes more 

severe with increasingly chronic exposures, desensitization may also occur in the 

form of reduced adrenergic receptor levels, such as that which occurs due to 

sympathetic overactivity caused by heart failure (Bristow et al., 1982, Ihl-Vahl et al., 

1996) or aging (White et al., 1994). This would also explain the reduction in β-

adrenergic receptor content we observed in 95-day IH-exposed rats. We recognize 

that further studies, including evaluation of sympathetic tone and radioligand 

assessment of receptor function, are required to explore these possibilities. 

Activation of sympathetic activity appeared to be less important for AF 

promotion than parasympathetic influences in our model. Adrenergic blockade with 

propranolol was modestly effective at reducing the incidence of AF in IH-exposed 

rats compared to baseline levels, but these differences did not reach statistical 

significance. In contrast, atropine abolished AF inducibility in all IH-exposed rats, 
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lowering the incidence of AF from 38% to 0% with PES (P = 0.055) and from 63% to 

0% with burst pacing (P = 0.007). It is recognized that differences between the ability 

of atropine and propranolol to prevent AF are dose-dependent, and that a relatively 

high dose of atropine or a low dose of propranolol, compared to ED50 values, could 

explain this effect. Dose-response curves were ascertained in pilot studies (see 

appendices), and doses of 1.0 mg/kg (i.p.) atropine and 10 mg/kg (i.p.) propranolol 

were selected, as they similarly increased heart rate by approximately 25%. In 

addition, the 1.0 mg/kg dose we used for atropine is farther from the LD50 reported in 

the literature for the rat (280 mg/kg; Cahen and Tvede, 1952) than the chosen 10 

mg/kg dose of propranolol is from the corresponding LD50 of propranolol in the rat 

(76 mg/kg i.p.; RTECS, 2015). Overall, this suggests that parasympathetic activation 

was more important than sympathetic activation for AF inducibility in IH-exposed 

animals. Similar findings have been reported in a study that investigated the 

mechanisms of enhanced AF inducibility during individual episodes of simulated 

apnea in pigs (Linz et al., 2012). In this study, AF inducibility was significantly 

attenuated by atropine while renal sympathetic denervation had a more modest 

effect and atenolol did not significantly reduce AF susceptibility.  

IH-exposed rats exhibited significant reductions in Cx 43 content in the atria, 

which may contribute to the electrophysiological substrate underlying enhanced 

arrhythmias in our model. Although we didn’t use pharmacological tests to 

demonstrate the importance of Cx 43 for AF inducibility as we did with the autonomic 

receptors, there is considerable evidence that reductions in Cx 43 can promote AF. 

In AF patients, loss of function Cx 43 mutations associated with reduced gap 

junctional coupling have been reported (Thibodeau et al., 2010) and reduced Cx 43 
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levels are found in chronic AF patients (Kostin et al., 2002) and animal models of 

AF, while restoring Cx 43 can prevent AF inducibility (Igarashi et al., 2012). In an 

earlier study, our lab used the same pacing protocols employed in this thesis to 

show that reduced Cx 43 content was associated with enhanced AF susceptibility in 

a genetic mouse model of Oculodentodigital dysplasia (ODDD) (Tuomi et al., 2011). 

Although the ODDD model is associated with a more significant reduction of total 

atrial Cx 43 protein content (60%; Manias et al., 2008) than what we observed in our 

IH rats (25% reduction in IH versus normoxic rats at 7 days), it is still likely that IH-

induced Cx 43 lowering contributed to AF susceptibility if one considers a threshold 

model of arrhythmogenesis, which recognizes that multiple physiological factors can 

produce the same electrophysiological outcome. The complex, heterogeneous 

pathophysiology of AF is well described by a threshold model as it involves multiple 

factors that contribute to substrate vulnerability. In this case, it can be concluded that 

reduced atrial Cx 43 contributed to substrate vulnerability to some extent, since it 

was present together with enhanced AF inducibility and its role is well established.  

Together with Cx 40, Cx 43 proteins comprise atrial gap junction channels, 

the subcellular structures that determine cardiac conduction velocity. As discussed 

in chapter 1, slow conduction velocity lowers the wavelength of re-entry circuits and 

facilitates AF maintenance, so a reduction in connexin expression would be 

expected to promote re-entry mechanisms that maintain AF. However, in strands of 

atrial myocytes from Cx 40-/- and Cx 43-/- mice, loss of Cx 43 reduces conduction 

velocity while loss of Cx 40 accelerates it (Beauchamp et al., 2006). Genetic models 

with reduced Cx 43 levels have enhanced AF susceptibility (Tuomi et al., 2011), 

while studies of Cx 40-/- mice have reported that AF inducibility was not different 
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from that of wild type mice (Schrickel et al., 2002) and that Cx40-/- were more 

resistant to AF induction in the presence of carbachol (Tuomi et al., 2011). Here, we 

found that Cx 43 protein and mRNA were significantly lower following 7 days of IH 

compared to normoxic controls and at day 95 of IH, Cx 43 mRNA was also lower in 

IH-exposed rats compared to normoxic controls, demonstrating sustained Cx 43 

reductions induced by IH. Corresponding protein levels were not measured at the 95 

day point. On the other hand, levels of Cx 40 mRNA and protein were not different in 

IH and normoxia-exposed rats at any of exposure lengths examined. Given the roles 

of the dominant atrial connexin isoforms in AF promotion, the lowering of Cx 43 and 

lack of change in Cx 40 we observed at day 7 in IH-exposed rats is consistent with 

the increased AF vulnerability in these animals. 

When studies began, there were no published papers demonstrating 

enhanced AF susceptibility in an animal model of OSA. Recently, Iwasaki et al. 

(2014) were the first to publish findings of enhanced atrial arrhythmia inducibility in a 

long-term OSA paradigm, which mimicked apneas by intermittently closing the 

airways of intubated rats. Our findings of connexin remodelling agree with, and shed 

light on, the results of Iwasaki’s study. Consistent with our data, enhanced AF 

vulnerability was accompanied by reductions in atrial Cx 43 protein, along with 

significant atrial conduction slowing, as has been recently observed in OSA patients. 

Our data suggest that IH is at least partially responsible for these observations since 

we observed similar lowering of Cx 43 using IH alone rather than repetitive airway 

obstructions to mimic OSA.  
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4.4 Impact of research and implications 

Despite its clinical importance, the pathogenesis of OSA-related AF is poorly 

understood. Although IH has been used extensively to study numerous OSA-related 

comorbidities, this study is the first to examine the effects of a chronic model of IH 

alone on atrial arrhythmia susceptibility. One issue addressed by this thesis was to 

determine the role of the autonomic nervous system in AF susceptibility associated 

with chronic OSA, which was previously unknown. Researchers have primarily 

focused on role of autonomics in mediating the arrhythmogenic effects of individual 

episodes of simulated apnea or anoxia (Ghias et al., 2009; Linz et al., 2011; Linz et 

al., 2012; Iwasaki et al., 2012; Linz et al., 2013). Ghias et al. (2009) found that AF 

inducibility was increased during 2 minutes of anoxia in dogs, which was preventable 

with GP ablation or combined pharmacological blockade. In a pig model, Linz and 

colleagues demonstrated that enhanced AF inducibility during 2 minutes of 

simulated apnea could be abolished by atropine or vagotomy and reduced by renal 

sympathetic denervation (Linz et al., 2011; Linz et al., 2012). While useful for 

demonstrating the arrhythmogenic properties of acute apneic episodes and the 

prominent role of the autonomic nervous system, none of these models emulate 

chronic OSA, for which the enhanced risk of AF has been characterized.  

This work is the first to demonstrate the role of the autonomic nervous system 

in AF susceptibility in a chronic OSA model. Interestingly, in our chronic IH model of 

OSA, the parasympathetic nervous system was critical for AF promotion while the 

sympathetic nervous system appeared to be less important, paralleling that which 

occurs during simulated apneas (Linz et al., 2011; Linz et al., 2012). However, the 
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underlying mechanisms of chronic autonomic dysfunction with IH are very different 

from the acute surges of cardiac autonomic activation that occur with apneic 

episodes. For example, during acute apnea, enhanced cardiac vagal activation due 

to IH-mediated chemoreflex activation (Franchini and Krieger, 1993) likely explains 

the dependence of AF inducibility during apnea on parasympathetic activation (Linz 

et al., 2011; Linz et al., 2012), while our findings suggest that enhanced cholinergic 

sensitivity rather than enhanced vagal activation underlies parasympathetic 

enhancement with chronic IH exposure. At the same time, the role of sympathetic 

activity in contributing to AF susceptibility during acute apneas (Linz et al., 2012) is 

probably related to chemoreflex-mediated sympathetic activation (Franchini and 

Krieger, 1993), while chronic potentiation of sympathetic activity due to IH (Zoccal et 

al., 2007; Gonzalez-Martin et al., 2009) most likely contributes to modulating AF 

promotion in our model. Taken together with findings from acute apnea studies, our 

results point to a complex role for autonomic alterations in OSA-related AF 

pathophysiology, for the first time demonstrating long-term effects on atrial 

arrhythmogenesis.   

This thesis has also been the first to demonstrate a role for IH in OSA-related 

electrical remodelling. OSA patients exhibit slower atrial conduction velocities and 

prolonged atrial conduction times (Dimitri et al., 2012; Cagirci et al., 2011; Maeno et 

al., 2013a, 2015b), but it was previously unclear whether these alterations were due 

to OSA itself or a comorbid condition. The recent Iwasaki study described in section 

4.3 of this chapter represents the first published experimental evidence in support of 

the hypothesis that OSA itself causes AF-promoting electrical remodelling. This 

thesis, with the findings of reduced Cx 43 content associated with enhanced AF 
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vulnerability, sensitivity to PES induction and activation heterogeneities in the right 

atrium, has provided additional experimental support for that hypothesis, as well as 

additional insights into the underlying mechanisms, highlighting IH as a critical 

factor. Further studies are needed to characterize the conduction characteristics of 

our IH model of OSA. 

Based on our results and those of previous studies, I propose the following 

model for OSA-related AF pathophysiology. During apnea, the atria become 

vulnerable to AF primarily as a result of cardiac vagal outflow associated with 

peripheral chemoreceptor stimulation by hypoxia (Franchini and Krieger, 1993; 

Boscan et al., 2001). Activation of the chemoreceptors also augments sympathetic 

activity (Franchini and Krieger, 1993; Boscan et al., 2001), which contributes to AF 

vulnerability to a lesser extent (Linz et al., 2011), while the resultant blood pressure 

surges activate the baroreflex to further augment cardiac vagal tone and put the 

breaks on sympathetic flow (Braga et al., 2007). Over time, chronic exposure to IH 

during the sleep period leads to formation of a highly vulnerable atrial substrate, as 

indicated by susceptibility to PES-induced AF in IH-exposed rats. This substrate 

persists after the sleep period in the absence of apneas, explaining the enhanced 

risk of AF in awake OSA patients. Parasympathetic enhancement, characterized by 

increased cholinergic sensitivity, is the principal mediator of chronically enhanced AF 

vulnerability. However, through enhancement of chemoreceptor sensitivity (Braga et 

al., 2006; Huang et al., 2009) and the attenuation of baroreflex control of 

sympathetic activity (Yamamato et al., 2013) chronic IH leads to sympathoadrenal 

activation (Gonzalez-Martin et al., 2009; Zoccal et al., 2007, 2008; Peng et al., 

2014), chronic IH augments sympathetic activity, which also contributes to AF 
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susceptibility. Substrate vulnerability is further enhanced by IH-induced lowering of 

Cx 43 levels, potentially due to reductions in atrial conduction velocity, as has been 

found in association with reduced connexin 43 levels in a model of OSA induced by 

repetitive trachel occlusions (Iwasaki et al., 2014). By reducing the wavelength, slow 

conduction velocity favours re-entrant mechanisms of AF maintenance, consistent 

with the present data.  

 In addition to providing novel pathophysiological insights, our findings have 

clinically significant implications. Despite the wealth of epidemiological data in 

support of a causal relationship between OSA and AF (Kanagala et al., 2003; Fein et 

al., 2013), animal models are important in order to determine causality and explore 

underlying mechanisms in the absence of confounding factors present in clinical 

databases. We demonstrated that IH alone substantially enhances AF susceptibility 

and induces a highly vulnerable atrial substrate that includes right atrial activation 

heterogeneities, connexin remodelling and both cholinergic and adrenergic 

dysfunction. Thus, exposure to chronic IH and its sequalae may contribute to the 

greater risk of procedural failure seen in OSA patients (Ng et al., 2011). The 

dependence of enhanced AF susceptibility on autonomic influences in our IH rats 

highlights the potential importance of combining standard ablation approaches with 

adjunctive procedures that target the ANS, such as GP ablation (Katritsis et al., 

2013), for successful treatment of AF in OSA patients.   

Importantly, we found that enhanced AF susceptibility and vulnerable 

substrate formation were evident after just 7 days of a moderate IH stimulus. This 

highlights the fact that the latency of the onset of arrhythmogenesis in OSA may be 
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shorter than previous studies have suggested (Iwasaki et al., 2014). The feasibility of 

therapies targeted at OSA for reducing the arrhythmia burden has been 

demonstrated (Fein et al., 2013; Kanagala et al., 2003). Given the mechanistic link 

and potentially short latency of AF onset demonstrated by this thesis, early 

identification and treatment of OSA may be critical to prevent the progressive 

worsening of AF due to remodelling. OSA is extremely common, found in 17-26% of 

men and 9-28% of women (Young et al., 1993) and yet, the true burden of OSA is 

likely underestimated since over 85% of patients remain undiagnosed (Young et al., 

1997; Kapur et al., 2002). We have shown that AF-promoting mechanisms are 

initiated within days by IH alone, which could mean that in many undiagnosed OSA 

patients, the process of arrhythmogenesis has already begun. Clearly, the need for 

improved screening and/or diagnostic methods in order to identify OSA in its early 

stages is a significant clinical problem.  

 

4.5 Limitations and future studies 

Like all animal models of human disease, the one we used here has 

limitations. As discussed in section 4.2 of this chapter, OSA models with IH alone 

have become a gold standard in the field of OSA-related cardiovascular disease 

research even though they do not mimic the alterations in intrathoracic pressure and 

hypercapnea (Fletcher et al., 1992a) experienced by OSA patients during each 

episode of apnea (Dempsey et al., 2010). This is because IH by itself produces the 

autonomic and cardiovascular alterations caused by OSA, which has led to the 

conclusion that IH is the most important pathophysiological component (For review, 
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see Dematteis, 2009). Thus, although our IH stimulus does not capture all aspects of 

the apneic insults as they occur in OSA patients, our findings provide important 

lessons for understanding the human counterpart. Clinical investigation is needed to 

validate the applicability of our findings to humans. 

In OSA, hypoxia in the lungs during apnea results in lowering of the partial 

pressure of oxygen in the blood, which in turn causes chemoreflex activation. During 

phases of hypoxia, we exposed rats to fractional inspired oxygen concentrations of 

6.5-7%, but did not measure the resultant arterial hypoxemia. However, based on 

visual assessment, respiration rate appeared to increase rapidly during phases of 

hypoxia, which was not due to hypercapnia since eucapnic conditions were 

maintained within the chambers. This observation is an indication that the 6.5-7% 

FiO2 was producing hypoxemia, since hypoxia in the blood induces ventilation 

(Bisgard and Neubauer, 1995). In an earlier study that used an IH regime and 

apparatus similar to ours to model IH in the rat, a more modest lowering of the 

inhaled oxygen fraction to 10% during the hypoxic phase produced significant 

reductions in arterial blood oxygen levels (from 97 mmHg during normoxia to 57 

mmHg during hypoxia; nadir HbO2 86.3%) and hyperventilation (Gonzalez-Martin et 

al., 2009), as was observed in our rats. Overall, this suggests that our IH stimulus 

induces hypoxemia, but further studies should be performed in our lab in order to 

validate and quantify the cyclic changes in oxygen saturation in our model.   

Sympathetic activity should also be assessed in future studies. The enhanced 

responses to adrenergic receptor blockade we observed in IH-exposed rats is an 

indication of increased activation of adrenergic receptors but measurements of 
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plasma catecholamines or sympathetic nerve activity are required to determine 

whether 7 days of exposure to our IH model increases overall sympathetic activity. 

Although previous studies employing similar IH models have demonstrated blood 

pressure elevation following 7 days of IH exposure (Fletcher et al., 1999; Sica et al., 

2000) and significantly elevated plasma catecholamines as early as day 8 

(Gonzalez-Martin et al., 2009), subtle differences in methodology introduce problems 

for extrapolating these findings to our model.  

We attempted to quantify connexins and autonomic receptor protein levels 

with western blotting in 95 day IH- and normoxia-exposed rats, but were 

unsuccessful because of sample degradation as a result of freezer break-down. 

Therefore, our findings of lower β-adrenergic receptors and Cx 43 in 95 day IH-

exposed rats are based solely on mRNA expression, which does not always 

correlate with protein expression. In addition, we used overall mRNA and protein 

content as an index for connexin dysfunction, but remodelling can also occur at the 

level of connexin phosphorylation status or changes in distribution. Connexin 

function also depends on intracellular pH, Ca2+ and protein-protein interactions, none 

of which were assessed in this study. For adrenergic and muscarinic receptors, we 

examined mRNA and protein expression and used atrial responses to receptor 

agonist and antagonist drugs as physiologically relevant indices of receptor function. 

However, we did not explore potential changes in components of the associated 

intracellular signalling cascades, which would be an interesting issue for future 

study.   
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The novel findings in this thesis provide rationale for further experiments. With 

the new knowledge that our IH model leads to reductions in atrial Cx 43 content and 

right atrial activation heterogeneities associated with AF vulnerability, characterizing 

the conduction characteristics in our model is an important experiment for future 

study. Since pharmacological blockade prevented AF inducibility, a logical next step 

would be to demonstrate whether an analogous clinically relevant procedure, such 

as GP ablation, produces the same effects. It was recently demonstrated that carotid 

body ablation prevents the sympathoadrenal activation and hypertension induced by 

chronic IH In rats (Peng et al., 2014). Given the central importance of peripheral 

chemoreceptors in mediating the autonomic effects of IH, it would be worthwhile to 

investigate whether chemoreceptor destruction with carotid body ablation could 

ameliorate the enhanced AF vulnerability and autonomic alterations demonstrated in 

this study. Finally, to determine how the AF-promoting substrate advances with time, 

our studies should be repeated in rats subjected to longer IH exposures; perhaps 

two or three weeks at first, and eventually, 95 days to observe extremely chronic 

effects.  

 

4.6 Summary 

For the first time, we demonstrated AF promotion in an IH model of OSA. 

After just 7 days of diurnal exposure to chronic IH, a highly vulnerable atrial 

substrate forms, evidenced by susceptibility to PES-induced AF in IH-exposed rats. 

Enhanced arrhythmia susceptibility was accompanied by atrial substrate changes 

including cholinergic enhancement, autonomic imbalance, and connexin 

remodelling. Cholinergic enhancement was particularly important. These findings 
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provide novel insights into the mechanisms underlying OSA-related AF and the 

formation of vulnerable substrates, highlighting a causal role for IH, and a novel 

model for further exploration of the underlying mechanisms. Addressing these 

mechanisms may provide novel therapeutic targets for AF in OSA patients, the need 

for which will become increasingly important as the prevalence of OSA increases 

with the aging of the population (Duran et al., 2001; Young et al., 2004). 
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Appendix 1 – Dose-response curves of autonomic receptor drugs 

 

Figure 1 Negative chronotropic effects of cumulative doses of carbachol (CCh) 
administered intraperitoneally in an adult, male Sprague-Dawley rat. Heart rate (HR) 
at each dose is given as the percent of the steady-state baseline value immediately 
before that dose. Values represent maximal responses. 

 

Figure 2 Positive chronotropic effects of cumulative doses of atropine administered 
intraperitoneally in an adult, male Sprague-Dawley rat. Heart rate (HR) at each dose 
is given as the percent increase from the steady-state baseline value immediately 
before that dose. Values represent maximal responses. 
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Figure 3 Negative chronotropic effects of cumulative doses of propranolol (prop) 
administered intraperitoneally in an adult, male Sprague-Dawley rat. Heart rate (HR) 
at each dose is given as a percent of the steady-state value immediately before that 
dose. Values represent maximal responses. 

 

Figure 4 Positive chronotropic effects of cumulative doses of isoproterenol 
administered intraperitoneally in an adult, male Sprague-Dawley rat. Heart rate (HR) 
at each dose is given as a percent of the steady-state value immediately before that 
dose. Values represent maximal responses. 
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Appendix 2 – Literature used for initial test dose selection  

Table 1. Rationale and references for chosen autonomic receptor drug dosages. 
Drug Dose, route Rationale and references 
Isoproterenol 0.1 mg/kg, i.p. In rats, 0.17 mg/kg isoproterenol was administered 

intraperitoneally, but the resultant change in heart rate was not 
reported (Nomura et al., 1982). In mice, 1.0 mg/kg (i.p.) 
isoproterenol increased heart rates by 50-60% (Petric et al., 2012), 
which is too high for the purposes of this study.  
 
Doses of 0.01 and 0.1 mg/kg i.p. were tested in pilot studies in a 
single rat (Figure 4); 0.1 mg/kg most reliably produced a heart rate 
increase of 20-40% within 3 minutes of injection that lasted at least 
20 minutes. The 0.1 mg/kg dose resulted in heart rates as high as 
550 bpm (which is too rapid to permit cardiac pacing at drive train 
cycle lengths of both 150 and 100 ms).  
 

Propranolol 10 mg/kg, i.p. 10 mg/kg propranolol administered intraperitoneally was an 
effective β-blocker in mice (Argawai and Bose, 1967) while doses 
as high as 50 mg/kg (i.p.) have been used in similar studies of rats 
(Lima and Sourkes, 1986). In another study, 10 mg/kg propranolol 
(i.p.) was administered to rats but the resultant change in heart 
rate was not reported (Nomura et al., 1982).  
 
In pilot studies, cumulative propranolol doses of 1.0, 5.0 and 10 
mg/kg (i.p.) were administered to a single rat (Figure 3). 
 

Carbachol 0.05 mg/kg, i.p. The carbachol dose of 0.05 mg/kg (i.p.) was used for intracardiac 
EP studies in mice (Tuomi et al., 2011, Wakimoto et al., 2001). 
Wakimoto et al. ascertained pharmacokinetics and dose-response 
relationships of i.v. and i.p. carbachol (Wakimoto et al., 2001). 
They found that i.v. carbachol had a low therapeutic index with 
unfavourable effective/lethal dose ratio while i.p. carbachol was 
safe and clearly able to induce a change in heart rate with stable 
hemodynamic conditions.  
 
An ascending dose-response curve (Figure 1) was generated with 
doses ranging from 0.001-0.5 mg/kg i.p. in a single rat;  0.05 mg/kg 
produced heart rate reductions of 16%. 
 

Atropine 1.0 mg/kg, i.p. The atropine dose of 1.0 mg/kg i.p. has been used to increase 
AERPs by roughly 30% in mice (Tuomi et al., 2010) and similar 
LD50 values have been reported for rats (280 mg/kg i.p.; Cahen 
and Tvede, 1952) and mice (250 mg/kg i.p.; Cahen and Tvede, 
1952).   
 
In pilot studies, 1.0 mg/kg (i.p.) atropine increased the HR by 20% 
(Figure 2). 
 

Darifenacin 1.0 mg/kg, i.v. 1.0 mg/kg darifenacin was administered intravenously to reduce 
AERP by about 20% in mice (Tuomi et al., 2010). 
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