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Abstract 

Low birth weight (LBW), and maternal Western Diet (WD) consumption have both been 

independently implicated to increase the risk of developing cardiovascular diseases (CVDs) in 

later life. These fetal programmed risks are also believed to exacerbate the effects of a postnatal 

WD pattern, therefore resulting in the development of pre-clinical markers of CVDs, such as 

insulin resistance (IR), coronary circulation disruptions. This thesis aimed to elucidate the roles 

of sub-optimal in utero growth through placental insufficiency, or chronic maternal WD 

consumption, and postnatal WD consumption on the long-term programming of CVDs in a 

guinea pig model. Early pre-clinical markers of CVD development including reduced coronary 

flow, left ventricular hypertrophy, and fibrosis were observed in the young LBW offspring. 

Postnatal consumption of WD was itself strongly associated with the early development of 

cardiac IR. Collectively these findings suggests that prenatal insults combined with a postnatal 

dietary insult, can lead to an increased risk of developing CVDs. 
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Chapter 1  

 

1 Literature Review 
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1.1 Cardiovascular Diseases 

 

The burdens of chronic non-communicable diseases (NCDs) are becoming more 

apparent in today’s society. According to the World Health Organization, NCDs are 

responsible for approximately nine million of all premature deaths before the age of 60. In 

particular, low and middle income countries are especially susceptible to NCDs, where 

they make up 90% of all NCD related premature deaths. Of the many types of NCDs, 

cardiovascular disease (CVD) distinguishes itself ahead of cancers, respiratory diseases 

and diabetes as the leading cause of NCD related deaths. In 2008 alone, approximately 17.3 

million people worldwide died from CVDs, with a mortality rate of 17%1,2. Unfortunately, 

this figure is expected to rise in the future, with an estimated growth to 24% of all 

mortalities1,2.  

These alarming trends can be attributed to the increasing prevalence of risk factors 

for CVDs in both developing and developed countries. These risk factors include tobacco 

use, physical inactivity, obesity, and dietary choices such as the consumption of foods high 

in sugars and/or saturated fatty acids3–5. In addition, prenatal complications and the 

associated low birth weight (LBW) are also recognized by the United Nations as factors 

which predispose an individual to the development of heart diseases and obesity in 

adulthood6. Collectively these risk factors contribute to the development of different types 

of CVDs, including coronary artery disease, congenital heart diseases, hypertension, and 

cardiomyopathy. In particular, cardiomyopathy, with its asymptomatic nature, and ties to 

both prenatal and postnatal risk factors, presents a substantial risk to our society, and is 

therefore an important area of focus7,8. 
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1.1.1 Cardiomyopathy 

 

Cardiomyopathy is defined as the disease of the myocardium associated with 

mechanical or electrical dysfunction, leading to cardiovascular death and progressive heart 

failure8,9. In a 2010 study by the American Heart Association, cardiomyopathy affects 

approximately 2.6% of the US population with a mortality rate of 56.3%, costing the health 

care system approximately $39.2 billion10. Patients with cardiomyopathy experience 

shortness of breath, fatigue, and chest pain; however, many remain asymptomatic7,8.  

Cardiomyopathy can be categorized into two major groups: primary or secondary. 

Primary cardiomyopathies are solely confined to the heart, while secondary 

cardiomyopathies result from conditions which affect other parts of the body such as 

Gaucher disease and diabetes11. A common type of primary cardiomyopathy is 

hypertrophic cardiomyopathy, where the enlargement of cardiomyocytes results in the 

asymmetric thickening of the left ventricle, increase in left ventricular stiffness, and 

ischemia9,12. The etiology of hypertrophic cardiomyopathy is familial or genetic, but can 

also develop over time from chronic high blood pressure9,12. Clinically, hypertrophic 

cardiomyopathy is characterized by a hypertrophied myocardium and an un-dilated left 

ventricular chamber. In comparison, another type of the disease is dilated cardiomyopathy, 

where the enlargement of cardiomyocytes results in the stretching and thinning of the left 

ventricle and a dilated ventricular chamber13.  Dilated cardiomyopathy is non-ischemic in 

nature, and although categorized as a primary type of the disease, it is idiopathic, with 

probable causes such as infections, genetic factors, diabetes, and heart attack7,9. While both 

hypertrophic and dilated cardiomyopathy have different causes and pathophysiology, they 
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do, however, share a common feature, which is cardiomyocyte enlargement. This process, 

otherwise known as cardiac hypertrophy, is an important risk factor in myocardial 

infarction, sudden death, and nearly all forms of heart failure including cardiomyopathy14. 

 

1.1.2 Cardiac Hypertrophy  

 

The heart is composed of cardiomyocytes (muscle cells) and non-myocytes such as 

fibroblasts and endothelial cells15. As a post-mitotic organ, cardiomyocyte proliferation 

normally occurs in utero.  Shortly after birth, cardiomyocytes lose the ability to proliferate, 

and as a result, postnatal cardiac growth is dependent on cardiomyocyte enlargement and 

the proliferation of non-myocytes16,17. Often, in response to chronic increases in functional 

load, ventricular wall stress, and load which the blood is ejected against, intrinsic mechano-

sensing mechanisms which signals the enlargement of heart mass are activated. This 

cardiomyocyte enlargement is defined as cardiac hypertrophy, and is a major component 

of cardiac remodelling18–20.  

Hypertrophic growth can be classified as concentric or eccentric depending on the 

change in cardiomyocyte shape. In concentric hypertrophy, the increase in cardiac myocyte 

width in response to pressure overload results in the thickening of the ventricular wall and 

minor reductions in chamber volume. In comparison, eccentric growth is the increase in 

cardiomyocyte length in response to volume overload, which results in increased chamber 

volume with decreased or unaltered wall thickness21,22. Cardiac hypertrophy can be further 

classified as either physiological or pathological hypertrophy. Physiological hypertrophy 
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is exercise induced, with normal cardiac morphology, and is typically reversible23. In 

contrast, pathological growth occurs as a result of increased load in a disease setting such 

as myocardial infarction, coronary artery disease, and cardiomyopathy14. Depending on the 

nature of the disease, such as pressure or volume overload, pathological hypertrophy can 

occur under concentric or eccentric growth promoting conditions. In addition to increased 

heart and cardiomyocyte size, pathological hypertrophy is also accompanied by 

cardiomyocyte death, and fibrosis14,24,25. More worryingly, over 50% of all hypertrophy-

related deaths in adults are sudden, with minimal or no prior symptoms26. Given the high 

prevalence of hypertrophy related cardiac dysfunctions, and the sudden nature of 

hypertrophy-related deaths27,28, it is important to examine possible markers of CVD 

development for diagnostic and intervention purposes. 

 

1.1.3 Preclinical Metabolic Markers of CVD Development 

 

The main source of energy generation in the heart is from fatty acid oxidation 

(~70% of ATP production), while glucose metabolism accounts for approximately 30% of 

ATP production. In order to maintain a steady supply of energy, the heart is also capable 

of switching between energy sources in order to adapt to different workloads, or fuel 

molecules29. Interestingly, in the early stages of pathological hypertrophy, a decrease in 

fatty oxidation and increase in glucose metabolism is observed30–32. This switch towards 

glucose metabolism often occurs during the early stages of CVDs, and mirrors the 

metabolic patterns of a fetal or newborn heart33. However, like the fetal heart, glucose 
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transport is mainly handled by the insulin independent glucose transporter 1 (GLUT1) 

rather than the insulin dependent GLUT4. This results in a reduction in GLUT4/GLUT1 

ratio, and insulin dependent glucose uptake34,35. While this mechanism is initially 

protective against further disease progression (e.g. increasing blood pressure, and reducing 

coronary blood flow). However, ATP production falls as glucose uptake and metabolism 

is progressively reduced with the emergence of insulin resistance (IR), a key pre-clinical 

marker associated with developing CVD36–38.  

A canine model of advanced dilated cardiomyopathy demonstrated that myocardial 

IR and increases in fatty acid concentration occurred in parallel with CVD disease 

progression39. Additionally, in severe cases of cardiomyopathy, ATP levels are decreased 

along with the impairment of cardiac insulin signaling pathways39. It can be inferred that 

IR is associated with decreased ATP stores during a period of crucial dependence on 

glucose uptake and utilization39. Other studies have also suggested that the development of 

cardiac IR is in fact a protective mechanism against heart failure, particularly in the 

presence of a high-saturated fat diet40. For example, insulin resistant rats with mild to 

moderate heart failure that were fed a high fat diet exhibited decreased glucose utilization, 

but preserved contractile function40. The reduction in glucose metabolism was likely 

compensated by increased fatty oxidation41, and that the insulin resistant animals were 

therefore forced to use fatty acid oxidation as a means for energy production. This in turn 

would direct fatty acids to productive pathways such as β-oxidation and triglyceride 

synthesis, which therefore reduce the formation of lipotoxic intermediates such as 

diacylglycerol (DAG) and ceramides to preserve cardiac function40,42. Nonetheless, the 

implications of cardiac IR are still poorly defined. However, it is apparent that its 
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development, along with alterations in glucose uptake is often in concert with CVDs such 

as cardiomyopathy.  

Under normal circumstances, cardiac glucose uptake is mediated by insulin 

dependent glucose transporters GLUT4 and insulin independent GLUT1, which accounts 

for approximately 60% and 40% of all glucose uptake in the heart respectively43. Both 

transporters are widely distributed in fetal tissues. However, while GLUT1 is membrane 

bound and insulin independent, GLUT4 activity requires its translocation to the membrane, 

a process mediated by the insulin signaling pathway44. Interestingly, although GLUT1 

activity is classically non-insulin dependent, recent evidence shows that insulin may play 

a minor role in GLUT1 translocation during diabetic stages45. In inducing GLUT4 

transporter proteins to the cell membrane, insulin first binds to insulin receptor on the cell 

surface, which leads to the phosphorylation of insulin receptor, tyrosine phosphorylation 

of insulin receptor substrate (IRS), the activation PI3-kinase, and phosphorylation of AKT 

(protein kinase B) at Threonine 308 and Serine 473. Activated AKT and PI 3-kinase is then 

involved in promoting the translocation of GLUT4 from intracellular storage to the plasma 

membrane46. This signaling pathway, particularly Phosphoinositide 3- Kinase (PI3-K) 

activation, is necessary for insulin stimulated glucose uptake. However, during states of IR 

when the action of insulin is impaired, there appears to be a decrease in insulin associated 

stimulation of IRS and PI3-kinase, and activation of AKT. This ultimately results in a 

decrease of GLUT4 translocation, and a reduction in glucose uptake and metabolism47. 

Taken together, given that this state of myocardial IR typically precedes the onset of severe 

CVDs, early detection of changes in myocardial insulin sensitivity and glucose uptake may 

be an effective early predictor CVD48. 
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1.1.4 Coronary Blood Flow as Markers of Cardiomyopathy Development 

 

With the increasing severity of myocardial IR and CVD development, comes 

progressive injury to the coronary circulation37. For example, in the previously mentioned 

canine model of advanced dilated cardiomyopathy, progressive hemodynamic impairment 

in coronary blood flow also occurred in parallel with myocardial IR and increasing severity 

of cardiovascular complications39. Symptoms of coronary vascular dysfunction are often 

found in patients with cardiomyopathy. A substantial body of evidence also suggests that 

reductions in coronary blood flow is a key marker in the development of 

cardiomyopathy49,50. For instance, coronary blood flow, as determined by Positron 

Emission Tomography (PET), was particularly blunted in patients later identified with 

severe heart failure or death51. Similarly, patients with dilated cardiomyopathy also 

displayed reduced coronary blood flow in conjunction with cardiac enlargement52. It is 

clear from these studies that impairments in coronary flow underlie the development of 

many CVDs. Furthermore, an Italian study of patients with various degrees of left 

ventricular dysfunction suggests that coronary blood flow reduction  is a stronger predictor 

of risk of death and development of heart failure than other common clinical prognoses 

such as echocardiography53. The effects of IR on coronary circulation remains to be 

elucidated. However it is clear that progressively worsening coronary circulation function 

occurs with increasing severity of IR. A possible underlying factor may be the abnormal 

insulin mediated,  nitric oxide dependent vasodilation during IR54. Nevertheless, it is 
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evident that coronary blood flow is a reliable predictor of systolic dysfunction and 

developing heart failure associated with cardiac remodeling processes. 

 

1.1.5 Cardiac Remodeling Consequences 

 

Pathological hypertrophy is characterized in the later disease stages by 

cardiomyocyte enlargement, and the onset of fibrosis, resulting in the thickening and 

stiffening of the ventricular wall52. These cardiac remodeling processes are considered a 

crucial component leading to systolic dysfunction, and impediment of contractility. 

Furthermore, there are compelling evidence which suggests that the reduction in resting 

coronary flow may be associated with the expansion of extra-cellular space and ventricular 

dilation52. Specifically, the onset of fibrosis from an excessive expression of collagen is 

associated with diminished capillary density and myocardial ischemia55. Myocardial 

capillaries are known to be the primary determinant of coronary microvascular flow. 

Reductions in capillary density may result in higher capillary resistance, which requires 

arteriole and vein vasodilatation to maintain blood flow56. This has been observed in 

patients with dilated cardiomyopathy where, despite the appearance of normal coronary 

arteries, reduction in myocardial capillary density was strongly associated with reduced 

coronary blood flow and heart failure57. In addition, the accumulation of collagen in the 

cardiac interstitium (interstitial fibrosis) in cases of heart failure may also lead to a decrease 

in capillary density, subjecting cardiac myocytes to a state of hypoxia58.  
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The development of CVDs such as cardiomyopathy are characterized by cardiac 

remodeling processes such as hypertrophy and fibrosis, as well as alterations in cardiac 

glucose metabolism and insulin sensitivity. As these factors accumulate, they lead to the 

development of systolic dysfunction, heart failure, and ultimately, death. Given the clear 

metabolic and functional consequences of CVDs such as cardiomyopathy, early detection 

of these markers prior to the onset of severe disease phenotypes is crucial for interventional 

therapies. Traditionally, risk factors for the development of CVDs are primarily postnatal. 

However, emerging evidence suggests that the origin of these chronic adult diseases may 

be as early as during the in utero period59. Therefore, a key question in this thesis is whether 

prenatal insults, combined with the traditional postnatal factors for CVDs, can lead to the 

early development of CVDs. 
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1.2 Developmental Origins of Health and Disease 

 

1.2.1 Intrauterine Growth Restriction and Low Birth Weight 

 

According to the World Health Organization, the worldwide prevalence of low 

birth weight babies (LBW; <2500g) is at approximately 15.5%60. Specifically, the Canada-

wide occurrence of LBW is lower at 5.9%. LBW infants are often a consequence of sub-

optimal in utero environments, such as in cases of intrauterine growth restriction (IUGR). 

Clinically, growth restriction can be defined as birth weight falling below the 10th 

percentile for a specific sex of gestational age60. This inability of the fetus to reach its 

expected growth potential may impart significant risks in perinatal morbidity and 

mortality61,62. Interestingly, studies have demonstrated that offspring beyond the arbitrary 

birthweight cut-off in the clinical IUGR categorization can also be exposed to an adverse 

in utero environment, and display the same complications in adulthood63. This is 

exemplified by reports of offspring above the clinical birthweight cut-off displaying 

markers of poor in utero growth, such as thinness at birth, and pattern of rapid postnatal 

catch-up growth64. Therefore, a potentially larger number of adversely grown offspring 

may be at risk for later life complications such CVDs than what the traditional measures 

suggest. Given the increasing risk of developing metabolic diseases in later life, and the 

potentially higher cost of treating later life disease as opposed to early invention programs, 

it is imperative that we understand the etiology, and underlying mechanisms of growth 

restriction and fetal programming59,65.   
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A reliable diagnosis of IUGR infants is crucial to understanding the effects of 

growth restriction on the development of complications in later life. Traditionally, the use 

of Ponderal index, the ratio of weight/(height3), is an excellent assessment of neonatal 

growth retardation, and is positively correlated with fetal nutritional status at term66,67. 

Furthermore, IUGR can be classified under two distinct patterns of growth abnormality: 

symmetrical, or asymmetrical, therefore, careful attention to body and growth relationships 

are essential in understanding the in utero growth regime68.  Symmetrical IUGR, which is 

the proportionate decrease of fetal abdomen and head growth, results in a normal Ponderal 

index. It is generally associated with early fetal insults during the first or second 

trimester69,70. Asymmetrical IUGR in comparison, refers to the disproportionate decrease 

in fetal abdomen and head growth, known as the “brain sparing” effect, and is the most 

common form of IUGR (~70%). This is attributed to the ability of the fetus to adapt, and 

redistribute its cardiac output to essential circulations such as cerebral, and coronary 

circulation in response to insults during the last trimester71,72.  

 The causes of IUGR are multifactorial and can be summarized into three major 

scenarios: inadequate maternal supply of oxygen and nutrients, inability of fetus to fully 

utilize the supply of oxygen and nutrients, and abnormal placental function 71. Maternal 

complications such as hypertension, diabetes, and under-nutrition accounts for 

approximately 25-30% of IUGR cases73. For example, maternal hypoxia in conditions such 

as pulmonary diseases and hypertension are often associated with growth restricted 

fetuses74,75. To a lesser extent, fetal disorders, including genetic diseases, and congenital 

malformations are also associated with the development of IUGR76. According to the 

Metropolitan Atlanta Congenital Defects Program, approximately 38% of chromosomally 
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abnormal infants displayed signs of IUGR77. Lastly, because fetal growth and development 

is largely dependent on oxygen delivery. It can therefore be inferred that normal placental 

development is integral for the transport of oxygen and nutrient to the fetus, and 

maintaining a healthy pregnancy. Furthermore, smaller placentas, and reduced placenta to 

fetal weight ratio are associated with growth restricted infants78. A common complication 

which plagues the prevalence of growth retardation is placental insufficiency.  

 

1.2.2 Placental Insufficiency 

 

Placental insufficiency (PI) is the inability of the placenta to provide the required 

transport of oxygen and nutrients to fully support the developing fetus. PI is known to be 

responsible for the majority of IUGR cases, and a critical component is fetal hypoxia79,80. 

Although the mechanisms underlining the development of PI are idiopathic, these 

idiopathic pregnancies and fetal hypoxia occur due to natural placental development 

failures81,82.  Normally, as gestation advances, the growing vascular network and decrease 

in vascular resistance, results in the increase in both uterine and umbilical blood flow83,84. 

However, as PI develops, vascular growth is impaired, and vascular resistance in umbilical 

and uterine arteries increases, resulting in a 2.5 fold reduction in absolute blood flow85–87.  

Studies have also postulated that abnormal fetal trophoblast invasion of maternal decidua 

is associated with an impaired transformation of spiral arteries into low resistance vessels, 

thus reducing utero-placental blood flow88. It is thus evident that when the placenta fails to 

supply the fetus with adequate oxygen and nutrients, fetal growth will fall from its genetic 

trajectory and result in growth restriction89 
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1.2.3 Fetal Programming and Catchup Growth 

 

The theory of fetal programming suggests that insults during gestation may impair 

the growth of the fetus, and can lead to the development of chronic diseases in later life59. 

The association between growth in utero and adult disease development was first 

developed by Forsdahl in the 1970s. Using official statistical data in Norway, Forsdahl 

reported that poor environments in childhood and adolescence followed by periods of 

prosperity was correlated with the risk of coronary heart disease90. Moving forward to the 

1980s, Barker and colleagues also reported a strong correlation between LBW and later 

life development of coronary heart diseases in England and Wales91. In addition, using the 

official Hertfordshire medical records from 1911-1930, Barker also reported that LBW was 

associated with the development of IR at a mature age of 6492. These studies eventually 

spawned the Forsdahl-Barker hypothesis, then later, the Developmental Origins of Health 

and Disease hypothesis, which recognized that development of chronic metabolic diseases 

in later life are a result of programming mechanisms during critical periods of in utero life.  

Further support for the idea that the prenatal period represents a critical period in 

later life disease development is highlighted by the study of the Dutch hunger winter at the 

height of the Second World War. As a result of the German occupation and blockade, 

civilians in the Netherlands experienced a famine during the winter of 1944. Individuals 

born during this period with maternal caloric restrictions displayed a 300 gram decrease in 

average birth weight, and in later life, an impaired glucose tolerance compared to those 

born prior to the incident93,94.  
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 In response to inadequate in utero environments, the fetus may be programmed for 

a nutritionally poor postnatal environment95,96. However in setting this phenotype, a 

mismatch of postnatal environment can also predispose the individual to later life 

development of chronic diseases. This can be highlighted by examining the events of the 

Leningrad siege during the Second World War. These studies demonstrated that the 

glucose tolerance of individuals born during the siege (exposed to the famine) were not 

different from the individuals born after the siege97. This observation may seem at odds 

with previous example of the Dutch hunger winter, however this discrepancy can be 

explained by a major difference between the two events. While the Dutch hunger winter 

lasted for 6 months, the Leningrad siege lasted for 28 months. Victims from the Leningrad 

siege were therefore born into the famine and experienced a low nutrient diet longer than 

those of the Dutch hunger winter98. Thus, it can be inferred that unlike their counterparts 

in Leningrad, infants of the Dutch hunger experienced a mismatched postnatal environment 

of high nutrient intake, which resulted in the programmed IR in adulthood. These studies 

also highlights the postnatal period as another critical period in the development of diseases 

in later life. Therefore warranting our attention to the concept of “catch-up growth”.  

A postnatal “catch-up growth” describes the accelerated postnatal growth profile 

which compensates for restricted growth during prenatal life, and is usually associated with 

asymmetrical growth restricton69. However many studies have associated this accelerated 

growth trajectory with the development of diseases in adulthood. For example, similar to 

the original Barker studies, a longitudinal study in Finland demonstrated that women born 

of LBW and experienced rapid postnatal growth were associated with the development of 

coronary heart disease in later life99.  In another study, this “catch-up growth” in LBW 
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children was also strongly associated with an impaired glucose tolerance at seven years of 

age100. Alarmingly, this accelerated period of growth resulting from sub-optimal in utero 

environments, is highly correlated with CVD development. A Finnish study reported that 

the highest death rates from coronary heart disease were from children who were thin at 

birth, but had caught up to average body weight by childhood101. These studies provide 

strong evidence for the role of “catch-up growth” in exacerbating growth restricted 

individuals and programming of diseases in later life. Interestingly, the current arbitrary 

birth weight cut-off in IUGR categorization cannot account for the possibility that 

newborns above the 10th percentile can also be exposed to an adverse in utero 

environment63. The inappropriate growth patterns associated with insufficient in utero 

environments can still be present despite not being reflected in birth weight outcomes. In 

support, a study reported that accelerated growth during the first 4 months of post-natal life 

is associated with childhood obesity, and is also independent of birth weight64. Therefore 

inferring that the accelerated growth pattern maybe a more crucial factor behind the adverse 

health outcomes than birth weight alone. In support, risk of chronic disease development 

have also been demonstrated to occur independent of birth weight102,103. This highlights the 

possibility that the risk of disease development is not solely caused by a drop in 

birthweight, but by a combination of in utero induced stress factors, and an accelerated 

growth pattern. As a result, it is important to further examine the underlying processes 

behind fetal programming of CVD development in later life and the contributions of a 

postnatal catch up growth. 
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1.2.4 Fetal Programming of CVDs 

 

Barker and colleagues initially demonstrated that mortality from heart diseases are 

strongly associated with fetal programming, both animal and human studies continued to 

support Barker’s original work and add further understanding to the in utero programmed 

mechanisms underlying development of diseases in later life104–106.  

Mechanisms such as in utero hypoxia have been known to alter heart development, 

and suppress cardiac contractility107,108. Specifically, in utero insults are also associated 

with the development of cardiac hypertrophy, and cardiac remodeling. For example, the 

expression of pro-fibrotic genes, with discrete structural abnormalities such as deposition 

of collagen in the heart at adolescence have been found in rats born of hypoxic IUGR109. 

Additionally, rats born from a hypoxic pregnancy also displayed left ventricular 

enlargement at 12 months of age with strong indication of left ventricular dysfunction and 

pulmonary hypertension110. Collectively, these studies suggests that IUGR individuals may 

be predisposed to the development of CVDs in later life through these progressive cardiac 

remodeling situations.  

The programming of CVD such as cardiomyopathy may stem from placental 

insufficiencies given that the placenta regulates flow of oxygen and necessary nutrients for 

the fetus’ development. Amounting evidence have linked later life cardiovascular problems 

early markers such as disturbed endothelial function, and persistent alterations in cardiac 

metabolisms111,112. These manifestations can be traced back to the in utero environment. 

For example, impedance to placental blood flow, a characteristic of PI, often results in the 
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increase in placental bed resistance113,114. In order to overcome the mechanical force 

required to eject against a high resistance vascular bed, abnormal fetal heart growth 

typically occurs as adaptation. During post-natal life, this is associated with an increased 

ventricular load, which can contribute to the development of cardiac hypertrophy113,114. 

Interestingly, heart weights are not always altered in the placental restricted offspring, 

however there is certainly a higher proportion of mononucleated cardiomyocytes as 

demonstrated in a sheep model115. Furthermore, cardiomyocyte size relative to heart size 

is increased in the placental insufficient offspring. Normally, cardiomyocytes undergo 

binucleation during late gestation. However due to environmental factors such as placental 

restriction, this process – an indicator of heart maturation –  is delayed116,117. As a result, 

chronic placental restriction results in delayed binucleation during development, and larger 

but fewer cardiomyocytes at term115. These adaptions to chronic placental restriction are 

risk factors for the development of cardiac hypertrophy in adulthood, and can have long 

term consequences in later life. These studies altogether indicate the importance of fetal 

programming as a predictor of cardiovascular complications in later life. In summary, it is 

clear that in utero environments play a crucial role in later life disease development through 

inappropriate growth adaptations. Furthermore, these adaptations, when challenged by 

additional insults such as an unhealthy dietary pattern, can further increase the 

susceptibility to CVD development in the offspring. 
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1.3 Adverse Postnatal Diets 

 

As previously mentioned in the fetal programming discussion, another critical 

period in determining development of chronic diseases is the postnatal period. Specifically, 

a mismatch between prenatal and postnatal environment can lead to the development of 

metabolic complications in later life, as demonstrated by the Dutch hunger winter93. An 

increasing concern in our modern society is believed to affect this said critical postnatal 

growth period. This concern is  known as the “Western Diet” (WD), which is characterized 

by high saturated fats, and high sugar contents118,119. According to the World Health 

Organization, the consumption of this energy-dense diet combined with the lack of physical 

activity are the fundamental causes of obesity. Recent estimates of world-wide obesity rates 

is at 10%, with more than 40 million children categorized as overweight or obese120. As 

American corporations expand their fast food empire into developing countries, rates of 

obesity has also risen approximately 30%120. It therefore draws to our attention, how the 

mismatch between restricted in utero environments and an energy dense postnatal diet may 

affect health in adulthood  

 

1.3.1 Cardiovascular Dysfunction and WD 

 

The most concerning aspect of the consumption of a WD and increased Body Mass 

Index (BMI) is the risk of developing CVDs in adulthood120. In an eight year study, men 

aged 40-75 years whom, according to a questionnaire, declared a frequent consumption of 

WD had a higher risk of developing cardiovascular diseases compared to men who 
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primarily consumed a prudent diet121. A more recent study using logistic regression 

demonstrated that, after adjusting for coronary risk factors, women whom consumes 

processed meats, and sugars have a higher relative risk for heart diseases119. These 

epidemiological studies demonstrates that unhealthy dietary patterns such as the WD 

closely predicts the risk of CVDs later in life. Several animal studies also attempted to 

investigate the underlying mechanisms of this association. For example, a recent study 

demonstrated that rats fed with a high fat diet were associated with mild reduction in 

ejection fraction, increased left ventricular mass and IR122.  As previously discussed, a state 

of IR in the heart is strongly associated with cardiac remodeling and heart failure123. 

However, this insulin resistant state can be attributed to the consumption of diet high in 

fats such as the WD. In response, to the high levels of fatty acids, cardiomyocytes increase 

its expression of CD36 transporter for fatty acid uptake, and reduce GLUT4 mediated 

glucose uptake124,125.  Maladaptation in the saturated fatty acid oxidation often leads to the 

increase in its by-product: reactive oxygen species (ROS), and the accumulation of lipid 

intermediates such as diacylglycerol (DAG), and ceramide126. In turn, ROS and DAG are 

associated with the inhibition of serine phosphorylation of IRS-1 in the insulin signaling 

pathway. In addition, ceramide is also associated with the inhibition of AKT127. As a result, 

increased saturated fatty acids, and lipid intermediates can impair the heart’s ability to 

uptake glucose, resulting in IR. Furthermore, ROS is also associated with cardiac 

hypertrophy, where it has been shown to activate mitogen-activated protein kinases, and 

matrix metalloproteinase (MMP) involved in extracellular matrix remodeling and 

fibrosis128,129.  
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 Despite its importance to cardiac metabolism, the consequences of the change 

towards fatty acid oxidation is not completely understood. Take for example a study in 

2006 which examined the effects of high fat diets on the development of left ventricular 

remodeling in response to hypertension. Compared to a low fat diet, rats fed on a high fat 

diet (60% of total energy) did not demonstrate increases in left ventricular mass, myocyte 

cross-sectional area130. This suggests that a switch towards increased fatty acid oxidation 

can improve heart failure outcomes of hypertensive, and high fat diet fed rats. However, 

other studies have suggested that this may be due to the differential effects of saturated and 

unsaturated fatty acid content. Specifically, rats fed on saturated fatty acids demonstrated 

increased cardiomyocyte apoptosis compared to rats fed on unsaturated fatty acids, 

possibly due to an association with increased ceramide content131. In addition, another 

study demonstrated that rats developed contractile dysfunction when fed a WD (which 

contains a higher carbohydrate content), but not when fed a strictly high-fat diet118. This 

difference may be attributed to the fatty acid oxidation maladaptation, and the induction of 

fatty acid responsive genes associated with WD feeding. Considering the evidences 

presented, fatty acid oxidation surely plays an important and dynamic role in the 

development of heart failure. It is also evident that prolonged WD feeding is indeed 

associated with development of heart failure and cardiac remodeling due to maladapted 

fatty acid oxidation. With a significant portion of our population already predisposed to 

later life CVD development from in utero origins, the consumption of such unhealthy 

dietary patterns may exacerbate the existing consequences. Particularly, it can result in an 

earlier expression of the disease phenotype, and thus warrants our attention to new reliable 

diagnosis techniques in order to provide earlier intervention.  
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Figure 1.1 Prenatal and Postnatal Factors That May Contribute to the Development 

of Cardiovascular Diseases in Adult Life. In utero insults such as PI, or poor maternal 

diet induces an unfavorable intrauterine environment, resulting in intrauterine growth 

restriction, and a low birth weight outcome. This predisposes the offspring to a period of 

rapid catch-up growth, associated with development of many adult diseases. This can be 

further aggravated by a postnatal insult from WD consumption. By adulthood, this may 

lead to the emergence of markers of CVDs such as IR, and disruptions in coronary blood 

flow. Eventually, these factors contribute to the development of a severe CVD. 
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1.4 Methods for Studying Cardiac Blood Flow and Metabolism 

 

1.4.1 Doppler Ultrasound 

 

Although currently there are no clinical technique available which allows the direct 

visualization of the coronary microcirculation, techniques which measures coronary blood 

flow are commonly used to assess the function of microvasculature. Several of these 

techniques utilizes the Doppler principle which allows the measurement of instantaneous 

changes in coronary blood flow. One such example is the Doppler catheter technique. 

Introduced in the 1970s by Hartley and Cole, it utilizes a piezoelectric crystal tipped 

catheter placed at the coronary ostium132,133. In addition, the introduction of the Doppler-

tipped guide wires, the 90s also saw the use of intracoronary flow measurement as an 

accepted approach in coronary blood flow measurements134. This method utilizes a thin 

flexible steerable guide wire with an ultrasound transducer tip which is placed in the left 

circumflex coronary artery. It offers improvement over the thicker Doppler catheters which 

are prone to alteration of velocity profile and obstruction of vessel135. Both of the Doppler 

techniques have already been established as useful techniques, however they require 

invasive catheterization, which may limit its usefulness as a clinical assessment of CVD 

development. In addition, although the use of Doppler catheters or wire are determined to 

be safe, severe complications such as bradycardia and coronary spasms can occur134. As a 

result, a safer, and equally reliable non-invasive technique in coronary flow, and perfusion 

measurements should be explored. 
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1.4.2 Echocardiography 

 

Echocardiography is performed by placing an ultrasound transducer on the chest 

wall of the subject, which creates two-dimensional images of the heart136. It can provide 

detailed information such as ventricular wall thickness, and the size and shape of the heart. 

In addition, it is also capable of calculating ejection fraction, cardiac output and diastolic 

function by estimating the changes of ventricle size during diastole and systole137. As a 

result, the use of echocardiography is common amongst physicians for the diagnosis of 

cardiomyopathies and hypertrophy. Additionally advancements in ultrasound technology 

also allows the measurement of coronary flow using the Transthoracic Doppler 

Echocardiography (TTDE) technique. Specifically, the TTDE utilizes pulsed wave 

Doppler echocardiography and color Doppler flow mapping for the measurement of  flow 

at the left anterior descending coronary artery136,138. The advantageous of 

echocardiography is that it provides a non-invasive assessment of various heart functions 

with no known risks or side effects. However results from echocardiography may be very 

operator dependent, and thus lack specificity139. More importantly, the measurement of 

heart functions such as cardiac output are end point measurements, and not early diagnostic 

targets prior to the onset of diseases. 

 

1.4.3 Positron Emission Tomography 
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Positron Emission Tomography (PET) is a highly sensitive modality which 

provides localization of radioactively labeled tracer concentrations through the detection 

of gamma rays resulting from positron annihilation140. These tracers can provide important 

hemodynamic and metabolic information. In patients with hypertrophic cardiomyopathy, 

coronary blood flow reserve measured with 15O-labelled water and 13N-labelled ammonia 

has been shown to be decreased49,141. Similarly, patients with dilated cardiomyopathy also 

demonstrated an abnormal coronary reserve measured by 15O-labelled water142. 

 Measurement of perfusion parameters are also typically performed in conjunction 

with cardiac metabolism imaging. Measurement of cardiac metabolic rate is typically 

achieved by 18F-2-fluoro-2-deoxy-d-glucose (18F -FDG) tracer. [18F] FDG is a glucose 

analog which is taken up by tissues such as the heart, muscle, and liver. However, [18F] 

FDG cannot be metabolized due to the hydroxyl group at 2’ position substituted with a 

radioactive isotope 18F, As a result, the measured activity of [18F] FDG is indicative of 

glucose uptake, and degree of glycolysis143. The use of [18F] FDG as indicators of tissue 

insulin sensitivity is common in clinical practice. For example a study with [18F] FDG PET 

clearly demonstrated that insulin sensitivity was highly associated with increased glucose 

uptake in the liver144,145. Furthermore, [18F] FDG PET can also be used to determine 

myocardial viability, using the criteria of low perfusion and low metabolism145,146. In 

summary, PET offers a well-established, and non-invasive method for the measurement of 

hemodynamic and metabolic parameters in the target organ. However, PET requires the 

injection of radioactive tracers, and exposure to ionizing radiation. Nonetheless, PET is an 

important imaging modality in research due to its ability to detect problems prior to actual 

onset of diseases. 
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1.4.4 Dynamic Contrast Enhanced Computed Tomography 

 

Developed in the 1970s, Dynamic Contrast Enhanced Computed Tomography 

(DCE-CT) aims to provide a non-invasive solution to the study of hemodynamics in 

tissue147. However due to limitations in spatial and temporal resolution during its infancy, 

the widespread use of DCE-CT failed to gain traction. Fortunately, over the next couple of 

decades, significant advancements in CT technology have addressed these limitations and 

propelled DCE-CT to be a competitive imaging modality with wide clinical acceptance. 

For example, development of slip-ring technology has dramatically improved temporal 

resolutions. In addition, advancements in detector technology has allowed the imaging of 

whole organs in a single study. As a result, DCE-CT has become an excellent diagnostic 

tool in the study of vascular changes, and coronary circulation associated with CVDs148–

150. In comparison to the previously mentioned modalities, DCE-CT provides a more 

complete evaluation of tissue hemodynamics with its capability to measure perfusion, 

blood volume, mean transit time, and capillary permeability surface area product in a single 

study151. In comparison to MRI, DCE-CT may appear disadvantaged due to the use of 

ionizing radiation. However, the gadolinium-based contrast agent used in contrast-

enhanced MR lacks a linear relationship between signal intensity and concentration. In 

contrast, DCE-CT provides a linear relationship between iodine contrast concentration and 

X-ray attenuation152. 

 Several studies in cardiac imaging have given solid validation to the use of DCE-

CT as a reliable diagnostic tool. One such study, recruited patients with coronary artery 

disease with varying degree of stenosis as classified from catheter-based angiograms. 
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DCE-CT with dipyridamole infusion as performed, and analyzed to calculate myocardial 

blood flow, and blood volume. The results demonstrated that blood flow is significantly 

lower in stenosed patients, and that DCE-CT appeared to be a useful predictor of 

functionally significant coronary stenosis150. In another evaluation of the use of CT 

perfusion, it demonstrated a high sensitivity and specificity in diagnosis of chest pain from 

coronary stenosis149.  

 In DCE-CT imaging, X-ray iodinated contrast agent is injected in peripheral vein, 

while the CT scanner image the passage of contrast through the myocardium. Two 

assumptions must be made in perfusion calculations: first is the uniform distribution of 

iodinated contrast through the vascular system. Second, is that the increase in attenuation 

in tissue is proportional to the concentration of contrast agent153. Typically, CT scanner 

scans the region of interest continuously for a prolonged acquisition period which captures 

the slow leakage of contrast from blood vessels into interstitial space. The algorithm used 

in DCE-CT is based on the approximation of the Johnson-Wilson model which explains 

the bidirectional exchange of contrast between the capillaries and the interstitium. This 

adiabatic approximation assumes that changes in tracer concentration are slower in 

parenchymal tissue compared to that in capillaries154. With the algorithm it is then possible 

to calculate blood flow and display the values in rainbow colored functional maps. 

 DCE-CT is an excellent imaging modality for the study of hemodynamical changes. 

It is non-invasive and widely available in hospitals, with rapid scan times. More 

importantly, it can image soft tissues, bone, and blood vessels with excellent temporal and 

spatial resolution. However, a major drawback of DCE-CT is the exposure to carcinogenic 

ionizing radiation. In addition, the injection of contrast agents which may impair renal 
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functions. Nonetheless, the use of DCE-CT may potentially provide a means to monitor 

for the onset and progression of diseases such as CVDs. 
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1.5 Research Goals 

 

The objective of this thesis was to investigate the combined effects of in utero 

insults from placental insufficiency, or high energy diets during pregnancy, combined with 

an adverse postnatal diets on the development of CVDs in early adulthood. In addition, this 

project aimed to assess the use of DCE-CT and PET in the study of CVDs in a guinea pig 

model. In this regard, the two primary goals of the thesis were as follows: 

1) Investigate the effects of placental insufficiency induced low birth weight and 

postnatal Western diet on the development of CVD in a guinea pig model with 

DCE-CT and PET imaging. 

2) Examine the effects of high energy maternal diet and postnatal Western diet on 

the development of CVD in a guinea model with DCE-CT and PET imaging.  
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2.1 Introduction 

 

Cardiovascular Diseases (CVDs) are the leading causes of mortality world-wide, 

accounting for more than 17 million deaths in 2008 alone1. Characterized by cardiac 

remodeling and metabolic dysfunction processes, notable types of CVDs such as 

cardiomyopathy are typically associated with cardiac failure2–6. Traditionally, risk factors 

for CVD development are mostly attributed to life-style choices such as tobacco use, 

physical inactivity, or unhealthy dietary patterns7,8. Indeed, diets such as the increasingly 

prevalent Western Diet (WD), with its high levels of processed carbohydrates and saturated 

fatty acids, is strongly associated with an increasing risk of CVD development9,10.  

Interestingly, amounting evidence now also highlights the importance of intrauterine 

environment as a risk factor for developing chronic diseases in later life, particularly in 

cases of intrauterine growth restriction (IUGR)11. 

 IUGR is defined as the inability of the fetus to reach its expected growth potential, 

often resulting in low birth weight (LBW)12. A common cause of IUGR is placental 

insufficiency (PI), where the placenta fails to provide optimal oxygen and nutrient supply 

to the fetus13,14. Clinically, IUGR is categorized as birthweight falling below the 10th 

percentile12. However, this categorization method based on an arbitrary birthweight under-

represents newborns which lie outside the cut-off but are still exposed to the same sub-

optimal in utero environment15. For example, the development of severe adult diseases 

from in utero insults have been shown to occur independent of birthweight changes16. It is 

more likely that programming for disease development stems from a combination of in 

utero induced stress factors and an irregular developmental profile such as accelerated 
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catch-up growth in early postnatal life17,18. Of additional concern are evidence which 

highlight that in utero programmed changes can further sensitize and accelerate the 

development of CVDs from postnatal insults19. Amidst the increasing prevalence of WD, 

infants born from adverse in utero environments may become more susceptible to the 

enhanced deleterious effects of a growth restricted development profile. However our 

understanding of the relationship between prenatal and postnatal insults on offspring 

disease development has yet to be thoroughly investigated. 

  Part of this investigation is to understand the developmental progressions of CVDs 

prior to the onset of more severe consequences. Disease progression in the myocardium is 

often in concert with impairments in coronary blood flow, and metabolic alterations such 

as increased fatty acid oxidation, and cardiac insulin resistance (IR)6,20–23. Collectively, 

these are pre-clinical hallmarks of early CVD progression, and can be valuable markers for 

diagnosis. With the advancements in non-invasive imaging modalities commonly used in 

cancer diagnoses, these applications are now beginning to expand to the field of 

cardiovascular diagnoses. For example, new developments in Dynamic Contrast Enhanced 

Computed Tomography (DCE-CT) allows accessible, and non-invasive assessment of 

coronary flow and perfusion in the coronary microvasculature24,25. Additionally, Positron 

Emission Tomography (PET) has been extensively used to measure tissue specific glucose 

uptake, an indicator of IR26. These imaging modalities can prove to be valuable resources 

in identifying at risk individuals, monitoring disease progression, and potentially setting 

the stage for the development of more preventative therapies. 

  



49 

 

Understanding the relationship between the prevalence of CVDs and its risk factors 

is crucial in efforts to minimize harmful societal impact. The purpose of this study was to 

utilize DCE-CT and PET imaging supported by traditional molecular techniques to 

examine the developmental profile associated with early CVD development in a guinea pig 

model of in utero growth restriction and postnatal dietary insult. We postulated that 

offspring born of LBW– a marker of inadequate in utero growth – would exhibit pre-

clinical markers of cardiac dysfunction, including disruptions in basal coronary flow, and 

cardiac glucose metabolism by early adulthood. Additionally, we postulated that the 

combination of LBW and a postnatal WD would result in an accelerated advancement of 

these CVD development parameters 
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2.2 Methods 

 

2.2.1 Animals 

 

Pregnant Dunkin-Hartly guinea pigs (Charles River Laboratories, Wilmington, 

MA) were fed ad libitum guinea pig chow (LabDiet diet 5025: 27% protein, 13% fat, 60% 

carbohydrates), and housed in individual cages (20 ± 2°C, and 30-40% humidity) with a 

12 hour/light dark cycle. Uterine artery ablation (UAA) procedure was selected to impair 

placental function, fetal growth, and induce markers of CVD27,28. Briefly, all pregnant 

guinea pigs at mid gestation (~32 days) were placed in an anesthetic chamber (4-5% 

isoflurane with 2 L/min O2, and maintained at 2-3% isoflurane with 1 L/min O2) and 

immediately after induction, a subcutaneous injection of Robinul (0.01 mg/kg 

glycopyrrolate; Sandoz Canada, Montreal, QC) was administered. A midline incision was 

made below the umbilicus to expose the mesometrium of one horn of the uterus, where 

every second arterial vessel branch was cauterized using an Aaron 2250 electrosurgical 

generator (Bovie Medical, Clearwater, FL). Following surgery, a subcutaneous injection 

of Temgesic (0.025 mg/kg buprenophrine; Scherin-Plough, Kenilworth, NJ) was 

administered. Sows delivered naturally, and within 12 hours, birth weights and crown rump 

of each pup were recorded. At the end of the pupping period, guinea pig pups were defined 

as normal birth weight (NBW) if their birth weights were between 25th to 75th percentiles, 

and LBW if below the 25th percentile. Based on this criteria, and in accordance with 

previous UAA and maternal feed restriction guinea pig models,  NBW pups were 

determined to be greater than 90g, while LBW pups were determined to be below 85g29–
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31. All pups were weighed daily from birth until 15 days of age, where pups were weaned 

and randomly assigned onto either a control diet (CD) (TD: 110240, Harlan Laboratories, 

Madison WI), or a WD (TD: 110239, Harlan Laboratories, Madison WI). Both CD and 

WD contained 21% protein (% of total kcal). However, these diets differed in 

carbohydrates and fat, wherein CD contained 60% carbohydrates [distribution (% by 

weight): 35% corn starch, 10% sucrose], and 18.4% fats, while WD contained 33% 

carbohydrates [distribution (% by weight): 19% sucrose, 6.5% fructose] and 45% fats. In 

addition, composition of fats also differed, wherein CD consisted of  2.8% saturated fatty 

acids (SFA), 4.4% monounsaturated fatty acids (MUFA), and 11.2% polyunsaturated fatty 

acids (PUFA), while WD consisted of 31.7% SFA, 11.8% MUFA, 1.8% PUFA 

[distribution (% of total kcal)] (Table 2.1). In total, CD contained 3.4 kcal/g while WD 

contained 4.2 kcal/g energy. Guinea pigs were housed in individual cages at 20°C and 30-

40% humidity with 12 hour light-dark cycle. Food intake was recorded daily and body 

weights were recorded twice weekly until putdown at young adulthood (150 days). The 

resulting division in groups for the study was NBW/CD, NBW/WD, LBW/CD, and 

LBW/WD, which was further divided by sex.   
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Table 2.1 Diet Composition 

 

Diet Component Control Diet (CD) Western Diet (WD) 

Total Protein (%kcal) 22 21 

Total Fat (%kcal) 18 46 

Saturated Fatty Acids 15 70 

Polyunsaturated Fatty Acids 61 4 

Monounsaturated Fatty Acids 24 26 

Total Carbohydrate (%kcal) 60 33 

Sucrose 11 22 

Fructose - 
7.6 

Cholesterol (%kcal) - 0.25 

Density (kcal/g) 3.4 4.2 
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2.2.2 Imaging 

 

Guinea pigs underwent DCE-CT and PET imaging at 50 and 110 days of life. The 

scan time point of 110 days or early adulthood was selected based on a previous study, 

which investigated IUGR/LBW associated changes in whole body glucose tolerance and 

reported alterations in offspring glucose tolerance at 101 days32. The earlier time point of 

50 days was selected to investigate possible developmental changes prior to young 

adulthood an active post weaning growth phase, as previous studies using the UAA model 

have demonstrated increased cardiac and renal fibrosis at 60 days of age28. Prior to 

scanning, baseline glucose levels were measured using a Bayer Contour glucometer (Bayer 

Diabetes, Mississauga, ON). In addition, during scanning, heart rate, respiration rate and 

arterial O2 saturation were monitored and recorded using MouseOx pulse oximeter for 

small animals (Starr Life Science Corp, Oakmont PA).  

 

2.2.3 Dynamic Contrast Enhanced Computed Tomography 

 

DCE-CT scans were performed using a clinical GE multi-slice CT scanner 

(Discovery VCT, GE Healthcare, Waukesha, Wis). Guinea pigs were anaesthetized in an 

anesthetic chamber (4-5% isoflurane with 2 L/min O2), before transferred to a tight fitting 

nose cone to maintain anesthesia with 2-3% isoflurane at a flow rate of 1 L/min.  Once 

anesthesia was stably established (absence of response to pain stimuli), guinea pigs were 

positioned in the center of the CT scanner. A scout localization scan was performed to find 

the slice locations of the heart. A two phase dynamic scan of the heart at the determined 



54 

 

slice locations was conducted following an injection of 1mL/kg of iodinated contrast 

(Omnipaque 200mgI/mL) via a pedal vein catheter at 8 mL/min. In the first phase of the 

dynamic scan, images were acquired continuously at every second for 14.6 seconds at a 

tube rotation speed of one revolution per second, voltage of 120 kV and current of 180 mA. 

This was followed by the second phase where images were acquired every 15 seconds for 

200 seconds using the same scan parameters (tube voltage, current, and rotation speed) as 

the first phase. The dynamic images were reconstructed with the GE Healthcare proprietary 

detail filter with a slice thickness of 1.25mm. The reconstructed images were transferred 

to an image processing workstation (Advantage Windows 4; GE Healthcare, Waukesha 

Wis). Using CT Perfusion 5 program (GE Healthcare, Waukesha, Wis), an arterial input 

curve of contrast medium concentration was generated with a region of interest (ROI) 

placed in the left ventricle chamber of a slice which showed the maximum size of the 

chamber. Following which, another ROI was outlined around the contour of the heart in 

the first image of the dynamic series of the same slice. Subsequent images which did not 

conform to this heart outline were removed from the study as they were mis-registered with 

the first image from either breathing or cardiac motion of the animal. Blood flow maps of 

the chosen slice were generated with the CT Perfusion 5 software (GE Healthcare, 

Waukesha, Wis.). Myocardial blood flow was calculated as the mean pixel value in a ROI 

placed in the inferior wall of the left ventricle where it is least affected by either respiratory 

or cardiac motion. 

 

2.2.4 Position Emission Tomography 
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Guinea pigs were first anaesthetized in an air-tight box with 4-5% isoflurane at 2L/min, 

and injected with ~25kBq/kg (0.2-0.3mL) of [18F]- fluoro-deoxy-glucose ([18F] FDG) via 

the pedal vein. Animals were then recovered, returned to their cage, and placed in a lead 

brick shield. Approximately 40 minutes later, they were again anaesthetized with 4-5% 

isoflurane as before, and placed on the bed of a micro-PET scanner (GE eXplore Vista DR, 

GE Healthcare, Waukesha, Wis). Anesthesia was maintained with a nose cone through 

which 2.5-3% isoflurane was flowing at the rate of 1L/min, and a 20 minute emission scan 

of the heart region was then acquired. 

After correction for scatter and random coincidences, the scan was reconstructed 

into sixty 0.78mm thick slices. The reconstructed images were analyzed using an in-house 

MATLAB program (MathWorks Inc., MA, USA). For each slice in which the left ventricle 

was visible for analysis, two ROIs were drawn: one outlining the epicardial surface, and 

the other one the endocardial surface of the left ventricle. The difference in the total counts 

was divided by the difference in volume of the ROIs to arrive at the average count in the 

myocardium. This average was converted to activity (Bq) using a sensitivity calibration 

factor determined from routine quality assurance of the scanner. The image derived 

activities from all LV slices were averaged together to calculate myocardial activity. 

Standardized Uptake Value (SUV) in the left ventricular myocardium was calculated as: 

 

𝑆𝑈𝑉 =
𝑀𝑦𝑜𝑐𝑎𝑟𝑑𝑖𝑎𝑙 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝐵𝑜𝑑𝑦 𝑊𝑒𝑖𝑔ℎ𝑡⁄
                                                              (1) 
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2.2.5 Tissue Collection 

 

Following a recovery period after the 110 day scan, at postnatal day 143±1.9, 

animals were sacrificed by CO2 inhalation following an overnight fast33. The heart was 

removed, trimmed of connective tissue, weighed, and carefully separated into left or right 

ventricles. A coronal cross section above the apex of the left ventricle of approximately 

3mm thick was placed in 4% paraformaldehyde for histological analyses34. The remainder 

of the left ventricle was frozen in liquid nitrogen for RNA and protein analysis.  

 

2.2.6 Quantitative Real-Time PCR 

 

Flash frozen left ventricular tissues were homogenized in Trizol® (Invitrogen Life 

Technologies Co., Burlington, ON), followed by 200 µL of chloroform for each tissue 

sample. The mixed solution was centrifuged at 12,000g for 15 minutes at 4°C. The resulting 

aqueous phase was transferred to new RNAse-free tubes, and 500 µL of isopropyl alcohol 

was added. The new solution was centrifuged at 12,000g for 10 minutes at 4°C to obtain 

RNA precipitate. Following three 75% ethanol washes at 7500g for 5 minutes, the RNA 

pellet was reconstituted in RNAase free diethylpyrocarbonate water. Yield and quality 

(A260/A280 ration) of RNA was determined with NanoDrop 2000 UV-Vis 

Spectrophotometer (Thermo Scientific, Waltham MA, US). Isolated RNA (4µg) were 

reverse transcribed into complementary DNA with M-MLV Reverse Transcriptase 

(Invitrogen Life Technologies Co., Burlington ON). Real-time qPCR was performed for 

each sample in duplicate and was completed using a Bio-Rad CFX384 real time PCR 
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detector (Bio-Rad Laboratories Mississauga, ON) at a denaturing temperature of 95°C, 

annealing temperature of 59.5°C, and elongation temperature of 72°C for 39 cycles. Data 

are presented as a fold change in expression compared to NBW/CD exposed animals. The 

2-ΔCT method with β-Actin as housekeeping gene was used for analysis35. Primer sets are 

listed in Appendix A. 

 

2.2.7 Western Blot 

 

Flash frozen left ventricular tissues were pulverized and homogenized in RIPA lysis 

buffer (50 mM Tris-HCl, NP-40 1%, Na-deoxycholate 0.25%, 1mM EDTA, 150 mM 

NaCl,  50 mM NAF, 1mM NaV, 25 mM β-glycerophosphate, pH 7.4) with protease and 

phosphatase inhibitor. Homogenates were centrifuged at 10,000g for 15 minutes at 4°C. 

Supernatants were transferred to fresh tubes and used as protein preparations, which were 

quantified with DC™ Protein Assay Kit (Bio-Rad Laboratories, Mississauga, ON). 

Loading samples of 30 µg protein were then separated by size on 6% Bis-Tris gels, and 

transferred on to nitrocellulose membranes for an overnight block with 5% bovine serum 

albumin at 4°C. Blots were then probed with AKT-1 (Cell Signaling® #4691, 1:1000), 

pAKT Serine 473 (Cell Signaling® #9271, 1:1000), pAKT Threonine 308 (Cell 

Signaling® #9275, 1:1000), and monoclonal horseradish peroxidase-conjugated β-actin 

Sigma-Aldrich #A3854, 1:50000) diluted in 5% bovine serum albumin in Tris-buffered 

saline/Tween 20 (0.01%) for 1 hour at room temperature. Blots were then probed with 

horseradish peroxidase conjugated goat anti-rabbit IgG (Cell Signaling® #7074, 1:1000) 

secondary antibody diluted in 5% bovine serum albumin in Tris-buffered saline/Tween 20 
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(0.01%) for 1 hour at room temperature.  Immunoreactive bands were detected using 

Luminata Forte Western HRP Substrate chemi-luminescence (EMD Millipore, Darmstadt, 

Germany), and imaged with VersaDoc Imaging System (Bio-Rad Laboratories 

Mississauga, ON). Densitometry values (arbitrary units) were determined using the 

ImageLab software (Bio-Rad Laboratories, Mississauga, ON), and the abundance of 

proteins were expressed relative to β-Actin. 

 

2.2.8 Histological Analysis 

 

Immediately following putdown, coronal cross-sections of the guinea pig left 

ventricles were collected in 4% paraformaldehyde, embedded in paraffin, and then sliced 

in 5µm sections. Paraffin-embedded sections were stained with hematoxylin and eosin 

(H&E) or Masson’s trichrome for histological analysis of hypertrophy, inflammation and 

fibrosis. Eight non-overlapping colored images of the H&E stained slides were obtained at 

200x magnification using Leica DMI 6000B microscope (Leica Microsystems, Wetzlar, 

Germany). Utilizing Leica MMAF software (v1.40, Leica Microsystems, Wetzlar, 

Germany), cardiomyocytes with visible nuclei was outlined in each of the eight non-

overlapping images. The cardiomyocyte cross sectional area were calculated in square 

micrometers, and averaged between the non-overlapping images as per previous studies on 

cardiac hypertrophy36. Similarly, eight non-overlapping colored images of the Masson’s 

trichrome stained sections were obtained at 100x magnification. Again, utilizing the Leica 

MMAF program, areas of the blue stained collagen fields were measured and divided by 

the total area of the field, omitting the voids36,37.  The collagen fractions of each section 
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were then expressed as the mean percentage of collagen. Analysis of the histological 

sections were performed under blinded conditions. 

 

2.2.9 Statistical Analysis 

 

Statistical Analysis was performed with SPSS software (SPSS v22.0, Chicago, IL, 

USA). A mixed model ANOVA analysis was used to determine significant differences 

(p<0.05) from sex, age, birth weight, and postnatal diet. If significant differences or 

interactions were determined, student t-tests were used for post-hoc analyses of differences 

between groups. 
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2.3 Results 

 

2.3.1 Birthweight and Development 

 

Clinically, determination of growth restriction is arbitrary assigned based on 

measurement of birth weight (<10th percentile)38. Similarly, this study categorized LBW, a 

proxy for growth restriction, as offspring whose birthweight fell below the 25th percentile 

of mean birth weights. As a result, pups which were categorized as LBW were 29% lighter 

at birth compared to those which were categorized as NBW, independent of sex (Figure 

2.1, p<0.05). In addition, at birth these LBW offspring displayed a lower Weight/Length 

ratio, a measure of leanness (Figure 2.1, p<0.05), which have been previously observed in 

other models of IUGR32.  By putdown at 143±1.9 days, these LBW offspring displayed 

similar body weights to that of the NBW group, however, females demonstrated a diet 

induced reduction in bodyweight (Figure 2.2, p<0.05). Moreover, heart weight relative to 

body weight was not significantly altered between groups (Figure 2.2). 
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Figure 2.1 Characteristics at Birth. Pups were categorized as LBW group based on a 

pre-established cut-off determined as below the 25th percentile of average birth weights. 

Birth weight of A) female, B) male guinea pig pups were recorded. N=18 (NBW), N=11 

(LBW) in females, and N=13 (NBW), N=13 (LBW) in males.  In addition, ratio of birth 

weight over crown rump length of C) female, and D) male guinea pig pups was determined. 

N=13 (NBW), N=8 (LBW) in females, and N=12 (NBW), N=10 (LBW) in males.  

*p<0.05. Box represents Mean and SEM, while whiskers represents Max and Min values. 

Statistical significance was determined by student’s t-test. 
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Figure 2.2 Putdown Characteristics. Bodyweights of A) female and B) male guinea pigs. 

Percent ratio of heart weight relative to body weight at of C) female and D) males at day 

143 ± 1.9. N=8 (NBW/CD), 10 (NBW/WD), 5 (LBW/CD), 6 (LBW/WD) for females. N=6 

(NBW/CD), 7 (NBW/WD), 6 (LBW/CD), 7 (LBW/WD) for males. *p<0.05. Box 

represents Mean and SEM, while whiskers represents Max and Min values. Statistical 

analysis performed by two-way ANOVA. 
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2.3.2 LBW Resulted in Reduction in Basal Coronary Blood Flow in Young Adulthood 

 

Following a 2 hour fast, and just prior to DCE-CT and PET scanning, animals from 

all four treatment groups, displayed a similar glucose level of 9.1 ± 0.4 mmol/L. During 

scanning, the animals maintained an average heart rate of 205±24 bmp, and an average 

oxygen saturation above 98%. No significant deviations in these physical parameters were 

observed during the 40 minute scan period (Table 2.2). 

Coronary vascular dysfunction often occurs with the increasing severity of cardiac 

hypertrophy, and cardiomyopathy20,39,40. More importantly, alterations in coronary flow 

and microvasculature precedes heart failure, and is known to be a strong predictor of 

hypertrophic cardiomyopathy41. Using DCE-CT, basal coronary flow in the inferior wall 

of the left ventricle was determined at 50 and 110 days. A significant birthweight and age 

interaction was observed, where coronary flow of LBW guinea pigs was reduced by 17% 

compared to NBW as they reach adulthood (Figure 2.3, p<0.05). In comparison, NBW 

animals demonstrated a 10% increase in coronary blood flow as they reach adulthood.  
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Table 2.2 Baseline Physiological Parameters during Scanning Procedures. Average 

baseline readings of glucose, heart rate, and oxygen saturation during CT and PET scanning 

at (A) 50 days, and (B) 110 days.  Data presented as mean ± standard error. N=12 

(NBW/CD), 14 (NBW/WD), 7 (LBW/CD), 6 (LBW/WD) for females. N=9 (NBW/CD), 9 

(NBW/WD), 5 (LBW/CD), 3 (LBW/WD) for males. Statistical significance examined by 

two-way ANOVA. 

Sex BW Diet Glucose 
Heart Rate 

(bpm) 
O2 Saturation (%) 

Female NBW CD 9.33±1.05 243.6±9.7 98.4±0.9 

  WD 9.85±0.91 232.9±7.9 97.7±0.7 

 LBW CD 8.02±1.29 250.1±9.7 97.6±0.9 

  WD 8.45±1.82 234.7±13.7 97.6±1.2 

Male NBW CD 10.56±0.86 228.9±9.0 98.4±0.8 

  WD 8.80±0.97 261.0±9.7 96.9±0.9 

 LBW CD 10.64±1.15 220.9±9.0 97.7±0.8 

  WD 8.40±1.29 235.5±10.6 96.8±0.9 

  Significance ns ns ns 

      

 

 
     

Sex BW Diet Glucose 
Heart Rate 

(bpm) 
O2 Saturation (%) 

Female NBW CD 8.83±0.92 223.6±10.7 96.1±1.2 

  WD 8.35±0.58 217.9±6.8 98.0±0.7 

 LBW CD 9.97±0.70 235.1±8.1 97.6±0.9 

  WD 8.73±0.92 207.4±10.7 97.8±1.2 

Male NBW CD 9.12±0.53 228.2±6.2 99.0±0.7 

  WD 8.25±0.75 224.3±8.8 99.2±1.0 

 LBW CD 9.80±0.83 234.1±9.6 98.4±1.0 

  WD 8.65±0.92 223.6±9.6 97.6±1.0 

  Significance ns ns ns 
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Figure 2.3 Basal Coronary Blood Flow Determined by DCE-CT.  A) Color coded blood 

flow maps were calculated from DCE-CT, where cool colors represent areas of low blood 

flow, while warm colors represent areas of high blood flow. B) Mean coronary blood flow 

in the inferior wall of left ventricle at 50 and 110 days of post-natal life determined by CT 

Perfusion software (GE Healthcare, Waukesha, Wis). *p<0.05 Interaction.  N= 27 and 30 

for 50 day old guinea pigs of NBW and LBW respectively, and N=18 and 22 for 110 day 

old guinea pigs of NBW and LBW respectively. A repeated measures three-way ANOVA 

was used to determine statistical significance. ANOVA table presented in Appendix C. 
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2.3.3 WD Consumption Reduced Basal Glucose Uptake by Adulthood 

 

In the development phase of many CVDs, the cardiac metabolic profile is often 

altered, resulting in a state of IR42,43. Specifically, a switch in favor of fatty acid oxidation 

was believed to be a protective mechanism against heart failure44. As a result, changes in 

glucose metabolism, a proxy for determining IR, is a useful pre-clinical marker for diseases 

such as hypertrophic cardiomyopathy. 

Determination of basal cardiac glucose uptake at 50 and 110 days was completed 

using [18F] FDG -PET. Where, chronic postnatal WD consumption resulted in a 21% 

reduction in glucose uptake compared to CD groups at both time points (Figure 2.4, 

p<0.05). No alterations in glucose uptake were influenced by birthweight.    
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Figure 2.4 Cardiac Glucose Uptake Determined by PET. A) Color coded image of F-

18 fluorodeoxyglucose ([18F] FDG) uptake determined by PET, where areas of warm colors 

describe the intensity of [18F] FDG uptake. Standardized uptake value (SUV), a semi-

quantitative index of [18F] FDG uptake, and insulin sensitivity, was determined in the left 

ventricle by defining a region of interest around the left ventricle. B) SUV of CD and WD 

animals at both 50 and 110 day time points. N = 27 for CD fed animals and N=22 for WD 

fed animals. *p<0.05. Box represents Mean and SEM, while whiskers represents Max and 

Min values. A repeated measures three-way ANOVA was used to determine statistical 

significance. ANOVA table presented in Appendix D. 
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2.3.4 Cardiac Remodeling and Collagen Content Were Increased in LBW Offspring 

 

Inadequate cardiac development, which is likely the result of adverse in utero 

environments, combined with an accelerated growth profile may trigger the hypertrophic 

growth of cardiomyocytes and proliferation of non-myocytes such as fibroblasts, therefore 

setting the stage for pathological hypertrophy45,46. These cardiac remodeling processes are 

crucial components in the eventual development of systolic dysfunction, and are strongly 

associated with alterations in coronary circulation40. Following putdown, cross-sections of 

left ventricles were analyzed for histological markers of hypertrophy and fibrosis. Heart 

sections from LBW offspring displayed a 20% increase in cardiomyocyte cross-sectional 

area compared to NBW offspring (Figure 2.5, p<0.05), indicative of a hypertrophic growth 

phenotype.  

 

2.3.5 Expressions of Collagen Increased in LBW Females 

 

Enlargements in cardiomyocytes can be attributed to both classifications of cardiac 

hypertrophy, which is physiological or pathological. However, pathological hypertrophy 

differs in that it is characterized by fibrosis, particularly an excessive expression of 

collagen47,48. In the LBW, and NBW/WD sections, a 1.9 fold increase in collagen 

composition compared to NBW/CD sections was recorded, therefore highly suggestive of 

a pathological hypertrophy phenotype (Figure 2.6, p<0.05).  
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Additionally, the mRNA expression of pro-fibrotic genes as α smooth muscle actin 

(α-SMA), Type 1 and 3 collagen, matrix metalloproteinase-1 (MMP1) and transforming 

growth factor β (TGF-β) was determined (Table 2.3). These genes are known to play 

important roles in the tissue fibrosis pathway49. A significant sex and birth weight 

interaction for type 1 collagen mRNA was observed, where female LBW animals 

demonstrated a significantly higher expression than NBW females (Figure 2.7, p<0.05). 

The expression of the other targets, α-SMA, type 3 collagen, MMP1, and TGF-β were 

consistent across sex, BW, and diet. 

 

2.3.6 WD Feeding is Associated with a Reduction in AKT Activation 

 

One of the main markers of CVD development is cardiac IR, an observation 

reported in conjunction with WD consumption50,51. Specifically, the disruption of kinases 

in the insulin stimulated glucose uptake pathway, such as insulin receptor substrate (IRS), 

and Protein Kinase B (AKT), is an important marker behind tissue specific IR44,52,53. Other 

reports in skeletal muscle also reported reductions in AKT activation, specifically 

Threonine 308 (T308)  and Serine 473 (S473), was strongly associated with growth 

restriction54–56. In the current study, despite no alterations in pIRS protein expression, 

pAKT (T308) to total AKT-1 was significantly reduced in female WD fed guinea pigs 

(Figure 2.8, p<0.05), whereas males appeared to be unaffected by diet. Furthermore, 

birthweight appeared to not confer any adverse impact in both sexes. 
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Figure 2.5 Cross-Sectional Area of Cardiomyocytes.  A) Hematoxylin and Eosin stained 

cross-sectional histological sections of left ventricles at putdown. Average cross-sectional 

area (µm2) of cardiomyocytes in the left ventricle was determined between multiple 

representative slides. White scale bar in representative images indicate 25 µm length. B) 

Cardiomyocyte cross-sectional area between NBW and LBW animals. *p<0.05. N=15 for 

NBW and N=13 for LBW animals. Box represents Mean and SEM, while whiskers 

represents Max and Min values. Statistical significance was determined by a two-way 

ANOVA. ANOVA table presented in Appendix E. 
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Figure 2.6 Collagen Content in the Left Ventricle A) Trichrome stained histological 

sections of left ventricle. Average area (µm2) of blue shaded collagen deposition was 

determined as an indicator of fibrotic growth. White scale bar in representative images 

indicate 100 µm length. B) % of Collagen deposition. *p<0.05 Interaction. N=8 for both CD 

and WD fed NBW guinea pigs, and N=4 and 6 for CD and WD fed LBW guinea pigs, 

respectively. Data presented as Mean ± SEM.  Statistical differences determined by two-way 

ANOVA. ANOVA table presented in Appendix F. 
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Table 2.3 Relative mRNA Expression of Fibrotic Genes. Relative mRNA expression of 

αSMA, Type 3 collagen, MMP-1, and TGFβ to Female NBW-CD group. No significant 

differences were observed in the mRNA expression of these genes. N= 4 for NBW/CD, 

NBW/WD, LBW/CD and LBW/WD in each sex. Statistical analysis completed by two-

way ANOVA. 

 

 

Sex BW Diet αSMA 
Type 3 

Collagen 
MMP-1 TGFβ 

Female NBW CD 1 1 1 1 

  WD 1.07 1.13 0.98 0.66 

 LBW CD 1.12 1.49 0.8 0.87 

  WD 0.78 1.19 0.77 0.85 

Male NBW CD 0.71 0.99 0.89 0.66 

  WD 0.36 1.62 0.91 1.05 

 LBW CD 0.43 1.33 1.13 1.02 

  WD 0.79 1.19 1.18 1.32 
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Figure 2.7 Type 1 Collagen mRNA Expression. Relative mRNA expression of Type 1 

Collagen in the left ventricle at 140 ± 1.9 day putdown. *p<0.05 Interaction. N= 4 for 

NBW/CD, NBW/WD, LBW/CD and LBW/WD in each sex. Data presented as Mean ± 

SEM. Statistical significance determined by two-way ANOVA. ANOVA table presented 

in Appendix G. 
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Figure 2.8 AKT Expression in the Left Ventricle at Putdown. Expression of pAKT 

(T308) relative to total AKT-1 protein in the left ventricle at 140 ± 1.9 days of age. *p<0.05 

Interaction. N= 4 for NBW/CD, NBW/WD, LBW/CD, and LBW/WD in both males and 

females. Data presented as Mean ± SEM. Statistical significance determined by two-way 

ANOVA. ANOVA table presented in Appendix H, 
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2.4 Discussion 

 

Adverse in utero environments such as PI are known risk factors for the 

development of heart diseases in later life. Abnormal cardiac development processes which 

result from growth restricted pregnancies are believed to underlie the development of 

myocardial complications in later life34.  Similarly, postnatal WD consumption is also 

known to result in CVD development, including the onset of cardiac IR, and eventually, 

cardiac dysfunction9,57. It can be inferred from these individual findings that the 

predisposition of CVDs from in utero factors can further increase an individual’s 

susceptibility to a secondary postnatal insult such as WD consumption. This study intended 

to elucidate the independent and combined effects of LBW and WD on early markers of 

impaired cardiac function in a guinea pig model. The principle findings of this study were 

that 1) an adverse in utero environment resulting in LBW was associated with reduction in 

resting coronary blood flow and the onset of pathological hypertrophy, and 2) postnatal 

WD consumption resulted in reduced cardiac glucose uptake. Together, these findings in 

early adulthood demonstrated that following an adverse in utero environment and a poor 

postnatal diet, key pre-clinical markers of CVDs are present. Given that these early markers 

are associated with severe cardiac dysfunction in later life, the current experiment 

highlights an early stage of disease development that may serve as a platform from which 

to undertake early intervention therapies. 

 The guinea pig was selected as an animal model in this study due to its similarities 

to humans with respect to in utero developmental programming. Unlike other rodents, 

guinea pigs are prenatal organ developers, where pups are mature at birth58,59. For this 
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reason, the guinea pig fetus is particularly vulnerable to influences in placental function 

such as the UAA procedure, PI (where reduction in oxygen and nutrient delivery typically 

results in growth restriction), and LBW13,60–62. As a result, not only are the birth weights 

of LBW categorized offspring reduced, but body composition is also altered, as evident by 

the reduction in weight/length ratio32,62. An in utero insult such as UAA likely impacts 

genetically determined growth differentially. Yet, during post-natal life, a reversal of this 

delayed growth trajectory was observed in LBW offspring, where, by young adulthood, 

LBW body weights were similar to the NBW group. This pattern of rapid catch-up growth 

is a known consequence of asymmetrical growth restriction63,64. More importantly, this 

accelerated growth trajectory during the critical postnatal developmental periods have been 

implicated in metabolic and endothelial impairments, as well as the development of chronic 

diseases such as adulthood diabetes and CVDs29,65,66. 

CVDs such as cardiomyopathy are often accompanied by the development of 

cardiac hypertrophy. This hypertrophic phenotype is an important marker of deteriorating 

cardiac health, and eventually, heart failure4,67. Interestingly, during critical periods of 

cardiac disease progression, disturbances in coronary flow can also occur. For example, up 

to a 16% reduction in basal coronary blood flow have been observed in patients with 

hypertrophic cardiomyopathy20,21. Therefore, we regarded these parameters as essential 

clues in recognizing early changes to cardiac health, and valuable predictors of systolic 

dysfunction and cardiomyopathy47. Utilizing DCE-CT, we observed that LBW offspring 

had a 17% reduction in basal coronary flow compared to the NBW group at 110 days of 

age. This reduction in coronary flow may reflect disturbances in myocardial capillaries, 

and microvasculature, which are the main determinants of coronary blood flow. It has been 
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previously reported that during pathological hypertrophy, capillary density in the left 

ventricle is greatly reduced47. This led us to speculate that LBW may be a major risk factor 

for CVD development in adulthood via hypertrophic and fibrotic processes. Indeed, by 

putdown, histological analyses revealed that the average cardiomyocyte size in LBW 

animals were significantly increased compared to NBW animals. Furthermore, LBW 

animals also displayed a higher percentage of collagen composition independent of sex, 

and an increased mRNA expression of type 1 collagen in females. The enlargement in 

cardiomyocytes and the abundance of collagen are hallmarks of a pathological hypertrophy 

phenotype, and supports our speculation that reductions in coronary flow determined by 

DCE-CT maybe a reflection of its development.  

This apparent prenatal programming of cardiac remodeling may have emerged 

from the hindered development of cardiomyocytes in utero. A reduction in cardiomyocyte 

numbers has been identified as a major consequence of an insufficient in utero 

environment, and since proliferation of cardiomyocytes halts in the postnatal period, the 

demand for postnatal cardiac growth is therefore fulfilled by hypertrophic growth68,69. 

Furthermore, remodeling of the developing heart may be driven by increased vascular bed 

resistance in LBW offspring in utero, resulting in an increased mechanical force for 

ejection70,71. This chronic increase in ventricular load has been shown to trigger cardiac 

remodeling processes that underlie the development of pathological hypertrophy early in 

adolescence 71,72. Together, these underlying factors can be further aggravated by the 

increasing demand for growth in a rapid post-natal growth profile, and as a result, rapid 

development of CVD may occur. Growth restricted pregnancies have been documented to 

result in increased ventricular diameter, intima-media thickness, and altered ventricular 



78 

 

shape in children, all indications of an early hypertrophic phenotype73. Altogether, these 

results suggests that an adverse in utero environment characterized by insufficient supply 

of oxygen and nutrition to meet the adequate growth potential during pregnancy, combined 

with the postnatal pressures of catch-up growth underlies the development of pathological 

hypertrophy. This in utero programmed alteration in cardiac physiology may very well be 

responsible for the vulnerability of LBW offspring to CVD development in later life.  

Diets such as the WD during postnatal life can also have major consequences in 

cardiac health. Long term consumption of a WD is associated with diabetes, hypertension, 

and heart failure 9,57. While these gross abnormalities develop over the course of adulthood, 

tissue specific alterations in metabolism develop prior to whole body expression of the 

disease states. For example, cardiac IR has been shown to occur prior to that of whole body 

IR and more importantly, prior to cardiovascular dysfunction6,44,50. Interestingly, we have 

seen that both LBW and postnatal high fat/sugar diet exposure are required to unmask the 

consequential effects on glucose homeostasis, and insulin signaling19. Therefore, we 

suspect that WD consumption and cardiac IR can exacerbate the consequences of prenatal 

programming of CVDs. Despite normal whole body glucose tolerance (K. Dunlop, per 

comms), cardiac PET scan demonstrated that WD consumption was associated with a 

reduction in basal glucose uptake in the left ventricle, independent of BW. Additionally, 

postnatal WD feeding was associated with a reduction in AKT-1 T308 phosphorylation, 

with a higher magnitude of reduction in females, despite no changes in AKT-1 S473 

phosphorylation. Activation of AKT is an important step in the insulin mediated glucose 

uptake pathway, and is normally represented by phosphorylation at both S473 and T30874. 

However, reports have suggested that the activity of AKT is more closely correlated with 
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T308 phosphorylation, and that concurrent inhibition at both sites is not required for 

depression in insulin signaling75–77. This suggests the possibility that glucose transport and 

uptake in the left ventricle may have been suppressed by WD consumption via the 

inhibition of T308 phosphorylation of AKT-1. Together, these findings suggests that WD 

plays a prominent role in the onset of cardiac IR through disruptions in the insulin signaling 

pathway. Interestingly, we suspect that the onset of cardiac IR is an early protective 

mechanism against cardiac dysfunction. This same idea was also advocated by a study 

which demonstrated preserved cardiac functions in insulin resistant high-fat diet fed rats44. 

However, with time, a more advanced stage of the disease can unfold, where fatty acid 

oxidation –  the primary energy source in cardiac metabolism – is disrupted, and may lead 

to severe cardiovascular dysfunction78,79. In further support, high-fat diet studies have also 

demonstrated that fatty acid oxidation was increased in an early non-hypertrophied 

myocardium, but maladapted in a hypertrophied myocardium10,80.  Based on these reports, 

the diet dependent depression in basal glucose uptake observed in this study suggests that 

these animals are in an early stage of CVD progression, with the potential for more severe 

cardiovascular related consequences in later life.  

Interestingly, WD fed NBW animals also demonstrated high amounts of collagen 

in the left ventricle, similar to the levels measured in LBW animals. This is likely the result 

of excessive accumulation of ROS from saturated fatty acids present in the WD, which is 

linked to extracellular matrix remodeling and fibrosis 79,78. However, since LBW and WD 

consumption individually resulted in similar levels of collagen content, this implied that 

the combination of LBW and WD did not result in an additive relationship at the age 

studied. Similarly, our group’s previous study also discovered that endothelial dependent 
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relaxation was blunted in LBW offspring, but again not affected by the secondary insult 

from WD29.  However, other studies have proposed that IUGR could enhance the harmful 

metabolic responses to a high fat diet through IR and adipocyte dysfunctions81. Perhaps the 

in utero enhancements of diet induced CVD development processes requires a longer 

manifestation period. Thus, further studies on long term impact should be conducted. 

Nonetheless, it is clear that the consequences from WD consumption may not be 

manifested as rapidly as in utero insults, and may also occur in a different manner. For 

example, hypertrophic growth and fibrosis in LBW offspring may have arisen from chronic 

increases in vascular bed resistance in utero combined with pressures from rapid postnatal 

growth. Meanwhile, consumption of WD is associated with cardiac IR, with multiple 

proposed underlying mechanisms, including adipocyte dysfunction, inflammation, and 

release of fatty acid metabolites19,82,83. Despite the disassociation between LBW and WD 

effects in our study, other reports have demonstrated that growth restricted fetuses are 

linked to the development of IR in adulthood. Specifically, during growth restriction, the 

limited supply of glucose can lead to the shutdown of the Insulin like Growth Factor (IGF) 

system84. However during postnatal life, the abundance in nutrients, and demand for catch-

up growth results in excessive increases in insulin production, and activation of IGF system 

and insulin-like actions, which ultimately, results in adult IR85. Therefore, given that LBW 

and WD insults share similar cardiovascular consequences, we expect that with age, these 

common consequences of LBW and postnatal WD such as IR and fibrosis will become 

exacerbated.  

 The consequences of poor in utero growth and poor postnatal diets have been 

widely accepted to play critical independent roles in the later life development of CVDs. 
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Recent work is now beginning to unravel the complex interactions in CVD development 

when both these situations occur concurrently. In this current report, we used DCE-CT to 

report reductions in coronary blood flow at young adulthood associated with LBW. In 

support, molecular results also indicated evidence of cardiac hypertrophy, which likely 

contributes to the alterations in blood flow. These findings suggests that abnormal cardiac 

development processes at birth may arise from environmental pressures during pregnancy. 

This manifests in postnatal life, resulting in the development of key pre-clinical markers of 

CVDs. Additionally, the use of PET imaging also highlighted an early indication of altered 

cardiac insulin sensitivity, though it was only associated with WD consumption following 

weaning. Alterations in cardiac glucose uptake, or insulin sensitivity is also a strong early 

indicator of many CVDs, where by young adulthood, WD fed offspring, irrespective of 

birthweight, were significantly impacted. Despite the healthy, non-obese, glucose tolerant 

phenotype (K. Dunlop, per comms), these changes in the cardiovascular system exposes 

the underlying development of severe CVDs. Furthermore, since in utero predisposition 

and WD consumption share common consequences such as early indication of cardiac 

fibrosis and IR development, we believe that with time, the exacerbated effects of these 

two insults will become more apparent. In summary, this study used non-invasive, novel 

imaging techniques to detect specific early markers of CVDs, and highlights the need for 

additional long term studies on the combined effects of in utero and postnatal insult. 
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Chapter 3  

 

3 The Impact of an Adverse Maternal Diet Prior to and During Pregnancy Upon 

Young Guinea Pigs Fed a Postnatal Western Diet on the Early Development 

of Cardiovascular Diseases. 
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3.1 Introduction 

 

 

Development of cardiovascular diseases (CVD) are typically associated with 

unhealthy lifestyle choices such as physical inactivity, smoking, and the consumption of 

Westernized Diets (WD)1,2. As the highest cause of mortality in the developed world, 

CVDs like cardiomyopathy are a major risk factor to our society. That is before taking into 

account the recent revelations in perinatal research, which highlights the contributions of 

adverse fetal programming on the development of chronic diseases in adultood3. This 

concept of prenatal stress as origins of CVDs and its markers such as myocardial insulin 

resistance (IR), and left ventricular hypertrophy have been coined “fetal programming”4–6. 

Indeed, previous studies have demonstrated that maternal WD consumption during 

pregnancy was associated with a higher risk for developing growth restriction, LBW and 

later life chronic diseases in the offspring6–8. Similarly, our previous findings also 

demonstrated that postnatal WD feeding could result in disruptions in myocardial glucose 

uptake - a sign of IR, and deteriorating cardiac health. Conceivably, the consumption of a 

WD during pregnancy may also deny the developing fetus the necessary dietary and 

nutritional requirements, therefore providing another means of developing later life 

diseases. Compelling evidence have strongly advocated that ongoing consumption of 

unhealthy diets in pregnancy and in postnatal life, can further hasten or exacerbate the 

progression of chronic diseases in adult life5,6,9,10.  

Studies have demonstrated that the onset of severe cardiovascular consequences 

such as cardiac dysfunction could result from in utero and postnatal dietary insults11–13. 

However, these end-point studies represents a mature disease state, and hence miss the 
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preclinical developmental markers which precedes them. For example, the development of 

cardiac dysfunction resulting from severe CVDs are often preceded by cardiac remodeling 

processes including hypertrophy, and fibrosis in the myocardium14,15. This onset of 

pathological hypertrophy occurs in conjunction with a reduction in capillary density, which 

is strongly associated with alterations in coronary blood circulation and cardiomyocyte 

hypoxia16. Furthermore, reductions in coronary flow reserve – the ratio of stress to basal 

coronary flow – which precedes the onset CVDs is an effective pre-clinical indicator of 

heart failure17–20.  From a clinical perspective, techniques which can non-invasively 

visualize these pre-clinical parameters and predicate later life CVD development are highly 

important. An effective predictor of long-term atherosclerotic disease progression appears 

to be coronary endothelial and flow function18. However, traditional methods in measuring  

coronary flow often requires invasive catheterization21, while molecular studies in animals 

again only provides end point results. In the previous chapter, we have demonstrated the 

potential of non-invasive imaging in cardiovascular research, therefore we again proposed 

the use of Dynamic Contrast Enhanced Computed Tomography (DCE-CT) and Positron 

Emission Tomography (PET) as early detection methods of compromised coronary blood 

flow and cardiac glucose uptake respectively.  

The purpose of this study was to determine whether the consequences of dietary 

insult, through all life exposure, and during pregnancy is translated to the next generation. 

Specifically, we aimed to investigate if these insults would result in the onset of preclinical 

markers of CVDs in the offspring by adulthood. We postulated that maternal WD 

consumption prior to and during pregnancy and lactation, combined with offspring 
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postnatal WD consumption would result in alterations in coronary blood flow, and cardiac 

glucose uptake, both early markers of CVDs, in adulthood. 
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3.2 Methods 

 

3.2.1 Animal Model 

 

This study utilized female Dunkin-Hartly guinea pigs (Charles River Laboratories, 

Wilmington, MA) which were fed ad libitum from weaning to either a control diet (CD) 

(TD:110240, Harlan Laboratories, Madison WI), or a Western Diet (WD) (TD:110239, 

Harlan Laboratories, Madison WI) (See Table 2.1). Guinea pigs were housed individually 

at 19°C and 30% humidity with 12 hour light-dark cycle. These female guinea pigs were 

allowed to breed with male guinea pigs that were fed ad libitum to guinea pig chow 

(LabDiet diet 5025: 27% protein, 13% fat, 60% carbohydrates). Sows delivered naturally, 

and birth weights of each pup were recorded. Subsequently, these pups were weaned at 15 

days of age, and randomly assigned onto either a CD or WD, which formed the four 

treatment groups of Maternal CD/ Postnatal CD (MC/CD), Maternal CD/ Postnatal WD 

(MC/WD), Maternal WD/ Postnatal CD (MW/CD), and Maternal WD/ Postnatal WD 

(MW/WD). Pups were weighed twice a week, and feed intake determined daily out to study 

endpoint. 

 

3.2.2 Imaging 

 

Previously, a study had reported that alternations in glucose tolerance associated 

with in utero insults occurred at approximately 101 days in a guinea pig model22. Similarly, 
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we selected the 110 day as a representative time point at young adulthood to investigate 

cardiac health. Additionally, another study also reported onset of IR at 210 days following 

high fat diet introduction23. Therefore, a 210 day time point was also selected to investigate 

changes which may develop later in adulthood. At the chosen 110 and 210 days of postnatal 

life, guinea pigs underwent DCE-CT and PET|. Induction of anesthesia was performed in 

an air tight chamber, through which 4-5% isoflurane was administered at a rate of 2L/min. 

During both DCE-CT and PET scanning, anesthesia was maintained with a tight fitting 

nose cone with 2-3% isoflurane flowing at a rate of 1L/min 

 

3.2.3 Dynamic Contrast Enhanced Computed Tomography (DCE-CT) 

 

This study utilized a GE Healthcare multi-slice CT system (Discovery VCT, GE 

Healthcare). Guinea pigs were positioned in the center of the CT scanner. To measure 

baseline coronary flow levels, a two phase DCE-CT scan was conducted following an 

intravenous injection of 1ml/kg of iodinated contrast (Omnipaque 200mgI/mL) via a pedal 

vein catheter at 8 ml/min. In the first phase of the scan, images were acquired continuously 

every second for 14.6 seconds. This was immediately followed by the second phase, where 

images were acquired every 15 seconds for 200 seconds. For both phases, images were 

acquired at a tube voltage of 120 kV, current of 180 mA, and a rotation speed of one 

revolution per second. Ten minutes following baseline data acquisition, hyperaemic blood 

flow was also recorded by induced cardiac stress. Briefly, dipyridamole (DIP, 0.56mg/kg) 

was injected at 0.142 mg/kg of body weight/ minute over four minutes, and a two phase 
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DCE-CT scan, similar to the one at baseline was repeated three minutes after infusion of 

measurement of hyperaemic blood flow. 

DCE-CT images were reconstructed at a 1.25mm slice thickness, and transferred to 

an image processing workstation (Advantage Windows 4.0; GE Healthcare, Waukesha, 

Wis). Using CT Perfusion 5 program (GE Healthcare, Waukesha, Wis), an arterial input 

curve of contrast medium concentration was generated with a region of interest (ROI) 

placed in the left ventricle chamber of a slice which showed maximum size of the chamber. 

Following which, another ROI was outlined around the contour of the heart in the first 

image of the dynamic series of the same slice. Subsequent images which did not conform 

to this heart outline were removed from the study as they were mis-registered with the first 

image from either breathing or cardiac motion of the animal. Blood flow maps of the 

chosen slice was generated with CT Perfusion 5 software (GE Healthcare, Waukesha, Wis). 

Myocardial blood flow was calculated as the mean pixel value in a ROI placed in the 

inferior wall of the left ventricle. This process was repeated for images acquired following 

dipyridamole injection, and coronary reserve was calculated as the ratio of DIP to basal 

coronary flow.  

 

3.2.4 Positron Emission Tomography 

 

Guinea pigs were anaesthetized in an air tight box with 4-5% isoflurane at 2L/min, 

and injected with ~25kBq/kg (0.2-0.3mL) of [18F] - fluoro-deoxy-glucose ([18F] FDG) via 

the pedal vein. Animals were allowed to recover for 40 minutes in their cage behind a lead 
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brick shield. Animals were then anaesthetized again transferred onto micro-PET scanner 

(GE eXpore Vista DR, GE Healthcare, Waukesha, Wis), and maintained at the 

anaesthetized state with 2.5-3% isoflurane at 1L/min in a nose cone. Images of the heart 

region were acquired by a 20 minute emission. Following correction for scatter and random 

coincidences, images were reconstructed into sixty 0.78mm thick slices. The reconstructed 

images were analyzed using an in-house MATLAB program (MathWorkds Inc., MA, 

USA). Two ROIs were drawn in each slice in which the left ventricle was visible. One 

outlining the epicardial surface, and the other one the endocardial surface of the left 

ventricle. The difference in the total counts was divided by the difference in volume of the 

ROIs to arrive at the average count in the myocardium. This average was converted to 

activity (Bq) using a sensitivity calibration factor determined from routine quality 

assurance of the scanner. The image derived activities from all left ventricle slices were 

averaged together to calculate myocardial activity. Measurements of Standardized Uptake 

Value (SUV) was calculated as: 

 

𝑆𝑈𝑉 =
𝑀𝑦𝑜𝑐𝑎𝑟𝑑𝑖𝑎𝑙 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝐵𝑜𝑑𝑦 𝑊𝑒𝑖𝑔ℎ𝑡⁄
                                                              (1) 

 

 

 

3.2.5 Tissue Collection  

 

 

At approximately postnatal day 250, animals were fasted overnight, and sacrificed 

by CO2 inhalation23. The heart was removed, trimmed of connective tissue, carefully 
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separated into left or right ventricle, weighed and snaps frozen in liquid nitrogen for RNA 

and protein analysis.  

 

3.2.6 Quantitative Real-Time PCR 

 

Frozen tissues were homogenized in Trizol® (Invitrogen Life Technologies Co., 

Burlington, ON) with mortar and pestle, and 200 µL of chloroform was added. The 

mixtures were centrifuged at 12,000g for 15 minutes at 4°C, and the separated aqueous 

phase was transferred to new RNAse-free tube, and mixed with 500 µL of isopropyl 

alcohol. RNA precipitate were obtained by an additional centrifugation at 12,000g for 10 

minutes at 4°C, and three washes with 75% ethanol at 7500g for 5 minutes. The resulting 

RNA pellet was reconstituted in RNAase free diethylpyrocarbonate water, and yield 

quantity and quality (A260/A280 ration) of RNA was determined with NanoDrop 2000 

UV-Vis Spectrophotometer (Thermo Scientific, Waltham MA, US). To obtain 

complementary DNA, 4µg of RNA were reverse transcribed with Moloney Murine 

Leukemia Virus Reverse Transcriptase (Invitrogen Life Technologies Co., Burlington 

ON). Measurement of gene expressions were completed by Real-time Quantitative 

Polymerase Chain Reaction (qPCR) in a triplicate manner using a Bio-Rad CFX384 real 

time PCR detector (Bio-Rad Laboratories Mississauga, ON). QPCR reactions were 

performed with a denature temperature of 95°C, annealing temperature of 59.5°C and 

elongation temperature of 72°C for 39 cycles. The 2-ΔCT method was used for analysis, with 

β-Actin as the housekeeping gene 24. Primer and genes used are shown in Appendix A.  
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3.2.7 Western Blot 

 

Flash frozen left ventricle tissues were individually pulverized and homogenized in 

RIPA lysis buffer (50 mM Tris-HCl, NP-40 1%, Na-deoxycholate 0.25%, 1mM EDTA, 

150 mM NaCl,  50 mM NAF, 1mM NaV, 25 mM β-glycerophosphate, pH 7.4) with 

protease and phosphatase inhibitor. Homogenates were centrifuged at 10,000g for 15 

minutes at 4°C. The resulting supernatant were isolated as protein preparations, and 

quantified with DC™ Protein Assay Kit (Bio-Rad Laboratories, Mississauga, ON). Using 

6% Bis-Tris gels, 30 µg of protein were separated by size, and then transferred on to 

nitrocellulose membranes. Each membrane was stained with Amido Black stain, and 

imaged with VersaDoc Imaging System (Bio-Rad Laboratories Mississauga, ON) as 

house-keeping. The membranes were then washed and blocked overnight with 5% bovine 

serum albumin at 4°C. Blots were then probed with AKT-1 (Cell Signaling® #4691, 

1:1000), pAKT Serine 473 (Cell Signaling® #9271, 1:1000), pAKT Threonine 308 (Cell 

Signaling® #9275, 1:1000), and monoclonal horseradish peroxidase-conjugated β-actin 

(Sigma-Aldrich #A3854, 1:50000) diluted in 5% bovine serum albumin in Tris-buffered 

saline – Tween 20 (0.01%) for 1 hour at room temperature. After washing, a horseradish 

peroxidase conjugated goat anti-rabbit IgG (Cell Signaling® #7074, 1:1000) secondary 

antibody diluted in 5% bovine serum albumin in Tris-buffered saline – Tween 20 (0.01%) 

was used to incubate blots at room temperature for 1 hour.  Immunoreactive bands were 

detected using Luminata Forte Western HRP Substrate chemi-luminescence (EMD 

Millipore, Darmstadt, Germany), and imaged with VersaDoc Imaging System (Bio-Rad 

Laboratories Mississauga, ON). Abundance of protein were calculated using densitometry 
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values (arbitrary units) determined with ImageLab software (Bio-Rad Laboratories, 

Mississauga, ON), and expressed relative to Amido Black Staining. 

 

3.2.8 Statistical Analysis 

 

Statistical Analysis was performed with SPSS software (SPSS v22.0, Chicago, IL, 

USA). A mixed model ANOVA analysis was used to determine significant differences 

(p<0.05) from age, maternal diet, and postnatal diet. If significant differences or 

interactions were determined, student t-tests were used to for post-hoc analysis of 

differences between groups. 
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3.3 Results 

 

3.3.1 Maternal WD Did Not Result in LBW, or Rapid Catch-Up Growth 

 

We aimed to determine if the consequences of dietary insult, through all life 

exposure, and during pregnancy is translated to the next generation. Offspring from WD 

fed mothers did not demonstrate any reductions in birth weight, or weight/length ratio 

compared to those born from CD fed mothers (Figure 3.1.). Furthermore, offspring growth, 

caloric intake, and food efficiencies from weaning to postnatal day 50, and postnatal day 

50 to 110 were not significantly different between the four groups (Figure 3.2). As a result, 

no initial signs of growth restriction, or the rapid postnatal catch-up growth was observed 

from maternal WD pregnancies when placed on a postnatal CD or WD.  
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Figure 3.1 Birth Characteristics A) Birth weight and B) Weight/length of guinea pig 

pups. Pups were from either CD or WD fed mother bred with a chow fed control male. No 

significant changes in birth weight or weight/length ratio were observed due to maternal 

diet. N= 11 for offspring from CD mothers, and N=12 for offspring from WD fed mothers. 

Box represents Mean and SEM, while whiskers represents Max and Min values. Statistical 

significance was determined by student’s t-test. 
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Figure 3.2 Post-Weaning Growth Characteristics. A) Growth rate, grams gained per 

day. B) Calories consumed per day. C) Food efficiency, gram gained per day/calories 

consumed per day from weaning to postnatal 50 days, and postnatal 50 days to 110 days 

was determined. All data sets are presented by mean ± standard error, and no significant 

changes were observed between all four treatment groups. N=8 (MC/CD), 3 (MC/WD), 6 

(MW/CD), and 4 (MW/WD). Statistical significance was determined by two-way 

ANOVA. 
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3.3.2 Basal and Reserve Coronary Blood Flow Not Affected by Maternal or 

Postnatal WD Consumption 

 

Alterations in basal coronary blood flow have been reported to precede heart failure 

and increases in severity with the onset of cardiomyopathy19,20,25,26.Therefore, in this study, 

baseline coronary blood flow levels were assessed at postnatal 110 days, and 210 days by 

DCE-CT as a marker for CVD development. Coronary blood flow in the inferior wall of 

the left ventricle were compared between maternal diet, postnatal diet, and age factors. 

However, basal coronary blood flow appeared to be consistent across all treatment groups 

(Figure 3.3).  

Reductions in coronary reserve are also strong indicators of cardiomyopathy, and 

systolic dysfunction, particularly in situations of low peripheral arterial resistance where 

basal coronary flow could appear normal17,25,27. However, despite a dipyridamole 

challenge, an average 69% coronary flow increase was observed across all four treatment 

groups (Figure 3.4). Thus, it appears that maternal diet, and postnatal diet do not result in 

changes in coronary reserve as determined by non-invasive imaging at the ages examined. 

Additionally, this study also investigated the mRNA expression of genes which may 

provide insight into possible fibrotic processes in the left ventricle. These included 

Collagen 1, 3, and matrix metalloproteinase-2 (MMP-2). Interestingly, the expression of 

these genes were also not altered as a result of diets in maternal or postnatal period. 

Collectively, these findings suggests that at the ages studied, both maternal and postnatal 

WD consumption did not result in disruptions in coronary circulation and indicators of 

pathological hypertrophy. 
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Figure 3.3 Basal Coronary Blood Flow at 110 and 210 Days. Basal blood flow in the 

inferior wall of left ventricle at A) 110 and B) 210 days of age were determined by CT 

Perfusion 5. No statistical differences were determined between groups. At 110 days N=11 

(MC/CD), 3 (MC/WD), 9 (MW/CD), and 4 (MW/WD). At 210 days N=7 (MC/CD), 1 

(MC/WD), 6 (MW/CD), and 2 (MW/WD). Statistical analyses were performed using a 

two-way ANOVA.   
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Figure 3.4 Coronary Reserve. Mean coronary blood flow was determined prior to after 

dipyridamole stress at 110 days scan. Coronary reserve was calculated as ratio of stress to 

basal coronary flow. No significant differences were observed between the treatment 

groups. N= 7 (MC/CD), 8 (MW/CD), and 3 (MW/WD). Statistical analyses were 

performed using a two-way ANOVA.   
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3.3.3 Postnatal WD Consumption Resulting in Reduced Glucose Uptake 

 

To assess cardiac glucose uptake, as a proxy indicator for insulin sensitivity, PET 

was utilized. Previous studies have reported that during the developmental phase of CVDs, 

IR also develops, and is believed to be a protective mechanism against further cardiac 

injury28–30. Although an interaction between maternal diet and post-natal diet was observed, 

this was not statistically significant (Figure 3.5, p=0.056). However, this trend suggested 

that maternal diet’s effects were not consistent between the different postnatal diets. 

Specifically, a MC/WD mismatch resulted in a 30% decrease in glucose uptake compared 

to MC/CD group.  

Underlying the changes in cardiac glucose uptake is insulin sensitivity. The insulin 

signaling pathway is primarily responsible for the insulin mediate uptake of glucose 

through glucose transporters in the heart, and is primarily regulated by series of 

phosphorylation steps31–33. Specifically, we investigated the protein expression of Protein 

Kinase B (AKT) Threonine 308, Serine 473, and Insulin Receptor Substrate 1 (IRS-1). The 

expression of AKT-1 T308 demonstrated a significant decrease as a result of postnatal 

feeding in both MC and MW groups (Figure 3.6).  Associated markers of insulin signaling, 

IRS-1 and Ser473 AKT-1 were however, unaltered (Figure 3.7).  
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Figure 3.5 Glucose Uptake Determined by PET. Standard Uptake Value of the left 

ventricle acquired by PET at A) 110 and B) 210 days. Data presented as Mean ± Standard 

Error. No statistical significance was observed between groups at both time point. At 110 

days N= 11 (MC/CD), 3 (MC/WD), 6 (MW/CD), and 5 (MW/WD). At 210 days N= 8 

(MC/CD), 3 (MC/WD), and 3 (MW/WD). Box represents Mean and SEM, while whiskers 

represents Max and Min values. Statistical significance was determined by a repeated 

measures two-way ANOVA. ANOVA table presented in Appendix I 
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Figure 3.6 Protein Expression of pAKT (T308) at Putdown.  Expression of pAKT 

(T308) relative to total AKT-1 protein in the left ventricle at 240 days of age. *p<0.05. 

N=11 for CD, and N=9 for WD groups. Statistical significance was first determined by 

two-way ANOVA, and further analyzed by student’s t-test. Box represents Mean and SEM, 

while whiskers represents Max and Min values. ANOVA table presented in Appendix J 
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3.4 Discussion 

 

This current study explored the consequences of WD, particularly its influences in 

utero, and in postnatal life on the development of CVDs in offspring as they mature into 

adulthood. Interestingly, maternal WD consumption from weaning through maturation and 

pregnancy did not appear to aggravate cardiac function in the next generation, which are 

either control fed or further challenged with a postnatal WD. We believe that due to in 

utero adaptation to maternal diets, maternal WD may not have prominent or direct effects 

on offspring health at the age studied. Quite possibly, maternal obesity, or further postnatal 

diet challenge is necessary to fully elucidate the programming effects of a maternal WD34. 

However, we can speculate from related studies that given maternal WD’s effects on other 

organ systems, and its long term predisposition for further postnatal insult, it can impact 

cardiovascular function later in adulthood.  

In contrast to the Uterine Artery Ablation (UAA) model used in the previous 

chapter, a maternal WD introduces an abundance of carbohydrates, and saturated fatty 

acids. We have already determined that restriction in fetal nutrients is associated with 

LBW, and by late adulthood, left ventricular hypertrophy like symptoms. Other studies 

have also determined that LBW (induced by maternal hypoxia) and other extreme prenatal 

insults such as maternal obesity, resulting in large birth weight, and poor postnatal 

outcomes when challenged with an adverse postnatal high fat diet insult9,35,36. Consumption 

of WD in postnatal life is known to result in the development of chronic diseases such as 

CVD, even in individuals born of NBW37,38. Naturally, we are interested in whether 
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prolonged exposure to WD, particularly during in utero period, can accelerate or 

exacerbate these processes.  

We observed that lifelong maternal WD feeding did not yield LBW pups. Studies 

in non-human primates reported that maternal consumption of a high fat diets increases the 

risks of placental inflammation, and stillbirth, and more importantly, it was also associated 

with a reduction in uterine artery blood flow39. This revelation is analogous to the UAA 

model, and we predicted that a lifelong a maternal WD would result in similar 

consequences, however that was not the case. Although high energy diet consumption and 

obesity during pregnancy are associated with IUGR40, fetal overgrowth and large-for-

gestational age is not uncommon41,42. In support, studies have suggested that prenatal 

programming of IR, and birthweight alterations may be more associated with maternal 

adiposity than dietary fat34.  However, in this study, despite chronic WD feeding in 

mothers, they were by no means overweight, which perhaps provides an explanation for 

the lack of the extreme birth weight phenotypes in the offspring. Furthermore, offspring of 

postnatal growth and food efficiencies were similar across the treatment groups, therefore 

a postnatal catch-up growth profile commonly associated with development of chronic 

diseases was not apparent. However, adverse prenatal environment can still possibly give 

rise to adult chronic diseases, such as obesity, IR, and cardiac dysfunction later in 

adulthood9,35,39,43,44. As a result, we are interested in the effects of postnatal WD 

consumption, and how they might play a role in the development of chronic diseases in the 

offspring, particularly in combination with chronic maternal WD insult.  

In the build-up to many CVDs such as cardiomyopathy, disturbances in coronary 

circulation can occur, providing a useful predictor of cardiac dysfunction45,46. Utilizing 



114 

 

DCE-CT, baseline coronary flow in the left ventricle microvasculature at postnatal day 110 

and 210 were measured. Interestingly, no alterations in coronary blood flow was observed 

between the groups. However, baseline coronary flow may not be a definitive indicator of 

coronary complications. This is particularly important, as basal coronary blood flow can 

still be maintained at normal levels by reducing distal arterial resistance, therefore masking 

the disturbances in coronary physiology27. However, when challenged, the ratio of stressed 

to basal blood flow, or the coronary reserve of compromised hearts is diminished27. 

Inducing stress through dipyridamole creates a discrepancy between the blood flow of 

stenosed and normal coronary arteries, which can provide further insight on the changes of 

left ventricular hemodynamics. Intriguingly, despite a dipyridamole challenge, coronary 

reserve was similar across all four treatment groups. This observation was akin with our 

previous findings, where postnatal WD feeding alone was not associated with coronary 

disruptions and markers of left ventricular hypertrophy. This study draws an additional 

revelation in that offspring of maternal WD feeding also did not display hemodynamic 

alterations in the left ventricle. 

Maternal high-fat feeding have been strongly associated with the development 

metabolic diseases development in later life, with cardiac IR as a strong indicator9,22,47. 

Furthermore, in conjunction with a post-natal WD challenge, development of hypertension, 

and heart failure can be further exacerbated48. A previous study have reported 

cardiomyocyte glucose intolerance resulting from high-fat diet feeding23 Therefore, early 

diagnosis of pre-clinical markers such as cardiac IR is important. The PET technology 

opens up the possibility of detecting changes in glucose uptake in the left ventricle and 

identifying at risk individuals in a non-invasively manner. In this chapter, no statistical 
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differences in left ventricular glucose uptake was found, yet a strong interaction between 

maternal diet and postnatal diet may be at play. Where, offspring of a CD fed mother 

displayed lower glucose uptake when given a postnatal WD compared to offspring born of 

WD fed mothers that were also fed the same postnatal WD. In comparison, this pattern was 

reversed with postnatal CD, where maternal CD offspring displayed higher glucose uptake 

compared to offspring from a WD fed mother. Furthermore, molecular analyses revealed 

that a postnatal WD alone was associated with a reduced protein expression of 

phosphorylated T308. Typically, the phosphorylation of T308 is an important step in the 

insulin signaling pathway, which ultimately translates to the translocation of glucose 

transporters to the membrane49. This is yet another piece of evidence which suggests that 

at adulthood, these offspring displayed reduced glucose uptake and associated IR in the 

heart as a result of WD consumption in postnatal life. This is also in alignment with our 

results in the LBW model, where changes in cardiac insulin sensitivity are largely 

determined by postnatal diet.  

These changes in cardiac glucose uptake also highlights in utero programming at 

work, where the prenatal environment is largely influential on the offspring’s adaptability 

to the postnatal environment. Specifically the mismatch between maternal and postnatal 

diet introduces susceptibilities in cardiac glucose uptake. The fetus is programmed to adapt 

its growth and developmental profiles during adverse uterine environments to ensure its 

survival in a similar postnatal environment. This hypothesis harkens back to the studies on 

Dutch hunger winter, and the Leningrad Siege, which clearly demonstrates how glucose 

tolerance and other metabolic diseases are associated with a mismatch of prenatal and 

postnatal environments50–52. In support, a study has reported that in response to maternal 
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high fat diet, offspring development of endothelial dysfunction in adulthood was prevented 

if offspring were raised on the same diet53. This however, is not to say that offspring born 

of a WD pregnancy should continue to indulge on the unhealthy diets, as ultimately it did 

not prevent the development of hypertension, and may pose a higher risk in the long term53. 

Additionally, this inferred that postnatal dietary factors might play a more influential role 

in the outcome of cardiac insulin sensitivity at the young adult age. It is possible that 

maternal dietary effects may not yet be discernable at the young ages studied. A non-human 

primate study reported that offspring of chronic maternal high-fat diet animals that 

underwent a diet reversal just prior to breeding retained normal acetylation of histone H3, 

where its alteration is commonly accompanied by nonalcoholic fatty liver diseases54. 

Maternal WD effects may not be prominent at first, and may require an additional insult, 

such as a postnatal WD, to be fully elucidated. Although studies on maternal diet reversal 

and CVD developments are lacking, we can speculate that the associated effects of a 

maternal WD requires long term exposure, and predisposes the offspring to further insult 

from a postnatal WD challenge5,10. 

Although chronic maternal WD consumption did not yield the same hallmarks of 

hypertrophic cardiomyopathy observed in the LBW model. Previous studies have reported 

the susceptibility of a pregnancy marred by a high-fat diet to the development of chronic 

diseases such as CVDs. For example, offspring of chronic maternal high-fat feeding in rats 

displays increased body weight, and insulin insensitivity by adulthood6. Additionally, these 

changes appears to be highly heritable, where it has been observed to persist onwards to 

the second generation, and are believed to be a result of changes in epigenetics55. At the 

cardiovascular level, offspring of high-fat fed moms are also associated with endothelial 
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dysfunction, and are moderately exacerbated by a postnatal high-fat diet consumption56. 

Interestingly, endothelial function appears to improve when offspring are switched to a 

control diet, further supporting the notion that postnatal dietary patterns may be more 

detrimental to cardiac health56. Comparatively, in this current study, alterations in coronary 

circulation were not observed even in adulthood. A possible explanation is that the onset 

of CVDs may not occur until later in adulthood. In support, epidemiological studies in 

humans highlighted the increased prevalence of CVD development and fatalities in men 

were associated with high saturated fatty acid consumption. However, the onset of these 

fatal CVDs tend to be in middle age at approximately ~55 years old, where early age 

development is categorized as <70 years of age57–60. Therefore we must consider the 

possibility that the onset of these complications in the guinea pigs may be well into middle 

to late adulthood.  

Although poor maternal diet may not appear to play a direct role on CVD 

development in offspring at the age studied, we speculate that the offspring’s predisposition 

for further insult from postnatal diets is a major risk factor in long term cardiac health. 

Previous studies with chronic maternal high-fat feeding have demonstrated severe 

consequences in other organ systems by adulthood in the offspring. For instance, maternal 

high-fat diet exposure has been linked to development of non-alcoholic liver disease, beta 

cell dysfunction and obesity in offspring6,55,61,62. Although maternal WD consumption may 

not be a primary influence on later life cardiovascular outcome, the onset of obesity, 

diabetes and diseases of other organ systems may impact cardiac function overall, leading 

to the emergence of CVDs later in adulthood63,64. Furthermore, chronic exposure to WD in 

postnatal life is also associated with the development of similar complications such as IR 
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and obesity. We speculate that when combined with the aforementioned maternal WD 

effects, severe cardiovascular complications may arise with age. Therefore, the long term 

implications of a maternal WD on CVD development should be further investigated in 

future studies.  
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4.1 Summary 

 

Since Forsdahl and Barker put forth the idea of Developmental Origins of Health 

and Disease, many have started to recognize the importance of in utero environments on 

the onset of adult diseases. This hypothesis, now further expanded, suggests that the 

development of chronic metabolic diseases in later life are the result of fetal programming 

mechanisms during critical periods of in utero environment1–3. In particular, a suboptimal 

in utero environment, resulting in Low Birth Weight (LBW), and an altered postnatal 

growth profile is strongly believed to increase the risk of developing chronic diseases such 

as Cardiovascular Diseases (CVDs) in later life1,4. These adverse in utero environments, 

can be a result of placental insufficiencies (PI), where the inability to provide the required 

oxygen and nutrient supply to the fetus induces a state of growth restriction. In contrast to 

a restrictive insult, adverse in utero environments can also arise from excessive maternal 

consumption of unhealthy diets such as a Western Diet (WD) through life and pregnancy. 

Alarmingly, recent evidence have also suggested that postnatal insults such as the 

consumption of WD can further exacerbate the abnormal growth patterns resulting from in 

utero insults5. Given the increasing prevalence of WD, its exposure to individuals of an 

adverse in utero environment may enhance the detrimental consequences of the growth 

restricted developmental profile. However, the mechanisms and relationships in the 

combination of prenatal and postnatal factors on the development of chronic diseases are 

still unknown.  

Of the many non-communicable diseases associated with fetal programming, CVD 

distinguishes itself with the highest mortality rate. In 2008, approximately 17.3 million 
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people worldwide died from complications related to CVDs, and this number is expected 

to rise in the future6,7.  Prior to the onset of severe functional phenotypes of CVDs, disease 

progression in the myocardium is often marked by cardiac IR, and pre-clinical markers 

such as hypertrophy, as well as alterations in coronary circulation8–12. It is likely that the 

development of CVDs may stem from the in utero period, and further hampered by 

unhealthy diet consumption. Given the severity of the consequences, such as systolic 

dysfunction, heart failure, and ultimately death, it is therefore crucial to investigate possible 

diagnostic techniques which could detect these early pre-clinical markers of CVDs.  

 In Chapter 2, we investigated the associated effects of low birth weight (LBW) 

resulting from a restrictive in utero environment and postnatal exposure to WD on the 

potential for CVD development in adulthood. We postulated that LBW, and WD 

consumption combined would result in the development of early pre-clinical markers of 

CVDs. Our findings demonstrated that LBW offspring displayed a rapid catch up growth 

profile shortly after birth. This accelerated growth trajectory has been implicated as an 

underlying factor in the manifestation of chronic diseases such as CVD13–15. Indeed, using 

Dynamic Contrast Enhanced Computed Tomography (DCE-CT), this study also 

highlighted that this accelerated growth in LBW animals was associated with a reduction 

in basal coronary blood flow at postnatal day 110. Moreover accompanying these 

alterations in coronary flow was histological evidence of pathological hypertrophy, 

including cardiomyocyte enlargement, and fibrosis. However these changes were not 

associated with the postnatal consumption of WD. In comparison, WD consumption was 

associated with reductions in left ventricular glucose uptake, as indicated by Positron 

Emission Tomography (PET). This was also supported by a decreased protein activation 
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of AKT-1, therefore possibly contributing to a state of cardiac IR. While in utero 

environment and WD consumption independently displayed different components of 

compromised cardiac health, their combination however, did not appeared to result in an 

exacerbated effect at the ages studied. 

In Chapter 3, we expanded our experimental focus on chronic maternal WD 

consumption as means of prenatal insult. Maternal WD consumption have been reported 

to trigger placental inflammation, and disruptions in placental hemodynamics, which is 

also associated with a higher frequency of stillbirths, and prenatal complications16,17. 

Furthermore, this unhealthy maternal dietary pattern is associated with the development of 

cardiovascular complications such as endothelial dysfunction, hypertension, and IR in the 

offspring18–20. Of additional concern is the possibility that the vulnerability induced by an 

in utero exposure to WD can be aggravated by a postnatal consumption of the same 

unhealthy WD18. However, detailed studies investigating their combined effects on CVDs 

are still lacking. In this chapter, we demonstrated that basal coronary flow and coronary 

reserve following a dipyridamole challenge were not significantly altered from either 

maternal or postnatal WD feeding. PET studies however indicated a strong trend which 

suggested that maternal WD may have differential effects on offspring cardiac glucose 

uptake depending on the type of postnatal diet consumed. Specifically, this highlights the 

effects of a mismatched in utero and postnatal environment, where reductions in cardiac 

glucose uptake appears to be more severe in maternal control diet to WD group than 

maternal WD to WD group. Although maternal WD’s effects on cardiac health may not 

yet be discernable at the ages studied, this study further supported our observation in 
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Chapter 2, where postnatal WD consumption is linked to cardiac glucose uptake 

reductions, which are suggestive of IR.  

In summary, these studies provide evidence for in utero programming of CVDs in 

adulthood. In particular, the growth restriction and LBW insult appear to have significant 

consequences in the early development of pathological hypertrophy. Moreover, both 

studies demonstrated the impact of postnatal WD consumption on the onset of markers of 

CVDs in early adulthood. Offspring of chronic maternal WD treatment appears to be free 

of the pre-clinical markers of CVDs at the ages studied. However, it is certainly possible 

that with age, a postnatal insult can unmask these in utero programmed risks as observed 

in reports of HFD, and IUGR interactive studies21. Lastly, although offspring appear 

healthy and non-obese while maintaining whole body glucose tolerance (K. Dunlop, per 

comms), important preclinical markers of CVDs such as disruptions in coronary flow and 

cardiac glucose uptake are present. A key significance of this study, is the applicability of 

imaging modalities, which effectively and non-invasively highlight these key 

developmental markers of CVD prior to the onset of a disease phenotype. 
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4.2 Speculations 

 

Adverse in utero environments are known risks for the development of heart diseases, such 

as cardiomyopathy in later life4,22. This disease of the myocardium may have its origins in 

utero due to the unfavourable conditions during cardiovascular development. For example, 

a common cause of growth restriction and LBW is placental insufficiency, where the 

placenta fails to provide the required oxygen and nutritional needs of the fetus23. PI can 

also induce an increase in placental vascular bed resistance, as a result, fetal hearts must 

overcome this increased mechanical force for ejection, thereby creating pressure 

overload24,25. This complication predisposes the offspring to the development of 

hypertrophy, as concentric hypertrophy is induced by chronic increases in ventricular 

pressure26,27. Since this onset of pressure overload occurs in such an early stage during fetal 

development, it explains the early presence of left ventricular hypertrophy in LBW 

offspring. Moreover, in utero complications during fetal cardiac development can also 

hinder cardiac growth, resulting in a reduction in cardiomyocyte number at birth22. 

However, the heart is a post-mitotic organ, therefore postnatal growth is dependent on 

hypertrophy, or proliferation of non-myocytes22,28. This is further exacerbated by a 

postnatal catch-up growth profile that puts additional pressure for rapid cardiac growth. 

When the postnatal heart reaches its capacity for hypertrophic growth, further growth will 

occur through the deposition of extracellular matrix, therefore beginning the process of 

cardiac fibrosis29. This onset of pathological hypertrophy, characterized by fibrosis, can 

then lead to severe functional consequences such as cardiac dysfunction30. In our study the 

development of hypertrophy and fibrosis were also accompanied by reductions in basal 
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coronary flow. Interestingly, since hypoxia during in utero restriction is a stimulus for 

coronary vascularization, why is it that our study observed the opposite31? Other studies 

have supported our observation, where maternal restriction was not associated with any 

increases in coronary vascularization29. Perhaps this can be explained by an associated 

effect of hypertrophy and fibrosis, which is the reduction in coronary capillary density32. 

These mechanisms are likely what underlie the presence of pathological hypertrophy and 

reductions in coronary blood flow in the LBW offspring. However, these were not present 

in offspring from the chronic maternal WD model. Although a maternal WD insult may 

share similarities with a growth restriction insult, it can result in different outcomes 

including LBW and large birthweight18,33,34. Furthermore, its effects on postnatal health 

can easily be reversed35. This led us to believe that maternal WD’s effects on offspring 

CVD development may be indirect. This is further supported by the fact that maternal WD 

offspring did not demonstrate signs of LBW, or the rapid catch-up growth profile that is 

usually associated with chronic diseases development in later life. 

Similarly, the development of cardiac IR is another pre-clinical marker of many 

CVDs11,12. This state of IR, accompanied by a greater demand on fatty acid oxidation as a 

fuel source during high-fat feeding can be seen as a protective mechanism against cardiac 

dysfunction36. This state of IR can be attributed to the high levels of saturated fatty acids 

present in the WD. For example, high levels of saturated fatty acids have been known to 

increase the secretion of inflammatory cytokines which impair insulin sensitivity in skeletal 

muscle cells37,38. More importantly, saturated fatty acids can also reduce the activity of 

peroxisome proliferator-activated receptor gamma coactivator 1- alpha (PGC-1α), 

resulting in a reduction in oxidative phosphorylation and insulin-stimulated glucose 
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uptake39. Eventually, the onset of severe CVDs occurs when fatty acid oxidation is 

maladapted40–42. For example, studies have reported that the expression of peroxisome 

proliferator-activated receptor alpha  (PPAR-α) – an important activator of fatty oxidation 

-  is reduced, while glucose metabolism was increased in rats with pathological 

hypertrophy42,43. The accumulation of saturated fatty acids, and its harmful by-products 

such as reactive oxygen species (ROS), diacylglycerols (DAG), and ceramide may result 

in the onset of fibrosis, and cardiac dysfunction44–47.  Our present findings appeared 

consistent with these reports, where a postnatal WD depression in basal glucose uptake 

was observed. Additionally, early indication of fibrosis was also present in WD fed animals 

in chapter 2. This purported that the WD fed guinea pigs, with the reductions in glucose 

uptake, likely indicates an early stage of CVD development, with severe cardiovascular 

related consequences in later life. 
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4.3 Potential Limitations and Future Improvements 

 

Given the ambitious scope, and detail of this study, there are certainly some 

limitations that must be addressed. Firstly, this study only chose to examine the pre-clinical 

parameters with non-invasively imaging at three different time points, 50, 110, and 210 

days. These ages were strategically selected based on a previous study which demonstrate 

that the onset of IR, a key marker of metabolic disease development in guinea pigs occurred 

around 101 days48. However, they could not fully encompass the early developmental 

period in guinea pig adolescence, nor later in adulthood where CVDs typically occur. 

Future studies should introduce additional scanning time points to fully assess the 

progression of CVD development. In particular, future studies should also focus on the 

later life in utero induced multi-organ failure and its relation to CVD development to 

ascertain the developmental implications of in utero insults. Studies should also introduce 

molecular analysis immediately following scanning to further strengthen the findings of 

the non-invasive imaging techniques. 

 Secondly, non-invasive assessment of coronary blood flow using DCE-CT in a 

small animal model have many physical limitations. For example, the rapid heart rate, and 

breathing of guinea pigs introduces motion in the generation of blood flow maps. Although 

our study compensated for motion with the removal images where the heart shape was not 

consistent, this method was not perfect. A solution to this problem is to intubate the animals 

during the scanning procedure. However this would induce further stress to the animal. 

Future imaging studies should investigate techniques which can fully translate the use of 

clinical DCE-CT on small animal research. Despite this, the significance of DCE-CT for 
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the detection of preliminary clinical markers should not be ignored. Many of these 

limitations do not apply to human subjects – the intended subject of these imaging 

modalities– where it has been extensively been used for the study of coronary 

circulation49,50.   

Another limitation in chapter 2 was that coronary flow was determined at a basal 

state, and therefore was not a definitive indicator of coronary complications. Basal 

coronary blood flow can be maintained at normal levels by reducing distal arterial 

resistance, therefore masking the disturbances in coronary physiology51. However, when 

under stress, the coronary reserve - the ratio of increase in coronary flow from stress to 

basal levels - of these compromised hearts are diminished51. Therefore, in future studies, 

coronary reserve of the LBW model must be examined similar to chapter 3. Moreover, we 

have speculated that the onset of hypertrophy and fibrosis underlies the reductions in 

coronary blood flow due to a reduction in capillary density32. Therefore, in addition to 

histological analysis on cardiomyocyte enlargement, and collagen deposition, future 

studies should also investigate ventricular capillary density. This could further strengthen 

and ascertain the relationship between in utero insult and coronary vascularization during 

CVD development. 

 Thirdly, the in vivo assessments of glucose uptake by PET were performed under 

basal conditions, as opposed to an insulin stimulated dynamic assessment. Similarly the 

final tissue collection for molecular analysis were also performed under fasted states in 

basal conditions. Measurement of glucose uptake under insulin stimulated situations could 

further strengthen our claim of changing insulin sensitivity, given this approach would 

demonstrate the implications of the disruptions in the insulin signaling pathway. Therefore 
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future [18F] FDG-PET studies should be conducted following insulin administration to 

determine the cardiovascular response to insulin. Previous studies which utilized a 

hyperinsulinemic clamp prior to [18F] FDG PET clearly demonstrated decreases in cardiac 

and skeletal glucose uptake that were associated with insulin resistance36,52,53. Similarly, 

tissue collection immediately following insulin injection would also allow us to investigate 

the changes in the insulin signaling pathway in response to insulin, and provide further 

support of an insulin resistant state.  

 Lastly, is the limitation in the characterization of a late stage severe CVD. In this 

study, we proposed that the pre-clinical markers such as coronary blood flow reductions, 

cardiac IR, and hypertrophy are precursors to a more severe phenotype of CVD. Indeed 

studies have demonstrated that these parameters have been used to effectively predict the 

onset of severe complications such as cardiac dysfunction, and death8,9,54–58. However, this 

study is limited in that a severe diseased phenotype was not characterized. Future studies 

should investigate an endpoint result from the prenatal and dietary insults, such as the onset 

of severe cardiac dysfunction. We propose the use of more traditional imaging systems 

such as echocardiography, where the measurement of ejection fraction is a useful tool in 

the characterization of deteriorating cardiac function59.  
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4.4 Conclusions 

 

This present study highlights the implications of an in utero insult, and a postnatal 

WD insult on the development of early preliminary clinical markers of CVD. Despite the 

healthy, non-obese, and glucose tolerant phenotype, we believe that the changes in the 

cardiovascular system exposes the underlying development of severe cardiovascular 

complications. Abnormal cardiac development processes may arise from prenatal insults, 

and the rapid catch-up growth profile. These inherent risks manifest themselves, and result 

in the onset of early development of pre-clinical markers of CVD such as hypertrophy, and 

coronary circulation alterations. Furthermore, our categorization of LBW based on the 25th 

percentile also inferred that there are potentially many at risk individuals outside of the 

clinically defined 10th percentile cutoff. This further supports the idea that offspring that 

have undergone a reprogramming event due to sub-optimal in utero conditions may not be 

fully reflected by the clinical birthweight cutoff at 10th percentile60,61. Interestingly, 

maternal WD did not appear to play a direct role in the development of CVDs. However, 

postnatal WD consumption resulted in alterations in cardiac glucose uptake, again 

indicative of eventual CVD development. Studies in our group, and other reports have 

demonstrated that in utero insults such as LBW, or a chronic maternal high-fat diet were 

associated with non-alcoholic liver disease, obesity, and dysfunctions in vascular function, 

and adipose development15,17,62–65. It is possible that these associated secondary effects of 

in utero insults such as LBW, or maternal WD consumption on other organ systems can 

eventually impact cardiac function, and lead to development of CVDs66,67. More 

importantly, chronic postnatal exposure to WD is also associated with similar 
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complications such as IR, and obesity, and can therefore enhance the deleterious effects of 

in utero insults. We propose that given the shared consequences of in utero and postnatal 

insults, the culmination of these complications would exacerbate and accelerate the 

development of CVDs in adulthood. Lastly this study also demonstrated the significance 

of non-invasive imaging on the early detection of markers of CVD development. The 

ability to identify at risk individuals before the onset of severe complications is important 

for the proposal of more effective treatment therapies. In summary the findings of this 

study not only highlighted the risks of in utero and postnatal insults on CVD development, 

but also opened new doors on the study of early diagnosis and intervention of the diseases 

which increasingly plague our society.  
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Appendix A. Primer sequences of selected target genes utilized in real-time PCR. 

 

Gene Accession Number F R 

αSMA ENSCPOT00000010480 AGCAAGAGAGGTATCCTGAC CGCAGCTCATTGTAGAAAGT 

Collagen 

1 
XM_003466865.1 AACGGAGACACCTGGAAACC TTGACTAGGTCCAGGGCTGA 

Collagen 

3 
XM_003478706.1 TGCTACTTTGAACCGCTTTT TTCATCAACTTCCTGGGTCT 

MMP-2 XM_003477541.1 CAGGGCACCTCCTACAACAG CCTTCTGAGTTCCCACCGAC 
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Appendix B. Ethics Approval 

                      
06.03.2010  

  

     *This is the Original Approval for this protocol*  

*A Full Protocol submission will be required in 06.30.2014*  

  

Your Animal Use Protocol form entitled:  

In Utero Origins of Adult Insulin Resistance  

Funding Agency  CIHR - Grant #R3826A09   

has been approved by the University Council on Animal Care. This approval is valid 

from 06.03.2010 to 06.30.2011.   

The protocol number for this project is 2010-229.   

This number must be indicated when ordering animals for this project.  

Animals for other projects may not be ordered under this number.  

If no number appears please contact this office when grant approval is received.  

     If the application for funding is not successful and you wish to proceed with the 

project, request that an internal scientific peer review be performed by the Animal Use 

Subcommittee office.  

Purchases of animals other than through this system must be cleared through the ACVS 

office.  Health certificates will be required.  

  

ANIMALS APPROVED FOR 4 Years      

Species  Strain  Other Detail  
Pain 

Level  

Animal # Total  

for 4 Years  

Guinea Pig  Hartley  Pregnant ~25 Days on Arrival  C  556  

 

The holder of this Animal Use Protocol is responsible to ensure that all associated safety components 

(biosafety, radiation safety, general laboratory safety) comply with institutional safety standards and have 

received all necessary approvals.  Please consult directly with your institutional safety officers.  
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Appendix C. ANOVA Table for Figure 2.3 Basal Coronary Blood Flow Determined 

by DCE-CT. 

 

Tests of Between-Subjects Effects 

Dependent Variable: Blood Flow 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 85632.376a 15 5708.825 1.064 .403 .166 

Intercept 3200825.235 1 3200825.235 596.304 .000 .882 

Sex 2059.209 1 2059.209 .384 .537 .005 

BirthType 1331.536 1 1331.536 .248 .620 .003 

Diet 3436.354 1 3436.354 .640 .426 .008 

Age 1162.622 1 1162.622 .217 .643 .003 

Sex * BirthType 408.484 1 408.484 .076 .783 .001 

Sex * Diet 2191.975 1 2191.975 .408 .525 .005 

Sex * Age 3066.114 1 3066.114 .571 .452 .007 

BirthType * Diet 16410.451 1 16410.451 3.057 .084 .037 

BirthType * Age 22302.282 1 22302.282 4.155 .045 .049 

Diet * Age 2220.977 1 2220.977 .414 .522 .005 

Sex * BirthType * Diet 4188.972 1 4188.972 .780 .380 .010 

Sex * BirthType * Age 474.092 1 474.092 .088 .767 .001 

Sex * Diet * Age 5259.104 1 5259.104 .980 .325 .012 

BirthType * Diet * Age 11771.423 1 11771.423 2.193 .143 .027 

Sex * BirthType * Diet * 

Age 

1536.422 1 1536.422 .286 .594 .004 

Error 429421.793 80 5367.772    

Total 4043459.083 96     

Corrected Total 515054.169 95     

a. R Squared = .166 (Adjusted R Squared = .010) 
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Appendix D. ANOVA Table for Figure 2.4 Cardiac Glucose Uptake by PET 

 

 
Tests of Between-Subjects Effects 

Dependent Variable: SUV 

Source 

Type III 

Sum of 

Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 17.612a 15 1.174 1.996 .024 .254 

Intercept 353.522 1 353.522 600.876 .000 .872 

Sex .235 1 .235 .399 .529 .005 

BirthType .330 1 .330 .560 .456 .006 

Diet 6.940 1 6.940 11.796 .001 .118 

Age .557 1 .557 .947 .333 .011 

Sex * BirthType .245 1 .245 .416 .520 .005 

Sex * Diet .249 1 .249 .423 .517 .005 

Sex * Age 1.314 1 1.314 2.233 .139 .025 

BirthType * Diet .991 1 .991 1.684 .198 .019 

BirthType * Age .127 1 .127 .215 .644 .002 

Diet * Age 1.607 1 1.607 2.731 .102 .030 

Sex * BirthType * 

Diet 

.878 1 .878 1.493 .225 .017 

Sex * BirthType * 

Age 

.230 1 .230 .391 .533 .004 

Sex * Diet * Age .365 1 .365 .621 .433 .007 

BirthType * Diet * 

Age 

1.966 1 1.966 3.341 .071 .037 

Sex * BirthType * 

Diet * Age 

.930 1 .930 1.581 .212 .018 

Error 51.774 88 .588    
Total 507.525 104     
Corrected Total 69.387 103     
a. R Squared = .254 (Adjusted R Squared = .127) 
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Appendix E. ANOVA Table for Figure 2.5 Cross-Sectional Area of Cardiomyocytes 

 

 

 
Tests of Between-Subjects Effects 

Dependent Variable: Surface Area of Cardiomyocytes 

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 50224.931a 7 7174.990 3.027 .026 .527 

Intercept 2051230.300 1 2051230.300 865.426 .000 .979 

Sex 4532.849 1 4532.849 1.912 .183 .091 

BW 15683.581 1 15683.581 6.617 .019 .258 

Diet 919.696 1 919.696 .388 .541 .020 

Sex * BW 7925.713 1 7925.713 3.344 .083 .150 

Sex * Diet 7416.964 1 7416.964 3.129 .093 .141 

BW * Diet 1486.110 1 1486.110 .627 .438 .032 

Sex * BW * Diet 3533.122 1 3533.122 1.491 .237 .073 

Error 45033.740 19 2370.197    

Total 2661565.249 27     

Corrected Total 95258.671 26     

a. R Squared = .527 (Adjusted R Squared = .353) 
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Appendix F. ANOVA Table for Figure 2.6 Collagen Content in the Left Ventricle 

 

 

 

Tests of Between-Subjects Effects 

Dependent Variable: Fibrosis, Collagen percentage 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 34.094a 7 4.871 3.232 .021 .557 

Intercept 141.860 1 141.860 94.126 .000 .839 

Sex 1.695 1 1.695 1.124 .303 .059 

BW 11.946 1 11.946 7.927 .011 .306 

Diet .848 1 .848 .563 .463 .030 

Sex * BW .020 1 .020 .014 .909 .001 

Sex * Diet 7.469 1 7.469 4.956 .039 .216 

BW * Diet 7.542 1 7.542 5.004 .038 .218 

Sex * BW * Diet 19.298 1 19.298 12.805 .002 .416 

Error 27.128 18 1.507    

Total 202.192 26     

Corrected Total 61.222 25     

a. R Squared = .557 (Adjusted R Squared = .385) 
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Appendix G. ANOVA Table for Figure 2.7 Type 1 Collagen mRNA Expression 

 

 

Tests of Between-Subjects Effects 

Dependent Variable: Collagen Type 1 mRNA 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model .128a 7 .018 3.020 .022 .490 

Intercept .681 1 .681 112.110 .000 .836 

Sex .069 1 .069 11.408 .003 .341 

BW .018 1 .018 3.041 .095 .121 

Diet .023 1 .023 3.774 .065 .146 

Sex * BW .031 1 .031 5.147 .033 .190 

Sex * Diet .001 1 .001 .178 .677 .008 

BW * Diet .005 1 .005 .784 .386 .034 

Sex * BW * Diet 3.715E-5 1 3.715E-5 .006 .938 .000 

Error .134 22 .006    

Total .934 30     

Corrected Total .262 29     

a. R Squared = .490 (Adjusted R Squared = .328) 
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Appendix H. ANOVA Table for Figure 2.8 AKT Expression in the Left Ventricle at 

Putdown. 

 

 

Tests of Between-Subjects Effects 

Dependent Variable: Ratio of pAKT (T308) 

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model .009a 7 .001 2.580 .032 .368 

Intercept .195 1 .195 408.745 .000 .930 

Sex .003 1 .003 6.875 .013 .182 

BW .001 1 .001 2.745 .108 .081 

Diet .002 1 .002 5.060 .032 .140 

Sex * BW .000 1 .000 .303 .586 .010 

Sex * Diet .000 1 .000 .452 .506 .014 

BW * Diet .001 1 .001 1.784 .191 .054 

Sex * BW * Diet .001 1 .001 1.757 .195 .054 

Error .015 31 .000    

Total .216 39     

Corrected Total .023 38     

a. R Squared = .368 (Adjusted R Squared = .225) 
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Appendix I. ANOVA Table for Figure 3.5 A. Glucose Uptake Determined by PET 

 

 

 

Tests of Between-Subjects Effects 

Dependent Variable: SUV 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 2.581a 3 .860 1.654 .207 .191 

Intercept 66.294 1 66.294 127.425 .000 .859 

Pregnancy .782 1 .782 1.503 .234 .067 

Diet .532 1 .532 1.022 .324 .046 

Pregnancy * Diet 2.129 1 2.129 4.092 .056 .163 

Error 10.925 21 .520    

Total 107.195 25     

Corrected Total 13.507 24     

a. R Squared = .191 (Adjusted R Squared = .076) 
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Appendix J. ANOVA Table for Figure 3.6 Protein Expression of pAKT (T308) at 

Putdown. 

 

 

 

Tests of Between-Subjects Effects 

Dependent Variable: Ratio pAKT (T308) 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected 

Model 

.055a 3 .018 3.548 .038 .400 

Intercept 1.282 1 1.282 249.749 .000 .940 

Pregnancy .010 1 .010 1.964 .180 .109 

Diet .035 1 .035 6.761 .019 .297 

Pregnancy * 

Diet 

.003 1 .003 .601 .449 .036 

Error .082 16 .005    

Total 1.530 20     

Corrected Total .137 19     

a. R Squared = .400 (Adjusted R Squared = .287) 
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