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Abstract 

Enhancement of mechanical properties of the bacterial polyester poly(3-hydroxybutyrate-co-

3-hydroxyhexanoate) (PHBH) by the addition of glass fibers (GF) and thermoplastic 

elastomers was investigated. Glass fiber addition significantly increased Young’s modulus 

and strength of PHBH, but had little effect on the degree of crystallinity of PHBH. To 

increase ductility and/or energy absorbed in fracture, that were found to be reduced, in glass 

fiber reinforced PHBH composites, two types of thermoplastic elastomers, styrene-ethylene-

butylene-styrene copolymer (SEBS) and maleated styrene-ethylene-butylene-styrene 

copolymer (SEBS-MA), were added to PHBH/GF composites. SEBS-MA was more 

effective than SEBS in improving ductility, fracture energy, and notched Izod impact 

strength of PHBH/GF composites. Both SEBS and SEBS-MA addition decreased the degree 

of crystallinity of PHBH/GF composites. In conclusion, it was found that mechanical 

properties of PHBH can be tailored by the addition of glass fibers and thermoplastic 

elastomers; therefore, modulus, strength, and energy absorption in fracture of PHBH 

composites can be balanced. 

Keywords 

Poly(3-hydroxy-butyrate-co-3-hydroxyhexanoate), Glass fiber, Styrene-ethylene-butylene-
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Chapter 1  

1 Introduction 

1.1 Background 

Plastics have become the most common engineering materials due to their low density, 

good processability, and good corrosion resistance [1]. In 2013, worldwide annual 

production of plastics reached 300 million tons [2], resulting in substantial petroleum 

usage [3]. This problem can be alleviated using biopolymers. Biopolymers are derived 

from biological sources, including starch, cellulose, fatty acids, sugars, proteins, and 

other sources. Some examples of biopolymers are polyhydroxyalkanoates (PHAs), 

polylactic acid (PLA), poly(butylene succinate) (PBS), and poly(propylene carbonate) 

(PPC). These polymers are known to be sustainable, environmentally friendly, and less 

petroleum dependent than synthetic polymers [4]. 

Among the biopolymers, PHAs, which are used in packaging [5,6] and medical 

applications [5–8], have received considerable attention [5,9]. PHAs are thermoplastic 

polyesters and are a family of polymers synthesized completely using biological 

processes, with carbon sources converted directly into PHAs by microbial fermentation 

[10–13]. PHAs biodegrade into carbon dioxide and water [14] and, during production, 

they consume less energy and emit less carbon dioxide than synthetic polymers [15]. 

Although many different types of PHAs have been reported [16], the most common PHA 

is the homopolymer poly(3-hydroxybutyrate) (PHB). PHB is brittle, due to its high 
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crystallinity, and has a high melting temperature of about 180ºC [11,17], resulting in its 

processing temperature having to be at least 190°C. At this temperature, however, 

thermal degradation proceeds rapidly [18–20]. Therefore, it is difficult to manufacture 

PHB products through melt processes such as extrusion and injection molding. 

Properties of PHB can be modified by introducing a comonomer and, thus, changing its 

content [17,21]. For example, the comonomer 3-hydroxyvalerate (3HV) has been 

introduced into PHB to form its most popular copolymer, poly(3-hydroxybutyrate-co-3-

hydroxyvalerate) (PHBV). The copolymerization mitigated the problems mentioned 

above to some extent. However, PHBV is still brittle and not well suited for some 

industrial applications, such as films for deep drawing articles or injection molding [22]. 

Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) is another copolymer of PHB. 

The addition of its 3-hydroxyhexanoate (3HH) unit broadens process temperature as well 

as  increases ductility, but decreases modulus and strength [14,23,24]. Although PHBH 

shows better ductility and processability than PHB and PHBV, further improvement of its 

mechanical properties and processability is desired to expand its possible applications. 

One way to improve mechanical properties of polymers is to add fibers to form 

composite materials. Composite materials often have high stiffness- and high strength-to-

weight ratios [25,26]. These advantages allow manufacturers to design components with 

low weight. Composite materials can be classified according to fiber length: long fiber 

reinforced composites and short fiber reinforced composites. In general, long fiber 

reinforced composites possess better mechanical properties due to their high aspect ratio 

of fiber. On the other hand, short fiber reinforced composites offer better processability. 
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Short fibers can be easily mixed with the polymer matrix, and the polymer/fiber mixture 

can be processed using industry-friendly polymer processing equipment, such as 

extrusion and injection molding, to produce parts with complex shapes [27]. 

In addition to length, fibers vary in composition, leading to options such as glass fibers, 

carbon fibers, and aramid fibers. Glass fibers are currently widely used to reinforce 

polymers due to their low cost, high tensile strength, high chemical resistance, and 

excellent insulating properties [28,29]. Carbon fibers are popular in aerospace and 

military applications due to their high specific tensile strength and modulus, low thermal 

expansion, high thermal conductivity, and high temperature resistance. Despite their 

excellent properties, the high cost of carbon fibers has excluded them from widespread 

commercial applications. Aramid fibers are also popular fibers and have higher specific 

strength and ductility [30] than glass or carbon fibers [27]. They are widely used in 

marine and aerospace applications where low weight, high tensile strength, and resistance 

to impact damage are important [28]. One of the major disadvantages of aramid fibers is 

difficulty in cutting and machining them [1,28]. Taking into account advantages and 

disadvantages of different fibers, in this study, short glass fibers were used to reinforce 

PHBH. 

One of the important issues related to processability of PHBH is its crystallization. 

Because 3HH units are excluded from the PHB lattice during the crystallization of 

PHBH, the addition of 3HH decreases the crystallization rate and the degree of 

crystallinity of PHB [23]. Slow crystallization results in long molding-cycle time, thus 

leading to low productivity and high energy consumption in industrial processing. 

Furthermore, low degree of crystallinity can give rise to low modulus and strength of 
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final products. Therefore, it is important to investigate whether the crystallization rate and 

the degree of crystallinity of PHBH changes when additives (e.g., fibers, fillers, and 

polymers) are mixed with PHBH. 

1.2 Objective 

The main objective of this study is to manufacture glass fiber reinforced PHBH 

composites using industry-friendly polymer processing equipment, and to explore ways 

of tailoring their physical properties. Specific work included: 

(1) increasing Young's modulus and tensile strength of PHBH using glass fibers (GF), 

and 

(2) increasing ductility and energy absorption in fracture of PHBH/GF composites using 

thermoplastic elastomers (TE). 

1.3 Significance 

At this moment, no study has yet reported on PHBH/GF composites or its hybrid 

composites with TE. PHBH/GF/TE hybrid composites with a wide range of mechanical 

properties have many potential applications. Furthermore, most previous studies of 

PHBH used thin film casting with solvents, whereas, in this study, PHBH/GF/TE hybrid 

composites were manufactured by melt-compounding and injection molding. This melt 

processing is more industry-friendly and enables the production of a large number of 3D 

products. The research outcome will assist plastic and composite manufacturers in 

developing PHBH/GF/TE hybrid composite products. 
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1.4 Thesis Outline 

This thesis is prepared in an Integrated-Article format as specified by the School of 

Graduate and Postdoctoral Studies at Western University, London, Ontario, Canada. This 

thesis consists of four chapters: 

Chapter 1 presents a general background, objective, significance, and thesis outline. 

In Chapter 2, the effects of glass fiber on the mechanical properties of PHBH are 

investigated. Preparation of PHBH composites by melt-compounding and injection 

molding, using two types of PHBH and short glass fiber content varying from 0 to 23 

volume percent, is described. Tensile properties of PHBH composites are compared with 

mathematical models. The Halpin-Tsai and Tsai-Pagano equations are used to predict 

Young’s modulus of PHBH composites, and the modified Kelly-Tyson model with the 

Bowyer-Bader method are used for strength prediction. The effects of glass fiber on the 

thermal properties of PHBH are also studied. The thermal properties include cold 

crystallization temperature, melting temperatures, crystallization temperature, degree of 

crystallinity, and crystallization half-time. 

In Chapter 3, the effects of thermoplastic elastomers on the mechanical properties of 

glass fiber reinforced PHBH composites are studied. The thermoplastic elastomers used 

are styrene-ethylene-butylene-styrene copolymer (SEBS) and maleated styrene-ethylene-

butylene-styrene copolymer (SEBS-MA). Mechanical properties are evaluated using 

tensile tests and notched Izod impact tests. The morphologies of PHBH/GF/TE hybrid 

composites are examined, and relationships between morphology and mechanical 
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properties are discussed. Furthermore, the effects of thermoplastic elastomers on the 

thermal properties of PHBH are studied. 

Chapter 4 summarizes and concludes the thesis and provides recommendations for future 

study. 
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Chapter 2  

2 Effects of Glass Fiber on Mechanical and Thermal 

Properties of Poly(3-hydroxybutyrate-co-3-

hydroxyhexanoate) 

2.1 Introduction 

Polymers from renewable resources have been drawing a lot of interest over the past 

decades, mainly for two reasons, the first being environmental concerns and the second 

being the realization that our petroleum resources are finite. In general, polymers from 

renewable resources can be classified into three groups: natural polymers, such as starch, 

protein, and cellulose; synthetic polymers from bio-derived monomers, such as 

poly(lactic acid) (PLA); and polymers from microbial fermentation, such as 

poly(hydroxyalkanoates) (PHAs) [1]. 

PHAs are commonly used in the packaging [2,3] and medical [2,3] fields (especially in 

tissue engineering [4,5]). PHAs are biodegradable and biocompatible, and their properties 

can be tailored by changing comonomer units, average molecular weight, and molecular 

weight distribution [6,7]. Although many different types of PHAs have been reported [8], 

the homopolymer poly(3-hydroxybutyrate) (PHB) and its copolymer, poly(3-

hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), are the most popular types of PHAs. 

PHB is brittle, due to its high degree of crystallinity, and has a narrow processing 

temperature window because its melting and degradation temperatures are relatively 
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close [9–11]. Therefore, a comonomer, 3-hydroxyvalerate (3HV), has been introduced 

into PHB to form a copolymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). 

The copolymerization mitigated the problems to some extent. 

Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) is another copolymer of PHB. 

The addition of the 3-hydroxyhexanoate (3HH) unit broadens process temperature as well 

as increases ductility, but decreases modulus and strength [12–14]. Therefore, a current 

goal is to improve modulus and strength of PHBH. 

As is the case with most polymers from petroleum, polymers from renewable resources 

are rarely used alone. Addition of fiber is one way to improve the mechanical properties 

of polymers from renewable resources. In particular, short fiber is of great interest 

because of its ease of processing and greater possibility to obtain complex shapes [15]. 

Although various types of short fibers are available, glass fibers are the most commonly 

used owing to their higher strength, stiffness, and ease of production. Previous studies 

found that the addition of short glass fiber improved mechanical properties of polymers 

from renewable resources such as poly(lactic acid) [16,17] and poly(3-hydroxybutyrate-

co-4-hydroxybutyrate) [18]. 

In this study, glass fiber was added to improve mechanical properties, in particular 

Young’s modulus and strength, of PHBH. The tensile properties of glass fiber reinforced 

PHBH composites were evaluated as a function of glass fiber content. To the authors’ 

knowledge, there have been no previous reports on glass fiber reinforced PHBH 

composites. Furthermore, most previous studies of PHBH used thin film casting method 

with solvents [11,12,14,19–22]. In this study, PHBH composites were fabricated by melt-
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compounding and injection molding. This melt processing is a more industry-friendly 

process and enables to produce a large number of 3D products, but it is more technically 

challenging because thermal degradation and solidification (including crystallization) of 

PHBH, as well as fiber breakage during the process, need to be taken into account. This 

study also investigated thermal properties, including crystallization kinetics, of glass fiber 

reinforced PHBH composites. 

2.2 Experimental  

2.2.1 Materials 

The study used two types of PHBH, supplied by Kaneka Corporation. One type contained 

5.6 mol% 3HH (named PHBH5.6) and had a weight-average molecular weight of 

555,000 g/mol.  The other type contained 11.1 mol% 3HH (named PHBH11.1) and had a 

weight-average molecular weight of 622,000 g/mol. The fibers used were chopped strand 

glass fibers (OCW-272, supplied by Owens Corning), with a diameter of 10 μm, a length 

ranging from 4 to 4.5 mm. 

2.2.2 Fabrication of composites 

PHBH was dried at 80°C using a convection oven to eliminate possible moisture. 

Composite samples were prepared using a mini-twin-screw extruder (HAAKE MiniLab). 

PHBH and fibers were compounded with conical co-rotating screws at 100 rpm for 10 

minutes. The degree of fill in the extruder was set to 75% and barrel temperature was set 

to 150°C. The resulting molten composite was transferred to a preheated mini-injection 

molding machine (HAAKE MiniJet), which then injected the melt into a mold with a 120 
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bar injection pressure. Injection cylinder and mold temperatures were set to 150°C and 

70°C, respectively. The injection-molded samples were stored at room temperature inside 

a re-sealable plastic bag for two days before testing.  In this study, ten composite material 

types were prepared. Information on the composite materials is summarized in Table 2.1. 

Glass fiber contents were varied from 0 to 40 weight percent. Since volume fraction of 

material components is used to predict mechanical properties of composites, the weight 

fraction of fiber was converted to volume fraction of fiber, 𝑉𝑓, using equation 1. 

 𝑉𝑓 =
𝑊𝑓𝜌𝑚

𝑊𝑓𝜌𝑚 + �1 −𝑊𝑓�𝜌𝑓
 (1)  

where 𝑊𝑓 is the weight fraction of fiber, 𝜌𝑚 is polymer matrix density, and 𝜌𝑓 is fiber 

density. The densities of the two types of PHBH and the glass fibers used in this study are 

listed in Table 2.2. 

2.2.3 Measurement of fiber length 

To measure length of glass fibers in an injection-molded specimen, PHBH in the 

composite specimen was burnt off in a convection oven at 600°C for 30 minutes. The 

leftover ash and fibers were dispersed in water to extract fibers. A few drops of fiber-

water were then cast onto a glass slide. Fiber length was measured using an optical 

microscope (Laborlux 11 POL) equipped with a digital camera and imaging analysis 

software (Infinity Analyze). Lengths of about 1000 fibers were measured for each 

specimen. Based on the resulting data, fiber length frequency distribution and weighted 

average fiber length were obtained, and were used for strength and Young’s modulus 

predictions, respectively. 
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Table 2.1 Information on composite materials prepared in this study 

No PHBH with 

5.6 mol% of 3HH 

(vol%) 

PHBH with 

11.1 mol% of 3HH 

(vol%) 

Glass Fiber 

(vol%) 

1 100 
 

0 

2 95 
 

5 

3 90 
 

10 

4 84 
 

16 

5 77 
 

23 

6 
 

100 0 

7 
 

95 5 

8 
 

90 10 

9 
 

84 16 

10 
 

77  23  
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Table 2.2 Properties of PHBH and glass fiber used for predictions 

Material Density 

(g/cm3) 

Young's modulus  

(GPa)) 

Strength 

(MPa) 

PHBH5.6 1.20 1.43 - 

PHBH11.1 1.19 0.76 - 

Glass fiber 2.60 80.5 3450 

2.2.4 Characterization of mechanical properties 

Tensile tests were conducted to evaluate the mechanical properties of the composite 

materials. The tests were performed on the Type V specimen as per ASTM D638 

standard, using Instron 5943 with a 1 kN load cell. Crosshead speed was 10 mm/min for 

all specimens. Five specimens were tested for each sample. 

2.2.5 Characterization of thermal properties 

Thermal properties of the composite materials were characterized using differential 

scanning calorimetry (DSC) (TA Q200). A DSC sample of 8 to 10 mg was prepared by 

cutting from the tensile specimen. The sample was heated from room temperature to 

190ºC at a rate of 10ºC/min and kept at 190ºC for 3 minutes to erase the thermal history. 

The sample was then cooled to -40ºC at a rate of 5ºC/min. Lastly, the sample was heated 

to 190ºC at a rate of 10ºC/min. 
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2.3 Result and Discussion 

2.3.1 Fiber length frequency distribution and average fiber length 

Figure 2.1 shows fiber length frequency distribution of selected representational 

injection-molded PHBH composite specimens with the least and greatest fiber amounts: 

PHBH5.6 with 5 vol% fiber (Figure 2.1a), PHBH5.6 with 23 vol% fiber (Figure 2.1b), 

PHBH11.1 with 5 vol% fiber (Figure 2.1c), and PHBH11.1 with 23 vol% fiber (Figure 

2.1d). For both PHBH5.6 and PHBH11.1 composites, increase in fiber content was 

associated with the histogram shifting to the left (i.e., towards shorter fiber length). 

The average length of fibers in the composite specimen as a function of volume fraction 

of fiber is shown in Figure 2.2. As volume fraction of fiber increased, average fiber 

length decreased significantly. This finding can be explained by fiber breakage occurring 

during compounding and injection molding, where greater fiber content leads to more 

fiber-fiber and fiber-equipment wall interactions. More such fiber interactions lead to 

more damage to fibers [23,24], leading to the fibers becoming shorter. 

Figure 2.2 also shows that the average fiber length of PHBH5.6 was slightly longer than 

that of PHBH11.1 at a given fiber volume fraction. The relative difference in average 

fiber length is most likely due to PHBH11.1 having a relatively greater melt viscosity 

than PHBH5.6. The molecular weight of PHBH11.1 is greater than that of PHBH5.6 and, 

in general, polymers with higher molecular weight tend to have greater viscosity [25]. 

Greater melt viscosity led to shorter fiber lengths because greater melt viscosity results in 
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higher bending forces exerted on fibers during compounding and injection molding, 

leading to amplified damage of fibers [24]. 
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(c)      (d) 

Figure 2.1 Fiber length frequency distribution for PHBH5.6 with (a) 5 vol% and (b) 

23 vol% fibers as well as PHBH11.1 with (c) 5 vol% and (d) 23 vol% fibers 



19 

 

0 5 10 15 20 25
200

220

240

260

280

300

320

340

360

 

 

Fi
be

r L
en

gt
h 

(µ
m

)

Fiber Volume Fraction (%)

 PHBH5.6
 PHBH11.1

 

Figure 2.2 Average length of fibers in the injection-molded composite specimen 

versus the volume fraction of fiber 

The supposed difference in melt viscosity between PHBH5.6 and PHBH11.1 is further 

supported by torque data. A torque value of a drive motor in an extruder during 

compounding can be related to melt viscosity of material, if temperature and rotational 

speed are constant. A lower torque can be the result of lower viscosity, due to its resulting 

lower resistance to rotation of screw shafts [26]. The torque of the drive motor in the 

mini-twin-screw extruder during the compounding of PHBH and glass fibers as a 

function of time is depicted in Figure 2.3. As expected, PHBH11.1 (Figure 2.3b) is found 

to have a greater torque and, therefore, greater viscosity than PHBH5.6 (Figure 2.3a). 

Additionally, Figure 2.3a and Figure 2.3b show that torque increased with increasing 

fiber content, supporting the aforementioned explanation of the finding of shorter fiber 

lengths with increasing fiber content. 
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(a)      (b) 

Figure 2.3 Torque versus time for (a) PHBH5.6 and (b) PHBH11.1 composites 

2.3.2 Mechanical properties 

Figure 2.4 illustrates typical stress–strain curves of PHBH5.6 composites (Figure 2.4) and 

PHBH11.1 composites (Figure 2.4) from tensile tests. The curves were obtained from 

PHBH with the following amounts (in vol%) of glass fiber: 0 (i.e. neat PHBH), 5, 10, 16, 

and 23. The neat specimens exhibited ductile failure while the glass fiber reinforced 

composites exhibited more brittle failure. Comparing the tensile test results of the two 

types of PHBH, the neat PHBH5.6 had higher strength but less ductility than PHBH11.1. 

This result agrees with those reported previously, in which PHBH gets softer and more 

flexible with the increase of 3HH content [12]. 
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(a)      (b) 

Figure 2.4 Stress-strain curves of (a) PHBH5.6 and (b) PHBH11.1 composites 

Figure 2.5 summarizes the mechanical properties of the PHBH composites as a function 

of volume fraction of fiber. Young’s modulus as a function of volume fraction of fiber is 

shown in Figure 2.5a. The Young’s modulus of both PHBH5.6 and PHBH11.1 

composites increased monotonically with increasing fiber content, with the Young’s 

modulus of PHBH5.6 composites being higher than that of PHBH11.1 composites at a 

given fiber volume fraction. Figure 2.5b shows strength as a function of volume fraction 

of fiber. The strength of both PHBH5.6 and PHBH11.1 composites increased linearly up 

to 10 vol% of fiber, after which strength remained almost constant, despite further fiber 

content increase. This finding of lack of increase in strength at the greater fiber content 

could be explained by the decrease of fiber length, i.e., decrease of aspect ratio of fibers, 

at greater fiber content (as shown in Figure 2.2). Comparing the strength of the two 

PHBH types, similar to the trend found for Young’s modulus, strength of PHBH5.6 

composites was higher than that of PHBH11.1 counterparts at a given fiber volume 
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fraction. Figure 2.5c shows strain at failure as a function of volume fraction of fiber.  

Neat PHBH11.1 had a much greater failure strain than neat PHBH5.6. However, the 

addition of fiber decreased the failure strain of both PHBH5.6 and PHBH11.1 

composites. Although PHBH11.1 composites exhibited a higher strain at failure than 

PHBH5.6 composites at a given fiber volume fraction, the difference was much smaller 

than that between the neat PHBH. Figure 2.5d shows fracture energy, which is defined as 

the area enclosed by the load-displacement curve, as a function of volume fraction of 

fiber. The trend is very similar to that observed in Figure 2.5c for strain at failure. This 

similarity suggests that, in the composite materials manufactured in this study, strain at 

failure contributed considerably to fracture energy.  
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(c)          (d) 

Figure 2.5 Mechanical properties of PHBH5.6 and PHBH11.1 composites: (a) 

Young’s modulus, (b) Strength, (c) Strain at failure, and (d) Fracture energy 

 



24 

 

2.3.3 Prediction of Young’s modulus 

Young’s modulus of glass fiber reinforced PHBH composites fabricated in this study was 

predicted by combining the Halpin-Tsai equations [27] and Tsai-Pagano equations [28]. 

Longitudinal and transverse Young’s modulus of an aligned short-fiber composite 

material can be predicted using the Halpin-Tsai equations [27]. The equations for the 

longitudinal 𝐸𝐿 and transverse Young’s modulus 𝐸𝑇 can be expressed as follows: 

 𝐸𝐿 = 𝐸𝑚
1 + 𝜉𝜂𝐿𝑉𝑓
1 − 𝜂𝐿𝑉𝑓

 (2)  

 𝐸𝑇 = 𝐸𝑚
1 + 2𝜂𝑇𝑉𝑓
1 − 𝜂𝑇𝑉𝑓

 (3)  

 where 

 𝜂𝐿 =
(𝐸𝑓 𝐸𝑚)⁄ − 1
(𝐸𝑓 𝐸𝑚)⁄ + 𝜉

 (4)  

 
𝜂𝑇 =

(𝐸𝑓 𝐸𝑚)⁄ − 1
(𝐸𝑓 𝐸𝑚)⁄ + 2

 (5)  

where 𝐸𝑚  and 𝐸𝑓  are the Young’s modulus of matrix and fiber, respectively, 𝑉𝑓  is the 

volume fraction of fibers, and  𝜉 is the measure of the geometry of fiber. If a fiber is 

circular in cross-section, 𝜉 may be calculated as follows: 

 𝜉 = 2(𝑙 𝑑⁄ ) (6)  

where 𝑙 and 𝑑 are, respectively, length and diameter of a fiber. 
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Young’s modulus 𝐸𝑟𝑎𝑛𝑑𝑜𝑚  of a composite material with two-dimensional (in-plane) 

random fibers can be predicted using the following Tsai-Pagano equation [28]: 

 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 =
3
8
𝐸𝐿 +

5
8
𝐸𝑇 

(7)  

The Young’s moduli of PHBH and glass fiber used for the Halpin-Tsai equations 4 and 5 

are listed in Table 2.2. For equation 6, the average fiber length measured was used as a 

length of fiber. 

Figure 2.6 illustrates predicted Young’s modulus 𝐸𝑟𝑎𝑛𝑑𝑜𝑚 of PHBH5.6 (Figure 2.6a) and 

PHBH11.1 (Figure 2.6b) composites as a function of volume fraction of fiber, together 

with the experimental values (see Figure 2.5a). The predictions agree well with the 

experimental results, the differences between them being less than 10% for both 

PHBH5.6 and PHBH11.1 composites at all the volume fractions of fibers, with the only 

exception being PHBH5.6 composites with 23 vol% fiber. 
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(a)      (b) 

Figure 2.6 Young’s modulus predicted by Halpin-Tsai and Tsai-Pagano equations 

for (a) PHBH5.6 and (b) PHBH11.1 composites 

2.3.4 Prediction of strength 

Ultimate tensile strength of glass fiber reinforced PHBH composites manufactured in this 

study was predicted using the Kelly-Tyson [29] and Bowyer-Bader models [30–33]. 

Strength of an aligned short-fiber composite material can be predicted using the Kelly-

Tyson model [29] as follows: 

 𝜎𝑢𝑐 = �
𝜏𝐿
𝑑 �

𝑉𝑓 + 𝜎𝑚�1 − 𝑉𝑓�          𝑓𝑜𝑟   𝐿 < 𝐿𝑐 
(8)  

 𝜎𝑢𝑐 = �1 −
𝐿𝑐
2𝐿�

𝜎𝑓𝑉𝑓 + 𝜎𝑚′ �1 − 𝑉𝑓�         𝑓𝑜𝑟   𝐿 ≥ 𝐿𝑐 (9)  



27 

 

where 𝑑  is fiber diameter, 𝜏  is shear stress at the fiber-matrix interface, 𝜎𝑓  is fiber 

strength, 𝜎𝑚 is matrix strength, 𝜎𝑚′  is the stress carried by the matrix at the fiber failure 

strain, L is fiber length, and 𝐿𝑐 �= 𝜎𝑓𝑑
2𝜏
�  is the critical fiber length, which is necessary for 

maximum stress in a fiber to reach the strength of fiber. The Kelly-Tyson model assumes 

that the matrix is rigid-plastic in shear, and that normal stress of fiber at the fiber ends is 

negligible and increases linearly towards the middle of the fiber, reaching a plateau when 

the distance from the ends is larger than 1/2𝐿𝑐. 

If a composite material has fibers with different length [34,35] and/or orientation [35,36], 

the equations 8 and 9 can be modified, and tensile strength 𝜎𝑢𝑐 of the composite material 

can be expressed as follows [35]: 

 
𝜎𝑢𝑐 = 𝜂0 � � �

𝜏𝐿𝑖
𝑑 �𝑉𝑖

𝐿𝑖=𝐿𝑐

𝐿𝑖=𝐿𝑚𝑖𝑛

+ � �1 −
𝐿𝑐
2𝐿𝑗

�

𝐿𝑗=𝐿𝑚𝑎𝑥

𝐿𝑗=𝐿𝑐

𝜎𝑓𝑉𝑗�

+ 𝜎𝑚′ (1 − 𝑉𝑓) 

(10)  

where 𝜂0 is the fiber orientation factor, 𝑑 is fiber diameter, 𝜏 is the shear stress at the 

fiber-matrix interface, 𝜎𝑓 is fiber strength, 𝜎𝑚′  is the stress carried by the matrix at the 

fiber failure strain, 𝐿𝑖 and 𝐿𝑗 are the length of fibers having volume fractions 𝑉𝑖 and 𝑉𝑗. 

Bowyer and Bader [30–33] extended equation 10 to model a stress-strain curve of the 

composite material prior to failure. They proposed the critical fiber length 𝐿𝑒, which is 

strain dependent, expressed as follows: 
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 𝐿𝑒 =  
𝐸𝑓𝜖𝑐𝑑

2𝜏
 

(11)  

𝐿𝑒 is the fiber length necessary for maximum strain in a fiber to reach the matrix strain at 

a given composite strain 𝜖𝑐 . A stress-strain relationship of the composite material is 

expressed as follows: 

 
𝜎𝑐 = 𝜂0 � �

𝜏𝐿𝑖𝑉𝑖
𝑑

𝐿𝑖=𝐿𝑒

𝐿𝑖=𝐿𝑚𝑖𝑛

+ � 𝐸𝑓𝜖𝑐 �1 −
𝐸𝑓𝜖𝑐𝑑
4𝐿𝑗𝜏

�

𝐿𝑗=𝐿𝑚𝑎𝑥

𝐿𝑗=𝐿𝑒

𝑉𝑗�

+ 𝜎𝑚′ (1 − 𝑉𝑓) 

(12)  

This model can be simplified to 𝜎𝑐 = 𝜂0{𝑋 + 𝑌} + 𝑍, where X is the stress contribution 

from the subcritical fibers, Y is the stress contribution from the supercritical fibers, and Z 

is the stress contribution from the matrix. In the Bowyer-Bader model, the stress 

contribution from matrix was calculated from Young’s modulus of the matrix and strain 

of the composite material. However, a stress-strain curve of many thermoplastics, 

including PHBH used in this study, is non-linear even at a low strain. Therefore, as 

suggested by Thomason [33], 𝜎𝑚′  was obtained directly from the stress-strain curve of 

neat PHBH at the strain of the composite material. 

In order to predict tensile strength, 𝜎𝑢𝑐, of the composite material using equation 10, the 

parameters 𝜂0 and 𝜏 need to be identified. In this study, the iterative method that Bowyer 

and Bader proposed [30,37] was used, which assumes that 𝜂0 is independent of strain and 

constant for all fiber lengths, and that interfacial shear stress is independent of loading 

angle.  The method is summarized as follows: 
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Step 1: The ratio R was determined using equation 13  

 𝑅 =
𝜎1 − 𝑍1
𝜎2 − 𝑍2

 (13)  

where 𝜎1 and 𝜎2 are the tensile stress of the composite material, and 𝑍1 and 𝑍2 are the 

tensile stress of the matrix, at two selected strains, 𝜀1 and 𝜀2. These stress values were 

obtained from the respective stress-strain curves. 

Step 2: A value for 𝜏 was chosen arbitrarily and the critical fiber length at the strains 𝜀1 

and 𝜀2 were calculated using equation 11. In this study, strains corresponding to 1/3 and 

2/3 of the composite strength were selected as the strains 𝜀1 and 𝜀2. 

Step 3: The fiber contributions 𝑋1 and 𝑌1 at the strain 𝜀1 as well as 𝑋2 and 𝑌2 at the strain 

𝜀2 were calculated. In this study, the volume fraction of fibers (𝑉𝑖 or 𝑉𝑗) with length 𝐿𝑖 or 

𝐿𝑗 was calculated using fiber length frequency distribution data (see Figure 2.1). Ratio of 

fiber contribution 𝑅′ was calculated using equation 14. 

 𝑅′ =
𝑋1 + 𝑌1
𝑋2 + 𝑌2

 (14)  

Step 4: The previously assumed 𝜏 was adjusted until 𝑅 = 𝑅′. 𝜂0 was then calculated by 

substituting the 𝜏 value into equation 12, and finally strength of the composite material 

was predicted using equation 10. Table 2.2 lists strength of fiber 𝜎𝑓 used in the equation 

10. 

Figure 2.7 demonstrates interfacial shear stress of PHBH5.6 and PHBH11.1 composites 

as a function of volume fraction of fiber. The figure shows that interfacial shear stress of 
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PHBH5.6 was slightly higher than that of PHBH11.1 at a given fiber volume fraction. 

Interfacial shear stress can be affected by various factors, such as residual stress due to 

differences between thermal expansion coefficients of matrix and fiber, chemical 

interaction between fiber and matrix, and friction between fiber and matrix [33]. As to be 

shown in the results of degree of crystallinity, PHBH5.6 composites had higher degree of 

crystallinity than PHBH11.1 composites, and the higher degree of crystallinity of 

PHBH5.6 composites may have caused greater matrix shrinkage during the solidification 

process, which thereby may have contributed to the higher interfacial shear stress.  

Nevertheless, further study is needed to test this speculation. The figure also shows that 

interfacial shear stress remained relatively constant with the change of fiber volume 

fraction. 
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Figure 2.7 Interfacial shear stress of PHBH5.6 and PHBH11.1 composites 
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Figure 2.8 depicts fiber orientation factor of PHBH5.6 and PHBH11.1 composites as a 

function of volume fraction of fiber. Fiber orientation factors of both PHBH5.6 and 

PHBH11.1 composites decreased from approximately 0.3 to 0.2 with the increase of 

volume fraction of fiber. As can be seen from equations 10 and 12, the results suggest 

that the efficiency of fiber reinforcement decreased with fiber volume fraction. It is noted 

that the fiber orientation factor is an indirect fitting parameter obtained from a 

macroscopic stress-strain curve and is affected by other factors such as variation of 

strength of each fiber, imperfect interfacial bonding, and fiber end effects (i.e., normal 

stress at fiber ends), which are commonly found in short fiber composites [37]. 
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Figure 2.8 Fiber orientation factor of PHBH5.6 and PHBH11.1 composites 

Figure 2.9 shows strength predicted by the Bowyer-Bader method for PHBH5.6 (Figure 

2.9a) and PHBH11.1 (Figure 2.9b) composites as a function of volume fraction of fiber. 

The predicted values agree reasonably well with the experimental values for both 
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PHBH5.6 and PHBH11.1 composites. However, the difference between the predicted and 

experimental values was greatest at the greatest volume fraction of fiber (i.e., 23 vol%) 

for both PHBH5.6 and PHBH11.1 composites. One possible reason for the 

overestimation is that the strength of fiber used in the prediction was higher than that of 

fibers in the composite specimens. Thomason et al. demonstrated the wide range of fiber 

strength to be found in fibers used in glass mat thermoplastic (GMT). Differences in fiber 

strength were attributed to different levels of processing damage (from fiber–fiber contact 

and fiber-equipment wall contact) and fiber sizing protection efficiency [38]. Another 

possible reason for the overestimation is that voids at the interface and/or surface defects 

of fiber reduced the capability of stress transfer from the matrix to the fiber. 
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Figure 2.9 Strength predicted by the Bowyer-Bader method for (a) PHBH5.6 and 

(b) PHBH11.1 composites 



33 

 

2.3.5 Thermal properties 

Figure 2.10 and Figure 2.11 depict the first and second DSC heating curves of PHBH5.6 

and PHBH11.1 composites, respectively. In the first heating curve, PHBH5.6 composites 

(Figure 2.10a) showed two melting temperatures: Tm1 and Tm2, where Tm1 < Tm2. 

PHBH11.1 composites (Figure 2.10b), however, had one additional melting temperature 

Ta, which is lower than Tm1 and Tm2 (in the range between 45 to 52ºC). The melting 

temperature Ta observed in PHBH11.1 composites originates from the melting of small 

imperfect crystallites that form during annealing at room temperature [39–41]. Since 

there is no annealing period at room temperature between the cooling and second heating 

scans, this annealing peak was not observed in the second heating curve (Figure 2.11a). 

The melting peak area at Ta was small and its contribution to the overall degree of 

crystallinity was insignificant. The melting temperature Tm1 is related to the melting of 

crystals formed originally while the melting temperature Tm2 is associated with the 

melting of crystals that were re-crystallized during the heating process [42,43]. 

Degree of crystallinity 𝑋𝑐  of injection molded specimens was calculated from the first 

and second heating DSC curves and the following equation: 

 𝑋𝑐 =
𝛥𝐻𝑚 − 𝛥𝐻𝑐𝑐
𝛥𝐻𝑓(1 −𝑊𝑓)

 ×  100% (15)  

where 𝛥𝐻𝑚  is enthalpy of fusion; 𝛥𝐻𝑐𝑐  is enthalpy of cold crystallization; 𝛥𝐻𝑓  is 

enthalpy of fusion of fully crystalline PHB, which is taken to be 146 J/g [44]; and 𝑊𝑓 is 

the weight fraction of fiber. 
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Figure 2.10 First DSC heating curves of (a) PHBH5.6 and (b) PHBH11.1 composites 

-20 0 20 40 60 80 100 120 140 160 180

He
at

 F
lo

w 
(E

xo
  →

 ) 23%

16%

10%

5%

Neat

 

 

Temperature (°C)
 

-20 0 20 40 60 80 100 120 140 160 180

He
at

 F
lo

w 
(E

xo
  →

 )
  

 

23%

16%

10%
5%

Neat

Temperature (°C)
 

(a)      (b) 

Figure 2.11 Second DSC heating curves of (a) PHBH5.6 and (b) PHBH11.1 

composites 
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The thermal properties obtained from the first and second DSC heating curves are 

summarized in Table 2.3 and Table 2.4, respectively. The tables show that neat PHBH5.6 

had higher melting temperatures Tm1 and Tm2 as well as degree of crystallinity 𝑋𝑐 than 

neat PHBH11.1, which suggests that the secondary comonomer unit 3HH disturbed the 

poly(3-hydroxybutyrate)-type crystal lattice and suppressed crystallization [43]. It should 

be noted that the addition of glass fibers regardless of their content little affected degree 

of crystallinity of both PHBH5.6 and PHBH11.1. Additionally, for PHBH11.1 

composites, the degree of crystallinity 𝑋𝑐 obtained from the first heating curves (Figure 

2.10b) was much higher than that obtained from the second heating curves (Figure 

2.11b), which suggests that secondary crystallization occurred during solidification in 

injecti4on molding and during the two days of annealing at room temperature. 

Furthermore, Table 2.4 shows that the addition of glass fibers, regardless of their content, 

little affected glass transition temperature Tg and cold crystallization temperature Tcc in 

both PHBH5.6 composites and PHBH11.1 composites. 
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Table 2.3 Thermal properties of PHBH5.6 and PHBH11.1 composites characterized 

from the first DSC curves 

Sample Fiber volume 

fraction (%) 

Ta 

(ºC) 

∆Ha 

(J/g) 

Tm1 

(ºC) 

Tm2 

(ºC) 

∆Hm
1st 

(J/g) 

Xc
1st 

(%) 

PHBH5.6 0 - - 131.4 145.8 56.9 39.0 

PHBH5.6 5 - - 132.5 146.4 51.8 39.4 

PHBH5.6 10 - - 131.6 146.9 45.4 38.9 

PHBH5.6 16 - - 130.7 146.4 39.9 39.0 

PHBH5.6 23 - - 130.9 145.6 33.7 38.5 

PHBH11.1 0 46.8 0.6 116.0 130.7 37.5 26.1 

PHBH11.1 5 44.5 0.4 114.3 128.4 34.9 26.9 

PHBH11.1 10 47.0 1.0 114.4 129.1 29.0 25.7 

PHBH11.1 16 42.7 0.1 113.8 128.0 26.5 26.0 

PHBH11.1 23 42.9 0.1 113.6 127.6 24.0 27.5 
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Table 2.4 Thermal properties of PHBH5.6 and PHBH11.1 composites characterized 

from the second DSC heating curves 

 

Figure 2.12 illustrates DSC cooling curves of PHBH5.6 (Figure 2.12a) and PHBH11.1 

(Figure 2.12b) composites. PHBH5.6 composites showed crystallization temperature 

around 50oC, but PHBH11.1 composites did not, which indicates that the crystallization 

Sample Fiber 

volume 

fraction (%) 

Tg 

(ºC) 

Tcc 

(ºC) 

Tm1 

(ºC) 

Tm2 

(ºC) 

∆Hcc 

(J/g) 

∆Hm
2nd 

(J/g) 

Xc
2nd

 

(%) 

PHBH5.6 0 1.5 53.8 126.1 145.8 8.6 54.4 31.4 

PHBH5.6 5 1.4 54.4 125.3 146.2 18.3 56.7 29.2 

PHBH5.6 10 0.9 53.6 125.0 145.4 10.2 46.1 30.8 

PHBH5.6 16 0.7 53.9 125.3 144.6 8.3 40.4 31.3 

PHBH5.6 23 0.5 54.0 124.9 144.6 10.4 36.6 30.0 

PHBH11.1 0 0.0 81.5 113.6 131.5 3.4 5.0 1.1 

PHBH11.1 5 -0.3 83.1 114.4 131.1 4.9 6.4 1.2 

PHBH11.1 10 -0.2 81.4 113.1 131.5 2.7 3.9 1.0 

PHBH11.1 16 -0.2 82.1 113.4 131.3 5.1 6.2 1.1 

PHBH11.1 23 -0.6 82.4 115.7 131.1 3.4 4.5 1.2 
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rate decreased with the increase of 3HH content and that there was not enough time for 

crystals to form in PHBH11.1 composites during the cooling process. It is noted that 

another peak was observed next to the crystallization peak in PHBH5.6 composites with 

16 and 23 vol% of fiber. Further study is needed to investigate this peak. 
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Figure 2.12 DSC cooling curves of (a) PHBH5.6 and (b) PHBH11.1 composites 

2.3.6 Non-isothermal crystallization kinetics 

Since crystallization temperature was not observed in PHBH11.1, crystallization kinetics 

of only PHBH5.6 composites were analyzed. The relative degree of crystallinity as a 

function of temperature can be calculated using the DSC cooling curves and the 

following equation [45]: 
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 𝑋(𝑇) =
∫ �𝑑𝐻𝑐𝑑𝑇 �𝑑𝑇
𝑇
𝑇0

∫ �𝑑𝐻𝑐𝑑𝑇 �𝑑𝑇
𝑇∞
𝑇0

 (16)  

where 𝑇0 and 𝑇∞ represent onset and end-crystallization temperatures, respectively. 

Crystallization kinetics under isothermal conditions are often analyzed using the 

following Avrami equation [46]: 

 𝑋(𝑡) = 1 − exp(−𝑧𝑡𝑡𝑛) (17)  

where 𝑋(𝑡) is the relative degree of crystallinity, 𝑛 is the Avrami exponent that depends 

on the nature of the nucleation mechanism and growth geometry of crystals, 𝑧𝑡  is the 

crystallization rate constant that involves both nucleation and growth rate parameters, and 

t is the time. 

In non-isothermal crystallization processes, the relationship between crystallization time 

𝑡 and temperature 𝑇 is given by: 

 𝑡 =
|𝑇0 − 𝑇|

𝜙
 (18)  

By taking into account the time-temperature relationship of equation 18, equation 17 can 

be transformed into the double-logarithmic form, 

 log[−ln(1 − 𝑋(𝑇))] = log𝑍𝑡 + 𝑛 log 𝑡 (19)  

The parameters n (slope) and 𝑍𝑡  (intercept) were determined by plotting log[−ln(1 −

𝑋(𝑇))] against log 𝑡.  
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Jeziorny [47] pointed out that the composite rate constant 𝑧𝑡  should be adequately 

corrected to take into account the cooling rate of the polymer. Assuming constant cooling 

rate 𝜙, the parameter characterizing kinetics of non-isothermal crystallization was given 

as follows: 

 log𝑍𝑐 =
log𝑍𝑡
𝜙

 (20)  

The crystallization half-time 𝑡1/2, which is defined as the time taken from the onset of the 

crystallization until 50% completion, was calculated as follows: 

 𝑡1/2 = �
𝑙𝑛2
𝑍𝑐
�
1
𝑛

 
(21)  

 

Figure 2.13 shows Avrami plots, i.e., plots of log[−ln(1 − 𝑋(𝑇))]  versus log 𝑡 , of 

PHBH5.6 composites. All of the composites showed a linear line and there was no 

significant shift of the lines. Kinetic parameters determined by the Avrami equation with 

Jeziorny’s correction are summarized in Table 2.5. The Avrami constant 𝑛 did not change 

until the fiber volume fraction of 10%, but decreased with the further addition of glass 

fiber (16 and 23 vol%). The decrease of 𝑛 value indicates the change in the nucleation 

mechanism and growth geometry of crystals, which may be related to the appearance of 

two crystallization peaks in the DSC cooling curves for PHBH5.6 with 16 and 23 vol% 

fiber (Figure 2.12). Furthermore, the addition of glass fiber did not affect the 𝑧𝑐 values 

and crystallization half-time of PHBH5.6 regardless of the amount of fiber added. 
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Figure 2.13 Avrami plots of PHBH5.6 composites 

Table 2.5 Thermal properties of PHBH5.6 composites characterized from the DSC cooling 

curves and non-isothermal kinetic parameters calculated from the modified Avrami 

equation 

Sample Fiber volume 

fraction (%) 

To 

(°C) 

Tc 

(°C) 

∆Hc 

(J/g) 

Zc n t1/2 

(min) 

PHBH5.6 0 92.2 51.0 33.1 0.28 2.95 1.36 

PHBH5.6 5 88.5 49.2 22.2 0.26 3.09 1.37 

PHBH5.6 10 91.4 50.0 26.4 0.29 2.92 1.35 

PHBH5.6 16 94.0 49.1, 69.4 26.1 0.31 2.66 1.35 

PHBH5.6 23 92.5 48.6, 66.6 15.2 0.30 2.65 1.38 
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2.4 Conclusion 

The effects of glass fiber on the mechanical and thermal properties of PHBH with 3HH 

molar contents of 5.6% and 11.1% were investigated.  PHBH composite specimens were 

successfully manufactured through melt-compounding and injection molding processes. 

Tensile test results suggested that the addition of glass fiber significantly improved the 

Young's modulus and strength of both PHBH5.6 and PHBH11.1. Young's modulus 

increased monotonically, in a linear fashion, with increasing fiber content until 10 vol% 

fiber loading, after which strength stopped improving. Young's modulus of PHBH 

composites was compared with values predicted from the Halpin-Tsai and Tsai-Pagano 

equations while strength of PHBH composites was predicted using numbers from the 

modified Kelly-Tyson model with the Bowyer-Bader method. Both predictions agreed 

reasonably well with experimental values. DSC results suggested that the addition of 

glass fiber had little effect on the degree of crystallinity of PHBH5.6 and PHBH11.1. 

Furthermore, analysis of non-isothermal crystallization kinetics of PHBH5.6, using the 

modified Avrami equation, showed that the addition of glass fiber had little effect on the 

crystallization half-time. 
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Chapter 3  

3 Effects of Thermoplastic Elastomers on Mechanical and 

Thermal Properties of Glass Fiber Reinforced Poly(3-

hydroxybutyrate-co-3-hydroxyhexanoate) 

3.1 Introduction 

Poly(hydroxyalkanoates) (PHAs) are biodegradable and biocompatible plastics, and are 

commonly used in the packaging [1,2] and medical fields [1,2] (especially in tissue 

engineering [3,4]). PHAs are also known as environmentally friendly bioplastics because 

their production, which uses microorganisms, has relatively low CO2 emission and is 

independent from petroleum sources [5–7]. Poly(3-hydroxybutyrate) (PHB) is a 

homopolymer and is one of the most well-studied PHAs. However, due to its high degree 

of crystallinity, PHB is brittle [5,6,8], which limits its industrial applications. To modify 

the physical properties of PHB, different types of comonomers have been introduced into 

PHB to form a copolymer [9,10]. 

Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) is one of the copolymers of 

PHB. The addition of the 3-hydroxyhexanoate (3HH) unit broadens process temperature 

as well as increases ductility, but decreases modulus and strength [11–13]. In our recent 

study [14], we demonstrated that the addition of glass fibers is an effective method for 

improving both Young's modulus and tensile strength of PHBH. However, the addition of 

glass fibers reduced ductility and energy absorbed in fracture of PHBH. 
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One way to improve ductility and/or energy absorbed in fracture of glass fiber reinforced 

composite materials is addition of thermoplastic elastomers. Various thermoplastic 

elastomers have been added to glass fiber reinforced composite materials [15–26]. 

Although incorporation of a thermoplastic elastomer decreases strength and modulus 

[25,27], it is possible to achieve a balance in strength, modulus, and toughness of glass 

fiber reinforced polymer composites. Toughening mechanisms of plastic/thermoplastic 

elastomer blends are associated with plastic deformation, such as crazing and/or shear 

yielding, around thermoplastic elastomer particles. On the other hand, toughening 

mechanisms of glass fiber/plastic composites include crack deflection by fiber, 

fiber/matrix debonding, fiber bridging of cracks, and fiber pull-out [26]. In general, the 

toughening mechanisms of glass fiber/plastic/thermoplastic elastomer hybrid composites 

involve a combination of these energy absorption mechanisms. 

Styrene-ethylene-butadiene-styrene (SEBS) and maleic anhydride grafted styrene-

ethylene-butadiene-styrene (SEBS-MA) are two thermoplastic elastomers that have been 

applied to glass fiber reinforced polypropylene (PP) [15–17] and nylon [21–24]. Tjong et 

al. [16] reported that the addition of SEBS and SEBS-MA increased notched Izod impact 

strength of glass fiber reinforced PP. Also, they found that SEBS promoted the 

crystallization of PP by acting as active nucleation sites, but SEBS-MA retarded the 

crystallization of PP. Similarly, Karayannidis et al. [21] reported that the addition of 

SEBS-MA increased notched Izod impact strength of glass fiber reinforced nylon-6,6. 

Additionally, they found that nylon-6,6 and SEBS-MA are immiscible and that SEBS-

MA slightly decreased the degree of crystallinity of nylon-6,6. 
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In this study, these two types of thermoplastic elastomers, SEBS and SEBS-MA, were 

added to improve ductility and energy absorbed in fracture of glass fiber reinforced 

PHBH composites. To the authors’ knowledge, this is the first study to report on 

toughening of glass fiber reinforced PHBH composites using thermoplastic elastomers. 

Since SEBS and SEBS-MA are immiscible with PHBH, as shown in the results from 

differential scanning calorimetry (DSC), it is expected that PHBH/glass 

fiber/thermoplastic elastomer composites will have one of the following morphologies: 

(a) glass fibers and rubber particles separately dispersed in the PHBH matrix, (b) fibers 

encapsulated by rubber, or (c) a mixture of (a) and (b). This study discusses the 

relationships between the morphology and mechanical properties, and also investigates 

the effects of SEBS and SEBS-MA on thermal properties, including crystallization 

kinetics, of glass fiber reinforced PHBH composites. 

3.2 Experimental 

3.2.1 Materials 

This study used two types of PHBH, supplied by Kaneka Corporation. One type 

(hereafter referred to as PHBH5.6) contained 5.6 mol% 3HH and had a weight-average 

molecular weight of 555,000 g/mol. The other type (hereafter referred to as PHBH11.1) 

contained 11.1 mol% 3HH and had a weight-average molecular weight of 622,000 g/mol. 

The glass fibers (GF) used were chopped strand glass fibers (OCW-272, supplied by 

Owens Corning), with a diameter of 10 μm and a length ranging from 4 to 4.5 mm. Two 

types of thermoplastic elastomer (TE) were employed in this study. The first one 

(hereafter referred to as SEBS) was a SEBS copolymer (G1652M, Kraton Polymers) with 
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a polystyrene content of 30 wt%. The other (hereafter referred to as SEBS-MA) was 

maleated SEBS copolymer (FG1901X, Kraton Polymers) with a polystyrene content of 

30 wt%. 

3.2.2 Fabrication of composites 

PHBH was dried at 80°C using a convection oven to eliminate possible moisture. 

Composite samples were prepared using a mini-twin-screw extruder (HAAKE MiniLab). 

PHBH, GF, and TE were compounded with conical co-rotating screws at 100 rpm for 10 

minutes. The degree of fill in the extruder was set to 100% and barrel temperature was set 

to 150°C. The resulting molten composite was transferred to a preheated mini-injection 

molding machine (HAAKE MiniJet), which then injected the melt into a mold with a 240 

bar injection pressure. Injection cylinder and mold temperatures were set to 150°C and 

70°C, respectively. In this study, six types of composite material were prepared. 

Information on the composite materials is summarized in Table 3.1. GF and TE contents 

were set to 20 wt% and 30 wt%, respectively. 

3.2.3 Measurement of fiber length 

To measure length of glass fibers in an injection-molded specimen, PHBH and TE in the 

composite specimen were burnt off in a convection oven at 600°C for 30 minutes. The 

leftover ash and fibers were dispersed in water to extract fibers. A few drops of fiber-

water were then cast onto a glass slide. Fiber length was measured using an optical 

microscope (Laborlux 11 POL) equipped with a digital camera, and imaging analysis 

software (Infinity Analyze). Lengths of about 1000 fibers were measured for each 



53 

 

specimen. Based on the resulting data, fiber length frequency distribution and weighted 

average fiber length were obtained. 

Table 3.1 Information on composite materials prepared in this study 

Name PHBH with 

5.6 mol% 

of 3HH 

(wt%) 

PHBH with 

11.1 mol% 

of 3HH 

(wt%) 

Glass Fiber 

(wt%) 

SEBS 

(wt%) 

SEBS-MA 

(wt%) 

PHBH5.6/GF 100 
 

0 0 0 

PHBH5.6/GF/SEBS 50 
 

20 30 0 

PHBH5.6/GF/SEBS-MA 50 
 

20 0 30 

PHBH11.1/GF 
 

100 0 0 0 

PHBH11.1/GF/SEBS 
 

50 20 30 0 

PHBH11.1//GF/SEBS-MA 
 

50 20 0 30 

3.2.4 Characterization of mechanical properties 

Tensile and notched Izod impact tests were conducted to evaluate the mechanical 

properties of the composite materials. The tensile tests were performed on the Type V 

specimen as per ASTM D638 standard, using Instron 5943 with a 1 kN load cell. 

Crosshead speed was 10 mm/min for all specimens. Notched Izod impact tests, based on 

the ASTM D256 procedure, were executed using a conventional pendulum-type Izod 

impact tester (92T, Tinius Olsen). The specimens on the face of the notch (Test Method 
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A in the ASTM D256) were impacted by the striker. At least five specimens were used in 

each of the mechanical tests. 

3.2.5 Observation of fracture surface 

Fracture surface was observed by scanning electron microscopy (SEM). The fracture 

surface of tensile and notched Izod impact specimens was coated with a thin layer of 

osmium using an osmium plasma coater (OPC80T, Filgen) and then examined using a 

scanning electron microscope (LEO 1540XB, Zeiss). 

3.2.6 Characterization of thermal properties 

Thermal properties of the composite materials were characterized by DSC, using a TA 

Q200 differential scanning calorimeter. A DSC sample of 8 to 10 mg was prepared by 

cutting from the tensile specimen. The sample was heated from room temperature to 

190ºC at a rate of 10ºC/min and kept at 190ºC for 3 minutes to erase the thermal history. 

The sample was then cooled to -40ºC at a rate of 5ºC/min. Lastly, the sample was heated 

to 190ºC at a rate of 10ºC/min. 

3.3 Results and Discussion 

3.3.1 Fiber length frequency distribution and average fiber length 

Figure 3.1 and Figure 3.2 show fiber length frequency distribution of representational 

injection-molded PHBH5.6/GF and PHBH11.1/GF composites, respectively, in three 

conditions: PHBH/GF without thermoplastic elastomers (Figure 3.1a and Figure 3.2a), 

with SEBS (Figure 3.1b and Figure 3.2b), and with SEBS-MA (Figure 3.1c and Figure 
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3.2c). For both PHBH5.6 and PHBH11.1 composites, the addition of SEBS or SEBS-MA 

was associated with the histogram shifting slightly to the left (i.e., towards shorter fiber 

length), and with a slight decrease in average fiber length in the composite specimens, as 

summarized in Figure 3.3. 

Figure 3.4 depicts the torque of the drive motor in the mini-twin-screw extruder during 

the compounding of PHBH, GF, and TE (i.e., SEBS or SEBS-MA) as a function of time. 

A torque value of a drive motor in an extruder during compounding can be related to melt 

viscosity of the material being compounded, if temperature and rotational speed are 

constant. A lower torque can be the result of lower viscosity, due to its resulting lower 

resistance to rotation of screw shafts [28]. The addition of SEBS and SEBS-MA 

increased torque, and therefore presumably viscosity as well, of both PHBH5.6/GF 

(Figure 3.4a) and PHBH11.1/GF (Figure 3.4b). Greater melt viscosity led to shorter fiber 

lengths because greater melt viscosity results in higher bending forces exerted on fibers 

during compounding and injection molding, leading to amplified damage of fibers [29].  
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Figure 3.1 Fiber length frequency distribution for PHBH5.6/GF composites with (a) 

no thermoplastic elastomers, (b) SEBS, and (c) SEBS-MA 
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Figure 3.2 Fiber length frequency distribution for PHBH11.1/GF composites with 

(a) no thermoplastic elastomers, (b) SEBS, and (c) SEBS-MA 
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Figure 3.3 Average length of fibers in the injection-molded composite specimens 
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Figure 3.4 Torque versus time for (a) PHBH5.6/GF-based composites and (b) 

PHBH11.1/GF-based composites at the extruder barrel temperature of 150°C 
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The torque for pure SEBS and SEBS-MA as a function of time is shown in Figure 3.5. 

Neither of the thermoplastic elastomers could be processed at the extruder barrel 

temperature of 150°C due to their high viscosities. Therefore, the torque curves were 

obtained at the higher temperature of 220°C. The figure shows that the torque for SEBS 

is about two times higher than that for SEBS-MA. Nevertheless, the SEBS-based and 

SEBS-MA-based composites had similar torque values (Figure 3.4a and Figure 3.4b). 

This finding might be due to SEBS-MA having better adhesion with glass fibers than 

SEBS, as will be discussed later together with descriptions of fracture surface SEM 

observations. Similar phenomena were observed in PP/mica composites [30]. 
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Figure 3.5 Torque versus time for SEBS and SEBS-MA at the extruder barrel 

temperature of 220°C 

It is also noted that the average fiber length of PHBH5.6 was slightly longer than that of 

PHBH11.1 (see Figure 3.3). The relative difference in average fiber length is most likely 

due to PHBH11.1 having a relatively higher molecular weight and, thereby, greater 

viscosity than PHBH5.6 [14]. 
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3.3.2 Tensile properties 

Figure 3.6 illustrates typical stress–strain curves of PHBH5.6/GF-based composites 

(Figure 3.6a) and PHBH11.1/GF-based composites (Figure 3.6b) from tensile tests. The 

curves were obtained from PHBH/GF composites without thermoplastic elastomers (i.e. 

neat PHBH/GF composites), with SEBS, and with SEBS-MA. Comparing the tensile test 

results of PHBH/GF composites having different matrices (i.e., PHBH5.6 vs. 

PHBH11.1), it was found that PHBH5.6/GF composites had higher Young’s modulus 

and strength but lower ductility than PHBH11.1/GF composites. This result agrees with 

those reported previously [14], in which PHBH gets softer and more flexible with the 

increase of 3HH content [11]. As to be discussed below, the addition of SEBS and SEBS-

MA also has effects on tensile properties of PHBH/GF composites, but in a different 

manner. 
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Figure 3.6 Stress-strain curves of (a) PHBH5.6/GF-based composites and (b) 

PHBH11.1/GF-based composites 
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Figure 3.7 summarizes the tensile properties of PHBH/GF composites without 

thermoplastic elastomers, with SEBS, and with SEBS-MA. Young’s modulus is shown in 

Figure 3.7a. The Young’s modulus of both PHBH5.6/GF and PHBH11.1/GF composites 

decreased with the addition of SEBS and SEBS-MA, but the Young’s modulus of SEBS-

based PHBH/GF composites was higher than that of SEBS-MA-based PHBH/GF 

composites. Figure 3.7b shows strength. Similar to the trend found in the Young’s 

modulus, the addition of SEBS and SEBS-MA decreased the strength of both 

PHBH5.6/GF and PHBH11.1/GF composites, and strength of SEBS-based PHBH/GF 

composites was higher than that of their SEBS-MA-based counterparts. Figure 3.7c 

shows strain at failure. The addition of SEBS had little effect on failure strain of both 

PHBH5.6/GF and PHBH11.1/GF composites, but the addition of SEBS-MA significantly 

increased the failure strain of both PHBH5.6/GF and PHBH11.1/GF composites. 

  



62 

 

0

1

2

3

4

 PHBH5.6            PHBH11.1

 

 

Yo
un

g'
s 

M
od

ul
us

 (G
Pa

)

G
F/

SE
BS

-M
A

G
F/

SE
BS

G
F

G
F/

SE
BS

-M
A

G
F/

SE
BS

G
F

0

10

20

30

40

50

 PHBH5.6            PHBH11.1

 

 

Te
ns

ile
 S

tre
ng

th
 (M

Pa
)

G
F/

SE
BS

-M
A

G
F/

SE
BS

G
FG
F/

SE
BS

-M
A

G
F/

SE
BS

G
F

 

(a)      (b) 

0

5

10

15

20

25

 PHBH5.6            PHBH11.1

 

 

St
ra

in
 a

t F
ai

lu
re

 (%
)

G
F/

SE
BS

-M
A

G
F/

SE
BS

G
F

G
F/

SE
BS

-M
A

G
F/

SE
BS

G
F

 

(c) 

Figure 3.7 Mechanical properties of PHBH/GF composites without thermoplastic 

elastomers, with SEBS, and with SEBS-MA: (a) Young’s modulus, (b) Strength, and 

(c) Strain at failure 

 



63 

 

Photographs of specimens after tensile tests under transmitted light are presented in 

Figure 3.8. The stress-whitening zone, which is a phenomenon generated from the plastic 

deformation and appears to be darker than the un-deformed region due to opacity of the 

zone, can be observed in PHBH/GF composites. Comparing the stress-whitening zones of 

PHBH5.6/GF and PHBH11.1/GF composites without thermoplastic elastomers, it can be 

seen that a small number of stress-whitening bands were developed in PHBH5.6/GF 

composites, whereas many stress-whitening bands were generated in PHBH11.1/GF 

composites. The addition of SEBS and SEBS-MA had little effect on the number of 

stress-whitening bands for both PHBH5.6/GF and PHBH11.1/GF composites. However, 

SEBS-MA created more stress-whitening bands as well as a large stress-whitening zone 

near the fracture surface. The variation of total size of stress-whitening zone is 

qualitatively consistent with the variation of the failure strain. 

Figure 3.9 demonstrates fracture energy, which is defined by the area enclosed by the 

load-displacement curve, of the PHBH/GF composites without thermoplastic elastomers, 

with SEBS, and with SEBS-MA. The addition of SEBS and SEBS-MA decreased the 

fracture energy of PHBH5.6/GF composites, with the fracture energy with SEBS-MA 

being higher than that with SEBS. The decrease in the fracture energy of PHBH5.6/GF 

composites by the SEBS and SEBS-MA addition was mainly due to the decrease of 

tensile strength (see Figure 3.7b). On the other hand, for PHBH11.1/GF composites, the 

addition of SEBS decreased fracture energy, but the addition of SEBS-MA increased 

fracture energy. Although the SEBS and SEBS-MA addition decreased tensile strength 

(see Figure 3.7b), the SEBS-MA addition significantly increased failure strain (see 
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Figure 3.7c). As a result, the SEBS-MA addition increased fracture energy of 

PHBH11.1/GF composites, which will be further discussed below. 
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Figure 3.8 Photographs of PHBH/GF composite specimens after tensile tests under 

transmitted light 
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Figure 3.9 Fracture energy of PHBH/GF composites without thermoplastic 

elastomers, with SEBS, and with SEBS-MA 

Figure 3.10 provides representational SEM micrographs of tensile specimen fracture 

surfaces. A comparison between fracture surfaces of PHBH5.6/GF and PHBH11.1/GF 

composites without thermoplastic elastomers shows that they are similar in fiber behavior 

but different in PHBH matrix behavior. Both composites show fiber fracture and fiber 

pullout, with the fiber surface being very smooth. The fracture surface of the PHBH 

matrix, however, is flatter and smoother in PHBH5.6/GF composites than in 

PHBH11.1/GF composites. Additionally, PHBH5.6/GF composites have little plastic 

deformation around fibers, whereas PHBH11.1/GF composites show considerable plastic 

deformation around fibers. 
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Figure 3.10 SEM images of fracture surface of PHBH/GF composite specimens after 

tensile test 

When SEBS and SEBS-MA were added to PHBH5.6/GF and PHBH11.1/GF composites, 

fine particles, uniformly dispersed in the PHBH matrix, were observed on the fracture 

surface, and it is surmised that the particles are SEBS or SEBS-MA phase. However, 

there was a difference in fiber surface between the SEBS-based and SEBS-MA-based 
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PHBH/GF composites. In SEBS-based PHBH/GF composites, the surface of most of the 

fibers was smooth, which is the same phenomenon as was observed in PHBH/GF 

composites without thermoplastic elastomers. In contrast, SEBS-MA-based PHBH/GF 

composites had polymer portions adhering to fibers. These phenomena could be 

explained as follows: the maleic anhydride (MA) groups, which grafted to the central 

ethylene-butylene (EB) chain segment in the SEBS-MA, reacted with the hydroxyl 

groups (OH) on the surface of the glass fibers such that ester bonding and/or hydrogen 

bonding occurred between SEBS-MA and glass fibers during compounding. As a result, 

SEBS-MA bonded with (i.e. adhered to) glass fibers, thereby forming a rubbery 

interfacial layer between glass fibers and PHBH matrix. In other words, glass fibers were 

encapsulated by SEBS-MA. However, encapsulation of glass fibers by SEBS was neither 

observed nor expected, because of the absence of the MA groups in SEBS. Glass fibers 

were in direct contact with both PHBH matrix and SEBS. The SEBS-MA encapsulation 

of glass fibers prevented microcracks generated at the fiber interface from propagating 

through the PHBH matrix, thus providing higher failure strain of the composites. This 

increase led to superior fracture energy and, as to be discussed in the next section, 

notched Izod impact strength. 
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3.3.3 Notched Izod impact strength 

Figure 3.11 depicts notched Izod impact strength of the PHBH/GF composites without 

thermoplastic elastomers, with SEBS, and with SEBS-MA. For PHBH5.6/GF-based 

composites, the notched Izod impact strength was little affected by the addition of SEBS, 

but was increased by the addition of SEBS-MA. For PHBH11.1/GF-based composites, 

the notched Izod impact strength was increased significantly by both SEBS and SEBS-

MA addition, with SEBS-MA-based composites having higher notched Izod impact 

strength than SEBS-based composites. 
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Figure 3.11 Notched Izod impact strength of PHBH/GF composites without 

thermoplastic elastomers, with SEBS, and with SEBS-MA 
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Photographs of specimens after notched Izod impact tests under transmitted light are 

presented in Figure 3.12. The top surface of the specimen is the fracture surface. The 

notch is located on the left of the specimen and the crack propagated from the left to the 

right. Unlike the tensile specimens, no distinct stress-whitening zone was observed in any 

of the PHBH/GF composites. However, the fracture surface of PHBH/GF composites 

with SEBS and SEBS-MA is more curved and rougher than that of the neat PHBH/GF 

composites. 

Figure 3.13 shows representational SEM micrographs of fracture surfaces of notched 

Izod impact specimens. Both PHBH5.6/GF and PHBH11.1/GF composites without 

thermoplastic elastomers showed fiber fracture and fiber pullout, with the surface of fiber 

being very smooth, as well as brittle fracture surface (i.e., flat and smooth) of the PHBH 

matrix. The addition of SEBS and SEBS-MA created very rough fracture surface for both 

PHBH5.6/GF and PHBH11.1/GF composites. Moreover, polymer portions adhered to 

fibers in both SEBS-MA-based PHBH5.6/GF and PHBH11.1/GF composites. It is 

expected that, due to stress concentration, plastic deformation around SEBS and SEBS-

MA particles occurred in the region ahead of the crack. Therefore, compared with 

PHBH/GF composites without thermoplastic elastomers, the thermoplastic elastomer-

containing PHBH/GF composites had more plastic energy absorbed and rough fracture 

surface was generated. Furthermore, SEBS-MA encapsulated glass fibers and thus 

prevented microcracks generated at the fiber interface from propagating through the 

PHBH matrix. 
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Figure 3.12 Photographs of PHBH/GF composite specimens after notched Izod 

impact tests under transmitted light 
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Figure 3.13 SEM images of fracture surface of PHBH/GF composites after notched 

Izod impact tests 
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As tensile testing showed, the addition of SEBS and SEBS-MA decreased fracture energy 

of the PHBH/GF composites in all cases except that of PHBH11.1/GF/SEBS-MA, in 

which fracture energy was increased (see Figure 3.9). In contrast, the addition of SEBS 

and SEBS-MA increased the notched Izod impact strength of the PHBH/GF composites 

in all cases except that of PHBH5.6/GF/SEBS composites, in which notched Izod impact 

strength was little affected (see Figure 3.11). The fracture energy measured from tensile 

tests differs from notched Izod impact strength mainly in three aspects: absence of notch 

in a specimen, use of tensile loading rather than flexural loading, and lower strain rate 

[31]. One explanation for why the effects of the thermoplastic elastomers on fracture 

energy were different from those on notched Izod impact strength could be that the 

addition of SEBS and SEBS-MA decreased the energy needed for crack initiation, but 

increased the energy needed for crack propagation of PHBH/GF composites. The fracture 

energy measured from tensile tests includes the energy needed for both crack initiation 

and crack propagation but, for the composite materials manufactured in this study, energy 

needed for crack initiation contributed to fracture energy more than did energy needed for 

crack propagation. As a result, the addition of SEBS and SEBS-MA decreased fracture 

energy. In contrast, because notched Izod impact strength is more associated with crack 

propagation, the addition of SEBS and SEBS-MA increased notched Izod impact 

strength. Nevertheless, further study is needed to test this speculation as well as the 

effects of loading mode (tensile vs. flexural) and strain rate. 
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3.3.4 Thermal properties 

Figure 3.14 and Figure 3.15 depict the first and second DSC heating curves of, 

respectively, PHBH5.6/GF (Figure 3.14a and Figure 3.15a) and PHBH11.1/GF (Figure 

3.14b and Figure 3.15b) composites without thermoplastic elastomers, with SEBS, and 

with SEBS-MA. All composites showed two melting temperatures: Tm1 and Tm2, where 

Tm1 < Tm2. The melting temperature Tm1 is related to the melting of crystals formed 

originally during the cooling process and annealing at room temperature, whereas the 

melting temperature Tm2 is associated with the melting of crystals that were re-

crystallized during the heating process [32–36]. All PHBH11.1/GF-based composites 

also had another melting temperature Ta, lower than Tm1 and Tm2, on the first heating 

curves (Figure 3.14b), but not on the second heating curves (Figure 3.15b) due to the 

absence of an annealing period at room temperature between the cooling and second 

heating scans. The melting temperature Ta originates from the melting of small imperfect 

crystallites that form during annealing at room temperature [14,34–36]. 
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Figure 3.14 First DSC heating curves of (a) PHBH5.6/GF-based composites and (b) 

PHBH11.1/GF-based composites 
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Figure 3.15 Second DSC heating curves of (a) PHBH5.6/GF-based composites and 

(b) PHBH11.1/GF-based composites 
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Degree of crystallinity 𝑋𝑐 of injection molded tensile specimens was calculated from the 

first and second heating DSC curves and the following equation: 

 𝑋𝑐 =
𝛥𝐻𝑚 − 𝛥𝐻𝑐𝑐

𝛥𝐻𝑓(1 −𝑊𝑓 −𝑊𝑇𝐸)
 ×  100% (1)  

where 𝛥𝐻𝑚  is enthalpy of fusion; 𝛥𝐻𝑐𝑐  is enthalpy of cold crystallization; 𝛥𝐻𝑓  is 

enthalpy of fusion of fully crystalline PHB, which is taken to be 146 J/g [37]; 𝑊𝑓 is the 

weight fraction of fiber; and 𝑊𝑇𝐸 is the weight fraction of thermoplastic elastomer. 

The thermal properties obtained from the first and second DSC heating curves are 

summarized in Table 3.2 and Table 3.3, respectively. The tables show that PHBH5.6/GF-

based composites had higher melting temperatures Tm1 and Tm2, as well as higher degree 

of crystallinity 𝑋𝑐  than PHBH11.1/GF-based composites, which suggests that the 

secondary comonomer unit 3HH disturbed the poly(3-hydroxybutyrate)-type crystal 

lattice and suppressed crystallization [33]. Additionally, the degree of crystallinity 𝑋𝑐 

obtained from the first heating curves (Figure 3.14) was higher than that obtained from 

the second heating curves (Figure 3.15), which suggests that secondary crystallization 

occurred during solidification in injection molding and during the two days of annealing 

at room temperature. 

Table 3.2, summarizing data obtained from the first DSC heating curves, demonstrates 

that the both SEBS and SEBS-MA addition reduced the degree of crystallinity of 

PHBH/GF composites. It may be reasonably presumed, therefore, that the reduction in 

degree of crystallinity contributed to some extent to the decrease in Young's modulus, 

decrease in tensile strength, and increase in ductility, observed in the PHBH/GF 
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composites with addition of SEBS or SEBS-MA. Table 3.3, summarizing data obtained 

from the second DSC heating curves, shows that both SEBS and SEBS-MA addition 

decreased degree of crystallinity of PHBH5.6/GF composites, but negligibly affected 

degree of crystallinity of PHBH11.1/GF composites. Table 3.2 and Table 3.3 also 

indicate that, in all PHBH/GF composites, both SEBS and SEBS-MA addition had little 

effect on glass transition temperature Tg, which suggests that neither SEBS nor SEBS-

MA is miscible with PHBH/GF. 

Table 3.2 Thermal properties of PHBH/GF/TE composites characterized from the 

first DSC curves 

Sample Ta 

(ºC) 

∆Ha 

(J/g) 

Tm1 

(ºC) 

Tm2 

(ºC) 

∆Hm
1st 

(J/g) 

Xc
1st

 

(%) 

PHBH5.6/GF - 0.0 133.2 148.7 47.6 40.8 

PHBH5.6/GF/SEBS - 0.0 131.7 147.5 24.8 34.0 

PHBH5.6/GF/SEBS-MA - 0.0 129.5 144.4 24.7 33.9 

PHBH11.1/GF 51.2 1.2 113.1 127.6 32.8 29.1 

PHBH11.1/GF/SEBS 52.7 0.5 114.0 128.3 19.9 27.9 

PHBH11.1//GF/SEBS-MA 50.4 0.3 113.1 127.5 19.3 26.9 
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Table 3.3 Thermal properties of PHBH/GF/TE composites characterized from the 

second DSC heating curves 

Sample Tg 

(ºC) 

Tcc 

(ºC) 

Tm1 

(ºC) 

Tm2 

(ºC) 

∆Hcc  

(J/g) 

∆Hm
2nd 

(J/g) 

Xc
2nd

 

(%) 

PHBH5.6/GF 0.9 57.2 124.6 144.9 23.3 47.1 20.4 

PHBH5.6/GF/SEBS 1.5 59.2 126.2 146.0 16.0 26.6 14.5 

PHBH5.6/GF/SEBS-MA 2.0 59.4 126.5 145.3 15.6 25.4 13.5 

PHBH11.1/GF -0.6 83.7 115.6 129.9 2.0 3.2 1.0 

PHBH11.1/GF/SEBS 0.3 82.2 115.8 133.2 0.3 1.4 1.5 

PHBH11.1//GF/SEBS-MA 0.9 84.4 116.7 133.8 0.4 1.0 0.9 

Figure 3.16 illustrates DSC cooling curves of PHBH5.6/GF (Figure 3.16a) and 

PHBH11.1/GF (Figure 3.16b) composites without thermoplastic elastomers, with SEBS, 

and with SEBS-MA. PHBH5.6/GF-based composites showed crystallization temperature 

while PHBH11.1/GF-based composites did not, because the crystallization rate decreased 

with the increase of 3HH content. It is noted that two crystallization peaks (45.2 and 

55.6°C) appeared in PHBH5.6/GF/SEBS-MA composites. Further study is needed to 

investigate these peaks. 
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Figure 3.16 DSC cooling curves of (a) PHBH5.6/GF-based composites and (b) 

PHBH11.1/GF-based composites 

3.3.5 Non-isothermal crystallization kinetics 

Because no crystallization temperature was observed in PHBH11.1/GF composites, 

regardless of whether it contained SEBS, SEBS-MA, or neither; crystallization kinetics 

of only PHBH5.6/GF-based composites were analyzed. The relative degree of 

crystallinity as a function of temperature can be calculated using the DSC cooling curves 

and the following equation [38]: 

 𝑋(𝑇) =
∫ �𝑑𝐻𝑐𝑑𝑇 �𝑑𝑇
𝑇
𝑇0

∫ �𝑑𝐻𝑐𝑑𝑇 �𝑑𝑇
𝑇∞
𝑇0

 (2)  

where 𝑇0 and 𝑇∞ represent onset and end-crystallization temperatures, respectively. 
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Crystallization kinetics under isothermal conditions are often analyzed using the 

following Avrami equation [39]: 

 𝑋(𝑡) = 1 − exp(−𝑧𝑡𝑡𝑛) 
(3)  

where 𝑋(𝑡) is the relative degree of crystallinity, 𝑛 is the Avrami exponent that depends 

on the nature of the nucleation mechanism and growth geometry of crystals, 𝑧𝑡  is the 

crystallization rate constant that involves both nucleation and growth rate parameters, and 

t is the time. 

In non-isothermal crystallization processes, the relationship between crystallization time 

𝑡 and temperature 𝑇 is given by: 

 
𝑡 =

|𝑇0 − 𝑇|
𝜙

 (4)  

By taking into account the time-temperature relationship of equation 5, equation 4 can be 

transformed into the double-logarithmic form, 

 log[−ln(1 − 𝑋(𝑇))] = log𝑍𝑡 + 𝑛 log 𝑡 (5)  

The parameters n (slope) and 𝑍𝑡  (intercept) were determined by plotting log[−ln(1 −

𝑋(𝑇))] against log 𝑡. 

Jeziorny [40] pointed out that the composite rate constant 𝑧𝑡  should be adequately 

corrected to take into account the cooling rate of the polymer. Assuming constant cooling 

rate 𝜙, the parameter characterizing kinetics of non-isothermal crystallization was given 

as follows: 
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 log𝑍𝑐 =
log𝑍𝑡
𝜙

 (6)  

The crystallization half-time 𝑡1/2, which is defined as the time taken from the onset of the 

crystallization until 50% completion, was calculated as follows: 

 𝑡1/2 = �
𝑙𝑛2
𝑍𝑐
�
1
𝑛

 
(7)  

Figure 3.17 shows Avrami plots, i.e., plots of log[−ln(1 − 𝑋(𝑇))]  versus log 𝑡 , of 

PHBH5.6 /GF composites without thermoplastic elastomers, with SEBS, and with SEBS-

MA. All of the composites showed a linear line and there was no significant shift of the 

lines. Kinetic parameters determined by the Avrami equation with Jeziorny’s correction 

are summarized in Table 3.4. The addition of SEBS and SEBS-MA did not affect the 

crystallization half-time of PHBH5.6/GF though the addition of SEBS and SEBS-MA 

decreased the degree of crystallinity (Table 3.2 and Table 3.3). 
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Figure 3.17 Avrami plots of PHBH5.6/GF-based composites 

Table 3.4 Thermal properties of PHBH5.6/GF/TE composites characterized from 

the DSC cooling curves and non-isothermal kinetic parameters calculated from the 

modified Avrami equation 

Sample To 

(°C) 

Tc 

(°C) 

∆Cc 

(J/g) 

Zc n t1/2 

(min) 

PHBH5.6/GF 90.5 46.9 13.6 0.26 3.00 1.38 

PHBH5.6/GF/SEBS 76.8 46.1 3.6 0.22 3.66 1.36 

PHBH5.6/GF/SEBS-MA 83.1 45.2, 55.6 3.1 0.21 3.63 1.38 
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3.4 Conclusions 

The effects of thermoplastic elastomers (TE), SEBS and SEBS-MA, on the mechanical 

and thermal properties of PHBH/GF composites were investigated. Mechanical test 

results suggested that the addition of SEBS did not increase the tensile failure strain of 

PHBH/GF composites while the addition of SEBS-MA significantly increased the tensile 

failure strain of PHBH/GF composites. Fracture energy, defined by the area enclosed by 

the load-displacement curve under tensile test, and notched Izod impact strength of 

PHBH/GF/TE composites were measured to evaluate their energy absorption capability 

in fracture. The effects of SEBS and SEBS-MA on fracture energy in tensile tests were 

different from their effects on notched Izod impact strength. The addition of SEBS and 

SEBS-MA decreased fracture energy of all PHBH/GF composites except 

PHBH11.1/GF/SEBS-MA composites. In contrast, the addition of SEBS and SEBS-MA 

increased notched Izod impact strength of all PHBH/GF composites except 

PHBH5.6/GF/SEBS composites. Nevertheless, SEBS-MA was more effective in the 

energy absorption than SEBS, presumably due to its difference in morphology; that is, 

SEBS-MA encapsulated fibers as well as dispersed in the PHBH matrix, whereas SEBS 

dispersed in the PHBH matrix without fiber encapsulation. DSC results suggested that 

both SEBS and SEBS-MA addition decreased the degree of crystallinity of PHBH/GF 

composites. However, analysis of non-isothermal crystallization kinetics of PHBH5.6/GF 

composites, using the modified Avrami equation, showed that both SEBS and SEBS-MA 

addition had little effect on crystallization half-time. 
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Chapter 4  

4 Conclusions and Recommendations for Future Study 

4.1 Conclusions 

The bacterially-produced biopolymers poly(3-hydroxybutyrate) (PHB) and its copolymer 

poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) are more environmentally-

friendly in production than synthetic polymers,. Compared to PHB, PHBH has broader 

process temperature and higher ductility, but lower modulus and strength. Consequently, 

the main objective of this study was to develop PHBH composites with a wide range of 

mechanical properties using industry-friendly polymer processing equipment. Glass fiber 

(GF) and thermoplastic elastomers (TE) were used to, respectively, reinforce PHBH and 

to toughen glass fiber reinforced PHBH composites. 

First, the effects of glass fiber on the mechanical and thermal properties of PHBH were 

investigated. PHBH composites were prepared by melt-compounding and injection 

molding, using PHBH with 3-hydroxyhexanoate (3HH) molar fractions of 5.6 and 11.1%, 

and short glass fiber content varying from 0 to 23 volume percent. Tensile test results 

suggested that the glass fiber addition significantly increased Young’s modulus and 

strength of PHBH. The Halpin-Tsai and Tsai-Pagano equations were used to predict 

Young’s modulus of PHBH composites while the modified Kelly-Tyson model with the 

Bowyer-Bader method were used for strength prediction. These predictions gave 

reasonable estimates for the mechanical properties of PHBH composites. Differential 
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scanning calorimetry results suggested that glass fiber addition had little effect on the 

degree of crystallinity of PHBH, as well as on the crystallization half-time of PHBH 

containing 5.6 mol% 3HH. 

Although the addition of glass fibers is an effective method for improving both Young's 

modulus and tensile strength of PHBH, the addition of glass fibers reduced ductility and 

energy absorbed in fracture of PHBH. To increase ductility and/or energy absorbed in 

fracture of glass fiber reinforced PHBH composites, thermoplastic elastomers were 

added. The thermoplastic elastomers used were styrene-ethylene-butylene-styrene 

copolymer (SEBS) and maleated styrene-ethylene-butylene-styrene copolymer (SEBS-

MA). Composites were prepared by melt-compounding and injection molding. 

Mechanical test results suggested that SEBS-MA was more effective than SEBS in 

improving ductility, fracture energy, and notched Izod impact strength of glass fiber 

reinforced PHBH composites. Scanning electron microscopy results suggested that 

SEBS-MA encapsulated fibers as well as dispersed in the PHBH matrix, whereas SEBS 

dispersed in the PHBH matrix without fiber encapsulation. Differential scanning 

calorimetry results suggested that both SEBS and SEBS-MA addition decreased the 

degree of crystallinity of glass fiber reinforced PHBH composites. 

In conclusion, mechanical properties of PHBH can be tailored by the addition of glass 

fibers and thermoplastic elastomers; therefore, modulus, strength, and energy absorption 

in fracture of PHBH composites can be balanced. PHBH/GF composites may be suitable 

for applications where high stiffness and strength are required, whereas PHBH/GF/TE 

hybrid composites may be suitable for applications where energy absorption is more 
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important. The versatility of PHBH composites suggests that PHBH-based composite 

materials have many potential applications. 

4.2 Recommendations for Future Study 

The recommended future studies are described as follows: 

(1) This study showed that the addition of glass fiber increased Young’s modulus and 

strength of PHBH. Although glass fibers have good mechanical properties, they 

are synthetic fibers and non-biodegradable. Using natural fibers, biodegradable 

natural fiber reinforced PHBH biocomposites can be developed. Furthermore, 

since natural fibers are lighter than glass fibers, the composites will be lightweight 

materials. However, natural fibers are susceptible to thermal degradation, absorb 

moisture, and have uncontrolled size. These complexities will require in-depth 

study. 

 

(2) This study also showed that the energy absorption capability of PHBH/GF 

composites can be increased by adding thermoplastic elastomers. It will be 

beneficial to study whether other types of elastomers can also increase energy 

absorption in fracture of PHBH/GF composites. Additionally, natural rubbers can 

be used to create greener composites. 

 

(3) Using nanofillers such as nanoplates, nanofibers, and nanotubes, PHBH 

nanocomposites can be developed. It has been reported that the addition of 

nanofillers can improve modulus and strength of various polymers. Typically, the 
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amount of nanofillers added is much smaller than that of conventional glass, 

carbon, or aramid fibers. Therefore, the addition of nanofillers may be able to 

improve modulus and strength of PHBH without sacrificing much ductility and 

energy absorption in fracture. 

 

(4) Numerical methods such as Finite Element Analysis (FEA) can be used to predict 

mechanical properties. This approach would also give better understanding of 

reinforcement mechanisms of fibers and would allow for simulation of 

mechanical properties when material parameters, such as matrix and fiber 

properties, fiber size, fiber geometry, and fiber volume fraction, are different. 
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