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Abstract

This thesis examines two topics from the field of computational optimization; architectural

layout generation and parallel linear programming. The first topic, a modern problem in heuris-

tic optimization, focuses on deriving a general form of the optimization problem and solving

it with the proposed Evolutionary Treemap algorithm. Tests of the algorithm’s implementation

within a highly scalable web application developed with Scala and the web service framework

Play reveal the algorithm is effective at generated layouts in multiple styles. The second topic, a

classical problem in operations research, focuses on methodologies for implementing the Sim-

plex Algorithm on a parallel computer for solving large-scale linear programming problems.

Implementations of the algorithm’s data-parallel and task parallel forms illuminate the ideal

method for accelerating a solver. The proposed Multi-Path Simplex Algorithm shows an aver-

age speed up of over two times that of a popular open-source solver, showing it is an effective

methodology for solving linear programming problems.

Keywords: Genetic Algorithms, Procedural Generation, Architecture, Treemap, Linear

Programming, OpenCL, Simplex Algorithm, Parallel Computing
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Chapter 1

Introduction

Parallel and distributed computing systems present opportunities in the field of optimization

from the perspective of scale and speed in both modern and classical applications. This the-

sis presents three articles from two optimization applications that introduce new algorithms,

demonstrate scalable software design and enhance algorithms with parallelism. The first ap-

plication is architectural layout generation, a modern application of optimization that utilizes

stochastic algorithms to calculate the location and shape of rooms for a building floor plan. The

second is linear programming with the Simplex Algorithm, a classical optimization algorithm

that solves models with linear cost function, linear constraints and no integer variables. Both

of these applications are examined herein, culminating in a set of novel contributions for each

field that improve upon software performance and design. The topics are disjoint in nature but

share the common theme of optimization and algorithm design.

This thesis begins with a summary on the prerequisite information from linear program-

ming and architectural layout generation and refers interested readers to detailed texts. Sum-

maries of the main objectives and contributions of the document follow.

1.1 Background

Parallel linear programming and architectural layout generation have seen numerous notable

advancements since their conceptions and are both supported with large bodies of literature.

This section provides a brief review of the pertinent literature from both applications, leaving

1



2 Chapter 1. Introduction

detailed reviews to the respective chapters. The review begins with architecture generation and

concludes with the Simplex Algorithm.

1.1.1 Architectural Layout Generation

Industrial building renovation projects are performed by teams that consist of architects, de-

signers, engineers and clients. The projects require allocation of spaces within an existing

building by the architects and designers to meet building codes that are checked by the engi-

neers and design specifications that are checked by the client. The full design is specified with

a computer aided design (CAD) drawing that undergoes iterative refinement to ensure that all

specifications, both technical and artistic, are met before construction can occur.

Many tools are available to this industry for increasing the speed at which CAD draw-

ings can be produced. The first building design drawings were conducted by hand on drafting

boards. This practice was soon replaced after the 1982 invention of AutoCAD [1] which al-

lowed formation of the layout drawings on a computer that could more quickly be used to

refine the drawings as specifications were revealed. Multiple such automated CAD tools such

as SolidWorks [2], Revit [3] and MicroStation [4] are now available for use in this industry to

accelerate projects. These software allow three dimensional modelling of entire construction

sites. AutoDesk now provides a cloud version of AutoCAD which allows users to edit draw-

ings in a web browser. The advancements in CAD software have greatly assisted the ability

of stakeholders in construction and renovation projects to react to changing requirements in a

design.

Functional layout generation is a modern topic in stochastic optimization, seeing its first lit-

erature in the 1990’s [5] following advancements in computer graphics and data visualization

methodologies. The majority of approaches in literature are based on stochastic optimization

techniques, which optimize a data structure through mutations and measure changes with a

heuristic cost function. For example, a recent technique proposed in literature generates lay-

outs with genetic optimization [6] on a tree data structure. Other techniques are based on de-

terministic algorithms, such as Squarified Treemap [7]. This field is in infancy relative to linear

programming and at present there are no commercial or open-source software that provide a
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full solution for generating architectural layouts. The majority of these algorithms are tailored

towards generation of residential homes, leaving additional topologies that can be explored

through different formations of the problem with other optimization techniques.

1.1.2 The Simplex Algorithm

Linear Programming has been treated by numerous authors dating back to the discovery of the

Simplex Algorithm in the 1940’s by George Dantzig [8]. The algorithm transformed from the

initial form proposed by Dantzig to a highly efficient, optimized form through discoveries by

authors such as Forrest [9], Tomlin [10], Maros [11], and many others, resulting in enhanced

efficiency and stability. The optimization can be used to solve models with linear objectives

and constraints that appear in fields such as task scheduling, computer network design and

radiation therapy.

High performance forms of the algorithm are available for engineers as both commercial

packages, with IBM CPLEX [12], Gurobi [13], XPress [14], and open-source software, with

SoPlex [15], GLPK [16], Coin-OR [17], LpSolve [18]. These commercial and open-source

codes provide a wealth of opportunity for engineers to optimize linear programming models in

different applications. The support for parallel processor cores available in commercial codes,

as seen by the parallel switch available in CPLEX [19], has yet to be realized in the open-source

code and is a resource available that could improve performance.

Recent efforts to parallelize the Simplex Algorithm have investigated performance of the

algorithm on highly parallel processors such as Graphics Processing Units (GPUs) and Field

Programmable Gate Arrays (FPGAs). A study of the algorithm, operating with dense data

structures on randomly generated problems revealed that speed ups in the order of twenty times

are possible [20]. Another study that focused on implementation with FPGAs also showed po-

tential for performance improvements over traditional sparse codes [21]. Though these results

are promising, no author has implemented a parallel algorithm capable of solving the numeri-

cally challenging sparse problems found in practical modeling scenarios that shows good speed

up. This is a challenge due to the inherently sequential nature of the algorithm. It consists of

many sparse matrix kernels that are applied sequentially to optimize the model.
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1.2 Contributions

This thesis approaches numerous topics in modern intelligent architectural layout and classical

linear programming optimization. The work delves into the following open problems within

the two fields: finding new layout generation algorithms, developing a software infrastructure

for generating layouts, investigating linear programming on heterogeneous computing systems,

and testing parallel forms of the sparse Simplex Algorithm. This section summarizes the main

contributions in each field.

1.2.1 Architectural Layout Generation

The following contributions are presented in this thesis for the application of generating func-

tional layouts for modern structures in the Chapter 2:

• A general formulation of layout generation as an optimization problem

• Commentary on the size and shape of the optimization problem’s solution space

• The Rectified Treemap and Evolutionary Treemap algorithms

• Various heuristic methods for fine tuning layouts generated with Evolutionary Treemap

• A cloud based software platform for generating functional layouts

• A scalable object oriented design for layout generation software

• A web service and Application Programming Interface for the layout software

1.2.2 Parallel Linear Programming

The following contributions are presented in this thesis with regards to implementing a parallel

linear programming solver based on the Simplex Algorithm for solving dense problems with

increased speed in Chapter 3:

• An implementation of a dense linear programming solver for heterogeneous computing

systems
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• An OpenCL design for dense linear programming with the Simplex Algorithm on GPUs

and FPGAs

• Performance testing for the Simplex Algorithm on multiple OpenCL devices

The contributions described in Chapter 4 of the thesis solve sparse linear programming

problems with a task-parallel Simplex Algorithm and are the following:

• A novel profiling tool and methodology for analyzing linear programming software

• An upper bound for speedups from data-level parallelism in the implementation of the

Simplex Algorithm found in the open-source code SoPlex

• A task-level parallel augmentation to the Simplex Algorithm found in SoPlex, the Multi-

Path Simplex Algorithm, that surpasses the upper bound for data-level parallelism
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Chapter 2

Architectural Layout Generation With

Evolutionary Treemap

2.1 Introduction

The iterative process of building design and modeling conducted by architects transforms tech-

nical specifications into a spatial arrangement of rooms to meet building codes and aesthetic

constraints. The process begins with an initial aesthetic conception that is refined by multiple

stakeholders and cross-discipline engineering teams into detailed requirements for the build-

ing. The process results in complete specifications of the building for construction. These

Computer Aided Design (CAD) drawings require input from multiple designers and consume

a large portion of project time.

(a) Functional Layout (b) Final Architectural Design

Figure 2.1: A Functional Layout for an Office Building and the Architectural Design

8
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This chapter presents a software that reduces the amount of time spent in the CAD design

stage of a construction project. Figure 2.1a shows an example of a functional layout and Fig-

ure 2.1b presents a final architectural design based on this initial concept. The general form

of the optimization problem is used to derive a new algorithm, Evolutionary Treemap, that

can procedurally generate single floor building layouts based on a client’s technical specifi-

cations and usage constraints. This algorithm is an extension to the deterministic algorithm

based on Squarified Treemap proposed in [1]. Evolutionary Treemap improves the aspect ratio

and spatial location of the rooms present in the generated layouts with a genetic optimization

algorithm. The contributions of this chapter are a general framework from which layout gen-

eration algorithms can be constructed, the presentation of Evolutionary Treemap and a new

visualization algorithm called Rectified Treemap.

This chapter begins with an overview of the literature and state of the art in layout gener-

ation. The general form of the layout generation problem is then presented and the compo-

nents of a layout generation algorithm are derived. The third section presents the Evolutionary

Treemap algorithm in general form. The fourth presents a scalable software system imple-

mented to test the algorithm. The final section presents examples of layouts generated with

the system and provides concluding remarks on the future directions of procedural generation

research.

2.2 Literature Review

Computer aided design projects undertaken by engineers in industry require strict budget and

schedule constraints. The estimated costs for procuring an architect for the purposes of layout

design for a building is estimated to be in the order of 10% of the total design and construction

costs [2]. Computer aided construction design is not the only field in which computer generated

architectural building models are utilized; applications in fields such as building construction,

cost estimation, and environmental simulation rely on these models. In construction, civil

engineers and architects collaborate to design sets of models that facilitate cost estimation,

material procurement, and construction. Professional software such as AutoCAD [3], Revit [4]

and SolidWorks [5] are some examples of the many tools used by engineers to design models.
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Architectural drawings take a varied amount of time based on the building complexity and

size. For example, a general guideline estimated by the University of Boulder Colorado is an

approximate schedule length of four to eight months based on the building’s specification for

a capital infrastructure project [6]. This is a large time line that requires fast, accurate designs

from engineers.

In video game design, software engineers and 3D model designers create sets of virtual

environments that contain detailed building layouts to immerse users in an immersive environ-

ment. For example, in the popular video game series The Witcher developed by CD Projekt

Red [7], Left 4 Dead by Valve Software [8] and Assassins Creed by Ubisoft [9] there are vast

open worlds that contain countless buildings for a user to explore. Reducing the costs of creat-

ing these CAD models could shorten the schedules for projects and thus the cost for projects in

this industry. Algorithms that generate functional layouts are desirable due to the direct impact

they can have on complex engineering and video game development projects.

Several approaches are proposed in literature for automated generation of functional lay-

outs based on graphical visualization techniques such as treemap algorithms. Treemap algo-

rithms are hierarchal shape partitioning algorithms that places a number of child rectangles

with known areas into a boundary rectangle [10]. Figure 2.2 shows an example of the result

of the treemap algorithm on a rectangle with four interior rectangles with areas of twenty-five,

sixteen, nine, and four square feet. Treemap algorithms are originally from the field of com-

puter visualization and partition rectangles into a number of sub-rectangles that are sized based

on proportions within some data set [10].

Squarified Treemap was first proposed as an algorithm for functional layout generation in

[11]. Given a target area per room, the rooms are split into functional categories and place

in a Squarified Treemap. Next, a corridor is dynamically located via the interior points and

subtracted from the adjacent rooms with polygon operators. The dynamic corridor placement

algorithm was extended in [1] with an optimization technique based on a shortest path search

that reduced the functional area removed from the layout’s rooms by the corridor. The benefit

of these treemap algorithms is that they do not require a search through a combinatorial space

giving them excellent time to completion. However, due to the dynamic corridor algorithms,

they can generate layouts in which rooms have undesirable aspect ratios. For example, a living
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Figure 2.2: Example Treemap Representation

room in a residential home must house large furniture that could not fit in a room with a very

narrow dimension even though the desired area for the room may be met by the algorithm with

a room that is long and narrow.

Other approaches have been proposed based on optimization strategies such as simulated

annealing [12], constraint-satisfaction [13], and genetic algorithms [14]. These strategies pro-

pose mutable data structures to represent layouts, iterate through candidate solutions and mea-

sure their quality based on a heuristic cost function. The representations vary from lists of

movable edges [12], enumerated grid spaces [13], and shape grammar expressions [14]. The

fitness functions are based on parameters such as room connectivity, area and aspect ratio.

These algorithms have been shown to generate layouts that resemble those designed by an ar-

chitect from a similar specification with a primary focus on residential styles. The performance

of each algorithm depends on the solution space of the model chosen to represent a layout. For

example, in [12], the solution space of the algorithm is large due to the fact that it includes

any layout that can be formed from shifting walls to new locations but only a small percentage

of this space is explored by the simulated annealing heuristic. This is smaller than the total

number of solutions examined by the algorithm proposed in [13] due to the fact that this algo-
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rithm requires examination of the entire solution space with backtracking. Algorithms that can

find desirable layouts without resorting to a full search of a combinatorial space are desired to

reduce the run-time of the solution and enable generation of multiple candidate solutions.

2.3 Formulating the Layout Generation Problem

As of yet, no author has presented a general language for comparing functional layout gener-

ation algorithms and the sub spaces of solutions they explore. A general representation of the

algorithm allows implementation in a software system with a good object-oriented design to

provide a framework for developing and testing new algorithms. This section will formulate

the layout generation problem with a general language that is applicable to all of the efforts

in literature from the prior section. The terminology established in this section will be used

throughout the chapter to refer to the components of a layout generation algorithm. The prob-

lem is formulated in a general manner, and in later sections, the detailed components of a con-

crete algorithm are presented. The general form of this problem can be extended to buildings

of any size and style such as multistory apartment complexes, hospitals, hotels, and residential

homes. It can also be used to produce new layout generation algorithms. The nomenclature

used to derive the standard form of the layout generation problem is presented in Table 2.1.

2.3.1 The Standard Form

Designing a functional layout requires spatial allocation of multiple rooms within some prede-

fined boundary B. This boundary may be a representation of the exterior walls of the building

or the plot of land on which it is to be constructed. The space of possible layouts F that can

be formed through some spatial partition of B contains many solutions to the functional layout

design problem. A candidate solution to the functional layout generation problem is defined in

2.3.1.

Definition 2.3.1. Any layout L ∈ F that is allocated within a building based on a set of user

specifications U constitutes a candidate solution. A layout L is composed of a set of rooms R.

The input U contains some form of constraints, which may be fuzzy, on the properties of some
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Table 2.1: Functional Layout Generation: Nomenclature for the General Form

Symbol Definition
B The boundary of the layout, whether a set of walls or a plot of land
F The space of all possible vector layouts contained within B
L An instance of a layout from F
R The set of rooms from which a layout is composed
U The user specification that defines the set of rooms
P The space of possible two-dimensional polygons
C The space of possible classifiers for a room such as Living Room or Office
x A list of real coordinates in two-dimensions
Fz The space of all possible raster layouts contained within B
xz A list of integer coordinates in two-dimensions
G A generator function that reduces the space F to a size that can be searched
FG The subset of F formed by the generator function
A The cost function that describes the aesthetics of a layout
h The value of the cost function for a particular layout
FO The subset of F formed by an optimizer function
FS The subset of F in the final restricted space (from optimizer or generator)

or all of each r ∈ R.

The layout generation problem can thus be phrased as an optimization that seeks the so-

lution L that best matches U from F and requires the placement of R. The best layout is

determined by a heuristic cost function that will be developed in later sections. To place each

of the rooms, a functional classifier and location must be chosen. Creating a candidate solu-

tion to the problem thus requires forming a polygon and deciding upon a classifier for each

of the rooms specified by the user in a manner that satisfies any constraints in the input. This

representation will be defined as the vector form of a room and is formally presented in 2.3.2.

Figure 2.3a presents an example of a room that is in vector form.

Definition 2.3.2. The vector representation of a layout is a set of rooms R, where ∀r ∈ R

(r = {p, c} | p ∈ P ∧ c ∈ C) and p is a two dimensional polygon with a list of coordinates

x ∈ R2, P is the set of possible two dimensional polygons, c is a classifier such as ”Living

Room” or ”Office”, and C is the set of possible classifiers.

A layout in which all rooms are in vector form is defined to be the standard form of a

solution. This is because any other representation can be computed from this structure as will
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be shown through examples in Section 2.3.2. As an example, consider a representation that

relies on the assumption that the coordinates that form the polygons of the rooms are integer

multiples of some unit rather than real numbers. This means that the coordinates x = uxz where

xz ∈ Z
2 and the unit u is some parameter chosen by a user. The u value could for example be

taken to be one meter as in [1] as this is the proposed width of the narrowest space in a layout,

the corridor, or it could be taken as some fraction of an inch for the largest unit that can be

practically measured when constructing the layout.

This form will be defined as the raster form of a layout. It can be visualized as a grid based

partition of the boundary in which each block is approximately u × u as shown in Figure 2.3b

and defined in 2.3.3

Definition 2.3.3. The raster representation of a layout is a set of rooms R, where ∀r ∈ R(r =

{Br, c} | Br ⊂ Bz
∧

c ∈ C) and Br is a set of grid blocks, Bz is the total set of grid blocks from

partitioning the boundary into a grid with unit u, c is a classifier from the set C of possible

classifiers, Br1 ∪ Br2 ∪ ... ∪ Brn = Bz, and Bri ∩ Br j = {0}, .

To rephrase, the raster form of a room consists of a set of grid blocks that is a subset of all

grid blocks from the boundary of the layout as well as a classifier. The subsets of blocks are

mutually exclusive and union to form the full boundary.

2.3.2 The Solution Space

Additional properties of the solution space must be derived before it is possible to choose an

effective search strategy. The first that will be considered is the size of the solution space.

The size of F is presented in Lemma 2.3.4 which follows from its definition as containing all

possible polygonal partitions of B.

Lemma 2.3.4. There are uncountably infinite members of the set of possible functional layouts

F in standard form for a building.

Proof. If a specific plot of land represented by a two-dimensional polygon on which a building

is to be constructed is partitioned into a known number of rooms with known classifications,

then there are uncountably infinite possible partitions as x ∈ R2. Figure 2.4 shows an example
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(a) Vector Form of a Room (b) Raster Form of a Room

Figure 2.3: Different Mathematical Representations for a Single Room

of this, where two rooms are left to be placed in the layout. Even in this simple example,

when all but two rooms have been placed, there are infinite locations along the axis of the outer

boundary to place the wall that subdivides them. �

The solution space is reduced if the layouts are in raster form. Lemma 2.3.5 shows the

number of possible solutions when the layouts are generated in this form.

Lemma 2.3.5. The number of possible layouts in raster form in the solution space Fz where

Fz ⊂ F formed by partitioning B into n grid blocks is given by ‖Fz‖ =
(

n‖C‖
n

)
.

Proof. If there are n grid blocks, each c ∈ C can be assigned a maximum of n times. There are

thus n‖C‖ possible classifiers from which n must be chosen. Therefore the number of possible

combinations is given by
(

n‖C‖
n

)
. �

As u→ 0, n→ ∞, ‖Fz‖ → ∞ and Fz → F . The set of possible raster layouts thus diverges

to the set of possible vector layouts as u becomes zero. This result shows that the vector form is

a higher level representation that can be employed depending on the assumptions inherent to the

specific layout generation problem. An algorithm that provides a solution in vector form can

be converted to raster form if some minimum dimension is desired by a user but information
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Figure 2.4: Visual example of the result in Lemma 2.3.4. Partitioning the final section into the
entrance and kitchen presents uncountably infinite possibilities between y = P and y = Q if
y ∈ R.

is sacrificed in the process. This is the rationale for defining the vector representation as the

standard form of a layout.

2.3.3 The Generator Function

The size of the solution space in both raster and vector forms is too large for every element to

be examined. In order to solve this problem, the size of the solution space must be reduced in

some manner. This will be accomplished with a generator function and is defined in 2.3.6.

Definition 2.3.6. A generator is any function G that restricts F to a subset FG of layouts where

G : U → FG and FG is finite.

The generator function can be any algorithm that either partitions a predefined polygonal

boundary for the building or iteratively refines an initial solution fromFG that is simple to form.

The generator function affects the characteristics of the solutions that can be formed, reducing

the vast space of possible room arrangements to a finite amount for a given user input.

The use of the generator function introduces the possibility that the global optimum may

be excluded from FG. Due to the variety of types of architectural layouts that can be deemed
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acceptable this is unlikely to be a concern for the majority of generator functions. A solution

close to the global optimum or even a good local optimum will likely be an acceptable solution

to the problem depending on the nature of the generator. The commentary presented when a

generator function is proposed should acknowledge this possibility and will only be acceptable

if a logical reasoning can be applied to dismiss the concern. This will be further addressed

during the derivation of Evolutionary Treemap.

2.3.4 Optimizer Functions

A second class of functions can be used in order to alter the characteristics of FG by forming a

new solution space with superior results FO. These optimizer functions are defined in 2.3.7

Definition 2.3.7. An optimizer is any function O where O : FG → FO ∧ FO ⊂ F .

Optimizer functions are optional components of a layout generation algorithm that can

improve the results such that an architect will require less time tailoring the final result to meet

a specific need. For example, the corridor placement subroutine in [1] can be considered as an

optimizer function. It transforms a layout with rooms that have already been allocated into an

improved layout with greater accessibility between rooms. Optimizer functions can increase

the possibility that the global optimum of the optimization is found. Throughout the chapter,

FS will be used to refer to the final restricted solution space formed through the operation of a

generator function and any number of optimization functions.

2.3.5 The Cost Function

The solutions in FS must be measurable in some manner to quantify their architectural quality

or desirability to a user based on their specification. The heuristic defined in 2.3.8 is a class of

function that maps members L ∈ FS to quantitative values.

Definition 2.3.8. A layout generation cost function is any function A that quantitatively mea-

sures the aesthetics of a candidate solution h where A : (L,U)→ h

Forming A requires the definition of parameters that can be computed based on the vector

representation, or a simplified representation, of a layout that can combine to quantify aesthet-
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ics. These parameters are highly specific to the generator function that is chosen for searching

through the possible layouts. For example, one generator function may restrict F by omitting

the possibility of forming a layout that contain rooms with very large aspect ratios and thus

the aspect ratio of a room will need not be considered in the cost. Another may omit layouts

that do not fit within a preallocated boundary resulting in a cost function that need not consider

protrusions from the boundary as a parameter.

A layout generation algorithm is thus formed by restricting F to FS through application of

a generator function and any number of optimizer functions, then finding the global optimum of

A over FS . The naive layout generation algorithm is thus to simply reduce the space of possible

solutions to a finite set and then find the global optimum of the aesthetic cost function mapped

to the set. Though this may be accomplished through any well known optimization algorithm,

it is likely that, despite a finite number of members, FS may be combinatorial in size. Finding

the optimum value in these large cases can be accomplished with stochastic algorithms such as

simulated annealing and evolutionary algorithms.

2.4 Evolutionary Treemap

The general form of a layout generation algorithm presented in the prior section provides a

useful framework for introducing and comparing methodologies for automated building gener-

ation. This section will use the general form to introduce the Evolutionary Treemap algorithm.

This algorithm is proposed to automate building interior layout design with respect to an ar-

chitectural specification using genetic optimization meta-heuristics. The optimization searches

through the space defined by a specialized rectangular boundary partitioning algorithm based

on Squarified Treemap [10]. The algorithm scales to moderate numbers of rooms making it

well suited for generation of small office, school, and hotel buildings. For larger numbers of

rooms, the algorithm’s runtime must be increased in order to find acceptable solutions. The

algorithm consists of three subroutines that will be introduced in the following sections: the

Rectified Treemap, corridor placement, and evolutionary algorithms.
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2.4.1 Rectified Treemap

Evolutionary Treemap is an algorithm that restricts the solution space of possible layouts

with the generator function Rectified Treemap. This algorithm is closely related to Squarified

Treemap in that it partitions a rectangular boundary into a set of sub-rectangles with a recursive

algorithm [10]. The difference between the two algorithms is that Rectified Treemap accounts

for user defined aspect ratios as well as area proportions for the partition’s child rectangles

thereby allowing incorporation of narrow rooms in the partition.

The Rectified Treemap algorithm is presented in Algorithm 1. It consists of two subroutines

named rectify and maxError. The first subroutine, rectify, is the driver function for placing

rectangles within the initial rectangular boundary and is the same as the function that drives

Squarified Treemap presented in [10]. The rectify function accepts a list of rectangles rects that

have not been placed, which are structures that contain a desired area and aspect ratio for the

room, a list of rectangles row which have already been placed in the current row and the width

of the current row w. Rectify places the rectangles within the remaining boundary recursively,

finalizing a portion that has been placed based when the maximum error of the aspect ratio of

a rectangle in the row has been increased.

The maxError subroutine computes the difference between the desired aspect ratio for each

rectangle and the aspect ratio that is expressed with the current placement. This measures

the error in the room shapes with respect to the user specified area and aspect ratio. The

maxError function is the difference between the rectified and Squarified Treemap algorithms.

The algorithm generates the same output as Squarified Treemap in the special case where all

of the aspect ratios are specified to be one. However, in functional layouts that require narrow

rooms, such as closets, the algorithm allows different results than Squarified Treemap that will

be closer to the desired values.

The Rectified Treemap generator function reduces the overall size of the solution space F .

The actual size of the restricted space Fg is still large, however, and thus it is likely that it will

contain the global maximum or a good local maximum of the cost function. The size of the

space is dependent on the number of rectangles that are placed by the algorithm. The ordering

of the list rects changes the output of the final layout because the algorithm will always begin
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Algorithm 1 Rectified Treemap
1: procedure rectify(list rects, list row,w)
2: c← head(rects)
3: if maxError(row,w) ≥maxError([row, c],w) then
4: rectify(tail(rects), [row, c],w)
5: else
6: finalize(row)
7: rectify(rects, [],width())
8: end if
9: end procedure

10: procedure maxError(list rects,w)
11: s←sum(rects.areas)
12: m← −∞
13: for r ∈ rects do
14: ratio←max(w2r.area/s2, s2/w2r.area)
15: error ←abs(ratio − r.aspectRatio)
16: if error > m then
17: m = error
18: end if
19: end for
20: return m
21: end procedure
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placement of the rooms along the smallest dimension of the input boundary. Since there are

n! possible orderings of this list, the size of Fg is therefore also n!. This is large enough that

a desirable solution will still be present but small enough that it can be searched effectively.

This result will be examined further in Section 2.4.3 when Evolutionary Treemap’s genetic

optimization heuristic is presented.

2.4.2 Corridor Placement

The layouts that result from Rectified Treemap approximate the input specifications from the

user with respect to the aspect ratio and area of each room. The rooms must also be oriented

such that each can be accessed. These connectivity relationships are not addressed by Rectified

Treemap. Generating layouts that meet shape and connectivity requirements requires an opti-

mizer function that places a corridor. This algorithm, one of the components of Evolutionary

Treemap, maps the solution space from the Rectified Treemap algorithm Fg to a new space Fo

where each of the solutions contains a corridor that connects the rooms.

Corridor finding algorithms based on graph theory form the basis of this work. To produce

corridors in layouts that contain larger variability in the location and number of rooms, an

enhancement based on a spanning tree algorithm is proposed to the graph algorithm presented

in [1]. The base algorithm, as presented in [1], finds the interior edges of the layout and

considers them to be graph. The algorithm then prunes The vertices that have a degree of one

in this graph from the layout. Next, the algorithm subtracts a polygon formed based on the

resultant edges from the layout with polygon operators.

Finding the minimum spanning tree of the corridor graph helps reduce redundant corri-

dor loops in layouts with many rooms. Figure 2.5 introduces the need for the spanning tree

algorithm. In this figure, the corridor graph resulting from the pruning algorithm contains re-

dundant loops between rooms. Including these loops in the corridor contributes to wasted space

in the layout. These loops can be eliminated by finding a spanning tree in the corridor graph.

Typically, the minimum spanning tree is desired as this finds the corridor with the smallest

possible area and excludes the loops. Therefore, to enhance the corridor placement algorithm,

a minimum spanning tree is found after the pruning stage on the interior edges to identify the
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ideal corridor placement.

(a) Initial corridor graph containing all inte-
rior edges of the layout

(b) Path after the pruning algorithm from [1]
is applied

(c) Path after the spanning tree algorithm is
applied

(d) Final layout after corridor graph is clipped
from the rooms in the layout

Figure 2.5: In larger layouts, applying the spanning tree algorithm eliminates redundant edges
in the corridor to minimize wasted space

Algorithm 2 shows the full procedure that is used in Evolutionary Treemap to place the

rooms in the layout. This function, generateLayout, accepts the boundary of the layout and an

ordered list of structs containing room areas and identities, rooms. It then forms the final layout

by calling Rectified Treemap and subtracting a corridor from the resultant set of polygons.

Algorithm 2 Generate Layout
1: procedure generateLayout(list rooms, boundary)
2: map← recti f iedTreemap(rooms)
3: layout ← placeCorridor(map)
4: return layout
5: end procedure
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2.4.3 Evolutionary Optimization

The function used to generate layouts presented in Algorithm 2 accepts an ordered list of rooms

and places them within a boundary. The analysis in Section 2.4.1 showed that the number of

possible solutions for a specific list of rooms of size n to the Rectified Treemap algorithm is n!.

Though this solution space is much smaller than infinite, it is still too large in size to be able to

express every possible solution. An evolutionary optimization algorithm is proposed to search

through this large solution space for an optimal layout.

Evolutionary algorithms model the problem data as a chromosome from the field of bi-

ological genetics. The algorithm begins with a population of chromosomes which are then

crossed over to generate offspring, subjects the offspring to mutations, and then integrates the

offspring into the population. The evolutionary algorithm considers a chromosome to be a spe-

cific ordering of the input room vector represented by random keys. This form of evolutionary

algorithm, that searches through the permutations of a vector to find an optimal value is similar

to solutions that have been proposed to the traveling salesman problem as in [15].

Each random key chromosome corresponds to an input to the generateLayout function.

These chromosomes represent different permutations of the list of rooms. Algorithm 3 converts

chromosomes to layouts so that their aesthetic qualities can be measured by the cost function

costValue. The conversion algorithm accepts the list of rooms and their sort order, places them

with Rectified Treemap, clips the corridor, and returns the cost value based on the input list of

area values, areas, and aspect ratios, aspect.

Algorithm 3 Cost Function
1: procedure cost(list rooms, list sortKeys, list areas, list aspect,)
2: sort(rooms, sortKeys)
3: map← recti f iedTreemap(rooms)
4: layout ← placeCorridor(map)
5: return costValue(layout, areas, aspect)
6: end procedure
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2.4.4 Measuring the Cost Value

The cost function for the algorithm combines a set of parameters corresponding to the user

desired appearance of the layout to compute a value. Since some of the problem’s constraints

are guaranteed to be satisfied in Rectified Treemap layouts, they can be excluded from the cost

value calculation. These are examples such as the rooms being contiguous and rectilinear.

The parameters that are not guaranteed by the Rectified Treemap algorithm are the adjacency

relationships and the shapes of the rooms. This is because of area removal in the corridor al-

gorithm, the heuristic nature of the maxError placement function and the effect of placement

order on adjacency relations. These three combine to produce rooms with aspect ratios, areas,

and adjacencies that are not exactly as specified. These parameters highly depend on the or-

dering of the rooms as they are passed to the treemap function. For example, if two rooms are

adjacent in the ordering of the specification, it is highly likely that they will be placed adjacent

to each other in the layout. Additionally, the order of the rooms affects the maxError place-

ment heuristic and thus the final size of the rooms. It also affects the location and number of

the interior edges, which contribute to the corridor.

The cost value must consider the important values that are excluded from the Rectified

Treemap generator algorithm to produce appealing layouts. It is thus modeled with (2.1),

where S is the shape cost function, R is the list of rooms, C is the adjacency cost function, A

is the list of adjacencies present in the layout and c1 and c2 are positive coefficients chosen by

the user.

C(R, A) = c1S (R) + c2A j(A) (2.1)

The shape cost of the layout is calculated by measuring the error between the dimensions of

the actual instantiation of the rooms and the user specified dimensions of the rooms as in (2.2).

In this function, Uarea(r) is the user specified area of room r, Uaspect(r) is the user specified

aspect ratio of room r, area(r) is the actual area of room r and aspect(r) is the actual aspect

ratio of room r. If room r is not a rectangle, the aspect ratio of the convex hull of the polygon

is used. Lower values of this function correspond to a layout where all of the rooms are close

to the correct sizes. This simultaneously attempts to minimize the area that is consumed by the
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corridor as layouts that have a large corridor will take too much space that could be allocated

in a room.

S (R) =
∑
r∈R

Uarea(r) − area(r)
Uarea(r)

+
Uaspect(r) − aspect(r)

Uaspect(r)
(2.2)

The adjacency cost, calculated by (2.3) is simply the sum of the weights for each of the

adjacent relationships that is present in the layout. These weights can either be user provided

for a specific layout or as part of a larger database for room identities. Lower values of this

function represent layouts that have more desirable adjacency relationships which are quanti-

fied based on the values of the weights due to the negative multiplier. For each adjacency a ∈ A

containing two room identities, the weight function returns a positive number specified by the

user that ranks the importance of the adjacency between the two room identities.

A j(A) = −
∑
a∈A

weight(a) (2.3)

The effects of both of these terms in the cost function is highlighted by Figure 2.6. The user

specification for the shapes of the rooms in this layout was a single 8’ by 6’ bathroom, three 7’

by 5’ offices and one 10’ by 12’ reception. An adjacency between the reception and bathroom

was given a score of 1 and all others a score of 0. The boundary was 27’ by 18’.

When the shape term is excluded from the optimization in Figure 2.6a, the resultant layout

does not contain rooms with appealing shapes based on the input specification as the bath-

room’s final size is much larger than the input. Note that the rooms will all be slightly larger

than the inputs because the specified sizes fill 63% of the boundary. When the adjacency term

is excluded from the optimization in Figure 2.6b, the reception and the bathroom are not adja-

cent. When both terms are included in Figure 2.6c, there is a compromise in the final shapes

and locations of the room that more closely matches the input.

2.5 System Design and Implementation

Evolutionary Treemap was implemented within QCAD [16], an open-source CAD software,

to test its performance on real use cases. The design choices for the extension to QCAD were
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(a) Optimization with the shape cost
removed

(b) Optimization with the adjacency
cost removed

(c) Optimization with full cost func-
tion

Figure 2.6: Effect of cost function parameters on the generated layout

based on the following set of high-level requirements:

• The software must be fast due to the nature of the stochastic optimization algorithms that

are used to compute the location of the rooms in the layout.

• High performance computers must not be required on the client side such that no spe-

cialty hardware is required to run the software.

• The software must be designed to function with existing CAD software and is able to

plot the resultant layouts on the canvas.

• The software should not be specific to one CAD software allowing the possibility to

function with any program through extension interfaces.

• Users should be able to specify the layout with words and numbers in a spreadsheet-like

document rather than drawing the shapes for the rooms themselves.

This section explains the design and implementation of the layout planning software in-

cluding the representation of the user specification, the software architecture of the project,
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the object-oriented design of the algorithms library, and the application programming interface

(API) for the web server.

2.5.1 Representation of the User Specification

The first stage of designing this software is to specify the types of inputs that will be required to

describe the desired layout. These were presented to the user as a spreadsheet and represented

in software in JSON format. The first input required by the software is the identity and number

of the rooms that are desired in the layout. For example, a user must be able to specify a three

bedroom house with one living room and kitchen. The meaning of a room’s identity must also

be specified by a user. For example, the living room should be associated with a desired shape

and size. Finally, the relationship between rooms must be enumerated. For example, the living

room and kitchen should be adjacent.

The first item that must be entered by a user is the list of room identities and target shapes.

In this representation, the rooms are assumed to be rectangles and the dimensions given for

each are the length and width. The length and width of the room both quantify the area and the

aspect ratio of the room. This identifies the desired size and shape of the room in the layout.

The second item that must be entered by the user is the desired adjacencies between rooms.

This relationship can be represented by a graph, called a connectivity graph, where each room r

in R is represented by a vertex and any ri is connected by an edge to r j with some w if the rooms

are desired to be adjacent. Each weight, w, represents a heuristic measure of the desirability of

the connection. They could also be used as identifiers for the type of desired connection, for

example doorways or open walls.

If all inputs are considered as hard constraints in the final layout the problem can be over

constrained. To reduce the possibility that a layout cannot be found for a given user input, the

inputs other than the number of rooms and their identities are treated as soft constraints. The

algorithm attempts to match as many as possible but provides no guarantee that they will all be

met. Due to the heuristic nature of stochastic optimization, a user can run the program multiple

times to yield different results. This is a desirable feature when working with architectural

design. A solution that is close to the user’s optimum is acceptable because of the editing
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facilities provided by the CAD software. A user can edit a layout that is close to their desired

specifications to create a design that meets all of their requirements and still spend less time

and resources than required by manual efforts.

2.5.2 Software Library Architecture

This component of the software contains the implementation of the Evolutionary Treemap al-

gorithm and contains facilities for extending the work to additional layout generation methods.

The core algorithms library is implemented in Scala, a Java Virtual Machine (JVM) based lan-

guage [17]. This language enables rapid development of algorithms and project components

due to its concise functional programming syntax. The language also is operable with any

library written in Java and benefits from run-time performance enhancement from the JVMs

Just-In-Time (JIT) compiler.

The layout generation system was implemented with the architecture shown in Figure 2.7.

This system contains the Generation Strategy class to manage the generation procedure and the

Blueprint class to encapsulate the parameters requested by a user including desired connectiv-

ity, area and aspect ratio. It also contains the Generator interface to encapsulate algorithms

such as Evolutionary Treemap and the Tuner interface to provide a future facility for algo-

rithms that add features to the layout such as furniture, doors, and windows. To enable higher

levels of the library to enact classes that implement the Generator or Tuner interfaces with-

out details of the actual implementation, the class hierarchies follow the Strategy pattern [18].

This allows storage of classes that implement these interfaces in a single container that can be

iterated over in a polymorphic manner.

Algorithm 4 shows the run method of the Generation Strategy class. This method ac-

complishes the generation of the layouts with two stages. The first transforms the abstract

requirements of the Blueprint into a concrete set of Layout instances in vector form with the

Generator instances. The second stage of the method passes each vector layout through mul-

tiple stages of fine tuning. Each of these stages updates the individual layout with features that

more closely matches the user specifications. The final result is an array of vector layouts that

are returned to the calling code.
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Figure 2.7: UML Diagram of the Layout Generation Software

2.5.3 API Design

A web service was developed for the core algorithms library to facilitate communication with

remote clients. This artifact enables client applications to generate layouts by issuing HTTP

commands. The web service was implemented in Scala due to the availability of multiple

modern web frameworks. This simplified the build configuration and compatibility with the

core library. The web service was developed with the Play Framework [19].

The web service is a multi-threaded RESTful application, meaning that no persistent con-

nections are maintained between the service and its clients. Each session is run in a thread pool

using the Future programming construct available in the Scala concurrent library [8]. When
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Algorithm 4 GenerationStrategy
1: procedure generateLayouts(blueprint)
2: layouts← List[Layout]()
3: for gen ∈ gens do
4: layout ← gen.generate(blueprint)
5: layouts.append(layout)
6: end for
7: for layoutinlayouts do
8: for t ∈ tuners do
9: layout = t. f ineTune(layout)

10: end for
11: end for
12: return layouts
13: end procedure

a new session is requested, the service launches a new Future and immediately replies to the

client with a unique hash code. Status messages generated by the core library are queued and

sent to the client when requested through a specific route. The client can detect when a solution

is finished by periodically checking the status messages. A completed solution can be retrieved

by an HTTP GET request. This protocol is summarized in Table 2.2.

Table 2.2: Web Service API

HTTP Route Action
POST /session/new Returns a JSON object with an ID for the new session
DELETE /session/:id/delete Deletes a session with ID = id
GET /session/:id/status Retrieves the status of the session with ID = id
GET /session/:id/solution Retrieves the layouts for session ID = id
POST /backwards/new/:kernel Backwards compatibility call for new sessions
GET /assets/*file Retrieve static files (such as parameters for the GUI)

The assets route contains a set of static JSON files that contain information about the core

library’s algorithms including the parameters required for each generator and optimizer. Cur-

rently this route only contains files that define a set of configured Generation Strategies that

can be chosen by clients. This simplifies the user interface required to work with the library

during the development phases.
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Table 2.3: Shape Specifications for the Rooms in the Medium Sized Office Layout

Room Quantity Length (ft) Width (ft) Area (sq. ft)
Server Room 1 6 6 36
Reception 1 12 10 120
Office 2 10 7 70
Lunch Room 1 13 10 130
Large Office 2 10 10 100
Kitchen 1 10 7 70
Conference Room 2 14 10 140
Bathroom 1 10 9 90

2.6 Discussion

Tests of the Evolutionary Treemap algorithm as implemented with the architecture described in

the prior section show that it generates open-concept layouts in a multitude of styles. Testing

the algorithm was done with a custom architectural layout generation system programmed in

Scala using the Apache Commons Math Library for genetic optimization [20]. This library

provides a random key genetic algorithm that was tailored for use as the optimization meta-

heuristic in the Evolutionary Treemap implementation. This section will present results from

the algorithm for both residential and office layouts.

2.6.1 Office Buildings

The first style of layout is office buildings. The input specification used to generate the office

buildings is shown in Table 2.3. This example is representative of a floor in a medium sized

office building. The algorithm was set to give a weight of 1 for adjacencies from the kitchen

to the lunch room, reception to the bathroom, and conference room to the bathroom. The

Evolutionary Treemap algorithm was set to run for 10 generations with a population of 500

layouts. The algorithm requires two other parameters; the mutation rate and the elite rate. The

mutation rate is the degree at which new chromosomes are randomly modified and the elite

rate is the fraction of the chromosomes that are kept from the higher ranks. The mutation rate

of the algorithm was set to 0.08 and the elite rate of the algorithm was set to 0.01. Samples of

the output that is generated by the algorithm is shown in Figure 2.8.

In both examples in Figure 2.8, the majority of connectivity relationships are satisfied.
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Figure 2.8: Two example office layouts generated by the Evolutionary Treemap algorithm
based on the specification in Table 2.3
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For example, in the first layout the kitchen and lunchroom are adjacent and at the end of the

corridor on the top left. The bathroom is also adjacent to one of the conference rooms and

the reception. Though this room is not adjacent to the second conference room, the layout

is a good compromise between the desired features requested by the user. The second layout

is a different style, where the kitchen and lunch room are located in the bottom right corner.

The bathroom is now adjacent to both conference rooms and accessible from the hall. In both

examples, the rooms are close to the target sizes as specified.

2.6.2 Open-Concept Residential Buildings

The second style of layouts that shown is residential homes. The input specification used to

generate these layouts is shown in Table 2.4. A weight of 1 was assigned for adjacencies from

the living room to kitchen, kitchen to dining room, living room to dining room, bedroom to

bedroom and bedroom to bathroom. The Evolutionary Treemap algorithm was again set to run

for 10 generations with a population of 500 layouts. The mutation rate of the algorithm was

set to 0.08 and the elite rate of the algorithm was set to 0.01. Samples of the output generated

by the algorithm for this specification is shown in Figure 2.9.

Table 2.4: Shape Specifications for the Rooms in the Residential Home Layout

Identity Quantity Length Width Area Percentage Area
Living Room 1 25 20 500 43.86%
Kitchen 1 15 10 150 13.16%
Dining Room 1 12 10 120 10.53%
Bathroom 1 8 6 48 4.21%
Bedroom 3 10 10 100 26.32%

The examples in Figure 2.9 show that the algorithm is suitable for both office and residential

styles. As requested, in the first example, the kitchen and living room are adjacent and the

bedroom and bathrooms are accessible through the corridor. The second example has the

kitchen, dining and living room all adjacent and meets more of the connectivity requirements.

This shows that a user can generate multiple examples from the same specification and select

one that suits the style most appropriate for their usage.
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Figure 2.9: Residential layouts generated by the Evolutionary Treemap algorithm based on the
specification in Table 2.4
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2.6.3 Convergence Behavior

The convergence behavior of a genetic algorithm should be examined in order to identify the

speed at which the algorithm reaches an optimum. To identify the convergence behavior of

the prior examples, the average cost function value at each generation as well as the lowest

cost value at each generation were tracked. Figure 2.10 shows that the crossover operations

quickly identify an elite solution to the layout generation problem and that the cost value of

the population converges to a smaller value as generations of the algorithm pass. The quick

convergence of this algorithm allows a user to iteratively modify their input parameters.

2.6.4 Future Work

This section outlines the future directions of research into functional layout generation. The

first item that will be addressed is two main features of the Evolutionary Treemap algorithm

that should be introduced increase its applicability to real use cases; fixed structures and non-

rectangular boundaries. A simple heuristic is proposed to solve these challenges that works

well in some special cases and an open problem is presented that can be a subject of future

work. The second item that will be addressed is the corridor optimizer function. Though

it works well in smaller buildings, in larger buildings there are often artifacts present that

would not be seen in real architecture. The final item that will be presented is commentary

on the generation of multi-story buildings which require fixed structures such as stairs and

elevators. Though the current literature presents several generation algorithms that are capable

of producing single floor layouts, only [12] presented an algorithm that was applicable to multi-

store constructions. This challenge will be addressed in terms of the general formulation of the

layout generation algorithm.

Fixed Structures and Non-Rectangular Boundaries

Non-rectangular outer boundaries and layouts that contain fixed structures are a more chal-

lenging topic in layout generation. These two challenges are related because non-rectangular

outer boundaries can be modeled as rectangular boundaries with fixed structures located on the

edges and fixed structures can be modeled as boundary polygons that contain holes. As the
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Figure 2.10: Convergence of Evolutionary Treemap over twenty generations for an office layout
with a mutation rate of 0.08 and an elite rate of 0.01
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two problems are interchangeable, this section will address the fixed structure problem. The

results and commentary are applicable to the non-rectangular boundaries problem without loss

of generalization.

To begin, consider the solution space F f | F f ⊂ F where F f contains all of the possible

layouts that contain a set of fixed structures FS . These constitute the solutions to a more broad

range of applicable user input parameters that contain the specification of fixed structures where

FS = {p, c} | p ∈ P∧c ∈ C where p is a polygon with coordinates x | x ∈ R2 and c is a classifier.

The fixed structures may also be involved in connectivity relationships with the other rooms

in the layout and thus may be present as a node in the desired adjacency graph. The solution

space F f is infinite in size and must be reduced in order to be searched for candidate solutions.

It is assumed that subtracting each FS from the boundary polygon to result in a non-rectangular

shape is acceptable if and only if each member of FS is included in the algorithm that detects

adjacencies in the layout.

Reducing F f requires a generator function that is capable of producing an arrangement

of rooms that does not modify the fixed structures and therefore must select the location of

each room that has been specified in the input. This generator must function within a non-

rectangular space. This excludes the possibility of using a function like treemap for finding the

polygons for each room. A function that is capable of partitioning a general non-rectangular

shape into a set of N polygons is thus required where the polygons resemble common shapes

seen in layouts for each room and are close to the area and aspect ratio constraints provided

by the user. The problem is as follows, given a two-dimensional polygon B | B ∈ R2 find

a set of polygons Pr | P1 ∩ P2 ∩ ... ∩ PN = B, where ∩ is the polygon union operator, and

∀p ∈ P with parameters Q (such as area, width, length, aspect ratio) and user specified target

parameters QU , that produces the global minimum of |Q−QU |. Any optimization heuristic that

is formulated to solve this problem would likely be highly dependent on the actual location

of the fixed structures and the shape boundary and thus the challenge is finding one that is

successful for a subset that represents a large percentage of architect designed shapes.

One simple heuristic that could be considered is one that assumes the fixed structures are

located on the edge of the boundary and are proportionally small. In this case, the boundary

can simply be assumed to be rectangular and the problem can be solved by using an augmented
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Evolutionary Treemap algorithm. The augmentation is an added optimizer function that sub-

tracts the fixed structures from the polygons in which it is contained after the generation of the

layout. An example of a layout generated with this algorithm is shown in Figure 2.11.

Figure 2.11: An example layout with a non-rectangular boundary generated with the aug-
mented Evolutionary Treemap algorithm

This heuristic however does not account for structures that are not on the edge, and thus

is not applicable for test cases of this form. It also would perform poorly for fixed structures

that are large as entire rooms could be removed from the layout during the operation of the

optimizer function. The heuristic’s dependence on the output shape could be resolved in a

brute force manner, for example with a set of optimizer functions that augment Evolutionary

Treemap or one of the other generation algorithms proposed in literature that handle mutually

exclusive output shapes. Such a system could be driven by a computer vision algorithm that is

trained on features of the boundary polygons and directs the selection of a heuristic. Though

this is not an elegant solution, it could increase the space of possible input problems that are

solved when increased generality is desired.
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Corridor Optimizer Function

The corridor placement algorithm presented in Section 2.4.2 was shown to perform well in

smaller layouts that did not contain large sets of loops in the interior edges of the layout. As

the size of the layout increases the corridor algorithm can occasionally cause artifacts in the

final layout that may be unnecessary. For example, the corridor place by the algorithm in Fig-

ure 2.12 has a loop highlighted in red that may or may not be deemed necessary by a designer

and would add to the material cost of a building. Applying the spanning tree algorithm would

eliminate this loop, however this may not be desired. Building codes for fire exits and acces-

sibility may require loops in certain regions. This concern could be addressed with a second

stochastic optimization algorithm for the shape of the corridor. This algorithm would be run at

each iteration of the Evolutionary Treemap algorithm and, though this would increase the over-

all complexity of the algorithm with direct consequences to the runtime, it would potentially

provide less artifacts that would not be found in a real building.

Figure 2.12: An example of a corridor that contains loops which may or may not be necessary
depending on the designer preferences

An example of such a stochastic optimization algorithm for the corridor could be based

upon a boolean vector b where ‖b‖ = k and k is the number of interior edges in the layout. In

this representation, an interior edge ki would be included in the shape that forms the corridor if

and only if the corresponding bi is true. The possible values of this vector thus form a solution

space C of potential corridors that can be placed in the layout where ‖C| = 2k. If the desired

features of the corridor can be expressed in a cost function that is subject to some user input
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then a generic stochastic optimization can be used to search C for the optimum.

Multi-Story Buildings

Generating a multi-story building is a challenge due to the fact that each floor of the layout

must contain elements whose location is fixed for the entire building. For example, elevator

shafts and stairways must be located on the same place on each floor. Other elements, such

as washrooms and kitchens, may also require similar locations to minimize the cost of pipes

associated with the plumbing of the building. The challenge is furthered by the fact that a

generation algorithm that attempts to allocate space within an existing building will treat these

rooms as fixed structures whereas an algorithm that generates the whole building may be able to

treat the constraints on the shapes of these objects as fuzzy. Though the algorithms described in

Section 2.2 are all able to produce quality layouts for single floor buildings, only the simulated

annealing algorithm proposed in [12] was able to produce multi-story houses. No author has

yet claimed an algorithm that can generate an entire building with many levels within one

optimization. This section addresses possible heuristic methodologies that could increase the

number of layouts that can be generated in tandem for a single building.

Solving a building that contains n levels requires the generation of a set of layouts, L, of size

n where each floor shares a set of fixed structures, FS , each of which has a location defined by a

polygon, p, that is common for each level. It is assumed that p is provided for all FS . With this

assumptions, the algorithm can consider each fixed objects individually for each layout. It is

also assumed that the user has specified the rooms that are desired on each level of the building

and their classifiers, but that the polygons are unknown. The problem is thus to find the location

for each room in each layout. If these assumptions are made, the multi-story problems becomes

recursive sub-problems of layout generation with fixed structures. The heuristic presented for

managing fixed structures can then be applied if the conditions are met. This algorithm would

have a theoretical complexity of O(n × f ) where f is the complexity of the layout generation

algorithm.
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2.7 Conclusion

Architectural layout generation accelerates the time required to produce CAD drawings for a

construction or virtual reality project. Algorithms that generate layouts can be represented by

a general form that simplifies comparisons of the results produced. Evolutionary Treemap is

an algorithm that generates layouts in multiple styles and is based on a genetic algorithm that

shows good convergence behavior. The results produced by Evolutionary Treemap differ from

others in literature due to the generality of the results. Extending this work to allow generation

of more realistic layouts requires facilities for generating multi-floor layouts, layouts with fixed

structures and improving the corridor generation algorithm. Thus the Evolutionary Treemap

algorithm is a useful algorithm that can be implemented within CAD software to provide users

with an accelerated methodology to produce drawings for their projects.
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Chapter 3

Parallel Linear Programming with Dense

Data Structures

3.1 Introduction

The Simplex Algorithm is an iterative optimization algorithm that solves linear programming

problems. Though industrial implementations of Simplex with sparse data structures exploit

properties of practical problems to improve performance, an efficient parallel sparse algorithm

has yet to be discovered [1]. Dense forms of the algorithm exhibit data-level parallelism that

can be implemented for parallel processors to obtain speed up. This work proposes an energy-

efficient hardware accelerated dense Linear Programming (LP) solver based on the Simplex

Algorithm for solving LP problems. The system is operable on Field Programmable Gate Ar-

rays (FPGAs), Graphic Processing Units (GPUs), and multi-core computer processing units

(CPUs). The system is targeted towards dense linear programming problems found in ra-

diotherapy treatment planning applications as they represent a challenge to modern solvers.

The implementation differs from others in literature as it is based on the Dictionary Simplex

Algorithm rather than the traditional Tableau algorithm, contributing to a reduced memory

consumption.

Performance benchmarking for the linear programming system on randomly generated

problems with dense matrices reveals speed ups relative to a sequential implementation that

approach two and ten times faster on a CPU and GPU respectively. The FPGA exhibited no

44
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speed gain but proved to be the most efficient with respect to Simplex iterations processed per

unit energy with an efficiency 5 times greater than a CPU implementation. This is a notable

speed improvement and power saving in comparison with current technology for solving dense

problems because the GPU code can solve problems with speeds up to 50 times faster than

an open-source sparse solver. This shows that the dense implementation performs well for

problems that are not well suited for a sparse solver.

This chapter is organized as follows: The first section summarizes the literature available

on parallel implementations of the Simplex Algorithm, the second introduces the prerequisite

background information on the mathematical notation and algorithms of linear programming,

the third presents details of the OpenCL implementation of the algorithm, and the fourth dis-

cusses benchmarking results.

3.2 Literature Review

The Simplex Algorithm is used to solve a class of optimizations known as linear programming

problems. Linear programming problems are maximization or minimization problems for a

function composed of a sum of weighted decision variables bounded by a set of linear con-

straints. These problems can be solved by many different versions of the Simplex Algorithm

that have been proposed and refined in order to handle issues that occur during the solve pro-

cess such as numerical instability and degeneracy. Though the refinements discovered in the

past century of linear programming research increased the size of tractable problems, many

practical linear programs cannot be solved within a practical time limit - their computational

complexity surpasses software capability. This section summarizes the efforts in literature to

eliminate the performance barrier imposed by software through implementation of the algo-

rithm at a lower level.

The majority of literature on accelerating the Simplex Algorithm with parallel computing

focuses on the dense variant of the algorithm. As the algorithm requires a set of matrix calcu-

lations that operate in series, the algorithm can be implemented based on sparse linear algebra

or dense linear algebra depending on the properties of the problems from the desired appli-

cation. The algorithm consists of three subroutines, pricing, ratio test and pivot, which are
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each matrix operations on the problem data. Though the sparse form of the algorithm is the

traditional highest performer due to the structure of practical problems, the micro-parallelism

of dense Simplex coupled with advances in parallel computing resulted in renewed interest in

the dense form. Literature that proposes hardware acceleration of the dense algorithm reports

performance that surpasses sparse software for small test sets [2, 3].

Dense linear programming problems, though rare in practice, are found in the field of ra-

diotherapy treatment [4, 5]. The radiotherapy LP problem requires computing configuration

parameters for a set of beams that are aimed at a patient’s treatment area. Since the radiation

delivered by many beams will overlap to cover the full treatment area, the dosage matrix of the

LP model can be dense. This type of problem forms the motivation for a hardware accelerated

dense linear programming algorithm.

At present, the powerful hardware components in heterogeneous computing systems such

as GPUs are left idle while linear programming software performs simplex iterations on the

computer processor. Recent literature shows that these resources can be utilized to acceler-

ate the algorithm. An FPGA implementation developed in [3] was used to solve small scale

linear programming problems and reported acceleration when compared industry leading sim-

plex software. An implementation utilizing a GPU reported comparable acceleration for large,

randomly generated problem sets [2]. This performance increase warrants further study of the

dense algorithm with modern parallel computing systems.

Not only would a parallel Simplex Algorithm advance the field of linear programming, it

would also find direct application within integer linear programming solvers [6]. Integer linear

programming is a related form of optimization in which the problems contain integer vari-

ables. These problems are solved through many iterations of the Simplex Algorithm and thus

require high performance computing resources. The high resources required for this computa-

tion renders problems of modest size intractable. Access to a faster Simplex Algorithm would

increase the size of solvable ILP problems in industries from network design [7] to power plant

maintenance [8].

OpenCL [9] is a programming language that can accelerate the Simplex Algorithm for mul-

tiple platforms. An OpenCL implementation of Simplex optimized for GPUs in literature

demonstrated acceleration of over 20 times the sequential version [2]. This chapter compares
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the performance of the dictionary Simplex Algorithm on a GPU and an FPGA. This is possible

with the recently introduced FPGA OpenCL SDK [10]. Literature providing similar compar-

isons for video compression and information filtering highlight the differences in performance

and power of the platforms [11, 12]. A technology that provides a green solution could reduce

energy expenses and cooling requirements of large scale server farms used to solve integer

linear programming problems in financial, traffic and general data analysis. The application

dependent analysis of performance versus power provided for the Simplex Algorithm gives

insight into hardware linear optimization capabilities.

3.3 Background

Linear programming algorithms find the extreme value of a linear objective function subject

to constraints. The mathematical form of a linear programming problem is (3.1), where c is

the objective function coefficients, x is the decision variables, A is the constraint system and b

is the value of the constraints. The problem is assumed to have m constraints and n decision

variables. In this chapter a minimization problem is considered without loss of generality.

min cx (3.1)

s.t. Ax ≤ b

x,b ≥ 0

Solving a linear programming problem requires identifying the extreme value of the cost

function and the value of the decision variables at that solution. The following definitions are

required to understand the solution of a linear programming problems:

Definition 3.3.1. A Feasible Solution is a set of variable values, x, that satisfies the constraints.

Definition 3.3.2. The Feasible Region is the convex polyhedron in n + m dimensions formed by

the constraint equations containing all feasible problem solutions.

Definition 3.3.3. A Basic Feasible Solution (BFS) is a feasible solution at an intersection of
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Figure 3.1: Visualization of the feasible region in a simple linear programming problem with
two decision variables and four constraints. Arrows indicate a possible Simplex path.
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constraints. The optimal value of any linear programming problem is always basic feasible

solution [13].

Algorithms that solve linear programming problems iteratively check feasible solutions for

optimality. The Simplex Algorithm restricts this search to BFS and traces a path along the edges

of the feasible region towards the optimal solution. At each iteration, a new BFS is chosen to

improve the objective by replacing a variable with poor objective contribution with a better

candidate. These variable changes propel the algorithm along a geometric path as shown in

Figure 3.1. Adjacent vertices of the convex set are tested until the optimum is found.

3.3.1 The Dictionary Simplex Algorithm

This section summarizes the Dictionary Simplex Algorithm, a dense matrix algorithm for solv-

ing linear programming problems to introduce terminology for later sections. Since the intent

was to evaluate the performance of the Simplex Algorithm on hardware devices and OpenCL

design methodology for application in high performance computing environments, problems

of type (3.1) were used to develop and test the algorithm. Though practical problems contain

additional types of constraints and variables, linear programming literature often analyses this

form of problem to motivate concepts [14]. Studying this form provides initial insight into

the dictionary algorithm performance and OpenCL’s capability as a cross-platform solver. The

work reported here is intended as an initial step towards a full design. The intent was to mea-

sure the actual speed-up from a GPU and FPGA with simplified problems so that an upper

bound on performance was available. The contribution of this chapter is profiling that reveals

this upper bound.

The Augmented Linear Programming Problem

Problem (3.1) requires modification prior to processing with Simplex. A modified form, (3.2),

where Â represents an augmented constraint system with m additional variables, z, that change

the inequality constraints to equality constraints is required. These variables are referred to as

slack variables because their values represents the distance between the constraint system and

its bounds.
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min cx (3.2)

s.t. Âx̂ = b Â = [A I]

x̂ ≥ 0 x̂ = [x z]

There is a second reason for augmenting the constraint system with z. The coefficients of z

in Â form an invertible matrix to initiate the Simplex Algorithm. This is the initial BFS used to

begin traversal of the feasible region.

The Optimal BFS

Consider a partition of x̂ into sets xB of size m and xN of size n called the basic and the non-basic

variables. The columns of the problem data corresponding to these variables are differentiated

using subscripts B and N. The partition of Â is represented by B and N for notational simplicity.

For the considered linear programming problem, the following theorems apply (refer to

[13] for proofs):

Theorem 3.3.4. (Basic Feasibility) A partition of x̂, [xB, xN] where xN = 0, xB = B−1b and

x̂ ≥ 0 is a BFS.

Theorem 3.3.5. (Optimality) The optimal BFS to the linear programming problem satisfies

cN − cBB−1N ≥ 0.

Three mechanisms based on Theorems 3.3.4 and 3.3.5 compose the Simplex Algorithm.

The first two, Pricing and The Ratio Test, choose two variables to exchange positions and

form a partition of x̂ with a lower value of cx. The variable that leaves the basic set is called the

leaving variable and is replaced by the entering variable. The third, Pivot, updates the problem

data for the new solution. Figure 3.2 shows an overview of the iterative procedure formed by

applying these three algorithms in sequence to generate improving solutions.
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Figure 3.2: The Stages of the Simplex Algorithm

The Dictionary Data Structure

The dictionary algorithm combines Theorems 3.3.4 and 3.3.5’s critical data in structure (3.3),

where the top row is the result of the optimality check, or reduced costs, the right-most column

is the basic variable values and the top right corner is the current objective value. The three

interior algorithms improve the current solution using values of B−1N to choose the entering

and leaving variables. This structure is referred to as the dictionary.

D =


cN − cBB−1N cBxB

B−1N xB

 (3.3)

The Initial Partition

Simplex begins an iterative search for the optimum with a starting BFS. Advanced linear pro-

gramming solvers calculate this with a Phase 1 algorithm [15]. However, for the problem type

under consideration, the partition [xB, xN] = [z, x] = [b, 0] satisfies Theorem 3.3.4 and can act

as an initial suboptimal solution.

With all variables equal to zero, [cB, cN] = [0, c], [B,N] = [I,A] and the initial dictionary is

(3.4). It is important to note that the interior of the dictionary contains A at this step, the initial

constraint system of order m × n. This feature of the dictionary algorithm will be analyzed



52 Chapter 3. Parallel Linear Programming with Dense Data Structures

Section 3.3.1.

D =


c 0

A b

 (3.4)

The Pricing Algorithm

Pricing refers to the procedure used to select the entering variable. Negative reduced costs

in the first row of (3.3) correspond to variables that violate the condition in Theorem 3.3.5

and will improve the objective if chosen to enter. Any violating variable can be chosen. The

employed selection strategy dictates the length of the path traced by Simplex. Advanced pricing

algorithms in literature attempt to choose wise candidates and shorten this path [15] .

Access to many computational cores adds an additional design consideration to the selec-

tion of the pricing algorithm. Most practical linear programming solvers use the idea of partial

pricing to reduce iteration processing time. This technique examines a subset of the reduced

costs to choose an entering candidate. There are opportunities for parallel pricing algorithms

that use multiple cores to examine several sets of reduced costs or to accelerate the search

through a single subset of values. The only way to justify such algorithms is through empirical

evidence. The best algorithm for pricing in each problem is still an open question.

This design uses the pricing algorithm called steepest descent that chooses the variable

with the minimum of all reduced costs to enter the basis. Although the algorithm is susceptible

to slow improvement in some problems [13], its efficient parallel form led to inclusion in the

dictionary algorithm.

The Ratio Test

The leaving variable is calculated by the ratio test. The non-basic variable at the index of

the minimum positive value in xB divided by the entering column is selected. The objective

function is decreased by the product of the minimum ratio and the entering reduced cost.

The ratio test detects if a problem is unbounded. This occurs when the feasible region of

the problem is not a closed set. If there is no leaving candidate, the objective has no lower limit
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[15].

The Pivot Algorithm

Algorithm 5 calculates the dictionary structure for the new solution, where the index of the

entering and leaving variables are represented by enter and leave. Combining the strategies for

updating the reduced costs, objective value, basis variable values, and B−1 presented in [15]

creates an efficient parallel form of the pivot algorithm.

The first stage of the algorithm stores the leaving row, pRow, entering column, pCol, and

the value of the dictionary at the intersection of pCol and pRow, pElem. The subsequent nested

loop requires these values and they could be overwritten if not stored before parallel execution.

The values of the dictionary do not require calculation through the equations in (3.3) for

each iteration, although this is a strategy that could be used to increase numerical stability of a

practical solver.

The Size of the Dictionary

Memory usage is a crucial design consideration for linear programming solvers because prac-

tical problems can contain a large number of decision variables and constraints. Furthermore,

future ILP solvers based on the implementation could store and process more linear relaxations

of a problem in parallel as part of a branch and bound framework.

The Tableau Simplex Algorithm is the common algorithm implemented in dense form [14].

It relies on structure (3.5) for the internal computations. Note the presence of Â in place of

N. Compared to (3.3), this structure has m additional columns that lead to O(m2) additional

calculations. (3.6) and (3.7) show that this extra memory is redundant.

T =


c − cBB−1Â cBxB

B−1Â xB

 (3.5)

The variables already in the basis cannot be entering candidates, and as such, their reduced

costs are zero. (3.6) shows that these values are explicitly stored in T and can be removed.
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Algorithm 5 Pivot
1: procedure Pivot(enter, leave,D, pCol, pRow)
2: pElem = D[leave, enter]
3: parallel for i = 1 to m + 1 do
4: if i = leave then
5: pCol[i] = 0
6: else
7: pCol[i] = −D[i, enter]/pElem
8: end if
9: end parfor

10: parallel for i = 1 to n + 1 do
11: pRow[i] = D[leave, i]
12: end parfor
13: parallel for i = 1 to m + 1 do
14: parallel for j = 1 to n + 1 do
15: if i = leave and j = enter then
16: D[i, j] = 1/pElem
17: else if j = enter then
18: D[i, j] = pCol[i]
19: else if i = pRow then
20: D[i, j]/ = pElem
21: else
22: D[i, j]+ = pRow[ j] ∗ pCol[i]
23: end if
24: end parfor
25: end parfor
26: end procedure
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c − cBB−1Â = [cB cN] − cB × [B−1B B−1N] (3.6)

= [0 cN − cBB−1N]

The columns of the tableau below these reduced costs is an identity matrix that can be

removed. (3.7) shows this result.

B−1Â = [B−1B B−1N] (3.7)

= [I B−1N]

The dictionary algorithm does not store this unnecessary data, and as a result, requires less

computations per Simplex iteration and less overall memory.

The Tableau Simplex Algorithm has a storage requirement given by the denominator of

(3.8). The proposed algorithm has a storage requirement given by the numerator of (3.8).

MR =
(m + 1) × (n + 1)

(m + 1) × (m + n + 1)
(3.8)

If it is assumed that the number of constraints and variables in the problem are approxi-

mately equal, the memory required to store the problem is reduced to a half of its former value.

MR represents the ratio of memory required in the proposed algorithm to the tableau method

and asymptotically approaches 50% as the size of the problem grows.

In [2], read and write copies of the tableau were stored in device memory to facilitate

hardware implementation. Processing the data prior to pivoting removes the storage required

for a second copy.

3.4 Parallel Implementation of the Dictionary Algorithm

A prototype linear programming solver was developed in OpenCL to benchmark parallel per-

formance. An OpenCL program is divided between a host that manages program flow and
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Figure 3.3: Dictionary Algorithm Design Architecture

a device that provides parallel resources [16]. A traditional heterogeneous computing system

uses a CPU host to drive an acceleration device such as a GPU or FPGA. OpenCL functions,

referred to as kernels, operate in parallel on the device. Device memory is divided into high,

medium and low latency layers called global, local, and private respectively.

3.4.1 OpenCL Software Design Architecture

The dictionary algorithm implementation applies device kernels in sequence to solve a lin-

ear programming problem. The architecture is presented in Figure 3.3, where checking for

unboundedness after the ratio test is omitted for clarity. The host initiates the algorithm by

queuing the pricing kernel and performs simplex iterations until the detection of the optimal

basis.

This design has a main processing loop with minimal transfers between device and host to

reduce the memory latency of the application. The important data is sent to the device at the

start of the operation. Reducing the number of transfers between the host memory and device

memory increases the overall efficiency of the design. Reading the minimum ratio, to check

unboundedness, and the entering reduced cost, to detect the optimal basis, are the only device

to host memory transfers required.



3.5. Benchmarking Results 57

Table 3.1: Hardware Device Specifications

Device Power (W) Memory Bandwidth (GB/s)
Intel Core i7 4930k 130 59.7

Nvidia GeForce GTX-780 250 288.4

Altera Nallatech PCIe-385N 25 23.99

The three interior algorithms were implemented as follows. Entering candidates are priced

using a vector reduction on the device. This is a parallel processing technique used to resolve

a vector to a single value with commutative operations [17]. For the ratio test, calculating

individual ratios are independent operations that are done in parallel The resultant set is reduced

by the device to obtain the minimum. The pivot is performed on the device with a block

processing implementation of Algorithm 3.3. This requires a two-dimensional kernel in which

each realization accesses and updates one element of the dictionary. The two dimensional

algorithm is required because the D is a two dimensional matrix.

3.5 Benchmarking Results

This section benchmarks the OpenCL dictionary algorithm implementation on hardware accel-

erators and compares results with serial performance. The design was tested with an Intel Core

i7 4930k CPU, a Nvidia GeForce GTX-780 GPU, and a Nallatech PCIe-385N equipped with

an Altera Stratix V FPGA. The relevant specifications of these three devices are presented in

Table 3.1.

Performance curves were generated by solving multiple sets of linear programming prob-

lems with sizes ranging from 256 × 256 to 8192 × 8192 variables and constraints. Multiple

variations in OpenCL workgroup sizes were tested and the analysis was performed with the

best configuration for each device.

3.5.1 Speed Up

The OpenCL implementation grew faster than the sequential code on all three devices with

increasing problem size. For applications without stringent energy requirements, Figure 3.4
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Figure 3.4: Speed up of the OpenCL dictionary algorithm over the sequential C++ algorithm

shows the speed up achieved by the OpenCL solver over the sequential, dense solver. The

GPU was the fastest device of the three tested. This advantage became pronounced when the

problem size increased beyond 756 by 756 variables and constraints due to higher utilization

of the device memory bandwidth and streaming multiprocessors. The speed up became con-

stant when the problem size increased beyond 4096 by 4096 due to saturation of the available

memory bandwidth. Though the FPGA was the slowest solution, with close to unity speed up,

its low power consumption is an asset that was not considered in this particular test.

The performance of the proposed OpenCL solver was compared to SoPlex [18], an ad-

vanced sparse LP solver, over the same range of random, dense problems. SoPlex represents

the state of the art in linear programming software with benchmarks that are competitive with

other open-source solvers such as Coin-OR [19] and GLPK [20]. The comparison showed

that the GPU code was up to 50 times faster than the sparse solver for these dense problems.

This shows a niche application for the dense solver where the sparse solver is at an inherent

disadvantage.
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Figure 3.5: Device performance versus power analysis

3.5.2 Performance versus Power

Normalizing the speed of each device with its estimated power consumption resulted in further

insight. The average number of iterations possible per unit energy was calculated to gain

greater understanding of device performance. This represents the speed at which a solver

can process linear programming problems. Higher values represent faster processing for each

Joule consumed. Figure 3.5 compares this metric to identify the energy savings accomplished

through hardware acceleration.

This result indicates that the FPGA outperforms the CPU and GPU for the entire test spec-

trum. Although it had the lowest speed, it was the most efficient platform. Large-scale integer

linear programming servers with energy consumption concerns would be best suited with the

specific FPGA that was tested.
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3.5.3 Memory Bandwidth

In an efficient design, the kernel should be always saturated with processing. The memory is

not a performance factor alone. A good design saturates both memory and processing time. An

efficient OpenCL design for pivot should use the full memory bandwidth available on a device.

The apparent memory bandwidth usage for each device was calculated as an empirical mea-

sure of efficiency by multiplying number of accesses to global memory (reading the dictionary

value, the problem size, the pivot element, the pivot column and row values, and writing to

the dictionary) in the pivot kernel by the size of the problem and the runtime of a Simplex

iteration. Since the pivot calculation overpowers the runtime of the other algorithms, they were

assumed to have negligible contribution. The bandwidth was normalized for each device with

the specifications in Table 3.1.

Figure 3.6 shows that all devices are operating near their nominal memory bandwidth.

This means that the design effectively targets the architecture. Reliance on memory bandwidth

furthers the importance of the dictionary algorithm’s optimized memory. Dividing the tableau

size by a factor of two reduces the overall amount of data that must be provided to the kernels

from the global memory.

3.5.4 Future Directions

The future direction of this work should focus on three different areas: measuring more accu-

rate power consumption figures for each of the devices, testing more OpenCL compute devices,

and comparing performance to a full hardware implementation. The first area is required be-

cause the power consumption figures in this work are estimates based on the manufacturer

reported specifications. Drawing an accurate comparison based on actual measured power

would illuminate further the differences in performance for each of the processors. The second

area could focus the testing of the design on more OpenCL enabled devices. Devices such as

AMD GPUs and other Intel many-core processors could be used to draw a comparison across

a wider range of devices. The third area could focus on implementing the Dictionary Simplex

Algorithm with Verilog for an FPGA and measuring the performance of a full hardware im-

plementation. This would also enable a comparison between the performance of the OpenCL
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Figure 3.6: The estimated percentage of available memory bandwidth used by each device
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SDK for FPGAs and the traditional lower level implementations.

3.6 Conclusions

This chapter presented an OpenCL implementation of the Simplex Algorithm and benchmarked

performance of parallel hardware computing devices. The proposed hardware implementation

of the Dictionary Simplex Method reduced the memory requirements of the dense algorithm

and solved, to our knowledge, the largest problems with FPGAs to date. OpenCL provided an

efficient design methodology that enabled performance tests on a variety of devices.

Test results indicate that the GPU provides the fastest solutions to linear programming prob-

lems but is less power efficient than the FPGA. They also show that the memory bandwidth of

a device is a critical specification. Analysis of the internal proportions of the dictionary algo-

rithm reveals that an efficient implementation of the pivot algorithm is a critical requirement

in a practical solver. The central contribution of this work is the benchmarking to derive an

upper-bound for speed-up of the software.Although the tested problems are academic in na-

ture, benchmarking provided further proof that a practical hardware accelerated linear solver

would be a great contribution to the field.
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Chapter 4

Multi-Path Parallelism in the Simplex

Algorithm

4.1 Introduction

Though parallel processors are a resource that can improve the performance of software, ex-

ploiting them for inherently sequential algorithms, such as linear programming codes based on

the Simplex Algorithm, is difficult. The complex nature of this problem has spawned numer-

ous efforts within operations research literature to design a practical linear programming code

that operates in parallel. The literature shows two distinct approaches for solving this prob-

lem; reducing the time per iteration of the algorithm with internal parallelism or decreasing

the number of iterations required by the algorithm with external parallelism. Both topologies

achieve a reduced software run-time without compromising the accuracy of final solutions. The

first accomplishes this through implementation of sparse linear algebra algorithms in a data-

parallel manner and the second spawns multiple threads that race on different paths through the

solution space in a task-parallel manner.

This chapter presents a method to parallelize the Simplex Algorithm that does not rely

on data-level parallelism of the internal matrix calculations, instead relying on the heuristic

nature of the path-finding algorithms that trace the direction to the optimum value of the linear

programming problem. This form of task-level parallelism uses multiple pricing algorithms to

reduce the overall number of iterations required to solve the problem. The parallel algorithm

65



66 Chapter 4. Multi-Path Parallelism in the Simplex Algorithm

is shown to improve the performance of an open-source linear programming library with best-

case performance with four threads of up to 14.73 times, average-case performance of 1.56

worst-case performance of 0.3 times on a large set of standardized programming problems.

This chapter shows that the algorithms has statistically significant performance gains at a 95%

confidence level. The algorithm extends the work in [1], another form of externally parallel

Simplex Algorithm, by removing the need to synchronize at each iteration.

The first section of this chapter presents a literature review on the different methods for

parallelizing the Simplex Algorithm, classifying them into externally or internally parallel. The

second presents an upper bound for performance from internally parallel strategies based on

profiling data from SoPlex and Amdahl’s Law [2]. The third proposes the Multi-Path Sim-

plex Algorithm and explains the detailed operation of the code. The fourth presents a novel

test methodology for linear programming software and reveals the performance improvements

attained through the parallel algorithm on large, sparse linear programming problems.

4.2 Literature Review

The Simplex Algorithm solves optimization models with linear constraints and objective func-

tions known as linear programming problems. This inherently sequential algorithm forms the

basis of most linear programming software. The major open source linear programming li-

braries, such as SoPlex [3], Coin-OR [4] and GLPK [5] solve linear programming problems

with a single thread.

This algorithm is sequential because it requires a set of iterative matrix operations such as

triangular solve and matrix-vector multiplication on large sparse data which do not tradition-

ally operate well in parallel [6]. Linear programming software exploits sparsity to decrease

the consumed memory and overall runtime. Sparse matrix operations reduce the number of

computations needed to solve larger linear programming problems. The sparse algorithms sig-

nificantly increase the complexity of the software and require careful design of data structures

and algorithms to ensure practical problems can be solved.

Despite the apparently sequential nature of the algorithm, multiple authors proposed novel

parallel topologies. A review of the major literature on parallelizing the Simplex Algorithm
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[6] concluded that though many promising strategies exist, a practical improvement has yet

to be gained from parallel computing. The techniques presented in [6] can be classified into

two distinct groups. The first exploits parallelism within each iteration’s basic linear algebra

subroutines. This will be defined as internal parallelism. The second attempts to reduce the

number of total iterations taken by the algorithm to find the optimal solution. This will be

defined as external parallelism. As the number of iterations required to solve a linear pro-

gramming problem with the Simplex Algorithm cannot be predicted, accelerating the time per

iteration with faster implementations and reducing the global number of iterations with better

entering and leaving variable selections are both effective strategies to improve the software.

Internally parallel algorithms improve the performance of the algorithm by modifying sub-

routines that take place during each iteration, such as pricing and updating the basis factoriza-

tion, to operate on parallel cores. This improves the performance of the algorithm by reducing

the overall time spent per iteration. This method’s success occurs in problems with randomly

generated dense matrices that have exploitable structure on FPGAs [7] and GPUs [8]. This

approach has yet to yield an implementation within a popular open source linear programming

library as these parallel formulations rely on dense linear algebra. The literature does not re-

port results for the larger sparse problems of practical interest that are available in the Netlib

or Mittleman test sets [9, 10].

Externally parallel algorithms reduce the global number of iterations taken by the Simplex

Algorithm. References in the literature to externally parallel algorithms are less frequent than

their internal counterparts. The externally parallel algorithm that is most referenced in litera-

ture involves following multiple paths around the convex constraint polyhedron of the linear

programming problem. Maros and Mitra [1] presented an algorithm of this type that resulted

in speed ups over a sequential software. The modest speed ups reported in [1] are an important

contribution that shows external parallelism is a viable technique for accelerating Simplex.

4.3 Internal Parallelism Performance Bounds

Linear programming codes are large and complex with many modular components applied

sequentially. Improving a sequential code-base of this type with parallel resources requires
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detailed profiling in order to develop an effective strategy. The algorithms that dominate the

overall runtime of the solver should be targeted in order to maximize the effects of parallelism.

This section presents the methodology used to identify the bounds on internal parallelism by

profiling a popular open source linear programming code, SoPlex. SoPlex is an open-source

linear programming code that is part of a large operations research code suite [3]. The code

is written in C++ and follows an object-oriented design approach. The software is capable of

solving large sparse problems.

4.3.1 Profiling Methodology

SoPlex was subjected to profiling to illuminate the detailed components of the solution process.

The process for each problem was profiled with the perf profiling tool on a Linux system

that contained an Intel i7-4930k Ivy-Bridge Processor and 32GB of RAM. The solver was

compiled with its default settings for maximum performance as provided by the documentation,

terminated if it had not found a solution after one thousand seconds, and run with the default

command line arguments for algorithm parameters. The time limit is used as the metric of

failure for the solver, which is enough time to solve any of the test cases provided. The profiler

measured the obtained objective function, number of iterations, and runtime.

Sample linear programming problems compiled from the Netlib, Mittleman and other linear

programming and mixed integer programming databases [9, 10, 11] formed the set of profiled

problems. The linear relaxations of the mixed integer problems were solved rather than the full

problem. For each problem the time spent in each function was measured and the total time

spent in that function for solving the entire test set was calculated. Table B.1 contains the full

directory of test cases.

4.3.2 Computing Performance Limits

Figure 4.1 presents the cumulative profiling results from SoPlex on the test cases. The largest

contributors to the runtime of the solver are the sparse matrix vector multiplication, setupPUp-

date and triangular solve, solveUleftNoNZ functions. The names of the functions are drawn

directly from the SoPlex source code. Combined the two algorithms contribute approximately



4.3. Internal Parallelism Performance Bounds 69

11%

11%

11%

10%

6%
5%

5%
3%

3%

2%

2%

2%
2%
1%
1%
1%
1%
1%

23%

SPxSolver::setupPupdate
CLUFactor::solveUleftNoNZ
deQueueMin
CLUFactor::vSolveUright
SPxSteepPR::entered4
CLUFactor::vSolveUrightNoNZ
__strcmp_sse42
deQueueMax
SPxSolver::updateTest
NameSet::number
SPxFastRT::maxDelta
CLUFactor::vSolveLeft2
CLUFactor::forestUpdate
CLUFactor::vSolveLeft
SPxFastRT::selectLeave
CLUFactor::solveLleft
CLUFactor::vSolveLright2
SPxSolver::doPupdate
Other

Figure 4.1: Distribution of algorithm runtime in SoPlex for the selected test problems

22% of the runtime of the algorithm. Other algorithms that contribute large time consumption

are several other triangular solve algorithms, the pricing calculation entered4 and dequeuing

elements from a heap with deQueueMin. Other algorithms, which each individually account

for less than one percent of the runtime, contribute a combined twenty-three percent.

The profiling results for SoPlex reveal upper bounds on the performance of internal par-

allelism through extrapolation based on Amdahl’s law. Amdahl’s Law is important when as-

sessing the potential performance improvement to software by exploiting parallelism. This law

states that if a percentage, P of a system can be conducted in parallel, the maximum perfor-

mance improvement by conducting the process on infinite processors is given by the inverse

of 1 − P [2]. Thus a parallel processor can only make a positive impact on the performance

of linear programming software if the run-time nature of the code is heavily skewed to a small

subset of algorithms that have efficient parallel forms. Though many of the algorithms con-

tained within a sparse solver may effectively target a parallel processor due to high degrees of

coarse grained parallelism, it is only possible to impact the software in a meaningful way if

these algorithms dominate a high percentage of the runtime. This performance analysis identi-

fied that these algorithms do not exist.

Figure 4.2 shows the maximum theoretical speed-up of SoPlex extrapolated from Figure 4.1
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Figure 4.2: Maximum possible speedup predicted by Amdahl’s Law

using Amdahl’s Law. The maximum possible speed-up to the software is approximately 1.1

times given a parallel sparse matrix vector multiplication kernel that can complete the same

calculation as its sequential counterpart in zero time. The second greatest contributor is sparse

triangular solve. A parallel form of this algorithm that takes close to negligible amounts of

time would also improve the speed of the software by approximately 1.1 times.

Practical implementations of these algorithms will not take zero time and will be subject to

overheads. These are from conversions between the special data structures beyond Compressed

Sparse Row (CSR) that are required to allow exploitation of parallelism and the transfer of

data between a CPU and a massively parallel processor such as a Graphics Processing Unit

(GPU). Therefore Amdahl’s law overestimates the actual possible impact from parallelization

of these individual algorithms. It is possible that parallel versions of these inherently sequential

algorithms could be outperformed by the sequential versions.

This analysis shows that the achievable benefits from exploiting internal parallelism in a
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linear programming solver based on the Simplex Algorithm are minor due to the nature of the

software. Performance improvements from internal parallelism cannot affect the solver because

of the large number of sequential algorithms.

4.4 The Multi-Path Simplex Algorithm

This section describes the Multi-Path Simplex Algorithm, an externally parallel algorithm that

uses parallel threads to solve a linear programming problem with different configurations to

solve a linear programming problem. The parallel algorithm runs several instances of the

algorithm in individual threads with different pricing algorithms. The configuration parameters

could also include some combination of different ratio test algorithms or others. When a user

considers the number of threads that are available to the solver as well as the available memory,

the number of parallel combinations can be tailored to a specific machine.

Algorithm 6 presents the Multi-Path Simplex Algorithm. This shows the details for parallel

execution including the usage of a mutex and atomic variables. The mutex in this algorithm

ensures there are no race conditions and the atomic booleans allow cancellation of a solver

from multiple threads. The inputs to the algorithm are a list of configured solver instances that

are parametrized based on command line options for the executable.

The first portion of the algorithm allocates resources by instantiating a mutex and forming a

dictionary that links each of the solvers to an atomic boolean variable. This variable is initially

set to false to indicate that a solution has yet to be found. The solver checks whether or not it

has been set to true at each iteration of the algorithm. When the cancel switch is set to true, the

solver is terminated. The atomics do not cause delays as there is little competition for access

between threads.

Next, the solve method is called for each solver within individual threads and the first to

find a solution obtains the mutex. The solution from this solver is stored, the solved flag is

set to true, and the other solvers are canceled. As each solver exits the main loop with a

partial solution to the problem, it obtains the mutex, but infers that a solution has already been

obtained. They release the mutex and the parent thread returns the winning solution.
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Algorithm 6 Multi-Path Simplex Algorithm
1: procedure Simplex(solvers, problem)
2: solved ← f alse
3: mtx← Mutex()
4: cancel← Dictionary()
5: for each solver ∈ solvers do
6: cancel[solver] = solver.getAtomicCancelBoolean()
7: end for
8: parallel for solver ∈ solvers do
9: solver.solve(problem)

10: mtx.lock()
11: if not solved then
12: solution← solver.solution()
13: solved ← true
14: for each other ∈ solvers do
15: if other , solver then
16: cancel[other].store(true)
17: end if
18: end for
19: end if
20: mtx.unlock()
21: end parfor
22:
23: return solution
24: end procedure
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4.4.1 Algorithm Configurations

The performance of the Simplex Algorithm depends on the input configuration parameters. The

option to run multiple pricing algorithms in parallel creates a software with a greater number

of configuration options than the sequential software. This section presents an analysis of

the maximum possible benefits that can be achieved with multi-path parallelism based on the

configuration parameters that are chosen and presents rationale for selecting a parallel solver

over a traditional solver.

In the ideal scenario, each parallel configuration would show performance that surpasses

any of the possible sequential configurations. This ideal performance is not achievable due to

the nature of the Simplex Algorithm as shown by Lemma 4.4.1.

Lemma 4.4.1. Any implementation of the Simplex Algorithm has at least one pricing algorithm

that will result in the global minimum runtime to solve a specific linear programming problem.

This minimum runtime can only be found if the problem is solved with every available pricing

algorithm.

Proof. Assume a solver has a set of P unique pricing algorithms available for solving a linear

programming problem. Each p ∈ P corresponds to a specific path that is followed along the

edges of the constraint polyhedron from the initial basis to the final basis. Each path is likely to

have a different length, Np, and visit a different set of variables. The total time required to solve

the linear programming problem for a pricer p is given by (4.1) where tpi is the time taken for

iteration, i, and tp is the total time.

tp =

Np∑
i=1

tpi (4.1)

For any pricer, each tpi is likely to vary as the sparsity of the data structures changes

throughout iterations. However, the overall behavior can be predicted with complexity analy-

sis. The total number of steps Np, however, cannot be predicted and is an open problem [12].

The set of run times for each pricer is thus unknown prior to actually solving the problem.

Within this set there will be one minimum, which could be repeated in the event of a tie be-

tween two of the algorithms. Therefore there is one global minimum runtime for a given linear



74 Chapter 4. Multi-Path Parallelism in the Simplex Algorithm

programming problem and this value can only be quantified by solving the problem with each

pricer. �

Given that user is likely to solve their model once, and that the optimal pricing algorithm is

impossible to predict, the parallel algorithm increases the probability that a solution is found.

For example, SoPlex contains five pricing algorithms. If multiple of these are run simultane-

ously, the probability that the optimum algorithm is chosen scales linearly with the number

of threads. Each additional thread adds twenty percent to the probability that the optimum

configuration is chosen in the first attempt to solve the problem. The algorithm reduces the

probability that a solution is never found due to a high level of degeneracy, where the algo-

rithm cycles between two variables for an indeterminate amount of time.

4.5 Profiling The Multi-Path Algorithm

Testing the Multi-Path Simplex Algorithm reveals a performance improvement attainable from

parallel cores for an average user of the software. This section presents the performance results

for the algorithm, discussing the effect of problem size on the behavior of the parallel solver.

Measurements of the sequential and parallel algorithm performance were derived from a

fair test methodology to ensure accuracy. The nature of the algorithm presented in Lemma 4.4.1

makes this comparison a challenge. To summarize, of the set of pricing algorithms available

in a linear programming solver, there is always a single algorithm that will surpass all others

in performance. One paths chosen over the constraint polyhedron from the initial basis to

the optimal basis will always yield a shorter run-time. As this configuration, with current

techniques, cannot be predicted without manual analysis of the sparsity pattern and advanced

expertise from a user of the software, a model of the user must be used to select runtime

parameters. This study applied random parameter selection to represent a novice user. Each

trial selected a random pricing algorithm from those available in SoPlex. The Dantzig pricer

was excluded due to its inability to solve large problems.

The results from solving each test case 100 times with both solvers with randomly selected

pricing algorithms to generate an average solution time for each problem are presented in

Table B.1. The results were computed on a system containing an Intel i7 4930k processor and
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32 GB of RAM. The algorithm was implemented in C++ and the thread construct of the boost

library [13] was used for multi-threading the solver.

4.6 Discussion

Profiling the parallel algorithm revealed trends in performance. The speed up, given as the

ratio of the time taken by the sequential algorithm to solve the linear programming problem to

the time taken by the parallel algorithm, signifies performance improvement if it is greater than

1. To prove that the parallel algorithm has greater performance, the statistical significance of

the mean was tested. The significance test was based on a null hypothesis claiming the speed

up obtained is less than or equal to 1. This section presents an analysis that shows that this null

hypothesis can be rejected based on the performance data in Table B.1.

Figure 4.3 summarizes the profiling results by comparing the speed up with multiple threads

to the product of the number of rows and columns in the problem. The average speed up

with two, three and four threads were 1.24, 1.54, and 1.56 respectively. The green regions in

Figure 4.3 show the 95% confidence intervals for these averages and are always above the red

line at a speedup of one. The gap between the lower end of the 95% confidence interval and this

line shows that the acceleration achieved by running multiple cores is statistically significant.

This allows rejection of the null hypothesis that the parallel algorithm has no effect on the

speed of the solver. The alternate hypothesis, that the parallel algorithm improves the solver, is

acceptable.

This speed up measurement includes the smaller problems that do not see significant gains.

For small problems, the solve time for any pricing algorithm is essentially trivial and the over-

heads from managing multiple threads dominates the runtime. If problems with a size of less

than a million elements are excluded, the average speed up for two, three and four threads

increase to 1.51, 1.97 and 2.04 respectively. This result is shown in Figure 4.4. The statistical

evidence for speed up is stronger when the smaller problems are eliminated from the analysis,

and the gap between the speed up threshold and lower end of the confidence intervals increased.

This is a significant improvement in the speed of the solver.
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(a) Two parallel Simplex paths

(b) Three parallel Simplex paths

(c) Four parallel Simplex paths

Figure 4.3: Ratio of the time taken by SoPlex to the time taken by the Multi-Path Simplex
Algorithm for the full data set
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(a) Two parallel Simplex paths

(b) Three parallel Simplex paths

(c) Four parallel Simplex paths

Figure 4.4: Ratio of the time taken by SoPlex to the time taken by the Multi-Path Simplex
Algorithm for problems with over 106 elements
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4.6.1 Future Directions

The Multi-Path Simplex Algorithm enables several new topologies for linear programming

solvers. Though this study focuses on pricing algorithms, there are other configuration pa-

rameters that can alter the runtime behavior of a solver. Parallel versions of these could be

tested to identify the most significant statistical result. The other area in which this research

can be furthered is by experimenting with the solver on massively parallel processors. As the

number of possible configurations of a solver is large, more parallel processors would enable a

larger variety of simultaneous configurations. Large scale simulations could be run to measure

how the algorithm scales across larger numbers of cores.

4.7 Conclusion

The Multi-Path Simplex Algorithm is a variation on the classical Simplex Algorithm that runs

different configuration parameters in parallel. It improves the performance of the open source

library SoPlex by an average of 2 times for very large, sparse linear programming problems.

The overall speed ups are, to our knowledge, the largest reported speed up for an externally

parallel algorithm.
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Chapter 5

Conclusion

This thesis examined two optimization problems, architectural layout generation and linear

programming, and presented high performance implementations of several proposed algo-

rithms to enhance efficiency and design. The first study presented a detailed general form of

the layout generation problem, deriving properties of the optimization problem’s solution space

and proposing Evolutionary Treemap. The study showed an implementation of the proposed

algorithms in a highly scalable cloud platform that can be extended to include new works in the

field. It was followed by an implementation of the Simplex algorithm, a classical optimization

algorithm for solving linear programming problems, for GPUs and FPGAs with OpenCL that

improved upon the memory structure and energy efficiency of other solutions in literature. The

final study of the thesis proposed and implemented the Multi-Path Simplex Algorithm, realizing

improvements to the performance and reliability of an open source linear programming library

measured by several novel profiling methodologies. This final chapter will summarize the main

conclusions from each of the studies and present commentary on the possible future directions

that can be examined in each field.

5.1 Intelligent Architectural Design

The architectural design chapter of this thesis presented the general form of the optimization

problem and solved it with the Evolutionary Treemap algorithm. The chapter also presented a

detailed summary of the design of a scalable cloud platform for architectural layout generation.

80
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The results of the research on layout generations opens several research topics in the

field. The major topics are non-rectangular boundaries, fixed rooms and multi-level buildings.

Though the proposed heuristics enable the solution of some layouts with these requirements,

a large portion of the solution space is still unattainable. The primary focus of future research

in this field is finding an algorithm that can capably handle these situations without resorting

to heuristic methods. If these problems are solved, a new frontier of possible solutions and de-

signs can be created autonomously. Benefits in both the fields of architectural and video game

design are possible with these types of solutions.

The second direction approachable in this field is finding new optimizer and generator

functions for producing functional layouts. A literature review of greater detail of the method-

ologies in computer graphics could bring forth new ideas for layout generation. Algorithms

such as delaunay triangulation, for example, could be operated as generator functions if used

in creative ways. Some of the algorithms from computer graphics may require high perfor-

mance compute devices such as GPUs to prove effective as it is critical that the runtime of a

generator function is small so that it can be run many times by an optimization meta-heuristic.

Other algorithms, such as simulated annealing and particle swarm optimization, could also be

explored as the drivers for Evolutionary Treemap to see the convergence properties that they

provide.

5.2 Parallel Linear Programming

The two linear programming chapters of this thesis followed different approaches to derive

speed ups for the Simplex Algorithm with parallel computing. The first chapter followed a data-

level parallel approach for the dense variant of the algorithm, implemented it with OpenCL for

high performance processors and then benchmarked the algorithm on random problems. The

work in this chapter targeted a relatively rare form of linear programming problem with dense

matrices. This chapter identified a challenge inherent to parallel linear programming design;

the majority of problems are sparse and cannot be effectively solved with a GPU or FPGA.

The second linear programming chapter performed benchmarking on open-source sparse lin-

ear programming software based on the simplex algorithm to identify the limits of data-level
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parallelism in the algorithm. This chapter then proposed the Multi-Path Simplex Algorithm to

circumvent the limit of data-level computing as imposed by Amdahl’s Law on the system with

a task-parallel algorithm. The algorithm performed well on practical problems, with an aver-

age speed-up of over two times on large problems. Together the chapters show methodologies

for parallelizing the algorithm in two ways with different benefits and drawbacks based on the

application. Higher speedups are attainable if the problem is dense and the software is created

to exploit that on GPUs and moderate speedups are possible if the problem is more suitably

modeled with sparse matrices.

The future directions in linear programming with parallel computing concern testing the

Multi-Path Simplex Algorithm on a wider variety of test cases and implementing it within other

open-source softwares. Adding the multi-path algorithm to Coin-OR [1], GLPK [2] and Lp-

Solve [3] constitutes a future research project that could further illuminate the performance

benefits of the algorithm. The algorithm should also be tested on a processor that can support

a larger number of threads to measure the scalability of the algorithm across multiple cores as

well as the parameters of the algorithm that should be used to give optimal performance.

5.3 Concluding Remarks

This thesis approached two optimization problems in software, generating floor plans and im-

plementing the Simplex Algorithm in parallel. The first section presented the general form of

the layout generation optimization problem and implemented several proposed algorithms as

a web service. The software for this project allows architects and video game designers to

generate optimal layouts from a spreadsheet based specification. The second section presented

two methodologies for accelerating the Simplex Algorithm for different input data topologies.

An OpenCL implementation of the algorithm was proposed for solving problems with dense

matrices and showed a speedup of over ten times a sequential code with a GPU. An imple-

mentation of the Multi-Path Simplex Algorithm was proposed for solving problems with large

sparse matrices and yielded a speedup of over twice that of an open-source software.
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SoPlex Performance Data
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Table A.1: SoPlex Runtime for Selected Linear Programming Test Cases

Problem Name Objective Iterations Reported Time (s) Measured Time (s)

neos631710.mps 1.88E+02 26422 265.020 266.605

ex9.mps 8.10E+01 31639 106.920 107.496

neos1429212.mps 3.00E+01 27553 87.290 89.616

mspp16.mps 3.41E+02 474 9.670 67.154

mzzv11.mps -2.29E+04 49432 26.780 26.918

netdiversion.mps 2.31E+02 28711 24.540 25.925

neos1367061.mps 3.13E+07 19364 22.810 23.389

neos-934278.mps 2.60E+02 23671 19.200 19.349

map18.mps -9.33E+02 21570 9.450 13.187

core2536-691.mps 6.88E+02 47858 12.760 12.920

ns1758913.mps -1.50E+03 2163 5.490 12.248

map20.mps -9.99E+02 20402 8.140 11.883

dfl001.mps 1.13E+07 25519 10.320 10.389

satellites1-25.mps -2.00E+01 16253 10.080 10.155

n3seq24.mps 5.20E+04 3813 7.240 9.708

vpphard.mps 0.00E+00 11241 8.050 8.818

rail507.mps 1.72E+02 13241 7.810 8.126

pilot87.mps 3.02E+02 17925 7.610 7.685
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Table A.1: SoPlex Runtime for Selected Test Cases: Continued from Previous Page

Problem Name Objective Iterations Reported Time (s) Measured Time (s)

opm2-z7-s2.mps -1.29E+04 15896 6.710 6.839

app1-2.mps -2.65E+02 14641 6.150 6.387

bab5.mps -1.25E+05 25618 6.050 6.164

unitcal 7.mps 1.94E+07 24544 5.170 5.396

greenbea.mps -7.26E+07 19038 3.460 3.517

neos-476283.mps 4.06E+02 5858 1.570 3.472

neos-1601936.mps 1.00E+00 14407 3.290 3.337

truss.mps 4.59E+05 22542 3.080 3.108

biella1.mps 3.06E+06 16717 3.020 3.089

pilot.mps -5.57E+02 10951 2.730 2.771

net12.mps 1.72E+01 14207 2.580 2.696

msc98-ip.mps 1.95E+07 14662 2.560 2.659

fit2p.mps 6.85E+04 15947 2.480 2.538

rmatr100-p5.mps 7.62E+02 10735 2.260 2.304

air04.mps 5.55E+04 11892 2.030 2.063

d2q06c.mps 1.23E+05 12305 2.000 2.035

stocfor3.mps -4.00E+04 13971 1.640 1.748

greenbeb.mps -4.30E+06 11491 1.510 1.537
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Table A.1: SoPlex Runtime for Selected Test Cases: Continued from Previous Page

Problem Name Objective Iterations Reported Time (s) Measured Time (s)

ns1208400.mps 0.00E+00 11064 1.480 1.527

maros-r7.mps 1.50E+06 5515 1.260 1.335

fit2d.mps -6.85E+04 10729 0.930 0.988

pilot-ja.mps -6.11E+03 11607 0.890 0.909

rmatr100-p10.mps 3.61E+02 5500 0.780 0.819

neos-849702.mps 0.00E+00 7153 0.760 0.779

neos10.mps -1.25E+03 838 0.330 0.605

triptim1.mps 1.00E+100 1334 0.220 0.589

n3div36.mps 1.14E+05 317 0.240 0.585

neos1597104.mps -3.00E+01 194 0.160 0.582

tanglegram1.mps 0.00E+00 426 0.120 0.572

80bau3b.mps 9.87E+05 7968 0.530 0.566

neos13.mps -1.26E+02 2060 0.370 0.545

pilotnov.mps -4.50E+03 7113 0.500 0.526

sp98ic.mps 4.44E+08 1553 0.370 0.516

25fv47.mps 5.50E+03 7393 0.490 0.504

acc-tight5.mps 0.00E+00 3527 0.430 0.450

pilot-we.mps -2.72E+06 5978 0.400 0.418
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Table A.1: SoPlex Runtime for Selected Test Cases: Continued from Previous Page

Problem Name Objective Iterations Reported Time (s) Measured Time (s)

degen3.mps -9.87E+02 6047 0.390 0.412

rocII-4-11.mps -1.19E+01 450 0.100 0.321

perold.mps -9.38E+03 4933 0.290 0.305

neos-1337307.mps -2.03E+05 4892 0.270 0.296

nesm.mps 1.41E+07 7277 0.260 0.279

ns1830653.mps 6.15E+03 1442 0.200 0.260

pw-myciel4.mps 0.00E+00 2239 0.220 0.254

neos-1109824.mps 2.78E+02 139 0.140 0.244

iis-pima-cov.mps 2.66E+01 1276 0.190 0.237

ash608gpia-3col.mps 2.00E+00 2984 0.120 0.233

mine-90-10.mps -8.87E+08 2242 0.200 0.227

sp98ir.mps 2.17E+08 2495 0.200 0.226

csched010.mps 3.32E+02 5866 0.200 0.210

bnl2.mps 1.81E+03 2921 0.170 0.196

iis-bupa-cov.mps 2.65E+01 1179 0.160 0.193

neos-1396125.mps 3.89E+02 2482 0.160 0.169

grow22.mps -1.61E+08 4558 0.160 0.165

d6cube.mps 3.15E+02 1179 0.140 0.162
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Table A.1: SoPlex Runtime for Selected Test Cases: Continued from Previous Page

Problem Name Objective Iterations Reported Time (s) Measured Time (s)

30n20b8.mps 1.57E+00 272 0.040 0.159

woodw.mps 1.30E+00 1760 0.130 0.158

neos-916792.mps 2.62E+01 1165 0.100 0.157

mine-166-5.mps -8.22E+08 1587 0.120 0.155

rococoC10-001000.mps 7.52E+03 2543 0.130 0.141

lectsched-4-obj.mps 0.00E+00 196 0.050 0.135

eilB101.mps 1.08E+03 1459 0.110 0.123

reblock67.mps -3.93E+07 1758 0.100 0.117

roll3000.mps 1.11E+04 1880 0.090 0.110

rmine6.mps -4.62E+02 1522 0.080 0.105

fit1p.mps 9.15E+03 3110 0.090 0.104

zib54-UUE.mps 3.88E+06 1956 0.050 0.102

danoint.mps 6.26E+01 1897 0.080 0.096

pilot4.mps -2.58E+03 1675 0.080 0.087

scsd8.mps 9.05E+02 2063 0.070 0.083

iis-100-0-cov.mps 1.67E+01 516 0.050 0.074

eil33-2.mps 8.11E+02 387 0.050 0.072

mcsched.mps 1.94E+05 1994 0.060 0.071
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Table A.1: SoPlex Runtime for Selected Test Cases: Continued from Previous Page

Problem Name Objective Iterations Reported Time (s) Measured Time (s)

bnl1.mps 1.98E+03 1464 0.060 0.071

n4-3.mps 4.08E+03 1341 0.060 0.069

aflow40b.mps 1.01E+03 1607 0.050 0.068

czprob.mps 2.19E+06 1569 0.050 0.065

grow15.mps -1.07E+08 1837 0.050 0.064

scfxm2.mps 3.67E+04 1164 0.050 0.062

stocfor2.mps -3.90E+04 1869 0.040 0.058

wood1p.mps 1.44E+00 145 0.030 0.057

scfxm3.mps 5.49E+04 1706 0.050 0.055

neos18.mps 7.00E+00 432 0.010 0.055

cov1075.mps 1.71E+01 455 0.040 0.052

degen2.mps -1.44E+03 1325 0.040 0.052

tanglegram2.mps 0.00E+00 185 0.010 0.050

maros.mps -5.81E+04 1328 0.040 0.049

cycle.mps -5.23E+00 994 0.030 0.049

beasleyC3.mps 4.04E+01 1140 0.040 0.047

bnatt350.mps 0.00E+00 657 0.020 0.047

ns1688347.mps 2.00E+00 230 0.020 0.047
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Table A.1: SoPlex Runtime for Selected Test Cases: Continued from Previous Page

Problem Name Objective Iterations Reported Time (s) Measured Time (s)

neos-686190.mps 5.13E+03 322 0.020 0.043

pg5 34.mps -1.66E+04 3400 0.030 0.039

binkar10 1.mps 6.64E+03 1300 0.020 0.038

stair.mps -2.51E+02 655 0.030 0.036

ship12l.mps 1.47E+06 1085 0.020 0.035

ship08l.mps 1.91E+06 809 0.020 0.030

fffff800.mps 5.56E+05 928 0.020 0.030

ganges.mps -1.10E+05 1304 0.020 0.029

sctap3.mps 1.42E+03 657 0.020 0.029

sctap2.mps 1.72E+03 505 0.020 0.028

qiu.mps -9.32E+02 1288 0.020 0.028

grow7.mps -4.78E+07 1012 0.020 0.027

fit1d.mps -9.15E+03 985 0.020 0.027

scagr25.mps -1.48E+07 784 0.020 0.025

modszk1.mps 3.21E+02 651 0.010 0.023

macrophage.mps 0.00E+00 678 0.000 0.023

sierra.mps 1.54E+07 638 0.010 0.022

ship12s.mps 1.49E+06 649 0.010 0.021
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Table A.1: SoPlex Runtime for Selected Test Cases: Continued from Previous Page

Problem Name Objective Iterations Reported Time (s) Measured Time (s)

bandm.mps -1.59E+02 543 0.010 0.021

etamacro.mps -7.56E+02 717 0.010 0.020

boeing1.mps -3.35E+02 557 0.010 0.020

newdano.mps 1.17E+01 469 0.010 0.019

ship08s.mps 1.92E+06 514 0.010 0.018

shell.mps 1.21E+09 595 0.010 0.018

gfrd-pnc.mps 6.90E+06 664 0.010 0.018

scsd6.mps 5.05E+01 422 0.010 0.017

scfxm1.mps 1.84E+04 462 0.000 0.016

brandy.mps 1.52E+03 486 0.010 0.016

bienst2.mps 1.17E+01 469 0.010 0.016

gmu-35-40.mps -2.41E+06 341 0.010 0.015

finnis.mps 1.73E+05 505 0.010 0.015

scrs8.mps 9.04E+02 608 0.010 0.015

forplan.mps -6.64E+02 280 0.000 0.014

e226.mps -1.88E+01 377 0.010 0.014

pigeon-10.mps -1.00E+04 292 0.010 0.013

ship04l.mps 1.79E+06 473 0.000 0.012
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Table A.1: SoPlex Runtime for Selected Test Cases: Continued from Previous Page

Problem Name Objective Iterations Reported Time (s) Measured Time (s)

dfn-gwin-UUM.mps 2.75E+04 375 0.000 0.012

sctap1.mps 1.41E+03 262 0.000 0.012

standmps.mps 1.41E+03 189 0.000 0.012

ran16x16.mps 3.12E+03 379 0.000 0.011

tuff.mps 2.92E+00 220 0.000 0.011

agg3.mps 1.03E+07 235 0.000 0.011

seba.mps 1.57E+04 2 0.000 0.011

israel.mps -8.97E+05 184 0.000 0.010

capri.mps 2.69E+03 327 0.000 0.010

agg2.mps -2.02E+07 204 0.000 0.010

ship04s.mps 1.80E+06 383 0.000 0.010

lotfi.mps -2.53E+01 227 0.000 0.009

agg.mps -3.60E+07 95 0.000 0.009

sc205.mps -5.22E+01 209 0.000 0.009

standata.mps 1.26E+03 50 0.000 0.009

scsd1.mps 8.67E+00 95 0.000 0.009

scorpion.mps 1.88E+03 245 0.000 0.008

beaconfd.mps 3.36E+04 88 0.000 0.008
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Table A.1: SoPlex Runtime for Selected Test Cases: Continued from Previous Page

Problem Name Objective Iterations Reported Time (s) Measured Time (s)

bore3d.mps 1.37E+03 100 0.000 0.008

m100n500k4r1.mps -2.50E+01 174 0.000 0.008

share1b.mps -7.66E+04 217 0.000 0.008

share2b.mps -4.16E+02 115 0.000 0.008

timtab1.mps 2.87E+04 13 0.000 0.008

glass4.mps 8.00E+08 74 0.000 0.007

adlittle.mps 2.25E+05 87 0.000 0.007

boeing2.mps -3.15E+02 154 0.000 0.007

afiro.mps -4.65E+02 16 0.000 0.007

ns1766074.mps 5.83E+03 27 0.000 0.007

enlight13.mps 0.00E+00 0 0.000 0.006

recipe.mps -2.67E+02 40 0.000 0.006

mik-250-1-100-1.mps -7.98E+04 100 0.000 0.006

noswot.mps -4.30E+01 104 0.000 0.006

blend.mps -3.08E+01 97 0.000 0.006

enlight14.mps 0.00E+00 0 0.000 0.006

kb2.mps -1.75E+03 56 0.000 0.006

stocfor1.mps -4.11E+04 111 0.000 0.005
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Table A.1: SoPlex Runtime for Selected Test Cases: Continued from Previous Page

Problem Name Objective Iterations Reported Time (s) Measured Time (s)

vtp-base.mps 1.30E+05 78 0.000 0.005

sc50b.mps -7.00E+01 50 0.000 0.005

scagr7.mps -2.33E+06 178 0.000 0.005

sc105.mps -5.22E+01 94 0.000 0.005

sc50a.mps -6.46E+01 46 0.000 0.004
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Table A.2: Average Runtime of SoPlex Functions over Selected Linear Programming Test Cases from Perf Profiling Reports

Function Average Time (ms)

soplex::SPxSolver::setupPupdate 484.77

soplex::CLUFactor::solveUleftNoNZ 463.72

soplex::deQueueMin 463.36

soplex::CLUFactor::vSolveUright 435.14

soplex::SPxSteepPR::entered4 247.67

soplex::CLUFactor::vSolveUrightNoNZ 238.91

strcmp sse42 213.43

soplex::deQueueMax 117.52

soplex::SPxSolver::updateTest 115.91

soplex::NameSet::number 98.92

soplex::SPxFastRT::maxDelta 93.60

soplex::CLUFactor::vSolveLeft2 79.11

soplex::CLUFactor::forestUpdate 75.79

soplex::CLUFactor::vSolveLeft 58.93

soplex::SPxFastRT::selectLeave 55.89

soplex::CLUFactor::solveLleft 50.54

soplex::CLUFactor::vSolveLright2 49.93

soplex::SPxSolver::doPupdate 47.56
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Table A.2: SoPlex Perf Data: Continued from Previous Page

Function Average Time (ms)

soplex::SPxBasis::dualStatus 42.50

soplex::SPxSolver::clearUpdateVecs 41.61

soplex::CLUFactor::updateRow 40.78

soplex::SPxFastRT::minDelta 39.02

soplex::CLUFactor::solveUleft 34.70

soplex::SPxSteepPR::selectEnterHyperCoDim 34.43

soplex::CLUFactor::solveLleftForest 33.93

memcpy ssse3 back 32.78

soplex::SPxSolver::updateFtest 31.47

strtok 29.63

memset sse2 29.61

soplex::CLUFactor::vSolveLright 27.53

soplex::NameSet::add 23.82

soplex::SPxSteepPR::selectEnter 23.04

soplex::SPxSolver::enter 22.80

soplex::CLUFactor::initFactorMatrix 22.28

soplex::MPSInput::readLine 21.93

soplex::SPxSolver::doRemoveCol 20.52
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Table A.2: SoPlex Perf Data: Continued from Previous Page

Function Average Time (ms)

soplex::SPxSteepPR::selectEnterDenseDim 20.06

soplex::SPxSteepPR::selectLeave 19.17

soplex::IdxSet::operator= 18.78

soplex::SPxSolver::doRemoveRow 18.03

soplex::NameSetNameHashFunction 16.86

soplex::CLUFactor::colSingletons 16.73

soplex::SPxMainSM::duplicateRows 15.64

soplex::SPxMainSM::duplicateCols 14.61

soplex::SPxDevexPR::selectEnterHyperCoDim 13.01

soplex::SPxDevexPR::entered4 12.46

soplex::SPxDevexPR::selectEnterDenseDim 10.84

soplex::SPxSolver::perturbMaxEnter 10.70

soplex::SPxLPBase<double >::readMPS 10.27

soplex::SPxSteepPR::left4 10.23

soplex::SPxMainSM::simplifyRows 10.20

soplex::SPxLPBase<double >::added2Set 9.55

soplex::SPxSolver::updateCoTest 9.14

soplex::CLUFactor::remaxRow 9.14



99

Table A.2: SoPlex Perf Data: Continued from Previous Page

Function Average Time (ms)

memmove ssse3 back 8.97

soplex::SPxSteepPR::selectLeaveHyper 8.67

GI strtod l internal 7.47

soplex::SPxSolver::leave 7.35

soplex::CLUFactor::rowSingletons 7.19

soplex::CLUFactor::vSolveRight4update2 6.60

soplex::CLUFactor::eliminatePivot 5.51

soplex::CLUFactor::selectPivots 4.95

soplex::CLUFactor::setupColVals 4.92

soplex::CLUFactor::packRows 4.31

soplex::SPxDevexPR::selectLeaveHyper 4.08

soplex::SPxDevexPR::left4 3.96

clear page c e 3.83

soplex::ClassArray<soplex::Nonzero<double >>::reMax 3.45

soplex::SPxDevexPR::buildBestPriceVectorEnterCoDim 3.25

memcpy sse2 3.13

soplex::CLUFactor::vSolveRight4update 3.07

soplex::SPxScaler::applyScaling 3.01
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Table A.2: SoPlex Perf Data: Continued from Previous Page

Function Average Time (ms)

std::istream::getline 2.99

int malloc 2.89

soplex::SPxSolver::doRemoveRows 2.54

soplex::SPxMainSM::simplifyCols 2.36

memchr 2.35

frexp 2.29

soplex::SPxSolver::doRemoveCols 2.16

int free 2.05

soplex::SPxSolver::nonbasicValue 2.00

soplex::CLUFactor::setPivot 1.93

soplex::SPxDevexPR::selectLeave 1.92

soplex::SPxSolver::computeTest 1.79

ldexp 1.74

soplex::SPxMainSM::simplifyDual 1.71

soplex::SPxSolver::perturbMinEnter 1.65

soplex::SPxShellsort<soplex::Nonzero<double >, soplex::SPxMainSM::ElementCompare> 1.64

soplex::SPxSolver::computePvec 1.58

soplex::CLUFactor::setupRowVals 1.57
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Table A.2: SoPlex Perf Data: Continued from Previous Page

Function Average Time (ms)

soplex::SVSetBase<double >::operator= 1.44

round and return 1.39

soplex::SVSetBase<double >::SVSetBase 1.35

soplex::SPxScaler::computeScalingVecs 1.32

page fault 1.28

copy user enhanced fast string 1.26

soplex::CLUFactor::remaxCol 1.25

free 1.17

str to mpn.isra.0 1.09

soplex::NameSet::reMax 1.07

soplex::CLUFactor::solveUright 1.07

soplex::SPxQuicksortPart<soplex::SPxPricer::IdxElement, soplex::SPxPricer::IdxCompare> 1.05

strcmp@plt 1.02

soplex::SPxSolver::qualConstraintViolation 1.00

soplex::SPxColId::SPxColId 0.93

soplex::NameSet::memPack 0.90

soplex::SPxMainSM::removeEmpty 0.89

soplex::SVSetBase<double >::ensurePSVec 0.89
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Table A.2: SoPlex Perf Data: Continued from Previous Page

Function Average Time (ms)

soplex::SPxSolver::computeFrhsXtra 0.88

strtok@plt 0.88

strlen sse2 0.85

strlen sse2 pminub 0.84

realloc 0.81

soplex::NameSet::memRemax 0.81

soplex::CLUFactor::factor 0.81

soplex::LPColSetBase<double >::add 0.78

malloc 0.78

apic timer interrupt 0.77

strtod 0.76

soplex::CLUFactor::initFactorRings 0.73

soplex::SPxQuicksort<soplex::Nonzero<double >, soplex::SPxMainSM::ElementCompare> 0.69

soplex::SPxSolver::computeCoTest 0.69

mpn construct double 0.69

soplex::SPxMainSM::handleExtremes 0.68

soplex::DSVectorBase<double >::add 0.65

scalbn 0.64
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Table A.2: SoPlex Perf Data: Continued from Previous Page

Function Average Time (ms)

thread group cputime 0.62

soplex::CLUFactor::forestReMaxCol 0.59

soplex::Array<soplex::DSVectorBase<double >>:: Array 0.59

soplex::SPxSolver::computeFtest 0.56

soplex::SPxMainSM::RowSingletonPS::execute 0.53

soplex::SLUFactor::solveLeft 0.52

int realloc 0.51

soplex::SPxDevexPR::selectEnterDenseCoDim 0.49

soplex::SLUFactor::solveRight4update 0.49

std::istream::sentry::sentry 0.49

soplex::DSVectorBase<double >::makeMem 0.49

soplex::CLUFactor::solveLeft 0.48

native write msr safe 0.48

run timer softirq 0.47

trigger load balance 0.46

audit syscall entry 0.46

soplex::SPxMainSM::removeRowSingleton 0.46

soplex::Array<soplex::DSVectorBase<double >>::Array 0.46
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Table A.2: SoPlex Perf Data: Continued from Previous Page

Function Average Time (ms)

rcu check callbacks 0.46

raw spin lock 0.45

cputime adjust 0.44

malloc consolidate 0.43

mpn lshift 0.43

task tick fair 0.43

update wall time 0.43

soplex::SPxSolver::value 0.42

soplex::SPxScaler::maxRowRatio 0.42

soplex::CLUFactor::packColumns 0.42

soplex::UserTimer::stop 0.41

gzstream::gzstreambuf::underflow 0.41

gzread 0.40

soplex::SPxSolver::getEnterVals2 0.39

soplex::SPxSteepPR::selectLeaveSparse 0.38

system call after swapgs 0.37

get page from freelist 0.37

soplex::SPxDevexPR::selectEnterSparseCoDim 0.37
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Table A.2: SoPlex Perf Data: Continued from Previous Page

Function Average Time (ms)

soplex::SPxSolver::solve 0.37

soplex::SPxSolver::getEnterVals 0.36

soplex::SPxSolver::getLeaveVals 0.35

raw spin lock irqsave 0.34

cpuacct charge 0.34

list del entry 0.34

soplex::SPxSolver::computeFrhs 0.34

soplex::SPxSolver::shiftPvec 0.34

hrtimer interrupt 0.32

perf event task tick 0.32

acct update integrals 0.30

timerqueue add 0.30

mem cgroup charge common 0.30

soplex::SPxSolver::perturbMin 0.29

soplex::SPxBasis::change 0.28

soplex::SVSetBase<double >::ensureMem 0.28

soplex::SPxSolver::terminate 0.28

audit syscall exit 0.27
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Table A.2: SoPlex Perf Data: Continued from Previous Page

Function Average Time (ms)

soplex::SPxScaler::maxColRatio 0.26

mem cgroup commit charge 0.26

memset@plt 0.25

soplex::SPxBasis::loadDesc 0.24

soplex::SPxSolver::unShift 0.24

unmap page range 0.23

sched clock cpu 0.23

soplex::CLUFactor::eliminateRowSingletons 0.22

soplex::SPxFastRT::maxReEnter 0.22

release pages 0.21

get pageblock flags group 0.21

notifier call chain 0.21

times 0.21

strcpy sse2 unaligned 0.21

soplex::SPxFastRT::selectEnter 0.20

soplex::SLUFactor::solve2right4update 0.19

mem cgroup uncharge common 0.19

soplex::SVSetBase<double >::create 0.19
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Table A.2: SoPlex Perf Data: Continued from Previous Page

Function Average Time (ms)

system call 0.19

soplex::SPxSolver::getLeaveVals2 0.19
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Table B.1: Averaged Performance Results for Multi-Path Simplex versus SoPlex with Randomly Selected Pricing Algorithms for 100
Trials

Multi-Path Simplex Time (s) Multi-Path Simplex Speed Up
Problem Non Zeros Size

SoPlex

Time (s) 2 Threads 3 Threads 4 Threads 2 Threads 3 Threads 4 Threads

map20.mps 5.50E+05 5.41E+10 8.1241 8.5817 8.6580 8.9328 0.95 0.94 0.91

map18.mps 5.50E+05 5.41E+10 8.9168 9.1431 9.6144 9.5691 0.98 0.93 0.93

neos631710.mps 8.34E+05 2.83E+10 283.1175 165.3114 145.1529 118.7310 1.71 1.95 2.38

neos1429212.mps 1.86E+06 2.44E+10 221.8736 107.3840 111.7682 121.4320 2.07 1.99 1.83

mspp16.mps 2.77E+07 1.64E+10 13.2943 11.3971 12.5915 14.4184 1.17 1.06 0.92

netdiversion.mps 6.15E+05 1.54E+10 186.3394 25.5333 26.6599 29.5934 7.30 6.99 6.30

ns1758913.mps 1.28E+06 1.12E+10 11.9836 17.1247 17.5836 18.8245 0.70 0.68 0.64

neos1367061.mps 2.60E+05 3.76E+09 180.5735 31.7684 17.5245 13.1604 5.68 10.30 13.72

vpphard.mps 3.72E+05 2.43E+09 5.8911 5.1539 4.7298 4.2777 1.14 1.25 1.38

tanglegram1.mps 2.05E+05 2.38E+09 0.1371 0.1889 0.2050 0.2211 0.73 0.67 0.62

app1-2.mps 1.99E+05 1.44E+09 7.4355 5.2403 4.2473 3.5685 1.42 1.75 2.08

unitcal 7.mps 1.28E+05 1.26E+09 6.2065 5.3392 5.1441 5.2559 1.16 1.21 1.18

neos10.mps 2.51E+05 1.10E+09 0.4546 0.3864 0.4124 0.4314 1.18 1.10 1.05

n3seq24.mps 3.23E+06 7.24E+08 4.7606 3.4742 3.2592 3.3004 1.37 1.46 1.44

triptim1.mps 5.15E+05 4.72E+08 0.7356 0.4029 0.3623 0.3475 1.83 2.03 2.12

ex9.mps 5.17E+05 4.26E+08 173.1979 70.9207 43.1179 40.5704 2.44 4.02 4.27
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Table B.1: Averaged Performance Results for Multi-Path Simplex: Continued from Previous Page

Multi-Path Simplex Time (s) Multi-Path Simplex Speed Up
Problem Non Zeros Size

SoPlex

Time (s) 2 Threads 3 Threads 4 Threads 2 Threads 3 Threads 4 Threads

msc98-ip.mps 9.29E+04 3.35E+08 5.3558 2.3840 2.3763 2.4334 2.25 2.25 2.20

neos-934278.mps 1.26E+05 2.66E+08 20.9351 19.0565 19.2842 20.9731 1.10 1.09 1.00

stocfor3.mps 6.49E+04 2.62E+08 1.7276 1.2828 1.1289 1.0344 1.35 1.53 1.67

rocII-4-11.mps 2.43E+05 2.01E+08 0.1237 0.1687 0.1623 0.1661 0.73 0.76 0.74

net12.mps 8.04E+04 1.98E+08 1.9159 1.4122 0.9884 0.7669 1.36 1.94 2.50

neos-476283.mps 3.95E+06 1.19E+08 8.3704 3.3624 2.2970 1.9590 2.49 3.64 4.27

lectsched-4-obj.mps 8.24E+04 1.12E+08 0.0502 0.0790 0.0913 0.0958 0.64 0.55 0.52

bab5.mps 1.56E+05 1.07E+08 8.0805 5.0052 4.3084 4.1752 1.61 1.88 1.94

n3div36.mps 3.41E+05 9.92E+07 0.1629 0.1912 0.1836 0.1799 0.85 0.89 0.91

mzzv11.mps 1.35E+05 9.73E+07 321.3787 50.9608 40.0313 29.2708 6.31 8.03 10.98

ash608gpia-3col.mps 7.42E+04 9.04E+07 0.2679 0.2023 0.1910 0.1837 1.32 1.40 1.46

neos1597104.mps 3.31E+05 7.84E+07 0.2048 0.2827 0.2855 0.2993 0.72 0.72 0.68

rmatr100-p5.mps 2.62E+04 7.63E+07 1.6432 1.0877 0.6721 0.5554 1.51 2.44 2.96

dfl001.mps 3.56E+04 7.42E+07 177.3327 15.6517 10.9300 12.0416 11.33 16.22 14.73

opm2-z7-s2.mps 7.98E+04 6.43E+07 4.3274 2.5407 2.0390 1.9852 1.70 2.12 2.18

satellites1-25.mps 5.90E+04 5.40E+07 8.0872 7.6965 8.0243 8.8235 1.05 1.01 0.92

rmatr100-p10.mps 2.19E+04 5.34E+07 0.5527 0.4423 0.3323 0.2614 1.25 1.66 2.11
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Table B.1: Averaged Performance Results for Multi-Path Simplex: Continued from Previous Page

Multi-Path Simplex Time (s) Multi-Path Simplex Speed Up
Problem Non Zeros Size

SoPlex

Time (s) 2 Threads 3 Threads 4 Threads 2 Threads 3 Threads 4 Threads

neos-1109824.mps 8.95E+04 4.40E+07 0.1223 0.3726 0.3973 0.4084 0.33 0.31 0.30

tanglegram2.mps 2.69E+04 4.23E+07 0.0190 0.0282 0.0375 0.0417 0.67 0.51 0.46

fit2p.mps 5.03E+04 4.06E+07 4.5195 1.5027 1.3981 1.3659 3.01 3.23 3.31

core2536-691.mps 1.78E+05 3.88E+07 204.0668 24.0405 12.6853 14.4193 8.49 16.09 14.15

neos13.mps 2.54E+05 3.81E+07 0.4568 0.4544 0.4275 0.4288 1.01 1.07 1.07

neos18.mps 2.46E+04 3.78E+07 0.0258 0.0400 0.0419 0.0457 0.64 0.62 0.57

rail507.mps 4.69E+05 3.21E+07 30.7102 7.9038 4.6132 4.2183 3.89 6.66 7.28

maros-r7.mps 1.45E+05 2.95E+07 1.0075 0.8566 0.7476 0.6745 1.18 1.35 1.49

80bau3b.mps 2.10E+04 2.22E+07 0.3350 0.3160 0.2982 0.2946 1.06 1.12 1.14

neos-1337307.mps 3.08E+04 1.62E+07 0.5593 0.3734 0.3018 0.3009 1.50 1.85 1.86

bnatt350.mps 1.91E+04 1.55E+07 0.0623 0.0383 0.0362 0.0396 1.63 1.72 1.58

neos-1601936.mps 7.25E+04 1.39E+07 5.6853 2.5564 1.9401 1.7989 2.22 2.93 3.16

neos-686190.mps 1.81E+04 1.34E+07 0.0520 0.0546 0.0432 0.0455 0.95 1.20 1.14

greenbea.mps 3.09E+04 1.29E+07 2.4592 2.1553 1.9523 1.4999 1.14 1.26 1.64

greenbeb.mps 3.09E+04 1.29E+07 1.1977 1.1633 1.0997 1.0675 1.03 1.09 1.12

ns1208400.mps 8.17E+04 1.24E+07 1.1844 1.1618 0.9175 0.8031 1.02 1.29 1.47

ns1688347.mps 6.69E+04 1.13E+07 0.0264 0.0348 0.0371 0.0376 0.76 0.71 0.70
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Table B.1: Averaged Performance Results for Multi-Path Simplex: Continued from Previous Page

Multi-Path Simplex Time (s) Multi-Path Simplex Speed Up
Problem Non Zeros Size

SoPlex

Time (s) 2 Threads 3 Threads 4 Threads 2 Threads 3 Threads 4 Threads

d2q06c.mps 3.24E+04 1.12E+07 2.1241 1.6241 1.4598 1.3606 1.31 1.46 1.56

30n20b8.mps 1.10E+05 1.06E+07 0.0490 0.0801 0.0827 0.0897 0.61 0.59 0.55

pilot87.mps 7.32E+04 9.91E+06 11.0520 7.2626 7.1583 7.9324 1.52 1.54 1.39

zib54-UUE.mps 1.53E+04 9.32E+06 0.0326 0.0367 0.0388 0.0417 0.89 0.84 0.78

woodw.mps 3.75E+04 9.23E+06 0.1214 0.1367 0.0855 0.0858 0.89 1.42 1.41

sp98ic.mps 3.16E+05 8.99E+06 0.3207 0.2893 0.2498 0.2496 1.11 1.28 1.28

biella1.mps 7.15E+04 8.82E+06 9.8832 3.5623 1.7441 1.6200 2.77 5.67 6.10

truss.mps 2.78E+04 8.81E+06 2.5776 1.8123 1.3195 1.1578 1.42 1.95 2.23

pw-myciel4.mps 1.78E+04 8.65E+06 0.1598 0.1635 0.1553 0.1536 0.98 1.03 1.04

bnl2.mps 1.40E+04 8.11E+06 0.1872 0.1729 0.1579 0.1585 1.08 1.19 1.18

rmine6.mps 1.81E+04 7.76E+06 0.1055 0.1288 0.1006 0.1003 0.82 1.05 1.05

air04.mps 7.30E+04 7.33E+06 2.4130 1.3105 0.7839 0.6930 1.84 3.08 3.48

macrophage.mps 9.49E+03 7.15E+06 0.0175 0.0152 0.0131 0.0149 1.15 1.34 1.18

mine-166-5.mps 1.94E+04 7.00E+06 0.1159 0.1195 0.1078 0.0997 0.97 1.08 1.16

ship12l.mps 1.62E+04 6.25E+06 0.0254 0.0331 0.0233 0.0253 0.77 1.09 1.00

mine-90-10.mps 1.54E+04 5.64E+06 0.1717 0.1678 0.1555 0.1546 1.02 1.10 1.11

iis-pima-cov.mps 7.19E+04 5.53E+06 0.1890 0.1916 0.1843 0.1805 0.99 1.03 1.05
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Table B.1: Averaged Performance Results for Multi-Path Simplex: Continued from Previous Page

Multi-Path Simplex Time (s) Multi-Path Simplex Speed Up
Problem Non Zeros Size

SoPlex

Time (s) 2 Threads 3 Threads 4 Threads 2 Threads 3 Threads 4 Threads

cycle.mps 2.07E+04 5.44E+06 0.0488 0.0613 0.0346 0.0353 0.80 1.41 1.38

pilot.mps 4.32E+04 5.26E+06 2.1334 1.9020 1.7517 1.7092 1.12 1.22 1.25

ns1830653.mps 1.01E+05 4.78E+06 0.1980 0.2071 0.2138 0.2138 0.96 0.93 0.93

n4-3.mps 1.40E+04 4.44E+06 0.0700 0.0604 0.0483 0.0501 1.16 1.45 1.40

stocfor2.mps 8.34E+03 4.38E+06 0.0637 0.0579 0.0460 0.0479 1.10 1.38 1.33

beasleyC3.mps 5.00E+03 4.38E+06 0.0442 0.0467 0.0415 0.0437 0.95 1.07 1.01

acc-tight5.mps 1.61E+04 4.09E+06 0.5078 0.4936 0.4603 0.4560 1.03 1.10 1.11

rococoC10-001000.mps 1.18E+04 4.03E+06 0.1007 0.0823 0.0754 0.0697 1.22 1.34 1.44

aflow40b.mps 6.78E+03 3.93E+06 0.1374 0.0886 0.0524 0.0554 1.55 2.62 2.48

mcsched.mps 8.09E+03 3.68E+06 0.0703 0.0759 0.0537 0.0561 0.93 1.31 1.25

sctap3.mps 8.87E+03 3.67E+06 0.0162 0.0196 0.0132 0.0137 0.82 1.23 1.18

ship08l.mps 1.28E+04 3.33E+06 0.0183 0.0258 0.0220 0.0236 0.71 0.83 0.77

czprob.mps 1.07E+04 3.27E+06 0.0575 0.0657 0.0444 0.0452 0.87 1.30 1.27

ship12s.mps 8.18E+03 3.18E+06 0.0119 0.0158 0.0102 0.0112 0.75 1.17 1.07

neos-916792.mps 1.34E+05 2.81E+06 0.1280 0.1395 0.1430 0.1461 0.92 0.89 0.88

degen3.mps 2.46E+04 2.73E+06 0.6765 0.4612 0.4315 0.4246 1.47 1.57 1.59

roll3000.mps 2.94E+04 2.68E+06 0.1262 0.1238 0.0911 0.0870 1.02 1.39 1.45
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Table B.1: Averaged Performance Results for Multi-Path Simplex: Continued from Previous Page

Multi-Path Simplex Time (s) Multi-Path Simplex Speed Up
Problem Non Zeros Size

SoPlex

Time (s) 2 Threads 3 Threads 4 Threads 2 Threads 3 Threads 4 Threads

sp98ir.mps 7.17E+04 2.57E+06 0.1674 0.1393 0.1309 0.1141 1.20 1.28 1.47

d6cube.mps 3.77E+04 2.57E+06 0.1147 0.1317 0.0902 0.0833 0.87 1.27 1.38

sierra.mps 7.30E+03 2.50E+06 0.0115 0.0127 0.0119 0.0131 0.90 0.96 0.87

binkar10 1.mps 4.50E+03 2.36E+06 0.0249 0.0297 0.0212 0.0222 0.84 1.18 1.12

ganges.mps 6.91E+03 2.20E+06 0.0223 0.0259 0.0184 0.0199 0.86 1.21 1.12

pilotnov.mps 1.31E+04 2.12E+06 0.3665 0.3488 0.3119 0.3064 1.05 1.18 1.20

sctap2.mps 6.71E+03 2.05E+06 0.0122 0.0112 0.0110 0.0118 1.09 1.10 1.03

pilot-we.mps 9.13E+03 2.01E+06 0.3467 0.3253 0.2726 0.2580 1.07 1.27 1.34

nesm.mps 1.33E+04 1.94E+06 0.2054 0.2097 0.1822 0.1809 0.98 1.13 1.14

pilot-ja.mps 1.47E+04 1.87E+06 0.7622 0.6436 0.5606 0.5408 1.18 1.36 1.41

ship08s.mps 7.11E+03 1.86E+06 0.0086 0.0111 0.0091 0.0097 0.77 0.94 0.88

neos-849702.mps 1.93E+04 1.81E+06 0.3338 0.2467 0.1495 0.1265 1.35 2.23 2.64

neos-1396125.mps 5.51E+03 1.73E+06 0.1488 0.1288 0.0925 0.0822 1.16 1.61 1.81

reblock67.mps 7.50E+03 1.69E+06 0.0963 0.0863 0.0653 0.0605 1.12 1.48 1.59

iis-bupa-cov.mps 3.84E+04 1.66E+06 0.1468 0.1482 0.1269 0.1134 0.99 1.16 1.29

scfxm3.mps 7.78E+03 1.36E+06 0.0411 0.0448 0.0270 0.0289 0.92 1.52 1.42

25fv47.mps 1.04E+04 1.29E+06 0.2857 0.2391 0.1668 0.1631 1.20 1.71 1.75
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Table B.1: Averaged Performance Results for Multi-Path Simplex: Continued from Previous Page

Multi-Path Simplex Time (s) Multi-Path Simplex Speed Up
Problem Non Zeros Size

SoPlex

Time (s) 2 Threads 3 Threads 4 Threads 2 Threads 3 Threads 4 Threads

maros.mps 9.61E+03 1.22E+06 0.0572 0.0578 0.0453 0.0464 0.99 1.26 1.23

modszk1.mps 3.17E+03 1.11E+06 0.0211 0.0199 0.0160 0.0169 1.06 1.32 1.25

scsd8.mps 8.58E+03 1.09E+06 0.0745 0.0672 0.0469 0.0462 1.11 1.59 1.61

fit1p.mps 9.87E+03 1.05E+06 0.0656 0.0493 0.0403 0.0421 1.33 1.63 1.56

qiu.mps 3.43E+03 1.00E+06 0.0401 0.0419 0.0246 0.0258 0.96 1.63 1.55

shell.mps 3.56E+03 9.51E+05 0.0095 0.0111 0.0110 0.0116 0.86 0.87 0.82

perold.mps 6.02E+03 8.60E+05 0.2310 0.2357 0.1931 0.1884 0.98 1.20 1.23

ship04l.mps 6.33E+03 8.51E+05 0.0048 0.0056 0.0061 0.0067 0.84 0.78 0.71

bnl1.mps 5.12E+03 7.56E+05 0.0667 0.0653 0.0403 0.0410 1.02 1.66 1.63

gfrd-pnc.mps 2.38E+03 6.73E+05 0.0095 0.0104 0.0102 0.0109 0.92 0.94 0.87

wood1p.mps 7.02E+04 6.33E+05 0.0364 0.0615 0.0377 0.0377 0.59 0.96 0.96

csched010.mps 6.38E+03 6.17E+05 0.1686 0.1548 0.1236 0.1207 1.09 1.36 1.40

scfxm2.mps 5.18E+03 6.03E+05 0.0253 0.0236 0.0159 0.0167 1.07 1.59 1.52

ship04s.mps 4.35E+03 5.86E+05 0.0037 0.0045 0.0049 0.0053 0.81 0.76 0.69

pg5 34.mps 7.70E+03 5.85E+05 0.0573 0.0496 0.0357 0.0372 1.16 1.61 1.54

scrs8.mps 3.18E+03 5.73E+05 0.0127 0.0118 0.0117 0.0124 1.07 1.09 1.02

seba.mps 4.35E+03 5.29E+05 0.0018 0.0023 0.0027 0.0031 0.79 0.68 0.60
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Table B.1: Averaged Performance Results for Multi-Path Simplex: Continued from Previous Page

Multi-Path Simplex Time (s) Multi-Path Simplex Speed Up
Problem Non Zeros Size

SoPlex

Time (s) 2 Threads 3 Threads 4 Threads 2 Threads 3 Threads 4 Threads

gmu-35-40.mps 4.84E+03 5.11E+05 0.0078 0.0076 0.0074 0.0077 1.04 1.06 1.01

standmps.mps 3.68E+03 5.02E+05 0.0036 0.0039 0.0041 0.0045 0.92 0.87 0.79

pigeon-10.mps 8.15E+03 4.56E+05 0.0058 0.0067 0.0061 0.0066 0.87 0.96 0.88

fffff800.mps 6.23E+03 4.47E+05 0.0217 0.0199 0.0186 0.0195 1.09 1.17 1.11

grow22.mps 8.25E+03 4.16E+05 0.1852 0.1723 0.1455 0.1431 1.07 1.27 1.29

pilot4.mps 5.14E+03 4.10E+05 0.0894 0.0920 0.0675 0.0689 0.97 1.33 1.30

standata.mps 3.03E+03 3.86E+05 0.0018 0.0024 0.0027 0.0029 0.74 0.66 0.62

iis-100-0-cov.mps 2.30E+04 3.83E+05 0.0495 0.0499 0.0420 0.0419 0.99 1.18 1.18

danoint.mps 3.23E+03 3.46E+05 0.0895 0.0935 0.0661 0.0667 0.96 1.35 1.34

finnis.mps 2.31E+03 3.05E+05 0.0100 0.0108 0.0092 0.0097 0.93 1.09 1.04

newdano.mps 2.18E+03 2.91E+05 0.0140 0.0126 0.0114 0.0118 1.11 1.22 1.18

bienst2.mps 2.18E+03 2.91E+05 0.0164 0.0162 0.0117 0.0119 1.01 1.40 1.38

eilB101.mps 2.41E+04 2.82E+05 0.0773 0.0671 0.0459 0.0449 1.15 1.68 1.72

etamacro.mps 2.41E+03 2.75E+05 0.0111 0.0114 0.0117 0.0122 0.98 0.95 0.91

fit2d.mps 1.29E+05 2.63E+05 1.0199 0.9233 0.8400 0.8262 1.10 1.21 1.23

degen2.mps 3.98E+03 2.37E+05 0.0561 0.0611 0.0390 0.0398 0.92 1.44 1.41

scagr25.mps 1.55E+03 2.36E+05 0.0194 0.0166 0.0162 0.0171 1.17 1.20 1.13
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Table B.1: Averaged Performance Results for Multi-Path Simplex: Continued from Previous Page

Multi-Path Simplex Time (s) Multi-Path Simplex Speed Up
Problem Non Zeros Size

SoPlex

Time (s) 2 Threads 3 Threads 4 Threads 2 Threads 3 Threads 4 Threads

scsd6.mps 4.32E+03 1.98E+05 0.0084 0.0117 0.0079 0.0084 0.72 1.06 1.00

tuff.mps 4.52E+03 1.95E+05 0.0044 0.0049 0.0051 0.0054 0.90 0.87 0.82

grow15.mps 5.62E+03 1.94E+05 0.0662 0.0774 0.0415 0.0389 0.86 1.59 1.70

stair.mps 3.86E+03 1.66E+05 0.0429 0.0529 0.0312 0.0326 0.81 1.37 1.31

agg3.mps 4.30E+03 1.56E+05 0.0037 0.0040 0.0043 0.0047 0.92 0.86 0.79

agg2.mps 4.28E+03 1.56E+05 0.0030 0.0035 0.0038 0.0041 0.87 0.78 0.73

scfxm1.mps 2.59E+03 1.51E+05 0.0086 0.0090 0.0082 0.0087 0.95 1.04 0.99

dfn-gwin-UUM.mps 2.63E+03 1.48E+05 0.0042 0.0043 0.0041 0.0045 0.98 1.04 0.94

ran16x16.mps 1.02E+03 1.47E+05 0.0045 0.0048 0.0056 0.0060 0.93 0.80 0.75

eil33-2.mps 4.42E+04 1.45E+05 0.0359 0.0334 0.0357 0.0387 1.07 1.01 0.93

sctap1.mps 1.69E+03 1.44E+05 0.0045 0.0050 0.0053 0.0055 0.91 0.86 0.82

bandm.mps 2.49E+03 1.44E+05 0.0173 0.0236 0.0115 0.0122 0.73 1.49 1.42

scorpion.mps 1.43E+03 1.39E+05 0.0033 0.0040 0.0039 0.0043 0.82 0.84 0.77

boeing1.mps 3.49E+03 1.35E+05 0.0108 0.0112 0.0115 0.0121 0.97 0.94 0.89

glass4.mps 1.82E+03 1.28E+05 0.0014 0.0019 0.0021 0.0024 0.73 0.67 0.60

capri.mps 1.77E+03 9.57E+04 0.0036 0.0039 0.0041 0.0044 0.92 0.87 0.82

agg.mps 2.41E+03 7.95E+04 0.0020 0.0026 0.0024 0.0026 0.79 0.83 0.77



118
C
h
a
pt
e
r

B
.

M
u
lt
i-P
at
h

S
im
ple
x

A
lg
o
r
it
h
m

P
e
r
fo
r
m
a
n
c
e

D
ata

Table B.1: Averaged Performance Results for Multi-Path Simplex: Continued from Previous Page

Multi-Path Simplex Time (s) Multi-Path Simplex Speed Up
Problem Non Zeros Size

SoPlex

Time (s) 2 Threads 3 Threads 4 Threads 2 Threads 3 Threads 4 Threads

enlight14.mps 1.12E+03 7.68E+04 0.0005 0.0008 0.0012 0.0015 0.62 0.41 0.34

cov1075.mps 1.43E+04 7.64E+04 0.0398 0.0444 0.0376 0.0391 0.90 1.06 1.02

bore3d.mps 1.43E+03 7.34E+04 0.0016 0.0020 0.0023 0.0025 0.79 0.69 0.62

timtab1.mps 8.29E+02 6.79E+04 0.0008 0.0011 0.0014 0.0016 0.72 0.59 0.52

forplan.mps 4.56E+03 6.78E+04 0.0056 0.0062 0.0060 0.0063 0.91 0.93 0.89

e226.mps 2.58E+03 6.29E+04 0.0072 0.0075 0.0073 0.0075 0.97 1.00 0.97

scsd1.mps 2.39E+03 5.85E+04 0.0021 0.0026 0.0024 0.0027 0.82 0.87 0.79

enlight13.mps 9.62E+02 5.71E+04 0.0006 0.0009 0.0012 0.0015 0.61 0.46 0.38

brandy.mps 2.15E+03 5.48E+04 0.0057 0.0055 0.0052 0.0055 1.03 1.10 1.03

m100n500k4r1.mps 2.00E+03 5.00E+04 0.0042 0.0044 0.0047 0.0051 0.94 0.89 0.82

lotfi.mps 1.08E+03 4.71E+04 0.0028 0.0033 0.0036 0.0039 0.85 0.78 0.73

beaconfd.mps 3.38E+03 4.53E+04 0.0014 0.0018 0.0020 0.0023 0.79 0.69 0.61

grow7.mps 2.61E+03 4.21E+04 0.0129 0.0132 0.0067 0.0073 0.98 1.93 1.78

sc205.mps 5.51E+02 4.16E+04 0.0026 0.0029 0.0031 0.0033 0.88 0.82 0.77

vtp-base.mps 9.08E+02 4.02E+04 0.0009 0.0013 0.0015 0.0018 0.73 0.61 0.53

mik-250-1-100-1.mps 5.35E+03 3.79E+04 0.0012 0.0017 0.0018 0.0020 0.69 0.64 0.58

share1b.mps 1.15E+03 2.63E+04 0.0035 0.0038 0.0034 0.0036 0.92 1.04 0.98
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Table B.1: Averaged Performance Results for Multi-Path Simplex: Continued from Previous Page

Multi-Path Simplex Time (s) Multi-Path Simplex Speed Up
Problem Non Zeros Size

SoPlex

Time (s) 2 Threads 3 Threads 4 Threads 2 Threads 3 Threads 4 Threads

israel.mps 2.27E+03 2.47E+04 0.0033 0.0034 0.0034 0.0036 0.99 0.99 0.92

fit1d.mps 1.34E+04 2.46E+04 0.0184 0.0185 0.0141 0.0145 0.99 1.30 1.27

boeing2.mps 1.20E+03 2.37E+04 0.0022 0.0026 0.0024 0.0026 0.85 0.92 0.84

noswot.mps 7.35E+02 2.33E+04 0.0011 0.0014 0.0020 0.0021 0.78 0.57 0.52

ns1766074.mps 6.66E+02 1.82E+04 0.0006 0.0009 0.0011 0.0013 0.66 0.53 0.43

scagr7.mps 4.20E+02 1.81E+04 0.0020 0.0021 0.0022 0.0025 0.93 0.89 0.79

recipe.mps 6.63E+02 1.64E+04 0.0006 0.0009 0.0011 0.0013 0.65 0.53 0.44

stocfor1.mps 4.47E+02 1.30E+04 0.0013 0.0016 0.0018 0.0020 0.81 0.73 0.66

sc105.mps 2.80E+02 1.08E+04 0.0009 0.0012 0.0015 0.0017 0.72 0.59 0.50

share2b.mps 6.94E+02 7.58E+03 0.0014 0.0016 0.0018 0.0020 0.85 0.76 0.69

blend.mps 4.91E+02 6.14E+03 0.0014 0.0015 0.0015 0.0017 0.95 0.92 0.80

adlittle.mps 3.83E+02 5.43E+03 0.0009 0.0012 0.0014 0.0017 0.77 0.64 0.54

sc50a.mps 1.30E+02 2.40E+03 0.0006 0.0009 0.0011 0.0014 0.61 0.50 0.40

sc50b.mps 1.18E+02 2.40E+03 0.0006 0.0010 0.0009 0.0012 0.62 0.63 0.49

kb2.mps 2.86E+02 1.76E+03 0.0006 0.0009 0.0011 0.0013 0.69 0.58 0.48

afiro.mps 8.30E+01 8.64E+02 0.0004 0.0007 0.0008 0.0011 0.56 0.46 0.35
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