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Abstract

Soybean (Glycine max [L.] Merr) is an important crop grown in Canada, generating $2.4 billion
in sales. Though this number may be promising, soybean farmers lose about $50 million worth
of yield annually due to root and stem rot disease caused by Phytophthora sojae. Many strategies
have been developed to combat the infection; however, these methods are prohibitively
expensive. A ‘cost effective’ approach to this problem is to select a trait naturally found in
soybean that can increase resistance. One such trait is the increased production of root
glyceollins. One of the key enzymes exclusively involved in glyceollin synthesis is chalcone
reductase (CHR). To identify all GmCHR gene family members in the soybean genome, a search
was conducted in Phytozome which revealed 16 putative GmCHRs. Among these, 7 GmCHRs
were selected for further study as they contain all active site residues, and are transcribed. All
candidate GmCHRs localize to both the nucleus and cytoplasm. Amongst the candidate
GmCHRs, there are four root-specific GmCHRSs which are induced upon stress. In addition, three
QTLs have been found which contain GmCHR loci. Overall, these findings support the
hypothesis that chalcone reductase is an important component in manipulating glyceollin content

and could eventually be used to improve resistance against P. sojae.
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RNAI
ROS
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SSR
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UTR
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RNA inference

reactive oxygen species
resistance to Phytophthora sojae
reverse transcription-polymerase chain reaction
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Chapter 1: Introduction

1.1 Soybean and its economy

Soybean (Glycine max [L.] Merr) is one of the most important leguminous crops in the world.
Soybean seeds are an excellent source of protein, oils and micronutrients such as calcium and
iron, making it an attractive and profitable crop for human consumption. The seeds also contain
several bioactive compounds such as saponins, bioactive peptides (Yoshikawa et al., 2000), and
isoflavones (Dixon, 2004; Cederroth and Nef, 2009) which are known to have several health
benefits. The consumption of these bioactives are heavily studied and have shown to reduce the
risk of hormone-dependant cancers, cardiovascular disease, and inhibit the infectivity of HIV.
Out of all the bioactives, isoflavonoids accumulate highest in the seeds and these metabolites are
often commercialized into supplements. Several studies support that isoflavonoid supplements
reduce the risk of breast cancer in women and prostate cancer in males (Gutierrez-Gonzalez et
al., 2009; Korde et al., 2009) and alleviate post-menopausal ailments such as hot-flashes (Strom
etal., 2001). Soybeans also have emerged into industrial products including soap, cosmetics and
waxes. Soybean oil is a major source of biodiesel in the United States aside from corn oil
(Fargione et al., 2008; Candeia et al., 2009). In Canada, soybeans are primarily used as cattle

feed (Dorff, 2009).

From this versatility and popularity of the soybean, world-wide soybean production has reached
250 million hectares, a 14-fold increase from 50 years ago. The main producers of soybean are
the United States (36%), Brazil (36%), Argentina (18%), China (5%) and India (4%)
(FAOSTAT, 2015). In Canada, soybean was the 4™ largest crop grown in 2014, seeding to 5.5

1



million acres, producing 6 million tonnes and generating $2.4 billion in profits (Huston, 2015).
Though these numbers appear promising, soybean farmers encounter about $50 million of
soybean yield loss annually in Canada, and $1-2 billion worldwide due to root and stem rot

disease caused by Phytophthora sojae (Council, 2012; Murdoch, 2012).

1.2 The culprit: Phytophthora sojae and soybean root and stem rot disease

P. sojae is an oomycete and soil-borne plant pathogen that causes soybean root and stem rot
disease (Figure 1.1A). The disease is predominant in most soybean growing areas and it is a
major contributor to soybean crop loss. P. sojae can affect the soybean plant at any stage of
development making it difficult to manage infection (Kaufmann and Gerdemann, 1958;
Schmitthenner, 1985). Symptoms of infection include: brown lesions in the roots, chlorosis of

the leaves and overall plant wilting (Figure 1.1B and C).

P. sojae is closely related to brown algae and is often referred to as water molds (Erwin and
Ribeiro, 1996). Nevertheless, earlier studies mistakenly characterized P. sojae as a fungus due its
morphology (Erwin and Ribeiro, 1996). P. sojae produces both mycelium and hyphae which are
characteristic of fungi. Yet, several distinct differences exist between fungi and oomycetes such
as in cell wall composition, and ploidy level during dominant state, to name a few. In oomycetes,
the cell wall consists of beta-glucans while the fungal cell wall contains chitin. In the vegetative
state, fungi are haploid whereas oomycete are diploid (Cooke et al., 2000; Latijnhouwers et al.,

2003).

P. sojae produces three types of asexual oospores: chlamydospore, sporangia and zoospore, and
produces sexual oospores (Tyler, 2007). Any of these oospores can survive for a number of years

in a dormant state, and can overwinter in plant debris (Dorrance et al., 2003). Under high soil

2



moisture levels, the oospores produce zoospores that move in water and attach to soybean roots
(Tooley and Grau, 1984; Morris and Ward, 1992). P. sojae uses isoflavones such as daidzein and
genistein as chemoattractants to locate and navigate to the root. Once attached, the zoospores
lose their flagella, and use proteolytic enzymes to breakdown the cell wall of the root. The hypha
begins to form in the intercellular space of the cortex to the xylem to extract the nutrients from
the plant (Enkerli et al., 1997). Then the pathogen uses the xylem to quickly spread through the
entire plant causing the plant to wilt. The cycle is completed when the oospores of the P. sojae

return to the soil as the plant dies and rots.

Many strategies have been developed to reduce infection such as calcium application, improved
soil drainage, fungicides, soil tillage, and seed treatments. These strategies have not only proven
to be ineffective, but also place selective pressures on P. sojae leading to resistance (Li et al.,
2010). An alternative approach to this problem is selecting a cultivar of soybean with an innate

resistance to P. sojae infection.

1.3 Overview of soybean defense strategies

1.3.1 Defense strategies

The roots of the plant are critical in overall function however, they are also particularly
vulnerable to pests and pathogens. These belowground organs are essential in water and nutrient
uptake, while anchoring the plant and supporting aboveground organs. The rhizosphere of plants
contains both advantageous and pathogenic organisms, as a result, plants have evolved a better

defense system to protect themselves (De Coninck et al., 2015).



Figure 1.1. P. sojae and soybean root and stem rot disease. (A) Oospores of P. sojae produced
in culture (Adapted from: Schmitthenner, 2001), (B) progression from left to right of soybean
root and stem rot disease on soybeans (Adapted from: Byamukama, 2013), and (C) soybean root

and stem rot in the field (Adapted from: Byamukama, 2013).



Plants possess both physical and molecular levels of defense against pathogens (Kombrink and
Somssich, 1995). At the roots and shoots, there are two protective physical barriers, the
exodermis and the endodermis (Geldner, 2013). These two cell layers control osmotic pressure
and ions, but also hinder the invasion of microorganisms. Both the layers contain suberin,
analiphatic polyester of fatty acids, phenolics and alcohols which prevents pathogen admission
into the roots. Studies have shown that higher suberin content in the roots delays the penetration

of P. sojae, thus reducing the susceptibility to the pathogen in soybean (Ranathunge et al., 2008).

At the molecular level, the defense mainly consists of compounds such as secondary metabolites
and protective enzymes (Wink, 1988). A key example of defense at the molecular level is
glucosinolates which are produced in the Brassicaceae family (Pedras and Hossain, 2011). These
enzymes are stored in separate cellular compartments and upon physical damage the cells are
disrupted causing the myrosinases to hydrolyze glucosinolates to produce cytotoxic compounds.
In the Fabaceae family, which soybeans belong to, the production of isoflavonoids is a key
component in molecular plant defense. Isoflavonoid production is constitutive; however upon
pathogen attack, daidzein, an isoflavonoid, is a substrate to the production of a phytoalexin,

glyceollin, which has anti-bacterial and anti-oxidative properties.

Physical and molecular levels of defense can be categorized into two types: inducible or innate
(Arnason and Bernards, 2010). Induced defense involves the de novo synthesis of secondary
metabolites, activation of preformed metabolites and/or strengthening of existing or new
protective barriers. Innate defenses consist of physical barriers or constitutively produced
secondary metabolites with antimicrobial properties (Arnason and Bernards, 2010). Both innate

and induced defenses are combined within the plant and comprise the resistance to a pathogen.



1.3.2 Complete and partial resistance in soybeans

Resistance to pathogen infection in plants can either be complete or partial (Schmitthenner,
1999). Complete resistance or race-specific resistance in soybean is conferred by resistance to P.
sojae (Rps) genes, which counteract the virulence genes within P. sojae. This relationship is
similar to effector-triggered immune response in other pathosystems. To date, there are fourteen
Rps genes and more than 55 identified races of P. sojae (Gao et al., 2005). However, P. sojae

continues to diversify and as a result, the classification system has become cumbersome.

All Rps genes provide complete and absolute immunity against incompatible races of P. sojae
and it has been shown that 51% of commercially-available soybean cultivars contain at least one
Rps gene (Gordon et al., 2006). Rpsla was the first resistance gene to be widely used in the USA
in 1960s (Gao et al., 2005). Subsequently Rpslc, Rpslk, Rps3a and Rps6 were deployed in the
following years (Dorrance et al., 2003). Out of the fourteen Rps genes, Rpslk has the strongest
resistance against a large number of North American P. sojae races and has remained stable. Due
to this reason Rpslk has been widely commercialized in the last two decades (Gao et al., 2005).
Complete resistance puts immense selective pressure on P. sojae as such continuous
commercialization of the Rps genes has resulted in the appearance of new races of P. sojae

which can overcome the known Rps genes.

Due to this problem, many investments have been made towards developing partially resistant
cultivars. Partial resistance, referred to as field resistance, is a multi-gene trait which involves
various defense components, such as suberin content and isoflavonoid levels, giving the plant an
advantage towards fighting the pathogen. Cultivars with this type of resistance contain fewer

rotten roots than completely susceptible cultivars, show delayed disease progression, and are



effective against all races of P. sojae (Schmitthenner, 1985). A key trait of these strong partial
resistance cultivars is the increased production of root isoflavonoids, or more specifically,
glyceollins. Further supporting the importance of glyceollins are studies showing that when the
isoflavonoid pathway is silenced or compromised, it reduces the plants’ ability to fight off the
pathogen attack (Subramanian et al., 2005; Graham et al., 2007; Lozovaya et al., 2007). For
instance, it was found that the silencing of CHR genes not only increased the progression of the
P. sojae pathogen, but also suppressed hyper-sensitive cell death, which in turn exacerbated the
progression of the disease. Further partial resistance alone will not completely protect the crop
yield. Additional efforts have been made to breed cultivars with both complete and partial

resistance to eradicate the cases of soybean root rot disease.

1.4 Cultivar development approaches

1.4.1 Traditional soybean breeding

The earliest method of breeding novel cultivars was through traditional or conventional plant
breeding. To attain the ideal cultivar numerous crosses and back-crosses were performed,
proving the inefficiency of traditional breeding. Since the domestication of the soybean about
4,500 years ago, ~400 different soybean lines have been bred via traditional breeding and

registered in Canada (CFIA, 2015).

1.4.2 “Next generation” breeding

An efficient and more modern approach of breeding is through identifying the genes that govern
ideal traits in soybean. This is addressed through molecular approaches such as positional

cloning (Rommens et al., 1989), linkage mapping and insertional mutagenesis (Bechtold et al.,



1993). Such methods, however, are limited by the genome size and lack of transposons (Pflieger
et al., 2001). An alternative strategy is using the candidate gene approach. The candidate gene
approach relies on the relationship between genetic variation within genes and phenotypes of

interest.

There are three steps involved in identifying candidate genes and the association to the trait of
interest. Firstly, candidate genes are selected based on their proposed molecular and
physiological function. Genes, which are associated with quantitative trait loci (QTL) or
involved in a biochemical pathway related to the characteristic of interest, are usually selected as
candidate genes. Then, candidate genes are screened for polymorphisms that can potentially alter
the expression. Finally, statistical testing is performed to determine the association between the

genes and phenotype (Pflieger et al., 2001).

1.4.3 Quantitative trait loci

Quantitative trait loci (QTL) are regions of DNA which often correlate with a variant trait. These
regions can span over several megabase pairs and can contain several hundreds to thousands of
genes (Dupuis and Siegmund, 1999). The first step of identifying a QTL is by conducting crosses
of two parental lines with different traits (resistant vs susceptible). Genetic markers are
determined between the parental lines. These genetic markers are the same markers used for the
genotyping and include single nucleotide polymorphisms, tandem repeats and restriction enzyme
length polymorphisms which don’t affect the phenotype of the parental lines. Following the F;
cross, with the aid the genetic markers, linkage groups or heritable regions of the F; progeny are
identified. A back-cross is performed with F; progeny and parental lines to produce individuals

with different fractions of the parental genome. The genotypes and phenotype of the F, progeny



are statistically scored. One of the scores is the logarithm of odds (LOD) which estimates the
association between the DNA regions to the phenotype. The higher the LOD score the higher the
probability of association between the phenotype and DNA region. Other assigned scores might
be through ANOVA, t-test and F-statistics (Darvasi, 1998). In one way or another, identifying a
QTL is an effective method in finding genes which can contribute to desired trait such as P.

sojae resistance.

1.4.4 QTLs linked to P. sojae resistance and association studies in soybean

Several studies have examined the genes and regions of DNA which govern P. sojae resistance.
Out of all the studies, genes which are responsible for isoflavonoid synthesis and suberin content,
as well as the Rps genes have been shown to be of particular importance to P. sojae resistance.
Igbal et al. (2005) studied the accumulation of transcripts in partially resistant and susceptible
soybeans during Fusarium attack. The study describes a generation of 23 recombinant lines from
a cross derived from soybean cv. Essex (susceptible) and Forrest (resistant) and identification of

6 QTLs. These QTLs contain genes involved in cell wall and phenolic synthesis.

Han et al. (2008) performed QTL mapping on 112 recombinant inbred lines from a cross
between soybean cv. Conrad (resistant) and OX760-6-1 (susceptible) and identified 3 QTLs.
Conrad contains high suberin content which has been linked to P. sojae resistance (Thomas et

al., 2007; Ranathunge et al., 2008).

Moy et al. (2004) studied patterns of gene expression in soybean cv. Harosoy 63 during P. sojae
infection. A 4,896-gene microarray was constructed to determine transcript accumulation in both

host and pathogen during infection. Genes encoding defense and pathogenesis-related proteins,



and genes involved in the phytoalexin glyceollin biosynthesis were found to be upregulated upon

infection.

Thus far, there are over 40 QTLs, and over 100 QTL markers that are linked to resistance to P.
sojae (http://www.soybase.org/). The knowledge gained from these studies will aid breeders and

scientists in generating the ideal cultivar which is resistant to P. sojae.

1.5 Soybean phytoalexins: synthesis of the isoflavonoid glyceollin

In soybeans, phytoalexins are produced via the isoflavonoid pathway (Dakora and Phillips, 1996)
which in turn is derived from the general phenylproponoid pathway. As shown in Figure 1.2, the
first committed step is phenylalanine ammonia lyase (PAL) (Habereder et al., 1989) which
eliminates the ammonia group from phenyalanine producing cinnamic acid. The metabolic
pathway is further channeled by 4-coumarate CoA ligase (4CL) to produce p-coumaroyl-CoA
(Li et al., 2014). It is through the activity of either chalcone synthase (CHS) alone or in
conjunction with chalcone reductase (CHR) that the pathway branches toward flavonoids and/or
isoflavonoid production by joining p-coumaroyl-CoA with 3 molecules of malonyl CoA. The
first reaction consists of CHS producing naringenin chalcone, a compound that is subsequently
converted into the core isoflavone aglycone genistein and other flavonoids with the help of
chalcone isomerase (CHI) (Dhaubhadel et al., 2003). The second reaction consists of CHS co-
acting with CHR to create isoliquiritigenin chalcone, the building block of the other two core
isoflavone aglycones, glycitein and daidzein. The aglycone, daidzein, is the precursor for the
phytoalexin glyceollin, an important player in fighting off pathogen attack (Dakora and Phillips,

1996).
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Figure 1.2. The general phenylpropanoid pathway showing isoflavonoid biosynthesis. The
isoflavonoid pathway produces the three main aglycones, glycitein, daidzein and genistein
(boxed in green). Daidzein can either be consecutively converted into malonyldaidzien (pink
box) or, upon stress, can be converted into 2’hydroxyldaidzein (induced pathway, purple box)
leading into the synthesis of glyceollins. PAL phenylalanine ammonia lyase, C4H cinnamate-4-
hydroxylate C4H, 4CL 4-coumarate-CoA-ligase, CHS chalcone synthase, CHR chalcone
reductase, CHI chalcone isomerase, IFS isoflavone synthase, 2HID 2-hydroxyisoflavanone
dehydratase, UGT glycosyltransferase, MT malonyltransferase, 12’H isoflavone 2’-hydroxylase,
2HDR 2'-hydroxydaidzein reductase, PTS pterocarpan synthase, 3,9 DPO 3.9-
dihydroxypterocarpan 6a-monooxygenase, G4DT glycinol 4-dimethylallyltransferase, G2DT
glycinol 2-dimethylallyltransferase, GS glyceollin synthase. Gene of study is boxed in black.

Adapted from: Anguraj Vadivel et al. (2015).
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1.6 Chalcone reductase

The enzyme CHR is critical for daidzein biosynthesis which ultimately leads to the production of
the phytoalexin glyceollin in soybean. CHRs (formally known as polyketide reductase and
NAD(P)H dependant 6'-deoxychalcone synthase) belong to the aldo-keto reductase family 4 in
the aldo-keto reductase superfamily (Figure 1.3). All members of this superfamily fold into a
monomeric, (0/B)s barrel structure (Figure 1.4) (Jez et al., 1997; Jez et al., 1997). The aldo-keto
reductase superfamily is divided into 15 sub-families; however, all AKRs contains a common
NAD(P)(H) binding site that is located in a deep, large and hydrophobic pocket at the C-terminus
end, as well as a catalytic tetrad of Asp-53, Tyr-58, Lys-87, and His-120 (Bomati et al., 2005).
As shown in Figure 1.5, CHRs predominantly contain hydrophobic and aromatic residues that
line the unoccupied entrance to the active site cavity molded by Pro-29, Ala-57, Trp-89, Phe-
130, and Phe-132. Largely polar residues define the base of this catalytic surface and include
Asp-53, Tyr-58, Lys-87, His-120, Trp-121, and Asn-167. Beside the facts described above, very
little information is known about CHR enzyme since it acts on intermediates for CHS (Bomati et

al., 2005).

CHR activity was first demonstrated in crude extracts of Glycyrrhiza enchinata (Ayabe et al.,
1988). Up to now, CHR-like enzymes have been identified in a variety of leguminous plant
species, including Medicago sativa (Ballance and Dixon, 1995) Sesbania rostrata (Goormachtig
et al., 1999), Pueraria montana var. lobata (He et al., 2011), Glycyrrhiza glabra (Hayashi et al.,

2013), and Lotus japonicus (Shimada et al., 2006).

13



5D 2,5-Diketo-D-Gluconic Acid Reductase
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Figure 1.3. Evolutionary tree showing representative enzymes of AKR families 1-5. Purple
and green represents enzymes of the AKR family 4. AKR4 family enzymes of putative functions
are highlighted in purple while chalcone reductase and codeinone reductase is highlighted in

green (Adapted from: Bomati et al., 2005).
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Figure 1.4. Ribbon diagram of chalcone reductase (Glycine max). Using Protein Model Portal
(http://www.proteinmodelportal.org/), a putative representation of chalcone reductase was

generated. (A) Top view, (B) side view and the (C) active site of chalcone reductase with

substrate (purple) is shown.
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Figure 1.5. Chalcone reductase active site. Catalytic residues, Asp-53, Tyr-58, Lys-87, His-
120, Trp-121 and Asn-167 are shown in red boxes. Entrance residues, by Pro-29, Ala-57, Trp-89,
Phe-130 and Phe-132 are shown in blue boxes. NADP" is shown in gold, and the proposed
substrate is in green. Proposed hydrogen bonding patterns are shown in small green and black

circles (Adapted from: Bomati et al., 2005).
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Graham et al. (2007) identified 4 soybean CHRs through the EST database search
(http://compbio.dfci.harvard.edu/tgi/) and silenced all of them in soybean hairy roots. The
silenced roots produced reduced levels of isoflavonoids, and in turn, were susceptible to P. sojae

infection.

1.7 Soybean genome and genomic duplication

The soybean genome project was first privately initiated through the Department of Energy Joint
Genome Institute Community Sequencing Program in 2006. Sequencing was completed in early
2008 and released in Phytozome, a comparative platform for plant genomics, however; it wasn’t

until 2010 that the sequencing results were published (Schmutz et al., 2010).

The soybean genome contains 978 megabase pairs with 56,044 protein-coding loci and 88,647
transcripts  (http://phytozome.jgi.doe.gov/pz/portal.html) which is 70% more genes than
in Arabidopsis thaliana (Schmutz et al., 2010). Soybean is a palaeopolyploid whose genome
experienced two whole duplication events approximately 59 and 13 million years ago. Because
of these two duplication events, 75% of genes in soybean have multiple copies. In the context of
the genes involved in the isoflavonoid pathway, it is found that CHS has 9 family members
(Akada and Dube, 1995; Dhaubhadel et al., 2007), isoflavone synthase (IFS) has 2 members

(Jung et al., 2000) and CHI has 12 members (Dastmalchi and Dhaubhadel, 2015).

1.8 Hypothesis
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It is hypothesized that there are multiple CHR genes (GmCHR) present in the soybean genome,
and that there are specific members of the GmCHR(s) family that have a role in root-specific

phytoalexin production.

1.9 Objectives

Thus the objectives of the present research are:

a) To identify the members of GmCHR gene family in soybean.

b) To determine the subcellular localization of all GmCHRs.

c) To determine the root-specific GmCHR(s) and inducible GmCHR(s) upon stress.

d) To identify QTL(s) and QTL markers linked to P. sojae resistance that contain
GmCHR loci.

e) To functionally characterize root-specific GmCHR family member(s) by RNAI

using the soybean hairy root system.
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Chapter 2: Materials and methods

2.1 Biological materials

2.1.1 Plant materials and growth conditions

Seeds of Nicotiana benthamiana were sprinkled onto wet PRO-MIX BX MYCORRHIZAETM

soil™

(Riviere-du-Loup, Canada) in a small tray (5”W x 7”L x 2”D). The tray was placed in a
growth room set on a 16h light/8h dark cycle at 23°C/18°C, respectively, with 60%-70% relative
humidity and light intensity of 100-150 pmol m? s™. After a week, individual seedlings were
transferred into sterilized pots and watered regularly. The nutrient mixture of nitrogen,
phosphorous, and potassium (20-20-20) was applied once a week.

Seeds of soybean cv. OX760-6, Harosoy 63 and Conrad were sterilized with 70% ethanol

containing 3% H,0, for 1 min and rinsed with water at least 6 times prior to planting in soil. The

pots were placed in a growth room set on a 16h light/8h dark cycle at 23°C /18°C, respectively.

2.1.2 Bacterial strains

Escherichia coli DH5a and Agrobacterium tumefaciens GV3101 were used for cloning and
transient expression in tobacco, respectively. For hairy root transformation Agrobacterium
rhizogenes K599 was used. For all bacterial transformations, electroporation was carried out in a
Gene Pulser® Cuvette (BioRad Laboratories) with 0.1 cm electrode gap using MicroPulser™
(BioRad Laboratories). The electroporation setting used for E. coli was 1.80 kV and for

Agrobacterium sp. was 2.18 kV for 5-6 milliseconds.
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2.2 Insilico analysis

To identify CHR gene family members in the soybean genome, a search was conducted in the
annotated G. max Wm82.a2.v1 genome of Phytozome
(http://phytozome.jgi.doe.gov/pz/portal.html) (Goodstein et al., 2012). The keywords ““aldo-keto”
and “aldo/keto” were used to find all the soybean aldo-keto reductases (GmAKRS). To ensure no
GmAKRs were missed in the keyword search, each GmAKR was used as a query for a protein
BLAST search again.

For generating a phylogenetic tree, protein sequences were aligned using CLUSTALW
(http://www.ebi.ac.uk/Tools/msa/clustalw2/) and a Neighbor-joining tree based with 1000
bootstrap replications was created using MEGAG6 (Tamura et al., 2013). The Poisson method was
selected to calculate the evolutionary distance of the phylogenetic tree and pairwise deletion was
selected for gaps/missing data treatment. A candidate gene list was prepared where all the
GmCHRs clustered together with other known CHRs on the phylogenetic tree. To determine
whether all candidate GmCHRs contain residues deemed important for catalytic activity, the
protein sequences of the candidate GmCHR were aligned using CLUSTALW followed by
BOXSHADE 3.21 (http://www.ch.embnet.org/software/BOX_form.html). Critical residues were
manually spotted based on Bomati et al. (2005). The subcellular localization of candidate
GmCHRs were predicted using WoLF-PSORT (http://wolfpsort.org), and the chromosome
location and CDS information were obtained from Phytozome
(http://phytozome.jgi.doe.gov/pz/portal.ntml). The molecular weight of candidate GmCHRs was

calculated using ProtParam software (http://web.expasy.org/protparam).

2.3 Gene expression analysis
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A publicly available RNA-seq database containing transcriptome sequencing of soybean
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29163) was mined for the expression
profiles of 11 GmCHR gene family members. The relative expression was normalized across the

libraries corresponding to each tissue. A heatmap for GmCHR transcripts was generated in R.

2.4 ldentification of QTL(s) and QTL markers linked to P. sojae resistance

The QTLs and QTL markers from the year 2003 to 2014 corresponding to P. sojae resistance
were mined from the SoyBase and Soybean Breeder’s Toolbox (http://soybase.org/). To ensure
no QTLs or QTL marker were missed in the search a literature search was also conducted.
Relative position of transcribed GmCHRs, and QTL markers were mapped onto the
chromosomes. QTLs regions in base pairs were noted from the G. max genome assembly on

Soybase.org.

2.5 Plasmid construction

2.5.1 Cloning into the Gateway entry vector, pP DONRZeo

All the primers for cloning purposes contained the attB1 adaptor sequence (5’-GGGG ACA
AGT TTG TAC AAA AAA GCA GGC T-3’ for forward primers) and the attB2 adaptor
sequence (5’-GGGG AC CAC TTT GTA CAA GAA AGC TGG GT-3’ for reverse primers) for
Gateway cloning. To clone GmCHR gene family members, gene-specific primers were designed
(Table 2.1) and used in a PCR reaction using cDNA synthesized from RNA isolated from
different soybean tissues. PCR products were run on a 1% agarose gel and stained with RedSafe
(INtRON Biotechnology). The gels were visualized on a Bio-Rad Gel Doc. PCR products were

gel purified using EZ-10 Spin Column DNA Gel Extraction Kit (Bio Basic Inc.) and recombined
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into pDONRZeo vector (Invitrogen) using BP clonase enzyme (Invitrogen). The recombinant
plasmids were then transformed into E. coli DH5a and plated on lysogeny broth (LB) agar plates
containing zeocin (50 ug/mL). Positive colonies were screened by colony PCR using gene-
specific primers. Positive colonies that contained the right size amplicons were selected and
cultured overnight at 37°C in LB medium containing zeocin. Plasmid DNA was then extracted
using EZ-10 Spin Column Plasmid DNA Kit (Bio Basic Inc.) and sequence verified.

Otherwise stated, all PCR amplifications consisted of a denaturation step at 95°C for 1 minute,
annealing step for 30 seconds, extension step at 72°C for 1 minute, with a total of 35 cycles.
Before the start of the amplification, there was an the initial denaturation step of 95°C for 5

minutes and after the last cycle, a 5 minute extension was carried out at 67°C.

2.5.2 Cloning into destination vectors

For subcellular localization, the sequence confirmed pDONRZeo-GmCHR plasmids were
recombined into pEarleyGate101 (Invitrogen) using LR clonase (Invitrogen), transformed into E.
coli DH5a and plated on LB agar plates containing kanamycin (50 pg/mL). E. coli colonies that
contained pEarleyGate101-GmCHRs plasmids were screened by colony PCR using gene-
specific primers (Table 2.1). The positive colonies were selected and grown overnight in 3 mL of
LB with kanamycin (50 pg/mL) at 37°C. Plasmid DNA was extracted from the overnight culture
using the EZ-10 Spin Column Plasmid DNA Kit (Bio Basic Canada Inc) and transformed into A.
tumefaciens GVV3101 using electroporation. The transformed Agrobacterium was grown on LB
agar plates containing rifampicin (10 pg/mL), gentamycin (50 pg/mL), and kanamycin (50
pg/mL). Finally, positive colonies were verified by colony PCR. This cloning effort resulted in
vectors that produced a translational fusion of each GmCHR with yellow fluorescent protein
(YFP).
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For RNAI silencing of GmCHRs, gene-specific primers (Table 2.1) were designed to clone a
5’end of a GmMCHR transcript for the targeted silencing of a specific gene family member. The
fragments were cloned into pDONRZeo as described in the section 2.3.1, and recombined into
the silencing vector, pK7GWIWG2D(II), using LR clonase. This silencing vector contains a
separate cassette that produces green fluorescent protein (GFP), as the selectable marker. The
recombinant plasmids were transformed into A. rhizogenes K599 and plated onto spectinomycin

plate (50 pg/mL). The destination vector maps used in my study are shown in Figure 2.1.

2.5.3 DNA sequencing

The DNA constructs were sequenced either at the Robarts Research Institute (Western
University) or at the Southern Crop Protection and Food Research Center, Agriculture and Agri-

Food Canada, London, Ontario.
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Figure 2.1. Gateway vectors for subcellular localization and silencing. (A) Subcellular
localization vector pEarleyGate101 and (B) RNAI silencing vector, pK7GWIWG2D(II). Vector
adapted from: https://benchthumb.s3.amazonaws.com/snapshot/45V8MkrCip.png and

http://www.uoguelph.ca/~jcolasan/pdfs/gateway_protocols_and_plasmids.pdf

25



2.6 Transient expression of protein in N. benthamiana leaves

The subcellular localization of GmCHRs was studied by infiltrating A. tumefaciens GV3101
carrying pEarleyGate101-GmCHRs in N. benthamiana leaves (Sparkes et al., 2006). A single
colony of A. tumefaciens GV3101 was inoculated into infiltration culture medium (LB broth
containing 10 mM 2-N-morpholino-ethanesulfonic acid (MES) pH 5.6, and 100 pM
acetosyringone) supplemented with kanamycin (50 pg/mL), rifampicin (10 pg/mL), and
gentamycin (50 pg/mL) and grown at 28°C until the ODggyo reached 0.5-0.8. The culture was
centrifuged in a microfuge tube at 3000 rpm for 30 minutes at room temperature. Then the pellet
was resuspended in Gamborg’s solution (3.2 g/L Gamborg’s B5 and vitamins, 20 g/L sucrose, 10
mM MES pH5.6, and 200 uM acetosyringone) to a final ODgy Of 1 and incubated at room
temperature for 1 hour with gentle agitation. The leaves of 4-6 weeks old N. benthamiana were
infiltrated by placing the tip of the syringe against underside of the leaf. For co-infiltration, the A.
tumefaciens GV3101 containing the pEarleyGate100 with a nuclear localization signal and cyan
fluorescent protein (pEarleyGate100-NLS-CFP) and pEarleyGate101-GmCHR constructs were
mixed in equal volumes and then infiltrated into the leaves. The plants were returned to the
growth room at normal growth condition as described in section 2.1.1. The protein expression

was visualized by confocal microscopy.

2.7 Confocal microscopy

Epidermal cell layers of N. benthamiana leaves were visualized using Leica TCS SP2 inverted
confocal microscope. For YFP visualization, an excitation wavelength of 514 nm was used and
emissions were collected between 525-545 nm. For visualization of CFP, an excitation

wavelength of 434 nm was used and emissions were collected between 460-490 nm. For co-
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localization, ‘Sequential Scan Tool’ was utilized which records the image in sequential order

instead of acquiring them simultaneously in different channels.

2.8 Protein extraction and western blot analysis

Leaf samples of N. benthamiana were used to extract total soluble proteins. Fresh leaves (0.5 g)
were ground in liquid nitrogen and re-suspended in extraction buffer (25 mM Tris-HCL pH 8.0,
1 mM EDTA pH 8.0, 20 mM NaCl with Protease Inhibitor Cocktail (Sigma Aldrich). The
samples were centrifuged for 30 min at 13,000 rpm at 4°C and the supernatant was collected. The

concentration of total soluble protein was determined by a Bradford Assay (Bradford, 1976).

Thirty micrograms of total soluble proteins were loaded on a 7.5% sodium dodecyl sulfate (SDS)
polyacrylamide electrophoretic gel. The proteins from the gel were then transferred onto an
Immun-Blot™ polyvinylidene fluoride (PVDF) membrane (Bio-Rad) using a Trans-Blot Semi-
Dry Electrophoretic Transfer Cell (Bio-Rad) at 20 V for 30 minutes. The membrane was washed
with TBS+0.1% Tween 20 three times for 15 minutes followed by blocking in TBS+1% BSA
and 0.1% Tween 20 at 4°C overnight. The fusion proteins with YFP were detected using an anti-
GFP (1:5000 dilution) mouse primary antibody and conjugated horseradish peroxidase (HRP)
goat anti-mouse (1:5000 dilution) secondary antibody. The bound immune-complexes were
detected with ECL Prime Western Blot detection reagents (GE Health Care Life Sciences) and

exposed in the MicroChemi (DNR Bio-Imagining System).
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2.9 RNA extraction, cDNA synthesis and RT/gRT-PCR

Total RNA was extracted from 100 mg of tissue using the RNeasy Plant Mini Kit (Qiagen)
following manufacturer’s instruction with some modification. An on-column DNasel (Promega)
treatment was used to digest DNA. Subsequently, RNA was quantified with a NanoDrop 1000
spectrophotometer (ThermoScientific), and its quality was evaluated from its Azgo/Azgo ratio and
by electrophoresing the RNA on a 1% agarose gel in 1X TAE buffer (40 mM Tris, 40 mM
acetate, 1 mM EDTA, pH 8.2). Thermoscript RT-PCR System (Life Technologies) was used to
synthesize cDNA from 1 pg of total RNA in a 20 pL reaction. For RT-PCR, 1 pL of undiluted
RT reaction was used as a template. PCR amplification was performed using gene-specific
primers (Table 2.1) using the condition described in the section 2.5.1. For qRT-PCR, the RT
reaction (cCDNA) template was diluted 20 times and reaction was performed using gene-specific
primers (Table 2.1) and SsoFast EvaGreen Supermix Kit (BioRad) in a Bio-Rad C1000 Thermal
Cycler with the CFX96TM Real-Time PCR System. CON4 was used as a reference gene to

normalize the expression.

2.10 Stress treatment

Stems of seven-day old seedlings of soybean cv. L76-1988 were inoculated with P. sojae race 7.
The stems of the infected plants were collected at 24, 48 and 72 hours post-inoculation.

For the AgNO3 treatment, soybean cv. Harosoy 63 was grown in water-soaked vermiculite in the
dark at 25°C for 6 days. Prior to the treatment, 10 etiolated seedlings per treatment were
transferred into glass trays, after which, 5-10 drops of 10 pL of either water (control) or I mM of

AgNO; were placed onto the hypocotyl of each seedling (Figure 2.2). The trays were transferred
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back in the dark to 25°C. Samples were collected at 6, 12, 24, 48 and 72 hours after the

treatment.

2.11 Statistical analyses

Statistical analyses were performed using GraphPad Prism 6.0. Significant differences between
means in gene expression were calculated using multiple t-test per row. Statistical significance

was set at p <0.05.

2.12 Hairy root transformation

2.12.1 Preparing soybean cotyledons

Seeds of soybean cv. Harosoy 63 were planted in vermiculite. On day 3 or 4, the soybean plants
were sprayed with water to remove the seed cover and vermiculite which were attached to the

cotyledons. Hairy root transformation was performed on 6 day old seedlings.

2.12.2 Preparing A. rhizogenes cultures

The day before hairy root transformation, A. rhizogenes K599 with either no vector, empty
silencing vector, or a vector containing pK7GWIWG2D(I1)-GmCHR were inoculated in 5 mL of
LB broth (no vector) or LB broth with spectinomycin (50 pg/mL) and were grown overnight to
an ODggo of 0.4 to 1.0 at 28°C. The culture was centrifuged at 2500 g for 20 min at 4°C and, re-

suspended to a final ODggo 0f 0.5 in ice cold 10 mM MgSO, (Kereszt et al., 2007).

29



Figure 2.2. Set-up of AgNOj; stress treatment on soybean hypocotyl. Seeds of soybean cv.
Harosoy 63 were grown in dark at 24°C for 6 days in water-soaked vermiculite. The seedlings
were then placed onto a tray and the roots were covered with water-soaked cheese cloth. The

hypocotyls were inoculated with either water (control) or with 1 mM AgNOj (treatment).
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2.12.3 Transformation of soybean cotyledons

Humidity chambers were prepared by placing layers of wetted filter paper on the lid of a petri
dish. Cotyledons were twisted off of the seedling and collected in batches of 50-60 in a glass
beaker. The cotyledons were then surface sterilized with 70% ethanol and dried on filter paper in
the biological safety cabinet. The cotyledons were cut with a sterilized razor blade near the end
of petiole as shown in Figure 2.3 the cut was horizontally made through the major vein. The cut
cotyledons were arranged in rows of 2-3-3-2, a total of 10 cotyledons per chamber. A culture of
A. rhizogenes was drawn in a sterile syringe with 18 gauge needle and a drop of the culture was
placed onto the wounded site. The petri dishes were sealed, placed in complete darkness at 25°C

for two days and then transferred into continuous light for 3 weeks at 23°C.

2.12.4 Harvesting hairy roots

After 3 weeks hairy roots were screened for silenced transgenic lines. The transgenic lines were
identified by a selectable fluorescent marker, GFP using a fluorescent microscope. Images were
taken under visible and UV light and were recorded using camera software Image-pro Express
6.0. Control K599 transformed hairy roots were harvested also. All roots from each
corresponding construct, K599 only, empty silencing vector and silenced GmCHR, were pooled

together, weighed, and frozen in liquid nitrogen and stored at -80°C
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Figure 2.3. Soybean hairy root transformation. (A) Two day old soybean cotyledon (post-
inoculation) was cut near the petiole end and a culture of A. rhizogenes K599 was placed onto
the cut site. (B,C) After 7 days hairy roots began to form. (D) After 3 weeks, hairy roots were

ready for harvesting (Adapted from: Subramanian et al., 2005).
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Chapter 3: Results

3.1 Soybean genome contains 16 putative GmCHRs

To identify all the GmCHR gene family members in soybean, a keyword search was conducted
in the annotated Glycine max Wm82.a2.v1l genome on Phytozome. Using the keyword “aldo-
keto” and “aldo/keto”, protein databases, KOG, Pfam and PANTHER identified 34 and 68
GmAKRSs, respectively. Both keyword searches were compared and compiled to ensure no
duplicates. Each GmAKR sequence was then used as a query for a BLAST search, until no new
GmAKRs were identified. With this process, no new GmAKRs were found in the BLAST

searches which concluded in the total of 68 GmAKRs.

The AKR superfamily consists of 15 families; where CHRs are grouped into the AKR4 family
(Jez et al., 1997). It has been previously shown that CHRs from several different plant species
cluster separately from other AKR family members (Figure 1.3) (Bomati et al., 2005). To
identify GmCHRs in soybean, the 68 candidate GmAKRs were combined with previously
characterized AKRs from Bomati et al. (2005), with the assumption that the GmCHRs would
cluster together with other known CHRs. As shown in Figure 3.1, 16 putative soybean CHRS
clustered together with other known CHRs (Appendix A). GmCHR2A, GmCHR15, GmCHR2B,
GmMCHR20, GMCHR18 and GmCHR14 cluster closely together with CHRs from M. sativa and
CHR P. montana var. lobata, POR from L. japonicus and G. glaba. Other inter-species
clustering consists of GMCHR9A, GmMCHR9B, GmMCHR9C, GmCHR9E, GmMCHRI16A,
GmCHR16B, and GmCHR16C with CHR from S. rostrata. GmCHR9D and GmCHR12 cluster

together closely without any CHR from other plant species. Codeinone reductase, a non-CHR, is
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also found in the same cluster as CHR however no other GmCHRs cluster together with this

group.

CHR’s active site is primarily molded by the catalytic tetrad Asp-53, Tyr-58, Lys-87, and His-
120 with the additional amino acids Trp-121, and Asn-167 based on M. sativa CHR (GenBank
accession number AAB41555.1) (Bomati et al., 2005). To identify whether all the putative
GmCHRs contain critical amino acids residues that are required for CHR function, 16 putative
GmCHRs, known CHRs from other plant species, and a selection of AKRs were aligned and the
amino acid residues were searched manually. This process identified the following alterations in
5 candidate GmCHRs: 1) in GmCHR2B, Tyr-58 is missing; 2) in GmCHR9B, Asp-53, Tyr-58,
Lys-87, His-120, and Trp-121 are missing; 3) GmCHR7 do not contain any of the critical
residues; 4) GmCHROE is missing His-120, Trp-121 and Asn-167 and 5) GmCHR16C does not
contain Asn-167 (Figure 3.2). Based on these results, GmCHR2B, GmCHR9B, GmCHR9E,

GmCHR7 and GmCHR16C were eliminated for further study, leaving 11 putative GmCHRs.

Detailed information on each putative GmCHR, including gene location, coding sequence length
and predicted subcellular localization is shown Table 3.1. Pairwise amino acid sequence identity
comparison of the 11 GmCHR gene family ranged from 50.11%-97%. However, pairwise

nucleotide sequence identity comparison ranged from 37%-96% (Table 3.2).
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Figure 3.1. Phylogenetic tree showing GmCHRs cluster together with known plant CHRs.
The protein sequences of putative GmAKRs and known AKRs from other plant species were
aligned using CLUSTALW and the phylogenetic tree was constructed by Neighbor-joining
method using MEGAG6. The green branch indicates CHR specific AKR, black circles (®) and
white circles (o) indicate putative GmCHRs and CHRs from other plants species, respectively.
POR polyketide reductase, COR codeinone reductase, AKR aldo-keto reductase, XYR xylose
reductase, M6PR mannose-6-phosphate reductase, M6DH morphine 6-dehydrogenase, ALHD
alcohol dehydrogenase, ALR aldose reductase, ARR arabinose reductase , 2,5 DKG 2,5-diketo-
D-gluconic acid reductase B , and PFS prostaglandin F synthase. Branch lengths are measured as
substitutions per site. Accession numbers for known AKRs (shown in the parentheses) are

according to Uniprot. Common nomenclature for GmCHRs is also shown in parenthesis.
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Figure 3.2. Identification of important amino acid residues in candidate GmCHRs.
Candidate GmCHRs obtained from the phylogenetic analysis were aligned using CLUSTALW
with other known AKRs and CHRs from other plant species. Critical and other residues were
noted: entrance of the catalytic site (7), AKR catalytic tetrad (o), unique amino acids from
COR(0), CHR active site with AKR catalytic tetrad (). GmCHRs which are missing critical
residue are indicated through gray shading. Only an abridged version of the alignment is shown.

Full version of the alignment is shown in Appendix B.
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3.2 GmCHR family members display tissue-specific gene expression

To determine tissue-specific expression pattern of GmCHRs, publicly accessible RNA-seq data
was used. RNA-seq data was derived from high throughput sequencing of total RNA isolated
from various soybean tissues at different developmental stages such as different stages of
developing embryos, the seed coat, the pod wall, roots, stems, leaves, flowers and flower buds
(http:// www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29163). The relative expression was
normalized across the libraries corresponding to each tissue. A heatmap was produced based on

expression level of each GmCHR for each tissue.

No RNA-seq data was found for GmCHR9A4 and GmCHRYD suggesting that they may not be
transcribed. GmCHR 12 was detected in the RNA-seq data however the transcript levels were low
(Appendix C). Due to this reason, GmCHR94, GmCHRY9D and GmCHRI2 were not included

into the heatmap.

Out of 8 putative GmCHRs remaining on the heatmap, GmCHR2A, GmCHR14, GmCHR18 and
GmMCHR20 were expressed at higher level in roots as compared to other tissues (Figure 3.3).

Majority of the GmCHRs were either expressed in the seedlings or dry seeds.
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Figure 3.3. Expression profile of GmCHR genes. Soybean RNA-seq data
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29163) were normalized and a
heatmap was constructed to evaluate the transcript levels of GmCHR across different tissues.

Transcript abundance is indicated by a gradient from red (high) to green (low).
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Figure 3.4. Subcellular localization of the GmCHR family. GmCHRs were translationally
fused with the YFP reporter gene, transformed into N. benthamiana leaves by A. tumefaciens-
mediated transformation: (A) GmCHR2A, (B) GmCHROIC, (C) GmCHR14, (C) GmCHR16A,
(E) GmCHRI16B, (F) GmCHRI18, and, (G) GmCHR20. A nuclear localization signal fused with
the CFP reporter gene was used for the co-localization study. Fluorescence was visualized by
confocal microscopy. The scale bar: (A) 49.9 um, (B) 50.3 um, (C) 50.1 pum, (D) 50.2 um, (E)

49.8 um, (F) 49.9 um and (G) 50.2 pm.
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3.3 GMCHR localizes in the nucleus and cytoplasm in N. benthamiana

To determine the subcellular localization of the 9 putative GmCHR genes, each member was
translationally fused with YFP. Despite several attempts, amplification of GmCHRI5 and
GmCHRI12 was not successful. Therefore I proceeded with the investigation of subcellular
localization of 7 GmCHRs. The GmCHR-YFP fusion protein was transiently expressed in leaf
epidermal cells of N. benthamiana followed by confocal microscopy. The results revealed both
nuclear and cytoplasmic localization for GmCHR2A, GmCHR9C, GmCHR14, GmCHR16A,
GmCHR16B, GmCHR18 and GmCHR20. To confirm the presence of the nuclear localization,
co-expression of GmMCHR-YFP fusion protein with nuclear localization signal containing control
(NLS-CFP) was performed. Co-expression of GmCHR-YFP and NLS-CFP showed overlap
between the NLS-CFP and GmCHR-YFP signals, thus confirming their nuclear localization

(Figure 3.4).

Foreign proteins, such like GmCHR-YFP, when overexpressed, may get cleaved by endogenous
proteases in planta (Outchkourov et al., 2003). To further confirm the nuclear localization of the
intact GMCHR-YFP, A. tumefaciens GV3101 containing the pEarleyGate101-GmCHR2A was
infiltrated into leaves of N. benthamiana and leaf samples were collected from day 1 to day 3
post-infiltration. Total soluble proteins were extracted from the leaf samples and Western blot
was performed. The results revealed that the YFP fluorescence observed by the transient
expression is the result of the intact GmCHR-YFP (63 kDa) and not from the cleaved YFP

(Figure 3.5).

45



GmMCHR2A-YFP
Dayl Day2 Day3 + -

kDa -
4

63 — e

43— S

35— .

Figure 3.5. Accumulation of GmCHR2A-YFP in N. benthamiana leaves. A. tumefaciens
containing GmMCHR2A-YFP construct were transiently expressed in leaves of N. benthamiana
from Day 1 to Day 3 post infiltration. Total soluble proteins (30 pug) were separated on SDS-
PAGE and transferred to PVDF membrane by electroblotting. GmCHR2A-YFP was detected by
sequential incubation of the blot with anti-GFP antibody and HRP conjugated goat anti-mouse
antibody, followed by chemiluminescent reaction. (+) and (—) indicate eGFP with hydrophobin
tag (37 kDa) as a positive control and total soluble proteins from non-filtrated leaves as negative

control, respectively.
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3.4 Root-specific GmCHRs are induced upon stress

To identify GmCHRs genes that are induced upon pathogen attack, soybean cv. L76-1988 stems
were infected with P. sojae agar culture. Stem samples were collected 24, 48 and 72 h post-
infection and expression analysis of 7 putative GmCHRs was performed using RT-PCR. The
results clearly demonstrated that the expression of root-specific GmCHR genes GmCHR2A,
GmCHR14, GmCHR18 and GmCHR20 were induced after 24 h and remained induced until 72 h
post infection. Uninoculated stems of soybean plants grown at the same time were used as
control. Expressions of GmCHR9C and GmCHR16B were undetectable in both control and
infected samples. However, accumulation of GmCHR16A remained unchanged in both infected

and control samples (Figure 3.6).

Since treatment of AgNO3 induces phytoalexin production in soybeans, it has been used in the
past as to mimic pathogen attack (Ward et al., 1979; Moy et al., 2004; Kubes$ et al., 2014).
Soybean cv. Harosoy 63 seeds were grown in the dark for seven days. The seedlings were placed
onto a tray and the roots were covered with water-soaked cheese cloth. The hypocotyls were
inoculated with either water droplets or with 1 mM AgNOs;. Inoculated tissues were collected at
6, 12, 24, 48, or 72 hours. Upon AgNO; treatment, hypocotyls displayed brown lesions at 12
hour and are worsened in the later time points in comparison to the control hypocotyl that
displayed no lesions (Figure 3.7). To further investigate the induced gene expression profile of
root-specific GmCHRs, gPCR was performed. Expression of GmCHR2A was significantly
induced at 6, 12, 24 and 48 hours. GmCHR14 was significantly induced at 12, 24, 48 and 72
hours. Likewise, GmCHR18 was induced at 12, 24, 48 and 72 hours, whereas GmCHR20 was
induced only at 6 and 72 hours post treatment (Figure 3.8). Primer efficiencies for root-specific

GmCHRs are noted in Appendix D
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3.5 Identification of QTLs and QTL markers linked to P. sojae resistance

To determine QTLs and QTL markers that are linked to P. sojae resistance, a survey of soybean
database and a literature search were conducted. A search in the ‘SoyBase and Soybean
Breeder’s Toolbox’ from the year 2003 to 2013 identified 55 QTLs that are linked to P. sojae
resistance in soybean (Appendix E). These 55 QTLs were extensively researched for GmCHR
loci, parental lines and LOD scores. Three QTLs, Phytoph 10-3, Phytoph 14-3, Phytoph 8-2,
were found which contain GmCHR loci. Highlights of the QTLs included: (1) Phytoph 10-3
contains GmMCHR2A locus, spans over 2 megabase pairs and has an LOD score of 29.7; (2)
Phytoph 14-3 contains GmCHR18 locus, spans over 43 megabase pairs and has the LOD score
of 3.4; (3) Phytoph 8-2 contains GmCHR20 locus, stretches over 31 megabase pairs with the
LOD score of 4.5 (Table 3.3 and Figure 3.9). These details strongly suggest that Phytoph 10-3

containing GmCHR2A is involved in P. sojae resistance in soybean.

An additional literature search was conducted for QTL markers linked to P. sojae resistance in
soybean. This process identified over 500 QTL markers. Markers that share the same
chromosome as GmMCHR were segregated, and exact locations of the QTL markers were noted.
Upon filtering through the QTL markers, a total of six markers were found to flank GmCHR2A,
GmMCHR16A, GmCHR18 and GmCHR20 loci (Appendix F, and Figure 3.9). The details on the

marker are summarized in Table 3.4.
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Figure 3.6. Gene expression of GmCHRs in response to P. sojae infection. Total RNA (1 ug)
was to synthesize cDNA from uninfected (C) or P. sojae-infected stems of soybean cv. L76-1988
(T) at the time points as indicated after infection. Expression analysis was conducted by RT-PCR
with GmCHR gene-specific primers. NTC indicates no template control. CON4 is shown as a

reference gene.
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Figure 3.7. Effects of AgNO; on etiolated soybean cv. Harosoy 63 hypocotyls. Seeds of

AgNO3
treated

soybeans cv. Harosoy 63 were grown in dark at 24°C for 6 days in water-soaked vermiculite. The
seedlings were then placed onto a tray and inoculated with either water (control) or I mM

AgNO;s (treated). Photographs were taken at the time points as indicated.
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Figure 3.8. Expression of root-specific GmCHRs in response to AgNO; treatment. Total

RNA (1 pg) of soybean cv. Harosoy 63 was used to synthesized cDNA from untreated and

AgNO; treated hypocotyls Expression analysis was conducted by qPCR with GmCHR gene-

specific primers. Error bars indicates standard error of the mean (SEM) of two biological and

three technical replicates per biological replicates. CON4 was used as a reference gene. The

asterisks (*) denotes significant expression (multiple t-test per row, p<0.05). The red bar

represents the control while the gray bar represents the AgNO; treatments.
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Table 3.3. Characteristics of QTLs linked to P. sojae resistance which contain Gm CHRs

QTL GmCHR and  Parents Heritability Reference
Marker CHR location
Interval
(physical
map)
GmCHR2A Parent 1:
GmO02: Conrad
POYOPR 2 48345840~ Gmo2: n/a 29.77 gggg)eta"’
46,353,672 48,163,443 - Parent 2:
48,164,792 0X760-6-1
GmCHR18 Parentl:
Gm18: 0X20-8
i’;‘}’;‘)ph 18 59,499,678- Gm18: 0.77 3.4 g\l’v""znoglgt)
16,804,048  56,611,421- Parent 2: N
56,613,070 Pl 398841
Gm20 GmCHR20 Parent 1:
mzu: V71-370
Phytoph 5 34,100981-  Gmao: 0.89 45  (Tuckeret
8-2 3915838  3790428-  Parent2: al., 2010)
3,793,674 P1407162

Chr chromosome; LOD logarithm of odds
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Table 3.4. Characteristics of QTL markers linked to P. sojae resistance that flank GmCHR

GmCHR
and location

QTL Marker

QTL Marker

location

Type of
Marker

Parents

Reference

GmCHR2A Parent 1:

Conrad
Gmo2: satt274 jg'gjg’ggf' SSR %gg)et al.,
48,163,443- ! ! Parent 2:
48,164,792 0X760-6-1
GmCHR16 Parent 1:

V71-370
Gm16: Satt244 gggg;gg SSR g“;'éelro‘;t
37,678,679- el Parent 2: .
37,678,780 P1407162

56,889,971-
BARC-039397-07314 909 SNP

GMCHR18 56,889971 Parent 1:

Conrad
Gm18: BARCSOYSSR_18) 1777 gi';ﬁégz SNP g\l’vaznc?lgt)
56,611,421- ' ' Parent2: "
56,613,070 53,866,536- Sloan

Satt472 53,866,808 SSR

GmCHR20 Parent 1:

V71-370
GM20: Satt614 ggigfig SSR ;IT“%%?
3,790,324- ! ! Parent 2: "
3,793,674 P1407162

SSR simple short repeats; SNP single nucleotide polymorphism
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3.6 Accumulation of root-specific GmCHR is higher in P. sojae resistant
soybean cultivar

Since several QTL markers and QTLs linked to P. sojae resistance contained GmCHR gene
family members, | wanted to assess the parental cultivars of QTL Phytoph 10-3 for root-specific
GmMCHR gene expression. Root tissues of two-week old seedlings of soybean cv. Conrad and
OX760-6, were used for gene expression analysis using gPCR. As shown in Figure 3.10,
expression of GmMCHR2A, GmCHR14 and GmCHR18 were significantly higher in the Conrad
(P. sojae resistant cultivar) compared to the OX760-6 (P. sojae susceptible cultivar). No

difference in the expression of GmCHR20 was observed between Conrad and OX760-6.

3.7 RNAi silencing of root-specific GmCHRs

For the functional characterization of the root-specific GmCHRs, and how they influence the
production of daidzein, RNAI silencing of root-specific GmCHRSs was performed. The gene-
specific unique sequences for four root-specific GmCHRSs were cloned into the RNAI vector
pK7GWIWG2D(II). Primers were designed to amplify unique regions of each GmCHRs
sequence to facilitate targeted silencing using the soybean hairy root system (Table 2.1). The
transgenic roots were selected based on GFP expression as the vector contains a separate GFP
cassette (Figure 2.1 and Figure 3.11). The transgenic roots were used to assess the target gene
expression before proceeding into measurement of isoflavonoid content. The gPCR analysis of
GMCHR2A, GmCHR14, GmCHR18 and GmCHR20 did not show a silencing effect in the
silenced lines in comparison to the control (A. rhizogenes K599 only) or empty vector (silencing

vector only) (Figure 3.12).
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Figure 3.9. Genomic distribution of GmCHR genes, QTL and QTL markers on soybean
chromosomes. Chromosomal locations of GmCHRs are indicated based on the location of the
genes, length of chromosomes and positions of centromeres. QTL and QTL markers linked to P
sojae resistance are mapped against approximate location of GmCHRs. The chromosomes are
drawn to scale and chromosome numbers are shown beside each chromosome. Dark navy bars
indicate QTL regions while underline notations indicate QTL markers. Centromeres are indicated

by blue circles on the chromosomes.
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Figure 3.10. Accumulation of root-specific GmCHRs in soybean cv. Conrad and OX760-6.
Total RNA (1 pg) was used to synthesize cDNA from soybean cv. Conrad and OX760-6.
Expression analysis was conducted by qPCR using gene-specific primers. Blue bars corresponds
to the expression of GmCHRs in soybean cv. Conrad while, red bars indicate the expression of
GmCHRs in soybean cv. OX760-6. Error bars indicates SEM of two biological and three
technical replicates per biological replicates (multiple t-test per row, p<0.05). CON4 was used as a

reference gene. The asterisks (*) denotes significant difference in expression.
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Figure 3.11. Generation of GmCHR silenced hairy roots. The transformed roots were
identified by a selectable fluorescent marker, green fluorescence protein (GFP). Images were

taken under (A) UV light, (B) visible light.
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Figure 3.12. Accumulation of root-specific GmCHR in soybean cv. Harosoy 63 hairy root
system. Total RNA (1 pg) was used to synthesize cDNA from control (K599 only, blue box),
empty vector (silencing vector-only, red box) and silenced lines of either GmCHR2A,
GmCHR14, GmCHR18 or GmCHR20 (green box). Expression analysis was conducted by gPCR
with GmCHR gene-specific primers. Three biological replicates were used. CON4 were used a

reference gene. The asterisks (*) denotes significant expression (multiple t-test per row, p<0.05).
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Chapter 4: Discussion

CHRs are legume-specific enzymes, which together with CHS, convert p-coumaroyl-CoA and 3
molecules of malonyl-CoA to isoliquiritigenin chalcone, the building block of two core
isoflavone aglycones, glycitein and daidzein(Dhaubhadel et al., 2003). The aglycone, daidzein
serves as a precursor in the production of phytoalexin glyceollin in soybean. Many studies have
reported the expression patterns of genes during infection and the heritability of resistance,
however little is known about the importance of CHR, the first key enzyme, which directs the
flux to the production of phytoalexin glyceollins in soybean. Here | report the identification all
putative GmCHRs in soybean, investigate their subcellular location, and tissue-specific and
pathogen induced gene expression. My results demonstrate that the root-specific GmCHRs are
induced upon pathogen infection and are located near QTLs and QTL markers linked to P. sojae

resistance traits.

4.1 Soybean genome contains 16 putative GmCHR genes

All members of the GmCHR gene family were identified by searching the annotated soybean
genome on Phytozome G. max Wm82.a2.v1. Using a keyword search together with BLAST
searches, 68 GmAKRs and 16 putative GmCHRs were identified. This total number may change
as more aldo-keto reductase sequences are deposited into the database. Many CHR-like enzymes
have been reported in a variety of leguminous plants including M. sativa (Ballance and Dixon,
1995), S. rostrata (Goormachtig et al., 1999), P. montana var. lobata (He et al., 2011), G. glabra
(Hayashi et al., 2013), and L. japonicus (Shimada et al., 2006). Contrary to my findings, a recent
study identified only 2 CHR genes in soybean. This study used only one sequence from GenBank

(accession number EU921437) to search for the soybean genome database, and identified the two

60



paralog GmCHRs, GmMCHR2A and GmCHR14 (Chu et al., 2014). The approach used in my study
was more robust and provides confidence as it first identified all the GmAKRs based on the
current database annotation, and then segregated the GmCHRs gene family members using their
phylogenetic relationship with other known CHRs. The large number of GmCHRs could be the
result of duplication events in the soybean genome. Soybean is a palaeopolyploid with a genome
size of approximately 978 megabase pairs that has undergone at least two whole genome
duplications. As a result of the genome duplications, nearly 75% of soybean genes are present in
multiple copies. Phylogenetic analysis of GmCHRSs illustrated that most GmCHRs cluster in

pairs (Figure 3.1), further supporting ancient genome duplication events (Schmutz et al., 2010).

Out of 16 putative GmMCHRs, 11 were found to contain conserved critical residues (Figure 3.2).
Since CHRs are part of the AKR family, these enzymes must contain the catalytic site (Bomati et
al., 2005). The five GmCHRs: GmCHR2B, GmCHR9B, GmCHR9E GmCHR16C and
GmMCHRY7, lack one or more catalytic site residues, therefore, | eliminated them from the study.
However, it is possible that they may possess weak enzymatic activity or may be evolving new

catalytic features.

4.2 GmCHRs show tissue-specific expression patterns

GmCHR transcript accumulations showed expression in various types of soybean tissues. The
majority of the GmCHRs were either expressed in the seedlings, roots or dry seeds. In addition,
from the RNA-seq data it was found that only 9 GmCHRs were transcribed. Since there was no
RNA-seq reads found in the database search for GmCHR9B and GmCHR9D, I conclude that they
may be pseudogenes. Previously, it was found that CHR in soybean were moderately expressed

in the flowers and weakly expressed in leaves, stems, roots, endosperms and embryos (Liu,
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2009). Differential expression of CHRs have also been studied in other plant species such as
Astragalus membranaceus (Xu et al., 2012) and P. montana var. lobata (He et al., 2011). It was
found that CHRs from Astragalus membranaceus and P. montana var. lobata were highly
expressed in roots and stem, respectively. Based on the soybean RNA-seq data, transcript
accumulations from these two plants, | can infer that the isoflavonoid pathway is active in those
organs. Out of nine GmCHRSs identified, GmMCHR2A, GmCHR14, GmCHR18 and GmCHR20
transcript accumulation was much higher in root tissue compared to other tissues under study
(Figure 3.3). Studies have shown that CHS7, CHS8 (Yi et al., 2010), IFS1, IFS2 (Dhaubhadel et
al., 2003) and CHI (Dastmalchi and Dhaubhadel, 2015) are also expressed in the roots which
infers that they assist in the role of root-specific phytoalexins production. Therefore, | chose
these 4 GmCHRs for further characterization as they may play a role in resistance to root and

stem rot disease caused by P. sojae.

4.3 GMCHR localizes in the nucleus and cytoplasm

All members of the GmCHR family displayed nuclear and cytoplasmic localization in N.
benthamiana leaf epidermal cells (Figure 3.4). These findings are consistent with the localization
of GmMCHS which works together with GmCHR to produce deoxychalcone. Evidence has shown
that other enzymes involved in the isoflavonoid biosynthesis such as GmCHI (Dastmalchi and
Dhaubhadel, 2015), glycosyltransferase (UGT73F2) and malonyltransferase (GmMT7)

(Dhaubhadel et al., 2008) are also localized to the nucleus and the cytoplasm.

This is a thought-provoking result since only GmCHR14 is localized in the nucleus. It is possible
that there is a carrier protein involved that takes GmCHRs to nucleus. Molecules that are smaller

than 40 kDa are able to passively diffuse into the nuclear pore complex whereas, larger
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molecules (60kDa and higher) require an active transport system, mediated by transport
receptors (Fried and Kutay, 2003; D'Angelo et al., 2009). The average molecular weight of
GmMCHR-YFP is 63 kDa, therefore, it is possible that the fusion protein can go to nucleus by the
piggy-back mechanism. Cargo proteins can temporarily bind with other transport proteins, and
the complex translocates into or out of the nucleus with the help of importins (Harel and Forbes,

2004).

4.4 Root-specific GmCHRs are induced upon stress

To evaluate if GmCHR family members respond differently upon pathogen infection, their
expression levels were studied by RT-PCR at various time points after P. sojae infection.
Interestingly, the expression levels of only root-specific GmCHRs, GmCHR2A, GmCHR14,
GmCHR18 and GmCHR20, were induced upon infection suggesting that they have a role in

defence against P. sojae infection (Figure 3.6).

Upon infection, P. sojae releases elicitors which stimulate the plant defense response (Jones and
Dangl, 2006). As a result, the plant induces the expression of resistance and defense related
genes to counteract infection. Studies have shown the upregulation or induction of CHRs at the
infection site during Fusarium attack in soybeans (Igbal et al., 2005), cadmium treatment in
Medicago truncatula (Aloui et al., 2012), and Colletrichum falactum infection in sugarcane

(Selvaraj et al., 2014).

Several studies have used the AgNO; treatment to mimic pathogen infection and induce
phytoalexin production in soybeans (Moy et al., 2004; Kubes et al., 2014). The mechanism of
this “elicitor effect” is not completely understood, however, there are two possible hypotheses.

Firstly, some metals such as quicksilver can affect protective “anti-reactive oxygen species”
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(anti-ROS) enzymes (Mithofer et al., 2004). ROS can participate in the creation of oxylipids
which can induce the defense response. Park et al. (2009) mentioned that silver ions can also
participate in ROS production. Secondly, silver ions could also block the activity of the plant
hormone ethylene. This inhibition could increase the synthesis of secondary metabolites (Zhang
and Wu, 2003). The quantitative analysis of root-specific GmCHRs in response to AgNO;
demonstrated a significant increase in transcript accumulation of GmCHR2A, GmCHR14 and
GmCHR18 (Figure 3.8). These root-specific GmCHRs respond to the AgNOg3 treatment as early
as 12 hours which coincides with findings from Alkharouf et al. (2006). Changes in gene
expression within roots upon Heterodera glycines (the soybean cyst nematode) attack was
investigated using a 6000 gene microarray. It was found that CHR (Genbank BM108162) was

induced as soon as 6 and 12 hours upon infection.

4.5 QTLs linked to P. sojae resistance contain GmCHR loci

Several studies have suggested that Rps genes (Dorrance and Schmitthenner, 2000; Sandhu et al.,
2005), isoflavonoid biosynthetic genes (Subramanian et al., 2005; Graham et al., 2007), and
genes involved in suberin production contribute to P. sojae resistance in soybean (Ranathunge et
al., 2008). Furthermore, there are QTLs and QTL markers linked to P. sojae resistance in
soybean. However, little has been reported linking the candidate genes with QTLs and
phenotype. Here, | have identified a total of 6 QTL markers and 3 QTLs which flank or are
approximate to GmCHR2A, GmCHR16A, GmCHR18 and GmCHR20. Among the 3 QTLs,
Phytoph 14-3 and Phytoph 8-2 cover most of the chromosome (Figure 3.9, Table 3.3). QTL
regions can generally span several megabase pairs and can contain several hundreds to thousands
of genes (Dupuis and Siegmund, 1999). For those two QTLs, further fine-mapping experiments

are required to hone the spanning regions (Touzet et al., 1995; Holtan and Hake, 2003).
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Statistical association or validation studies can confirm the co-segregation of genes with a QTL.
Based on these parameters, QTL Phytoph10-3 is the most reliable QTL found in this study as it
is confined to a specific region on the chromosome and contains the highest LOD score (Table

3.3).

Upon finding a QTL which contain the GmCHR2A loci, the parental cultivars were assessed for
their root-specific GmCHR gene expression. Interestingly, expression of GmCHR2A, GmCHR14
and GmCHR18 were significantly higher in Conrad (resistant cultivar) as compared to OX760-6
(susceptible cultivar) (Figure 3.10). Soybean cv. Conrad and OX760-6 were also used to study
suberin content with P. sojae infections (Ranathunge et al., 2008). Therefore, it is possible that

P. sojae resistance in soybean may comprise both isoflavonoid and suberin content.

4.6 Knockdown of root-specific GmCHRs

To further study the importance of GmCHR in P. sojae resistance, silencing of root-specific
GmCHRs via hairy root transformation was performed. Following transformation, validation of
silencing through analysis of GmCHR expression showed increased expression of these genes,
which is a surprising result (Figure 3.12). | speculate that the RNAI construct did not lead mRNA
degradation but rather block the 5 UTR and start codon region for protein translation. If that
occurred, it can trigger a feedback loop leading to increased transcription, and in turn, be
revealed through gPCR as increased expression. This premise is based on the RNA activation,
where endogenous small RNA fragments are shown to upregulate target genes for
overexpression studies (Jiao and Slack, 2014). However, there are alternate ways to explore and
assign putative gene functions such as virus induced gene silencing (VIGS) (Zhang and Ghabrial,

2006) and clustered regularly interspaced short palindromic repeats (CRISPR) system (Jacobs et
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al., 2015). These are novel techniques and have shown tremendous success in complex plants

such as soybeans.
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Chapter 5: Conclusions and future directions

Soybeans have emerged as a key component in both human and livestock nutrition as well as in
industrial products. It is one of the leading crops which drive economical profits over billions of
dollars in sales, worldwide. However, $50 million worth of yields are lost due to stem and root
rot disease caused by P. sojae. Taking advantage of the plant defense system, breeders and

scientists can create a cultivar which can naturally fight off the pathogen attack.

Identification of the CHR gene family members in soybean is the first step in exploring potential
gene candidates for developing an effective cultivar. Overall, 1 have identified 16 putative
GmCHRs using an in silico approach: GmCHR2A, GmCHR2B, GmCHR9A, GmCHR9B,
GMCHR9C, GmCHR9D, GmMCHR9E, GmCHR7, GmCHR12, GmCHR14, GmCHR1S5,
GmMCHR16A, GmCHR16B, GmCHR16C, GmCHR18, and GmCHR20. Proteins sequences of
these GmCHRs were manually searched for critical amino acids based on M. sativa CHR
(GenBank accession number AAB41555.1) and upon the search 5 GmCHR were eliminated:
GmCHR2B, GmCHR9B, GmMCHR9E GmCHR16C and GmCHR7. RNA-seq data was searched
for the reminder 11 GmCHRs. No RNA-seq data was found for GmCHR9A and GmCHR9D,

suggesting that they can be pseudogenes.

Seven GmMCHRs were cloned into pEarleyGate1l01 to create a C-terminal fusion with YFP to
determine the subcellular localization. Despite of several attempts, amplification of GmCHR15
and GmCHR12 was not successful. All 7 GmCHRs localize in the nucleus and cytoplasm. The
nuclear localization could be a result of passive diffusion due to the small molecular weight of
the recombinant GmCHR-YFP protein. An alternative approach to test the possibility of passive
diffusion is through photoconvertible fluorescent proteins (Nienhaus et al., 2006).
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Photoconvertible proteins are useful tools in monitoring molecular and cellular dynamics and
will change their fluorophore colour from green to red in response to irradiation from UV light.
In this case, new constructs can be generated with a C-terminal fusion of EosFP instead of YFP.
Upon the subcellular localization display, a region EosFP can be excited from green to red and,

proteins can be monitored for their nuclear localization and rate of diffusion.

GmCHRs display tissue-specific expression patterns giving the possibility of tissue-specific
immunity. Since P. sojae attacks at the roots, only the root-specific GmCHR2A, GmCHR14,
GmCHR18 and GmCHR20 were monitored in this study. Additionally, those same four are
induced in both P. sojae and AgNO3 treatments. Future enzymatic assays can ensure which root-

specific GmCHR can efficiently create isoliquiritigenin chalcone.

Studies have identified several QTLs and QTL markers that link to P. sojae resistance in
soybean. Upon sifting the literature, three potential QTL which contains the GmCHR loci has
been found. This gives rise to the possibility that GmCHRs are an important component
developing an effective cultivar against P. sojae. The parental lines from that particular QTL
were accessed for their root-specific gene expression. It was found that expression of
GmMCHR2A, GmCHR14 and GmCHR18 were significantly higher in the Conrad (P. sojae

resistant cultivar) compared to the OX760-6 (P. sojae susceptible cultivar).

RNA.i silencing of the root-specific GmCHRs was unsuccessful in the present study. Recently
virus induced gene silencing (VIGS) have been proven to be an effective method of silencing

especially for complex plants such as soybeans and common beans.
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Appendix D. gPCR primer efficiencies for root-specific gene expression for AQNO3

treatment and silencing

GmCHR2A

gsiCHR2AF: CGG GGA GGT GCT TCT TGG TTA TAG

gsiCHR2AR: CTC CTT AGT GTC TTT CTT GCA

Primer Efficiency: 89.5%

Amplification Standard Curve
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GmCHR18A

qiCHR18F: ATC CCA CCT ACC CAC ATCGT

giCHR18R: GGA GGA GGG GAG AGT GACTT

Primer Efficiency: 100.6%

Amplification
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GmCHRZ20

gsiCHR20F: CAC TCG TAT CTG TGA CAC CGT GT

gsiCHR20R: GTT GTA ACA GCA CTT TGG GGA CGT

Primer Efficiency: 107.8%

Amplification
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Appendix E. Complete list of QTLs found in the SoyBase and Soybean Breeder’s Toolbox

QTL Chromosome Parents Reference

Phytoph 1-1 13 Parent 1: Conrad (Tucker et al., 2010)
Parent 2: Harosoy

Phytoph 1-2 2 Parent 1: Conrad (Tucker et al., 2010)
Parent 2: Harosoy

Phytoph 10-1 13 Parent 1: Conrad (Han et al., 2008)
Parent 2: OX760-6-1

Phytoph 10-2 13 Parent 1: Conrad (Han et al., 2008)
Parent 2: OX760-6-1

Phytoph 10-3 2 Parent 1: Conrad (Han et al., 2008)
Parent 2:0X760-6-1

Phytoph 11-19 13 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

Phytoph 11-2 8 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

Phytoph 11-20 17 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

Phytoph 11-21 13 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

Phytoph 11-22 14 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

Phytoph 12-1 13 Parent 1: S99-2281 (Nguyen et al., 2012)
Parent 2:P1 408105A

Phytoph 12-2 17 Parent 1: S99-2281 (Nguyen et al., 2012)
Parent 2: Pl 408105A

Phytoph 13-1 19 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

Phytoph 13-2 19 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

Phytoph 13-3 1 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

Phytoph 13-4 18 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

Phytoph 13-5 18 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

Phytoph 14-1 1 Parent 1: OX20-8 (Leeetal., 2013)
Parent 2: P1 398841

Phytoph 14-10 20 Parent 1: OX20-8 (Lee et al., 2013)
Parent 2: Pl 398841

Phytoph 14-2 13 Parent 1: OX20-8 (Lee etal., 2013)
Parent 2: Pl 398841

Phytoph 14-3 18 Parent 1: OX20-8 (Lee etal., 2013)

Parent 2: Pl 398841
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http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%201-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%201-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2010-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2010-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2010-3
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2011-19
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2011-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2011-20
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2011-21
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2011-22
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2012-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2012-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2013-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2013-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2013-3
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2013-4
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2013-5
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2014-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2014-10
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2014-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2014-3

Phytoph 14-4 2 Parent 1: OX20-8 (Lee etal., 2013)
Parent 2: Pl 398841

Phytoph 14-5 3 Parent 1: OX20-8 (Lee etal., 2013)
Parent 2: Pl 398841

Phytoph 14-6 4 Parent 1: OX20-8 (Lee etal., 2013)
Parent 2: Pl 398841

Phytoph 14-7 4 Parent 1: OX20-8 (Lee etal., 2013)
Parent 2: Pl 398841

Phytoph 14-8 7 Parent 1: OX20-8 (Lee etal., 2013)
Parent 2: Pl 398841

Phytoph 14-9 15 Parent 1: OX20-8 (Leeetal., 2013)
Parent 2: Pl 398841

Phytoph 2-1 13 Parent 1: Conrad (Burnham et al., 2003)
Parent 2: Sloan

Phytoph 2-2 2 Parent 1: Conrad (Burnham et al., 2003)
Parent 2: Sloan

Phytoph 3-1 13 Parent 1: Conrad (Burnham et al., 2003)
Parent 2: Harosoy

Phytoph 3-2 2 Parent 1: Conrad (Burnham et al., 2003)
Parent 2: Harosoy

Phytoph 4-1 13 Parent 1: Conrad (Burnham et al., 2003)
Parent 2: Williams

Phytoph 4-2 2 Parent 1: Conrad (Burnham et al., 2003)
Parent 2: Williams

Phytoph 5-1 6 Parent 1: Su88-M21(S) (Wuetal., 2011)
Parent 2: Xinyixiaoheidou
(X)

Phytoph 5-2 15 Parent 1: Su88-M21(S) (Wu etal., 2011)
Parent 2: Xinyixiaoheidou
(X)

Phytoph 5-3 10 Parent 1: Su88-M21(S) (Wu et al., 2011)
Parent 2: Xinyixiaoheidou
(X)

Phytoph 6-1 13 Parent 1: Conrad (Lietal., 2010)
Parent 2: Hefeng 25

Phytoph 6-2 2 Parent 1: Conrad (Lietal., 2010)
Parent 2: Hefeng 25

Phytoph 6-3 2 Parent 1: Conrad (Lietal., 2010)
Parent 2: Hefeng 25

Phytoph 6-4 8 Parent 1: Conrad (Lietal., 2010)
Parent 2: Hefeng 25

Phytoph 6-5 11 Parent 1: Conrad (Lietal., 2010)
Parent 2: Hefeng 25

Phytoph 6-6 6 Parent 1: Conrad (Lietal., 2010)
Parent 2: Hefeng 25
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http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2014-4
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2014-5
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2014-6
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2014-7
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2014-8
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2014-9
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%202-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%202-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%203-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%203-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%204-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%204-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%205-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%205-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%205-3
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%206-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%206-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%206-3
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%206-4
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%206-5
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%206-6

Phytoph 6-7 6 Parent 1: Conrad (Lietal., 2010)
Parent 2: Hefeng 25

Phytoph 6-8 6 Parent 1: Conrad (Lietal., 2010)
Parent 2: Hefeng 25

Phytoph 7-1 16 Parent 1:Conrad (Weng et al., 2007)
Parent 2:0X760-6-1

Phytoph 8-1 16 Parent 1: V71-370 (Tucker et al., 2010)
Parent 2: P1407162

Phytoph 8-2 20 Parent 1: V71-370 (Tucker et al., 2010)
Parent 2: P1407162

Phytoph 8-3 18 Parent 1: V71-370 (Tucker et al., 2010)
Parent 2: P1407162

Phytoph 8-4 13 Parent 1:VV71-370 (Tucker et al., 2010)
Parent 2:P1407162

Phytoph 9-1 12 Parent 1: Conrad (Wang et al., 2010)
Parent 2: Sloan

Phytoph 9-2 13 Parent 1: Conrad (Wang et al., 2010)
Parent 2: Sloan

Phytoph 9-3 13 Parent 1: Conrad (Wang et al., 2010)
Parent 2: Sloan

Phytoph 9-4 14 Parent 1: Conrad (Wang et al., 2010)
Parent 2: Sloan

Phytoph 9-5 17 Parent 1: Conrad (Wang et al., 2010)
Parent 2: Sloan

Phytoph 9-6 19 Parent 1: Conrad (Wang et al., 2010)

Parent 2: Sloan
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http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%206-7
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%206-8
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%207-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%208-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%208-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%208-3
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%208-4
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%209-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%209-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%209-3
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%209-4
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%209-5
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%209-6

Appendix F. Complete list of QTL markers found in the literature search

QTL Marker Chromosome Parents Reference

Sat_414 1 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

Satt266 2 Parent 1: Conrad (Burnham et al.,
Parent 2: Harosoy 2003)

Satt252 13 Parent 1: Conrad (Burnham et al.,
Parent 2: Harosoy 2003)

Satt579 2 Parent 1 : Conrad (Burnham et al.,
Parent 2: Williams 2003)

Satt579 2 Parent 1 : Conrad (Burnham et al.,
Parent 2: Williams 2003)

Satt252 13 Parent 1 : Conrad (Burnham et al.,
Parent 2: Williams 2003)

Satt252 13 Parent 1: Conrad (Burnham et al.,
Parent 2: Sloan 2003)

Satt252 13 Parent 1: Conrad (Burnham et al.,
Parent 2: Harosoy 2003)

Satt274 2 Parent 1:Conrad (Han et al., 2008)
Parent 2:0X760-6-1

Satt030 13 Parent 1:Conrad (Han et al., 2008)
Parent 2:0X760-6-1

Satt343 13 Parent 1:Conrad (Han et al., 2008)
Parent 2:0X760-6-1

Satt439 1 Parent 1: OX20-8 (Lee etal., 2013)
Parent 2: Pl 398841

Satt351 2 Parent 1: OX20-8 (Lee et al., 2013)
Parent 2: P1 398841

Satt009 3 Parent 1: OX20-8 (Lee et al., 2013)
Parent 2: P1 398841

A078_1 4 Parent 1: OX20-8 (Leeetal., 2013)
Parent 2: P1 398841

Satt578 4 Parent 1: OX20-8 (Lee etal., 2013)
Parent 2: Pl 398841

Satt463 7 Parent 1: OX20-8 (Lee etal., 2013)
Parent 2: Pl 398841

Sat 133 13 Parent 1: OX20-8 (Leeetal., 2013)
Parent 2: Pl 398841

Satt384 15 Parent 1: OX20-8 (Lee et al., 2013)
Parent 2: P1 398841

OPADO8 18 Parent 1: OX20-8 (Lee et al., 2013)
Parent 2: P1 398841

Sat_267 20 Parent 1: OX20-8 (Lee et al., 2013)
Parent 2: P1 398841
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Sat_089 2 Parent 1: Conrad (Lietal., 2010)
Parent 2: Hefeng 25

Satt600 2 Parent 1: Conrad (Lietal., 2010)
Parent 2: Hefeng 25

Satt100 6 Parent 1: Conrad (Lietal., 2010)
Parent 2: Hefeng 25

Satt307 6 Parent 1: Conrad (Lietal., 2010)
Parent 2: Hefeng 25

Satt365 6 Parent 1: Conrad (Lietal., 2010)
Parent 2: Hefeng 25

Satt437 8 Parent 1: Conrad (Lietal., 2010)
Parent 2: Hefeng 25

Satt453 11 Parent 1: Conrad (Lietal., 2010)
Parent 2: Hefeng 25

Satt343 13 Parent 1: Conrad (Lietal., 2010)
Parent 2: Hefeng 25

Sct_033 13 Parent 1: S99-2281 (Nguyen et al.,
Parent 2: Pl 408105A 2012)

Satt543 17 Parent 1: S99-2281 (Nguyen et al.,
Parent 2: Pl 408105A 2012)

Satt634 2 Multiple accession were (Sunetal., 2014)
used

Satt542 2 Multiple accession were (Sunetal., 2014)
used

Satt266 2 Multiple accession were (Sunetal., 2014)
used

Sat_423 2 Multiple accession were (Sunetal., 2014)
used

Satt 222 17 Multiple accession were (Sunetal., 2014)
used

Satt226 17 Multiple accession were (Sun et al., 2014)
used

Satt300 17 Multiple accession were (Sun et al., 2014)
used

Satt574 17 Multiple accession were (Sunetal., 2014)
used

Satt543 17 Multiple accession were (Sunetal., 2014)
used

Satt615 17 Multiple accession were (Sunetal., 2014)
used

Satt301 17 Multiple accession were (Sun et al., 2014)
used

K644 1 13 Parent 1: V71-370 (Tucker et al.,
Parent 2: P1407162 2010)

Satt414 16 Parent 1: V71-370 (Tucker et al.,
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Parent 2: P1407162 2010)
Satt678 18 Parent 1: V71-370 (Tucker et al.,
Parent 2: P1407162 2010)
A036_1 12 Parent 1: Conrad Wang et al. 2010
Parent 2: Sloan
Geno. 2010,
3(1):23-40
Satt160 13 Parent 1: Conrad Wang et al. 2010
Parent 2: Sloan
Geno. 2010,
3(1):23-40
Sct_033 13 Parent 1: Conrad Wang et al. 2010
Parent 2: Sloan
Geno. 2010,
3(1):23-40
Satt304 14 Parent 1: Conrad Wang et al. 2010
Parent 2: Sloan
Geno. 2010,
3(1):23-40
Satt574 17 Parent 1: Conrad Wang et al. 2010
Parent 2: Sloan
Geno. 2010,
3(1):23-40
Satt527 19 Parent 1: Conrad Wang et al. 2010
Parent 2: Sloan
Geno. 2010,
3(1):23-40
A671_1 18 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan
Satt472 18 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan
BARC-021321-04035 19 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan
Satt527 19 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan
GMA2 _0sU19 8 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan
Satt632 8 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan
GMH_0OSuU31 12 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan
F424 294 13 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan
Satt160 13 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan
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Sct_033 13 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

Satt304 14 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

Satt574 17 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

BARC-039397-07314 18 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

BARCSOYSSR_18 1707 18 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

BARCSOYSSR_18 1777 18 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

BARCSOYSSR_19 1393 18 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

GM19 0OSU10 18 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

BARC-03997-07624 19 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

BARC-064609-18739 19 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

BARCSOYSSR_18 1793 19 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

BARCSOYSSR_19 1243 19 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

BARCSOYSSR_19 1473 19 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

BARCSOYSSR_19 1494 19 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

BARCSOYSSR_19 1532 19 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

GML_0Su42 19 Parent 1: Conrad (Wang et al., 2012)
Parent 2: Sloan

Satt596 16 Parent 1: Conrad (Weng et al., 2007)
Parent 2: OX760-6-1

Satt520 6 Parent 1:Su88-M21(S) (Wuetal., 2011)
Parent 2: Xinyixiaoheidou
(X)

Sat_274 10 Parent 1:Su88-M21(S) (Wuetal., 2011)
Parent 2: Xinyixiaoheidou
(X)

Satt651 15 Parent 1:Su88-M21(S) (Wuetal., 2011)
Parent 2: Xinyixiaoheidou
(X)

AW734043 6 Parent 1 : Su88-M21 (Wuetal., 2011)

Parent 2 : Xinyixiaoheidou
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Satt322 6 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt520 6 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt557 6 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt100 6 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt079 6 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt307 6 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt316 6 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt376 6 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Staga001 6 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Sat_251 6 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Sat_246 6 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt358 10 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Sat_321 10 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt445 10 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt241 10 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt345 10 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt094 10 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt550 10 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt576 10 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt479 10 Parent 1 : Su88-M21 (Wu etal., 2011)
Parent 2 : Xinyixiaoheidou

Satt188 10 Parent 1 : Su88-M21 (Wu etal., 2011)
Parent 2 : Xinyixiaoheidou

Satt420 10 Parent 1 : Su88-M21 (Wu et al., 2011)
Parent 2 : Xinyixiaoheidou

Sat 274 10 Parent 1 : Su88-M21 (Wu et al., 2011)




Parent 2 : Xinyixiaoheidou

Sat_242 10 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt592 10 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Sat_196 10 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Sat_273 10 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt369 15 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt204 15 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt491 15 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt267 15 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Sat_380 15 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt598 15 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt651 15 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt384 15 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt720 15 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou

Satt403 15 Parent 1 : Su88-M21 (Wuetal., 2011)
Parent 2 : Xinyixiaoheidou
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