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Abstract 

 
Soybean (Glycine max [L.] Merr) is an important crop grown in Canada, generating $2.4 billion 

in sales. Though this number may be promising, soybean farmers lose about $50 million worth 

of yield annually due to root and stem rot disease caused by Phytophthora sojae. Many strategies 

have been developed to combat the infection; however, these methods are prohibitively 

expensive. A ‘cost effective’ approach to this problem is to select a trait naturally found in 

soybean that can increase resistance. One such trait is the increased production of root 

glyceollins. One of the key enzymes exclusively involved in glyceollin synthesis is chalcone 

reductase (CHR). To identify all GmCHR gene family members in the soybean genome, a search 

was conducted in Phytozome which revealed 16 putative GmCHRs. Among these, 7 GmCHRs 

were selected for further study as they contain all active site residues, and are transcribed. All 

candidate GmCHRs localize to both the nucleus and cytoplasm. Amongst the candidate 

GmCHRs, there are four root-specific GmCHRs which are induced upon stress. In addition, three 

QTLs have been found which contain GmCHR loci. Overall, these findings support the 

hypothesis that chalcone reductase is an important component in manipulating glyceollin content 

and could eventually be used to improve resistance against P. sojae.  

 

Keywords:  

Soybean, Phytophthora sojae, chalcone reductase, resistance, quantitative trait loci, stress 
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 Chapter 1: Introduction 1.

 

 Soybean and its economy  1.1

 

Soybean (Glycine max [L.] Merr) is one of the most important leguminous crops in the world. 

Soybean seeds are an excellent source of protein, oils and micronutrients such as calcium and 

iron, making it an attractive and profitable crop for human consumption. The seeds also contain 

several bioactive compounds such as saponins, bioactive peptides (Yoshikawa et al., 2000), and 

isoflavones (Dixon, 2004; Cederroth and Nef, 2009) which are known to have several health 

benefits. The consumption of these bioactives are heavily studied and have shown to reduce the 

risk of hormone-dependant cancers, cardiovascular disease, and inhibit the infectivity of HIV. 

Out of all the bioactives, isoflavonoids accumulate highest in the seeds and these metabolites are 

often commercialized into supplements. Several studies support that isoflavonoid supplements 

reduce the risk of breast cancer in women and prostate cancer in males (Gutierrez-Gonzalez et 

al., 2009; Korde et al., 2009) and alleviate post-menopausal ailments such as hot-flashes (Strom 

et al., 2001).  Soybeans also have emerged into industrial products including soap, cosmetics and 

waxes. Soybean oil is a major source of biodiesel in the United States aside from corn oil 

(Fargione et al., 2008; Candeia et al., 2009). In Canada, soybeans are primarily used as cattle 

feed (Dorff, 2009). 

From this versatility and popularity of the soybean, world-wide soybean production has reached 

250 million hectares, a 14-fold increase from 50 years ago. The main producers of soybean are 

the United States (36%), Brazil (36%), Argentina (18%), China (5%) and India (4%) 

(FAOSTAT, 2015). In Canada, soybean was the 4
th

 largest crop grown in 2014, seeding to 5.5 
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million acres, producing 6 million tonnes and generating $2.4 billion in profits (Huston, 2015). 

Though these numbers appear promising, soybean farmers encounter about $50 million of 

soybean yield loss annually in Canada, and $1-2 billion worldwide due to root and stem rot 

disease caused by Phytophthora sojae (Council, 2012; Murdoch, 2012). 

 The culprit: Phytophthora sojae and soybean root and stem rot disease 1.2

 

P. sojae is an oomycete and soil-borne plant pathogen that causes soybean root and stem rot 

disease (Figure 1.1A). The disease is predominant in most soybean growing areas and it is a 

major contributor to soybean crop loss. P. sojae can affect the soybean plant at any stage of 

development making it difficult to manage infection (Kaufmann and Gerdemann, 1958; 

Schmitthenner, 1985). Symptoms of infection include: brown lesions in the roots, chlorosis of 

the leaves and overall plant wilting (Figure 1.1B and C).  

P. sojae is closely related to brown algae and is often referred to as water molds (Erwin and 

Ribeiro, 1996). Nevertheless, earlier studies mistakenly characterized P. sojae as a fungus due its 

morphology (Erwin and Ribeiro, 1996). P. sojae produces both mycelium and hyphae which are 

characteristic of fungi. Yet, several distinct differences exist between fungi and oomycetes such 

as in cell wall composition, and ploidy level during dominant state, to name a few. In oomycetes, 

the cell wall consists of beta-glucans while the fungal cell wall contains chitin. In the vegetative 

state, fungi are haploid whereas oomycete are diploid (Cooke et al., 2000; Latijnhouwers et al., 

2003).    

P. sojae produces three types of asexual oospores:  chlamydospore, sporangia and zoospore, and 

produces sexual oospores (Tyler, 2007). Any of these oospores can survive for a number of years 

in a dormant state, and can overwinter in plant debris (Dorrance et al., 2003). Under high soil 
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moisture levels, the oospores produce zoospores that move in water and attach to soybean roots 

(Tooley and Grau, 1984; Morris and Ward, 1992). P. sojae uses isoflavones such as daidzein and 

genistein as chemoattractants to locate and navigate to the root. Once attached, the zoospores 

lose their flagella, and use proteolytic enzymes to breakdown the cell wall of the root. The hypha 

begins to form in the intercellular space of the cortex to the xylem to extract the nutrients from 

the plant (Enkerli et al., 1997). Then the pathogen uses the xylem to quickly spread through the 

entire plant causing the plant to wilt. The cycle is completed when the oospores of the P. sojae 

return to the soil as the plant dies and rots. 

Many strategies have been developed to reduce infection such as calcium application, improved 

soil drainage, fungicides, soil tillage, and seed treatments. These strategies have not only proven 

to be ineffective, but also place selective pressures on P. sojae leading to resistance (Li et al., 

2010). An alternative approach to this problem is selecting a cultivar of soybean with an innate 

resistance to P. sojae infection. 

 Overview of soybean defense strategies 1.3

 

1.3.1 Defense strategies 

  

The roots of the plant are critical in overall function however, they are also particularly 

vulnerable to pests and pathogens. These belowground organs are essential in water and nutrient 

uptake, while anchoring the plant and supporting aboveground organs. The rhizosphere of plants 

contains both advantageous and pathogenic organisms, as a result, plants have evolved a better 

defense system to protect themselves (De Coninck et al., 2015).   
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Figure 1.1. P. sojae and soybean root and stem rot disease. (A) Oospores of P. sojae produced 

in culture (Adapted from: Schmitthenner, 2001), (B) progression from left to right of soybean 

root and stem rot disease on soybeans (Adapted from: Byamukama, 2013), and (C) soybean root 

and stem rot in the field (Adapted from: Byamukama, 2013). 

  

A B 

C 
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Plants possess both physical and molecular levels of defense against pathogens (Kombrink and 

Somssich, 1995). At the roots and shoots, there are two protective physical barriers, the 

exodermis and the endodermis (Geldner, 2013). These two cell layers control osmotic pressure 

and ions, but also hinder the invasion of microorganisms. Both the layers contain suberin, 

analiphatic polyester of fatty acids, phenolics and alcohols which prevents pathogen admission 

into the roots. Studies have shown that higher suberin content in the roots delays the penetration 

of P. sojae, thus reducing the susceptibility to the pathogen in soybean (Ranathunge et al., 2008). 

 At the molecular level, the defense mainly consists of compounds such as secondary metabolites 

and protective enzymes (Wink, 1988). A key example of defense at the molecular level is 

glucosinolates which are produced in the Brassicaceae family (Pedras and Hossain, 2011). These 

enzymes are stored in separate cellular compartments and upon physical damage the cells are 

disrupted causing the myrosinases to hydrolyze glucosinolates to produce cytotoxic compounds. 

In the Fabaceae family, which soybeans belong to, the production of isoflavonoids is a key 

component in molecular plant defense. Isoflavonoid production is constitutive; however upon 

pathogen attack, daidzein, an isoflavonoid, is a substrate to the production of a phytoalexin, 

glyceollin, which has anti-bacterial and anti-oxidative properties.  

Physical and molecular levels of defense can be categorized into two types: inducible or innate 

(Arnason and Bernards, 2010). Induced defense involves the de novo synthesis of secondary 

metabolites, activation of preformed metabolites and/or strengthening of existing or new 

protective barriers. Innate defenses consist of physical barriers or constitutively produced 

secondary metabolites with antimicrobial properties (Arnason and Bernards, 2010). Both innate 

and induced defenses are combined within the plant and comprise the resistance to a pathogen. 
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1.3.2 Complete and partial resistance in soybeans 

 

Resistance to pathogen infection in plants can either be complete or partial (Schmitthenner, 

1999). Complete resistance or race-specific resistance in soybean is conferred by resistance to P. 

sojae (Rps) genes, which counteract the virulence genes within P. sojae. This relationship is 

similar to effector-triggered immune response in other pathosystems. To date, there are fourteen 

Rps genes and more than 55 identified races of P. sojae (Gao et al., 2005). However, P. sojae 

continues to diversify and as a result, the classification system has become cumbersome.  

All Rps genes provide complete and absolute immunity against incompatible races of P. sojae 

and it has been shown that 51% of commercially-available soybean cultivars contain at least one 

Rps gene (Gordon et al., 2006). Rps1a was the first resistance gene to be widely used in the USA 

in 1960s (Gao et al., 2005). Subsequently Rps1c, Rps1k, Rps3a and Rps6 were deployed in the 

following years (Dorrance et al., 2003). Out of the fourteen Rps genes, Rps1k has the strongest 

resistance against a large number of North American P. sojae races and has remained stable. Due 

to this reason Rps1k has been widely commercialized in the last two decades (Gao et al., 2005). 

Complete resistance puts immense selective pressure on P. sojae as such continuous 

commercialization of the Rps genes has resulted in the appearance of new races of P. sojae 

which can overcome the known Rps genes. 

Due to this problem, many investments have been made towards developing partially resistant 

cultivars. Partial resistance, referred to as field resistance, is a multi-gene trait which involves 

various defense components, such as suberin content and isoflavonoid levels, giving the plant an 

advantage towards fighting the pathogen. Cultivars with this type of resistance contain fewer 

rotten roots than completely susceptible cultivars, show delayed disease progression, and are 
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effective against all races of P. sojae (Schmitthenner, 1985). A key trait of these strong partial 

resistance cultivars is the increased production of root isoflavonoids, or more specifically, 

glyceollins. Further supporting the importance of glyceollins are studies showing that when the 

isoflavonoid pathway is silenced or compromised, it reduces the plants’ ability to fight off the 

pathogen attack (Subramanian et al., 2005; Graham et al., 2007; Lozovaya et al., 2007). For 

instance, it was found that the silencing of CHR genes not only increased the progression of the 

P. sojae pathogen, but also suppressed hyper-sensitive cell death, which in turn exacerbated the 

progression of the disease. Further partial resistance alone will not completely protect the crop 

yield. Additional efforts have been made to breed cultivars with both complete and partial 

resistance to eradicate the cases of soybean root rot disease. 

 Cultivar development approaches 1.4

 

1.4.1 Traditional soybean breeding 

 

The earliest method of breeding novel cultivars was through traditional or conventional plant 

breeding. To attain the ideal cultivar numerous crosses and back-crosses were performed, 

proving the inefficiency of traditional breeding. Since the domestication of the soybean about 

4,500 years ago, ~400 different soybean lines have been bred via traditional breeding and 

registered in Canada (CFIA, 2015).  

1.4.2 “Next generation” breeding 

 

An efficient and more modern approach of breeding is through identifying the genes that govern 

ideal traits in soybean. This is addressed through molecular approaches such as positional 

cloning (Rommens et al., 1989), linkage mapping and insertional mutagenesis (Bechtold et al., 
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1993). Such methods, however, are limited by the genome size and lack of transposons (Pflieger 

et al., 2001).  An alternative strategy is using the candidate gene approach. The candidate gene 

approach relies on the relationship between genetic variation within genes and phenotypes of 

interest.  

There are three steps involved in identifying candidate genes and the association to the trait of 

interest. Firstly, candidate genes are selected based on their proposed molecular and 

physiological function. Genes, which are associated with quantitative trait loci (QTL) or 

involved in a biochemical pathway related to the characteristic of interest, are usually selected as 

candidate genes. Then, candidate genes are screened for polymorphisms that can potentially alter 

the expression. Finally, statistical testing is performed to determine the association between the 

genes and phenotype (Pflieger et al., 2001). 

1.4.3 Quantitative trait loci 

 

Quantitative trait loci (QTL) are regions of DNA which often correlate with a variant trait. These 

regions can span over several megabase pairs and can contain several hundreds to thousands of 

genes (Dupuis and Siegmund, 1999). The first step of identifying a QTL is by conducting crosses 

of two parental lines with different traits (resistant vs susceptible). Genetic markers are 

determined between the parental lines. These genetic markers are the same markers used for the 

genotyping and include single nucleotide polymorphisms, tandem repeats and restriction enzyme 

length polymorphisms which don’t affect the phenotype of the parental lines. Following the F1 

cross, with the aid the genetic markers, linkage groups or heritable regions of the F1 progeny are 

identified. A back-cross is performed with F1 progeny and parental lines to produce individuals 

with different fractions of the parental genome. The genotypes and phenotype of the F2 progeny 
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are statistically scored. One of the scores is the logarithm of odds (LOD) which estimates the 

association between the DNA regions to the phenotype. The higher the LOD score the higher the 

probability of association between the phenotype and DNA region. Other assigned scores might 

be through ANOVA, t-test and F-statistics (Darvasi, 1998). In one way or another, identifying a 

QTL is an effective method in finding genes which can contribute to desired trait such as P. 

sojae resistance.  

1.4.4 QTLs linked to P. sojae resistance and association studies in soybean 

 

Several studies have examined the genes and regions of DNA which govern P. sojae resistance. 

Out of all the studies, genes which are responsible for isoflavonoid synthesis and suberin content, 

as well as the Rps genes have been shown to be of particular importance to P. sojae resistance. 

Iqbal et al. (2005) studied the accumulation of transcripts in partially resistant and susceptible 

soybeans during Fusarium attack. The study describes a generation of 23 recombinant lines from 

a cross derived from soybean cv. Essex (susceptible) and Forrest (resistant) and identification of 

6 QTLs. These QTLs contain genes involved in cell wall and phenolic synthesis.  

Han et al. (2008) performed QTL mapping on 112 recombinant inbred lines from a cross 

between soybean cv. Conrad (resistant) and OX760-6-1 (susceptible) and identified 3 QTLs. 

Conrad contains high suberin content which has been linked to P. sojae resistance (Thomas et 

al., 2007; Ranathunge et al., 2008). 

Moy et al. (2004) studied patterns of gene expression in soybean cv. Harosoy 63 during P. sojae 

infection. A 4,896-gene microarray was constructed to determine transcript accumulation in both 

host and pathogen during infection. Genes encoding defense and pathogenesis-related proteins, 
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and genes involved in the phytoalexin glyceollin biosynthesis were found to be upregulated upon 

infection. 

Thus far, there are over 40 QTLs, and over 100 QTL markers that are linked to resistance to P. 

sojae (http://www.soybase.org/). The knowledge gained from these studies will aid breeders and 

scientists in generating the ideal cultivar which is resistant to P. sojae.  

 Soybean phytoalexins: synthesis of the isoflavonoid glyceollin  1.5

 

In soybeans, phytoalexins are produced via the isoflavonoid pathway (Dakora and Phillips, 1996) 

which in turn is derived from the general phenylproponoid pathway. As shown in Figure 1.2, the 

first committed step is phenylalanine ammonia lyase (PAL) (Habereder et al., 1989) which 

eliminates the ammonia group from phenyalanine producing cinnamic acid. The metabolic 

pathway is further channeled by 4-coumarate CoA ligase (4CL) to produce p-coumaroyl-CoA 

(Li et al., 2014). It is through the activity of either chalcone synthase (CHS) alone or in 

conjunction with chalcone reductase (CHR) that the pathway branches toward flavonoids and/or 

isoflavonoid production by joining p-coumaroyl-CoA with 3 molecules of malonyl CoA. The 

first reaction consists of CHS producing naringenin chalcone, a compound that is subsequently 

converted into the core isoflavone aglycone genistein and other flavonoids with the help of 

chalcone isomerase (CHI) (Dhaubhadel et al., 2003). The second reaction consists of CHS co-

acting with CHR to create isoliquiritigenin chalcone, the building block of the other two core 

isoflavone aglycones, glycitein and daidzein. The aglycone, daidzein, is the precursor for the 

phytoalexin glyceollin, an important player in fighting off pathogen attack (Dakora and Phillips, 

1996). 
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Figure 1.2. The general phenylpropanoid pathway showing isoflavonoid biosynthesis. The 

isoflavonoid pathway produces the three main aglycones, glycitein, daidzein and genistein 

(boxed in green). Daidzein can either be consecutively converted into malonyldaidzien (pink 

box) or, upon stress, can be converted into 2’hydroxyldaidzein (induced pathway, purple box) 

leading into the synthesis of glyceollins. PAL  phenylalanine ammonia lyase,  C4H  cinnamate-4-

hydroxylate C4H,  4CL  4-coumarate-CoA-ligase, CHS chalcone synthase, CHR chalcone 

reductase, CHI chalcone isomerase, IFS isoflavone synthase, 2HID 2-hydroxyisoflavanone 

dehydratase, UGT glycosyltransferase,  MT malonyltransferase, I2’H isoflavone 2’-hydroxylase, 

2HDR 2'-hydroxydaidzein reductase, PTS pterocarpan synthase,  3,9 DPO  3,9-

dihydroxypterocarpan 6a-monooxygenase, G4DT glycinol 4-dimethylallyltransferase, G2DT 

glycinol 2-dimethylallyltransferase,  GS glyceollin synthase. Gene of study is boxed in black. 

Adapted from: Anguraj Vadivel et al. (2015). 
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 Chalcone reductase 1.6

 

The enzyme CHR is critical for daidzein biosynthesis which ultimately leads to the production of 

the phytoalexin glyceollin in soybean. CHRs (formally known as polyketide reductase and 

NAD(P)H dependant 6'-deoxychalcone synthase) belong to the aldo-keto reductase family 4 in 

the aldo-keto reductase superfamily (Figure 1.3). All members of this superfamily fold into a 

monomeric, (α/β)8 barrel structure (Figure 1.4) (Jez et al., 1997; Jez et al., 1997). The aldo-keto 

reductase superfamily is divided into 15 sub-families; however, all AKRs contains a common 

NAD(P)(H) binding site that is located in a deep, large and hydrophobic pocket at the C-terminus 

end, as well as a catalytic tetrad of Asp-53, Tyr-58, Lys-87, and His-120 (Bomati et al., 2005). 

As shown in Figure 1.5, CHRs predominantly contain hydrophobic and aromatic residues that 

line the unoccupied entrance to the active site cavity molded by Pro-29, Ala-57, Trp-89, Phe-

130, and Phe-132. Largely polar residues define the base of this catalytic surface and include 

Asp-53, Tyr-58, Lys-87, His-120, Trp-121, and Asn-167. Beside the facts described above, very 

little information is known about CHR enzyme since it acts on intermediates for CHS (Bomati et 

al., 2005).  

CHR activity was first demonstrated in crude extracts of Glycyrrhiza enchinata (Ayabe et al., 

1988). Up to now, CHR-like enzymes have been identified in a variety of leguminous plant 

species, including Medicago sativa (Ballance and Dixon, 1995) Sesbania rostrata (Goormachtig 

et al., 1999), Pueraria montana var. lobata (He et al., 2011), Glycyrrhiza glabra (Hayashi et al., 

2013), and Lotus japonicus (Shimada et al., 2006).  
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Figure 1.3. Evolutionary tree showing representative enzymes of AKR families 1–5. Purple 

and green represents enzymes of the AKR family 4. AKR4 family enzymes of putative functions 

are highlighted in purple while chalcone reductase and codeinone reductase is highlighted in 

green (Adapted from: Bomati et al., 2005). 
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Figure 1.4. Ribbon diagram of chalcone reductase (Glycine max). Using Protein Model Portal 

(http://www.proteinmodelportal.org/), a putative representation of chalcone reductase was 

generated. (A) Top view, (B) side view and the (C) active site of chalcone reductase with 

substrate (purple) is shown.   
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Figure 1.5. Chalcone reductase active site. Catalytic residues, Asp-53, Tyr-58, Lys-87, His-

120, Trp-121 and Asn-167 are shown in red boxes. Entrance residues, by Pro-29, Ala-57, Trp-89, 

Phe-130 and Phe-132 are shown in blue boxes. NADP
+ 

is shown in gold, and the proposed 

substrate is in green.  Proposed hydrogen bonding patterns are shown in small green and black 

circles (Adapted from: Bomati et al., 2005).  
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Graham et al. (2007) identified 4 soybean CHRs through the EST database search 

(http://compbio.dfci.harvard.edu/tgi/) and silenced all of them in soybean hairy roots. The 

silenced roots produced reduced levels of isoflavonoids, and in turn, were susceptible to P. sojae 

infection. 

 Soybean genome and genomic duplication  1.7

 

The soybean genome project was first privately initiated through the Department of Energy Joint 

Genome Institute Community Sequencing Program in 2006. Sequencing was completed in early 

2008 and released in Phytozome, a comparative platform for plant genomics, however; it wasn’t 

until 2010 that the sequencing results were published (Schmutz et al., 2010).  

The soybean genome contains 978 megabase pairs with 56,044 protein-coding loci and 88,647 

transcripts (http://phytozome.jgi.doe.gov/pz/portal.html) which is 70% more genes than 

in Arabidopsis thaliana (Schmutz et al., 2010). Soybean is a palaeopolyploid whose genome 

experienced two whole duplication events approximately 59 and 13 million years ago. Because 

of these two duplication events, 75% of genes in soybean have multiple copies. In the context of 

the genes involved in the isoflavonoid pathway, it is found that CHS has 9 family members 

(Akada and Dube, 1995; Dhaubhadel et al., 2007), isoflavone synthase (IFS) has 2 members 

(Jung et al., 2000) and CHI has 12 members (Dastmalchi and Dhaubhadel, 2015).  

 Hypothesis  1.8

 

http://www.jgi.doe.gov/CSP/
http://www.jgi.doe.gov/CSP/
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It is hypothesized that there are multiple CHR genes (GmCHR) present in the soybean genome, 

and that there are specific members of the GmCHR(s) family that have a role in root-specific 

phytoalexin production. 

 Objectives  1.9

 

Thus the objectives of the present research are: 

a) To identify the members of GmCHR gene family in soybean.  

b) To determine the subcellular localization of all GmCHRs.  

c) To determine the root-specific GmCHR(s) and inducible GmCHR(s) upon stress.  

d) To identify QTL(s) and QTL markers linked to P. sojae resistance that contain 

GmCHR loci.  

e) To functionally characterize root-specific GmCHR family member(s) by RNAi 

using the soybean hairy root system. 
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 Chapter 2: Materials and methods  2.

  

 Biological materials 2.1

 

2.1.1 Plant materials and growth conditions 

 

Seeds of Nicotiana benthamiana were sprinkled onto wet PRO-MIX BX MYCORRHIZAETM 

soil
TM

 (Rivière-du-Loup, Canada) in a small tray (5”W x 7”L x 2”D). The tray was placed in a 

growth room set on a 16h light/8h dark cycle at 23˚C/18˚C, respectively, with 60%-70% relative 

humidity and light intensity of  100-150 µmol m
-2

 s
-1

. After a week, individual seedlings were 

transferred into sterilized pots and watered regularly. The nutrient mixture of nitrogen, 

phosphorous, and potassium (20-20-20) was applied once a week. 

Seeds of soybean cv. OX760-6, Harosoy 63 and Conrad were sterilized with 70% ethanol 

containing 3% H2O2 for 1 min and rinsed with water at least 6 times prior to planting in soil. The 

pots were placed in a growth room set on a 16h light/8h dark cycle at 23˚C /18˚C, respectively. 

2.1.2 Bacterial strains 

 

Escherichia coli DH5α and Agrobacterium tumefaciens GV3101 were used for cloning and 

transient expression in tobacco, respectively. For hairy root transformation Agrobacterium 

rhizogenes K599 was used. For all bacterial transformations, electroporation was carried out in a 

Gene Pulser® Cuvette (BioRad Laboratories) with 0.1 cm electrode gap using MicroPulser™ 

(BioRad Laboratories). The electroporation setting used for E. coli was 1.80 kV and for 

Agrobacterium sp. was 2.18 kV for 5-6 milliseconds. 
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 In silico analysis 2.2

 

To identify CHR gene family members in the soybean genome, a search was conducted in the 

annotated G. max Wm82.a2.v1 genome of Phytozome 

(http://phytozome.jgi.doe.gov/pz/portal.html) (Goodstein et al., 2012). The keywords “aldo-keto” 

and “aldo/keto” were used to find all the soybean aldo-keto reductases (GmAKRs). To ensure no 

GmAKRs were missed in the keyword search, each GmAKR was used as a query for a protein 

BLAST search again. 

For generating a phylogenetic tree, protein sequences were aligned using CLUSTALW 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/) and a Neighbor-joining tree based with 1000 

bootstrap replications was created using MEGA6 (Tamura et al., 2013). The Poisson method was 

selected to calculate the evolutionary distance of the phylogenetic tree and pairwise deletion was 

selected for gaps/missing data treatment. A candidate gene list was prepared where all the 

GmCHRs clustered together with other known CHRs on the phylogenetic tree. To determine 

whether all candidate GmCHRs contain residues deemed important for catalytic activity, the 

protein sequences of the candidate GmCHR were aligned using CLUSTALW followed by 

BOXSHADE 3.21 (http://www.ch.embnet.org/software/BOX_form.html). Critical residues were 

manually spotted based on Bomati et al. (2005). The subcellular localization of candidate 

GmCHRs were predicted using WoLF-PSORT (http://wolfpsort.org), and the chromosome 

location and CDS information were obtained from Phytozome 

(http://phytozome.jgi.doe.gov/pz/portal.html). The molecular weight of candidate GmCHRs was 

calculated using ProtParam software (http://web.expasy.org/protparam). 

 Gene expression analysis 2.3

 

http://web.expasy.org/protparam
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A publicly available RNA-seq database containing transcriptome sequencing of soybean 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29163) was mined for the expression 

profiles of 11 GmCHR gene family members. The relative expression was normalized across the 

libraries corresponding to each tissue. A heatmap for GmCHR transcripts was generated in R.  

 Identification of QTL(s) and QTL markers linked to P. sojae resistance  2.4

 

 The QTLs and QTL markers from the year 2003 to 2014 corresponding to P. sojae resistance 

were mined from the SoyBase and Soybean Breeder’s Toolbox (http://soybase.org/). To ensure 

no QTLs or QTL marker were missed in the search a literature search was also conducted. 

Relative position of transcribed GmCHRs, and QTL markers were mapped onto the 

chromosomes. QTLs regions in base pairs were noted from the G. max genome assembly on 

Soybase.org.  

 Plasmid construction 2.5

 

2.5.1 Cloning into the Gateway entry vector, pDONRZeo  

 

All the primers for cloning purposes contained the attB1 adaptor sequence (5’-GGGG ACA 

AGT TTG TAC AAA AAA GCA GGC T-3’ for forward primers) and the attB2 adaptor 

sequence (5’-GGGG AC CAC TTT GTA CAA GAA AGC TGG GT-3’ for reverse primers) for 

Gateway cloning. To clone GmCHR gene family members, gene-specific primers were designed 

(Table 2.1) and used in a PCR reaction using cDNA synthesized from RNA isolated from 

different soybean tissues. PCR products were run on a 1% agarose gel and stained with RedSafe 

(iNtROn Biotechnology). The gels were visualized on a Bio-Rad Gel Doc. PCR products were 

gel purified using EZ-10 Spin Column DNA Gel Extraction Kit (Bio Basic Inc.) and recombined 
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into pDONRZeo vector (Invitrogen) using BP clonase enzyme (Invitrogen). The recombinant 

plasmids were then transformed into E. coli DH5α and plated on lysogeny broth (LB) agar plates 

containing zeocin (50 μg/mL). Positive colonies were screened by colony PCR using gene-

specific primers. Positive colonies that contained the right size amplicons were selected and 

cultured overnight at 37˚C in LB medium containing zeocin. Plasmid DNA was then extracted 

using EZ-10 Spin Column Plasmid DNA Kit (Bio Basic Inc.) and sequence verified.  

Otherwise stated, all PCR amplifications consisted of a denaturation step at 95˚C for 1 minute, 

annealing step for 30 seconds, extension step at 72˚C for 1 minute, with a total of 35 cycles. 

Before the start of the amplification, there was an the initial denaturation step of 95˚C for 5 

minutes and after the last cycle, a 5 minute extension was carried out at 67˚C.  

2.5.2 Cloning into destination vectors 

 

For subcellular localization, the sequence confirmed pDONRZeo-GmCHR plasmids were 

recombined into pEarleyGate101 (Invitrogen) using LR clonase (Invitrogen), transformed into E. 

coli DH5α and plated on LB agar plates containing kanamycin (50 μg/mL). E. coli colonies that 

contained pEarleyGate101-GmCHRs plasmids were screened by colony PCR using gene-

specific primers (Table 2.1). The positive colonies were selected and grown overnight in 3 mL of 

LB with kanamycin (50 µg/mL) at 37˚C. Plasmid DNA was extracted from the overnight culture 

using the EZ-10 Spin Column Plasmid DNA Kit (Bio Basic Canada Inc) and transformed into A. 

tumefaciens GV3101 using electroporation.  The transformed Agrobacterium was grown on LB 

agar plates containing rifampicin (10 µg/mL), gentamycin (50 µg/mL), and kanamycin (50 

µg/mL). Finally, positive colonies were verified by colony PCR. This cloning effort resulted in 

vectors that produced a translational fusion of each GmCHR with yellow fluorescent protein 

(YFP).  
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For RNAi silencing of GmCHRs, gene-specific primers (Table 2.1) were designed to clone a 

5’end of a GmCHR transcript for the targeted silencing of a specific gene family member. The 

fragments were cloned into pDONRZeo as described in the section 2.3.1, and recombined into 

the silencing vector, pK7GWIWG2D(II), using LR clonase. This silencing vector contains a 

separate cassette that produces green fluorescent protein (GFP), as the selectable marker. The 

recombinant plasmids were transformed into A. rhizogenes K599 and plated onto spectinomycin 

plate (50 µg/mL). The destination vector maps used in my study are shown in Figure 2.1. 

2.5.3 DNA sequencing  

 

The DNA constructs were sequenced either at the Robarts Research Institute (Western 

University) or at the Southern Crop Protection and Food Research Center, Agriculture and Agri-

Food Canada, London, Ontario. 
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pKGWIWG2D(II),0 
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Figure 2.1. Gateway vectors for subcellular localization and silencing. (A) Subcellular 

localization vector pEarleyGate101 and (B) RNAi silencing vector, pK7GWIWG2D(II). Vector 

adapted from: https://benchthumb.s3.amazonaws.com/snapshot/45V8MkrCip.png and 

http://www.uoguelph.ca/~jcolasan/pdfs/gateway_protocols_and_plasmids.pdf 
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 Transient expression of protein in N. benthamiana leaves 2.6

 

The subcellular localization of GmCHRs was studied by infiltrating A. tumefaciens GV3101 

carrying pEarleyGate101-GmCHRs in N. benthamiana leaves (Sparkes et al., 2006). A single 

colony of A. tumefaciens GV3101 was inoculated into infiltration culture medium (LB broth 

containing 10 mM 2-N-morpholino-ethanesulfonic acid (MES) pH 5.6, and 100 µM 

acetosyringone) supplemented with kanamycin (50 µg/mL), rifampicin (10 µg/mL), and 

gentamycin (50 µg/mL) and grown at 28˚C until the OD600 reached 0.5-0.8. The culture was 

centrifuged in a microfuge tube at 3000 rpm for 30 minutes at room temperature. Then the pellet 

was resuspended in Gamborg’s solution (3.2 g/L Gamborg’s B5 and vitamins, 20 g/L sucrose, 10 

mM MES pH5.6, and 200 µM acetosyringone) to a final OD600 of 1 and incubated at room 

temperature for 1 hour with gentle agitation. The leaves of 4-6 weeks old N. benthamiana were 

infiltrated by placing the tip of the syringe against underside of the leaf. For co-infiltration, the A. 

tumefaciens GV3101 containing the pEarleyGate100 with a nuclear localization signal and cyan 

fluorescent protein (pEarleyGate100-NLS-CFP) and pEarleyGate101-GmCHR constructs were 

mixed in equal volumes and then infiltrated into the leaves. The plants were returned to the 

growth room at normal growth condition as described in section 2.1.1. The protein expression 

was visualized by confocal microscopy.  

 Confocal microscopy 2.7

 

Epidermal cell layers of N. benthamiana leaves were visualized using Leica TCS SP2 inverted 

confocal microscope. For YFP visualization, an excitation wavelength of 514 nm was used and 

emissions were collected between 525-545 nm. For visualization of CFP, an excitation 

wavelength of 434 nm was used and emissions were collected between 460-490 nm. For co-
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localization, ‘Sequential Scan Tool’ was utilized which records the image in sequential order 

instead of acquiring them simultaneously in different channels.   

 Protein extraction and western blot analysis 2.8

 

Leaf samples of N. benthamiana were used to extract total soluble proteins. Fresh leaves (0.5 g) 

were ground in liquid nitrogen and re-suspended in extraction buffer (25 mM Tris-HCL pH 8.0, 

1 mM EDTA pH 8.0, 20 mM NaCl with Protease Inhibitor Cocktail (Sigma Aldrich). The 

samples were centrifuged for 30 min at 13,000 rpm at 4˚C and the supernatant was collected. The 

concentration of total soluble protein was determined by a Bradford Assay (Bradford, 1976).  

Thirty micrograms of total soluble proteins were loaded on a 7.5% sodium dodecyl sulfate (SDS) 

polyacrylamide electrophoretic gel. The proteins from the gel were then transferred onto an 

Immun-Blot
TM

 polyvinylidene fluoride (PVDF) membrane (Bio-Rad) using a Trans-Blot Semi-

Dry Electrophoretic Transfer Cell (Bio-Rad) at 20 V for 30 minutes. The membrane was washed 

with TBS+0.1% Tween 20 three times for 15 minutes followed by blocking in TBS+1% BSA 

and 0.1% Tween 20 at 4˚C overnight. The fusion proteins with YFP were detected using an anti-

GFP (1:5000 dilution) mouse primary antibody and conjugated horseradish peroxidase (HRP) 

goat anti-mouse (1:5000 dilution) secondary antibody. The bound immune-complexes were 

detected with ECL Prime Western Blot detection reagents (GE Health Care Life Sciences) and 

exposed in the MicroChemi (DNR Bio-Imagining System). 

 

 



28 
 

 RNA extraction, cDNA synthesis and RT/qRT-PCR 2.9

  

Total RNA was extracted from 100 mg of tissue using the RNeasy Plant Mini Kit (Qiagen) 

following manufacturer’s instruction with some modification. An on-column DNaseI (Promega) 

treatment was used to digest DNA. Subsequently, RNA was quantified with a NanoDrop 1000 

spectrophotometer (ThermoScientific), and its quality was evaluated from its A260/A280 ratio and 

by electrophoresing the RNA on a 1% agarose gel in 1X TAE buffer (40 mM Tris, 40 mM 

acetate, 1 mM EDTA, pH 8.2). Thermoscript RT-PCR System (Life Technologies) was used to 

synthesize cDNA from 1 µg of total RNA in a 20 µL reaction. For RT-PCR, 1 µL of undiluted 

RT reaction was used as a template. PCR amplification was performed using gene-specific 

primers (Table 2.1) using the condition described in the section 2.5.1. For qRT-PCR, the RT 

reaction (cDNA) template was diluted 20 times and reaction was performed using gene-specific 

primers (Table 2.1) and SsoFast
 
EvaGreen Supermix Kit (BioRad) in a Bio-Rad C1000

 
Thermal 

Cycler with the CFX96TM Real-Time PCR System. CON4 was used as a reference gene to 

normalize the expression. 

 Stress treatment  2.10

 

Stems of seven-day old seedlings of soybean cv. L76-1988 were inoculated with P. sojae race 7. 

The stems of the infected plants were collected at 24, 48 and 72 hours post-inoculation.  

For the AgNO3 treatment, soybean cv. Harosoy 63 was grown in water-soaked vermiculite in the 

dark at 25˚C for 6 days. Prior to the treatment, 10 etiolated seedlings per treatment were 

transferred into glass trays, after which, 5-10 drops of 10 μL of either water (control) or 1 mM of 

AgNO3 were placed onto the hypocotyl of each seedling (Figure 2.2). The trays were transferred 
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back in the dark to 25˚C.  Samples were collected at 6, 12, 24, 48 and 72 hours after the 

treatment.   

 Statistical analyses 2.11

 

Statistical analyses were performed using GraphPad Prism 6.0. Significant differences between 

means in gene expression were calculated using multiple t-test per row. Statistical significance 

was set at p <0.05.  

 Hairy root transformation 2.12

 

2.12.1 Preparing soybean cotyledons 

 

Seeds of soybean cv. Harosoy 63 were planted in vermiculite. On day 3 or 4, the soybean plants 

were sprayed with water to remove the seed cover and vermiculite which were attached to the 

cotyledons. Hairy root transformation was performed on 6 day old seedlings. 

2.12.2 Preparing A. rhizogenes cultures 

 

The day before hairy root transformation, A. rhizogenes K599 with either no vector, empty 

silencing vector, or a vector containing pK7GWIWG2D(II)-GmCHR were inoculated in 5 mL of 

LB broth (no vector) or LB broth with spectinomycin (50 µg/mL) and were grown overnight to 

an OD600 of 0.4 to 1.0 at 28˚C. The culture was centrifuged at 2500 g for 20 min at 4˚C and, re-

suspended to a final OD600 of 0.5 in ice cold 10 mM MgSO4 (Kereszt et al., 2007).  
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Figure 2.2. Set-up of AgNO3 stress treatment on soybean hypocotyl. Seeds of soybean cv. 

Harosoy 63 were grown in dark at 24°C for 6 days in water-soaked vermiculite. The seedlings 

were then placed onto a tray and the roots were covered with water-soaked cheese cloth. The 

hypocotyls were inoculated with either water (control) or with 1 mM AgNO3 (treatment).  
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2.12.3 Transformation of soybean cotyledons 

 

Humidity chambers were prepared by placing layers of wetted filter paper on the lid of a petri 

dish. Cotyledons were twisted off of the seedling and collected in batches of 50-60 in a glass 

beaker. The cotyledons were then surface sterilized with 70% ethanol and dried on filter paper in 

the biological safety cabinet. The cotyledons were cut with a sterilized razor blade near the end 

of petiole as shown in Figure 2.3 the cut was horizontally made through the major vein. The cut 

cotyledons were arranged in rows of 2-3-3-2, a total of 10 cotyledons per chamber. A culture of 

A. rhizogenes was drawn in a sterile syringe with 18 gauge needle and a drop of the culture was 

placed onto the wounded site. The petri dishes were sealed, placed in complete darkness at 25˚C 

for two days and then transferred into continuous light for 3 weeks at 23˚C. 

2.12.4 Harvesting hairy roots 

 

After 3 weeks hairy roots were screened for silenced transgenic lines. The transgenic lines were 

identified by a selectable fluorescent marker, GFP using a fluorescent microscope. Images were 

taken under visible and UV light and were recorded using camera software Image-pro Express 

6.0. Control K599 transformed hairy roots were harvested also. All roots from each 

corresponding construct, K599 only, empty silencing vector and silenced GmCHR, were pooled 

together, weighed, and frozen in liquid nitrogen and stored at -80˚C 
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Figure 2.3. Soybean hairy root transformation. (A) Two day old soybean cotyledon (post-

inoculation) was cut near the petiole end and a culture of A. rhizogenes K599 was placed onto 

the cut site. (B,C) After 7 days hairy roots began to form. (D) After 3 weeks, hairy roots were 

ready for harvesting (Adapted from: Subramanian et al., 2005). 
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 Chapter 3: Results 3.

 

 Soybean genome contains 16 putative GmCHRs  3.1

 

To identify all the GmCHR gene family members in soybean, a keyword search was conducted 

in the annotated Glycine max Wm82.a2.v1 genome on Phytozome. Using the keyword “aldo-

keto” and “aldo/keto”, protein databases, KOG, Pfam and PANTHER identified 34 and 68 

GmAKRs, respectively. Both keyword searches were compared and compiled to ensure no 

duplicates. Each GmAKR sequence was then used as a query for a BLAST search, until no new 

GmAKRs were identified. With this process, no new GmAKRs were found in the BLAST 

searches which concluded in the total of 68 GmAKRs. 

The AKR superfamily consists of 15 families; where CHRs are grouped into the AKR4 family 

(Jez et al., 1997). It has been previously shown that CHRs from several different plant species 

cluster separately from other AKR family members (Figure 1.3) (Bomati et al., 2005). To 

identify GmCHRs in soybean, the 68 candidate GmAKRs were combined with previously 

characterized AKRs from Bomati et al. (2005), with the assumption that the GmCHRs would 

cluster together with other known CHRs. As shown in Figure 3.1, 16 putative soybean CHRs 

clustered together with other known CHRs (Appendix A). GmCHR2A, GmCHR15, GmCHR2B, 

GmCHR20, GmCHR18 and GmCHR14 cluster closely together with CHRs from M. sativa and 

CHR P. montana var. lobata, POR from L. japonicus and G. glaba. Other inter-species 

clustering consists of GmCHR9A, GmCHR9B, GmCHR9C, GmCHR9E, GmCHR16A, 

GmCHR16B, and GmCHR16C with CHR from S. rostrata.  GmCHR9D and GmCHR12 cluster 

together closely without any CHR from other plant species. Codeinone reductase, a non-CHR, is 
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also found in the same cluster as CHR however no other GmCHRs cluster together with this 

group.  

CHR’s active site is primarily molded by the catalytic tetrad Asp-53, Tyr-58, Lys-87, and His-

120 with the additional amino acids Trp-121, and Asn-167 based on M. sativa CHR (GenBank  

accession number AAB41555.1) (Bomati et al., 2005). To identify whether all the putative 

GmCHRs contain critical amino acids residues that are required for CHR function, 16 putative 

GmCHRs, known CHRs from other plant species, and a selection of AKRs were aligned and the 

amino acid residues were searched manually. This process identified the following alterations in 

5 candidate GmCHRs: 1) in GmCHR2B, Tyr-58 is missing; 2) in GmCHR9B, Asp-53, Tyr-58, 

Lys-87, His-120, and Trp-121 are missing; 3) GmCHR7 do not contain any of the critical 

residues; 4) GmCHR9E is missing His-120, Trp-121 and Asn-167 and 5) GmCHR16C does not 

contain Asn-167 (Figure 3.2). Based on these results, GmCHR2B, GmCHR9B, GmCHR9E, 

GmCHR7 and GmCHR16C were eliminated for further study, leaving 11 putative GmCHRs.  

Detailed information on each putative GmCHR, including gene location, coding sequence length 

and predicted subcellular localization is shown Table 3.1. Pairwise amino acid sequence identity 

comparison of the 11 GmCHR gene family ranged from 50.11%-97%. However, pairwise 

nucleotide sequence identity comparison ranged from 37%-96% (Table 3.2). 
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Figure 3.1. Phylogenetic tree showing GmCHRs cluster together with known plant CHRs. 

The protein sequences of putative GmAKRs and known AKRs from other plant species were 

aligned using CLUSTALW and the phylogenetic tree was constructed by Neighbor-joining 

method using MEGA6. The green branch indicates CHR specific AKR, black circles (●) and 

white circles (○) indicate putative GmCHRs and CHRs from other plants species, respectively. 

POR polyketide reductase, COR codeinone reductase, AKR aldo-keto reductase, XYR xylose 

reductase,  M6PR mannose-6-phosphate reductase, M6DH morphine 6-dehydrogenase, ALHD 

alcohol dehydrogenase, ALR aldose reductase, ARR arabinose reductase , 2,5 DKG 2,5-diketo-

D-gluconic acid reductase B , and PFS prostaglandin F synthase. Branch lengths are measured as 

substitutions per site. Accession numbers for known AKRs (shown in the parentheses) are 

according to Uniprot. Common nomenclature for GmCHRs is also shown in parenthesis. 
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Figure 3.2. Identification of important amino acid residues in candidate GmCHRs. 

Candidate GmCHRs obtained from the phylogenetic analysis were aligned using CLUSTALW 

with other known AKRs and CHRs from other plant species. Critical and other residues were 

noted: entrance of the catalytic site (□), AKR catalytic tetrad (□), unique amino acids from 

COR(□), CHR active site with AKR catalytic tetrad (□).  GmCHRs which are missing critical 

residue are indicated through gray shading. Only an abridged version of the alignment is shown. 

Full version of the alignment is shown in Appendix B. 
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 GmCHR family members display tissue-specific gene expression  3.2

To determine tissue-specific expression pattern of GmCHRs, publicly accessible RNA-seq data 

was used. RNA-seq data was derived from high throughput sequencing of total RNA isolated 

from various soybean tissues at different developmental stages such as different stages of 

developing embryos, the seed coat, the pod wall, roots, stems, leaves, flowers and flower buds 

(http:// www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29163). The relative expression was 

normalized across the libraries corresponding to each tissue. A heatmap was produced based on 

expression level of each GmCHR for each tissue.  

No RNA-seq data was found for GmCHR9A and GmCHR9D suggesting that they may not be 

transcribed. GmCHR12 was detected in the RNA-seq data however the transcript levels were low 

(Appendix C). Due to this reason, GmCHR9A, GmCHR9D and GmCHR12 were not included 

into the heatmap.   

Out of 8 putative GmCHRs remaining on the heatmap, GmCHR2A, GmCHR14, GmCHR18 and 

GmCHR20 were expressed at higher level in roots as compared to other tissues (Figure 3.3).  

Majority of the GmCHRs were either expressed in the seedlings or dry seeds.  
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Figure 3.3. Expression profile of GmCHR genes. Soybean RNA-seq data 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29163) were normalized and a 

heatmap was constructed to evaluate the transcript levels of GmCHR across different tissues. 

Transcript abundance is indicated by a gradient from red (high) to green (low).  
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Figure 3.4. Subcellular localization of the GmCHR family. GmCHRs were translationally 

fused with the YFP reporter gene, transformed into N. benthamiana leaves by A. tumefaciens-

mediated transformation: (A) GmCHR2A, (B) GmCHR9C, (C) GmCHR14, (C) GmCHR16A, 

(E) GmCHR16B, (F) GmCHR18, and, (G) GmCHR20. A nuclear localization signal fused with 

the CFP reporter gene was used for the co-localization study.  Fluorescence was visualized by 

confocal microscopy. The scale bar: (A) 49.9 µm, (B) 50.3 µm, (C) 50.1 µm, (D) 50.2 µm, (E) 

49.8 µm, (F) 49.9 µm and (G) 50.2 µm. 
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 GmCHR localizes in the nucleus and cytoplasm in N. benthamiana  3.3

 

To determine the subcellular localization of the 9 putative GmCHR genes, each member was 

translationally fused with YFP. Despite several attempts, amplification of GmCHR15 and 

GmCHR12 was not successful. Therefore I proceeded with the investigation of subcellular 

localization of 7 GmCHRs. The GmCHR-YFP fusion protein was transiently expressed in leaf 

epidermal cells of N. benthamiana followed by confocal microscopy. The results revealed both 

nuclear and cytoplasmic localization for GmCHR2A, GmCHR9C, GmCHR14, GmCHR16A, 

GmCHR16B, GmCHR18 and GmCHR20. To confirm the presence of the nuclear localization, 

co-expression of GmCHR-YFP fusion protein with nuclear localization signal containing control 

(NLS-CFP) was performed. Co-expression of GmCHR-YFP and NLS-CFP showed overlap 

between the NLS-CFP and GmCHR-YFP signals, thus confirming their nuclear localization 

(Figure 3.4). 

Foreign proteins, such like GmCHR-YFP, when overexpressed, may get cleaved by endogenous 

proteases in planta (Outchkourov et al., 2003).  To further confirm the nuclear localization of the 

intact GmCHR-YFP, A. tumefaciens GV3101 containing the pEarleyGate101-GmCHR2A was 

infiltrated into leaves of N. benthamiana and leaf samples were collected from day 1 to day 3 

post-infiltration. Total soluble proteins were extracted from the leaf samples and Western blot 

was performed. The results revealed that the YFP fluorescence observed by the transient 

expression is the result of the intact GmCHR-YFP (63 kDa) and not from the cleaved YFP 

(Figure 3.5). 
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Figure 3.5. Accumulation of GmCHR2A-YFP in N. benthamiana leaves. A. tumefaciens 

containing GmCHR2A-YFP construct were transiently expressed in leaves of N. benthamiana 

from Day 1 to Day 3 post infiltration. Total soluble proteins (30 µg) were separated on SDS-

PAGE and transferred to PVDF membrane by electroblotting. GmCHR2A-YFP was detected by 

sequential incubation of the blot with anti-GFP antibody and HRP conjugated goat anti-mouse 

antibody, followed by chemiluminescent reaction. (+) and (–) indicate eGFP with hydrophobin 

tag (37 kDa) as a positive control and total soluble proteins from non-filtrated leaves as negative 

control, respectively.  
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 Root-specific GmCHRs are induced upon stress 3.4

 

To identify GmCHRs genes that are induced upon pathogen attack, soybean cv. L76-1988 stems 

were infected with P. sojae agar culture. Stem samples were collected 24, 48 and 72 h post-

infection and expression analysis of 7 putative GmCHRs was performed using RT-PCR. The 

results clearly demonstrated that the expression of root-specific GmCHR genes GmCHR2A, 

GmCHR14, GmCHR18 and GmCHR20 were induced after 24 h and remained induced until 72 h 

post infection. Uninoculated stems of soybean plants grown at the same time were used as 

control. Expressions of GmCHR9C and GmCHR16B were undetectable in both control and 

infected samples. However, accumulation of GmCHR16A remained unchanged in both infected 

and control samples (Figure 3.6).   

Since treatment of AgNO3 induces phytoalexin production in soybeans, it has been used in the 

past as to mimic pathogen attack (Ward et al., 1979; Moy et al., 2004; Kubeš et al., 2014). 

Soybean cv. Harosoy 63 seeds were grown in the dark for seven days. The seedlings were placed 

onto a tray and the roots were covered with water-soaked cheese cloth. The hypocotyls were 

inoculated with either water droplets or with 1 mM AgNO3. Inoculated tissues were collected at 

6, 12, 24, 48, or 72 hours. Upon AgNO3 treatment, hypocotyls displayed brown lesions at 12 

hour and are worsened in the later time points in comparison to the control hypocotyl that 

displayed no lesions (Figure 3.7). To further investigate the induced gene expression profile of 

root-specific GmCHRs, qPCR was performed. Expression of GmCHR2A was significantly 

induced at 6, 12, 24 and 48 hours. GmCHR14 was significantly induced at 12, 24, 48 and 72 

hours. Likewise, GmCHR18 was induced at 12, 24, 48 and 72 hours, whereas GmCHR20 was 

induced only at 6 and 72 hours post treatment (Figure 3.8). Primer efficiencies for root-specific 

GmCHRs are noted in Appendix D  
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 Identification of QTLs and QTL markers linked to P. sojae resistance 3.5

 

To determine QTLs and QTL markers that are linked to P. sojae resistance, a survey of soybean 

database and a literature search were conducted. A search in the ‘SoyBase and Soybean 

Breeder’s Toolbox’ from the year 2003 to 2013 identified 55 QTLs that are linked to P. sojae 

resistance in soybean (Appendix E). These 55 QTLs were extensively researched for GmCHR 

loci, parental lines and LOD scores. Three QTLs, Phytoph 10-3, Phytoph 14-3, Phytoph 8-2, 

were found which contain GmCHR loci. Highlights of the QTLs included: (1) Phytoph 10-3 

contains GmCHR2A locus, spans over 2 megabase pairs and has an LOD score of 29.7; (2) 

Phytoph 14-3 contains GmCHR18 locus, spans over 43 megabase pairs and has the LOD score 

of 3.4; (3) Phytoph 8-2 contains GmCHR20 locus, stretches over 31 megabase pairs with the 

LOD score of 4.5 (Table 3.3 and Figure 3.9). These details strongly suggest that Phytoph 10-3 

containing GmCHR2A is involved in P. sojae resistance in soybean.  

An additional literature search was conducted for QTL markers linked to P. sojae resistance in 

soybean. This process identified over 500 QTL markers. Markers that share the same 

chromosome as GmCHR were segregated, and exact locations of the QTL markers were noted. 

Upon filtering through the QTL markers, a total of six markers were found to flank GmCHR2A, 

GmCHR16A, GmCHR18 and GmCHR20 loci (Appendix F, and Figure 3.9). The details on the 

marker are summarized in Table 3.4. 

.  
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Figure 3.6. Gene expression of GmCHRs in response to P. sojae infection. Total RNA (1 µg) 

was to synthesize cDNA from uninfected (C) or P. sojae-infected stems of soybean cv. L76-1988 

(T) at the time points as indicated after infection. Expression analysis was conducted by RT-PCR 

with GmCHR gene-specific primers. NTC indicates no template control. CON4 is shown as a 

reference gene. 
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Figure 3.7. Effects of AgNO3 on etiolated soybean cv. Harosoy 63 hypocotyls. Seeds of 

soybeans cv. Harosoy 63 were grown in dark at 24˚C for 6 days in water-soaked vermiculite. The 

seedlings were then placed onto a tray and inoculated with either water (control) or 1 mM 

AgNO3 (treated). Photographs were taken at the time points as indicated. 

 

 

 

 

 

 

 

 

 

6 hr 12 hr 24 hr 48 hr 72 hr 

AgNO
3
 

treated  

water 

control 



51 
 

 

 

 

 

 

 

 

   

  
 

Figure 3.8. Expression of root-specific GmCHRs in response to AgNO3 treatment. Total 

RNA (1 µg) of soybean cv. Harosoy 63 was used to synthesized cDNA from untreated and 

AgNO3 treated hypocotyls Expression analysis was conducted by qPCR with GmCHR gene-

specific primers. Error bars indicates standard error of the mean (SEM) of two biological and 

three technical replicates per biological replicates. CON4 was used as a reference gene. The 

asterisks (*) denotes significant expression (multiple t-test per row, p<0.05). The red bar 

represents the control while the gray bar represents the AgNO3 treatments.  
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Table 3.3. Characteristics of QTLs linked to P. sojae resistance which contain GmCHRs 

 

QTL Chr QTL 

Marker 

Interval  

(physical 

map) 

GmCHR and 

CHR location 

Parents Heritability LOD Reference 

Phytoph 

10-3 
2 

Gm02: 

48,345,840 -

46,353,672 

GmCHR2A 

 

Gm02: 

48,163,443 -

48,164,792 

Parent 1: 

Conrad 

 

Parent 2: 

OX760-6-1 

n/a 29.77 
(Han et al., 

2008) 

Phytoph 

14-3 
18 

Gm18: 

59,499,678-

 16,804,048 

GmCHR18 

 

Gm18: 

56,611,421-

56,613,070 

Parent1: 

OX20-8 

 

Parent 2: 

PI 398841 

0.77 3.4 
(Wang et 

al., 2012) 

Phytoph 

8-2 
20 

Gm20: 

34,100,981-

3,915,838 

GmCHR20 

 

Gm20: 

3,790,428-

3,793,674 

Parent 1: 

V71-370 

 

Parent 2: 

PI407162 

0.89 4.5 
(Tucker et 

al., 2010) 

Chr chromosome; LOD logarithm of odds  
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Table 3.4. Characteristics of QTL markers linked to P. sojae resistance that flank GmCHR 

 

GmCHR 

and location 

QTL Marker 

 

QTL Marker 

location 

Type of 

Marker 

Parents Reference 

GmCHR2A 

 

Gm02: 

48,163,443-

48,164,792 

Satt274  
48,345,948-

48,346,001 
SSR 

Parent 1: 

Conrad 

 

Parent 2: 

OX760-6-1 

(Han et al., 

2008) 

GmCHR16 

 

Gm16: 

37,678,679-

37,678,780 

Satt244  
33,327,176-

33,327,379 
  SSR 

Parent 1: 

V71-370 

 

Parent 2: 

PI407162 

(Tucker et 

al., 2010) 

GmCHR18 

 

Gm18: 

56,611,421-

56,613,070 

BARC-039397-07314 
56,889,971-

56,889971 
SNP 

Parent 1: 

Conrad 

 

Parent2: 

Sloan 

(Wang et 

al., 2010) 
BARCSOYSSR_18)_1777 

54,744,147-

54,744,204 
SNP 

Satt472  
53,866,536-

53,866,808 
SSR 

GmCHR20 

 

Gm20: 

3,790,324-

3,793,674 

Satt614  
3,915,838- 

3,916,147 
SSR 

Parent 1: 

V71-370 

 

Parent 2: 

PI407162 

(Tucker et 

al., 2010) 

SSR simple short repeats; SNP single nucleotide polymorphism 
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 Accumulation of root-specific GmCHR is higher in P. sojae resistant 3.6

soybean cultivar 

Since several QTL markers and QTLs linked to P. sojae resistance contained GmCHR gene 

family members, I wanted to assess the parental cultivars of QTL Phytoph 10-3 for root-specific 

GmCHR gene expression. Root tissues of two-week old seedlings of soybean cv. Conrad and 

OX760-6, were used for gene expression analysis using qPCR. As shown in Figure 3.10, 

expression of GmCHR2A, GmCHR14 and GmCHR18 were significantly higher in the Conrad 

(P. sojae resistant cultivar) compared to the OX760-6 (P. sojae susceptible cultivar). No 

difference in the expression of GmCHR20 was observed between Conrad and OX760-6. 

 RNAi silencing of root-specific GmCHRs 3.7

 

For the functional characterization of the root-specific GmCHRs, and how they influence the 

production of daidzein, RNAi silencing of root-specific GmCHRs was performed. The gene-

specific unique sequences for four root-specific GmCHRs were cloned into the RNAi vector 

pK7GWIWG2D(II). Primers were designed to amplify unique regions of each GmCHRs 

sequence to facilitate targeted silencing using the soybean hairy root system (Table 2.1). The 

transgenic roots were selected based on GFP expression as the vector contains a separate GFP 

cassette (Figure 2.1 and Figure 3.11). The transgenic roots were used to assess the target gene 

expression before proceeding into measurement of isoflavonoid content. The qPCR analysis of 

GmCHR2A, GmCHR14, GmCHR18 and GmCHR20 did not show a silencing effect in the 

silenced lines in comparison to the control (A. rhizogenes K599 only) or empty vector (silencing 

vector only) (Figure 3.12). 

 

 



55 
 

 

 

 

 

 

 

 

 

Figure 3.9. Genomic distribution of GmCHR genes, QTL and QTL markers on soybean 

chromosomes. Chromosomal locations of GmCHRs are indicated based on the location of the 

genes, length of chromosomes and positions of centromeres. QTL and QTL markers linked to P. 

sojae resistance are mapped against approximate location of GmCHRs. The chromosomes are 

drawn to scale and chromosome numbers are shown beside each chromosome. Dark navy bars 

indicate QTL regions while underline notations indicate QTL markers. Centromeres are indicated 

by blue circles on the chromosomes.  
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Figure 3.10. Accumulation of root-specific GmCHRs in soybean cv. Conrad and OX760-6. 

Total RNA (1 µg) was used to synthesize cDNA from soybean cv. Conrad and OX760-6. 

Expression analysis was conducted by qPCR using gene-specific primers. Blue bars corresponds 

to the expression of GmCHRs in soybean cv. Conrad while, red bars indicate the expression of 

GmCHRs in soybean cv. OX760-6. Error bars indicates SEM of two biological and three 

technical replicates per biological replicates (multiple t-test per row, p<0.05). CON4 was used as a 

reference gene. The asterisks (*) denotes significant difference in expression.  
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Figure 3.11. Generation of GmCHR silenced hairy roots. The transformed roots were 

identified by a selectable fluorescent marker, green fluorescence protein (GFP). Images were 

taken under (A) UV light, (B) visible light. 
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Figure 3.12. Accumulation of root-specific GmCHR in soybean cv. Harosoy 63 hairy root 

system. Total RNA (1 µg) was used to synthesize cDNA from control (K599 only, blue box), 

empty vector (silencing vector-only, red box) and silenced lines of either GmCHR2A, 

GmCHR14, GmCHR18 or GmCHR20 (green box). Expression analysis was conducted by qPCR 

with GmCHR gene-specific primers. Three biological replicates were used. CON4 were used a 

reference gene. The asterisks (*) denotes significant expression (multiple t-test per row, p<0.05).  
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 Chapter 4: Discussion  4.

 

CHRs are legume-specific enzymes, which together with CHS, convert p-coumaroyl-CoA and 3 

molecules of malonyl-CoA to isoliquiritigenin chalcone, the building block of two core 

isoflavone aglycones, glycitein and daidzein(Dhaubhadel et al., 2003). The aglycone, daidzein 

serves as a precursor in the production of phytoalexin glyceollin in soybean. Many studies have 

reported the expression patterns of genes during infection and the heritability of resistance, 

however little is known about the importance of CHR, the first key enzyme, which directs the 

flux to the production of phytoalexin glyceollins in soybean. Here I report the identification all 

putative GmCHRs in soybean, investigate their subcellular location, and tissue-specific and 

pathogen induced gene expression. My results demonstrate that the root-specific GmCHRs are 

induced upon pathogen infection and are located near QTLs and QTL markers linked to P. sojae 

resistance traits. 

 Soybean genome contains 16 putative GmCHR genes  4.1

 

All members of the GmCHR gene family were identified by searching the annotated soybean 

genome on Phytozome G. max Wm82.a2.v1. Using a keyword search together with BLAST 

searches, 68 GmAKRs and 16 putative GmCHRs were identified. This total number may change 

as more aldo-keto reductase sequences are deposited into the database. Many CHR-like enzymes 

have been reported in a variety of leguminous plants including M. sativa (Ballance and Dixon, 

1995), S. rostrata (Goormachtig et al., 1999), P. montana var. lobata (He et al., 2011), G. glabra 

(Hayashi et al., 2013), and L. japonicus (Shimada et al., 2006). Contrary to my findings, a recent 

study identified only 2 CHR genes in soybean. This study used only one sequence from GenBank 

(accession number EU921437) to search for the soybean genome database, and identified the two 
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paralog GmCHRs, GmCHR2A and GmCHR14 (Chu et al., 2014). The approach used in my study 

was more robust and provides confidence as it first identified all the GmAKRs based on the 

current database annotation, and then segregated the GmCHRs gene family members using their 

phylogenetic relationship with other known CHRs. The large number of GmCHRs could be the 

result of duplication events in the soybean genome. Soybean is a palaeopolyploid with a genome 

size of approximately 978 megabase pairs that has undergone at least two whole genome 

duplications. As a result of the genome duplications, nearly 75% of soybean genes are present in 

multiple copies. Phylogenetic analysis of GmCHRs illustrated that most GmCHRs cluster in 

pairs (Figure 3.1), further supporting ancient genome duplication events (Schmutz et al., 2010).  

Out of 16 putative GmCHRs, 11 were found to contain conserved critical residues (Figure 3.2). 

Since CHRs are part of the AKR family, these enzymes must contain the catalytic site (Bomati et 

al., 2005). The five GmCHRs: GmCHR2B, GmCHR9B, GmCHR9E GmCHR16C and 

GmCHR7, lack one or more catalytic site residues, therefore, I eliminated them from the study. 

However, it is possible that they may possess weak enzymatic activity or may be evolving new 

catalytic features. 

 GmCHRs show tissue-specific expression patterns 4.2

 

GmCHR transcript accumulations showed expression in various types of soybean tissues. The 

majority of the GmCHRs were either expressed in the seedlings, roots or dry seeds. In addition, 

from the RNA-seq data it was found that only 9 GmCHRs were transcribed. Since there was no 

RNA-seq reads found in the database search for GmCHR9B and GmCHR9D, I conclude that they 

may be pseudogenes. Previously, it was found that CHR in soybean were moderately expressed 

in the flowers and weakly expressed in leaves, stems, roots, endosperms and embryos (Liu, 
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2009). Differential expression of CHRs have also been studied in other plant species such as 

Astragalus membranaceus (Xu et al., 2012) and P. montana var. lobata (He et al., 2011). It was 

found that CHRs from Astragalus membranaceus and P. montana var. lobata were highly 

expressed in roots and stem, respectively. Based on the soybean RNA-seq data, transcript 

accumulations from these two plants, I can infer that the isoflavonoid pathway is active in those 

organs. Out of nine GmCHRs identified, GmCHR2A, GmCHR14, GmCHR18 and GmCHR20 

transcript accumulation was much higher in root tissue compared to other tissues under study 

(Figure 3.3). Studies have shown that CHS7, CHS8 (Yi et al., 2010), IFS1, IFS2 (Dhaubhadel et 

al., 2003) and CHI (Dastmalchi and Dhaubhadel, 2015) are also expressed in the roots which 

infers that they assist in the role of root-specific phytoalexins production. Therefore, I chose 

these 4 GmCHRs for further characterization as they may play a role in resistance to root and 

stem rot disease caused by P. sojae. 

 GmCHR localizes in the nucleus and cytoplasm 4.3

 

All members of the GmCHR family displayed nuclear and cytoplasmic localization in N. 

benthamiana leaf epidermal cells (Figure 3.4). These findings are consistent with the localization 

of GmCHS which works together with GmCHR to produce deoxychalcone. Evidence has shown 

that other enzymes involved in the isoflavonoid biosynthesis such as GmCHI (Dastmalchi and 

Dhaubhadel, 2015), glycosyltransferase (UGT73F2) and malonyltransferase (GmMT7) 

(Dhaubhadel et al., 2008) are also localized to the nucleus and the cytoplasm. 

This is a thought-provoking result since only GmCHR14 is localized in the nucleus. It is possible 

that there is a carrier protein involved that takes GmCHRs to nucleus. Molecules that are smaller 

than 40 kDa are able to passively diffuse into the nuclear pore complex whereas, larger 
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molecules (60kDa and higher) require an active transport system, mediated by transport 

receptors (Fried and Kutay, 2003; D'Angelo et al., 2009). The average molecular weight of 

GmCHR-YFP is 63 kDa, therefore, it is possible that the fusion protein can go to nucleus by the 

piggy-back mechanism. Cargo proteins can temporarily bind with other transport proteins, and 

the complex translocates into or out of the nucleus with the help of importins (Harel and Forbes, 

2004).  

 Root-specific GmCHRs are induced upon stress  4.4

 

To evaluate if GmCHR family members respond differently upon pathogen infection, their 

expression levels were studied by RT-PCR at various time points after P. sojae infection. 

Interestingly, the expression levels of only root-specific GmCHRs, GmCHR2A, GmCHR14, 

GmCHR18 and GmCHR20, were induced upon infection suggesting that they have a role in 

defence against P. sojae infection (Figure 3.6). 

Upon infection, P. sojae releases elicitors which stimulate the plant defense response (Jones and 

Dangl, 2006). As a result, the plant induces the expression of resistance and defense related 

genes to counteract infection. Studies have shown the upregulation or induction of CHRs at the 

infection site during Fusarium attack in soybeans (Iqbal et al., 2005), cadmium treatment in 

Medicago truncatula (Aloui et al., 2012), and Colletrichum falactum infection in sugarcane 

(Selvaraj et al., 2014).  

Several studies have used the AgNO3 treatment to mimic pathogen infection and induce 

phytoalexin production in soybeans (Moy et al., 2004; Kubeš et al., 2014). The mechanism of 

this “elicitor effect” is not completely understood, however, there are two possible hypotheses. 

Firstly, some metals such as quicksilver can affect protective “anti-reactive oxygen species” 
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(anti-ROS) enzymes (Mithöfer et al., 2004). ROS can participate in the creation of oxylipids 

which can induce the defense response. Park et al. (2009) mentioned that silver ions can also 

participate in ROS production. Secondly, silver ions could also block the activity of the plant 

hormone ethylene. This inhibition could increase the synthesis of secondary metabolites (Zhang 

and Wu, 2003). The quantitative analysis of root-specific GmCHRs in response to AgNO3 

demonstrated a significant increase in transcript accumulation of GmCHR2A, GmCHR14 and 

GmCHR18 (Figure 3.8). These root-specific GmCHRs respond to the AgNO3 treatment as early 

as 12 hours which coincides with findings from Alkharouf et al. (2006). Changes in gene 

expression within roots upon Heterodera glycines (the soybean cyst nematode) attack was 

investigated using a 6000 gene microarray. It was found that CHR (Genbank BM108162) was 

induced as soon as 6 and 12 hours upon infection. 

 QTLs linked to P. sojae resistance contain GmCHR loci 4.5

 

Several studies have suggested that Rps genes (Dorrance and Schmitthenner, 2000; Sandhu et al., 

2005), isoflavonoid biosynthetic genes (Subramanian et al., 2005; Graham et al., 2007), and 

genes involved in suberin production contribute to P. sojae resistance in soybean (Ranathunge et 

al., 2008). Furthermore, there are QTLs and QTL markers linked to P. sojae resistance in 

soybean. However, little has been reported linking the candidate genes with QTLs and 

phenotype. Here, I have identified a total of 6 QTL markers and 3 QTLs which flank or are 

approximate to GmCHR2A, GmCHR16A, GmCHR18 and GmCHR20. Among the 3 QTLs, 

Phytoph 14-3 and Phytoph 8-2 cover most of the chromosome (Figure 3.9, Table 3.3). QTL 

regions can generally span several megabase pairs and can contain several hundreds to thousands 

of genes (Dupuis and Siegmund, 1999). For those two QTLs, further fine-mapping experiments 

are required to hone the spanning regions (Touzet et al., 1995; Holtan and Hake, 2003). 
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Statistical association or validation studies can confirm the co-segregation of genes with a QTL. 

Based on these parameters, QTL Phytoph10-3 is the most reliable QTL found in this study as it 

is confined to a specific region on the chromosome and contains the highest LOD score (Table 

3.3).  

Upon finding a QTL which contain the GmCHR2A loci, the parental cultivars were assessed for 

their root-specific GmCHR gene expression. Interestingly, expression of GmCHR2A, GmCHR14 

and GmCHR18 were significantly higher in Conrad (resistant cultivar) as compared to OX760-6 

(susceptible cultivar) (Figure 3.10). Soybean cv. Conrad and OX760-6 were also used to study 

suberin content with P. sojae infections (Ranathunge et al., 2008). Therefore, it is possible that 

P. sojae resistance in soybean may comprise both isoflavonoid and suberin content.  

 Knockdown of root-specific GmCHRs 4.6

 

To further study the importance of GmCHR in P. sojae resistance, silencing of root-specific 

GmCHRs via hairy root transformation was performed. Following transformation, validation of 

silencing through analysis of GmCHR expression showed increased expression of these genes, 

which is a surprising result (Figure 3.12). I speculate that the RNAi construct did not lead mRNA 

degradation but rather block the 5’ UTR and start codon region for protein translation. If that 

occurred, it can trigger a feedback loop leading to increased transcription, and in turn, be 

revealed through qPCR as increased expression. This premise is based on the RNA activation, 

where endogenous small RNA fragments are shown to upregulate target genes for 

overexpression studies (Jiao and Slack, 2014). However, there are alternate ways to explore and 

assign putative gene functions such as virus induced gene silencing (VIGS) (Zhang and Ghabrial, 

2006) and clustered regularly interspaced short palindromic repeats (CRISPR) system (Jacobs et 
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al., 2015). These are novel techniques and have shown tremendous success in complex plants 

such as soybeans.  
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 Chapter 5: Conclusions and future directions 5.

 

Soybeans have emerged as a key component in both human and livestock nutrition as well as in 

industrial products. It is one of the leading crops which drive economical profits over billions of 

dollars in sales, worldwide. However, $50 million worth of yields are lost due to stem and root 

rot disease caused by P. sojae. Taking advantage of the plant defense system, breeders and 

scientists can create a cultivar which can naturally fight off the pathogen attack.   

Identification of the CHR gene family members in soybean is the first step in exploring potential 

gene candidates for developing an effective cultivar. Overall, I have identified 16 putative 

GmCHRs using an in silico approach: GmCHR2A, GmCHR2B, GmCHR9A, GmCHR9B, 

GmCHR9C, GmCHR9D, GmCHR9E, GmCHR7, GmCHR12, GmCHR14, GmCHR15, 

GmCHR16A, GmCHR16B, GmCHR16C, GmCHR18, and GmCHR20. Proteins sequences of 

these GmCHRs were manually searched for critical amino acids based on M. sativa CHR 

(GenBank accession number AAB41555.1) and upon the search 5 GmCHR were eliminated: 

GmCHR2B, GmCHR9B, GmCHR9E GmCHR16C and GmCHR7. RNA-seq data was searched 

for the reminder 11 GmCHRs. No RNA-seq data was found for GmCHR9A and GmCHR9D, 

suggesting that they can be pseudogenes.  

Seven GmCHRs were cloned into pEarleyGate101 to create a C-terminal fusion with YFP to 

determine the subcellular localization.  Despite of several attempts, amplification of GmCHR15 

and GmCHR12 was not successful. All 7 GmCHRs localize in the nucleus and cytoplasm. The 

nuclear localization could be a result of passive diffusion due to the small molecular weight of 

the recombinant GmCHR-YFP protein. An alternative approach to test the possibility of passive 

diffusion is through photoconvertible fluorescent proteins (Nienhaus et al., 2006). 
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Photoconvertible proteins are useful tools in monitoring molecular and cellular dynamics and 

will change their fluorophore colour from green to red in response to irradiation from UV light. 

In this case, new constructs can be generated with a C-terminal fusion of EosFP instead of YFP. 

Upon the subcellular localization display, a region EosFP can be excited from green to red and, 

proteins can be monitored for their nuclear localization and rate of diffusion.  

GmCHRs display tissue-specific expression patterns giving the possibility of tissue-specific 

immunity. Since P. sojae attacks at the roots, only the root-specific GmCHR2A, GmCHR14, 

GmCHR18 and GmCHR20 were monitored in this study. Additionally, those same four are 

induced in both P. sojae and AgNO3 treatments. Future enzymatic assays can ensure which root-

specific GmCHR can efficiently create isoliquiritigenin chalcone.  

Studies have identified several QTLs and QTL markers that link to P. sojae resistance in 

soybean. Upon sifting the literature, three potential QTL which contains the GmCHR loci has 

been found. This gives rise to the possibility that GmCHRs are an important component 

developing an effective cultivar against P. sojae. The parental lines from that particular QTL 

were accessed for their root-specific gene expression. It was found that expression of 

GmCHR2A, GmCHR14 and GmCHR18 were significantly higher in the Conrad (P. sojae 

resistant cultivar) compared to the OX760-6 (P. sojae susceptible cultivar). 

RNAi silencing of the root-specific GmCHRs was unsuccessful in the present study.   Recently 

virus induced gene silencing (VIGS) have been proven to be an effective method of silencing 

especially for complex plants such as soybeans and common beans.  
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Appendix  D. qPCR primer efficiencies for root-specific gene expression for AgNO3 

treatment and silencing 

GmCHR2A 

qsiCHR2AF: CGG GGA GGT GCT TCT TGG TTA TAG 

qsiCHR2AR: CTC CTT AGT GTC TTT CTT GCA  

Primer Efficiency: 89.5% 

 

GmCHR14 

qiCHR14F: CCA CCT ACC TCC AAT TGC TGA C 

qiCHR14R: GGG ATT TCA ATA GCA GCA GCC 

Primer Efficiency:  103.7% 
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GmCHR18A 

qiCHR18F: ATC CCA CCT ACC CAC ATC GT 

qiCHR18R: GGA GGA GGG GAG AGT GAC TT  

Primer Efficiency:  100.6% 

 

GmCHR20 

qsiCHR20F: CAC TCG TAT CTG TGA CAC CGT GT 

qsiCHR20R: GTT GTA ACA GCA CTT TGG GGA CGT 

Primer Efficiency: 107.8% 
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Appendix  E. Complete list of QTLs found in the SoyBase and Soybean Breeder’s Toolbox 

QTL Chromosome Parents Reference 

Phytoph 1-1  13 Parent 1: Conrad 

Parent 2: Harosoy 

(Tucker et al., 2010) 

Phytoph 1-2  2 Parent 1: Conrad 

Parent 2: Harosoy 

(Tucker et al., 2010) 

Phytoph 10-1  13 Parent 1: Conrad 

Parent 2: OX760-6-1 

(Han et al., 2008) 

Phytoph 10-2  13 Parent 1: Conrad 

Parent 2: OX760-6-1 

(Han et al., 2008) 

Phytoph 10-3  2 Parent 1: Conrad 

Parent 2:OX760-6-1 

(Han et al., 2008) 

Phytoph 11-19  13 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

Phytoph 11-2  8 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

Phytoph 11-20  17 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

Phytoph 11-21  13 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

Phytoph 11-22  14 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

Phytoph 12-1  13 Parent 1: S99-2281 

Parent 2:PI 408105A 

(Nguyen et al., 2012) 

Phytoph 12-2  17 Parent 1: S99-2281 

Parent 2: PI 408105A 

(Nguyen et al., 2012) 

Phytoph 13-1  19 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

Phytoph 13-2  19 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

Phytoph 13-3  1 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

Phytoph 13-4  18 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

Phytoph 13-5  18 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

Phytoph 14-1  1 Parent 1: OX20-8 

Parent 2: PI 398841 

(Lee et al., 2013) 

Phytoph 14-10  20 Parent 1: OX20-8 

Parent 2: PI 398841 

(Lee et al., 2013) 

Phytoph 14-2  13 Parent 1: OX20-8 

Parent 2: PI 398841 

(Lee et al., 2013) 

Phytoph 14-3  18 Parent 1: OX20-8 

Parent 2: PI 398841 

(Lee et al., 2013) 

http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%201-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%201-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2010-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2010-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2010-3
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2011-19
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2011-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2011-20
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2011-21
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2011-22
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2012-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2012-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2013-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2013-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2013-3
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2013-4
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2013-5
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2014-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2014-10
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2014-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2014-3
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Phytoph 14-4  2 Parent 1: OX20-8 

Parent 2: PI 398841 

(Lee et al., 2013) 

Phytoph 14-5  3 Parent 1: OX20-8 

Parent 2: PI 398841 

(Lee et al., 2013) 

Phytoph 14-6  4 Parent 1: OX20-8 

Parent 2: PI 398841 

(Lee et al., 2013) 

Phytoph 14-7  4 Parent 1: OX20-8 

Parent 2: PI 398841 

(Lee et al., 2013) 

Phytoph 14-8  7 Parent 1: OX20-8 

Parent 2: PI 398841 

(Lee et al., 2013) 

Phytoph 14-9  15 Parent 1: OX20-8 

Parent 2: PI 398841 

(Lee et al., 2013) 

Phytoph 2-1  13 Parent 1: Conrad 

Parent 2: Sloan 

(Burnham et al., 2003) 

Phytoph 2-2  2 Parent 1: Conrad 

Parent 2: Sloan 

(Burnham et al., 2003) 

Phytoph 3-1  13 Parent 1: Conrad 

Parent 2: Harosoy 

(Burnham et al., 2003) 

Phytoph 3-2  2 Parent 1: Conrad 

Parent 2: Harosoy 

(Burnham et al., 2003) 

Phytoph 4-1  13 Parent 1: Conrad 

Parent 2: Williams 

(Burnham et al., 2003) 

Phytoph 4-2  2 Parent 1: Conrad 

Parent 2: Williams 

(Burnham et al., 2003) 

Phytoph 5-1  6 Parent 1: Su88-M21(S) 

Parent 2: Xinyixiaoheidou 

(X) 

(Wu et al., 2011) 

Phytoph 5-2  15 Parent 1: Su88-M21(S) 

Parent 2: Xinyixiaoheidou 

(X) 

(Wu et al., 2011) 

Phytoph 5-3  10 Parent 1: Su88-M21(S) 

Parent 2: Xinyixiaoheidou 

(X) 

(Wu et al., 2011) 

Phytoph 6-1  13 Parent 1: Conrad 

Parent 2: Hefeng 25 

(Li et al., 2010) 

Phytoph 6-2  2 Parent 1: Conrad 

Parent 2: Hefeng 25 

(Li et al., 2010) 

Phytoph 6-3  2 Parent 1: Conrad 

Parent 2: Hefeng 25 

(Li et al., 2010) 

Phytoph 6-4  8 Parent 1: Conrad 

Parent 2: Hefeng 25 

(Li et al., 2010) 

Phytoph 6-5  11 Parent 1: Conrad 

Parent 2: Hefeng 25 

(Li et al., 2010) 

Phytoph 6-6  6 Parent 1: Conrad 

Parent 2: Hefeng 25 

(Li et al., 2010) 

http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2014-4
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2014-5
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2014-6
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2014-7
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2014-8
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%2014-9
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%202-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%202-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%203-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%203-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%204-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%204-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%205-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%205-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%205-3
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%206-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%206-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%206-3
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%206-4
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%206-5
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%206-6
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Phytoph 6-7  6 Parent 1: Conrad 

Parent 2: Hefeng 25 

(Li et al., 2010) 

Phytoph 6-8  6 Parent 1: Conrad 

Parent 2: Hefeng 25 

(Li et al., 2010) 

Phytoph 7-1  16 Parent 1:Conrad 

Parent 2:OX760-6-1 

(Weng et al., 2007) 

Phytoph 8-1  16 Parent 1: V71-370 

Parent 2: PI407162 

(Tucker et al., 2010) 

Phytoph 8-2  20 Parent 1: V71-370 

Parent 2: PI407162 

(Tucker et al., 2010) 

Phytoph 8-3  18 Parent 1: V71-370 

Parent 2: PI407162 

(Tucker et al., 2010) 

Phytoph 8-4  13 Parent 1:V71-370 

Parent 2:PI407162 

(Tucker et al., 2010) 

Phytoph 9-1  12 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2010) 

Phytoph 9-2  13 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2010) 

Phytoph 9-3  13 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2010) 

Phytoph 9-4  14 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2010) 

Phytoph 9-5  17 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2010) 

Phytoph 9-6  19 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2010) 

 

  

http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%206-7
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%206-8
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%207-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%208-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%208-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%208-3
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%208-4
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%209-1
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%209-2
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%209-3
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%209-4
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%209-5
http://www.soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Phytoph%209-6
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Appendix  F. Complete list of QTL markers found in the literature search 

QTL Marker Chromosome Parents Reference 

Sat_414  1 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

Satt266  2 Parent 1: Conrad 

Parent 2: Harosoy 

(Burnham et al., 

2003) 

Satt252  

 

13 Parent 1: Conrad 

Parent 2: Harosoy 

(Burnham et al., 

2003) 

Satt579  2 Parent 1 : Conrad 

Parent 2: Williams 

(Burnham et al., 

2003) 

Satt579 2 Parent 1 : Conrad 

Parent 2: Williams 

(Burnham et al., 

2003) 

Satt252  13 Parent 1 : Conrad 

Parent 2: Williams 

(Burnham et al., 

2003) 

Satt252  13 Parent 1: Conrad 

Parent 2: Sloan 

(Burnham et al., 

2003) 

Satt252 13 Parent 1: Conrad 

Parent 2: Harosoy 

(Burnham et al., 

2003) 

Satt274  2 Parent 1:Conrad 

Parent 2:OX760-6-1 

(Han et al., 2008) 

Satt030 13 Parent 1:Conrad 

Parent 2:OX760-6-1 

(Han et al., 2008) 

Satt343 13 Parent 1:Conrad 

Parent 2:OX760-6-1 

(Han et al., 2008) 

Satt439 1 Parent 1: OX20-8 

Parent 2: PI 398841 

(Lee et al., 2013) 

Satt351 2 Parent 1: OX20-8 

Parent 2: PI 398841 

(Lee et al., 2013) 

Satt009  3 Parent 1: OX20-8 

Parent 2: PI 398841 

(Lee et al., 2013) 

A078_1 4 Parent 1: OX20-8 

Parent 2: PI 398841 

(Lee et al., 2013) 

Satt578 4 Parent 1: OX20-8 

Parent 2: PI 398841 

(Lee et al., 2013) 

Satt463 7 Parent 1: OX20-8 

Parent 2: PI 398841 

(Lee et al., 2013) 

Sat_133  13 Parent 1: OX20-8 

Parent 2: PI 398841 

(Lee et al., 2013) 

Satt384  15 Parent 1: OX20-8 

Parent 2: PI 398841 

(Lee et al., 2013) 

OPAD08  18 Parent 1: OX20-8 

Parent 2: PI 398841 

(Lee et al., 2013) 

Sat_267  20 Parent 1: OX20-8 

Parent 2: PI 398841 

(Lee et al., 2013) 
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Sat_089  2 Parent 1: Conrad 

Parent 2: Hefeng 25 

(Li et al., 2010) 

Satt600 2 Parent 1: Conrad 

Parent 2: Hefeng 25 

(Li et al., 2010) 

Satt100 6 Parent 1: Conrad 

Parent 2: Hefeng 25 

(Li et al., 2010) 

Satt307 6 Parent 1: Conrad 

Parent 2: Hefeng 25 

(Li et al., 2010) 

Satt365  6 Parent 1: Conrad 

Parent 2: Hefeng 25 

(Li et al., 2010) 

Satt437  8 Parent 1: Conrad 

Parent 2: Hefeng 25 

(Li et al., 2010) 

Satt453  11 Parent 1: Conrad 

Parent 2: Hefeng 25 

(Li et al., 2010) 

Satt343 13 Parent 1: Conrad 

Parent 2: Hefeng 25 

(Li et al., 2010) 

Sct_033 13 Parent 1: S99-2281 

Parent 2: PI 408105A 

(Nguyen et al., 

2012) 

Satt543  17 Parent 1: S99-2281 

Parent 2: PI 408105A 

(Nguyen et al., 

2012) 

Satt634 2 Multiple accession were 

used 

(Sun et al., 2014) 

Satt542 2 Multiple accession were 

used 

(Sun et al., 2014) 

Satt266 2 Multiple accession were 

used 

(Sun et al., 2014) 

Sat_423 2 Multiple accession were 

used 

(Sun et al., 2014) 

Satt_222 17 Multiple accession were 

used 

(Sun et al., 2014) 

Satt226 17 Multiple accession were 

used 

(Sun et al., 2014) 

Satt300 17 Multiple accession were 

used 

(Sun et al., 2014) 

Satt574 17 Multiple accession were 

used 

(Sun et al., 2014) 

Satt543 17 Multiple accession were 

used 

(Sun et al., 2014) 

Satt615 17 Multiple accession were 

used 

(Sun et al., 2014) 

Satt301 17 Multiple accession were 

used 

(Sun et al., 2014) 

K644_1  13 Parent 1: V71-370 

Parent 2: PI407162 

(Tucker et al., 

2010) 

Satt414  16 Parent 1: V71-370 (Tucker et al., 
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Parent 2: PI407162 2010) 

Satt678  18 Parent 1: V71-370 

Parent 2: PI407162 

(Tucker et al., 

2010) 

A036_1  12 Parent 1: Conrad 

Parent 2: Sloan 

Wang et al. 2010

  

Geno. 2010, 

3(1):23-40 

Satt160  13 Parent 1: Conrad 

Parent 2: Sloan 

Wang et al. 2010

  

Geno. 2010, 

3(1):23-40 

Sct_033 13 Parent 1: Conrad 

Parent 2: Sloan 

Wang et al. 2010

  

Geno. 2010, 

3(1):23-40 

Satt304  14 Parent 1: Conrad 

Parent 2: Sloan 

Wang et al. 2010

  

Geno. 2010, 

3(1):23-40 

Satt574  17 Parent 1: Conrad 

Parent 2: Sloan 

Wang et al. 2010

  

Geno. 2010, 

3(1):23-40 

Satt527 19 Parent 1: Conrad 

Parent 2: Sloan 

Wang et al. 2010

  

Geno. 2010, 

3(1):23-40 

A671_1  18 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

Satt472  18 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

BARC-021321-04035  19 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

Satt527 19 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

GMA2_OSU19  8 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

Satt632  8 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

GMH_OSU31 12 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

F424_294  13 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

Satt160  13 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 
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Sct_033 13 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

Satt304 14 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

Satt574 17 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

BARC-039397-07314  18 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

BARCSOYSSR_18_1707

  

18 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

BARCSOYSSR_18_1777 18 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

BARCSOYSSR_19_1393 18 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

GM19_OSU10  18 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

BARC-03997-07624 19 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

BARC-064609-18739 19 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

BARCSOYSSR_18_1793 19 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

BARCSOYSSR_19_1243

  

19 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

BARCSOYSSR_19_1473

  

19 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

BARCSOYSSR_19_1494

  

19 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

BARCSOYSSR_19_1532 19 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

GML_OSU42  19 Parent 1: Conrad 

Parent 2: Sloan 

(Wang et al., 2012) 

Satt596 16 Parent 1: Conrad 

Parent 2: OX760-6-1 

(Weng et al., 2007) 

Satt520 6 Parent 1:Su88-M21(S) 

Parent 2: Xinyixiaoheidou 

(X) 

(Wu et al., 2011) 

Sat_274  10 Parent 1:Su88-M21(S) 

Parent 2: Xinyixiaoheidou 

(X) 

(Wu et al., 2011) 

Satt651  15 Parent 1:Su88-M21(S) 

Parent 2: Xinyixiaoheidou 

(X) 

(Wu et al., 2011) 

AW734043 6 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 
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Satt322 6 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt520 6 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt557 6 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt100 6 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt079 6 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt307 6 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt316 6 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt376 6 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Staga001 6 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Sat_251 6 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Sat_246 6 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt358 10 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Sat_321 10 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt445 10 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt241 10 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt345 10 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt094 10 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt550 10 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt576 10 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt479 10 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt188 10 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt420 10 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Sat_274 10 Parent 1 : Su88-M21 (Wu et al., 2011) 
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Parent 2 : Xinyixiaoheidou 

Sat_242 10 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt592 10 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Sat_196 10 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Sat_273 10 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt369 15 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt204 15 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt491 15 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt267 15 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Sat_380 15 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt598 15 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt651 15 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt384 15 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt720 15 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 

Satt403 15 Parent 1 : Su88-M21 

Parent 2 : Xinyixiaoheidou 

(Wu et al., 2011) 
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