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Abstract 

Osteoarthritis affects 13-20% of Canadians with the majority being under 65years of age. 

Post-traumatic osteoarthritis (PTOA) is of great concern in young athletes following knee 

injury.  Current research attempts at modeling the disease fall short.  This study aimed to 

incorporate two important aspects of injury, the nature of the injury and the post-injury 

standard of care in humans, to a model of PTOA in mice.  The study validated a non-invasive 

protocol to elicit an anterior cruciate ligament (ACL) injury at varying loading speeds 

addressing the closed capsule nature of an ACL injury that occurs in humans.  Secondly, we 

proposed a stabilization surgery implemented after an ACL transection event addressing the 

post-injury standard of care often ignored in animal models.  This procedure provided 

protection in mice at ten weeks following the injury.  Future research should incorporate the 

two protocols and create a better model that is more clinically relevant to the field PTOA. 

Keywords 

Keywords: mouse model, osteoarthritis, post-traumatic osteoarthritis, axial loading, surgical 

stabilization, ACL injury 
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Chapter 1  

1 Introduction 

The prevalence of osteoarthritis (OA) in Canada and around the world is around 20% in 

females and 10% in males 1, 2  This progressive degenerative disease is characterized by 

the break down of the cartilage on our articulating joints.  Importantly, OA can limit 

mobility, increase pain and lead to further degeneration of the bone and surrounding 

tissue.   

OA can be divided into two categories: primary and secondary.  The cause of primary 

OA is unknown and often occurs in older individuals.  Secondary OA is due to an 

underlying medical condition or traumatic event thus affecting individuals of any age.  A 

specific type of secondary OA is post-traumatic osteoarthritis (PTOA).  PTOA is 

observed in approximately half of individuals 10-20 years after an anterior cruciate 

ligament (ACL) injury and or meniscal damage 3.  Therefore, a disease typically 

associated with old age is manifesting itself in younger individuals and in younger 

athletes. 

Significant understanding and research in the field of musculoskeletal disease, especially 

OA, has come from animal models. Particularly small rodent models are used because 

they are easily tractable, have rapid disease progression, require small doses of drugs and 

are economical 4.  Mice have been used to understand the genetic components of OA, 

injury pathways, mechanisms of injury, and possible treatments.  Unfortunately, most 

mouse models lack translatability to the human form of the disease.  

In PTOA research there are two major limitations to the models proposed.  The first 

being the type of injury used to model a traumatic event.  In human ACL injuries there is 

some mechanism that creates an internal injury however, in mouse models these injuries 

tend to be invasive.  The second limitation is the post injury protocol followed in animals.  

Typically, humans undergo some reconstructive event following an ACL injury.  This 

intervention is used to decrease further damage that an unstable knee may incur yet, a 

surgical stabilization is not performed on animals modeling PTOA.  Therefore, the goal 
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of this pilot study was to validate a non-invasive loading protocol to create internal ACL 

injuries and to propose a surgical intervention that would stabilize an ACL deficient knee. 
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Chapter 2  

2 Literature Review 

2.1 OA 

OA is a degenerative synovial joint disease.  The disease is characterized by focal 

articular cartilage loss, formation of osteophytes, subchondral bone changes and 

narrowing of the joint space.  Patient reported symptoms such as pain and joint stiffness 

accompany OA.   

The incidence and distribution of OA are wide spread throughout the Canadian 

population and affect many aspects of the Canadian health care sector.  OA affects one in 

ten Canadians.  From the Canadian Community Health Survey of 2010 to 2011, 20% of 

women and 13% of men reported having arthritis and 56% of those affected were less 

than 65 years of age 1.  World estimates show a similar trend towards higher prevalence 

of OA in females, 18.0%, than in men, 9.6% 2.  The economic impact, health care costs 

and loss of productivity costs, resulting from arthritis are estimated at $33 billion per year 

and are projected to double in the next 20 years 5. 

Some of the factors thought to contribute to the development of OA are systemic such as 

age, sex, ethnicity and genetic background.  Specifically, the incidence of OA increases 

with age and may be caused by general wear and tear, and the body’s decreased ability to 

repair itself.  In addition, females have a greater incidence of OA and are reported to have 

more severe OA 6.  This trend may be a result of the role estrogen and other hormonal 

fluctuations play in bone and cartilage health.  Ethnic differences in the prevalence of OA 

are more commonly cited in the hip joint and may be related to anatomical differences in 

the femoral head and acetabulum.  These ethnic specific prevalence rates have not been 

studied in the knee joint 6.  Additionally, a mutation in the growth/differentiation factors 

family of genes has been associated with chondrodysplasia, abnormal growth of cartilage 

in the long bones, and OA 7, 8.  Furthermore, mutations to the collagen X gene have been 

associated with osteochondral dysplasias which affect the developmental skeleton and 
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can result in conditions such as dwarfism that eventually develop OA secondary to more 

severe diseases 9. 

More localized risk factors for OA include obesity, anatomical alignment, occupation, 

physical activity and injury.  Specifically, obesity affects the weight bearing joints such 

as the knee by increasing the forces through these joints.  Furthermore, the alignment of 

the knee joint is important for proper force distribution.  If the knee is in varus alignment 

(bow legged) this can result in medial compartment OA.  Conversely if the knee is in 

valgus alignment (knock kneed), then it can result in lateral compartment OA.  

Occupation and physical activity can cause repetitive overuse injuries and this damage 

over time can lead to OA.   

2.2 PTOA 

PTOA is a form of secondary OA resulting from an injury to the joint.  Traumatic injury 

to the articular joint surfaces is believed to start a cascade of events that leads to the 

degeneration of the articular cartilage and further deterioration of the subchondral bone.   

This compromised cartilage becomes stiffer and under tensile forces the cartilage draws 

more water into the cartilage compromising its shock absorbent properties 10.  These 

changes in physical properties cascade to further cartilage damage as mechanical stresses 

are magnified and fibrillations, small vertical erosions, begin to form at the surface of the 

cartilage 2.  

Unlike other forms of OA, PTOA most often affects young athletes; occurring in 50% of 

individuals diagnosed with an ACL injury and or meniscal damage 10-20 years after the 

injury 3.  Bone bruises or initial impact injuries to the cartilage leads to atypical 

mechanical loading and cell death.  Following mechanical injury, chondrocytes, the cells 

that create cartilage, have higher levels of glycosaminoglycan release and apoptotic 

markers that are consistent with matrix degeneration and OA 11.   

2.2.1 Human ACL Injuries 

The knee is made up of structures within the region of the distal femur and the proximal 

tibia.  The knee primarily works in a hinge-like fashion to allow extension, flexion and 



5 

 

some rotation in the lower limb.  The knee joint is a synovial joint with a synovial 

membrane that separates the intracapsular and extracapsular components.  Intracapsular 

components include the synovial fluid, meniscus, ACL, and posterior cruciate ligament 

(PCL).  Extracapsular components include the medial collateral ligament, lateral 

collateral ligament, patellar ligament, oblique and arcuate popliteal ligaments, bursae, 

patella and muscular dynamic stabilizers.  All components of the knee work together to 

lubricate, stabilize and mobilize the knee.  Specifically, the ACL is primarily responsible 

for the limiting anterior tibial translation.   

Injury to the ACL can result from several different mechanisms.  The most common 

mechanism of injury involves a moment of deceleration combined with a change in 

direction and results in the disruption of the ligamentous structure.  This motion is the 

same as the cutting or pivoting motion seen in soccer, football and basketball.  A second 

mechanism of injury requires an individual to land on uneven surfaces or land with the 

foot in inversion.  This movement is typical in jumping sports such as basketball and 

volleyball.  The third, and least likely, mechanism of injury is force or contact dependent.   

An anterior, lateral or medial force can result in hyperextension of the knee, valgus 

collapse or varus collapse respectively and lead to ACL failure 12.  This is common in 

sports that have impact components such as football and rugby.  The ACL is particularly 

vulnerable at 30 degrees of knee flexion, in valgus alignment and with the tibia in 

external rotation 13.  Thus any movement that puts the knee into this alignment can result 

in injury to the ACL. 

In addition to the instability in the knee following ACL rupture an initial impact event or 

bony bruise can also be characterized.  The mechanisms of injury for ACL injuries often 

occur in conjunction with bone contusions 14, 15, 16.  Given that cartilage acts as a shock 

absorptive component of the knee, damage to the cartilage from bone on bone contact can 

impair its function leading to disease progression 10.  It has been postulated that an initial 

impact to the cartilage may lead to PTOA.  Conversely, an ACL rupture followed by 

subsequent bone on bone injury has also been postulated to lead to PTOA.  This 

uncertainty makes the treatment of PTOA more difficult.   
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2.2.2 Animal ACL Injuries 

In quadruped animals the disruption of the ACL is a rare injury. However, quadrupeds 

can engage in specific movements that make their ACLs susceptible to injury.  Reported 

mechanisms of injury include excessive loading of the hind limb, such as in jumping 

movements for example; excessive tibial internal rotation, when the toes are pointing 

inward, and in instances of traumatic hyperextension of the hind limb often seen when 

leaping off of high elevations and extending the hind limbs 17.   

2.2.3 ACL Reconstruction 

Surgical reconstruction of the ACL is the most common treatment choice following ACL 

rupture. Although there are several approaches to surgical reconstruction, the underlying 

methodology is similar.  ACL reconstruction cannot prevent the development of OA, 

however, it can provide stability to an ACL deficient knee, thus protecting the knee from 

any further damage to the cartilage and meniscus.  This is currently the best option when 

considering preventative treatment for OA, especially in regards to PTOA.   

2.3 Animal Models 

Understanding and progress in the field of OA has come in large part from laboratory 

research.  In particular, the development of OA has been studied in small animal models.  

Animal models are used for their translatability to humans.  Although there are obvious 

difference between animals and humans, researchers use data gathered from animal 

experiments to provide evidence for new concepts, treatments and theories.  Similar to 

humans, canines develop OA after ACL damage 17, 18 .  Although OA can occur 

spontaneously 19, 20 in mice and large animals, the progression is slow and does not have a 

100 percent incidence rate 21.  In OA research, mice and rats are often used as animal 

models because of the tractability of the disease; the low cost to purchase and house 

the animals; the rapid disease onset if intervened; the ability to genetically modify 

mice and the low quantity of drug required for investigative purposes. 
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2.3.1 Differences and Similarities Between Animals and Humans 

The biomechanical features that exist between quadrupeds and bipeds are different.  The 

most notable difference is how humans and mice move around.  Humans are bipedal 

animals that concentrate all their weight on the legs and walk upright.  Mice are 

quadrupeds therefore, they walk on all four limbs and have their weight distributed to all 

four limbs.  More specific differences exist at the knee joint level.  Typically, the 

quadruped knee is loaded in a flexed configuration with the small contact area between 

the femoral condyles and the tibia.  Conversely, in humans functional loading occurs in a 

fully extended configuration of the knee.  This leads to a greater contact area between the 

femoral condyles and the tibial condyles in bipeds.  Mice also have sesamoid fabella 

bones on the lateral sides of the knee that are only present in 10-30% of humans 22.  

These bones are not directly involved in the articulation of the knee however these bones 

are important in animal stabilization protocols. 

There are several similarities that allow researchers to extrapolate findings from animal 

studies and predict the impact on humans.  Although differences in locomotion exist, 

both humans and mice are plantigrade walkers so they use the plantar surface of the foot.  

Furthermore, there are similarities in the anatomy and the function of the knee between 

quadrupeds and bipeds. The knee, in humans, and the stifle, in animals, are used for the 

flexion, extension and rotation of the lower hind limb.   

Of particular interest is the ACL, which is analogous to the cranial cruciate ligament 

(CrCL).  The CrCL has similar functional features to the ACL in that it limits the medial 

or internal rotation of the tibia with relation to the femur and limits anterior or cranial 

translation of the tibia with relation to the femur.  The CrCL and the ACL are both 

composed of two bundles that contribute to the different axes of constraint and stability 

that the ligament provides in both quadrupeds and bipeds.  In the human, the ACL is 

comprised of the anteromedial and the posterolateral bundles whereas in the quadruped, 

the CrCL is composed of a craniomedial and a caudolateral bundle.   

Furthermore, ligaments have high levels of type I collagen.  The ligamentous zone in 

both animals and humans are composed of elongated fibroblasts and parallel collagen 
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fibrils.  In addition, humans and animals have a transition region from the ligamentous 

midsheath to the boney origins and insertions that contribute to overall ligamentous 

properties.  

The use of animal models is important in studying diseases that affect humans.  As such, 

researchers must choose models that best fit with the criteria of the disease and data 

collection means.  Results and conclusions from animal models should be critically 

evaluated due to the intrinsic differences between humans and the model subjects. 

2.3.2 Mice Models of OA 

There are several validated procedures that model OA in mice.  These methods range 

from transgenic manipulations, behavioural modifications, intraarticular injections, 

surgical interventions and impact dependent models. 

2.3.2.1 Transgenic Mice 

Transgenic mice are used for OA research to detail the progression of the disease and to 

identify key genes and proteins that participate in the etiology of the disease.  Mice can 

have genes knocked-out or knocked-in to make the genes nonfunctional or more 

functional.  More complex genetic manipulations can temporally and spatially affect 

genes so that the genes can be expressed at specific time points in development or 

expressed only in certain areas of the body.  This has allowed researchers to manipulate 

how much of a gene is expressed, when it is expressed, and where in the organism the 

manipulation takes place.   

For example, Helminen et al. created a line of mice that caused joint degeneration and 

osteoarthritic changes in knee cartilage 23.  They bread seven generations of mice and 

selected for one normal gene and one defective gene in the mouse line to create 

heterozygotes. The mice had an internal deletion of human COL2A1 gene.  Collagen II 

production was not hindered however, the gene product was unable to fold into its 

functional form and was degraded.  This experiment showed the link between collagen 

degradation and articular cartilage degradation. Other studies looking at collagen IX 

deficient mouse models have shown similar results in mice with a loss of the gene 
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yielding osteoarthritic changes in the joint of the animals 24.  

In 1996, Glasson et al. characterized a line of “blotchy” mice 25.  These mice developed 

OA as a result of poor cross-links between the collagen fibrils in the cartilage leading to 

more collagen breakdown by the enzyme collagenase 25.  These mice developed cartilage 

defects and Glasson et al. correlated the degradation of collagen to enzymatic processes.  

The loss of cross linkages changed the composition of the extracellular matrix and this 

initial disruption can start the cascade of further degeneration seen in OA. 

With further analysis into the increased expression of catabolic substrates with cartilage 

damage, other genetic profiles have been tested.  Clements et al. in 2003 explored the role 

of interleukin-1β, interleukin-1β converting enzyme, stromelysin 1 and inducible nitric 

oxide synthase 26.  These genes encode catabolic factors that degrade cartilage.  These 

genes were deleted in male mice and were compared to wild type male mice.  All mice 

underwent a partial medial meniscectomy to induce OA.  The knees were histologically 

observed to have developed earlier and more severe cartilage lesions in the knocked-out 

mice compared to the wild type mice.  Since cartilage degeneration was present even in 

the absence of a catabolic gene, it suggested that although catabolic in nature, the 

corresponding gene products of the deleted genes were necessary in suppressing other 

catabolic responses.  As such, it can be difficult to create genetic models of an epigenetic 

disease like OA.   

In addition to these genes, the role of interleukin-6 has been studied.  De Hooge et al. 

created a knock-out strain of mice that were deficient in the interleukin-6 gene 27.  

Researchers compared the knock-outs to wild type mice.  Furthermore, the mice were 

either housed for 18-23 months to test the aging effects of interleukin-6 or had 

collagenase injections to induce OA.  The aged mice comparison showed an increase in 

spontaneous OA development in the knock-out group compared to matched wild type 

controls.  The induced OA group comparison showed no difference in the severity of the 

disease.  Thus, de Hooge et al. concluded that interleukin-6 could have a protective effect 

on OA with aging. 

Another target of genetically manipulated mice models is a disintegrin and 
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metalloproteinase with thrombospondin motifs (ADAMTS) gene.  This family of genes 

has several functions, however, pertinent to OA is its role in aggrecan, a component of 

cartilage, cleavage.  Glasson et al. in 2005, created an ADAMTS 5 knock-out strain of 

mice and compared it to wild type mice after creating instability in both groups through 

destabilization of the medial meniscus (DMM) 28.  The knock-out mice had decreased 

cartilage degeneration when compared to the wild type mice.  Glasson et al. concluded 

that ADAMTS 5 was highly responsible for aggrecan cleavage. 

Postulations that OA has an inflammatory component lead to genetic mutations of CD4+ 

cells.  These cells are involved in the immune system and induce further inflammatory 

responses.  Research by Shen et al. attempted to define the role of the CD4 gene by 

creating a knock-out strain of mice 29.  The investigators compared CD4 knock-outs to 

wild type mice after ACL transection.  The knock-out mice had lower levels of 

macrophage inflammatory protein, a cytokine associated with OA, and slower cartilage 

degeneration as compared to a wild type group.   Thus the loss of CD4 is protective to the 

knee after destabilization and the signaling properties of the CD4+ cells were important in 

OA. 

Low-density lipoprotein receptor-related protein 5 (LRP5) mutations in humans have 

shown a link to osteoporotic and osteoarthritic changes.  As such, Lodewyckx et al. tested 

the effect of the gene in knock-out mice 30. The LRP5 deficient mice and a wild type 

group of mice were then exposed to two methods of OA induction, papain and 

collagenase injection or DMM.  The LRP5 deficient mice had low bone mineral density, 

weighed less and had more cartilage degeneration than their wild type counterparts.  The 

authors concluded that the gene played a definite role in embryonic joint and bone 

development.  As such, the osteoarthritic changes observed were likely due to the 

developmental role that LRP5 plays and OA is a subsequent product of the bone and joint 

formation abnormalities. 

Most recently peroxisome proliferator-activated receptor gamma (PPARγ) has been used 

to study the signaling pathway of cartilage homeostasis.  Vasheghani et al., used a 

cartilage specific knock-out of PPARγ to characterize the progression of the disease after 
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DMM 31.  These mice were compared to wild type mice with functional PPARγ genes.  

The loss of PPARγ lead to more severe OA changes, chondrocyte cell death and 

increased inflammatory markers.  Thus, the PPARγ gene product and subsequent 

signaling pathways were important in regulating articular cartilage health. 

Although transgenic mice have allowed the development of drugs that target particular 

molecules in the disease pathway, these models often characterize systemic disease 

manifestations that are atypical of OA in humans.  For example, besides OA Helminen’s 

mice had manifestations of chondrodysplasia and delayed mineralization.   Similarly, the 

“blotchy” mice also had complications with emphysema and aortic aneurysms and the 

LRP5 deficient mouse developed bones with low bone mineral density.  Furthermore, 

many transgenic mice studies are useful in understanding the intricate details of the 

disease progression but prove inefficient for human OA modeling. 

2.3.2.2 Behavioural Modification Models 

Behavioural studies on mice have also led to some interesting models of OA.  For 

example, the immobilization of limbs in animals can lead to articular cartilage 

degeneration since the maintenance of healthy cartilage requires mechanical loading and 

muscular activation. The immobilization of a joint decreases the normal loading 

mechanics and causes nutritional deficits and atrophy of the tissue. These experiments 

have been performed on rabbits, dogs and rats 32, 14.   

Another behavioural modification addresses the correlative relationship between obesity 

and OA.  Griffin et al. used the following three groups of mice: a control or normal diet 

group, a low fat content diet group and a high fat content diet group 33.  Mice on the high 

fat diet developed metabolic conditions such as hyperglycemia, hyperinsulinemia, 

hypertension, and central adiposity all of which are associated with obesity in humans.  

Furthermore, mice on the high fat diet developed OA and the control group did not.   

Although behavioural studies can provide information about how the entire system reacts 

to an intervention, it becomes difficult to decipher true causative relationships from 

multifactorial processes and subsequent epigenetic changes observed in the animals.  
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Thus, the use of behavioural models is limited to systemic diseases and makes it difficult 

to detect cause and effect relationships. 

2.3.2.3 Intraarticular Injection Models 

Intraarticular injection models include injecting the joint with substrates known to create 

instability such as: papain, a proteoglycan degrader; iodoacetate, a glycolysis inhibitor; 

collagenase, an extracellular degrader; and zymosan, an inducer of degrading enzymes 34, 

35, 36,  37, 38.  For example, iodoacetic acid is an inhibitor of glycolysis that can cause the 

death of chondrocytes, the cells that maintain the cartilage, when injected into the joint.   

Guingamp et al. worked on rats with varying concentrations of mono-iodoacetate to 

assess the degenerative changes of cartilage 39.  Rats that were treated were given 

0.01mg, 0.03mg, 0.1mg, or 0.3mg of mono-acetate.  One group acted as a control and 

had saline injected instead of mono-acetate.  A total of 8 rats per group were used.  Rats 

were assessed 30 days after injection and degeneration of the cartilage was present.  The 

injection decreased the presence of proteoglycans and changed the matrix in the joint. 

Agents such as cytokines, transforming growth factor and enzymes that target collagen 

and hyaluronic acid all have a similar effect on the degeneration of the extracellular 

matrix and articular cartilage.   

Intraarticular injections are useful for the identification of important molecules that 

protect or harm the joint.  Further research in the use of injections also shows that the 

injection of a substrate to induce OA also affects the cruciate ligaments leading to further 

unintentional damage 40.  Nonetheless, injection models are not representative of the true 

etiology for human disease progression and introduce the possibility of infection caused 

by the injection itself. 

2.3.2.4 Surgical Interventions 

Surgical interventions to mimic destabilization of knee are also used to induce OA in 

animals.  A common procedure in mice models for OA is the ACL transection, which 

involves a lateral incision from the distal patella to the tibial plateau, medial patellar 

dislocation to isolate the ACL and then transection of the ACL.  Glasson et al. compared 

this procedure to a ‘no surgery’ and a sham surgery group that left the ACL intact.  The 
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mice that underwent ACL transection had significantly more severe OA scores at four 

and eight weeks after the surgery 41.   

Another method, previously introduced, is inducing instability of the knee through a 

DMM.  This surgery involves a medial incision from the distal patella to the tibial plateau 

and dissection of the medial meniscotibial ligament.  The instability produced is 

sufficient to observe the progression towards OA.  Glasson et al. compared the DMM 

group to a no surgery and a sham surgery that exposed the joint but did not disrupt the 

medial meniscotibial ligament.  The DMM group was observed to develop OA at four 

and eight week time points however the progression towards OA was slower than in ACL 

transection models.  These two procedures provide a plethora of information with 

relevancy in the progression of OA post meniscal injury and post ACL injury.  

Nevertheless, the invasive nature of exposing the synovial capsule may occlude true 

changes seen in humans who have meniscal injuries and or ACL injuries without invasive 

joint capsule opening. 

2.3.2.5 Impact Modeling 

PTOA, which affects a younger demographic than is typically seen with OA, is poorly 

understood and only recently have models attempted to account for this subcategory of 

OA.   Impact modeling involves using force to create an injury to a specific joint in a 

uniform and reproducible way.  The impact modeling of OA attempts to mimic the actual 

mechanism of injury in PTOA.  Injury to the knee often causes damages to the 

subchondral bone in humans.  Furman et al. proposed a mouse model to address said 

bone changes in the development of OA 42.  The model created a closed tibial plateau 

fracture using an indenter to apply 55 N of force at a rate of 20 N/s.  Although this mouse 

model creates an appropriately injured knee with non-invasive surgical intervention, it 

falls short of mimicking the human etiology.  The progression towards OA or specifically 

PTOA may not be due to a single blunt impact to the tibial plateau rather, it may be the 

result of a biomechanical instability which creates subchondral and cartilage damage 

because of the abnormal loading patterns incurred.   

Poulet et al. developed a model that used multiple impact forces to achieve OA 
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progression 43.  Mice were placed into an apparatus that loaded the knees while in 

flexion.  The mice underwent one of five different protocols that varied from one loading 

event to 15 loading events with varying time points from one day to 5 weeks.  One 

loading event consisted of 40 cycles of mechanical force.  The use of multiple bouts of 

force was non-invasive and made the study pragmatic for human translational purposes.  

This method of OA induction is more representative of long-term degenerative changes 

seen with overuse or aging and not PTOA.    

To control for extraneous changes due to open surgery Christiansen et al. developed an 

axial loading apparatus that recreated a subluxation event resulting in an ACL deficient 

knee 44.  The mice were laid prone in a contraption with their knee flexed to 90 degrees 

and their ankles lined up directly over the knee and flexed at 30 degrees.  A single bout of 

axial load was applied and mice were returned to regular housing and activity.  

Subsequent osteoarthritic changes were observed at six time intervals spanning from one 

day to eight weeks post injury.  A follow up study by Lockwood et al. investigated the 

effect of varying speeds and the resulting injury 45.  Specifically, they compared a low 

rate, 1 mm/s, and a high rate, 500 mm/s, injury model and concluded that low rates 

resulted in avulsions while the high rate loading resulted in midsheath ACL rupture.  

These non-invasive, single bout models more closely resemble ACL injuries in humans 

and addresses the subchondral and cartilage changes incurred from a compromised knee 

that were not considered in the Furman et al. model.  Although the mechanism of injury, 

axial load while in 60 degrees of knee flexion and 30 degrees of ankle flexion, is not the 

same as humans there are several similar features including a subluxation event, possible 

bone injury and a reduction that leaves the joint capsule intact that are relevant in the 

study of PTOA. 

2.3.3  Treatment of OA in Animals and Relevance of Models 

To properly assess the potential effect of new interventions in preventing PTOA 

following ACL rupture using an animal model, it is not only important that the 

mechanism of initial injury be comparable to the mechanism of injury observed in human 

injury, but that the model also factor in the common practice of reconstructing the 

ligament surgically.  It is possible that the effect of some interventions is mediated by the 
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stability of the joint and subsequent avoidance of secondary injuries all of which 

contribute to PTOA.  Even the most relevant models like impact models may be under 

representing a treatment’s true effect by not first stabilizing the joint. 

In canines there are surgical options to correct for CrCL deficiencies comparable to ACL 

surgical options in humans.  Canines that display severe tibial plateau angulation can 

undergo tibial osteotomies to correct the tibial plateau angle 17.  This procedure takes a 

portion of the proximal tibia and rotates it caudally.  A CrCL deficient joint that 

undergoes a tibial plateau leveling osteotomy will have a decreased cranial thrust and 

stabilization restored.  Another tibial osteotomy technique advances the tibial tuberosity 

to decrease cranial thrust in an unstable knee.  Knee stability can be achieved through 

CrCL reconstruction with intracapsular stabilization techniques using ligamentous 

structures or synthetics.  Extracapsular stabilization can also achieve stability in CrCL 

deficient knees in canines.  The lateral fabella is used as an anchorage site, then the suture 

is passed under the patella ligament and through the tibial tuberosity from the medial to 

the lateral side.  The suture is tensioned in flexion and fastened.  The extracapsular 

technique achieves short-term stabilization that allows the ruptured CrCL to tact down on 

itself and this provides long-term stabilization 17.  

Novel interventions are currently in development and may provide answers on how to 

prophylactically inhibit PTOA with application at the time of initial injury.  Molecules 

such as P188 surfactant, bone morphogenetic protein OP-1 15 and fibroblast growth 

factor-18 have shown promise for cartilage repair and protection in both in-vitro and in-

vivo models.  An impact model that includes return of joint stability in the mouse that 

develops OA quickly may be an important contribution toward the investigation of these 

types of intervention as a first step in demonstrating efficacy prior to human trials. 

2.4 Summary 

The knee joint is composed of articulating bones that achieve stability through both static 

and dynamic soft tissue systems.  These controls are required for normal joint loading 

and normal articulation.  There are differences in the locomotion and function of 

structures when comparing biped and quadruped animals nevertheless, analogous 
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structures allow scientists to interpret data and connect the two systems.  In particular, the 

use of animal models is crucial in medical advancement in the field of OA. 

Murine models of OA are created to address the gaps in scientific knowledge.  

Genetically modified mice provide information about particular genes and protein 

interactions that affect important anabolic or catabolic pathways.  Behavioural 

modifications simulate systemic and overuse models of OA that are helpful for the 

understanding of idiopathic or primary OA.  Invasive interventions using injections and 

surgical transections are used for traumatic models of the disease.  Unfortunately, the 

invasive nature of any surgery calls into question what degree of the disease progression 

is a result of surgery or the intended instability.  A recent axial loading model addressed 

the need for non-invasive procedures to mimic a ligamentous injury in humans.  

A shortcoming in all animal models has been the lack of intervention after establishing an 

injury.  In humans, reconstructive surgery after a ligamentous injury adds stability back 

to the disrupted knee.  Comparable surgical options exist for canine and other 

quadrupeds.  Yet, this reconstructive element is not observed in the scientific models of 

OA, specifically PTOA.  This clinically relevant procedure may provide a better 

understanding for how and why certain promising treatments do not reach clinical trial 

status. 
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Chapter 3  

3 Objectives 

3.1 Axial Loading Validation 

The primary objective of this project was to validate a non-invasive model of 

PTOA using the Instron® materials testing machine.  Secondary objectives included 

analyzing the effects of speed on the injury inflicted and assessing the agreement between 

microCT ligament findings and histology findings. 

3.2 Surgical Stabilization Model 

The primary objective of this project was to develop a surgical intervention that could 

introduce stability to the mouse knee following ACL transection.  Secondary objectives 

included determining the effects of the stabilization at five and ten week time points in 

histological findings and gait parameters. 
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Chapter 4  

4 Axial Loading Validation 

4.1 Introduction 

OA is a degenerative disease that affects 20% of Canadian women and 13% of Canadian 

men 1.  Of these Canadians, 56% are under the age of 65.  Unlike other forms of OA 

previously studied, PTOA is a form secondary OA that affects a younger demographic.  

Thus, increasing research in the field of musculoskeletal health has attempted to study 

and treat this progressive disease.   

Animal models have long been used to model human disease.  In the field of OA many 

different rodent models have been used.  Models in transgenic manipulations 23, 25, 26, 27, 29, 

30, 31, behavioural modifications 32, 14, 33, injectables 34, 35, 36, 37, 38, and surgical 

interventions 41 have dominated the field of OA animal research.  Recently, work done by 

Christensen et al. 44 and Lockwood et al. 45 has provided the field of OA with a new 

model to characterize PTOA specifically.  

The purpose of this study was to validate the protocol proposed by Christensen et al. in 

2012, and Lockwood et al. in 2013.  Additionally, we tested the agreement between raters 

and between micro-computer tomography (microCT) and histology. 

4.2 Methods 

C57BL/6 Mice 

Male C57BL/6 mice were obtained from Charles River (MA, USA).  Mice were obtained 

at 46-64 days of age.  Mice were housed in traditional shoebox cages with one to four 

mice per cage and given the usual house and bedding for enrichment.  C57BL/6 mice 

were used because their genome is sequenced, they are genetically stable, and are a 

general purpose strain allowing for comparison with other studies that use the same 

animal.  Sample sizes were based on the minimum number of animals deemed ethically 

appropriate by the Animal Care and Veterinary Services Research Ethics Board at the 
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University of Western Ontario and the minimum number of animals required to set up a 

pilot study. 

Axial Loading 

Twelve mice were anaesthetized using isoflurane and placed in the axial loading device, 

the Instron® materials testing machine (Instron®, Norwood, MA; model: 8874), with 

continued administration of anaesthesia through a tube mounted onto the device.  The 

mice were placed prone with three of four limbs supported by a platform and the fourth 

limb, the right hind limb, supported by the knee cup.  The right hind limb was flexed to 

approximately 60 degrees of knee flexion and ankle was positioned directly above the 

knee with approximately 30 degrees of dorsiflexion and positioned into the device 

(Figure 1A).  This orientation in addition to the axial load caused the tibia to subluxate 

anterior to the femur (Figure 1B).  The loading cell was preset to 2N and then the 

computer software Wavematrix(TM) (Norwood, MA) applied 12-14N of force at a rate 

of 1 mm/s, 250 mm/s and 500 mm/s.  Total vertical displacement of 2 mm was achieved. 
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Figure 1: Loading Set-Up.  The Instron material testing machine ® was used to create 

ACL injury in the mice (A).  The mice were placed in a prone position.  In a close up, the 

mouse can be seen with its right hind limb placed into the knee and the ankle holders.  A 

schematic representation of the mouse knee before being loaded, during axial loading 

when the tibia is subluxed and after the load was removed (B). 

Five mice underwent the 1 mm/s protocol, four mice underwent the 250 mm/s protocol 

and four mice underwent the 500 mm/s protocol.  A single loading procedure took less 

than a minute.  Mice were closely monitored for signs of discomfort (limping, hunching, 

failure to groom) and given 0.05 mL buprenorphine for pain at the time of injury and one 

day post loading.  Mice were euthanized one day after the injury using CO2.  

The preset loaded parameters of this experiment were reviewed to ensure accuracy.  

Forces measured during the loading were equivalent to those of previous studies 45, 44.  
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The speed of the machine was important in determining the causative relationship 

between the injury type and the different preset values.  Analysis of the initial vertical 

displacement to time output given by the software measured the accurate speed of the 

machine.  Trials set at 1 mm/s ran on average at 1.00 mm/s, trials set at 250 mm/s ran on 

average at 299.19 mm/s and trials set at 500 mm/s ran on average at 356.99 mm/s.   

Dissections 

Mice knees were dissected and harvested for tissue processing.  The knee was exposed 

using a lateral incision to allow photographs of the knee using the Leica DFC295 camera 

and Leica Application Suite software version 3.8.0 (Leica Microsystems, Richmond Hill, 

ON, Canada).  Knees were dissected in phosphate buffered saline (PBS).  The femur was 

cut proximal to the hip and the tibia was cut proximal to the ankle.  Excess muscle tissue 

was removed without disturbing the knee capsule.  Knees were fixed in 4% 

paraformaldehyde (PFA) for 24 hours before further tissue enhancement for microCT 

scanning. 

Tissue Enhancement 

Knees underwent serial dehydrations in 30%, 50% and 70% ethanol before being soaked 

in a 2.5% solution of phosphotungstic acid (PTA) dissolved in 70% ethanol 46.  Knees 

were soaked for four days with the PTA solution and the solution was refreshed on day 

two.  This protocol was used to enhance the contrast imaged in the microCT scans and 

optimized to ensure sufficient solution penetration into the synovial capsule.  PTA in 

solution is preferentially taken up by soft tissue and binds to collagen that is present in 

ligaments 46.  PTA allows the ligaments to absorb the x-rays making the soft, poorly 

imaged ligament appear brighter and detectable under microCT since microCT is a 

reconstruction of multiple x-rays.  

Tissue Processing 

Following the contrast enhancement and microCT scanning the knees were placed in 

ethylenediaminetetraacetic acid (EDTA) on a rocker at room temperature for 

decalcification.  EDTA solution was changed every two days a total of four times.  

http://en.wikipedia.org/wiki/Ethylenediaminetetraacetic_acid
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Decalcification was determined by physical end-point testing.  Once tissue was 

sufficiently decalcified samples were placed in 70% ethanol and refrigerated before 

processing.  The right knees of all axial loaded mice were collected as well as three 

random contralateral knees. 

All harvested knees were sent for processing at the Molecular Pathology Laboratory at 

Robarts Research Institute (London, ON, Canada).  Knees were dehydrated, cleared, and 

infiltrated with paraffin wax.  Knees were embedded on the sagittal plane in paraffin wax 

for microtome sectioning and histological sectioning. 

Histology 

Axial load applied on the mouse stifle has shown ACL disruption and subsequent OA 

development in mice 41, 42.  Lockwood et al. demonstrated that the severity of the 

ligament disruption was a function of the speed that the load was applied. The fast, 500 

mm/s, impact model demonstrated midsheath ruptures while the slow, 1 mm/s, impact 

model resulted in ligament disruptions and avulsions on the tibia.  This was confirmed 

through microCT and histological findings.  

Knees embedded in paraffin wax were sectioned at Robarts Research Institute (London, 

ON, Canada).  Serial sections 5μm thick were collected onto slides and dehydrated 

overnight in an oven at 40 degrees Celsius.  Slides were dewaxed using two five-minute 

xylene solution washes.  Slides were then rehydrated using 100%, 95%, and 70% ethanol 

solutions followed by tap water rising.  After dewaxing, the slides were stained with 

Safranin-O and Fast Green. 

Slides were dipped in 50% hematoxylin for 15 to 30 seconds and immediately rinsed with 

tap water until water flowing off was clear and then dipped in tap water for five minutes.  

Slides were placed in 0.02% Fast Green solution for 30 minutes for back ground staining.  

Slides were dipped in 1% Glacial Acetic Acid for no more than 15 seconds.  Slides were 

exposed to 1.5% Safranin-O solution for three and a half minutes then subsequently 

dipped twice in distilled water to remove excess stain.  Slides were dipped three to five 

times in 70%, 95%, 100% and another 100% ethanol solution and then in two xylene 
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solutions to dehydrate the samples.  Slides were allowed to air dry for five to ten minutes 

before mounting a coverslip with a xylene based mounting medium.  Cartilage and 

proteoglycans stain red and other tissue such as matrix and bone stain green. 

Knees were imaged with a Leica DFC295 camera, Leica DM1000 microscope and Leica 

Application Suite software version 3.8.0 (Leica Microsystems, Richmond Hill, ON, 

Canada).  An experienced rater was given randomized sagittal sections of 16 mice knees 

to rate as ACL intact, PCL intact, avulsed or normal.  A non-rater reordered the slides 

and created new mouse ID labels on glass slides to randomize.  A randomization key was 

kept separate from slides at all times.  The rater was blinded to the number of knees per 

group and to the expected results of the experiment. 

MicroCT 

Knees were embedded in 1% agarose gel to stabilize for scanning protocol. Knees were 

scanned on the GE Locus RS microCT (GE Healthcare, London, Ontario, Canada).  

Samples were scanned for six and a half hours using a 450 μA tube current, 80kVp x-ray 

spectrum, with 900 views, 0.4° increment angle per view and 4500 ms exposure time. 

Images were reconstructed with 20μm isotropic voxels with five frames averaged per 

view.  The software used to analyze the images was the MicroView software (version 

ABA 2.2, GE Healthcare, London, Ontario).  

Two clinicians, a veterinarian and an orthopaedic surgeon, rated the degree of knee injury 

on the knees based on the micro CT scans.  Raters assessed randomized scans and rated 

them as ACL intact, PCL intact, avulsed or normal.  Raters were blinded to the number of 

animals in each group.  MicroCT images were reordered, relabeled and cropped so that 

only one knee was visible at a time. 

Statistics  

All statistical analysis was performed using SPSS (IBM, V.22.0, Armonk, New York, 

USA).  MicroCT data was analyzed for agreement between the independent raters using 

Cohen’s kappa.  Agreement between microCT and histological findings was assessed 
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using a Fleiss kappa for agreement among three raters.  Values reported included kappas, 

p values and 95% confidence intervals (CI). 

All of the statistical analysis was underpowered because of our small sample sizes.  Thus, 

we suggest that the CI and general trends should be used to interpret the findings. 

4.3 Results 

Histology 

Sagittal slides were used to assess ACL tears.  The ACL was torn at all three loading 

speeds (Figure 2).  Arrows on Figure 2 indicate the ends of the torn ACL or the region 

where the ACL is torn.  To assess the integrity of the PCL we compared it to normal 

PCLs of other knees (Figure 3 A-C).  Figure 3A is a normal knee with a line 

superimposed to characterize the shape of a normal PCL.  Figure 3B is the PCL with a 

superimposed line to characterize the common buckling effect on the PCL when the knee 

is ACL deficient (Figure 3 C-F).  The PCL was disrupted in one knee at 1 mm/s, two 

knees at 250 mm/s and two knees at 500 mm/s (Figure 3 D-F).  Avulsions were reported 

in four knees that underwent 1 mm/s, two knees that underwent 250 mm/s and four knees 

that underwent 500 mm/s.  Normal knees or contralateral knees were correctly identified 

as having no ligament disruptions and no avulsions. 
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Figure 2: ACL Disruptions.  Histological slides were stained with Safranin-O and Fast 

Green.  Intact and torn ACLs were visualized in the sagittal plane with arrows indicate the 

ends of the torn ligaments. 
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Micro CT 

Randomized scanned knees were graded for injury type.  The absence of the ACL, the 

absence of the PCL, the presence of an avulsion, and normal knee identification were 

used to grade the knees.  The agreement between the raters in identifying a ruptured ACL 

Figure 3: PCL Loading Injuries.  Histological slides were stained with 

Safranin-O and Fast green.  Knees were sectioned on the sagittal plane to 

visualize the ligaments.  For comparison a normal knee with a superimposed 

line to visualize its orientation (A) and a typical ACL deficient knee with a 

“buckling” PCL with a superimposed line (B) are shown.  A non-loaded knee 

(C) and knees loaded at 1 mm/s, 250 mm/s, and 500 mm/s respectively (D-F) 

were rated for damage with arrows indicating areas of PCL damage. 
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(Table 1), a ruptured PCL (Table 2), an avulsion (Table 3) and a normal knee (Table 4) 

were the following: 11/15, 12/15, 6/15 and 7/15 respectively.  All tables had observed 

ACL ruptures for micro CT and histology grading of knee loading protocol and the 

respective agreements between raters and between two objective measures.  Values are 

shown as total observed divided by total samples per group. 

Table 1: ACL Absolute Agreement 

 Micro CT Histology 

Rater A Rater B Agreement 

0 mm/s 1/2 1/2 2/2 0/3 

1 mm/s 2/5 3/5 3/5 5/5 

250 mm/s 3/4 4/4 3/4 4/4 

500 mm/s 3/4 3/4 2/4 4/4 

Table 2: PCL Absolute Agreement 

 Micro CT Histology 

Rater A Rater B Agreement 

0 mm/s 0/2 0/2 2/2 0/3 

1 mm/s 0/5 1/5 4/5 1/5 

250 mm/s 1/4 0/4 3/4 2/4 

500 mm/s 1/4 0/4 3/4 2/4 
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Table 3: Avulsion Absolute Agreement 

 Micro CT Histology 

Rater A Rater B Agreement 

0 mm/s 0/2 2/2 0/2 0/3 

1 mm/s 0/5 3/5 2/5 4/5 

250 mm/s 2/4 4/4 1/4 1/4 

500 mm/s 1/4 2/4 3/4 4/4 

 

Table 4: Normal Knee Absolute Agreement 

 Micro CT Histology 

Rater A Rater B Agreement 

0 mm/s 1/2 1/2 1/2 3/3 

1 mm/s 3/5 4/5 4/5 0/5 

250 mm/s 1/4 4/4 1/4 0/4 

500 mm/s 1/4 4/4 1/4 0/4 
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Agreement 

The raters agreement on ACL ruptures on microCT had a Cohen’s kappa=0.41 (p=0.10), 

95% CI (-0.05, 0.88).  The raters agreement on PCL ruptures on microCT had a Cohen’s 

Kappa=-0.10 (p=0.69), 95% CI (-0.24, 0.04).  The raters agreement on the presence of an 

avulsion had a Cohen’s kappa=0.17 (p=0.24), 95% CI (-0.05, 0.39).  Agreement between 

microCT observations and histological observations had a Fleiss kappa=0.20, 95% CI (-

0.09,0.50) for ACL rupture observations.  PCL disruption agreement had a Fleiss 

kappa=-0.06, 95% CI (-0.36, 0.23).  Finally, the avulsion agreement had a Fleiss   

kappa=-0.07, 95% CI (-0.36, 0.22). 

Subgroup analysis of rater A and histology observations yielded a Cohen’s kappa=0.06 

(p=0.76), 95% CI (-0.35, 0.47) for ACL rupture agreement, a Cohen’s kappa=0.12 

(p=0.59), 95% CI (-0.35, 0.58) for PCL rupture agreement, and a Cohen’s kappa=0.00 

(p=1.00), 95% CI (-0.32, 0.32) for avulsion identification agreement. 

Subgroup analysis of rater B and histology observations yielded a Cohen’s kappa=0.19 

(p=0.42), 95% CI (-0.34, 0.718) for ACL rupture agreement, a Cohen’s kappa=0.13 

(p=0.46), 95% CI (-0.35, 0.10) for PCL rupture agreement, and a Cohen’s kappa=-0.11 

(p=0.68), 95% CI (-0.58, 0.37) for avulsion identification agreement. 

4.4 Discussion 

The first objective of our work was to validate the loading protocol and determine how 

three different speeds affected the type of knee injury incurred.  Previous work had 

demonstrated the use of an axial load to create ACL injuries.  Furthermore, speed 

determined the type of injury created where faster speeds of 500 mm/s created midsheath 

tears and slower speed of 1 mm/s created ligament disruptions with avulsions present 41, 

42.  We hypothesized that although high speeds were necessary for midsheath disruptions 

an intermediate speed would lead to similar outcomes in injury as the fastest set speed. 

Thus, we employed three speeds to determine how 1 mm/s, 250 mm/s and 500 mm/s 

affected the knee joint.  We expected that the 1 mm/s protocol would result in avulsions 

and ACL disruptions.  Our results determined that all knees had ACL tears and the 1 
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mm/s group had avulsions in four out of five knees.  At 250 mm/s we hypothesized that 

the ACL would have midsheath ruptures and no avulsions.  When assessed all knees had 

ACL ruptures and half the knees had avulsions.  The fastest speed was predicted to have 

ACL tears and no avulsions present.  Our results showed that all knees in this group did 

have ACL disruptions but all the knees also had avulsions present. Although the loading 

protocol did produce ACL damage, the presence of an avulsion was not consistent with 

previous findings.  In fact, the fastest and slowest speeds resulted in avulsions.  With the 

intermediate speed leading to two of four knees having an avulsion. 

Assessment of the PCL was also determined.  Previous work on this model did not report 

damage of the PCL however, upon assessing the PCL in our project we determined that 

the PCL was also damaged.  There was one knee in the 1 mm/s cohort, and two knees 

each on the 250 mm/s and 500 mm/s cohort that sustained PCL damage.  This additional 

damage could result in non-uniform injuries and inconsistent injury patterns.    

Our second objective was to compare the use of microCT to histological observations of 

the same knee joints to assess the practicality of using microCT in determining knee 

integrity following an injury.  To assess agreement between observers we performed a 

Cohen’s kappa.  In all cases the kappas were non-significant and had poor (kappa >0.2) 

or fair agreement (kappa=0.21-0.4) between rater A and rater B.  In addition, a negative 

kappa was obtained when comparing PCL disruption agreement, suggesting that there 

was no agreement or that agreement occurred less often than expected by chance.  As 

such, this kappa suggests that the microCT is not appropriate for identifying injury to this 

ligament under the given protocol used.  This could explain why the PCL damage was 

not reported in previous work since the microCT is a poor tool for this characterization.  

To compare the agreement between the microCT and the histology results we calculated 

Fleiss kappa followed by a subgroup analysis to determine if either microCT rater had a 

better agreement with the histology observations than the other rater.  Differences in 

agreement could be due to level of experience and or exposure in the field of animal x-

rays.  Fleiss kappa values were non-significant and there were two negative values 

indicating that the identification of a PCL disruption and an avulsion had ineffective 



31 

 

agreement and the use of microCT compared to histology is poor for assessing these 

injuries.  Our subgroup analysis on the individual raters compared to the histology 

observations also resulted in non-significant p values and poor kappa agreements.  

Additionally, negative kappas were obtained for rater two when compared to the 

histological observations.  There were no statistically significant differences between the 

two microCT raters implying that the agreement was poor and although contrast 

enhanced, the microCT may be a poor modality for the identification of ligamentous 

injury post axial loading in the mouse knee. 

Limitations 

Our small sample size was a limitation to interpreting our results.  In animal trials sample 

sizes tend to be small which can decrease our ability to detect differences and change. 

Thus an increase in sample size could make our statistical findings more robust and 

increase our confidence in the trends we observed thus far.   

Another limitation encountered was the need to optimize the staining protocol for the 

microCT imaging.  This resulted in the knees being stained twice and scanned twice.  

Although the knees were fixed prior to the staining this additional time and agitation of 

the specimens could have lead to unexpected damage and unexpected changes which 

could account for the differences we observed in our experiment and previous work. 

Lastly, previous studies looking at the axial loading of mouse knees to create an ACL 

injury used the Bose Electro- Force 3200 machine.  This machine operates with 

electromagnetic components while the Instron machine operates through hydraulics.  As 

stated previously, we did not reach the maximal speeds we hoped to achieve with this 

loading protocol.  The hydraulics in the Instron may have contributed to a slower than 

expected speeds that were achieved.  Ultimately the change in the machine type and 

model may have other repercussions on the validation of this axial loading protocol. 

Future directions 

This study demonstrated some unexpected outcomes associated with the axial loading of 

the mouse knee.  As such, a larger sample size could be used to determine whether the 
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PCL and avulsion trends are true trends that have not been reported previously.  In 

addition, work to compare the loading in the Instron to the Bose loading machines could 

also clarify whether our findings can be compared to those in previously published work.  

If the machines are comparable then our results would add more support to the work in 

this area of injury modeling. 

Further investigation into the longitudinal effects of such an injury is important for a 

comprehensive understanding of our model.  Given the differences we observed between 

our model and previous models it would be beneficial to follow the mice out to 

appropriate time points to observe any differences that could be attributed to the 

additional ligament damage observed.  Particularly, disease specific pathways and 

changes in behaviour following the injury would benefit the field of musculoskeletal 

research and lead to better animal modeling of human OA. 

The cause of PTOA has been linked to the instability in the knee after an injury as well as 

bony bruises or an initial bony impact at the time of the injury.  This axial loading 

protocol is conducive to creating bony bruises as the tibia subluxes relative to the femur.  

Thus, future studies of this loading model should visualize the articular surface to see if 

there are bony bruises similar to those seen in humans.  This additional piece of 

information could make the model even more translatable to the human disease. 

Application of this model for knee destabilization should also be used for the further 

understanding of post-traumatic osteoarthritis.  This model can be used to investigate the 

inflammatory pathways already studied to better understand the human disease 

progression of patients who have ligament damage.  In addition, it would be of interest to 

investigate different genetically protective mouse lines to quantify the protective nature 

of these genes in a more pragmatic model of injury such as this one.   
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Chapter 5 

5 Surgical Stabilization Model 

5.1 Introduction 

The use of animal models in translational research is common.  These models have 

provided insight into the development, progression and treatment of human diseases.  As 

such the creation and modification of these models is essential to create more robust and 

accurate models.  OA is a musculoskeletal disease that affects 13% to 20% of Canadians 

1.  Of particular interest is PTOA that affects up to 50% of individuals diagnosed with an 

ACL injury and or meniscal damage 10-20 years after the injury 3.  Use of animals has 

long been employed in the field of OA however, current rodent models lack an 

intervention that resembles restored stability like that seen in humans. 

We proposed a surgical intervention to restore stability in the mouse knee following ACL 

transection.  Furthermore, we assessed differences on histological slides and gait 

parameters on mice at five and ten weeks post intervention. 

5.2 Methods 

C57BL/6 Mice 

Male C57BL/6 mice were obtained from Charles River (MA, USA).  Mice were obtained 

at 46-64 days of age.  Mice were housed in traditional shoebox cages with one to four 

mice per cage.  Mice were given the usual house and bedding for enrichment. C57BL/6 

mice were used because their genome is sequenced, they are genetically stable, and are a 

general purpose strain allowing for comparison with other studies that use the same 

animal.  Sample sizes were based on the minimum number of animals deemed ethically 

appropriate by the Animal Care and Veterinary Services Research Ethics Board at the 

University of Western Ontario and the minimum number of animals required to set up a 

pilot study. 
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Surgical Destabilization 

Ten C57 black mice underwent surgical transection of the ACL under general isoflurane 

anaesthesia.  Sterile technique was used to make a skin incision over the lateral side of 

the right knee.  The subcutaneous tissue was dissected and the deep fascia was separated 

exposing the lateral side of the joint.  The patella was moved medially to further expose 

the joint capsule and the ACL.  Both the joint capsule and the ACL were cut under 

microscope and anteroposterior instability was confirmed (Figure 4 A-D).  Four mice 

were left as non-stabilized controls and the joint was flushed with warm physiological 

saline and the deep fascia was imbricated and closed with a 5-0 prolene suture.  The 

subcutaneous layer was closed with 5-0 vicryl and 3M Vetbond (no.1469 SB) tissue 

adhesive.  Anaesthesia was turned off and the mouse was allowed to recover after an 

injection of ampicillin and buprenorphine subcutaneously.  Mice were closely monitored 

the day of surgery and provided with a second dose of analgesic, buprenorphine, 24 hours 

postoperatively.  Mice were checked daily for signs of discomfort. 

Surgical Stabilization 

The remaining six mice underwent ACL stabilization.  The surgical intervention was 

chosen based on canine ACL repair techniques.  A 5-0 prolene suture was used to 

stabilize the stifle joint using an extracapsular technique.  A lateral approach was used to 

identify the lateral fabella and a non-absorbable (5-0 prolene) suture was placed around 

the fabellofemoral ligament.  The suture was run under the patellar tendon to the medial 

side of the tibia.  A 30-gauge needle was used to drill a hole in the tibial crest, proximal 

to the patellar ligament.  The suture was passed from the medial side of the tibial crest 

hole to the lateral side.  The knee was flexed to 90o and the suture was tied down and 

tensioned on the lateral side. The joint was flushed with warm physiological saline and 

the deep fascia was closed with a 5-0 prolene suture.  The subcutaneous layer was 

imbricated and closed with 5-0 vicryl and 3M Vetbond (no.1469 SB) tissue adhesive 

(Figure 4 E-H).  Anaesthesia was turned off and the mouse was allowed to recover after 

an injection of 0.333 μL ampicillin and 0.05mL buprenorphine subcutaneously.  Mice 

were closely monitored the day of surgery and provided with a second dose of analgesic, 
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buprenorphine, 24 hours postoperatively.  Mice were checked daily for signs of 

discomfort.  Three mice were euthanized at five weeks and three at ten weeks 

postoperatively using CO2.  The remaining four mice were euthanized at five weeks and 

at ten weeks postoperatively using CO2. 

 

Figure 4: Surgical Intervention. ACL transection was used to destabilize the mouse 

knee (A-D).  (A) Initial lateral incision; (B) incision to expose the joint at the lateral side 

of the patella; (C) scissors pointing to the ACL prior to transection; (D) view of the joint 

post-transection.  Stabilization of ACL transected knees (E-H).  (E) The tibial tunnel 

created with a 30 gauge needle proximal to the patellar tendon insertion; (F) the suture, 5-

0 prolene, is seen under the fabella (1), under the patella (2), then from medial to lateral 

through the drilled tibial tunnel (3); (G) the imbrication of the fascia post stabilization; 

(H) closure of the dermis. 

 

33 22 11 HH 

GG FF EE DD 

CC 
BB 

AA 

33 22 11 HH 

FF EE DD 

CC 
BB 

AA 



36 

 

Dissections 

Mice knees were dissected and harvested for tissue processing.  A lateral incision was 

used to expose the knee to allow photographs of the knee using the Leica DFC295 

camera and Leica Application Suite software version 3.8.0 (Leica Microsystems, 

Richmond Hill, ON, Canada).  Knees were dissected in PBS.   

The femur was cut proximal to the hip and the tibia was cut proximal to the ankle.  

Excess muscle tissue was removed with out disturbing the knee capsule.  Knees were 

fixed in 4% PFA for 24 hours before decalcification.  Knees were placed in EDTA on a 

rocker at room temperature.  EDTA solution was changed every two days a total of four 

times.  Decalcification was determined by physical end-point testing.  Once tissue was 

sufficiently decalcified samples were placed in 70% ethanol and refrigerated before 

processing.  Both the left and right knees of the surgically stabilized mice were collected. 

Tissue Processing 

All harvested knees were sent for processing at the Molecular Pathology Laboratory at 

Robarts Research Institute (London, ON, Canada).  Knees were dehydrated, cleared, and 

infiltrated with paraffin wax.  Surgically stabilized knees were oriented frontally and 

embedded in paraffin wax for histological sectioning.  

Histology 

Knees embedded in paraffin wax were sectioned at Robarts Research Institute (London, 

ON, Canada).  Serial sections 5μm thick were collected onto slides and dehydrated 

overnight in an oven at 40 degrees Celsius.  Slides were dewaxed using two five-minute 

xylene solution washes.  Slides were then rehydrated using 100%, 95%, and 70% ethanol 

solutions followed by tap water rising.  After dewaxing half the slides were stained with 

Safranin-O or Toluidine blue.  

Half of the slides were dipped in 50% hematoxylin for 15 to 30 seconds and immediately 

rinsed with tap water until water flowing off was clear and then dipped in tap water for 

five minutes.  Slides were placed in 0.02% Fast Green solution for 30 minutes for back 
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ground staining.  Slides were dipped in 1% Glacial Acetic Acid for no more than 15 

seconds.  Slides were exposed to 1.5% Safranin-O solution for three and a half minutes 

then subsequently dipped twice in distilled water to remove excess stain.  Slides were 

dipped three to five times in 70%, 95%, 100% and another 100% ethanol solution and 

then in two xylene solutions to dehydrate the samples.  Slides were allowed to air dry for 

five to ten minutes before mounting a coverslip with a xylene based mounting medium.  

Cartilage and proteoglycans stain red and other tissue such as matrix and bone stain 

green. 

The remaining slides were stained with 0.04% Toluidine blue for 5 minutes and rinsed 

for one minute in tap water.  Slides were placed in a 37oC oven to air dry for 20 minutes.  

Slides were placed in a xylene solution for five minutes.  Slides were allowed to air dry 

before mounting a coverslip with a xylene based mounting medium.  Cartilage matrix and 

nuclei stain deep violet and cytoplasm and other tissue elements stain as various shades 

of light blue. 

Outcome measures 

Gait Analysis 

Gait was analyzed using the CatWalk system (Noldus Information Technology, VA) at 

the Robarts Research Institute Behavioural Facility to identify any differences in gait 

parameters between intervention groups and between time points (London, ON, Canada).  

Mice were acclimatized to the room and allowed to run the length of the CatWalk before 

recording.  Mice were recorded for 20 seconds a minimum of 5 times.  The CatWalk was 

calibrated to contrast level 3990, brightness level 160, pixel threshold level 40, pixel 

number 5, aperture level -1.4 and a focus level of -0.1.  Runs were valid if mice 

maintained a uniform speed across the recording region of the CatWalk.  Paws were 

labeled using the CatWalk 7.1 software and a pre-processing threshold of 75 (Noldus 

Information Technology, VA).  A minimum of five runs per mouse were averaged and 

used to statistically analyze stride length (mm), paw intensity, duty cycle and regularity 

index. 
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Stride length was assessed to determine whether the constraint placed on the knee joint 

from the surgical stabilization event could have lead to observed differences in gait 

pattern.  A difference in stride length amongst the mice could explain further differences 

we observed in other gait parameters. 

Paw intensity is measured as light reflection intensity.  This measure has been correlated 

with load cell outputs 47 where less intensity captured can be interpreted as less force 

being applied.  A difference between the groups could be a result of the animal not 

weight-bearing on that limb due to pain or discomfort 48.   

Duty cycle is the ratio between the stance duration and the complete step-cycle, from paw 

print to paw print, duration.  Different rodent models of OA have shown statistically 

significant differences in duty cycle between groups with higher percentages indicating 

worse OA symptoms 49.   

The regulatory index (RI) is a ratio measurement of the number of normal step sequences 

to the number of paw placements.  Previous studies have established correlations between 

differences observed in the RI between groups and coordination deficits in movement 50.   

OARSI Scoring 

The Osteoarthritis Research Society International (OARSI) grading system is an 

established semi-quantitative analysis that is useful in assessing OA status and 

development in the knee joint of mice following an injury or intervention 51.  Two 

experienced and blinded observers scored both Safranin-O and Toluidine blue stained 

sections of ACL transected mice with and without surgical stabilization at five and ten 

week time points.  The medial femoral condyle (MFC), lateral femoral condyle (LFC), 

medial tibial plateau (MTP) and the lateral tibial plateau (LTP) of each section were 

assessed and averaged for each animal.  Total knee OARSI scores were also obtained by 

summing the four quadrants.  Knees were imaged with a Leica DFC295 camera, Leica 

DM1000 microscope and Leica Application Suite software version 3.8.0 (Leica 

Microsystems, Richmond Hill, ON, Canada).  Two experienced raters were given 

randomized frontal slides of ACL transected mice +/- stabilization at 5 and 10 weeks.  
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Raters were blinded to the number of animals in each group and the time point of the 

intervention.  A non-rater reordered the individual slides and relabeled glass slides.  A 

randomization key was kept separate from slides at all times.   

Statistics  

All statistical analysis was performed using SPSS (IBM, V.22.0, Armonk, New York, 

USA).  All graphs were constructed using mean values and 95% CIs with GraphPad 

Prism software version 6.  Stride length was assessed using a one-way analysis of 

variance (ANOVA).  Paw intensity, duty cycle, and RI using a two-way ANOVA 

followed by pair-wise comparisons when appropriate.  Parameters were chosen a priori.  

OA scoring was analyzed using a two-way ANOVA followed by pair-wise comparisons 

and Tukey’s HSD post-hoc test when appropriate.  

All of the statistical analysis was underpowered because of our small samples sizes.  

Thus, we suggest that the CI and general trends should be used to interpret the findings. 

5.3 Results 

Gait  

Analysis of stride length on the left and right hind limb showed no difference between the 

stabilized and non-stabilized groups (Table 5) (Figure 5).  There were no significant 

differences noted when analyzing the effect of intervention and time point (Table 5) on 

paw intensity (Figure 6), duty cycle (Figure 7) and RI (Figure 8).  The Levene test for 

homogeneity of variance was significant only in the stride length right hind limb and 

stride length left hind limb outcome data but the Shapiro Wilks test for normality were all 

also non-significant. 
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Table 5: Summary Table of Gait Parameters 

Gait 

Parameter 

Intervention Mean Standard 

Deviation 

Minimum Maximum 

Stride 

Length 

Right 

Hind 

Limb 

(mm) 

Non-stabilized 5weeks 59.66 0.14 59.56 59.76 

Stabilized 5weeks 66.02 4.48 62.30 70.99 

Non-stabilized 10weeks 52.05 8.26 46.21 57.90 

Stabilized 10weeks 55.52 3.91 51.16 58.70 

Stride 

Length 

Left  

Hind 

Limb 

(mm) 

Non-stabilized 5weeks 60.27 0.14 60.18 60.37 

Stabilized 5weeks 67.42 10.79 59.59 79.73 

Non-stabilized 10weeks 52.53 8.75 46.34 58.72 

Stabilized 10weeks 57.59 1.98 55.81 59.72 

Paw 

Intensity 

Right 

Hind 

Limb 

(0-255) 

Non-stabilized 5weeks 130.45 5.97 126.23 134.67 

Stabilized 5weeks 132.96 3.57 128.86 135.36 

Non-stabilized 10weeks 132.76 0.98 132.07 133.46 

Stabilized 10weeks 128.72 8.15 119.95 136.06 

Paw 

Intensity 

Left  

Hind 

Limb 

(0-255) 

Non-stabilized 5weeks 135.36 3.11 133.16 137.56 

Stabilized 5weeks 127.68 4.68 122.52 131.65 

Non-stabilized 10weeks 136.63 3.45 134.19 139.07 

Stabilized 10weeks 131.92 9.58 122.96 142.01 
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Duty 

Cycle 

Right 

Hind 

Limb  

(%) 

Non-stabilized 5weeks 52.96 0.20 52.10 52.82 

Stabilized 5weeks 53.29 4.75 48.22 57.65 

Non-stabilized 10weeks 57.79 1.06 57.05 58.54 

Stabilized 10weeks 55.90 2.40 53.42 58.22 

Duty 

Cycle  

Left  

Hind 

Limb 

(%) 

Non-stabilized 5weeks 55.80 1.20 54.95 56.65 

Stabilized 5weeks 57.67 4.74 52.23 60.87 

Non-stabilized 10weeks 64.91 6.75 60.13 69.68 

Stabilized 10weeks 59.38 3.76 55.60 63.13 

Regularity 

Index (%) 

Non-stabilized 5weeks 99.41 0.83 98.82 100.00 

Stabilized 5weeks 97.61 2.11 96.00 100.00 

Non-stabilized 10weeks 99.52 0.67 99.05 100.00 

Stabilized 10weeks 97.60 3.37 93.75 100.00 
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Figure 5: Stride Length.  Following ACL transection +/- stabilization the mice were 

walked on the Nodulus CatWalk system at 5 weeks and 10 weeks.  Stride length was 

captured and values shown are the individual data points with 95% CI.  
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Figure 6: Paw Intensity.  Following ACL transection +/- stabilization the mice were 

walked on the Nodulus CatWalk system at 5 weeks and 10 weeks.  Paw intensity was 

captured and values shown are the individual data points with 95% CI. 
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Figure 7: Duty Cycle.  Following ACL transection +/- stabilization the mice were 

walked on the Nodulus CatWalk system at 5 weeks and 10 weeks.  Duty cycle was 

captured and values shown are the individual data points with 95% CI. 
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Figure 8: Regularity Index.  Following ACL transection +/- stabilization the mice were 

walked on the Nodulus CatWalk system at 5 weeks and 10 weeks.  Regularity index was 

captured and values shown are the individual data points with 95% CI. 
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Histology 

There were no significant differences between groups for five week data (Figure 9).  Data 

was normally distributed and had homogeneous variance as assessed with the Shapiro 

Wilks test and the Levene test respectively.   Additionally, we used a one-way ANOVA 

to test for statistical differences between groups because we were unable to score ten 

week data.  The one-way ANOVA test was not significant with a non-stabilized group 

mean score of 0.89, 95% CI (0.08, 1.70) and a stabilized group mean score of 0.51, 95% 

CI (0.21, 0.82). The total knee and each knee quadrant was scored and graphed with 95% 

CI (Figure 9). 
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Figure 9: OARSI Scores.  Semi-quantitative analysis of OA grading showed no 

statistically significant differences between the groups at 5 weeks based off of 

histological slide.  Values shown are the individual data points with 95% CI. 
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We were unable to score ten week data given the scale used.  All knees observed were 

too severe for the zero to six histological scale.  Nevertheless, we noted qualitative 

differences.  Knees with an ACL transection and no surgical intervention had severe 

damage to the articulating surface, surrounding subchondral bone and synovial space.  In 

addition, extracapsular fibrous growth on the lateral side was more extensive in this 

group (Figure 10).  These changes were observed and noted as too extensive to grade or 

characterize as OA.  Contralateral knees were also noted to have injuries to the cartilage 

and articulating surface however these knees were not as damaged at the right limbs. 

There was a noted difference in the extent of damage to the articulating surface and 

cartilage of the ACL transected and surgical stabilized group.  However the synovial 

space and extracapsular space were not.  The stabilized group’s contralateral limbs had 

damage to the articulating surface and cartilage however, these contralateral knees were 

not as damaged as the intervention knee from a qualitative perspective (Figure 11).  

 

Figure 10: Extracapsular Fibrous Growth.  Histological slides were stained with 

Safranin-O and Fast Green. Fibrous tissue was observed on the medial side of the knee in 

the ACL transected without stabilization group. 
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Figure 11: Representative Histological Images of Five and Ten Week Knees.  

Histological slides stained with Safranin O and Fast Green. (A, C, E, G).  Right mouse 

knees that had an ACL transection +/- stabilization. (B, D, F, H).  Left mouse knees used 

as contralateral controls. 

5.4 Discussion 

Gait  

We used stride length as a proxy for limb angle constriction.  If the angle of flexion about 

the knee was too restrictive, the limb would not have full range of motion.  This 

limitation could result in differences in stride length and subsequent differences observed 

in other gait parameters.  Fortunately, we found no significant differences stride length 

for the left and right hind limb, which implies that all mice had a similar range of motion.  

However, our confidence intervals were quite wide for the data around ten weeks for 

non-stabilized mice, which can be a result of small sample size, and the variability 

inherent with a non-stable knee.  

Paw intensity is a direct measure of contact area and weight bearing capabilities.  

Differences between groups would indicate weight-bearing changes resulting from pain 

or discomfort.  We found no statistically significant difference in paw intensities between 

groups, which may mean that weight-bearing was similar between groups.  However, we 

also report wide confidence intervals in five week non-stabilized mice.  This is likely a 

result of small sample size and increased variability between mice because of the 
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destabilization of the joint.  Since there was no difference between the groups we can 

assume that the stabilization is not hindering the mice’s weight bearing ability. 

To quantify OA progression in the different groups we measured duty cycle.  Higher duty 

cycle percentages would indicate more severe OA in the mouse.  There were no 

significant differences observed in the duty cycle of our animals.  Ten week non-

stabilized left hind limb had the highest mean with the largest CI.  This variability could 

be a result of small sample sizes.  Alternatively, the animals in this group could be 

attempting to compensate as needed by spending more time in the stance phase or 

shortening its step-cycle to use their uninjured hind limb preferentially.  If the latter is 

true then at ten weeks the stabilized mice do not have to compensate during their gait 

cycle. 

Differences in RI were assessed to quantify changes in coordination.  Difference in the RI 

could be due to the development of OA.  There were no statistically significant 

differences observed between the stabilized and non-stabilized groups and all limbs had 

fairly wide CIs.  Since there was no difference the mice did not appear affected by their 

OA development even in the severely damaged ten week non-stabilized group.  The mice 

did not demonstrate gross changes to their housing cage behaviour either thus minute gait 

differences may be undetectable in this resilient animal. 

Histology 

We found no difference between groups at five weeks for the intervention or time point.  

This result may be explained by the small sample size or there may be no benefit from 

the stabilization at five weeks post injury.  Ten week data could not be scored using the 

conventional OARSI grading system.  Thus, an observational approach was taken as 

opposed to the semi-quantitative scoring.  As a result our original two-way ANOVA plan 

for analysis was ad hoc switched for a one-way ANOVA.  Nonetheless, there were 

marked differences in the ten week data which can be attributed to the stabilization 

technique employed.  Since the mice were not restricted from movement, the ten week 

mice would have had more time to sustain secondary injuries which the stabilized mice 

may have been protected against.  Contralateral limb cartilage in the non-stabilized group 
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had more cartilage loss than in the stabilized group.  This was postulated to be a result of 

the mice trying to compensate or alter their gait because of the osteoarthritic changes.  

Thus any protective effects from the knee stabilization are important to consider when 

modeling arthritis and more specifically PTOA following ACL surgery in humans.  

Limitations 

Our trial was a pilot study to determine whether a stabilization event following an injury 

was protective to the mouse knee.  Our experimental conclusions were based on a small 

sample size and our work could benefit from more animals to increase our certainty.  To 

better understand the extent of the stabilization achieved with our extra-articular 

procedure we could have measured the total anteroposterior translation before and after 

the stabilization.  Although there was some assessment done we were hesitant to 

aggressively test this parameter in case the knee was damaged or the tibial tunnel was 

excessively stressed.  Additionally, our study lacked a sham and no treatment group.  The 

addition of a sham group would provide a group that had surgery to expose the knee and 

dislocate the patella.  This could provide insight into the fibrous growth and the OA 

development in the contralateral limb that we observed in our ACL transected mice 

without stabilization.  If similar results were observed then the fibrous growth and 

contralateral OA development may have resulted from exposing the joint.  A group of 

mice that received no treatment would consist of mice of the same age as intervention 

mice and would be followed to the same time points to observe the natural aging of the 

joint and compare that to our other groups.  The addition of these groups could provide 

further support and establish conclusive relationships between the intervention and the 

outcome measures.   

Future Directions 

Given that we found a marked protective difference in the ten week data we would be 

interested in conducting a larger trial with more mice and two additional groups to be 

used as controls.  These two groups would be: a sham surgery group that receives a 

lateral incision and knee manipulations and is closed up; and a no-intervention group that 

gets anesthetic but have no incision made.   
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Additionally, this stabilization technique showed benefits after ACL transection.  We 

would be interested in the application of this surgical intervention that minimizes damage 

post injury in other models of OA.  Given the invasive nature of the ACL transection our 

next step would be to use a less invasive OA model such as a loading protocol (Chapter 

4) that creates instability in the knee through ACL disruption. 

The reason for translational research is to apply laboratory concepts and results to 

medicine.  Therefore, there is a need to develop clinically relevant animal models.  This 

surgical intervention was developed to better represent the true events that a human may 

undergo following an injury to the ACL.  As such, drugs aimed at modifying PTOA may 

benefit from testing their effects in our proposed animal model that more closely 

resembles human interventions. 
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Chapter 6 

6 Summary 

The purpose of the axial loading project was three fold.  The primary objective was to 

validate an existing model of ACL injury to create an unstable knee in a mouse.  Our 

work provided evidence that the loading protocol and the machine set up did create ACL 

ruptures.  This created an unstable knee.  The second objective was to establish a 

relationship between the speed of an impact and the type of injury produced.  It was 

hypothesized that the faster speeds would lead to mid-sheath ruptures of the ACL and 

slower speeds would result in avulsion of the ACL.  When analyzed the fastest and the 

slowest speeds both produced more avulsion injuries than the intermediate speed.  

Furthermore, the fastest speed also produced more extensive injuries involving the PCL 

that was not documented as injured in previous studies.  Finally the last objective was to 

assess the agreement between raters and modalities in correctly identifying injuries 

produced from the loading protocol.  Based on the literature in microCT scanning, we 

used PTA to contrast our samples.  Although the PTA solution did enhance the microCT 

images, the agreement between the raters and the agreement between the microCT and 

the histology slides was poor.  This poor consensus provided support that even when 

optimized the microCT did not provide the raters with enough information to identify the 

status of the mouse knee post injury. 

The purpose of the surgical stabilization project was two fold.  The first objective was to 

develop a surgery in mice that could introduce stability to the knee joint following ACL 

transection.  A surgical intervention based on canine ACL surgery was used to stabilize 

the knee extra-articularly.  There were no statistical differences between the knees that 

were stabilized, the contralateral limbs or the unstable knees.  The second objective of 

this study was to assess any differences in histology and gait of the animals due to the 

stabilization surgery or to the time from the intervention.  Five week histology data was 

assessed and no differences were observed between the groups.  Ten week data was 

assessed qualitatively because the damage inflicted on the knees were not quantifiable on 

the semi-quantitative scoring system used with the five week mice.  Notable differences 
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were observed between the ACL transected knees and the ACL transected and stabilized 

knees.  The stabilization event provided some protection to the knee from what we 

concluded were secondary injuries.  When we analyzed the differences in gait parameters 

we did not find significant differences between the groups at five or ten weeks post 

intervention.   

Future work should look at combining both projects to create a more robust clinically 

relevant model of OA in mice that can be used to better the understanding, diagnosis and 

treatment of PTOA in humans. 
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AUP Title: Regulation of Endochondral Bone Growth by Hormones 

 

 

Yearly Renewal Date: 08/01/2014 

The YEARLY RENEWAL to Animal Use Protocol (AUP) 2007-045-06 has been approved, and will 

be approved for one year following the above review date. 

1. This AUP number must be indicated when ordering animals for this project. 

2. Animals for other projects may not be ordered under this AUP number. 

3. Purchases of animals other than through this system must be cleared through the ACVS office. 

Health certificates will be required. 

REQUIREMENTS/COMMENTS 

Please ensure that individual(s) performing procedures on live animals, as described in this protocol, are 

familiar with the contents of this document. 

The holder of this Animal Use Protocol is responsible to ensure that all associated safety components 

(biosafety, radiation safety, general laboratory safety) comply with institutional safety standards and have 

received all necessary approvals. Please consult directly with your institutional safety officers. 

Submitted by: Kinchlea, Will D  
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Appendix B: Abbreviations 

OA Osteoarthritis 

PTOA Post-traumatic osteoarthritis 

ACL Anterior cruciate ligament 

PCL Posterior cruciate ligament 

ADAMTS 
 

A disintegrin and metalloproteinase with thrombospondin motifs 

DMM Destabilization of medial meniscus 

CrCL Cranial cruciate ligament 

LRP5 Low-density lipoprotein receptor-related protein 5 

microCT Micro computed-tomography 

PBS Phosphate buffered saline 

PTA Phosphotungstic acid 

EDTA Ethylenediaminetetraacetic acid 

RI Regularity index 

OARSI Osteoarthritis research society international 

MFC Medial femoral condyle 

LFC Lateral femoral condyle 

MTP Medial tibial plateau 

LTP Lateral tibial plateau 

CI Confidence interval 

ANOVA Analysis of variance 
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