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Abstract 

Functional magnetic resonance imaging (fMRI) was used to investigate the neural and 

behavioural correlates of learning from rewards and losses in children. Greater blood-

oxygen-level dependent (BOLD) responses in the ventral striatum (VS) and the ventromedial 

prefrontal cortex (VMPFC) were found when participants received rewards compared to 

when they missed out on an opportunity to receive rewards. In contrast, greater BOLD 

responses in the anterior insula (AI) and the anterior cingulate cortex (ACC) were found 

when participants received losses compared to when they avoided losing. The BOLD 

response to rewards in the VS and VMPFC correlated positively with the tendency to select 

rewards.  Greater incidence of early life adversity was associated with greater likelihood to 

select rewarding stimuli and a larger BOLD response in the VS and VMPFC to rewards. 

Findings suggest that the functional calibration of the mesocorticolimbic pathway is sensitive 

to the experience of early life adversity. 

Keywords 

Mesocorticolimbic dopamine pathway (MCLP), Ventral Striatum (VS), Ventromedial 

Prefrontal Cortex (VMPFC), Reward learning, Loss learning, Instrumental Learning, Early 

life adversity.  
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Chapter 1 : Introduction 

The capacity to select actions that lead to favourable outcomes while avoiding 

actions that lead to unfavourable outcomes has both developmental and evolutionary 

advantages (Delgado, 2007; Foerde & Shohamy, 2011; Heekeren, Wartenburger,  

Marschner, Mell, Villringer, Reischies, 2007; Hennigan, D’Ardenne, & McClure, 2015; 

Jocham, Klein, & Ullsperger, 2011; Liu et al., 2007; Liu, Hairston, Schrier, & Fan, 2011; 

O’Doherty, 2004; Samanez-Larkin, Hollon, Carstensen, & Knutson, 2008;  Schultz, 

2000;  Schultz, 2015; Wise, 2004).  Opportunities to make decisions that may lead to 

rewards or losses present themselves frequently; importantly, learning to make choices 

that lead to advantageous outcomes and learning to avoid choices that lead to 

disadvantageous outcomes is achieved via feedback after making a choice and observing 

the outcome. Over time, we learn what choices are advantageous in that they lead to 

rewards, and what choices are disadvantageous in that they lead to losses. The choices 

that we make are motivated by the outcomes of our previous actions. If the outcome of 

our action was positive, we learn to repeat the behaviour that resulted in the reward; if the 

outcome was negative, on the other hand, we learn to avoid repeating the action that 

resulted in the loss (Delgado, Nystrom, Fissell, Noll, & Fiez, 2000; Delgado, 2007; 

Schultz, 2000). This learning process involves the ability to represent the value of 

rewards and losses, and to extract information from the environment about the 
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predictability of when and where rewards and losses are likely to occur (O’Doherty, 

2004; Schultz, 2000). Critically, rewards are not defined by their physical properties, 

such as the subjective feeling of pleasure that a stimulus may induce. Rather, rewards are 

defined by the behavioural reactions that they produce (Delgado, 2007; Schultz, 2015). 

One important function of rewards is to serve as positive reinforcers that increase the 

frequency of selecting actions that lead to the acquisition of positive outcomes (Schultz, 

2000). It is in this manner that rewards help guide behaviour, if a behavioural choice 

leads to a positive outcome, that choice is considered rewarding in that it increases the 

frequency of selecting the action that led to the reward in the first place.  

It is evident that selecting actions that lead to rewards and avoiding actions that 

lead to losses is advantageous; however, a hypersensitivity to either rewards or losses 

beyond the normative range can have adverse consequences. For example, attention 

deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder marked by a 

deficit in behavioural inhibition and includes symptoms of hyperactivity, impulsivity, and 

inattention (Polanczyk, Willcutt, & Salum, 2014). Notably, dysfunctional reward 

processing including a hypersensitivity to individual instances of reward (Tripp & Alsop, 

1999), excessive approach behaviours, and a limited capacity to tolerate reward delays 

have been implicated as common characteristics of ADHD (Carmona et al., 2009; 

Hommer, Bjork, & Gilman, 2011; Luman, Tripp, & Scheres, 2010; Plichta & Scheres, 
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2014; Plichta et al., 2009; Sagvolden & Johansen, 2005; Sonuga-Barke, 2002; Ströhle et 

al., 2008; Tripp & Alsop, 1999; Tripp & Wickens, 2009; Volkow et al., 2009). 

Furthermore, dysregulation in reward processing is associated with a host of other 

adverse consequences such as substance abuse and pathological gambling (Bechara, 

2005; Diekhof, Falkai, & Gruber, 2008; Garavan & Stout, 2005; Goudriaan & 

Oosterlaan, 2004; Volkow, Fowler, & Wang, 2003; Volkow & Wise, 2005), mood 

disorders including major depressive disorder (Chau, Roth, & Green, 2004; Drevets, 

2001), schizophrenia (Chau et al., 2004), and eating disorders (Volkow & Wise, 2005).  

In the case of addictions, it is important to note that individuals may willingly perform 

actions that lead to adverse outcomes because they are insensitive to the punishment of 

negative consequences, or because they are highly motivated by the prospect of gains 

(Luciana, Wahlstrom, Porter, & Collins, 2012). Therefore, dysregulation in reward 

processing can be the result of a heightened sensitivity to gains, or a blunted response to 

losses. Considering both the advantages of learning from rewards and losses, and the vast 

array of consequences associated with dysregulation of the reward system, a deeper 

understanding of the underlying mechanisms of reward and loss learning is necessary. 

Consequently, a growing number of studies have been dedicated to understanding the 

neurobiological and environmental factors that may give rise to individual differences in 

learning from rewards and losses.  
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The objective of the current study was to investigate reward and loss learning 

both at the behavioural and neural level.  Functional magnetic resonance imaging (fMRI) 

was used to determine whether individual differences in reward/loss learning can be 

predicted by the magnitude of neural activity in regions associated with rewards and 

losses. Furthermore, the association between the experience of early life adversity and 

learning from rewards and losses was investigated at both the behavioural and neural 

level. In the following sections, the neural circuitry associated with learning from rewards 

and losses will be summarized. Additionally, a review of the potential for early life 

adversity to differentially calibrate the neural circuitry associated with rewards will be 

provided. Finally, the objectives and research questions of the current study will be 

outlined.  

1 « The Neural Correlates of Rewards » 

1.1 « Overview of the Mesocorticolimbic Dopamine 
Pathway (MCLP) » 

The idea that there is an anatomically distinct neural circuitry involved in the 

processing of rewards was initiated by electrical stimulation studies in the early 1950’s. 

Olds and Milner (1954) conducted a series of experiments demonstrating that animals 

work hard to obtain electrical stimulation in midbrain dopamine (DA) regions, including 

the ventral tegmental area (VTA). Not only did electrical stimulation in regions including 

the medial forebrain bundle, the VTA, and the hypothalamus result in learning 



5 

 

 

 

 

 

acquisition rates and extinction curves comparable to those of naturally occurring 

rewards, but also, rats developed a conditioned place preference for spatial locations 

where they were administered the electrical stimulation (Olds & Milner, 1954; Wise & 

Rompre, 1989, Wise 1996). Following these experiments, further support for the 

existence of a reward circuitry was provided by pharmacological manipulation and 

intracranial injections of drugs of abuse into regions hypothesized to be involved in 

processing rewards (Carlezon and Wise, 1996; Carr and White, 1983; Phillips and 

Fibiger, 1978). For example, Carlezon and Wise (1996) found that rats learned to lever-

press for administration of phencyclidine (PCP) directly into the nucleus accumbens 

(NAc) shell and within the frontal cortex (Carlezon and Wise 1996).  

The involvement of both the VTA and the ventral striatum/NAc in processing 

rewards is now well-established. However, recent studies demonstrate that the reward 

circuitry is far more extensive than previously thought (Haber & Knutson, 2010). The 

reward circuitry includes not only the VTA and NAc, but also the entire ventral striatum 

(VS), the substantia nigra (SN), the ventral pallidum, the anterior cingulate cortex (ACC), 

and the ventromedial prefrontal cortex (VMPFC; Haber & Knutson, 2010). The VS 

receives its main cortical input from the VMPFC and anterior cingulate cortex (ACC), 

and also receives dopaminergic input from the VTA. The VS projects to the ventral 

pallidum (VP) and to the VTA/SN, which, in turn, extends back to the prefrontal cortex 
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via the thalamus. In addition, there are other key regions that regulate the reward circuit 

including the amygdala, hippocampus, habenula, pedunculopontine nucleus, and the 

raphe nuclei (Haber and Knutson, 2010). In the sections that follow, the functional role of 

the VTA and VS within the reward circuitry will be reviewed.   

1.2 « Dopamine Neurons in the VTA» 

Dopaminergic signaling originating from the VTA have provided important 

insights into the biophysiological mechanisms that underlie reward learning. Phasic DA 

signaling is defined as a rapid (< 1s), spatially restricted signal driven by DA neuron 

burst firing (Floresco, 2015; W. Schultz & Romo, 1990). In various behavioural 

situations, including in instrumental learning tasks, DA neurons in the SN and VTA 

demonstrate this phasic activity after the presentation of natural rewards, and upon visual 

and auditory stimuli that predict rewards (Ljungberg, 1992; Romo & Schultz, 1990; 

Schultz & Romo, 1990; Schultz, 2000). In contrast, the presentation of stimuli that are 

predictive of rewards followed by an absence of the reward produce brief phasic DA dips 

in neural firing (Schultz, 2000; Schultz 1998). The observation that DA bursts are 

enhanced by unpredicted rewards and depressed by the absence of predicted rewards, 

demonstrates that dopaminergic bursts are not signaling reward itself, but rather, the 

reward prediction error (Ljungberg, 1992; Mirenowicz & Schultz, 1994; Schultz, 2000; 

Schultz, 2015). Additionally, more recent studies have demonstrated that the magnitude 
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of the phasic DA burst  encodes the expected availability or receipt of large versus small 

rewards (Day, Jones, & Carelli, 2011; Floresco, 2015; Sugam, Day, Wightman, & 

Carelli, 2012). These elegant experiments have revealed that phasic DA bursts and dips 

can serve as teaching signals that encode reward prediction errors for anticipated rewards. 

DA can enhance or suppress VS activity via its actions on either D1 or D2 receptors. 

Recent evidence suggests that activation of D1-like or D2-like receptors within the VS 

can have different behavioural consequences—namely, approach (D1) versus  avoidance 

(D2; Floresco, 2015; Kravitz, Tye, & Kreitzer, 2012).  

1.3 « The Striatum» 

The striatum is subdivided into dorsal and ventral portions. The dorsal striatum 

(DS) consists of the caudate nucleus and the putamen; the DS receives projections from 

the dorsolateral prefrontal cortex and also receives dopaminergic input from the SN. The 

ventral striatum (VS), on the other hand, consists mainly of the NAc and includes 

portions of the putamen and ventral caudate; the VS receives cortical projections mainly 

from the VMPFC and receives dopaminergic input from the VTA (Delgado, 2007). The 

striatum is a region with numerous functions including habit formation, reward learning 

and action control; because of its diverse functions, the striatum has been suggested to 

integrate information regarding emotions, motivation, cognition and motor control. In a 

recent review, the VS has been proposed to integrate cognitive and affective information 
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to increase the efficiency of approaching actions that lead to positive outcomes and 

avoiding actions that lead to negative outcomes (Floresco, 2015; Also See Salamone & 

Correa, 2009). For example, DA in the VS has been shown to influence appetitive aspects 

of behaviour in rats; furthermore, lesions in rat VS induce deficits in approach 

behaviours, implicating the importance of this neural region for motivating appetitive 

behaviours (Delgado, 2007; Robbins & Everitt, 1992).  

Animal research has greatly contributed to our understanding of the functional 

role of the striatum. Early experiments with primates demonstrated that the striatum 

responds to the expectation of a reward (Hikosaka, 1989), and to delivery of natural 

rewards (Apicella, Ljungberg, Scarnati, & Schultz, 1991). Research with humans has 

largely confirmed the role of the VS in responding to the delivery of natural rewards, the 

presence of unexpected rewards, and to delivery of positive feedback after selecting a 

neutral stimulus (Rogers et al., 2004). One of the paradigms used with humans during an 

fMRI scan involved a card guessing game, during which participants were asked to guess 

whether the value of an upcoming card is greater than 5 or less than 5. Following the 

participant’s choice, the actual outcome of the card was presented in addition to feedback 

in the form of a reward (winning $1.00) or a loss (losing $.50), depending on whether 

their choice was correct or incorrect. While participants were completing the task, blood 

oxygen-level-dependent (BOLD) responses increased in the VS during both positive and 
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negative feedback. Interestingly, the increase in BOLD to positive feedback remained 

high and slowly returned to baseline, whereas the BOLD increase to negative feedback 

rapidly returned to baseline (Delgado, Nystrom, Fissell, Noll, & Fiez, 2000). These 

results demonstrate the role of  ventral striatal activity to both positive and negative 

feedback; moreover, a meta-analysis of 142 neuroimaging studies in healthy adults also 

confirmed the functional role of the VS in processing both positive and negative feedback 

(Liu et al., 2011).  

More recently, research has demonstrated that the BOLD activity measured in the 

VS is likely associated with dopaminergic signaling. Pessiglione and colleagues (2006) 

elegantly demonstrated the relationship between dopamine, ventral striatal activity, and 

behavioural choice in humans using a combination of pharmacological manipulations and 

fMRI (Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006). The pharmacological 

manipulations involved increasing dopaminergic function via administration of L-DOPA 

or reducing dopaminergic function via administration of haloperidol. Participants were 

scanned after the administration of L-DOPA or haloperidol and were required to 

complete an instrumental learning task that involved learning from a pair of stimuli 

associated with gains and a pair of stimuli associated with losses. The results of the 

experiment revealed that the magnitude of the reward prediction error as measured via 

ventral striatal activity varied depending on the pharmacological manipulation. Critically, 
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participants who were administered L-DOPA had increased VS BOLD response to 

positive prediction errors and also were more likely to select the most rewarding stimuli 

relative to participants who were administered haloperidol (Pessiglione et al., 2006). 

Other research groups have confirmed the role of DA in modulating VS activity to 

rewards using a combination of fMRI and PET, and have concluded that reward-related 

BOLD activity is related to dopaminergic release (Knutson & Gibbs, 2007; Schott et al., 

2008).  

The combination of these studies demonstrate that dopaminergic signaling to 

either the receipt of unexpected rewards or positive feedback after selecting stimuli 

associated with rewards originates from the VTA, projects to the VS and is detectable via 

standard fMRI procedures. Individual differences in the BOLD response within the VS 

can then serve as a proxy measure for individual differences in dopaminergic signaling in 

response to rewards and/or positive feedback. Furthermore, the magnitude of the BOLD 

response within the VS has also been shown to be correlated with individual differences 

in selecting rewarding stimuli (Pessiglione et al., 2006). Therefore, measurements of 

BOLD activity within the MCLP, in particular the VS, can potentially be used to 

determine the biological underpinnings of individual differences in selecting actions that 

lead to positive outcomes.  
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2 « The Neural Correlates of Losses » 

2.1 « A Shared Neural Circuitry for Rewards and Losses» 

While numerous studies have been dedicated to the study of the neurobiological 

correlates of rewards, the neurobiological correlates of learning from losses remain 

controversial (Palminteri et al., 2012). Some researchers have proposed that the same 

neural regions that facilitate reward learning underlie loss learning. Whereas DA bursts 

facilitate approaching rewards, DA dips weaken approach circuits and facilitate avoiding 

adverse outcomes (Palminteri et al., 2012). In accordance with this view, in patients with 

Parkinson’s Disease (PD), L-DOPA improves learning from rewards but impairs learning 

from losses (Frank, Seeberger, & O’Reilly, 2004; Palminteri et al., 2009). However, this 

notion remains controversial because not all studies have confirmed that DA enhancers 

impair learning from losses (Fiorillo, 2013; Pessiglione et al., 2006). If the same neural 

circuitry is involved in both reward learning and loss learning, then the MCLP would be 

recruited when receiving rewards and avoiding losses. In accordance with this 

hypothesis, Delgado and colleagues (2000) found that the VS responds to both positive 

and negative feedback. However, Fiorillo (2013) suggests that DA neurons of the primate 

VTA are insensitive to losses and are activated only to unexpected rewards and 

suppressed by the absence of expected rewards (Fiorillo, 2013). Based on the notion that 

DA neurons in the VTA are insensitive to losses, it has been suggested that a separate 

neural circuitry is central to loss learning.  
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2.2 « A Distinct Neural Circuitry for Avoiding Losses» 

In accordance with this view, the anterior insula (AI) and the ACC have been 

implicated in the experience and anticipation of negative consequences; furthermore, 

activity in the AI has been associated with an enhanced ability to avoid losses (Palminteri 

et al., 2012; Samanez-Larkin et al., 2008). Moreover, Blair and colleagues (2006) have 

demonstrated that regions associated with rewards and losses are distinct. The results of 

their experiment revealed that BOLD response in the VMPFC was greater when 

participants were choosing between two positive stimuli—gaining the greater reward. In 

contrast, the ACC showed greater BOLD response when participants had to choose 

between two negative stimuli—choosing the stimulus to gain the lesser punishment. 

While the literature in terms of a distinct network responsible for learning from losses 

and avoiding adverse consequences is not as reliable as the findings within the MCLP in 

relation to rewards, it appears that the AI and the ACC are neural regions involved in at 

least some aspects of loss learning.  

3 « Environmental Influences on Learning from Rewards 
and Losses » 

Investigating the neurobiological variables that may give rise to individual 

differences in approaching rewards and avoiding losses is necessary for understanding 

the biological factors that can influence behavioural approach and avoidance. However, 

environmental factors that can modulate the MLCP are also of great theoretical and 
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practical interest. Learning to select favourable outcomes and avoid unfavourable 

outcomes is evidently advantageous; additionally, dysregulation within the MCLP can 

have adverse consequences, ranging from substance abuse to ADHD. Therefore, a 

thorough understanding of both the neurobiological and environmental factors that can 

influence the MCLP are of great practical relevance.  

Administration of pharmacological drugs like methylphenidate have traditionally 

been used to remedy ADHD (Volkow et al., 2012). This pharmacological approach 

however, is invasive in that it directly alters the underlying neural circuitry associated 

with reward and loss learning. Furthermore, the administration of pharmacological agents 

often induce changes in all neural regions, and not simply the regions that are associated 

with the maladaptive behaviour. If environmental factors can calibrate the MCLP, it may 

be practical to alter environmental conditions in a manner that prevents the dysregulation 

of the MCLP, and by extension, the maladaptive behavioural consequences associated 

with dysregulation of the MCLP. 

 A recent review by Gatze-Kopp (2011) suggests that the MCLP is sensitive to 

adverse life events in much the same way as the hypothalamic-pituitary-adrenal axis 

(HPA). The MCLP is suggested to demonstrate phenotypic plasticity in such a way that 

makes the reward circuitry sensitive to developmental influences including early life 

adversity (Gatzke-Kopp, 2011). In addition, the plasticity of the MCLP in relation to 
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early life events is said to have adaptive advantages. In relation to reward-learning, it is 

interesting to consider that the neural circuitry involved in reward learning may not only 

use information regarding outcomes of making choices in the immediate environment, 

but may also be using information regarding outcomes of choices throughout the course 

of development. If the MCLP is indeed plastic to early life events, and is calibrated 

differentially depending on the severity of early life adversity, then individual differences 

in the experience of adverse life events might influence both the functional response of 

the MCLP to rewards, and also the resultant behavioural choices.  

3.1 « The Influence of Adversity on the MCLP and 
Behaviour» 

Regarding the influence of adversity on behavioural choices to select rewards and 

avoid losses, the literature has been mixed. A number of research groups have shown that 

under acute stress, participants have a heightened propensity to approach rewards 

(Casement, Shaw, Sitnick, Musselman, & Forbes, 2015; Lighthall, Gorlick, Schoeke, 

Frank, & Mather, 2013; Mather & Lighthall, 2012; Meaney, Brake, & Gratton, 2002). In 

addition, individuals under stress (e.g., marital dissatisfaction), are more prone to 

substance abuse (Goeders, 2003). Similarly, subordinate macaques have been shown to 

have a greater propensity to self-administer cocaine relative to dominant macaques. 

Furthermore, being housed in social groups resulted in an increase in D2 receptors in 

dominant macaques, but no change in D2 receptor density for subordinate macaques, 
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implicating an association between adversity (or the absence of adversity) and individual 

differences within the dopaminergic system at the receptor level (Morgan et al., 2002).  

The combination of these results seem to suggest that adversity increases reward 

sensitivity in both humans and animals. However, other research groups have found the 

opposite set of findings—that adversity results in a blunted reward response (Berghorst, 

Bogdan, Frank, & Pizzagalli, 2013; Chiara & Imperato, 1988). One important 

consideration in attempting to reconcile these mixed findings is that the majority of the 

aforementioned studies used acute stress paradigms; the influence of chronic stress or 

adversity experienced throughout the course of development has not been thoroughly 

investigated. Recently however, Boecker and colleagues (2014) found that early life 

adversity is associated with hypo-responsiveness in the VS during reward anticipation, 

but hyper-responsiveness in the right insula during reward receipt. Additionally, these 

patterns of findings were related to ADHD, suggesting that the influence of early life 

adversity on ADHD is mediated by individual differences in the calibration of the MCLP 

(Boecker et al., 2014). 

4 « The Current Study » 

The aim of the current study was to investigate the neural correlates of individual 

differences in learning from rewards and losses early in development. The first research 

question to investigate was whether the underlying neural circuitry involved in receiving 
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rewards and avoiding losses is the same or different. If the underlying neural circuitry is 

the same, the VS and VMPFC would exhibit a greater BOLD response at feedback when 

participants gained rewards and also when they avoided losses. In contrast, if the 

underlying neural circuitry involved is distinct, the VS and VMPFC would be activated in 

response to positive feedback, and the AI and ACC would be activated in response to 

negative feedback. A further research question was to determine whether differential 

BOLD responses to rewards and losses were predictive of selecting stimuli that were 

more often associated with gains and/or avoiding stimuli that were more often associated 

with losses. Additionally, an investigation of whether the frequency and intensity of 

adversity experienced early in development influenced the MCLP and/or behavioural 

approach/avoidance was conducted. 

To this end, fMRI scans were obtained from 9-12 year old children while they 

were completing an instrumental learning task adapted from Pessiglione and colleagues 

(2006). Based on previous research, increased BOLD response in regions in the reward 

circuitry—specifically the VS and VMPFC—during positive feedback was expected. In 

contrast, an increased BOLD response in regions associated with losses—specifically the 

AI and ACC—during negative feedback was expected. Additionally, individual 

differences in the magnitude of VS activity and VMPFC activity were predicted to 

correlate positively with individual differences in the propensity to select the stimulus 
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that most frequently resulted in gains. Likewise, individual differences in the magnitude 

of AI and ACC activity were hypothesized to correlate positively with individual 

differences in the propensity to avoid the stimulus that was most frequently associated 

with losses. Finally, questionnaire data from the participants’ mothers were obtained to 

determine the frequency and intensity of early life adversity. An association between 

early life adversity and activation within the MCLP to rewards was expected. However, 

based on the conflicting results of previous research, the direction of that relationship was 

unclear—whether an increase in the frequency and intensity of early life adversity is 

predictive of an enhanced or blunted neural response to rewards was unclear. The 

objective was simply to determine whether the MCLP is indeed sensitive to adversity 

experienced early in life, as suggested by Gatzke-Kopp (2011).  

4.1 « Summary of Research Questions» 

1) Are the neural regions associated with gaining rewards and avoiding losses the same 

or distinct? If they are the same, VS and VMPFC activity to receipt of rewards and 

avoidance of losses would be expected. If they are distinct circuits, VS and VMPFC 

activity to positive feedback, and AI and ACC activity to negative feedback would be 

expected.  

2) If rewards and losses recruit the same regions, does the magnitude of VS and VMPFC 

activity in response to obtaining rewards and avoiding losses predict individual 

differences behaviourally (selecting rewards and avoiding losses)?  
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3) If rewards and losses recruit distinct neural circuitry:  

a. Do individual differences in the magnitude of VS and VMPFC BOLD response 

correlate with individual differences in learning to select stimuli associated with 

rewards? Based on previous research, the magnitude of VS and VMPFC BOLD 

activity in response to positive feedback was expected to correlate positively with 

a propensity to select the stimulus more frequently associated with rewards.  

b. Do individual differences in the magnitude of AI and ACC BOLD activity 

correlate with individual differences in learning to avoid stimuli associated 

losses? Based on previous research, the magnitude of AI and ACC BOLD activity 

in response to negative feedback was predicted to correlate positively with a 

propensity to avoid the stimulus more frequently associated with losses.  

4) Do individual difference in the experience of early life adversity correlate with 

individual differences in VS and VMPFC BOLD activity in response to positive 

feedback? Similarly, do individual differences in the experience of early life adversity 

correlate with individual differences in AI and ACC BOLD activity in response to 

negative feedback? In other words, are regions involved in reward/loss circuitry 

differentially calibrated based on the experience of early life adversity?  
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Chapter 2 : Methods 

5 « Participants » 

Nineteen (11 females) typically developing children between the ages of 9 and 12 

years (M = 10.8, SD = 0.97) were recruited from Western University’s Child 

Development Participant Pool. All participants had normal or corrected to normal vision 

and were right-handed. Children with learning disabilities or a diagnosis of ADHD were 

excluded from the study because the diagnoses could confound the results of the fMRI 

analyses. The study was approved by Western University’s Research Ethics Board and 

informed consent and assent were obtained from mothers and their children prior to 

participation in the study.  

6 « General Procedure » 

Trained research assistants recruited participants from the Child Development 

Participant Pool via telephone calls. Upon obtaining verbal agreement regarding interest 

in the study, children and their mothers participated in two parts of the study. After 

receiving informed consent from mothers and informed assent from children, we began 

the experimental procedures. First, children were trained for the fMRI portion of the 

study using a 0T-Mock Scanner. The purpose of the mock scanning procedure was to 

better acquaint both children and mothers with the scanning environment and to ensure 

that children were comfortable and capable of remaining still for an extended period of 
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time. While child participants were completing the mock scanning procedures, we asked 

mothers to complete the Early Life Experiences (ELE) questionnaire. Additionally, 

participants were required to complete some behavioural tasks and other questionnaires 

that will be used in other aspects of a larger study. If both children and their mothers 

agreed to continue with a real fMRI session, we booked an fMRI appointment at Robarts 

Research Institute for a later date. The entire mock scanning procedure and participation 

in other aspects of the larger study took approximately 2 hours, and participants were 

compensated with a $25 gift card to Chapters/Indigo/Coles for their participation. 

7 « Early Life Experiences Questionnaire (ELE) » 

The ELE questionnaire was administered to mothers of child participants because 

it is a quantifiable measure of commonly occurring adverse life events. The ELE 

questionnaire is a 22-item questionnaire designed to measure individual differences in the 

experience of both the frequency and intensity of adverse life events. An example of one 

questions on the ELE questionnaire is “New marriage of a parent”, mothers were required 

to indicate if the event occurred, when it occurred (0-6 years) or (7+ years), and how 

stressful the event was for the child on a Likert-type scale 1 (Mildly Stressful) to 5 

(Extremely Stressful).  To view the ELE, please see Appendix A.  
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8 « Instrumental Learning Task» 

While inside the fMRI scanner (detailed fMRI procedures described below), 

participants completed 3 runs of an instrumental learning task designed to investigate 

learning from both rewards and losses (adapted from Pessiglione et al., 2006). 

Participants were instructed to try and “get as many points as possible” during the course 

of each run. Participants were also informed that they could win up to $10.00 if they 

performed well on the task in an effort to increase their motivation to remain still during 

the scanning procedures and to ensure that they attended to the task. Please note that all 

participants received the $10.00 compensation at the end of the scanning procedure 

regardless of their performance or capacity to remain still. During each run, 3 pairs of 

neutral, black and white stimuli of common objects were presented. In the stimulus pair 

associated with gains (gain-pair stimuli), selecting one of the two stimuli resulted in 

positive feedback (+10 points) on 80% of trials and neutral feedback (0 points) on 20% of 

trials; in contrast, selecting the other stimulus resulted in positive feedback (+10 points) 

on 20% of trials and neutral feedback (0 points) on 80% of trials. In the stimulus pair 

associated with losses (loss-pair stimuli), selecting one of the two stimuli resulted in 

negative feedback (-10 points) on 80% of trials and neutral feedback (0 points) on 20% of 

trials; and selecting the other stimulus resulted in negative feedback (-10 points) on 20% 

of trials and neutral feedback (0 points) on 80% of trials. The final stimulus pair (nulls) 

resulted in getting 0 points regardless of the choice—both stimuli resulted in receiving 
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neutral feedback (0 points) in 100% of trials. For the purposes of statistical analyses, the 

following four conditions were defined:  

1.) Wins: instances when participants selected one of the gain-pair stimuli and won 

10 points.   

2.) Misses: instances when participants selected one of the gain-pair stimuli and 

received zero points.  

3.) Losses: instances when participants selected one of the loss-pair stimuli and lost 

10 points.  

4.) Avoids: instances when participants selected one of the loss-pair stimuli and 

received zero points (Please See Figure 1).  

To increase statistical power, wins, misses, avoids, and losses were defined based on the 

outcome of the choices that participants made, regardless of whether or not they chose 

the most probabilistically advantageous stimulus. For example, wins were defined as 

instances when participants won 10 points regardless of which stimulus they selected. 

Similarly, losses were defined as instances when participants lost 10 points regardless of 

the stimulus that they chose.  
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Figure 1. Visual demonstration of the four conditions in the instrumental learning 

task(wins, misses, avoids, losses). 

9 « Event-Related fMRI Data Acquisition» 

The imaging procedure was conducted using a 3-Tesla Siemens Magnetom 

Prisma scanner and a Siemens Prisma 32-channel head coil. Functional T2* weighted 

images were acquired using an echo-planar imaging (EPI) pulse sequence. Slices were 

obtained in an ascending, interleaved order (TR = 686 ms; TE = 30 ms; FOV=192 x 192 
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mm; flip angle = 54°; voxel size = 3 mm3, 64 x 64 matrix). A total of 3 runs of functional 

data were collected from each participant, each functional run consisted of 650 volumes 

and lasted for approximately 7 minutes. During the course of the functional runs, 

participants were instructed to complete the instrumental learning task (described above). 

Each run consisted of 44 trials containing 20 gain-pair stimulus conditions, 20 loss-pair 

stimulus conditions, and 4 null conditions. Stimulus pairings (gain-pair, loss-pair, and 

nulls) were presented for 3000 ms in a random order. Participants were required to select 

a stimulus by means of a button press; pressing the left button with the 2D finger resulted 

in selection of the stimulus presented on the left side of the screen, and pressing the right 

button with the 3D finger resulted in selection of the stimulus presented on the right side 

of the screen. After the participant made their selection, feedback appeared in the center 

of the screen for 1000 ms with either “+10”, “-10”, “0” or “Too Slow” if they did not 

make a selection within the 3000 ms. In between feedback and the following stimulus 

presentation, we included an intertrial-interval (ITI) of 1000-5000 ms which consisted of 

a black screen with a fixation cross. A total score was displayed at the bottom of the 

screen when the run was complete, and a final screen was displayed that said “Great job, 

you won ‘x’ points”, where x was the total number of points the participant obtained 

during that run. After the completion of all 3 functional runs, we collected a high-

resolution T1-weighted anatomical image using a 3D MPRAGE pulse sequence (192 

slices; voxel size = 1 mm3, 256 x 256 matrix). The entire fMRI procedure took 
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approximately 1 hour to complete and participants were compensated $10.00 cash and 

with a $25.00 gift card to Chapters/Indigo/Coles for their participation. For a visual 

depiction of the fMRI procedure, please see Figure 2. 

 

Figure 2. This figure is an illustration of the fMRI task, participants viewed a 

fixation cross, followed by a stimulus set, the participants then made a choice via 

button press and received feedback. An intertrial interval between 1000-5000 ms 
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was included before the presentation of the next stimulus. Each stimulus was 

presented for 3000 ms and there were 44 trials in total.  

9.1 « fMRI Data Preprocessing and Analysis» 

Following fMRI data acquisition, all data were preprocessed using Statistical 

Parametric Mapping 12 (SPM 12). First, all functional runs were realigned to the first 

functional volume collected, and we ensured that none of the participants exceeded 3 mm 

of motion in translation or rotation. Next, we performed coregistration of functional and 

anatomical data. We then normalized all single subject data to Montreal Neurological 

Institute (MNI) space, and finally, we spatially smoothed the data using an 8 x 8 x 8 mm 

Gaussian kernel. After completion of all standard preprocessing procedures, we obtained 

onsets for the following conditions: wins, misses, avoids, losses, and nulls, which 

allowed us to determine exactly at what time points the conditions occurred for each 

participant. We then created single subject maps for each participant by creating general 

linear models (GLMs). The GLM for each participant consisted of 5 predictors: wins, 

misses, avoids, losses, and nulls; 6 regressors were also included in the GLM for the 

motion parameters (3 directions in translation x,y,z; and 3 directions in rotation roll, 

pitch, yaw). BOLD response was modelled using a canonical hemodynamic response 

function (HRF). Single-subject contrast images for wins vs. misses and losses vs. avoids 

were obtained and finally, group contrasts for both wins vs. misses and losses vs. avoids 

were also acquired. Region of interest (ROI) data were obtained using the MarsBar 
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Region of Interest toolbox for SPM. We extracted ROI parameter estimates (β) for the 

left and right VS, VMPFC, left and right AI, and ACC (Please See Table 1 for a list of 

regions and their corresponding coordinates). All coordinates for the ROIs were obtained 

from prior studies investigating the MCLP, using similar procedures and MNI space 

(Blair et al., 2006; Pessiglione et al., 2006).  

Table 1. Regions of interest and their [x,y,z] coordinates at the centre of the sphere. 

VS = ventral striatum, VMPFC = ventromedial prefrontal cortex, AI = anterior 

insula, and ACC = anterior cingulate cortex. 

Region of Interest MNI coordinates at 

Centre of Sphere (x,y,z) 

Radius of Sphere (mm) 

Left VS x = -14, y = 10, z = -9 7 mm 

Right VS x = 14, y = 10, z = -9 7 mm 

VMPFC  x = -1, y = 47, z = -18 10 mm 

Left AI x = -40, y = 21, z = -8 10 mm 

Right AI x = 40, y = 24, z = -8 10 mm 

ACC x = 8, y = 26, z = 36 10 mm 
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Chapter 3 : Results 

10 « Behavioural Results » 

10.1 « Learning to Select Favourable Outcomes and Avoid 
Unfavourable Outcomes » 

Prior to proceeding with the imaging analyses, an investigation of whether 

participants learned the reward and loss contingencies presented in the instrumental 

learning task was conducted.  The learning curves in Figure 3 are visual depictions of 

observed behavioural choices. Figure 3 shows on a trial by trial basis the proportion of 

participants that chose the correct stimulus in the gain-pair condition (in green) and 

selected the incorrect stimulus in the loss-pair condition (in red). For example, to obtain 

the data points for trial 1 in Figure 3, we first determined how many participants received 

a gain-pair condition at trial 1, we then calculated the proportion of those participants 

who selected the stimulus that most often resulted in rewards and plotted that percentage 

as the data point at trial 1.  Similarly, we determined how many participants received a 

loss-pair condition at trial 1, and calculated the proportion of participants who selected 

the incorrect stimulus at trial 1. These calculations were repeated for all subsequent trials. 

As demonstrated in Figure 3, it is evident that across the trials, the proportion of 

participants who chose the correct stimulus (the one associated with a greater frequency 

of obtaining rewards) increased, while the proportion of participants who chose the 
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incorrect stimulus (the one associated with a greater frequency of obtaining losses) 

decreased.  

 

Figure 3. Observed behavioural choice to gain-pair and loss-pair stimuli. 
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10.2 « Gain-Pair and Loss-Pair Accuracy » 

Accuracy for gain-pair conditions and loss-pair conditions were measured 

separately. For the gain-pair condition, accuracy was defined as the percentage of 

instances across all runs that the participant selected the “correct” stimulus (the stimulus 

that most frequently resulted in rewards). For the loss-pair condition, accuracy was 

defined as the percentage of instances across all runs that the participant avoided the 

“incorrect” stimulus (the stimulus that most frequently resulted in losses).  A paired-

samples t-test was conducted to compare accuracy on the gain-pair condition with 

accuracy on loss-pair condition. Accuracy scores on the gain-pair condition (M = 75.91, 

SD = 13.34) and accuracy on the loss-pair condition (M = 79.09, SD = 13.94) did not 

differ significantly from one another; t(18) = 0.929, p = .365. These results indicate that 

the average accuracy on gain-pair conditions did not differ significantly from the average 

accuracy on loss-pair conditions.  

Next, whether accuracy on gain-pair conditions was correlated with accuracy on 

loss-pair conditions was investigated. A Pearson correlation was conducted and 

demonstrated that there was not a statistically significant relationship between gain-pair 

accuracy and loss-pair accuracy, r(17) = .403, p = .087. Although the relationship 

between gain-pair accuracy and loss-pair accuracy was not statistically significant, the 

scatter plot in Figure 4. shows that there is a trend towards a positive correlation; such 
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that participants who scored high in accuracy in the gain-pair condition also scored high 

in accuracy in the loss-pair condition. However, given that the correlation between the 

two conditions was not statistically significant, gain-pair accuracy and loss-pair accuracy 

were treated as separate scores for all of the following analyses (in other words, an 

overall accuracy score was not obtained). 

 

Figure 4. Scatter-plot showing no correlation between gain-pair and loss-pair 

accuracy. 
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10.3 « No Effect of Sex or Age on Gain-Pair/Loss-Pair 
Accuracy » 

To ensure that there was no effect of sex on either gain-pair or loss-pair accuracy, 

the group was split by sex: females (n = 11) and males (n = 8) and independent samples t-

tests for gain-pair and loss-pair accuracy were conducted. Gain-pair accuracy in females 

(M = 79.77, SD = 11.64) did not differ significantly from gain-pair accuracy in males (M 

= 70.6, SD = 14.45). Leven’s test indicated equal variances (F = .042, p = .841) and the 

independent samples t-test was not significant, t(17) = 1.534, p = .143. Similarly, loss-

pair accuracy in females (M = 75.34, SD = 15.08) did not differ significantly from loss-

pair accuracy in males (M = 84.25, SD = 11.06); Leven’s test (F = .619, p = .442); t(17) = 

-.413, p = .176.  

To ensure that there were no effects of age on either gain-pair or loss-pair 

accuracy, Pearson correlations between age (in months) and accuracy on gain-pair and 

loss-pair conditions were conducted independently. Age (M = 129.84, SD = 11.64) did 

not correlate significantly with gain-pair accuracy, r(17) = -.125, p = .610. Similarly, age 

did not correlate significantly with loss-pair accuracy, r(17) = -.323, p = .178.   

10.4 « Reaction Time (RT) » 

Next, an investigation of whether reaction time (RT) measured in milliseconds 

(ms) differs between gain-pair and loss-pair conditions using a paired samples t-test was 



33 

 

 

 

 

 

conducted. RT in the loss-pair condition (M = 1259.42, SD = 98.24) was significantly 

greater than the RT in gain-pair condition (M = 1162.69, SD = 150.16), t(18) = 3.626, p = 

.002. These findings are consistent with those reported by Pessiglione and colleagues 

(2006) who also found that RT in the loss-pair condition was significantly greater than 

RT in the gain-pair condition using the same task with adults. Figure 5 illustrates the 

difference in RT between loss-pair and gain-pair conditions.  
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Figure 5. Bar-plot showing the difference in RT between loss-pair and gain-pair 

conditions 
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11.97.55, SD = 172.32) and males (M = 1114.75, SD = 104.99). Levene’s test for equality 

of variances was not significant (F = 2.608, p = .125) and the t-test was not significant, 

t(17) = 1.201, p  = .246. Similarly, for loss-pair RT, there was no difference between 

females (M = 1260.26, SD = 118.53) and males (M = 1258.25, SD = 68.90). Levene’s test 

indicated equal variances (F = 2.609, p = .125), and the t-test was not significant, t(17) = 

.043, p = .966. Finally, there was no effect of age on either gain-pair or loss-pair accuracy 

as determined via Pearson correlations between age (in months) and RT. Age (M = 

129.84, SD = 11.64) did not correlate significantly with gain-pair RT, r(17) = -.035, p = 

.885. Likewise, age did not correlate significantly with loss-pair RT, r(17) = -.135, p = 

.583.  

11 « Research Question 1 » 

11.1 « Do the VS and VMPFC Show a Greater BOLD 
Response in Wins Relative to Misses? » 

To replicate previous findings that the MCLP, specifically the VS and VMPFC, 

are more active during gaining rewards (wins) relative to missing out on an opportunity 

to gain rewards (misses), a group contrast for wins vs. misses was obtained. Figure 6 

shows the group contrast for wins contrasted against misses (wins vs. misses) at a 

statistical threshold of t = 2.878, p < .005 (uncorrected). As predicted, regions within the 

MCLP (VS and VMPFC) were significantly activated in response to wins at feedback 

relative to misses.  
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Figure 6. Group contrast for wins vs. misses [x = -14, y = 10, z = -9] at a statistical 

threshold of t = 2.878, p < .005. MNI T1.img template. Regions that show more 

activation during wins relative to misses include bilateral VS and VMPFC. 

11.2 « Do the AI and ACC Show a Greater BOLD response 
in Losses Relative to Avoids? » 

Similarly, to determine whether the AI and ACC were more active during losses 

relative to avoiding a loss (avoids), a group contrast for losses vs. avoids was obtained. 

Figure 7 shows the group contrast for losses contrasted against avoids (losses vs. avoids) 
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at a statistical threshold of t = 3.61, p = .001 (uncorrected). The group contrast reveals 

robust error network activity, including greater bilateral AI and ACC BOLD response in 

losses relative to avoids. Table 2 is a summary of statistics for significant clusters of 

activation for the wins vs. misses and losses vs. avoids contrasts.  

 

Figure 7. Group contrast for losses vs. avoids [x = 40, y = 24, z = -8], at a statistical 

threshold of t = 3.61, p < .001. MNI T1.img template. Regions that show more 

activation during losses relative to avoids include bilateral AI and ACC. 
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Table 2. Statistics for ROIs within the wins vs. misses and losses vs avoids contrasts. 

Note: Coordinates denote the location of peak activation. 

Contrast MNI Coordinates 

[x,y,z] 

Region Statistics 

Wins vs. Misses [-16, 8, -6] 

 

Left Ventral 

Striatum (VS) 

t = 4.85, p = .000 

 

 [14, 8, -4] 

 

Right Ventral 

Striatum (VS) 

t = 3.67, p = .001 

 

 [-16, 14, -8] 

 

Venromedial 

Prefrontal Cortex 

(VMPFC) 

t = 3.60, p = .001 

 

Losses vs. Avoids [-36, 26, -4] 

 

Left Anterior Insula 

(AI) 

t = 7.19, p = .000 

 

 [40, 20, -6] 

 

Right Anterior 

Insula (AI) 

t = 11.56, p = .000 

 

 [6, 36, 38] Anterior Cingulate 

Cortex (ACC) 

t = 12.63, p = .000 
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11.3 « Does Avoiding a Loss Recruit the Same Neural 
Regions as Gaining a Reward? » 

To determine whether the patterns of brain activity observed in gaining rewards 

and avoiding losses are the same or distinct, group-level contrasts for wins vs. misses, 

and avoids vs. losses were conducted. If the underlying neural circuitry is the same, the 

VS and VMPFC were expected to become active to both wins and avoids, relative to 

misses and losses, respectively. Figure 8 shows the group contrast for avoids vs. losses at 

a statistical threshold of t = 2.878, p < .005 (uncorrected), and demonstrates that the 

BOLD responses in the VS and VMPFC were not significantly greater in avoids relative 

to losses.  
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Figure 8. Group contrast for avoids vs. losses [x = -14, y = 10, z = -9] at a statistical 

threshold of t = 2.878, p < .005. MNI T1.img template. There were no clusters of 

significant activity in VS or VMPFC. 

A comparison of Figure 6 (wins vs. misses), and Figure 8 (avoids vs. losses), 

reveals that while the BOLD responses in the VS and VMPFC were significantly greater 

in wins relative to misses, the same neural regions were not significantly more active 

when participants avoided a loss relative to when they received a loss (Please See Figure 

9).  
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Figure 9. A comparison of the wins vs. misses and avoids vs. losses contrasts [x = -

14, y = 10, z = -9] both at a statistical threshold of t = 2.878, p < .005. MNI T1.img 

template. 

To further demonstrate that gaining a reward (wins) results in a different pattern 

of neural activity in comparison to avoiding a loss (avoids), wins vs. avoids were directly 

contrasted against one another at a statistical threshold of t = 2.878, p < .005 

(uncorrected). Figure 10 demonstrates that the BOLD response in the right VS and 

VMPFC was greater in wins relative to avoids.  
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Figure 10. Group contrast for wins vs. avoids [x = 12, y = 10, z = -8] at a statistical 

threshold of t = 2.878, p < .005. MNI T1.img template. Regions that show more 

activation during wins relative to avoids include the right VS and VMPFC. 

12 « Research Question 2 » 

12.1 « Do the BOLD Responses in the VS and VMPFC 
Correlate with Gain-Pair Accuracy? » 

We previously determined that the VS and the VMPFC are more significantly 

activated to wins relative to misses. Based on previous research, individual differences in 
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the magnitude of the VS and VMPFC BOLD response were expected to correlate with 

accuracy on the gain-pair condition, such that participants with a greater BOLD response 

in the regions of the MCLP (VS and VMPFC) would select the stimulus associated with 

rewards more often. Individual differences in β in the left VS in the wins vs. misses 

contrast (M = 1.78, SD = 1.85) were correlated with gain-pair accuracy and a positive 

correlation r(17) = .5088, p = .026 was found. These results indicate that the greater the 

BOLD response in the left VS during wins relative to misses the better the participant’s 

performance on the gain-pair condition (selecting the stimulus that is most frequently 

associated with rewards). Similarly, the BOLD response in the right VS during wins vs. 

misses (M = 1.50, SD = 1.50) correlated positively with gain-pair accuracy, r(17) = 

.5356, p = .018; and the BOLD response in the VMPFC during wins vs. misses (M = 

0.77, SD = 2.59) correlated marginally with gain-pair accuracy, r(17) = .463, p = .045. 

Please refer to Figures 11-13 for the scatter-plots illustrating the relationships.   
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Figure 11. Scatter-plot of the correlation between activity left VS in wins vs. misses 

(β) and gain-pair accuracy (%). 
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Figure 12. Scatter-plot of the correlation between activity right VS in wins vs. misses 

(β) and gain-pair accuracy (%). 
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Figure 13. Scatter-plot of the correlation between activity VMPFC in wins vs. misses 

(β) and gain-pair accuracy (%). 

12.2 « Do the BOLD Responses in the AI and ACC Correlate 
with Loss-Pair Accuracy? » 

The group contrast for losses vs. avoids revealed significant activity in bilateral 

AI and also in the ACC. To determine whether BOLD responses in the AI or ACC in 

losses vs. avoids correlated with accuracy on the loss-pair condition, Pearson correlations 

were computed between the ROIs and loss-pair accuracy. The BOLD response (β in 

losses vs. avoids contrast) in neither the left AI (M = 3.22, SD = 2.16), the right AI (M = 

-6

-4

-2

0

2

4

6

8

40 50 60 70 80 90 100

V
e

n
tr

o
m

e
d

ia
l 
P

re
fr

o
n

ta
l 
C

o
rt

e
x
 W

in
s
 v

s
. 

M
is

s
e
s
 (

B
e

ta
) 

Gain-pair Accuracy (%)

Ventromedial prefrontal cortex activity in wins vs. misses 
is positively correlated with gain-pair accuracy 

r (17) = .463, p = .045



47 

 

 

 

 

 

3.16, SD = 1.53), nor the ACC (M = 2.73, SD = 1.74) correlated with loss-pair accuracy 

(M = 79.09, SD = 13.94). These results demonstrate that the BOLD response observed in 

the losses vs. avoids contrast did not predict individual differences in avoiding the 

stimulus that most frequently resulted in a loss.  Please refer to Figures 14-16 for scatter-

plots illustrating the relationships between bilateral AI, ACC and loss-pair accuracy.  

 

Figure 14. Scatter-plot of the correlation between activity in the left AI in losses vs. 

avoids (β) and loss-pair accuracy (%). 
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Figure 15. Scatter-plot of the correlation between activity in the right AI in losses vs. 

avoids (β) and loss-pair accuracy (%). 
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Figure 16. Scatter-plot of the correlation between activity in the ACC in losses vs. 

avoids (β) and loss-pair accuracy (%). 

13 « Research Question 3» 

13.1 « Does Early Life Adversity Correlate with VS and 
VMPFC Activity in Wins vs. Misses?  » 

To examine whether the experience of early life adversity influenced the response 

of the MCLP (VS and VMPFC in particular) to rewarding feedback, Pearson correlations 

were conducted between the total adversity score and left VS, the right VS, and the 

VMPFC activity in wins vs. misses. The relationship between the ELE total adversity 
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score (M = 12.47, SD = 7.95) and beta in the left VS in the wins vs. misses contrast (M = 

1.78, SD = 1.85) was positive r(17) = .5961, p = .007. Similarly, there was a positive 

correlation between the total adversity score and beta in the right VS during wins vs. 

misses (M = 1.50, SD = 1.50), r(17) = .5084, p = .026; and beta in the VMPFC during 

wins vs. misses (M = 0.77, SD = 2.59), r(17) = .5521, p = .014. These results demonstrate 

that early life adversity had an influence on the BOLD response to rewarding feedback in 

regions within the MCLP. Please refer to Figures 17-19 for scatter-plots of the 

relationships.  
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Figure 17. Scatter-plot of the correlation between left ventral striatal activity in wins 

vs. misses (β) and total adversity (ELE). 
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Figure 18. Scatter-plot of the correlation between right ventral striatal activity in 

wins vs. misses (β) and total adversity (ELE). 
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Figure 19. Scatter-plot of the correlation between right ventral striatal activity in 

wins vs. misses (β) and total adversity (ELE). 

13.2 « Does the Experience of Early Life Adversity Predict 
Gain-Pair Accuracy?  » 

Given the positive relationship between adversity experienced early in life and 

greater activation within regions of the MCLP, and given that those same regions were 

predictive of gain-pair accuracy behaviourally, we conducted a correlation between ELE 

scores (M = 12.47, SD = 7.95) and gain-pair accuracy (M = 75.91, SD = 13.34). Indeed, 
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accuracy r(17) = .526, p = .02 (Please refer to Figure 20).  However, the relationship 

between total adversity and accuracy seems to be specific to gain-pair accuracy, total 

adversity did not correlate with loss-pair accuracy (M = 79.09, SD = 13.94), r(17) = 

.4424, p = .06.  

 

Figure 20.  Scatter-plot of the correlation between gain-pair accuracy (%) and total 

adversity (ELE). 
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13.3 « Does Early Life Adversity Correlate with AI and ACC 
Activity in Losses vs. Avoids?  » 

Next, whether the neural regions involved in feedback to losses exhibit a similar 

phenotypic plasticity was investigated. Bilateral AI and ACC activity were correlated 

with total adversity scores from the ELE separately and the results revealed that there was 

no significant relationship between adversity and any of the regions active during 

feedback to losses. The total adversity score (M = 12.47, SD = 7.95) did not correlate 

with activity in the left AI (M = 3.22, SD = 2.16) in losses vs. avoids, r(17) = -.104, p = 

.67; it did not correlate with activity in the right AI (M = 3.16, SD = 1.53), r(17) = .199, p 

= .413; nor did it correlate with activity in the ACC (M = 2.73, SD = 1.74), r(17) = .3278, 

p = .17.  
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Chapter 4 : Discussion  

 

Learning from rewards and losses guides future decision making and is 

advantageous; moreover, previous research has demonstrated that dysregulation within 

the MCLP can have adverse consequences. In light of these considerations, the present 

study examined both the neural and the behavioural correlates of reward and loss learning 

early in development. Furthermore, whether regions within the MCLP are sensitive to the 

presence of early life adversity was investigated.  

14 « Behavioural Findings» 

At the behavioural level, RT in the loss-pair condition was significantly greater 

than RT in the gain-pair condition. These findings are consistent with those reported by 

Pessiglione and colleagues (2006) who used the same task in an adult cohort. This 

difference in RT in the gain-pair and loss-pair conditions could be because participants 

first attend to the most salient stimulus in each pair, and then chose/avoid that option. For 

example, in the gain-pair condition, the salient stimulus is the “correct” stimulus, 

participants attend to that stimulus and then select it. In contrast, in the loss-pair 

condition, the salient stimulus is the “incorrect” stimulus, participants first attend to the 

incorrect stimulus and then avoid that stimulus. The process of attending to a stimulus 
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and selecting it would take less time than attending to a stimulus and then selecting the 

other stimulus in the pair.  

15 « fMRI Findings and Brain-Behaviour Correlations» 

First, previous findings that the VS and VMPFC exhibit a greater BOLD response 

during gaining rewards (wins) relative to missing out on an opportunity to gain rewards 

(misses) were replicated. Consistent with previous findings (Floresco, 2015; Pessiglione 

et al., 2006; Rogers et al., 2004), a greater BOLD response in the bilateral VS and the 

VMPFC in wins relative to misses was found. Furthermore, individual differences in the 

BOLD response in the MCLP were correlated with behavioural performance, such that 

the BOLD response in the bilateral VS and VMPFC correlated positively with gain-pair 

accuracy.  These results demonstrate that the greater the BOLD response in the 

aforementioned regions, the more frequently participants selected the stimulus that was 

more often associated with rewards. Additionally, this relationship provides evidence for 

the functional role of the VS and VMPFC in influencing behaviour. Consistent with these 

findings, a recent review characterizes the VS as a region that integrates cognitive and 

affective information to increase the efficiency of selecting actions that lead to positive 

outcomes (Floresco, 2015; See Also Pessiglione et al.,2006).  

Previous research has demonstrated that the AI and ACC are involved in the 

experience and anticipation of negative consequences (Blair et al., 2006; Palminteri et al., 
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2012; Samanez-Larkin et al., 2008). Based on these findings, conditions when 

participants lost point against conditions when they avoided losing points were 

contrasted. Consistent with previous findings, the BOLD response was greater in the 

bilateral AI and ACC in losses relative to avoids. However, Samanez-Larkin and 

colleagues (2008) reported that AI activity to losses predicted participants’ ability to 

avoid subsequent losses. Contrary to these findings, we did not find a relationship 

between AI or ACC activity and loss-pair accuracy. These results demonstrate that while 

the AI and ACC respond to the feedback of losses, they do not necessarily guide future 

choices.  The finding that BOLD responses within regions of the MCLP correlate 

positively with subsequent behavioural choice and that BOLD responses within the AI 

and ACC do not correlate with behavioural choice, might be reflective of the anatomical 

connection between the striatum and the motor cortex. The basal ganglia including 

regions of the striatum were traditionally viewed as motor regions because of the white 

matter fiber tracts that connect the regions with the motor cortex; therefore, it could be 

that neural activity within the striatum in response to rewards could be efficiently 

transmitted to the motor cortex thereby influencing actions to select the rewarding 

stimulus.  
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15.1 « Avoiding a Loss is not Processed the Same Way as 
Gaining a Reward » 

Some researchers have found that the same neural regions that respond to gaining 

rewards are activated when participants avoid losses. This notion stems from the idea that 

DA bursts facilitate approach behaviours, while DA dips facilitate avoidance behaviours 

(Delgado et al., 2000; Frank et al., 2004; Palminteri et al., 2009, 2012). However, other 

researchers have hypothesized that an entirely separate neural system is activated in 

response to losses. According to the latter hypothesis, DA neurons within the VTA are 

insensitive to losses—they activate only to unexpected rewards and become suppressed 

in the absence of predicted rewards (Fiorillo, 2013). We hypothesized that if approaching 

rewards and avoiding losses rely upon the same neural circuitry, fMRI activation in VS 

and VMFPC would be observed both when participants gain reward and when they avoid 

losses. However, the findings reveal that while the VS and VMPFC were significantly 

activated in wins versus misses, they were not activated in avoids versus losses. These 

findings provide support for the hypothesis that DA neurons within the VTA are 

insensitive to losses and become activated only to rewards. Avoiding a loss is not 

processed in the same way as gaining a reward—at least at the neural level and with a 

developmental cohort. Some of the inconsistent findings might reflect differences in the 

samples used; for example, some of the previous research that demonstrates that the same 

neural circuitry is involved in gaining rewards and avoiding losses used patients with 
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Parkinson’s disease (Frank et al., 2004). Furthermore, it is important to disambiguate 

rewards and losses within the task, many of the tasks administered in previous studies 

included rewards and losses within the same stimulus pairing. For example, stimulus “A” 

resulted in a reward 80% and a loss 20%; whereas stimulus “B” resulted in a reward 20% 

and a loss 80% of time (Frank et al., 2004). Using tasks that are designed in this way 

make it particularly difficult to disambiguate what the participants’ choice means; 

selecting A could be approaching a reward or avoiding a loss. One of the advantages of 

the task used in this study is that it separates gain-pair and loss-pair stimuli, such that 

stimulus “A” predicts reward most of the time and stimulus “B” predicts receiving 0 

points most of the time. In other words, the task designed by Pessiglione and colleagues 

(2006) and used in this study, separates rewards and losses in a manner that makes it 

easier to interpret the participants’ behaviour. These differences in the tasks used to 

engage the MCLP could explain some of the inconsistent findings.  

16 « The MCLP is Sensitive to Early Life Adversity» 

Gatzke-Kopp (2011) suggests that the MCLP demonstrates plasticity to adversity 

experienced early in development. Changes in DA signaling within the MCLP are 

proposed to be adaptations to adversity; and the severity of early life adversity is 

proposed to predict individual differences in dopaminergic function. To test this 

hypothesis, the frequency of early life adversity (measured via ELE) was correlated with 
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MCLP BOLD responses during wins versus misses. A positive correlation between 

adversity and activity within the VS and VMPFC was found. These findings are 

consistent with the idea that the MCLP shows phenotypic plasticity, such that the greater 

the amount of adversity experienced in early development, the greater the magnitude of 

the BOLD response in regions within the MCLP when participants received rewards. In 

addition, an association between early life adversity and behaviour was found; once 

again, early life adversity was positively correlated with gain-pair accuracy.  

These findings are consistent with previous research that demonstrates a 

relationship between adversity and a behavioural sensitivity to rewards (Casement et al., 

2015; Goeders, 2003; Lighthall et al., 2013; Mather & Lighthall, 2012; Meaney et al., 

2002). However, these results provide not only behavioural evidence demonstrating a 

relationship between adversity and a tendency to select rewarding stimuli, but also, they 

demonstrate a relationship between the MCLP and adversity experienced in early 

development. These findings are of particular interest because they demonstrate that the 

MCLP tracks not only information regarding the outcomes of choices in the immediate 

environment, but is also sensitive to adverse events that occur throughout the course of 

early development. The idea that environmental factors might influence the MCLP is of 

practical relevance given the important role of the MCLP in  learning to select rewards, 

and that dysregulation within the MCLP has a host of adverse consequences, including 
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ADHD, (Carmona et al., 2009; Hommer, Bjork, & Gilman, 2011; Luman, Tripp, & 

Scheres, 2010; Plichta & Scheres, 2014; Plichta et al., 2009; Sagvolden & Johansen, 

2005; Sonuga-Barke, 2002; Ströhle et al., 2008; Tripp & Alsop, 1999; Tripp & Wickens, 

2009; Volkow et al., 2009). If we begin to understand the role of environmental adversity 

in calibrating the MCLP, we may begin to better understand what gives rise to individual 

differences in susceptibility to substance abuse, ADHD, schizophrenia and other 

disorders of the dopaminergic system.  A better understanding of both the 

neurobiological and environmental influences on the MCLP and disorders associated 

with dysregulation of the MCLP, can inform evidence-based clinical practice. 

17 « Limitations » 

The present study has several limitations that should be taken into consideration 

when interpreting the findings. First, the small sample size (n = 19) makes it difficult to 

generalize our findings to the population at large. Furthermore, the sample consisted 

predominantly of Caucasian families from a middle to upper-middle class socioeconomic 

status, once again compromising the generalizability of our findings. The fact that many 

of the participants were from middle to upper-middle class socioeconomic status has 

implications with regards to the findings in relation to the ELE questionnaire. It has 

previously been determined that low socioeconomic status is associated with the 

experience of early life adversity, and with the current sample, the assessment of extreme 
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conditions of early life adversity that are typically correlated with low socioeconomic 

status and parental education were not possible to investigate.   

Beyond sample characteristics, the ELE questionnaire has both its merits and 

drawbacks. The ELE questionnaire required mothers of child participants to indicate how 

stressful commonly occurring adverse life events were for their child. Given that the ELE 

questionnaire was completed by the mothers (and not the participants themselves), 

mothers may not have accurately estimated how stressful the adverse life event was for 

their child. It is quite possible that some mothers may have under/over-estimated how 

stressful the event was for their child.  The reason that the ELE was used despite this 

limitation is that other questionnaires that assess adversity in early childhood often use 

measures of traumatic events. We were not interested in only the presence of extremely 

traumatic events, but also, how typically occurring stressful life events might influence 

individual differences in the function of the MCLP. One further limitation in the 

treatment of early life adversity using the ELE was that all types of adversity were 

aggregated in the total adversity measure. However, the types of events on the ELE are 

quite diverse (Appendix A) and range from issues pertaining to the stability of the early 

life environment (e.g., moving residences or changing schools), to events that may have 

longer lasting influences (e.g., serious illness or death of an immediate family member). 

One interesting future direction could be to separate early life events into different 
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categories and observe whether it is a particular type of adversity that influences the 

MCLP more than others. Similarly, the ELE includes measures of when the adverse life 

event occurred (between 0-6 years or 7 + years), it would be interesting to investigate 

whether or not the timing of early life adversity influences the MCLP and subsequently 

behaviour. The underlying research question would be to determine whether differential 

calibration of the MCLP based on early life adversity has a sensitive period. These types 

of an analyses were not conducted in the current study because of limitations associated 

with the small sample size.  

A further limitation is related to the design of our fMRI protocol, an inter-trial 

interval between the stimulus presentation and feedback was not included. Therefore, 

differences in BOLD activity to the anticipation versus receipt of rewards cannot be 

determined, as suggested by some recent evidence (Boecker et al., 2014). Additionally, 

the stimuli that were used in the paradigm were not natural rewards, they were simply 

drawings of everyday objects. It would be interesting to determine whether the MCLP 

responds more robustly to natural rewards, such as pictures of appetizing foods or 

attractive faces in contrast to pictures of foods that typically illicit disgust and 

unattractive faces. Using stimuli that are more likely to be present in the natural 

environment might increase the external validity of the study.  
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In the present study, age-related changes in the function of the MCLP or in 

behavioural performance were not investigated. It is possible that as participants 

approach adolescence, they would be more sensitive to the prospect of rewards as 

previous research has determined that adolescence is a period of risk-taking and novelty 

seeking. In future work, the development trajectory of reward and loss learning at the 

behavioural level, the structural level of the nervous system, and the functional response 

of the MCLP in response to rewards and losses will be determined. Finally, in the present 

study, a consideration of how variability within the genome might influence the BOLD 

response in the MCLP to rewards, and whether gene-environment interactions might 

explain individual differences at both the neural and behavioural level were not included. 

In future work, both environmental and genetics data will be included in the analyses. 

Future studies should also investigate the influence of early life adversity on the structure 

of the MCLP using diffusion tensor imaging (DTI; for an analysis of white matter fiber 

tracts within regions of the MCLP) and voxel-based morphometry (for an analysis of 

individual differences in gray matter volume). Gaining an understanding of how genes 

and the environment (and/or their interaction) might influence both the structure and 

function of the MCLP will help shed light onto what gives rise to individual differences 

in reward learning.  
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18 « Concluding Remarks » 

The present study replicated previous findings that regions within the MCLP (VS 

and VMPFC) show a greater BOLD response to gaining rewards relative to missing out 

on rewards. Furthermore, the results demonstrated that individual differences in the 

magnitude of the BOLD response within the VS and VMPFC correlated positively with 

selecting the stimulus that resulted in a reward most often. In contrast, the AI and ACC 

demonstrated greater BOLD responses to receiving losses relative to avoiding losses. 

However, neither the activity in the AI nor the ACC was predictive of behavioural 

performance in avoiding the stimulus that most often resulted in a loss. Additionally, 

while the VS and VMPFC exhibited a greater BOLD response to gaining rewards relative 

to missing out on rewards; the same regions did not show increased BOLD activity in 

avoiding a loss relative to receiving a loss. These findings suggest that the neural 

underpinnings of gaining rewards are not the same as the neural underpinnings of 

avoiding losses—at least in a developmental sample. Finally, the MCLP was found to 

demonstrate a phenotypic plasticity to adversity experienced early in childhood. The 

frequency and intensity of adverse life events experienced throughout the course of 

development correlated positively with VS and VMPFC activity when participants 

obtained a reward relative to when they missed out on receiving a reward. Moreover, 

early life adversity correlated positively with the behavioural propensity to select the 

stimulus that most frequently resulted in rewards (Figure 21 is a visual schematic 
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outlining these relationships). The finding that the MCLP is sensitive to early life 

adversity is of particular importance because it demonstrates that the MCLP tracks 

information regarding the outcome of choices in both the immediate environment, and 

also throughout ontogeny. The combination of these findings can help delineate what 

factors contribute to individual differences in learning to select actions that are favourable 

and avoid actions that are unfavourable.  

 

Figure 21. Diagram showing the relationships between adversity, MCLP BOLD 

response, and gain-pair accura 
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