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Abstract 

Human activities around the world are responsible for production of enormous amount of 

wastewater, which needs to be treated quickly and effectively to avoid environmental concerns 

and other health implications. As an alternative to primary settlers in treating municipal 

wastewater, Salsnes, a subsidiary company of Trojan Technologies offers rotating belt filters 

(RBF) to treat the wastewater. A bench scale filtration unit of the RBF was developed to 

investigate the effect of varying water qualities from several wastewater plants in London, 

Ontario on the performance of the filter. The unit can achieve up to 80% reduction in total 

suspended solids (TSS), and 60% reduction in COD. As expected, flux of the filter meshes 

decreases with continuous filtration, while TSS, COD removal efficiency increases due to cake 

filtration. Performance models were developed correlating flux and removal efficiency with 

important influent water quality parameters such as TSS and COD using regression analysis.  

 

Keywords: Cake filtration, Rotating Belt Filters, Regression analysis, Wastewater. 
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Chapter 1 

Introduction 

 1.1 Background: 

 

Human activities worldwide in the form of domestic, agricultural, industrial have resulted in 

increased water pollution. The quality in terms of the amount of solids present in the polluted 

wastewater vary from place to place with the changes being reflective of lifestyles of people of 

the particular region, the frequency and amount of precipitation, infiltration along with many 

other  factors. A common practice for pre-treatment of wastewater is using the process of 

coagulation and flocculation. The most widely used coagulants are alum, ferric chloride and 

polyaluminium chloride (PAC). However, using these coagulants not only produces large 

volumes of sludge but large tanks with high surface area are then required to create good settling 

conditions. In densely populated regions this can significantly add to the investment costs. 

While primary clarifiers are the most widely used units to remove mostly particulate chemical 

oxygen demand (COD) and total suspended solids (TSS) prior to biological treatment, the 

rotating belt filter (RBF) technology offers a smaller-footprint alternative to large setting tanks. It 

also provides faster installation, reduced capital and operational costs and energy savings in the 

long run. Such filtration systems operate on the principle of thin-cake filtration, which allows the 

removal of solid particles up to three times smaller than the nominal pore size of the filter mesh. 

The speed of the rotating belt can be adjusted to balance the cake thickness between the solids 

removal rate and the hydraulic surface loading. 

Salsnes, Norway, a subsidiary company of Trojan Technologies, London, Ontario offers a wide 

range of the RBF units, rated for 400 to 600 gpm depending on inlet TSS concentration. These 
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units have been tested for effective TSS removal up to 80% and biochemical oxygen demand 

(BOD) up to 20% and maybe a viable alternative to primary settlers. 

1.2 Research objectives: 

 

As a certain filtration unit under constant operating conditions responds differently to a variation 

in the water quality and the filtration mesh type, semi-empirical approaches were adopted in 

developing the earlier filtration models. This is to avoid the need to consider the complex 

interactions between particulate solids and the filter mesh at the micro scale simplifying the 

modelling approach. The semi-empirical approach defines the filtration kinetics as the decay of 

the filter flux and the increase of the removal efficiency as the cake is forming on the filter mesh. 

The overall objective of this thesis is to determine the filtration kinetics of a Salsnes rotating belt 

filtration (RBF) unit using a bench scale version and develop filtration predictive performance 

model applicable for RBF. 

The specific objectives of this work are to: 

 Develop a bench scale filter unit and experimental protocol that enable the determination 

of filtration kinetics. 

 Analyze the experimental data using regression analysis to determine the key wastewater 

parameters influencing the filtration kinetics. 

 Develop a model that relates the wastewater characteristics (e.g. TSS, turbidity etc.) to 

flux and removal efficiency of the filter. 

 Use the developed filtration kinetics model within a numerical simulation tool to predict 

the hydraulic capacity and removal efficiency of a full scale RBF. 
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Chapter 2 

Literature Review 

 

2.1 Characteristics of wastewater:  

 

Wastewater is defined as an amalgamation of water containing wastes discharged from 

residential buildings, industries, institutions etc. and may also include storm water, surface water 

run-off and ground water [Metcalf and Eddy, 2002]. The contaminants in the wastewater range 

from particulate and colloidal matters in the form of sand, clay etc.; dissolved organic matter in 

the form of synthetic and natural compounds; inorganic matter in the form of nitrite, nitrate, 

ammonium, phosphate, sulfate; different microbes; heavy metals like arsenic, cadmium, lead 

etc.; hazardous and persistent organics like polycyclic aromatic hydrocarbons (PAHs), 

pesticides, and volatile organic chemicals (VOCs) etc. [Henze. 2008]. The changes in water 

quality are reflective of the lifestyles of the population in that region, daily consumption, 

regulatory laws in practice and different environmental factors such as nature and frequency of 

precipitation and soil constituents. For instance the variation in daily or the yearly load per 

person in countries like India, USA, Egypt, and Brazil may form a good basis while illustrating 

this point [Henze et al., 2002]. As the wastewater flows out from the residences, industries, and 

into the sewer channels finally to the wastewater plants, it undergoes physical, chemical and 

biological changes. These changes can be determined by measuring certain global parameters, 

namely; total suspended solids (TSS), biological oxygen demand (BOD), chemical oxygen 

demand (COD), total organic carbon (TOC), absorbance, and turbidity [Bourgeois et al., 2001]. 
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2.2 Principles of existing techniques for measuring wastewater characteristics: 

 

There occurs a spatial and time dependent variability in the water characteristics and in order to 

measure these changes, standard analytical methods exist. This section deals with describing the 

most common tests in detail. 

2.2.1 Total Suspended Solids (TSS): 

 

The American Public Health Association, American Water Works Association, and the Water 

Pollution Control Federation (1995) lists TSS as an important factor in water analysis. It requires 

obtaining a predetermined volume of water from the original sample, while it is being 

continuously stirred by a magnetic stirrer. This water sample is then passed through a glass fiber 

filter which had been previously washed, dried at 103
o
C and weighed. The difference between 

the initial and the final weights of the filter determines the mass of the suspended solids and 

knowing the sample volume TSS concentration can be calculated. A possible disadvantage to 

this conventional method could be the predetermined sample volume might not be representative 

of the entire water sample in the absence of complete mixing. 

2.2.2 Biochemical Oxygen Demand (BOD): 

 

The 5-day BOD test is an empirical test to measure bio - reducing pollution in the water. It is 

essentially the amount of dissolved oxygen required for the complete oxidation of the 

biodegradable compounds present in the sample in 5 days. Such test gives an indication of the 

biodegradability of the waste and is thus an important test for characterizing wastewater [Guwy 

et al., 1999].  
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A major limitation of this test is that it requires diluting the sample which might result in 

reducing the concentration of the substances in the sample along with microorganisms thus 

paving the way for lower kinetic rates [Logan. 1993]. Though the manometric method doesn’t 

require dilution of the sample, it inhibits the oxidation of ammonia. The presence of heavy 

metals in the sample water can affect the BOD readings and this has been well documented 

[Ademorotti. 1985].  

2.2.3 Total Organic Carbon (TOC): 

 

TOC is defined as the amount of organic carbon present in the sample and is regarded as one of 

the most important measures for wastewater quality as it reflects both the organic and the 

inorganic carbon present in water. The procedure for conducting TOC is fairly simple using 

standard TOC analyzers. One of the limitations of this test is its inability to identify the 

biodegradable and the non-biodegradable components. 

2.2.4 Absorbance: 

 

The use of electromagnetic radiation especially UV-absorbance in wastewater is mostly utilized 

to check for the presence of certain contaminants or compounds and is typically measured using 

a spectrophotometer. Different components of water absorb radiation at different wavelengths, 

e.g., absorbance at 475 nm stands for the color of the sample [Pena et al., 2003]. The absorbance 

at 600 nm stands for the de - colorization of the wastewater [Solpan et al., 2003] [Arslan et al., 

2000]. The figure on spectral absorption (Fig. 2.1) shows the range of wavelengths 

corresponding to the particular properties of the water. 
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Fig 2.1: Range of spectral observation. 

Adopted from http://www.realtechwater.com/parameters/spectral-absorption 

2.2.5 Turbidity: 

 

Turbidity is the measure of the clarity of the water. The amount of suspended and dissolved 

materials in the water gives an indication of the cloudiness of the sample. The procedure to 

measure turbidity is fairly simple with a turbidimeter, which works on the principle of light 

scattering by the particles in the sample at an angle of 90 degree to the incident beam. This is 

then related to the measurement of turbidity. 

2.2.6 Chemical Oxygen Demand (COD): 

 

Chemical oxygen demand is a measure of the amount of organic pollutants present in a water 

sample. It is widely used in wastewater industry as a fast and reliable method of determining the 

http://www.realtechwater.com/parameters/spectral-absorption
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quality of water after treatment. The principle behind COD is that all the organic compounds can 

be converted to carbon dioxide and water by chemical oxidation. It is measured as the amount of 

oxygen required to chemically oxidize all the organic pollutants in 1 liter (L) of water and is 

expressed as mg/L or ppm. Previously, COD was measured using a titration method with 

potassium dichromate, a strong oxidant. Other oxidants like KMnO4 have also been used for 

measuring COD.  

Though COD test has its own disadvantages like interference with chloride ions and also 

incomplete oxidation of several organic compounds it is still widely used as it is easy to perform 

and takes shorter time (1-3 hours) compared to BOD test (5 days) which takes much longer and 

requires expertise.  Recently Li et al. (2009) introduced a method of measuring COD using a 

spectrophotometric method which has made COD measurement much faster and efficient. 

As mentioned earlier, water quality varies significantly both temporally as well as 

geographically.  Table 2.1 demonstrates such variations in important water quality parameters as 

discussed above. 

Table 2.1: Person load in various countries in kg/cap.yr 

 

Adapted from biological wastewater treatment: principles, modelling and design by Henze M, 

Loosdrechst M,Ekama G. IWA publishing. 2008. 
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2.3 Filtration as a treatment method: 

 

While the different characteristics of the water can be measured by examining TSS, BOD, COD 

and others, the wastewater generated needs to be treated in the most appropriate manner to 

ensure that the effluent concentrations meet the prevalent regulations. Typical wastewater 

treatment processes are shown in Fig 2.2. Economical pressure motivates the treatment 

companies to achieve such standards at lowest cost. Filtration as process intensification may be a 

possible alternative approach for primary treatment of wastewater, which removes most of the 

influent TSS and COD in a compact design. 

 

Fig 2.2: Different operations in a typical wastewater plant. 

(Adapted from http://www.omafra.gov.on.ca/english/nm/nasm/sewbiobroch.htm; retrieved on 

19/07/2015) 

http://www.omafra.gov.on.ca/english/nm/nasm/sewbiobroch.htm
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Filtration is defined as a process in which solids (particles) present in a suspension (mainly 

water) are separated from the liquid by forcing the flow of the suspension through a supported 

mesh or cloth. The products of this process consist of a nearly or particle-free fluid stream 

(filtrate), a solid phase with small amount of entrapped liquid and possibly a solid-fluid mixture 

[Tien. 2006]. Filtration not only finds applications in the wastewater industry but also in different 

process industries including pharmaceutical, chemical and dairy industries [Christy. 2002], 

[Saboya et al., 2000] to name a few. 

 Although widely used in chemical and food processing industries, filtration in the wastewater 

industries is a relatively new concept as a primary treatment option. The first stage of treatment 

for wastewater entering the plant after screening is by coagulation – flocculation for settling the 

solids present in the water. The addition of a coagulant creates agglomeration of the nano to 

submicron colloidal particles to bigger particles resulting in quick sedimentation of the particles. 

When sedimentation is the primary process in wastewater treatment [Cristovao et al., 2015] 

[Kadam et al., 2015] [Sarkar et al., 2006], settlers are needed to separate the solids from the 

water. The settlers can be either rectangular or circular. Due to slow settling rate, which is 

mainly due to the gravitational force, settlers require large volume occupying enormous space in 

the plant. Moreover the hydraulic loading capacity of these settlers is quite low and they fail to 

remove smaller suspended solids. These settlers not only occupy a huge amount of space in the 

plant but frequent sludge removal from the bottom is an issue.  

The alternative technology to sedimentation is filtration which is capable to treat the raw water 

or the primary influent replacing primary sedimentation. RBF technology provides the 

alternative to sedimentation. The filter made of nylon mesh rotates like a conveyor belt and after 

each rotation; the filter mesh gets cleaned by water, or air jet. The cleaning procedures are 
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specific to each manufacturer and are patented. As the settling of the solids is a time consuming 

phenomenon, these units work instantaneously by impacting and intercepting the solids on the 

filter mesh. 

 Some of the filtration units such as Salsnes (acquired by Trojan Technologies, Inc.), Eco Mat 

RBF (Blue water Technologies), Hydrotech Beltfilters (Water management Technologies), etc,  

depending on their specifications can remove not only the TSS, but also reduce BOD, COD, and 

dewater sludge with their belt press. The land requirement for setting up these units is less than 

the space required for the settlers.  

Salsnes, the filtration unit from Trojan Technologies works on the theory of cake filtration. The 

water enters through the inlet pipe and comes in contact with the filter mesh. The filter mesh 

inside the unit is set at an angle and rotates on its axis. The particulates in the water are trapped 

by the filter mesh and the filtrate passes through the pores. The filter mesh rotates and is cleaned 

using an air-knife. The particulates which have been cleaned from the mesh drops down to the 

sludge chamber, where it is dewatered and taken out of the system with an outlet pipe. 

It is essential to know the filtration theory in detail before designing such units. The following 

sections provide an insight into the filtration process. 

2.4 Different types of filtration: 

 

The filtration process can be divided into the following categories:  

 Cake filtration 

 Cross-flow filtration 

 Dead-end filtration 
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 Fabric filtration 

 Vacuum filtration 

 Deep bed filtration 

 Granular filtration 

 Cartridge filtration 

 Fibrous filtration 

As this thesis is concerned with the formation of cake on the filter mesh, cake filtration technique 

has been investigated in greater depth 

 2.4.1 Cake Filtration: 

 

When a solid suspension (slurry) is passed through a porous surface, the solids in the slurry are 

retained on the surface. As more of the slurry is passed through, the solids start building up on 

the mesh forming a thick cake like structure (Fig. 2.3). Formation of the cake on the membrane 

results in a higher removal efficiency of the feed stream as the thick mat formed traps particles 

within itself. 
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Fig. 2.3: Formation of cake on a filter membrane. 

Models of cake filtration are developed following models of porous media including the most 

commonly used Darcy’s law. The result of Darcy’s classic experiments, globally known as 

Darcy’s law, states that: “the rate of flow Q of water through the filter bed is directly 

proportional to the area A of the sand and to the difference Δh in the height between the fluid 

heads at the inlet and outlet of the bed, and inversely proportional to the thickness L of the bed”.  

This can be stated mathematically as: 

𝑄 = 𝐶𝐴 
Δℎ

L
          (2.1) 

Where C is a property characteristic of the sand or porous media. Darcy’s law presents a linear 

relationship between the flow rate Q and the head (pressure gradient) Δh/L. The constant of 

proportionality C in the original Darcy equation has been expressed as k/μ, where μ is the 

viscosity of the fluid and k is called the permeability of the porous medium. Permeability is a 

property of the porous media and is independent of the nature of the fluid. The permeability k is 
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considered to completely and uniquely characterize the dynamic properties of a porous media 

with respect to flow of fluids though it. 

Darcy’s law can be rewritten as: 

𝑄 =  
𝑘𝐴

𝜇
 
𝑑𝑝

𝑑𝑥
          (2.2) 

Where 
𝑑𝑝

𝑑𝑥
 is the pressure gradient. 

2.4.2 Dead-end filtration:   

 

In this kind of filtration the fluid stream is allowed to pass through the membrane and the 

particles larger than the pores of the membrane are trapped on it forming a cake [Perry. 2007]. 

The process can be pressure driven or gravity driven. In dead end filtration with the increasing 

process time, the retained particles keep building up over the membrane or within it. In either 

case, the particle building results in an increased resistance to filtration and causes the permeate 

flux to decline, as a result of which the process requires the stopping of filtration in order to 

clean or replace the membrane.  

A commonly accepted fact for such filtration processes is that there is deposition of the particles 

as soon as the filtration process begins, resulting in the formation of a cake, but Petsev et al., 

(1993) proved theoretically that when filtration of charged colloidal particles take place in the 

dead-end mode of filtration, agglomeration or coagulation of particles occurs at the membrane 

surface which is due to the fact that the hydrodynamic force acting on the first layer of particles 

at the membrane surface is much higher than the repulsive forces existing between particles 

caused by their charges.  
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2.5 Concentration polarization: 

 

An important aspect of the filtration process is the phenomenon known as concentration 

polarization. Concentration polarization occurs when there is selective transfer of species across 

the membrane due to transmembrane driving forces [Hoek et al., 2013] resulting in accumulation 

of the retained particulates.  Concentration polarization is referred to the increase of 

concentration gradient of a particular substance close to a membrane solution interface due to the 

preferential flux of substances through the membrane. This phenomenon has been vastly studied 

in wastewater industry [Dunn et al., 1987] [Ochando-Pulido et al., 2015]. Due to the cake 

formation on the membrane surface, the pores are blocked by particle accumulation resulting in 

fouling. There are different mechanisms by which fouling can occur, namely by pore blocking, 

by adsorption, by concentration polarization and by cake formation [Belfort et al., 1994]. All 

these ultimately resulting in change of the permeate flux [Bessiere et al., 2005].  

 2.6 Characterizing the filter mesh: 

 

The filter mesh plays a very important role in the process of filtration. It provides the surface 

required for the cake to form making it an essential component. There have been numerous 

studies on the use of fabrics or meshes as support material for the process of solid-liquid 

separation in wastewater treatment [Wang et al., 2001]. One such study by Chu and Li (2006) 

stated that using the industrial cloth material, the permeate turbidity obtained was less than 

9NTU (Nephelometric Turbidity Unit), and the major resistance was offered by the formation of 

the cake layer. Nylon meshes have been tested at lab scale for both municipal and synthetic 

wastewater to good effect [Wu et al., 2003] [Wu et al., 2005]. In addition to this, ceramic or 

inorganic membranes which are expensive offer better chemical and physical stabilities along 
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with longer lifespan [Tewari et al., 2010]. Since these membranes are expensive, alternate 

options are required. Waste materials like fly-ash [Batra. 2006], Clay [Wang et al., 2001] [Rakib 

et al., 2001] and mixed oxides have been used to develop the ceramic membranes. Studies have 

shown that with cordierite as a support material [Saffaj et al., 2004] and Moroccan clay [Saffaj et 

al., 2005], the membranes can effectively reject heavy metals like Cr, Pb, Cd and dyes. Such 

alternatives have lowered the costs and the filtration resistances as offered by the microporous 

membranes [Li et al., 2011] thus enabling lowering of replacement costs of the membranes and 

operating costs using efficient gravity driven filtration [Satyawali. 2008]. 

However for mesh filters, the deposition of particulate matter resulting in the formation of a cake 

is intentional and is critical in the separation of the solid-liquid mixture [Chu. 2006]. This cake 

can be formed, cleaned, and reformed again during the entire process of filtration [Seo et al., 

2007]. For the cake to form on the mesh surface, it is essential to first characterize the filter 

mesh. Characterization of the filter mesh can be achieved by different methods, namely: 

 SEM (Scanning Electron Microscopy) 

 TEM (Transmission Electron Microscopy) 

 Porosimetry 

SEM and TEM find uses in a number of fields like wastewater research [Zhou et al., 2015], 

biology [Lawrence et al., 2003], bio-process engineering [Diaz et al., 2006] [Baloch et al., 

2008]. Porosimetery has been used to accurately measure the pore size in a filter mesh. 

Several companies while manufacturing filter meshes state the nominal pore size of the 

mesh, however, for research it is important to know the actual pore size, which is measured 

by porosimetry. Porosimetry has been used to characterize resin [Monteagudo et al., 2000], 
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catalyst [Qin et al., 2011], enzymes [Mesquita et al., 2012] [Zhang et al., 2012], [Sanchez-

Martin et al.,2013]. 

2.7 Modelling approach: 

 

In the past 40 years [Belia et al., 2009] there has been substantial development when it comes to 

wastewater engineering and the knowledge gain from this has been phenomenal. This acquired 

sense of knowledge has resulted in construction of numerous mathematical models which on 

validation have deepened the understanding in the wastewater field. In the last few decades, the 

use of mathematical or statistical models, have been classified as the appropriate means to gain 

an extensive insight into environmental management problems thus providing valuable 

information [Poch et al., 2004]. These constructed models have been used on validating 

numerous datasets to good extent.  

There are a number of algorithms and the major ones are genetic programming [Koza, 1992], 

evolutionary strategies [Fogel et al., 1996], evolutionary programming [Rechenberg. 1973], and 

genetic algorithms [Holland. 1975] [Goldberg. 1989]. Each of the above mentioned algorithms 

follow a distinct approach; however, they all are embedded with the same principles of natural 

evolution in genes. 

Symbolic regression which belongs to a class of genetic programming [Koza, 1992] deals with 

induced models which are then restricted to mathematical functions. Conventional regression 

analysis involves assuming a model form and then determining the parameters which make that 

assumed model fit the observed data best. The advantage of symbolic regression over standard 

regression methods is that in symbolic regression, the search process works simultaneously on 

both the model specification problem and the problem of fitting coefficients. Symbolic 

regression would thus appear to be a particularly valuable tool for the analysis of experimental 
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data [Duffy. 2002]. The commercial software doing this kind of regression analysis would be 

HeuristicLab, Eureqa etc. 

Statistical modeling software such as statistical analysis software (SAS), JMP, ModeFrontier, 

Minitab and numerous others have created their own benchmarks. These software are based on   

different criteria for model such as Akaike Information Criterion (AIC), Bayesian Information 

criterion (BIC) and Cp as the criteria for goodness of fit. Depending on the user’s need, the 

software can be run using its in-built programs and codes or the user could code to obtain the 

best results. 

Development of models in unit operations like filtration provides insight of the interactions of a 

wide range of wastewater characteristics and the different operating parameters. Rigorous 

process models not only help in understanding the process, but also provide decisive 

characteristics in order to enhance operational strategies [Broeckmann et al., 2006]. As this 

thesis deals mostly with cake filtration, the discussion is mostly limited to such models. 

Darcy’s law is perhaps the most fundamental theory when it comes to filtration. It has led to 

several other complicated equations and theories. Researchers in their works have advocated in 

giving time for a thin cake formation by gravity drainage prior to application of the pressure 

differential [Christensen and Dick (1985a, 1985b)] [Vesilind.1979]. This theory was then 

verified by Wells and Dick (1988) who in their work evaluated the impact of the cake formation 

period with respect to the computed specific resistances. 

 Greenkorn (1982) considered Darcy’s law to be written for fluid flow through a number of cake 

layers or different flux as: 

  𝑄 =  
AΔp

𝜇 ∑ 𝑟𝑖∗𝐿𝑖
=  

AΔp

μ ∑
𝐿𝑖

𝐾𝑖

=  
𝑘𝐴∆𝑝

𝜇𝐿
     (2.3) 
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Where Q: flowrate through cake 

 A: Cross-sectional area of the filtration cell 

 p: applied pressure differential across entire cake 

 ri*: inverse flux of layer i 

 Li: depth of layer i 

 µ: dynamic viscosity 

 L: Total cake length = ∑Li 

 k: average flux of cake 

 

For gravity filtration, the pressure differential and the cake length are function of time, and thus 

the Darcy’s Law can be modified to be written as: 

 

𝑄 =
𝑘𝐴

𝜇
 
Δ𝑝(𝑡)

L(t)
=

𝑘𝐴

𝜇
 
𝜌𝑔ℎ(𝑡)

𝐿(𝑡)
       (2.4) 

Where h is the distance from top of the cake to the free water surface. Average flux calculation 

has been used in this thesis where the pressure has been assumed to linearly vary with the height 

of the column.  

Using mass balance and modified Darcy’s law, RBF’s are modeled. Aarts et al. (2014) describes 

the modeling approach of a rotating fine screen filter. These screens offer much smaller footprint 

for treating different types of wastewater. The study was concerned at developing a physical fine 

screen model which would help in understanding the interaction between the solids removal rate, 

the broad range of wastewater characteristics along with the operational parameters. The model 

at steady state conditions can be written as: 
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Where  Cin and Cout are the influent and effluent solids concentration 

 Qin = influent flow 

 ω = rotational speed of the screen 

 Rm = resistance due to screen 

 µ = viscosity of the effluent 

 α = specific cake resistance 

 H= average water level  

Ho = initial water level. 

 Href = water level in the effluent tank 

 𝜌𝑤 = water density at standard conditions 

 B = width of the screen 

 g = acceleration due to gravity 

 ᶿ = angle of the filter 

  

Ho and Zydney (2000) developed a general model for both pore blockage and cake filtration 

stages along with the transition stages. The model developed by them provided an insight into 

the initial fouling caused by pore blockage and subsequent fouling resulting in deposition of cake 

over the initially blocked pores. Another model by Astaraee et al., (2014) which was developed 

similar to the model created by Ho and Zydney (2000) stated that the rate of fouling in 

hydrophilic membranes with smaller water contact angle was much smaller than that in 

hydrophobic membranes with larger water contact angle.  Jorgensen et al., (2014) indicated that 
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the cake layer removal from the membrane surface followed the same kinetics as deposition of 

cake layer.    

All of these models or in general most of the models are fitted with real time data collected from 

actual experiments to check accuracy of prediction. Such models not only play a crucial role in 

determining the direction of operation but also provide a glimpse to the complex interactions 

occurring within the unit processes. 

2.8 Future directions for the wastewater industry: 

 

Most of the wastewater plants in Canada were built during the 1950’s and the estimated 

productive life of the wastewater treatment assets have passed 63% in 2007 [Statistics Canada, 

Govt. of Canada]. Given this scenario in the wastewater management, innovation needs to be the 

key for future growth and sustainability. With the growing concern on economic and 

environmental footprints, every treatment process in traditional wastewater treatment plants 

needs to be revisited. To achieve this, every treatment step for wastewater treatment has to be 

reevaluated be it primary, secondary or tertiary. The Salsnes filters with RBF technology could 

be a possible option in the primary treatment. Optimization of the filtration unit with external 

addition of probes for instantaneous measurement of water characteristics could go a long way in 

predicting the filtration kinetics in a particular geographical region. Developing a process model 

based on the relevant water characteristics unique to different geographical regions would enable 

catering the needs of wider users in wastewater management. This thesis aims to provide a model 

to predict the filtration kinetics of different wastewater characteristics using a bench scale unit of 

the Salsnes filter. 
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Chapter 3 

 Experimental 

3.1.1 Collection of wastewater: 

The city of London, Ontario has six wastewater treatment plants located across the city to treat 

the municipal wastewater. The six wastewater plants are located at Vauxhall, Oxford, Greenway, 

Pottersburg, Adelaide, and Southland with 36 pumping stations across the city. These plants 

employ all the necessary wastewater treatment steps before disinfecting the water with UV and 

releasing it to the Thames River. Wastewater samples for all the experiments were collected 

from the three main plants mainly Pottersburg, Greenway and Adelaide pollution control plants. 

The experiments were conducted during the months of January – June 2015, which included 

days after snowfall or heavy rain. Once the filtered water was collected, they were brought back 

to the Trojan Technologies lab for post processing.  

3.1.2 Development of a bench scale filter: 

 

A bench scale filter was setup to mimic the hydraulic height of the full scale Salsnes filtration 

unit located at Pottersburg pollution control plant. Since the Salsnes unit could not be moved 

from one plant to the other, the bench scale was used to serve this purpose. As mentioned, only 

the hydraulic height of the Salsnes was only mimicked, the cleaning procedure or the rotating 

belt filter could not be brought into the column setup. The bench scale unit comprised of a 

column with an adjustable valve connected to a string potentiometer to calculate the 

instantaneous water level. The string potentiometer functions by detecting, measuring position 

and velocity of the float attached with it using a flexible cable, a spring-loaded spool, and a 

rotational sensor. With the body of the potentiometer fixed to a surface and the stainless steel 

cable attached to a movable object (in this case, a float), the device produces an electrical signal 
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that is proportional to the cable's extension or velocity. This signal can be sent to a data 

acquisition system and finally to a computer from where the water level can be read. The string 

potentiometer was calibrated by measuring the voltages at different heights and a macros-

enabled excel sheet was developed to calculate the height from the voltage instantaneously. At 

the very end of the column, just above the valve, the filter mesh was mounted. To avoid 

excessive spilling, a proper drainage system was devised using a hose and sample bottles for 

collection of the filtered water. The design specifications (Table 3.1) and the schematic diagram 

of the column (Figure 3.1) have been given below. 

Table 3.1: Specifications of the bench scale filter 

Actual column height, L (m) 

[Manufactured by Plastco; NPS 2] 

1.22 

Initial water level read on tape measure, h (m) 1.22 

Origin of tape measure Bottom of the column 

Diameter of filtration area, Dm (cm) 4.849 

Inner diameter of the column, IDc (cm) 5.08 

Empty space depth between valve and filter, X (cm) 8.731 

Length of hose (cm) 22.86 

String Potentiometer 

[Manufactured by Intertechnology Inc.] 

SP2-50 

Length of float (cm) 9.1 

Weight of the float (g) 310 

Filter mesh size m) 350, 158 

Sample volume (mL) 2000.00 



23 
 

 

 

Fig 3.1: Schematic diagram of the bench scale filtration unit. 

 

3.1.3 Calibrating the String Potentiometer: 

 

The calibration of the string potentiometer was accomplished by measuring different heights 

with the corresponding voltages; they shared a linear relationship (Figure 3.2) i.e. with the 

increase in height, the voltage increased and vice versa. With the help of the string 

potentiometer, the steady drainage of the wastewater was recorded and the filtered water was 

Filter mesh 

 

Valve 
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further processed for analysis of several water quality parameters such as TSS, COD, turbidity 

and absorbance.  

.  

Fig 3.2: Calibration of the string potentiometer. 

 

3.1.4 Development of SOP for the column filtration test: 

 

The filtration column was filled with wastewater (primary influent) collected from the 

Pottersburg Pollution Control plant located in London, Ontario and the valve was completely 

opened for the water to flow. The filtered water was then collected continuously in 5 different 

sample bottles making sure to avoid spilling as much possible. As the water flowed down the 

column, the string potentiometer sent signals to the computer, which recorded the water height at 

that time. The volume of water in the sample bottles was measured and noted. After completing 

one run, the filter mesh was taken out of the filter column, washed and put back for the next run. 

It is to be noted here that the column tests were repeated with different mesh sizes, namely 350 
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µm, and 158 µm. These meshes were made of nylon and manufactured by Salsnes, company 

which makes the filtration units for treating municipal wastewater. 

3.2 Analytical methods: 

 

The samples brought back to the lab were analyzed for TSS, turbidity, absorbance, and COD.  

For measurement of TSS, the initial weight of the filter (a 1.2 µm glass fiber filter, VWR 

Canada) was first noted and then 100 ml of the sample was passed through it. The filter was 

dried in the oven for 4 hours and the final weight of the filter was measured. 

TSS = Final weight of the filter (g) – Initial weight of the filter (g)   * 10
6
 

   Sample volume (100ml) 

 

For measurement of turbidity, 5 ml of the sample was well shaken and put inside a vial for 

measuring turbidity using a 2100 HACH turbidimeter. The average of 2 readings was taken for 

each sample. 

The absorbance of the sample was measured at four wavelengths (250 nm, 300 nm, 400 nm and 

600 nm), where 200-300 nm range represents the colloidal particles in the wastewater, 400 nm is 

for yellow color [Georgiou et al.,] and 600 nm represents for de-colorization. A Shimadzu 

spectrophotometer was used to measure UV-VIS absorbance and triplicate readings of each 

sample were noted and the average absorbance of all three values was determined. The final 

value of the absorbance was determined by taking an average of all the three values.  
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The COD of the water samples was measured using the high range HACH COD vials. 2 ml of 

the sample was poured inside the vial and digested for 2 hours. After 2 hours, the vial was cooled 

and the total COD in the sample was read using a HACH meter. 

Flux was calculated by first calculating the flowrate (Q), subtracting the filtered volume from the 

initial water level divided by the area (A) of the filter mesh. This was then divided by the height 

(h) as obtained from the calibrated string potentiometer. Darcy’s law at constant pressure 

difference has been used to calculate flux. It is worth mentioning here that the clean filter flux 

was calculated using Computational Fluid Dynamics (CFD). 

The removal efficiency was calculated by subtracting the influent TSS with the effluent TSS and 

then divided by the effluent TSS. 

3.3 Statistical Software: 

 

Statistical Analysis Software (SAS) version 9.4 was used for model selection and ANOVA 

(Analysis of Variance) analysis. The SAS program uses AIC (Akaike Information Criterion), 

BIC (Bayesian Information Criterion) and Cp as its measures of the relative quality of the best fit 

model. These criteria take into account not only how good the data fit an equation but also 

account  for the complexity of the model giving the lowest score to the optimal model which 

accounts for both the best fit as well as low score index.  After model selection, the variables 

obtained from the selected model were analyzed using ANOVA which yields the p value, a 

measure of whether the parameter under consideration (in this case flux) is related to a specific 

variable keeping all other variables in the model constant. If the p value is less than 0.05 then 

that particular variable is statistically significant, i.e., if that particular variable is taken out of the 



27 
 

model, flux will change significantly. A subset of variables was created using the lowest score 

index and highest R-square values. These variables were then further used for future analysis. 

JMP version 10 was used as alternative statistical analysis software. JMP has been considered as 

the “statistical discovery of SAS”. Similar parameters as obtained from SAS were derived using 

JMP. JMP is user friendly and employs a click and use interface and does not require coding like 

SAS. It also links powerful dynamic visualization to statistics.  

3.4 Regression Software: 

 

The software used for this purpose were  HeuristicLab Optimizer 3.3.11.12010 (H.L) and Eureqa 

1.10.0 Beta. H.L was created by the HEAL laboratory of University of Upper Austria. The 

software serves as a framework for heuristic and evolutionary algorithms. Genetic programming 

(GP) has been used to form the symbolic regression model. The main idea behind symbolic 

regression as mentioned earlier is to develop a mathematical model that fits the input and output 

data to satisfy the complex problem. GP has a lot of advantages including no requirement of a 

priori assumption, capability of distinguishing between relevant and irrelevant inputs, and 

yielding models, which can represent the system characteristics [McKay et al,. 1996]. GP has 

been used in fields like process control [McKay et al., 1996] [Bettenhausen, 1995] [Marenbach, 

1997] [McKay et al., 1997] [Willis et al., 1997] [Hong, 2001], and environmental modeling 

[Babovic, 1997] [Keijzer, 1999] [Whigham, 1995] [Hong, 1999]. 

Eureqa was founded by Michael Schimdt in 2011. This software instead of using neural 

networks and regression trees brings forth the idea of machine learning to de-mystify the 

relationships between different variables. 
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The next chapter of this thesis describes the results using the software and the analytical methods 

described in this chapter. 
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Chapter 4 

Results and Discussions 

 

4.1 Variation in wastewater quality: 

The wastewater in a particular region is synonymous with the lifestyles of the people living 

there. In London, the Pottersburg Pollution Control Plant receives most of its influent wastewater 

from the industries due to its location. Fig. 4.1 shows the variation in the wastewater sampled 

over the period of June 2014 – May 2015.  The TSS has been averaged over multiple samples 

collected on the same day. The period of collection included months of snowfall, days of heavy 

rainfalls, thunderstorms and sunny days. 

 

Fig. 4.1: Variations in Wastewater at the Pottersburg Pollution Control Plant. 
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This winter season (2014) experienced heavy snowfall which led to accumulation of snow on the 

surfaces. As spring approached, a peak in the month of March – April was observed due to early 

spring thaw.  

During the months of May and June 2015, the experiments were focused mostly at the Adelaide 

pollution control plant and Greenway pollution control plant. Fig. 4.2 represents the changes in 

the water quality at the three peak intervals; namely 9.30 AM, 12.30 PM, 3.30 PM taken over a 

period of May 2015 – June 2015. 
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Fig 4.2: Changes in water quality at the Adelaide and Greenway Plants. 

The location of the wastewater plants plays a very important role in determining the quality of 

the wastewater influent entering the plant. The Greenway plant located in west London, receives 

mostly residential waste. As a result of which the water quality has higher amount of particulate 

matter than that of either Adelaide or Pottersburg treatment plants. Moreover the primary 

effluent is often used to flush the sludge lines of the plant and the flush water is then treated 
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along with the primary influent. Adelaide plant on the other hand has few industries and some 

residential areas which discharge their effluent into it. At 9.30 AM interval the water quality for 

both the plants seem to have similar range of particulate solids, but as the time increases, the 

difference in particulate solids concentration becomes greater. Especially, during the 3.30 PM 

interval a significant difference can be observed in water qualities collected from the two plants. 

This could be due to the afternoon activities in residences like showering, cleaning etc. resulting 

in higher increase of suspended solids.  

These variations observed were noted down and they formed an integral part of the modelling 

approach taken at the very end of data collection.  

4.2 Characterizing the filter mesh: 

Before obtaining data from the lab scale filtration unit, it was very essential to first characterize 

the filter mesh. Salsnes had provided the couple of meshes used in this work stating their 

nominal pore sizes as 350 µm and 158 µm, respectively. A Zeiss microscope with magnification 

of 100 x was used to determine the actual pore size. Figs. 4.3 and 4.4 represent the pore size of 

the nylon meshes. 
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Fig. 4.3: Microscopic measurement of the 350 µm mesh. 

 

Fig. 4.4: Microscopic measurement of the 158 µm mesh. 

Analysis of the images obtained from the microscope shows that the pore size measured 

horizontally rather than the diagonal distance is closer to the size as stated by Salsnes. The 

measurements are 374 µm for the 350 µm mesh and 153 µm for the 158 µm mesh. 

4.3 First phase of data collection: 

On having characterized the filter mesh, the next step was to collect data and embark on building 

up a database. For this the Pottersburg pollution control wastewater plant was chosen for 
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collecting water samples due to its location and easy transfer of samples to Trojan Technologies 

for further processing. This plant located on Gore road; London, Ontario employs all the 

necessary steps including screens and settling tanks for solids removal, activated sludge to 

degrade the organic compounds, and finally UV disinfection as the final step.   

4.3.1 Building up the database: 

 

A number of parameters were taken into consideration while conducting the experiments at 

Pottersburg. A total of 75 sets of data were collected in the months from February - March 2015. 

The complete dataset is presented in the appendix. 

 The bench scale unit shown in Chapter 3 or the column setup was always filled with 2 liters of 

primary influent (PI) and the valve was opened for continuous flow of the filtered water. As the 

water filtered out, it was collected in the sample bottles and the continuous drainage of the water 

was recorded using a string potentiometer. The samples were brought back to Trojan 

technologies for post processing and were tested for measurement of TSS, COD, turbidity and 

absorbance at 250 nm, 300 nm, 400 nm, and 600 nm. The 250 nm – 300 nm is the wavelength 

for measuring the colloids in the sample. The exact wavelength is 254 nm [Amarasiriwardena. 

2001] for measuring the colloidal matter in wastewater. 400 nm and 600nm as mentioned before 

is for the color yellow and decolorization of wastewater respectively. 

As the water drained out of the column, the flux of the filter mesh (350 µm and 158 µm) 

decreased over time [flux was calculated using Darcy’s law] and the particles removal efficiency 

increased. This is quite expected in dead-end filtration, as the water flows gradually through the 

filter mesh, a cake like structure is formed which provides further resistance to filtration. This 

buildup of mass on the filter mesh can be classified into two different categories: concentration 
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polarization (CP), and formation of a “cake” between the CP layer and the membrane surface. 

There have been models which have discussed the influence of concentration polarization on 

permeate flux decline (Kedem and Katchalsky. 1958; Vilker et al., 1981; Reihanian et al., 1983; 

Bhattacharjee et al., 1994, 1999; Elimelech and Bhattacharjee. 1998). However, in many 

practical applications, the effect of concentration polarization on permeate flux is rarely 

measurable as the transition from CP to cake formation occurs almost immediately (Song and 

Elimelech. 1995). The cake mat as formed is an accumulation of solids present in the 

wastewater. Figs. 4.5 and 4.6 show how the flux drops as the filter accumulates solids from the 

water stream. This accumulation of solids on the filter mesh has been termed as Total Suspended 

Solids accumulated or TSSa.  

 

Fig 4.5: Flux vs. TSSa for the 350 µm mesh. 
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Fig 4.6: Flux vs. TSSa for the 158 µm mesh. 

The flux of the 158 µm is lower than the 350 µm as the larger the pore size lower the resistance 

to the filter and higher the flux. Since at higher amount of TSSa, due to cake filtration the filter 

mesh would get clogged, hence for 158 µm it was very difficult to drain enough water out for 

post processing. As the water quality changed, higher the amount of suspended particles and 

lower the size of the filter mesh, more particles are trapped on the mesh due to increasing 

resistance offered by the mesh and the cake on it. This results in high TSSa on the mesh with 

lower flux.  

Due to formation of a cake on the filter mesh (Fig. 4.7) a significant reduction of the TSS in the 

filtrate occurs. The higher the amount of suspended solids in the influent water, thicker the cake 

formed on the mesh (Fig. 4.8) ultimately resulting in clogging of the mesh. The filter mesh then 

needs to be taken out, washed and put back in the holder compartment for the next run. 
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Fig. 4.7: Formation of cake on a filter mesh with TSS of 140 mg/l. 

 

Fig. 4.8: Formation of cake on a filter mesh with TSS of 265 mg/l. 

The cake formed on the filter mat, acts as a trap for particles larger than its size and the filtrate 

continues to be cleaner as the filtration proceeds till it reaches a plateau. The removal efficiency 
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with regards to the TSS over the filter mesh, versus the total amounted of accumulated solids on 

the filter mesh is shown in Figs. 4.9 and 4.10. 

 

Fig. 4.9: Removal efficiency of the filter mesh vs TSSa for 350 µm 

 

Fig 4.10: Removal efficiency of the filter mesh vs TSSa for 158 µm mesh. 

The experiments conducted were always triplicated with the same water quality and were mostly 

focused at the Pottersburg pollution control plant. This resulted in building up a database with 

multiple parameters for analyzing the influent water quality.  
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Co-relations were developed between multiple parameters from the developed database. The first 

co-relation developed was between COD in the effluent (CODeffl) and TSSeffl. There occurs a 

linear relationship between them i.e. with the increase in the TSSeffl, COD in the effluent will 

increase and vice-versa, with a R-squared value of 0.87 (Fig 4.11). The decrease of COD in this 

case refers to the particulate COD which gets trapped in the filter mesh during the filtration 

process and thus decreases during filtration. This result is in agreement with the research of Chi 

(2006) when comparing the slopes where chitosan was used in treating waste stream from the 

dairy industries. 

 

Fig. 4.11: CODeffl vs. TSSeffl of the filtrate. 

 

The next linear co-relation exists between the turbidity and the TSS with a R-squared of almost 

0.90 (Fig. 4.12). Higher the amount of suspended solids in the water, higher is the turbidity. 

Hannouche et al., (2011) in their research have showed a linear relationship between TSS and 

turbidity in the effluent while experimenting with combined sewer flow systems. 
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Fig. 4.12: Turbidity vs. TSSeffl of the filtrate. 

 

The final co-relation was developed between turbidity and COD with a R-squared of 0.90 (Fig. 

4.13). The COD consists of two parts, the particulate COD and soluble COD. So lower the 

particulate COD, lower would be the turbidity. It is to be noted here that all the turbidity and TSS 

values correspond to that of the filtrate. Fogelman et al., (2006) developed a technique for 

measuring COD and then correlated with turbidity to obtain a slope similar to that obtained in 

this work when the turbidity values were within 150 NTU. In this thesis, the maximum turbidity 

values recorded were close to 180 NTU and hence a good agreement can be reached between 

both the results. 
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Fig. 4.13: Turbidity vs. CODeffl of the filtrate. 

 

4.3.2 Statistical analysis of the database: 

 

After the database was populated with data primarily collected from the Pottersburg pollution 

control plant, statistical analysis of the data was of utmost importance. For conducting the 

statistical analysis, two software were used namely: Statistical Analysis Software (SAS) and 

JMP. SAS uses its own programming language known as “SAS programming language”. As this 

thesis aims to find the right water quality parameters to correlate and model flux, the code was 

written to first predict a model with flux as a function of the rest of the parameters and then its 

statistical significance (refer to appendix). All the 3 criteria namely AIC, BIC and Cp predicted 

the model of flux as a function of multiple water quality parameters (Tables 4.1, 4.2 and 4.3).  
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Table 4.1: Best 10 models predicted by the AIC algorithm 

 

Table 4.2: Best 10 models predicted by the BIC algorithm 
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Table 4.3: Best 10 models predicted by the Cp algorithm. 

 

The criterion for model selection is the one with the lowest score index. As a result of which a 

subset of all the variables was created with the highest R-squared value and lowest score from 

each algorithm. The first 10 models were selected as those are the most important ones. On 

conducting an ANOVA analysis with the selected parameters with a 95% confidence level, the 

predicted parameters having a p value less than 0.05 were TSSa, mesh, absorbance at wavelength 

400 nm, absorbance at wavelength 600 nm, turbidity, COD, influent TSS, sieved sample TSS 

(Table 4.4 ).  
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Table 4.4: Statistical analysis using SAS 

 

 

 

Similar statistical analysis was conducted with JMP, which in turn yielded the same results 

(Table 4.5) like SAS. The only difference between both the software is that JMP is more visually 

and graphically insightful than SAS. A plot of the predicted and actual flux has been shown 

below (Fig. 4.14) 
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Table 4.5: JMP analysis 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

Fig. 4.14: Actual vs. predicted flux as predicted by JMP. 
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All these models were linear in nature, therefore, the next step was to search for a non-linear 

relationship between them if there was any improvement in the model accuracy. For this, 

symbolic regression was used using Eureqa and HeuristicLab (H.L) software.  

H.L uses genetic programming to assess such relationships between different variables. 66% of 

the datasets collected over time in populating the database were used to first train the model and 

the rest 34% was used for validation purposes. Statistically significant parameters as evaluated 

before were fed to the program to not only find a non-linear relationship, but also reduce the 

number of parameters. A funneling approach was used to eliminate as many parameters while 

obtaining the best possible results. Out of all the 8 parameters, H.L further shortened the list to a 

total of 4 parameters namely TSSa, TSSin, mesh and turbidity (Figure 4.15). 

 

 

 

 

Fig.4.15 : Analysis using HeuristicLab 
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The regression tree (Fig. 4.15) gives an indication of the most important parameters necessary to 

predict flux and also helps in costructing the non-linear equation for the model. The scatter plot 

shows how the observed values match with the predicted values and the line chart shows how 

well the H.L can train itself with the target values. 

Eureqa, instead of using neural networks and regression trees brings forth the idea of machine 

learning to de-mystify the relationships between different variables. The same approach was 

applied as that in H.L; 66% of the database was used for training the software and 34% was used 

for validation. Eureqa predicted the same 4 parameters responsible for predicting flux; TSSa, 

TSSin, mesh and turbidity (refer to appendix). 

Regression analysis helped in finding the best three parameters for predicting flux. With these 

parameters in mind, experiments were designed taking into consideration all the wastewater 

plants in London, but due to limited time only samples from Greenway and Adelaide pollution 

control plants were analyzed.  

4.4 Second phase of data collection: 

 

The second phase of data collection was targeted at the Adelaide and Greenway pollution control 

plants. Three very specific time intervals were chosen considering the peak flow namely 

9:30AM, 12:30PM and 3:30PM. Every time interval was duplicated for each plant and 5 repeats 

of each mesh were conducted. For the complete dataset, please refer to appendix. 

During days of heavy rainfall, and thunderstorm, water coming into the plant is dilute due to 

large volume of water associated with rain, and there is a significant variation in the particle size 

of the pollutants. As a result, water will spill out during the filtration experiments causing failure 
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of the experiment. To avoid this, a datasheet was programmed in excel to account for equal 

distribution of the spilled water. 

 4.4.1 Modified datasheet: 

 

The modified datasheet (Table 4.6) was created to sort out the anomalies in data obtained during 

experimentation. The left side of Table 4.6 represents the actual data and has been labeled as 

“Raw Data”. The column labeled “Controls” hold the key in this datasheet. Under Controls, the 

column labeled “Combine with next point”, takes either the numerical values of 1 for yes and 0 

for no. When these numerical values (1 or 0) are entered for each data point, it either results in 

combination of the values present in the very next cell or no combination, respectively. When the 

results are combined, it shifts the formulated value one block upwards. It is worth mentioning 

here that each parameter (for e.g., filtrate volume, TSS) the formulas are different and combining 

each value is dependent on the individual formula. The flowsheet for programming has been 

given below (Fig. 4.16). 

Table 4.6: Modified Datasheet. 
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Measured values: Time, Filtered volume,   

   TSSin, TSSeffl, Initial water level. 

 

 

Combine with next point? Yes           Combines the values of the current cell and the very next cell  

 1 = Yes; 0 = No.                                                                         and shifts the sum one row up. 

 

 No 

 

The values remain unchanged. 

 

Point Id without combining.  Point Id with combining. 

Used for references. Point id with combining indicates which values 

have been combined.  

 

Modified time: Yes 

MAX(IF(Point ID without combining = Point Id with combining))    Enter actual time 

This comparison would occur with all the points in the  

“Point id with combining” in a particular set of data. 

 

 No 

                  Return the max time point  

Modified Filtered Volume:      Yes 

SUM(IF(point ID without combining = Point ID with combining))                      Enter actual filtered volume 

 No Return the sum of the filtered volumes  
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Use this row? {A} Yes Enter “TRUE” 

IF(mod. Filt. Vol > 0) 

      No 

 

Enter “FALSE” 

Modified TSS True Enter TSSout  

IF(A,SUM(IF(Point Id with combining = Point ID without combining))  

          False 

 

TSSout*Filt vol/mod.Filt.vol 

 

Water level 

IF(A,Previous water level – mod. Filt. Vol/1000/F.Area 

 

Mass removed 

IF(A, (TSSin – mod. TSSeffl)*mod. Filt vol.) 

 

Cumulative. Mass removed 

IF(A,Cumulative mass/F.Area) 

Average Time (T)  

IF(A, Tn+1+Tn)/2) 

Average Q/A 

If(A,mod.Filt vol/(Tn+1-Tn)/2) 

Average H 

IF(A,(Hn+1+Hn(/2) 
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Average K 

IF(A, Average Q/A/Average H) 

Removal Efficiency 

IF(A, (TSSin -  mod.TSSeffl)/TSSin) 

Fig. 4.16: Flowchart for the programming the modified datasheet. 

4.5 Regression analysis: 

 

The datasets collected from Adelaide and Greenway pollution control plant were fed to the 

regression software Eureqa and H.L. The database was a mix of low and high range of TSS 

values. As obtained from previous regression analysis, turbidity, mesh, TSSin and TSSa are most 

important for predicting flux; these parameters were only used while building up this database. 

After sorting the datasets in proper column, the data were used for regression analysis. 

For H.L, 100,000 generations were put into place along with the regular mathematical operators 

(+,-,*,/) and special functions such as logarithm, exponential and power. The length and depth of 

the regression tree was kept at 10 and 10 respectively to avoid complexity. Upon convergence, 

the regression tree (Fig. 4.17) yielded the equation relating flux with the other parameters (Eq. 

4.1). 

𝑷𝒆𝒓𝒎𝒆𝒂𝒃𝒊𝒍𝒊𝒕𝒚 =
𝐞𝐱𝐩 (−𝟎. 𝟎𝟏𝟒 ∗ 𝑻𝑺𝑺𝒂 ∗ 𝟏. 𝟔𝟓𝟑 ∗ 𝑻𝒖𝒓𝒃𝒊𝒅𝒊𝒕𝒚)

((𝟏. 𝟎𝟑𝟖 ∗ 𝑴𝒆𝒔𝒉 + 𝟎. 𝟖𝟖𝟕 ∗ 𝑻𝑺𝑺𝒊𝒏) ∗ 𝟎. 𝟎𝟏𝟓 + 𝟕. 𝟎𝟎𝟑)
 

      ……………………………………………. (4.1) 
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Fig. 4.17: Regression tree obtained from H.L 

The equation relates flux as an exponential function of TSSa, turbidity, TSSin and mesh. Before 

running the regression analysis, all the experimentally calculated values of the flux were 

converted to log scale to avoid the huge variations and to obtain a more accurate model.  

Using Eureqa, the results were similar but the equation was somewhat different (Eq. 4.2). Flux 

was yet again predicted as an exponential function of mesh, TSSa, TSSin, and turbidity but the 

constants associated with this equation were different from those of H.L.  

𝑷𝒆𝒓𝒎𝒆𝒂𝒃𝒊𝒍𝒊𝒕𝒚

= 𝐞𝐱𝐩 ((𝟔. 𝟗𝟒𝟐 + 𝟎. 𝟎𝟎𝟑 ∗ 𝑴𝒆𝒔𝒉 + 𝟎. 𝟎𝟎𝟗 ∗ 𝑻𝑺𝑺𝒊𝒏 ∗ 𝑻𝑺𝑺𝒂

+ 𝟎. 𝟎𝟎𝟎𝟐 ∗ 𝑴𝒆𝒔𝒉 ∗ 𝑻𝑺𝑺𝒂 − 𝟎. 𝟐𝟓𝟖 ∗ 𝑻𝑺𝑺𝒂 − 𝟑. 𝟖𝟑𝟗 ∗ 𝟏𝟎−𝟔

∗ 𝑻𝑺𝑺𝒂 ∗ 𝑻𝑺𝑺𝒊𝒏 ∗ 𝑻𝒖𝒓𝒃𝒊𝒅𝒊𝒕𝒚 − 𝟒. 𝟐𝟏𝟖 ∗ 𝟏𝟎−𝟔 ∗ 𝑻𝒖𝒓𝒃𝒊𝒅𝒊𝒕𝒚

∗ (𝑻𝑺𝑺𝒂)𝟐) 
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       ……………………………………… (4.2) 

The predicted flux values were separated according to the mesh sizes and plotted against the 

TSSa on the filter. Fig. 4.18 gives an indication of the decrease in flux as solids accumulated on 

the filter. The model thus obtained is related well to what was observed experimentally and 

calculated theoretically using the Darcy’s law. 

 

Fig. 4.18: Modelling flux vs. TSSa 

 

4.5.1 Validation of the flux model: 

 

The equations derived must not only be checked for accuracy but also should be validated. While 

doing so the first step was to find out how close are the predictions between both software were 

even after having completely different equations from Eureqa and H.L. The values obtained from 

both the equations seem to overlap thus confirming the fact that the predictions by both the 

software are well matched. A closer look on the predictions for both the equations reveals how 
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close the predicted values are (Fig. 4.19). Though the prediction algorithms are different for both 

the software; H.L uses genetic programming while Eureqa uses machine learning to look into 

different relationships between variables, the predicted values lie on the same line and share a R-

Square of value of 0.94. 

 

Fig. 4.19: H.L and Eureqa predicted values for flux. 

The final step for validating the model for flux was by forming a random database made of 

turbidity, mesh, TSSa and TSSin. The values for these parameters were varied keeping one 

parameter constant at a time and changing the others accordingly (Fig. 4.20). The main aim of 

doing this was to make sure that at higher values of TSSa the flux should not drop so much to 

reach negative values. The cut-off value for TSSa was 100,000mg/m
2
 of accumulated solids on 

the filter mesh. Experimental values and theoretical calculations show that the TSSa reaches a 

maximum value of 75,000 mg/m
2
 for 1 run before the filter mesh was exhausted and taken out to 

clean for the next run. Hence 100,000 mg/m
2
 seems to be a reasonable number to validate the 

model. 

R² = 0.9499 

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200 1400

H
.L

 p
re

d
ic

te
d

 

Eureqa predicted 

Series1

Linear (Series1)



54 
 

 

 
 

Fig. 4.20: Flux model using random values 

 

Fig. 4.20 describes the decay in flux with solid accumulation on the filter mesh. Higher the 

amount of TSS in the water sample, the rate at which the flux decreases is faster in a lower mesh 

size (158 µm) than in higher mesh size (350 µm). Similarly the lower the amount of TSS in the 

water stream, the drop in flux is faster in 158µm compared to 350µm. This is due to the fact that 

larger the pore size of the mesh, lower is the resistance and smaller the pore size higher the 

resistance to the particulates in the water sample. This proves that the particle size in the influent 

water stream plays a very important role on deciding the flux curves. Every influent wastewater 

stream entering the wastewater plant is somewhat unique in its own way. The streams generated 

from industries, households and even from the wastewater plants where the recycled water is 

used to flush the sludge lines, clean clarifiers and other odd plant jobs, have very different 
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particle size. This was observed during conducting the experiments and should be made a part of 

the model in future. 

4.5.2 Validation of the removal efficiency model: 

 

The decay in the flux of the filter mesh can also be related to the increase in removal efficiency 

due to the formation of a cake on the filter. While trying to get the best fit model for removal 

efficiency, the data were fed for regression similar to the flux modelling, the only difference 

being the flux being replaced by the removal efficiency. Fig. 4.21 shows the regression tree 

obtained from H.L.  

 

Fig. 4.21: Regression tree obtained from H.L for removal efficiency. 

This regression tree from H.L for the model reads as: 
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𝑹𝒆𝒎𝒐𝒗𝒂𝒍 𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚

= ((𝒔𝒒𝒓𝒕 (𝟎. 𝟓𝟓𝟖 ∗
𝑻𝑺𝑺𝒂

𝟏. 𝟔𝟗𝟕 ∗ 𝑴𝒆𝒔𝒉
)

− 𝑳𝑵(𝑳𝑵(𝟎. 𝟎𝟐𝟏𝟐 ∗ 𝑻𝒖𝒓𝒃𝒊𝒅𝒊𝒕𝒚))) ∗ 𝟎. 𝟎𝟕𝟖𝟐 + −𝟎. 𝟏𝟏𝟓 

……………………………………. (4.3) 

The equation (Eq. 4.3) can predict removal efficiency with TSSa, mesh and turbidity. It does not 

need TSSin as a parameter to predict the removal efficiency. 

Analysis with Eureqa revealed a different equation (Eq. 4.4) with other constants. The 

dependence on certain factors like TSSa, mesh and turbidity was very noticeable. 

 

𝑹𝒆𝒎𝒐𝒗𝒂𝒍 𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚

=
(𝟐. 𝟕𝟕 ∗ 𝑻𝒖𝒓𝒃𝒊𝒅𝒊𝒕𝒚 + 𝟎. 𝟎𝟎𝟓 ∗ 𝑻𝒖𝒓𝒃𝒊𝒅𝒊𝒕𝒚 ∗ 𝑻𝑺𝑺𝒊𝒏)

(𝟑𝟓 ∗ 𝑻𝒖𝒓𝒃𝒊𝒅𝒊𝒕𝒚 + 𝟎. 𝟒 ∗ 𝑻𝑺𝑺𝒊𝒏 + 𝑴𝒆𝒔𝒉 ∗ 𝑻𝒖𝒓𝒃𝒊𝒅𝒊𝒕𝒚 + 𝑻𝒖𝒓𝒃𝒊𝒅𝒊𝒕𝒚𝟐 − 𝟗. 𝟐𝟑 ∗ 𝟏𝟎^𝟑)
 

…………………………………………………… (4.4)                                                       

With Eureqa, the removal efficiency prediction needed the TSSin unlike that in H.L. With the 

equations, the next step was to check how close the predicted values for both the software were. 

Fig. 4.22 shows the observed experimental values of removal efficiencies against the predicted 

values by both the software’s. 
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Fig. 4.22: Observed vs. Predicted removal efficiency 

The values yet again overlap in most cases showing how closely both the software predicts the 

values. 

The final step in validation of the model was using the same approach as in flux; the use of a 

random database. While doing so, it was observed that with Eureqa (Fig. 4.23) higher the TSS, 

removal efficiency almost increases in a linear or an exponential manner for both 350 µm and 

158 µm meshes. On the other hand, for lower TSS values both the removal efficiencies of the 

meshes almost reached a plateau where the membrane being clogged resulting in very little 

increase in removal efficiency. 
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Fig. 4.23: Removal efficiency model predicted by Eureqa 

The main goal behind this validation process was to determine if at very low TSSa values the 

removal efficiency would go below zero or become negative. With Eureqa, the removal 

efficiency at TSSa = 0, was 0 but never negative but while doing the same analysis with H.L, this 

criterion was never satisfied (Fig. 4.24). 

 

Fig. 4.24: Removal efficiency model predicted by H.L 
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In Fig. 4.24, clearly the predicted removal efficiencies are below zero or negative at TSSa = 0 

which is unrealistic. Moreover the model predicts over 100% removal efficiency which is clearly 

not valid. The cake formation on the mat would only enhance the cleaner filtrate to pass through 

(till it gets completely clogged) thus increasing the removal efficiency and not decreasing the 

efficiency. After careful analysis of the models and keeping all the above discussed factors the 

model formulated by Eureqa best predicts the removal efficiency of a specific dead-end filtration 

unit. 

4.6 Response Surface Models: 

 

The main objective of using a Response Surface Methodology (RSM) is in determining the 

optimal response by conducting a series of designed experiments thus determining the inter-

relationships between the different variables. The dataset used for regression analysis was fed to 

MiniTab to investigate the surface plot of removal efficiency with the other variables. When 

doing so, a full factorial design was considered and removal efficiency was plotted against 

turbidity, mesh, TSSa, TSSin and a new variable called plant was added. The plant refers to the 

wastewater plants where the final phase of experiments were conducted namely Greenway and 

Adelaide pollution control plants. For Greenway plant, a numerical value of 0 was assigned and 

for Adelaide 1was assigned. Fig. 4.25 denotes the response surface model obtained. 
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Fig. 4.25: Surface plot of removal efficiency with TSSa and mesh. 

In this analysis the additional variable called plants was introduced to determine the effect of the 

models. While conducting the ANOVA analysis (Table 4.7), in particular the p-value, for the 

factor "plant" equals to 0.981 indicating it is not a significant factor. The removal efficiency is 

not dependent on the type of plant considered. The equation of the hypersurface obtained is: 

𝑹𝒆𝒎𝒐𝒗𝒂𝒍 𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚

= 𝟒𝟏. 𝟒𝟔 + 𝑷𝒍𝒂𝒏𝒕 ∗ 𝟎. 𝟏𝟒𝟐𝟗 − 𝑴𝒆𝒔𝒉 ∗ 𝟎. 𝟎𝟔𝟒𝟑 − 𝑻𝑺𝑺𝒊𝒏

∗ 𝟎. 𝟎𝟏𝟎𝟔 

………………… (4.5) 

 

Table no. 4.7: ANOVA analysis for removal efficiency. 

 

S = 7.97652    PRESS = 31342.6 

R-Sq = 83.12%  R-Sq(pred) = 81.14%  R-Sq(adj) = 82.43% 
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Analysis of Variance for Removal efficiency 

 

Source                    DF  Seq SS  Adj SS   Adj MS       F      P 

Regression                18  138164  138164  7675.79  120.64  0.000 

  Linear                   5  127868    9253  1850.68   29.09  0.000 

    Plant                  1     870       0     0.04    0.00  0.981 

    Mesh                   1   19418     907   907.18   14.26  0.000 

    TSSin                  1   10379       1     1.06    0.02  0.897 

    Turbidity              1   16116      63    62.87    0.99  0.321 

    TSSa                   1   81086    5546  5546.29   87.17  0.000 

  Square                   3    5041     698   232.80    3.66  0.013 

    TSSin*TSSin            1     161      50    50.27    0.79  0.375 

    Turbidity*Turbidity    1     530     185   185.41    2.91  0.089 

    TSSa*TSSa              1    4350     401   400.78    6.30  0.012 

  Interaction             10    5255    5255   525.52    8.26  0.000 

    Plant*Mesh             1     156     544   544.37    8.56  0.004 

    Plant*TSSin            1     920     845   844.61   13.27  0.000 

    Plant*Turbidity        1      98     364   364.39    5.73  0.017 

    Plant*TSSa             1     327      51    51.00    0.80  0.371 

    Mesh*TSSin             1     874      53    53.21    0.84  0.361 

    Mesh*Turbidity         1     931      22    21.83    0.34  0.558 

    Mesh*TSSa              1     573     275   274.69    4.32  0.038 

    TSSin*Turbidity        1     799     166   165.91    2.61  0.107 

    TSSin*TSSa             1      66     350   350.48    5.51  0.019 

    Turbidity*TSSa         1     513     513   513.09    8.06  0.005 

Residual Error           441   28059   28059    63.62 

Total                    459  166223 
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The most important factors are the mesh and TSSa while turbidity and TSSin does not seem to be 

as important. 

The quadratic response surface seems to be sufficient to capture the 83% of the total variability 

(R
2
 adjusted =82.4%) which is reasonable. The hypersurface exhibits a strong curvature in the 

direction of TSSa (p value 0.012). It seems there is an interaction effect between type of plant 

and TSSin, which means that each plant has its own characteristic influent TSS, even though the 

removal efficiency is not dependent on the wastewater plant. The term “hold values’ means that 

the non-important variables were kept constant, while the significant variables were changed to 

show the response surface. 

Analyzing the removal efficiency it is noticed that for an increase in removal efficiency, the 

mesh needs to be decreased and the TSSa has to increase while the other factors can be kept 

constant as they don't affect removal efficiency significantly. This is in accordance with the fact 

that lower the mesh size, higher the removal efficiency causing higher amount of accumulated 

solids on the filter mesh. On the quadratic surface the optimum region corresponds to high values 

of TSSa and lower mesh size. 

For flux analysis, MiniTab could not be used as it works only for linear models. While using it 

for finding the response surface for flux, the hypersurface was exhibiting high peaks. This was 

due to the non-linearity of the problem. Non-linearizing the dataset using special functions such 

as logarithmic, exponential might help finding the response surface better but since the dataset 

was already treated in this fashion while doing the regression analysis, the regression equation 

obtained, serves the purpose of determining flux as a function of operating parameters. 
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Chapter 5 

Conclusions: 

5.1 Summary of results: 

 

The present research was aimed at formulating the filtration kinetics of different unclarified 

wastewater streams. To achieve this, a bench scale model was successfully built and experiments 

were conducted with it. The objective was to predict the flux and the removal efficiency of the 

filter mesh using minimum operating factors but with a reasonable accuracy. A funneling 

approach was used to reduce 18 operating parameters finally to 4 parameters (turbidity, mesh, 

TSSa and TSSin) using linear regression at the beginning and then reducing it further with non-

linear regression. 

The models predicted for both flux and removal efficiency through regression analysis were 

validated and the models were used to predict beyond the experimental range of values. The 

equations obtained were robust and could be applied over a range of TSS, turbidity, and two 

different mesh sizes. Response surface models helped in estimating the change in the surface plot 

due to variability in the parameters of interest. The developed equations can be used to predict 

filtration performance of a unit with similar specifications and operating conditions for different 

wastewater plants. Although, characteristics of wastewater change with wastewater plants, 

filtration performance was not significantly affected with the change in wastewater plant.  
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5.2 Future work: 

The present study revealed certain areas that would be of significant interest for future research. 

They are listed as follows: 

 The pilot unit needs to be validated with the equations obtained from the bench scale 

model. This would help in better prediction of the filtration kinetics of the filter for the 

region the unit is designed for. 

 Use of particle size distribution as a parameter for water quality analysis might make the 

model stronger since particle size in wastewater samples varies with region. 

 Building up of a global database with different wastewater qualities for more accurate 

predictions. 
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Appendix: 

SAS Coding: 

proc import datafile = 'tu.csv' out=correct2 replace; 

 guessingrows = 1000; 

 run; 

ods html exclude all; 

proc reg; 

      

  model Flux=TSSa Mesh TSSin l1c l2c l3c l4c SVl1350 SVl2350 SVl3350 

SVl4350 SVl1158 SVl2158 SVl3158 SVl4158 Turbidity350 Turbidity158 

SVturb158 SVturb350 SVTCOD350 SVTCOD158 TCOD350 TCOD158 TSSSVout SVEff350 

SvEff158 

  /selection = cp AIC sbc; 

  ods output subsetselsummary=models; 

 run; 

ods html select all; 

 

proc sort; 

  by AIC; 

  run; 

 

proc print data=models( obs=10); 

title 'Best 10 models by AIC'; 

run; 

 

proc sort; 

  by sbc; 

  run; 
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proc print data=models( obs=10); 

title 'Best 10 models by BIC'; 

run; 

proc import datafile = 'tu.csv' out=correct2 replace; 

 guessingrows = 1000; 

 run; 

 

proc reg; 

      

model Flux=TSSa Mesh TSSin l1c l2c l3c l4c SVl1350 SVl2350 SVl3350 SVl4350 

SVl1158 SVl2158 SVl3158 SVl4158 Turbidity350 Turbidity158 SVturb158 

SVturb350 SVTCOD350 SVTCOD158 TCOD350 TCOD158 TSSSVout SVEff350 SvEff158  

    /selection = cp AIC sbc best = 10; 

 

  title 'Cp model selection'; 

   

 run; 

 proc glm; 

   model Flux=TSSa Mesh TSSin l1c l2c l3c l4c SVl1350 SVl2350 SVl3350 

SVl4350 SVl1158 SVl2158 SVl3158 SVl4158 Turbidity350 Turbidity158 

SVturb158 SVturb350 SVTCOD350 SVTCOD158 TCOD350 TCOD158 TSSSVout SVEff350 

SvEff158; 

   title 'Regression of log brain size on log body, log litter and log 

gest'; 

run; 

proc sgscatter; 

  matrix Flux TSSa Mesh TSSin l1c l2c l3c l4c SVl1350 SVl2350 SVl3350 

SVl4350 SVl1158 SVl2158 SVl3158 SVl4158 Turbidity350 Turbidity158 
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SVturb158 SVturb350 SVTCOD350 SVTCOD158 TCOD350 TCOD158 TSSSVout SVEff350 

SvEff158; 

  title 'Scatterplot matrix, untransformed variables'; 

run; 

 

First database: 

 

 

Second database: 
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Eureqa snapshots: 
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