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Abstract

With the combination of wireless communications and embedded system, lots of progress

has been made in the area of wireless sensor networks (WSNs). The networks have already

been widely deployed, due to their self-organization capacity and low-cost advantage. How-

ever, there are still some technical challenges needed to be addressed. In the thesis, three algo-

rithms are proposed in improving network energy efficiency, detecting data fault and reducing

data redundancy.

The basic principle behind the proposed algorithms is correlation in the data collected by

WSNs. The first sensor scheduling algorithm is based on the spatial correlation between neigh-

bor sensor readings. Given the spatial correlation, sensor nodes are clustered into groups. At

each time instance, only one node within each group works as group representative, namely,

sensing and transmitting sensor data. Sensor nodes take turns to be group representative.

Therefore, the energy consumed by other sensor nodes within the same group can be saved.

Due to the continuous nature of the data to be collected, temporal and spatial correlation of

sensor data has been exploited to detect the faulty data. By exploitation of temporal correlation,

the normal range of upcoming sensor data can be predicted by the historical observations.

Based on spatial correlation, weighted neighbor voting can be used to diagnose whether the

value of sensor data is reliable. The status of the sensor data, normal or faulty, is decided by

the combination of these two proposed detection procedures.

Similar to the sensor scheduling algorithm, the recursive principal component analysis (R-

PCA) based algorithm has been studied to detect faulty data and aggregate redundant data by

exploitation of spatial correlation as well. The R-PCA model is used to process the sensor

data, with the help of squared prediction error (SPE) score and cumulative percentage formula.

When SPE score of a collected datum is distinctly larger than that of normal data, faults can be

detected. The data dimension is reduced according to the calculation result of cumulative per-

centage formula. All the algorithms are simulated in OPNET or MATLAB based on practical

and synthetic datasets. Performances of the proposed algorithms are evaluated in each chapter.

Keywords: data correlation, energy efficiency, data fault detection, data aggregation, wireless
sensor networks
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“Sweat saves blood, blood saves lives,
and brains save both.”
− − Erwin Rommel
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Chapter 1

Introduction

1.1 Overview of Wireless Sensor Networks

With the integrated application of wireless communications technology and embedded sys-

tems, wireless sensor networks (WSNs) have attracted significant research attention in recent

years. As compared to the traditional wired networks, WSNs have their own specific advan-

tages, e.g., low cost, easy deployment, self-organization and reduced reliance on infrastructure

[1]. Due to these advantages, WSNs have already been applied in many different scenarios,

especially in some harsh and inaccessible environments. Fig.1.1 summarizes some typical ap-

plications of WSNs, including health monitoring, environment monitoring and smart home.

Taking smart home as an example, the heating, ventilation and air conditioning systems of a

house can be adaptively adjusted by actuators according to sensor readings collected wirelessly.

In other words, the applications of WSNs can better serve both public and private daily life of

residents at reduced costs. With the increasing popularity in many applications, the number of

sensors will be more than 1 trillion by 2025 [2].

A general architecture of WSNs is shown in Fig.1.2, which consists of sink node, data

center and a number of wireless sensor nodes [1]. A large number of sensor nodes are randomly

deployed in the target areas, in order to monitor and collect the physical parameters of the local

environments. Then the sink node is responsible for gathering all the sensor data. Finally, the

raw and messy sensor data is analyzed and converted to useful information by the processing

and analyses at the data center.

1
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Smart Home
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Figure 1.1: Typical applications of wireless sensor networks.
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Figure 1.2: General architecture of wireless sensor networks.
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However, both the resources and capacities of sensor nodes are quite limited, due to the

constraints of low manufacturing and application costs. These inherent limitations can lead to

some WSN designing challenges. The first challenge is the energy constraints of sensor nodes

and network energy efficiency. Sensor nodes are usually deployed in some inaccessible envi-

ronments, which makes recharging or replacement of “dead” nodes very difficult. Therefore,

how to make full use of the limited energy supply of sensor nodes and improve the network

energy efficiency needs to be investigated. Another challenge is the accuracy and efficiency

of sensor data. Sensor nodes are usually overly deployed in the target area with substantial

redundancy, due to the limited transmission range of sensor nodes and the suboptimal node

distribution. The high density of sensor node distribution results in the highly spatial corre-

lation between sensor data, which finally leads to the sensor data redundancy. Additionally,

harsh environments make the sensor nodes more vulnerable to different kinds of noise and in-

terference. As a result, the data collected through the sensor nodes may be faulty. The faulty

data can lead the data center to a false reaction. Thus, it is also critical to develop techniques

in ensuring the quality of sensor data collection.

1.2 Thesis Motivations

Wireless sensor networks have been applied in many different scenarios, due to the multiple

advantages discussed earlier. However, there are still some critical challenges needed to be

overcome, in order to improve the performance of wireless sensor networks.

Network energy efficiency: Wireless sensor networks are normally used to monitor the harsh

and inaccessible environments, in avoiding using the infrastructure based networks. Due to the

tough circumstances and the random sensor node deployment, it is really difficult to recharge

or replace the “dead” batteries of sensor nodes. Therefore, how to improve the network energy

efficiency and prolong the network lifetime is a tough research challenge in WSNs.

Data fault: During the active monitoring period, a large amount of sensor data is generated

by the sensor nodes. However, the sensor data collection process may be faulty, due to both the
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external harsh environments and inner software or hardware malfunctions. Thus, it is necessary

to detect and preprocess the faulty sensor data in improving the data accuracy and in avoiding

misleading the data center.

Data redundancy: In order to make sure the full sensing coverage, sensor nodes are usu-

ally overly deployed in the target areas. The high density of sensor node distribution leads to

the highly spatial correlation between sensor readings from neighbor nodes. Data redundancy

therefore exists in the correlated sensor data. The transmission and processing of these redun-

dant data can cost extra network resources. Hence, how to aggregate the redundant data poses

one additional challenge.

1.3 Research Objectives

The research objectives of this thesis are mitigating the aforementioned problems in wireless

sensor networks, namely, network energy efficiency, data fault and data redundancy.

Energy efficiency improvement: The primary research objective of this thesis is improv-

ing the network energy efficiency, since the efficiency directly affects the lifetime of WSNs.

A general energy consumption model is analyzed first. According to the parameters in the

model, data transmission occupies the largest percentage of total network energy consumption.

Therefore, the research objective is converted from network energy efficiency improvement to

reduction of the data transmissions while ensuring the data reliability at the meantime.

Data fault detection: The faulty sensor data can mislead the data center with erroneous

information and lead to possible false reactions at the data center. Since centralized data pro-

cessing incurs extra burden on the data center and reduces network efficiency, local detection of

the faulty sensor data is another research objective of the thesis. By exploitation of the tempo-

ral and spatial correlation of sensor data, the status of sensor readings can be diagnosed based

on the historical data and the neighbor sensor data. Thus, our specific objective is training a

proper time series prediction model and proposing a more accurate neighbor voting algorithm.
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Data redundancy reduction: Considering the redundant data consumes extra network re-

sources and reduces the network efficiency, aggregating the redundant sensor readings is also

one of the research objectives. A number of mature statistical models have been developed,

which could be used to reduce the data dimension and compress the redundant data. Principal

component analysis is a conventional data dimension reduction method. Hence, we study the

application of the principal component analysis in the research work, in order to reduce the

sensor data redundancy.

1.4 Technical Contributions of the Thesis

The main contributions of this thesis are summarized below:

• A spatial correlation based sensor scheduling mechanism is proposed in Chapter 3.

Within the proposed technique, a new sensor cluster formation algorithm, termed as

adaptive DK-means algorithm, is developed based on the spatial correlation between

neighbor sensor data. The new cluster formation algorithm improves the data reliability

of the generated clusters. Additionally, a new scheduling algorithm is proposed to de-

cide the order and duration of nodes working as the cluster representative within each

cluster. As compared to the baseline ZigBee protocol, the proposed sensor scheduling

mechanism reduces the network energy consumption.

• A new temporal and spatial correlation based data fault detection algorithm is proposed

in Chapter 4. The variance of physical parameters to be monitored is continuous in

nature, so the sensor data from consecutive time instances of the same node and the sen-

sor data from neighboring nodes are highly correlated. Based on the data correlation,

a distributed fault detection algorithm is proposed, in order to detect the faulty sensor

readings that are not following the normal trends. For temporal correlation based fault

detection, three different time series prediction models are compared and then Kalman

filter is selected as the prediction model. In terms of the spatial correlation based de-

tection, weighted-median detection is developed. The final detection result is jointly

decided by these two detection procedures.
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• A recursive principal component analysis (R-PCA) model based data fault detection and

data aggregation algorithm is proposed in Chapter 5. The principal component analysis

(PCA) model is a commonly used statistical tool for data dimension reduction. In order

to enhance the adaptiveness of the model in following the system changes, R-PCA model

is proposed based on the modification of conventional PCA model. Squared prediction

error (SPE) score and cumulative percentage formula are introduced to assist the R-PCA

model implementing the data fault detection and data aggregation operations. Addi-

tionally, multivariate sensor readings are considered in the algorithm. In contrast to the

conventional algorithms, the proposed multivariate data aggregation algorithm is based

on clusters instead of the local nodes so that the network performance can be further

improved.

1.5 Thesis Outline

The rest of the thesis is organized as follows:

In Chapter 2, the IEEE 802.15.4/ZigBee protocol stack is briefly introduced first, since it is

commonly used in WSNs nowadays. The research in the thesis is also based on this protocol

stack. Followed by this, the data correlation in WSNs is numerically analyzed and the related

works are summarized according to the different applications. After that, two mathematical

models to be used in the thesis are presented. One is the K-means clustering algorithm, the

other is the principal component analysis model. These two models are introduced in Chapter

2, as they are the basis of the proposed models in the later chapters.

In Chapter 3, a new sensor scheduling mechanism is proposed so that the network en-

ergy efficiency can be improved. In the system model section, the propagation model and

energy consumption model are presented. Given the indoor deploy environments for WSNs,

the COST-231 indoor propagation model is adopted. Micaz battery model is introduced to eval-

uate the energy consumption. The proposed sensor scheduling mechanism is then described in

detail. Finally, some simulations have been conducted in OPNET to evaluate the novel sensor

scheduling mechanism, as compared to the baseline ZigBee protocol.

A new distributed data fault detection algorithm for wireless sensor networks is proposed
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in Chapter 4. The previous fault detection algorithms are first summarized as related works.

Four common types of data faults are introduced as the fault model, which are demonstrated

and explained by figures. In the time series prediction model subsection, three different pre-

diction models, i.e., Kalman filter, grey model and auto-regressive moving average model, are

introduced and compared. The Kalman filter is used in the proposed algorithm since the resid-

ual error and mean absolute percentage error of it are smaller. How the spatial and temporal

correlation based distributed fault detection algorithm works is explained through a detailed

flowchart. As compared to the previous algorithms in literature, the proposed algorithm im-

proves the detection accuracy proved by the practical and synthetic datasets based simulations.

In Chapter 5, a novel recursive principal component analysis (R-PCA) based data aggrega-

tion algorithm is proposed. With the introduction of SPE score, the novel algorithm can detect

the data faults at the meantime. In the system model section, cluster tree topology is intro-

duced, since the proposed data aggregation algorithm is cluster based. The R-PCA model is

then explained in detail. After that, the R-PCA based multivariate data fault detection and data

aggregation algorithm is proposed. Finally, simulation results show that the novel algorithm

improves the data fault detection accuracy, improves the data restoration accuracy and reduces

the network energy consumption.

Lastly, all the contributions presented in the previous chapters are concluded in Chapter 6.

The plan for the future research is discussed in this Chapter as well.



Chapter 2

Data Correlation Analysis and Modelling

in Wireless Sensor Networks

2.1 Overview of IEEE 802.15.4/ZigBee

Bluetooth [3] and ZigBee [4] protocols were both designed for personal area networks (PANs)

in the specification of IEEE 802.15. However, most WSNs adopt ZigBee protocol instead of

Bluetooth for the following reasons:

Energy Consumption: Bluetooth consumes more power than ZigBee. ZigBee devices are

about 2.5∼3 times more energy efficient than Bluetooth devices under the same conditions.

Self Organization: ZigBee networks support the self-organization and self-healing tech-

nology. In contrast, Bluetooth does not have this capacity.

Scalability: Bluetooth works in a master-slave mode and the master node can support only

up to 7 slaves. By contrast, the topologies of ZigBee networks are more flexible and have

different variations, namely, star, mesh and cluster topologies. The flexible topologies make

the ZigBee networks more scalable. The number of connected nodes can be up to 65,000.

Therefore, ZigBee protocol is widely used in WSNs for its low energy cost, self-organization

capacity and better scalability. This subsection briefly introduces the ZigBee protocol stack.

The protocol stack architecture is shown in Fig.2.1 [4]. It can be seen that the PHY layer and

MAC layer protocols in the stack are defined by the IEEE 802.15.4 working group [5], while

the specifications of the upper layers are designed by the ZigBee alliance [4].

8
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2.1.1 IEEE 802.15.4 PHY/MAC Protocols

The IEEE 802.15.4 standard supports three different working frequency bands at the PHY

layer, i.e., 868MHz, 915 MHz and 2.4 GHz. Data rate at 2.4 GHz is 250 kbps, which is higher

than 40 kbps at 915 MHz and 20 kbps at 868 MHz. The working channel can be chosen

dynamically. The specific working channels at different frequency bands are shown in Fig.2.2.

Additionally, the input signal power thresholds at receiver end are -85 dBm at 2.4 GHz and -92

dBm at 868/915 MHz, respectively.

868.0 868.8 902 928 2400 2483.5 MHz

2 MHz 5 MHz

Channel 0 Channel 1-10 Channel 11-26

…... …...

Figure 2.2: IEEE 802.15.4 physical layer channels.

Star Topology Peer-to-peer Topology

Full Function 

Device (FFD)
Reduced Function 

Device (RFD)

Wireless 

Communication Link

Figure 2.3: Examples of star topology and peer-to-peer topology in IEEE 802.15.4.

There are two types of devices in an IEEE 802.15.4 network, i.e., full function device (FFD)

and reduced function device (RFD). The difference between FFD and RFD is that the RFD

does not have the routing capacity. Hence, an FFD can perform all the roles in the network, a

personal area network (PAN) coordinator, a coordinator or an end-device, while RFD can only
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be an end-device and communicate with an FFD. Two basic topologies that can be set up by

the devices in IEEE 802.15.4 are star topology and peer-to-peer topology. Examples of the two

basic topologies are shown in Fig.2.3 [5].

IEEE 802.15.4 offers two different working modes at its MAC layer, namely, nonbeacon-

enabled mode and beacon-enabled mode. Data frames in nonbeacon-enabled mode compete

to occupy the communication medium by unslotted CSMA/CA scheme. In beacon-enabled

mode, IEEE 802.15.4 defines a new frame type, termed as superframe. The superframe consists

of active and inactive sections. This structure better satisfies the low energy consumption

requirement of the network, since the devices only interact during the active section and enter

a low-power (sleep) mode during the inactive section. The active section is further divided

into 16 slots. Beacon signal is sent by the coordinator at the first time slot of the superframe,

which defines the duty-cycle of the devices and ensures the synchronization of the network.

The length of superframe is defined by the beacon interval (BI) between two beacon signals as

BI = aBaseS uper f rameDuration × 2BO symbols, (2.1)

where aBaseS uper f rameDuration refers to the number of symbols forming a superframe and

BO is the beacon order, an attribute in MAC PIB (personal area network information base)

used to specify how often the beacon signal is sent, 0 ≤ BO ≤ 14. The active section of BI is

termed as superframe duration (S D), given by

S D = aBaseS uper f rameDuration × 2S O symbols, (2.2)

where S O is the superframe order, an attribute in MAC PIB used to specify the length of the

active section of the superframe, 0 ≤ S O ≤ BO. Finally, the duty cycle is defined as the ratio

of S D to BI, i.e., Duty-cycle = 2S O−BO.

Additionally, the active section of superframe is separated into two phases, i.e. contention

access period (CAP) and contention free period (CFP). In CAP, data frames compete to trans-

mit by exploitation of slotted CSMA/CA scheme, while data is transmitted without competition

in the previously assigned guaranteed time slots (GTS) of CFP. The specific structure of super-

frame is shown in Fig.2.4 [5].
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 1415

GTS GTS Inactive

Beacon Beacon

CAP CFP

SD=aBaseSuperframeDuration*2^SO symbols

(Active)

BI=aBaseSuperframeDuration*2^BO symbols

Figure 2.4: Superframe structure in IEEE 802.15.4.

2.1.2 ZigBee Cluster-tree Routing Protocol

ZigBee cluster-tree routing (ZBR) protocol cooperates with IEEE 802.15.4 PHY and MAC

layer protocols, which is designed specifically for the resource constrained sensor networks.

The multi-hop routing of ZBR is implemented by the distributed addressing assignment mecha-

nism [4]. With this mechanism, every device within the network gets a unique address assigned

by the PAN coordinator.

Every coordinator/router in a ZigBee network is capable to support nwkMaxChildren (Cm)

child nodes at most (including nwkMaxRouters (Rm) routers). Every device is assigned an

associated depth d, which refers to the minimum number of hops to the PAN coordinator

through only parent-child links. Moreover, the maximum depth of a ZigBee network is given

by nwkMaxDepth (Lm) [4]. Given a node with address Aparent, the address of its mth router

child is given by

Am = Aparent + Cskip(d) · (m − 1) + 1, (2.3)

where 1 ≤ m ≤ Rm. While the address of its nth end device child is given by

An = Aparent + Cskip(d) · Rm + n, (2.4)

where 1 ≤ n ≤ (Cm − Rm), and
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Cskip(d) =


1 + Cm · (Lm − d − 1) , i f Rm = 1,
1 + Cm − Rm −Cm · R

Lm−d−1
m

1 − Rm
, otherwise.

(2.5)

For example, the parameters of the network are nwkMaxChildren(Cm) = 5, nwkMaxRout

ers(Rm) = 3 and nwkMaxDepth = 3. First, Cskip(d), d = 0 ∼ 3 is calculated and listed in Table

2.1. Then the address allocation is demonstrated in Fig.2.5.

Table 2.1: Cskip Values of Different Depths
depth (d) Cskip(d)

0 21
1 6
2 1
3 0

PAN 

Coordinator

ZigBee 

Router

ZigBee           

End Device

d=0, addr=0

d=1, addr=64

d=1, addr=1

d=1, addr=22

d=2, addr=41

d=3, addr=27

d=3, addr=28

d=2, addr=9
d=2, addr=8

d=2, addr=23

Figure 2.5: Example of address allocation.

Given the unique ZigBee addresses, routing procedure could be greatly simplified. Sup-

pose a routing destination with address D, a router with address A decides whether D is its

descendant. If (2.6) is satisfied, router A identifies D as its descendant and sends data packet to

one of its children. Otherwise, router A sends data packet back to its parent.
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A < D < A + Cskip(d − 1). (2.6)

2.2 Data Correlation in WSNs

Our research in this thesis is based on the intrinsic correlation between sensor readings. There

are some recent works that focus on the temporal and spatial correlation of sensor data in

literature. In this section, the data correlation in WSNs is investigated based on both numerical

analysis and literature survey.

2.2.1 Data Correlation Analysis

Sample Pearson correlation coefficient (SPCC) [6] is used to evaluate the extent of data corre-

lation, which is calculated as

rx,y =
Σn

i=1(xi − x)(yi − y)√
Σn

i=1(xi − x)2
√

Σn
i=1(yi − y)2

, (2.7)

where x, y are two vectors, x and y are the mean values of the vectors and n is the number of

samples in the vector. The value of rx,y falls in [−1, 1]. If rx,y = 0, it means that x and y are

uncorrelated. If rx,y = −1 or rx,y = 1, x and y are absolutely linearly correlated.

Proof of spatial correlation In order to prove the spatial correlation between sensor read-

ings, the SPCC values of temperature readings from Node 31 ∼ 40 in Intel Berkeley research

lab (Fig.2.6) are calculated [7]. More specifically, the first two hundred temperature samples

on 2/28/2004 are used. The SPCC values are listed in Table 2.2.

Table 2.2: Sample Pearson Correlation Coefficient
Node 31 Node 32 Node 33 Node 34 Node 35

Node 31 1 0.9934 0.9886 0.9927 0.9956
Node 36 Node 37 Node 38 Node 39 Node 40

Node 31 0.9924 0.9846 0.9744 0.9900 0.9839

It can be seen that the SPCC values in Table 2.2 are all over 0.97, while the correlation test
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Figure 2.6: Deployment of Node 31 ∼ 40 in Intel Berkeley research lab.

threshold in t-test at 0.05 α-level is 0.171 (sample size=200) [8]. Therefore, it indicates that

the temperature readings from neighbor nodes are highly correlated.

Proof of temporal correlation In order to prove the temporal correlation of sensor readings,

SPCC of the continuous temperature readings is calculated and demonstrated in Fig.2.7, where
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Figure 2.7: SPCC of temperature readings with different time intervals.
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time interval refers to the number of time instances between the two sampling vectors and each

time instance refers to the sampling gap, i.e., 30s.

Fig.2.7 shows that the SPCC values of temperature readings decrease with the increment in

time interval. The decrement indicates that the strength of the correlation between temperature

readings in temporal domain is reducing due to the increased time interval. Additionally, the

SPCC is below the correlation test threshold when the time interval is larger than 350 time

instances. This means that the correlation between temperature readings does not exist after

a certain time interval. Therefore, it is needed to be careful with the selection of historical

observations when exploit the temporal correlation.

2.2.2 Data correlation in WSNs and Related Applications

In recent years, a number of researchers have worked on sensor data correlation in WSNs and

used in different applications. Some related works have been summarized here and categorized

by different aims.

2.2.2.1 Data Correlation based Energy Efficiency Improvement

An energy-efficient data collection framework is proposed based on both temporal and spa-

tial correlation of sensor data [9]. The framework is realized by the cluster based localized

prediction algorithm, where the clusters are formed up according to the extent of spatial corre-

lation. Specifically, the predicted data value is used at the cluster head instead of practical data

generated by the sensor node so that the energy consumed by the real-time data transmission

can be saved. The database at cluster head is updated only when the difference between pre-

dicted data and practical data is over a certain threshold. Furthermore, the framework can be

accommodated with sleep/awake scheduling and data aggregation as well.

Similarly, L.Xiang et al. [10] focus on the problem of energy-efficient data collection in

WSNs as well. In their work, a novel compressive data aggregation (CDA) scheme based on

the compressive sensing (CS) model is proposed. At the receiver end, diffusion wavelet is

used to recover the original data so that the recovery accuracy can be ensured regardless of

the network topology. In terms of the routing cost, the authors first prove that the minimum-
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energy compressive data aggregation is an NP-complete problem, and then both optimal and

heuristic solutions are proposed. The experiments are conducted based on both practical and

synthetic databases. Results show that the proposed CDA scheme improves both the data

recovery accuracy and the network energy efficiency.

A distributed adaptive sparse sensing (DASS) algorithm is proposed based on compressive

sensing and incremental PCA models [11]. Different from other works, DASS considers not

only the energy consumed by data transmission, but also the sensing energy cost. DASS es-

timates where and when to sense the physical field based on spatial-temporal correlation, in

order to reduce the sensing energy consumption. The experimental results indicate that the

consideration of sensing costs can further reduce the network energy consumption indeed.

2.2.2.2 Data Correlation based Fault Detection

Some works aiming at data fault (or data outlier) detection in WSNs exploit the sensor data

correlation as well, [12][13][14]. An exceptional message supervision mechanism (EMSM) is

proposed by exploitation of the spatial-temporal correlation [12]. In EMSM, cosine similarity

is used as the metric to evaluate the extent of correlation and detect the fake messages. With the

introduction of EMSM, the security attacks in routing protocols can be detected and processed.

Works on anomaly detection within a non-stationary environment have been summarized

as a survey [13]. The authors analyze and demonstrate different categories of data anomalies in

the literature first, [15][16][17]. Then the characteristics of data distribution in non-stationary

environment are discussed. Based on these concepts, multiple data anomaly detection algo-

rithms are introduced and categorized according to different change detection, model selection,

sliding window and model construction methods at last.

Different from previous works, a novel segment-based anomaly detection algorithm is pro-

posed in order to detect the long-term data anomalies [14]. The novelty of the algorithm is that

it is segment-based instead of point-based. A novel detection metric based on the covariance

matrices of neighbor sensor data is presented, termed as prediction variance. The detection

threshold relies on the centralized analysis of sample covariance matrices at cluster head. In

order to reduce the cost of centralized analyses, the Spearman’s rank correlation coefficient and

differential compression are used to compress the raw covariance matrices. Receiver operating



18 Chapter 2. Data Correlation Analysis andModelling inWireless Sensor Networks

characteristic curves in the simulation results show that the proposed algorithm performs better

in long-term data anomaly detection while weaker in the random outlier detection.

2.2.2.3 Data Correlation based Data Aggregation

Except for the data fault detection, temporal and spatial correlation can be used to aggregate

the redundant sensor data as well. One of the major research objectives of the data aggrega-

tion algorithms is reducing the restoration error (i.e., improving the recovery accuracy) of the

aggregated data at the receiver end. Some related works are presented as follows.

An iterative algorithm for compressing matrices calculation has been proposed, in order to

minimize the restoration error at fusion center [18]. The fusion center is responsible for collect-

ing and recovering the reduced-dimensional data matrices from leaf sensor nodes. Applications

of the iterative algorithm at two different noise scenarios are discussed, namely, homogeneous

and inhomogeneous environments. Simulations at two scenarios are conducted, respectively.

Simulation results show that the restoration error at fusion center is tolerant.

A novel distributed data storage (DDS) coding scheme is proposed based on both spatial

and temporal correlation of sensor data, termed as spatial-temporal compressive network cod-

ing (ST-CNC) [19]. More specifically, two dimensional compressive sensing model is used to

encode and transmit sensor data in ST-CNC. For data recovery, Kronecker structure framework

is exploited to ensure the small number of data receptions and high data recovery accuracy.

Simulation results prove that the proposed scheme reduces the number of data transmissions

without the sacrifice of data recovery accuracy.

A novel data aggregation algorithm in WSNs is proposed based on characteristic correlation

approach [20]. The basic principle behind characteristic correlation approach is still the spatial

correlation between neighbor sensor data. The difference is that they upgrades the criteria of

data correlation to the identical data magnitude and data gradient. They set up both the prac-

tical and simulated experiments, in order to evaluate the proposed aggregation algorithm. The

experimental results show that the proposed algorithm improves the data restoration accuracy

because of the more critical correlation criteria.
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2.3 K-means Clustering Algorithm

As mentioned in Section 2.1, cluster tree topology is commonly used in wireless sensor net-

works. Therefore, cluster formation algorithms for WSNs have attracted much attention from

researchers recently. With the help of the algorithms, correlated elements can be clustered

by one or more metrics, e.g., Euclidean distance. K-means clustering algorithm is a classical

cluster formation algorithm in machine-learning, which was first proposed in [21]. Elements

are clustered into K groups according to the minimal Euclidean distance principle, where the

number of groups (K) and the initial group centroids are set at the beginning. In recent years,

the K-means algorithm has been introduced into wireless sensor networks to cluster the sensor

nodes. In this section, the algorithm and its related applications are discussed.

2.3.1 Algorithm Outline

The K-means clustering algorithm works as follows.

• Step 1: Select K initial cluster centroids.

• Step 2: Assign element i (i = 1, . . . ,M) to cluster j with minimum d(i,C( j)). Then,

IC(i) = j and increment NC( j) by 1.

• Step 3: Update the cluster centroid of cluster j (C( j)) with the average value of all the

cluster members.

• Step 4: Repeat step 2,3 until all the elements are clustered.

Abbreviations used in the algorithm description are summarized in Table 2.3.

Clustering procedures are described in Fig.2.8, where the squares refer to the basic elements

while the circles stand for the cluster centroids.

2.3.2 K-means clustering algorithm in WSNs

As a classical cluster formation algorithm, K-means clustering algorithm has already been

widely used in WSNs. Recent works in literature are summarized as follows. A novel hy-

brid clustering formation algorithm (QK-means) is proposed in [22], which is based on both
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Table 2.3: Abbreviations in K-means clustering algorithm

K: number of clusters
M: number of elements in total
N: dimension of element
j: cluster
C( j): cluster centroid of j
d(i,C( j)): Euclidean distance between element i and cluster centroid of j
NC( j): number of elements assigned to cluster j
IC(i): the cluster that contains element i
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x
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x

y
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Step 3 Step 4

Figure 2.8: Procedures of K-means clustering algorithm.
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conventional K-means algorithm and the community detection in complex networks. Commu-

nity detection refers to the clustering process in a complex network, where a complex network

means the large scale sensor network with non-trivial topology. After the complex network is

separated into several large clusters by community detection, the conventional K-means algo-

rithm is implemented to further part the large clusters into small ones. Simulation results prove

that the proposed QK-means algorithm improves the coverage rate and decreases the number

of lost messages.

Different from the univariate model [22], F.Medhat et al. [23] consider the multivariate data

model. Based on the multivariate model, three different clustering algorithms are compared,

i.e., fuzzy c-means algorithm, k-means algorithm and LEACH-C algorithm. According to the

simulation results, fuzzy c-means algorithm and k-means algorithm outperform the conven-

tional clustering algorithm in WSNs (LEACH-C) on prolonging the network lifetime.

Due to the weakness of LEACH-C algorithm [23], D.Mechta et al. [24] improve the con-

ventional LEACH-C algorithm and propose a new routing protocol based on K-means algo-

rithm and minimum transmission energy routing protocol, termed as LEACH-CKM. As com-

pared to the the baseline LEACH-C algorithm, LEACH-CKM adopts k-means algorithm as

the formation method so that the node isolation and information transmission failure problems

can be solved. Simulation results demonstrate that the change in LEACH-CKM improves the

amount of data received at base station and prolongs the network lifetime by 30%.

A delay-aware data collection network structure based on k-means algorithm (DADCNS-

RK) is proposed, so that the total propagation distance can be reduced and the energy con-

sumed by data transmission can be decreased by recursively minimizing the sum of Euclidean

distances between sensor nodes [25].

The k-means algorithm is integrated with the prefix frequency filtering (PFF), in order to

reduce the latency caused by the high complexity of basic PFF [26]. Specifically, the sensor

nodes are clustered by the k-means algorithm first. Then prefix frequency filtering is performed

within the clusters instead of global range. As compared to the global PFF, cluster based PFF

aggregates the redundant data without sacrificing too much time complexity.
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2.4 Principal Component Analysis

2.4.1 Introduction to Principal Component Analysis

Principal component analysis (PCA) is a statistical tool which is always used to reduce the

dimension of data [27]. The basic mathematical principle behind PCA is the change of basis.

Given a matrix, its natural basis is an identity matrix I, i.e., X = IX, where

I =



1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1


m×m

, (2.8)

and X is the original data matrix consisted of m physical measurements and n observations.

PCA aims at finding out a basis P, which projects X (an m × n matrix) into a linearly

uncorrelated matrix Y with reduced dimension, i.e., Y = PX. Since Y is linearly uncorrelated,

its covariance matrix is diagonal. Mathematically,

CY =
1

n − 1
YYT = Λ, (2.9)

where Λ is a diagonal matrix. Specially, the concept of covariance matrix is defined in [27].

Therefore, the problem of determining the proper basis P is simplified as decomposing the

original data matrix X so as to diagonalize the covariance matrix of Y .

2.4.1.1 Decomposition Method

Two commonly used decomposition methods in principal component analysis are introduced

in this subsection. The two decomposition methods are based on the eigenvectors and singular

values of the covariance matrix of X ( i.e.,
1

n − 1
XXT ), respectively.

Eigenvector Decomposition Method This decomposition method is based on the theorem

that given a symmetric matrix S , it can be diagonalized by its orthogonal eigenvector matrix.

Therefore, the covariance matrix of X can be diagonalized by its eigenvector matrix. It is
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mathematically presented as,

CX =
1

n − 1
XXT = EΛET , (2.10)

where the columns in E are the eigenvectors of CX and Λ is a diagonal matrix with the eigen-

values of CX. Set P equal to ET . Based on (2.10), it can be further derived that

CY =
1

n − 1
YYT

= P
1

n − 1
XXT PT

= PCXPT

= PPT ΛPPT

= Λ.

It can be seen that CY is diagonal when P is set to ET . Now, the transformation basis P is set

to the transposition of eigenvector matrix of CX and the jth diagonal value of CY is the variance

of original data matrix X along P j.

Singular Value Decomposition Method Given an n × m data matrix Z (Z ≡ 1
√

n−1
XT ), ZT Z

is an m × m square and symmetric matrix with rank r. Based on (2.11),

(ZT Z)v̂i = λv̂i, (2.11)

the eigenvectors of ZT Z ( i.e., {v̂1, v̂2, . . . , v̂r} ) and corresponding eigenvalues {λ1, λ2, . . . , λr}

can be calculated. Furthermore, the singular value is defined as

σi ≡
√
λi. (2.12)

The set of n × 1 vectors {û1, û2, . . . , ûr} is given by

ûi ≡
1
σi

Zv̂i. (2.13)

It can be further derived that
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ûi · û j =

 1, i f i = j,

0, otherwise.
(2.14)

Additionally, ‖Zv̂i‖ = σi. Therefore, the scalar version of singular value decomposition is just

a restatement of (2.13),

Zv̂i = σiûi. (2.15)

We set Σ as the diagonal matrix consisted of singular values, U and V stand for the sets of

{û1, û2, . . . , ûr} and {v̂1, v̂2, . . . , v̂r} appended with (n− r) and (m− r) zeros, separately. Then the

finalized decomposition equation is

Z = UΣVT , (2.16)

which indicates that the matrix Z can be decomposed into the multiplication of two orthogonal

matrices and one diagonal matrix.

After the decomposition procedure, the matrix Y is linearly uncorrelated. But the dimension

of Y is still the same as X. Hence, how to extract the principal components of X and make Y

less dimensional is further investigated.

2.4.1.2 Number of Principal Components

Given the eigenvalue matrix Λ, the eigenvalues λi in Λ are reordered by their values. The

eigenvalue with new order is labelled as λ̃i. The largest l eigenvalues in the matrix are extracted

as principal components, where the value of l is given by

α =

∑l
i λ̃i∑m
i λ̃i
× 100%, (2.17)

where α is determined by the specific application requirements, e.g., 90%.

The dimension of eigenvalue matrix is reduced from m to l, while the associate eigenvector

matrix is reordered and reduced at the meantime, Ẽl. Meanwhile, the transformation basis P is

updated to ẼT
l . Finally, the generated matrix Y is a less dimensional and linearly uncorrelated
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matrix, namely, Y = PX = ẼT
l X. The method (2.17) is termed as cumulative percentage

formula. There are also other methods that can be used to determine the value of l in literature,

e.g., Kaiser’s rule.

2.4.1.3 PCA based Data Fault Detection Metric

Principal component analysis itself can only be used to reduce the data dimension. Therefore,

some auxiliary metrics are needed to detect the faults in sensor readings. Two commonly used

metrics are briefly introduced as follows [28].

SPE Score SPE score for matrix x is calculated as

S PE(t) = ‖x(t) − x̂(t)‖22, (2.18)

where x(t) is the off-mean matrix of the original x(t) and x̂(t) is the approximate matrix calcu-

lated as

x̂(t) = Ẽl(t)ẼT
l (t)x(t), (2.19)

Ẽl(t) is the reordered and reduced-dimensional version of E, where E is the eigenvector matrix

of CX (X is the off-mean sensor data).

The threshold of SPE score is defined as

ΓS PE(t) = θ1(t)
[
h0ξ
√

2θ2(t)
θ1(t)

+ 1 +
θ2(t)h0(t)(h0(t) − 1)

θ1(t)2

] 1
h0(t)

, (2.20)

where

h0(t) = 1 −
2θ1(t)θ3(t)

3θ2
2(t)

, (2.21)

θ j(t) =

m∑
i=l+1

Nλ̃ j
i (t), (2.22)

ξ : P{−ξ < X < ξ} = 0.99, (2.23)

where X follows normal distribution.
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T 2 Score The definition of T 2 score for matrix x is given by

T 2(t) = ‖xT (t)Ẽl(t)Λ̃−1
l (t)ẼT

l (t)x(t)‖22, (2.24)

where Λ̃l(t) contains the first l largest eigenvalues of CX.

The threshold of T 2 is calculated as

ΓT 2(t) =
(m2 − 1)l
m(m − l)

ξF , (2.25)

where

ξF = F−1(P{−ξ < X < ξ}), (2.26)

where F−1 refers to the inverse F distribution.

2.4.2 Principal Component Analysis in WSNs

Principal component analysis is always used to aggregate the large amount of messy and re-

dundant sensor data from wireless sensor networks. Some recent works focused on PCA based

data aggregation in WSNs have been summarized here.

LocalPCA algorithm is a distributed data aggregation algorithm based on the principal com-

ponent analysis [29]. In their work, tree topology is used to set up the network and the sensor

data is transmitted from the leaf sensor nodes to the sink node along the tree. At each level of

the tree, the sensor data from lower levels is aggregated first before being forwarded. Simula-

tion results show that the LocalPCA algorithm reduces the reconstruction error, as compared

to the PCAg and EAPCAg algorithms.

Multivariate sensor data sampling algorithm considers the multiple variables in WSNs [30].

The algorithm consists of three steps. First is component transformation. PCA, robust PCA and

ICA are all introduced and compared. Second step is ranking, which sorts the first component

values. The third step is sampling. Both variance (ANOVA) and maximum relative absolute

error are used to evaluate the reconstruction error. However, different from other PCA based

aggregation algorithms, the proposed sampling algorithm extracts the principal components

along the time series.
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Schemes iPC3 and oPC3 are proposed based on the PC3 model (principal components

based context compression model [31]), in order to implement multivariate data aggregation

in WSNs [32]. iPC3 exploits incremental principal component analysis (IPCA) to implement

the online learning of the eigenbasis (i.e., basis of PCs), thus the learning phase of PC3 (i.e.,

the phase during which the eigenbasis is calculated) is eliminated. oPC3 uses optimal stopping

theory (OST) to decide the best time to switch from aggregation to learning phase. Relative

reconstruction error is used to evaluate the algorithm performance. The simulation results show

that iPC3 and oPC3 definitely improve the data reconstruction accuracy.

Additional to data aggregation, principal component analysis can be also used to detect

data fault (or data anomaly, data outlier) in WSNs with the help of SPE score or T 2 score.

A PCA-based data fault detection algorithm has been proposed in [33]. In the conventional

PCA model, the off-mean method is used to preprocess the raw data, while the raw sensor

data is standardized to zero-mean and unit-variance data set in the proposed work so that the

influence of different scales can be reduced. The subspace-based anomaly detection algorithm

is used to diagnose the data outliers. More specifically, the number of principal components

(PCs) is determined by the Kaiser’s rule and the squared prediction error (SPE) score is adopted

as the detection criterion. Simulation results show that the proposed algorithm can be used to

detect both random and correlated data anomalies.

Two approaches have been proposed to detect the data anomalies in wireless sensor net-

works in [34]. The first approach is based on a multivariate Gaussian model, which exploits

the intrinsic correlation of sensor data. In the second approach, the authors present the kernel

PCA, where the geometric information is included as well. Different from the general PCA, the

kernel PCA eliminates the limitation of data linearity. S.Chan et al. [28] preview the conven-

tional PCA model and two auxiliary fault detection metrics first, and then new robust recursive

fault detection algorithm is proposed based on the previous work [33]. The new robust recur-

sive model and fault detection algorithm aim at being sensitive to the gradual system changes

and robust to the dramatical data outliers. Both simulated and practical experiments have been

conducted in [28]. The experimental results show that the proposed robust recursive algorithm

outperforms the conventional algorithms on detection accuracy and false alarm ratio .
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2.5 Chapter Summary

In this chapter, some basic concepts and models used in the thesis are reviewed. Since the

IEEE 802.15.4/ZigBee protocol stack is used in most of the wireless sensor networks, brief

introduction to the protocol stack is given at the beginning of this chapter. The whole protocol

architecture is first described. The PHY layer, MAC layer and NWK layer protocols are then

explained in sequence. After that, the data correlation in WSNs is investigated based on both

the numerical analysis and literature survey. The data correlation analysis is conducted based

on the practical dataset and analysis results show that both spatial and temporal correlations

exist in the collected sensor data. Sections 2.3 and 2.4 introduce two mathematical models

that are used in the later discussions in the thesis. Both descriptions of the models and related

works are given.



Chapter 3

Energy-Efficient Scheduling Mechanism

for Indoor WSNs

3.1 Introduction

Wireless sensor networks (WSNs) have gained increasing popularity in many applications [35].

Currently, wireless sensor networks have been applied in many different scenarios. Take the

indoor environments as an example. WSN-based building automation systems can be used to

monitor and control heating, air-conditioning and other physical parameters in modern build-

ings. Due to the inherent technical challenges of WSNs, particularly power consumption and

accuracy of data collection, researchers from both academia and industry spare no effort on the

research and development of the technology.

Considering the complex signal propagation environments in indoor application, more sen-

sor nodes than necessary are usually deployed in order to ensure the network coverage [36].

Due to the high density of node deployment, sensor data generated from neighbor nodes is

highly correlated. The strong correlation leads to data redundancy in WSNs. Meanwhile, the

transmission and processing of redundant sensor data consume extra energy [37]. Since the

energy of a sensor node is limited by its battery, reducing energy consumption and prolonging

the network lifetime become key issues in WSNs. Given the high data correlation, it is possible

to improve energy efficiency by reducing the redundant data transmission [38]. Specifically,

some nodes can be selected as representatives to generate and transmit data instead of using all

29
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the nodes within the network at the same time.

In terms of representative nodes selection in WSNs, there are already several works fo-

cused on this area in recent years. Based on the spatial correlation model [38], a theoretical

framework is proposed so that the sensing field can be partitioned into smaller areas with high

correlation [39]. In each correlation area, a representative node is selected by an iterative node

selection (INS) algorithm. Similarly, an α-local spatial clustering algorithm has been proposed

in [40]. By definition, the sensor nodes are clustered by two metrics, Euclidean distance of

sensor data and predefined communication radius α. In each cluster, a representative node

is the one with the highest correlation with all the other nodes within the same cluster. The

data reliability of the α-local algorithm is further improved in [41] by proposing a new data

correlation model, termed as data density correlation degree (DDCD).

In the aforementioned algorithms, only the representative nodes generate and transmit data

all the time. Hence, there is a potential problem that the representative nodes run out of bat-

tery faster than other nodes. The dead representative nodes can affect the connectivity of the

network. Therefore, it is necessary to balance the energy consumption of nodes within the

whole network. In the literature, two types of energy-balanced methods are proposed, i.e.,

energy-aware spatial correlation mechanism [42] and sensor scheduling mechanism [43].

In order to balance the energy consumption, the residual energy of a node is considered as

a new metric when selecting the representative node [42]. Additionally, both the correlation

areas and the representative nodes are adaptively updated so that the network performance can

be further improved. By contrast, a different energy balance approach is proposed in [43]. In

the latter work, the sensor nodes are clustered based on the spatial correlation of sensor data

first. Different from the representative selection algorithms, no special representative node is

selected while every node within the cluster takes turns to be the representative. The biggest

problem in these two works ([42] and [43]) is how to make sure of network connectivity. That

is why the ZigBee cluster tree topology is adopted in this work.

In this chapter, a new spatial correlation based sensor scheduling mechanism is proposed so

that the network energy efficiency of indoor WSNs can be improved. First, a new cluster for-

mation algorithm is proposed, termed as adaptive dual-metric K-means (adaptive DK-means)

algorithm. The new clustering algorithm exploits both data correlation between multivariate
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sensor data and ZigBee address as clustering metrics, which improves the data reliability of

generated groups. Then a new sensor scheduling algorithm is designed to determine the sched-

ule of nodes acting as group representatives. At last, a brief updating algorithm is proposed to

adaptively adjust the groups.

The simulations are conducted in OPNET with the dataset published by Intel Berkeley

research lab [7]. Simulation results demonstrate that the new cluster formation algorithm de-

creases the average relative error by 73.6% with a 0.8% increment in simulation time, as com-

pared to the adaptive K-means algorithm. Additionally, simulation results also show that the

new sensor scheduling algorithm reduces the energy consumption by 57.9%, as compared to

the baseline ZigBee routing protocol.

The remainder of this chapter is organized as follows. Section 3.2 introduces some basic

models used in this work, namely, propagation model and energy consumption model. All the

proposed algorithms are explained in detail in Section 3.3. Section 3.4 presents the perfor-

mance evaluation of the proposed algorithms conducted in OPNET. Finally, conclusions are

drawn in Section 3.5.

3.2 System Model

3.2.1 Propagation Model

Considering the multiple obstacles, indoor environment is much more complex than the open

areas for wireless communication. Based on the study of indoor signal propagation, a multi-

wall model (MWM) has been proposed in the final report of the European Co-Operation in the

field of Scientific and Technical research Action 231 (COST-231) [44]. Here, the MWM is

adopted as the indoor propagation model (Fig.3.1).

The signal attenuation in MWM is calculated as [44]

PLi(d) = 20log10(
4πd
λ

) + k
(
k f + 2
k f + 1

−0.46)

f L f +

N∑
i=1

kwiLwi, (3.1)

where d is the distance between the receiver and the transmitter. λ is the wave length. L f refers
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Tx

Rx

L1
L2

Figure 3.1: Multi-wall model in COST-231.

to the signal strength attenuated by the floor, and k f is the number of floors traversed by the

signal. The signal strength attenuated by the wall with type i is termed as Lwi, while kwi is the

number of traversed walls with type i. The attenuation values of concrete floor and different

walls are shown in Table 3.1 [45].

Table 3.1: Attenuation Values of Different Materials
Material dB Material dB

Type i: Wooden 12.3 Type ii: Stucco 13.1
Type iii: Concrete 16 Concrete Floor 29

3.2.2 Energy Consumption Model

The battery model of MICAz [46] is adopted as the energy consumption model. The currents

at different states are shown in Fig.3.2.

The total energy consumption (E) at different states is calculated as

E = V(IT xtT x + IRxtRx + IIdletIdle + IS leeptS leep), (3.2)

where V is the voltage, IT x, IRx, IIdle, IS leep are the currents of the transmitting, receiving, idle

and sleeping states, respectively. tT x, tRx, tIdle, tS leep denote the time spent in each of the above

mentioned states.
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Sleep

16 µA

Idle

26.1 µA

Rx

24.8 mA

Tx

(0 dBm) 17.4 mA

(-5 dBm) 14 mA

(-10 dBm) 11 mA

Figure 3.2: Currents at transmitting (Tx), receiving (Rx), idle and sleeping states.

3.3 Cluster Formation and Sensor Scheduling Algorithms

This section presents our proposed cluster formation and sensor scheduling algorithms. First of

all, the network is set up under the rule of IEEE 802.15.4/ZigBee protocol stack (more details in

Chapter 2.1). Then the adaptive DK-means algorithm is implemented by the PAN coordinator

to cluster the sensor nodes into groups. After that, the sensor nodes falling in the same group

are scheduled to be group representative and send data back to the base station. The working

schedules are decided by the sensor scheduling algorithm. Only if the relative data difference

between two consecutive representatives within the same group is larger than a threshold, the

PAN coordinator updates the groups by re-operating the adaptive DK-means algorithm. The

procedures are organized into a flowchart, as shown in Fig.3.3.

3.3.1 Adaptive DK-means Algorithm

In this section, a new adaptive dual-metric K-means (DK-means) algorithm is presented, where

both ZigBee address and the multivariate sensor data are adopted as clustering metrics. More

specifically, the algorithm works as follows:

1. Randomly select one node from the sensor nodes set S to be the centroid of group j.

2. If node i satisfies conditions i and ii, it will be removed from S and assigned to group j.
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Start

Working node changes 

from ij to i(j+1)

Schedule nodes in each 

group

Cluster the nodes by 

adaptive DK-means

Set up the network by 

ZBR 

Working time of i 

reaches Duri?

Update: Δj > εj ?

yes

no

yes

no

Figure 3.3: Flowchart of the proposed schemes in the sensor scheduling mechanism.
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i. The distance from the ZigBee address of node i to that of group j centroid is below the

predefined threshold α. It is mathematically presented as

|Ai −CA j| ≤ α, (3.3)

where Ai is the ZigBee address of node i and CA j is average ZigBee address of group j.

ii. The average Euclidean distance of multivariate sensor data between node i and the

centroid of group j is below the predefined threshold β. Mathematically,

1
P

P∑
p=1

‖Xip −C jp‖ ≤ β, (3.4)

where Xip refers to the pth row in the data matrix of node i (Xi) and C jp indicates that

of group j’s data centroid (C j). Specially, the pth row in data matrix can be regarded as

an N-dimensional vector. Furthermore, P is the number of physical phenomena that one

sensor node monitors. The thresholds α and β in (3.3) and (3.4) are empirical values that

are discussed in Section 3.4.

3. Every time a new node joins in group j, the values of group centroid, CA j and C j, are

updated with the new averages of all the sensor nodes within group j.

4. When there is no more sensor node satisfies conditions i and ii, a new group is set up and

the previous procedures are repeated with the remaining nodes in S .

5. Only if the node set S is empty, the cluster formation algorithm will be terminated.

Pseudocode of the proposed algorithm is described in detail in Algorithm 1. Specifically,

M refers to the number of sensor nodes, N indicates the data dimension and P stands for the

number of physical parameters. Additionally, Xi is node i’s data matrix (P × N). NC j refers

to the total number of nodes assigned to group j. ICi denotes the specific group that node i is

assigned to. In other words, ICi = j means that sensor node i is assigned to group j (i ∈ G j).

Finally, the output K reveals the number of groups that the sensor nodes are gathered into.
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Algorithm 1 Adaptive DK-means Algorithm
1: Input:M, N, P, IT ER, A, X1, X2, ..., XM

2: //initialize K and the sensor nodes set S
3: K = 0;
4: S = {node1, node2, . . . , nodeM};
5: for t=1,2,. . . ,ITER do
6: K = K + 1;
7: //randomly choose a node n from S as centroid of group K
8: CK = Xn, CAK = An; ∀ noden ∈ S
9: for i=1,2,. . . ,M do

10: if nodei ∈ S then
11: if |Ai −CAK | ≤ α && 1

P

∑P
p=1 ‖Xip −CK p‖ ≤ β then

12: //assign node i to group K
13: ICi = K, NCK = NCK + 1;
14: update CK , CAK;
15: remove nodei from S ;
16: end if
17: end if
18: end for
19: if S = ∅ then
20: output: K, NC, IC;
21: break;
22: end if
23: end for
24: Output:K, NC, IC
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3.3.2 Sensor Scheduling Algorithm

This subsection describes how the sensor scheduling algorithm works. First, a new concept

“super-cycle (S C)” is defined, which is calculated as

S C = BI × lcm{NC1,NC2, . . . ,NCK}, (3.5)

where BI is beacon interval defined in IEEE 802.15.4 MAC layer protocol (mentioned in Sec-

tion 2.1.1) and lcm is short for least common multiple calculation. All the groups within the

network follow the same S C.

In each group, the sensor nodes take turns to work as the group representative. Within one

S C, the working duration (Duri) of node i in group j is given by

Duri = S C/NC j, (3.6)

and then it sleeps for (NC j − 1)S C/NC j.

Additionally, the working order (Ordi) of nodes in each group is decided by the order of

their ZigBee addresses. Fig.3.4 shows an example of the sensor scheduling algorithm.

… ...

…
 ...

SC/NCj SC/NCj SC/NCj
Group: j

Order: 1

t

active sleep

t

t

Order: 2

Order: NCj

Figure 3.4: Example: sensor scheduling in group j.

Pseudocode of the sensor scheduling algorithm is listed in Algorithm 2. PAN coordinator

implements the algorithm and sends the scheduling information (Table 3.2) back to the sensor
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nodes, and then each sensor node in the network works according to its scheduling information.

Algorithm 2 Sensor Scheduling Algorithm
1: Input:NC, IC, A, K, M
2: //calculate the super-cycle (S C)
3: S C = BI × lcm{NC1,NC2, . . . ,NCK};
4: //calculate the duration Duri

5: for i=1,2,. . . ,M do
6: j = ICi;
7: Duri = S C

NC j
;

8: end for
9: //calculate the order Ordi

10: for j=1,2,. . . ,K do
11: Ordi = sort i ∈ G j by Ai;
12: end for
13: Output:S C, Dur, IC, Ord

Table 3.2: Scheduling Information
Node ID Group ID Order Duration super-cycle

i ICi Ordi Duri S C

3.3.3 Group Update

In order to make sure the data reliability, the groups of sensor nodes are adaptively updated.

More specifically, the PAN coordinator re-runs the cluster formation algorithm to update the

groups when the relative data difference (∆ j) between two consecutive representatives of group

j is beyond the threshold (ε j). The relative data difference ∆ j is given by

∆ j =
1
P

P∑
p=1

|Xi2 p1 − Xi1 pl|

Xi1 pl
, (3.7)

where Xi1 pl is the last value of parameter p before sensor node i1 sleeps, Xi2 p1 is the first value

of parameter p after sensor node i2 wakes up and P is the number of parameters.

The maximum temporal relative difference (ted j) between the consecutive data of a node

in group j is given by

ted j = max
∀i∈G j,k=1,...,N−1

(
1
P

P∑
p=1

|Xip(k+1) − Xipk|

Xipk
), (3.8)



3.4. Performance Evaluation 39

where k is the index of elements in the pth row of data matrix Xi. During the clustering process,

the maximum spatial relative data difference (sed j) between any two sensor nodes within group

j is calculated as

sed j = max
k=1,...,N,∀i,i′∈G j

(
1
P

P∑
p=1

|Xi′pk − Xipk|

Xipk
). (3.9)

And then the update threshold of group j is calculated as

ε j = ted j + sed j + ted jsed j. (3.10)

3.4 Performance Evaluation

Performance evaluation of the proposed scheduling mechanism is conducted in OPNET. The

specific simulation settings are summarized in Table 3.3 and the network deployment in OP-

NET is shown in Fig.3.5. In terms of the sensor data, the temperature and humidity sensor

readings published by the Intel Berkeley Research Lab [7] are used here.

Table 3.3: Simulation Settings
Number of Nodes ZigBee End Devices: 54,
(Fig. 3.5) ZigBee Routers:17, PAN Coordinator: 1
Area 50m× 50m
PHY Parameters f =2.4GHz, r=250Kbps, λ=0.125m
MAC Parameters BO=7, S O=4, Duty-cycle=12.5%
NWK Parameters Cm=8, Rm=3, Lm=4
Traffic Parameters Packet Generation: 1 pkt/s

Packet Size: 1000 bits/pkt
MICAz Parameters IT x=11mA(-10dBm), IT x=14mA(-5dBm),

IT x=17.4mA(0dBm), IS leep=16µA,
IRx=27.7mA, IIdle=35µA, V=3V

Simulation Time 300 s

As shown in Table 3.3, the ZigBee network works at the 2.4 GHz frequency band that

is the commonly used working frequency of WiFi networks. There is a potential interference

between these two techniques, but previous research has proved that WiFi and ZigBee networks

can coexit [47].
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Figure 3.5: Nodes deployment in OPNET.

In Section 3.4, Subsection 3.4.1 analyzes the influence of the thresholds α and β on the total

number of groups (K). In Subsection 3.4.2 and 3.4.3, the average relative error of the clusters

and the energy saved by the proposed mechanism are discussed, separately.

3.4.1 Number of Groups

Fig.3.6 demonstrates the effect of the thresholds α and β on the total number of groups (K). In

the simulation, α ranges from 1 to 5 and β ranges from 0 to 7. From Fig.3.6, it can be concluded

that with an increment in α or β, the number of nodes satisfying the thresholds of each group

increases correspondingly. As a result, the total number of groups reduces, which is shown

in Fig.3.6. Notice that the curves overlap when α equals to 3, 4 and 5, which indicates that

the average difference between the ZigBee addresses of sensor nodes from a given group is no

more than 3. The reason behind this phenomenon is that the maximum number of sensor nodes

a router can support is 5, due to the simulation setting Cm − Rm = 5. Furthermore, the number

of groups becomes saturated when β is larger than 6. This is because the average Euclidean
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distance between sensor data is less than 6. Therefore, when β is larger than 6, the clustering

result is mainly affected by α. Thus, the range of α is set to 1 ∼ 3 and β is set to 1 ∼ 6 in the

following discussions.
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Figure 3.6: Effect of adaptive DK-means algorithm with different α and β on the total number
of groups (K).

3.4.2 Average Relative Error

The average relative error (ARE), ea, is defined as a metric to evaluate the data reliability of

the groups that consist of the correlated sensor nodes. More specifically, ARE is the average

relative Euclidean distance of data between a given sensor node and its group centroid [41].

ARE for data matrices is derived based on the previous definition.

The relative error of a given node i from group j is calculated as
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ei =
1
P

P∑
p=1

‖Xip −C jp‖

‖C jp‖
, (3.11)

where Xip is the pth row in the sensor node i’s data matrix, C jp is the pth row in the group j’s

data centroid matrix. P is the number of the physical parameters. The average relative error of

group j is further given by

e j =
1

NC j

∑
i∈G j

ei, (3.12)

where i ∈ G j indicates that sensor node i is assigned to group j. Besides, NC j is the total

number of nodes assigned to group j. Finally, the average relative error of groups within the

whole network is calculated as

ea =
1
K

K∑
j=1

e j, (3.13)

where K is the total number of groups.

The clustering result of the proposed algorithm is compared to that of adaptive K-means

algorithm based on ARE, where adaptive K-means algorithm is a classical clustering algorithm

considering Euclidean distance of sensor data as the single metric [48].

From Fig.3.7, it can be seen that the ARE of the proposed clustering algorithm is smaller

than the adaptive K-means algorithm, which indicates that our proposed algorithm improves

the data reliability of the clustering results. This is due to that the adaptive K-means algorithm

does not cluster the sensor nodes with the constraint of ZigBee address. The groups consisted

of the long-distance sensor nodes lead to the low data reliability. Additionally, given a fixed α,

the ARE of the proposed clustering algorithm increases with the growth in β. Similarly, ARE

of our proposed algorithm grows with the increment in α when β is fixed. This is because with

the increment in α or β, the average number of sensor nodes assigned to a certain group grows.

As a consequence, the average Euclidean distance of data grows as well.

The proposed clustering algorithm (α = 3) and the adaptive K-means algorithm are sim-

ulated 1000 times, separately. The average simulation time is calculated. The calculation

results of two algorithms are listed in Table 3.4. Table 3.4 shows that the adaptive DK-means
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Figure 3.7: Comparisons between adaptive DK-means algorithm with different α and adaptive
K-means algorithm with β ranging from 1 to 6.

Table 3.4: Simulation Time (ms)
β 1 2 3 4 5 6
K 49.017 48.814 48.767 48.807 48.735 48.719

DK 49.209 49.34 49.153 49.111 49.182 49.154
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algorithm costs about 0.37 ms more simulation time than the classical algorithm on average,

which indicates that the proposed clustering algorithm reduces the ARE by about 73.6% at the

sacrifice of about 0.8% increment in simulation time.

3.4.3 Energy Saving

The energy saved by the proposed scheduling mechanism is evaluated in this subsection. The

Open-ZB module [46] is applied in OPNET, so as to conduct the network energy consumption

simulations. The energy saving (Pes) is given by

Pes =
Ez − Es

Ez
× 100%, (3.14)

where Ez is the energy consumed by the baseline ZigBee protocol, while Es is the energy

consumed by the proposed mechanism.

Fig.3.8 presents the energy consumption saved by our scheduling mechanism in compar-

ison with the baseline ZigBee protocol. It can be seen that the energy saving increases from

33.7% to 57.9% with an increment in αwhile β is fixed to 6. Similarly, the energy consumption

saved by 18.2% to 57.9% when β increases from 1 to 6 while α = 3. These trends in Fig.3.8

are due to that the number of active nodes at the same moment decreases with the increment in

α or β, which finally leads to the increased energy savings.

Fig.3.7 and Fig.3.8 jointly show that there is a trade-off between data reliability and energy

consumption. If α = 3, β = 6, the energy saving is 57.9% while the average relative error is

as high as 0.016. However, the average relative error decreases to 0.00034 while the energy

saving is as low as 9% when α = 1, β = 1. The trade-off is because redundant data transmis-

sions ensure the data reliability at the sacrifice of extra energy consumption, and vice versa.

In practical applications, the values of thresholds (i.e., α and β) are decided by the specific

requirements.
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Figure 3.8: Energy saved by the proposed scheduling mechanism compared to the baseline
ZigBee protocol with different α and β.

3.5 Chapter Summary

In this chapter, a new sensor scheduling mechanism is proposed in order to improve the net-

work energy efficiency of indoor WSNs. Within the scheduling mechanism, a new cluster

formation algorithm is proposed, termed as adaptive DK-means algorithm. The new clustering

algorithm is based on the spatial correlation of sensor data. Both ZigBee address and multivari-

ate sensor data are introduced as clustering metrics. Simulation results show that the proposed

clustering algorithm improves the data reliability of the clustering results, as compared to the

adaptive K-means algorithm. Additionally, a new sensor scheduling algorithm is developed,

which is in cooperation with the intrinsic duty cycle in IEEE 802.15.4 MAC protocol. Simu-

lation conducted in OPNET shows that the scheduling mechanism reduces the network energy

consumption by up to 57.9%, as compared to the baseline ZigBee protocol.



Chapter 4

Temporal and Spatial Correlation based

Distributed Fault Detection Algorithm in

WSNs

4.1 Introduction

Due to their self-organizing nature, wireless sensor networks (WSNs) are normally used to

achieve long-term monitoring in tough and inaccessible environments. However, long-term

operations in harsh environments make the sensor nodes more vulnerable to different kinds of

attacks. These attacks could eventually lead to faults in sensor nodes. Generally, faults can

be categorized into function fault and data fault [49]. Function fault refers to the malfunctions

occurred at certain hardware components, namely, power supply, transceiver and processor. It

is easier to detect function faults, since the compromised nodes behave abnormally, like routing

failure, packet loss and etc. By contrast, the compromised sensor nodes are hard to notice

when the data fault occurs. This is because the compromised nodes still have the capacities

of generating and transmitting sensor data, but the sensor data collected is faulty. It is critical

to detect the faulty data in real time, as faulty sensor data can mislead the data center with

erroneous information.

Data fault detection algorithms in WSNs can be summarized into two major categories,

46
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namely, centralized method and distributed method. In the centralized algorithms, the base

station (BS) plays a key role. All the sensor readings are gathered and processed at the base

station, and then feedback is sent back to sensor nodes. Although the computational capacity of

BS is more powerful than sensor nodes, the centralized processing still creates heavy burdens

on BS. Besides, the transmission of faulty data and incorrect feedback consumes extra network

resources. Therefore, distributed method is considered to be more effective in achieving data

fault detection, since the detection algorithm is implemented at each node locally.

In recent years, there are already some works focused on distributed fault detection in

WSNs. These works are briefly reviewed here. A distributed fault detection (DFD) algorithm

has been proposed based on spatial correlation [50]. In DFD algorithm, neighborhood majority

voting is introduced to detect faulty sensor data, where neighbor refers to the sensor node within

one hop. In order to improve the detection accuracy in sparse network, an improved distributed

fault detection (iDFD) algorithm is proposed by modifying the critical detection criteria in

DFD [51]. Similarly, a normal distribution based error function is introduced as the detection

criterion in [52], so that the performance of DFD algorithm can be further improved.

The aforementioned algorithms treat the influences of neighbors in a sensor network equally.

However, the influences in reality can not be identical since the distances and confidence lev-

els of neighbors are different. In order to further improve the detection accuracy, the different

influences of neighbors are considered in the following works. The distance between neighbor

nodes is considered as a weight in evaluating the mutual impact among sensors [53]. On the

other hand, confidence levels are considered as weights [54][55]. Given these works, the differ-

ent strength of correlation and potential statuses of neighbor nodes are taken into consideration

during the fault detection procedure. Simulation results show that the added weights definitely

improve the detection accuracy.

However, the above-mentioned works exploit the spatial correlation only. Recent works

show that detection accuracy in a sparse network can be significantly improved when taking

advantage of temporal correlation at the meantime [56][57]. Since the changes of physical

parameters in natural environments are continuous, the range of coming measurements can

be predicted by historical observations. Both works adopt the auto-regressive moving average

(ARMA) model as the time series prediction model [56][57]. However, the temporal and spatial
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detection procedures are conducted independently in these works. Given this fact, integration

of temporal and spatial detection algorithms is needed to be further investigated.

In this chapter, a new distributed fault detection algorithm is proposed, which is based

on both the temporal and spatial correlation of sensor data. Within the proposed algorithm,

Kalman filter based self-detection is implemented first. This result is then introduced into

the weighted-median detection. The proposed weighted-median detection considers both the

potential status and received signal strength indicator (RSSI) of a neighbor as weights. The

status of sensor data is finally decided by the combination of two detection operations. Com-

pared with other distributed fault detection algorithms, the new data fault detection algorithm

improves the detection accuracy, especially when the network is sparse.

The remainder of this chapter is organized as follows. Section 4.2 introduces the data fault

model used in this work and compares three time series prediction models. The proposed dis-

tributed fault detection algorithm is explained in detail in Section 4.3. Simulations conducted in

Section 4.4 compares the proposed algorithm with the previous data fault detection algorithms

in the literature. Finally, this chapter is summarized in Section 4.5.

4.2 System Model

4.2.1 Data Fault Model

Hardware components of a typical sensor node are shown in Fig.4.1. According to the classifi-

cation in [50], the components can be categorized into two groups. The first group consists of

power supply unit, processor and transceiver . Malfunctions occurred at this group can be no-

ticed easily, since the node stops functioning, neither processing data nor communicating with

others. The second group contains sensors and actuators. Differently, the node may behave

“normally” when malfunctions occur at sensors or actuators. It still generates and propagates

data as always. However, the data it generates is faulty. Under this condition, a faulty node

could be difficult to detect. In this chapter, detection of this kind of fault is studied, which is

termed as data fault. According to the invisible characteristics, data fault is categorized into

the following types [58].
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Figure 4.1: Hardware components of sensor node.

• Outlier fault, isolated data fault occurs randomly.

• Spike fault, a series of data outliers occur frequently.

• Stuck-at fault, the sensor readings stay constant without any variance for a certain period.

• Noise fault, a series of faulty data exhibits unexpectedly high variation and may or may

not track the normal trend.

Features of the four types of data fault are shown in Fig.4.2, which is plotted with the prac-

tical temperature sensor readings sampled at Grand-St-Bernard by the SensorScope group[59].

4.2.2 Network Model

We assume that all the senor nodes are randomly deployed in the monitored areas and ho-

mogeneous with the same transmission range. The two-ray path loss model is adopted as the

propagation model without losing generality [60].
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Figure 4.2: Four types of data fault: Outlier, Spike, Stuck-at, Noise.
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4.2.3 Time Series Prediction Model

In the proposed algorithm, time series prediction model is used. Since the prediction accuracy

is mainly decided by the chosen model, comparisons among different models are necessary.

Three time series prediction models, Kalman filter, grey model (GM(1,1)), auto-regressive

moving average model (ARMA(1,1)) are considered. The brief descriptions of these models

are presented in this section.

4.2.3.1 Kalman Filter

The Kalman filter consists of two major procedures: prediction and update [61]. In the predic-

tion procedure, data at time t (X̂t|t−1) is estimated by

X̂t|t−1 = AtX̂t−1|t−1 + BtUt, (4.1)

and its corresponding covariance (Pt|t−1) is calculated as

Pt|t−1 = AtPt−1|t−1AT
t + Qt, (4.2)

where At is the state transition model, Bt is the control-input model applied to the control vector

Ut, Qt is the covariance of Gaussian white noise in the prediction period. Using (4.1) (4.2), the

optimal Kalman gain is calculated as

Kt = Pt|t−1HT
t (HtPt|t−1HT

t + Rt)−1, (4.3)

where Ht is observation model and Rt is the covariance of observation noise. Then X̂t|t and Pt|t

can be updated with the optimal Kalman gain (Kt) and the measured data (Yt) as

X̂t|t = X̂t|t−1 + Kt(Yt − HtX̂t|t−1), (4.4)

Pt|t = (I − KtHt)Pt|t−1. (4.5)
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Similarly, X̂t|t and Pt|t will be used to predict X̂t+1|t and Pt+1|t. Benefiting from using the Kalman

filter, the coming data can be predicted with only the latest sensor reading.

4.2.3.2 GM(1,1)

With the GM(1,1) model, a forthcoming measurement can be predicted with the last t historical

observations [61]. The historical data series used to do the prediction is denoted as

X(0) = x(0)(1), x(0)(2), . . . , x(0)(t). (4.6)

The 1-AGO (accumulated generating operator) sequence of X(0) (X(1)) is denoted as

X(1) = x(1)(1), x(1)(2), . . . , x(1)(t). (4.7)

The differential equation of the GM(1,1) model is given by

dx(1)

dt
+ ax(1) = b, (4.8)

where [a, b]T = (BT B)−1BT A. While, A =



x(0)(2)

x(0)(3)

. . .

x(0)(t)


and B =



z(1)(2) 1

z(1)(3) 1

. . . . . .

z(1)(t) 1


, where z(1)(i) =

−0.5x(1)(i) − 0.5x(1)(i − 1), i = 2, 3, . . . , t. Therefore, x̂(1)(t + 1) is calculated as

x̂(1)(t + 1) = e−ak

[
x(0)(1) −

b
a

]
+

b
a
. (4.9)

Finally, the forthcoming data predicted by X(0) is calculated as

x̂(0)(t + 1) = e−ak

[
x(0)(1) −

b
a

]
(1 − ea). (4.10)

4.2.3.3 ARMA(1,1)

ARMA(p,q) refers to the combination of auto-regressive model with term p and moving aver-

age model with term q [57]. Based on this model, the data value at time t is estimated with
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Xt = φ1Xt−1 + φ2Xt−2 + . . . + φpXt−p + at − θ1at−1 − θ2at−2 − . . . − θqat−q, (4.11)

where the parameters φ1, φ2, . . . , φp and −θ1,−θ2, . . . ,−θq are estimated by the exact maximum

likelihood computational method. Since the first items are the most important, p = 1 and q = 1

are adopted in the following comparisons.

4.2.3.4 Comparisons

Three models are trained with the practical temperature sensor data provided by Intel Berkeley

research lab [7]. The data used here is the first 700 temperature readings (100 samples for

training and 600 for testing) from No.1 sensor node sampled every 30s on 2/28/2004. The

values of the practical data and the data estimated by the three models are shown in Fig.4.3.

The fitness of a model is evaluated by both the residual error and the mean absolute percent-

age error. The residual error is the difference between the measured data (xi) and the estimated

data (x̂i), i.e., xi − x̂i. The mean absolute percentage error (MAPE) is defined as

e =
1
n

n∑
i=1

|xi − x̂i|

xi
× 100%. (4.12)

The residual error of three models are shown in Fig.4.4. It can be seen that the residual

error curves of all the three models fluctuate around zero, which implies that all these models

match the trend of the data. The fitness of model can be evaluated further with MAPE. The

MAPE of three models are demonstrated in Table 4.1. It shows that the MAPE of Kalman

filter is the lowest, which indicates that it matches the trend of data series the best. Therefore,

the Kalman filter is adopted as the time series prediction model in this work.

Table 4.1: Mean Absolute Percentage Error
Kalman Filter GM(1,1) ARMA(1,1)

MAPE (%) 0.121157 0.191773 0.130401
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Figure 4.3: Practical data and data estimated by Kalman filter, GM(1,1), ARMA(1,1).
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4.3 Distributed Fault Detection Algorithm

The proposed distributed fault detection algorithm, i.e., TSC, consists of two main detection

procedures: self detection and weighted-median detection. The self detection procedure is

based on the temporal correlation of the time series of sensor data. The details of self detection

are described in Subsection 4.3.1. Weighted-median detection relies on the spatial correlation

between the neighbor sensor data, which is explained in Subsection 4.3.2. If both detection

procedures recognize the sensor data as “likely faulty (LF)”, it will be diagnosed as “faulty

(FT)” and discarded. A flowchart of the proposed algorithm is demonstrated in Fig.4.5, where

N is the total number of sensor nodes in the network.

4.3.1 Self Detection

In the self detection procedure, diagnosis of the measured sensor data at time t+1 (xt+1) depends

on the comparison with the predicted value (x̂t+1). Specifically, x̂t+1 is predicted by the Kalman

filter as mentioned in Subsection 4.2.3, based on the historical sensor readings already detected

as “good (GD)”. If the difference between the predicted value (x̂t+1) and the measured sensor

reading (xt+1) is beyond a threshold (θ1), i.e., ∆1 = |xt+1 − x̂t+1| > θ1, xt+1 will be labelled as

“likely faulty (LF)”. Otherwise, it will be labelled as “likely good (LG)”.

4.3.2 Weighted-median Detection

Due to the high density of sensor node deployment, sensor data from spatially nearby sensor

nodes is highly correlated. Based on the spatial correlation of sensor data, weighted-median

detection method is proposed. The specific procedures of the method are listed below.

1. After self detection, sensor nodes are labelled as either “LG” or “LF”. The to be diag-

nosed node i collects data {xi1 , xi2 , . . . , xi j , . . .} from its “LG” neighbors.

2. During wireless communication procedure, node i can assess and record the RSSIs of

the signals transmitted by its “LG” neighbors. Then the weight (λi j) of the neighbor data

is determined by its RSSI order. For example, if the signal strength of neighbor i1 is the

weakest, then λi1 = 1. Similarly, if i2 is the second weakest, then λi2 = 2, and so on.
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Figure 4.5: Flowchart of the proposed distributed fault detection algorithm, TSC.
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3. A new data vector is generated by making λi j copies of xi j , i.e., {xi1 , . . . , xi1︸      ︷︷      ︸
λi1

, xi2 , . . . , xi2︸      ︷︷      ︸
λi2

,

. . . , xi j , . . . , xi j︸      ︷︷      ︸
λi j

, . . .}. After that, the new data vector is sorted in ascending order. Median

value of the sorted data vector is termed as x̂i.

4. The relative difference between the median value (x̂i) and the sensor data of node i (xi)

is calculated as ∆2 = |xi−x̂i |

x̂i
. xi is labelled as “LF”, only when ∆2 > θ2. Otherwise, xi is

labelled as “LG”.

Sensor data xi is diagnosed as “FT” and discarded, only when it is labelled as “LF” twice,

i.e., at both self detection and weighted-median detection procedures. Otherwise, it is diag-

nosed as “GD” and sent to the base station.

4.3.3 Detection Thresholds

As mentioned in Subsections 4.3.1 and 4.3.2, two detection thresholds are used in the algo-

rithm, i.e., θ1 and θ2. Flowchart (Fig.4.5) shows that the detection thresholds are decided during

the model training procedure, while how to decide θ1 and θ2 is explained in this subsection.

Considering a fit prediction model (discussed in Subsection 4.2.3), the residual error fol-

lows the zero-mean Gaussian distribution, i.e., (xt − x̂t) ∼ N(0, σ2). Hence, the standard devia-

tion (σ) of residual error is calculated as

σ =

√√
1
T

T∑
t=1

(xt − x̂t)2, (4.13)

where T is the number of samples used to train the time series prediction model. Given a

Gaussian distribution (µ is the mean and σ is the standard deviation), the probability of a value

within the range [µ − 3σ, µ + 3σ] is 99.7%, according to the 3σ rule [62]. Based on this rule,

threshold θ1 is calculated as

θ1 = max
∀ nodei

|µi ± 3σi|, where ∀µi = 0. (4.14)
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Threshold θ2 is defined as

θ2 = max
t=1,...,T

(
max
∀ nodei

(
max

j=1,...,Ni

|xit − xi jt|

xi jt

))
, (4.15)

where xit and xi jt are data of node i and its jth neighbor at tth sampling instance, separately. Ni

is the number of node i’s neighbors.

4.4 Performance Evaluation

Performance evaluation of the proposed algorithm is conducted in MATLAB, as compared to

two conventional distributed fault detection algorithms. One is the spatial correlation based

iDFD [51], the other is the temporal-spatial correlation based TSA∩NV algorithm [57].

4.4.1 Evaluation Metrics

In terms of the performance evaluation of fault detection algorithms, detection accuracy and

false alarm ratio are commonly used as the evaluation metrics [50].

4.4.1.1 Detection Accuracy

Detection accuracy is defined as the ratio of the number of faulty readings diagnosed as faulty

successfully to the overall faults.

4.4.1.2 False Alarm Ratio

False alarm ratio is referred to the ratio of the number of good readings diagnosed as faulty by

mistake to the overall good sensor readings.

4.4.2 Simulation Scenarios

In order to evaluate the performance of the proposed algorithm, simulations based on both

practical and synthetic datasets are conducted in MATLAB. The practical dataset is the tem-

perature readings of 54 sensor nodes in Intel Berkeley research lab sampled on 2/28/2004 [7].
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The deployment of sensor nodes is shown in Appendix A.1. Additionally, two synthetic sce-

narios are set up as well, in order to compare the algorithm performances at different network

densities. More specifically, Scenario I generates a sparsely distributed network where each

node is surrounded by 5 neighbors on average. By contrast, Scenario II generates a situation

where sensor nodes are densely distributed. Nodes are randomly distributed in both scenarios.

The sensor readings are generated based on the statistical characteristics of the data in practical

experiments [7]. The range of the good sensor readings is 19∼20 ◦C. In both practical and

synthetic scenarios, faulty data is generated according to the data fault model given in Sub-

section 4.2.1 and the faulty values range from 23∼24 ◦C. Faulty sensor nodes are randomly

chosen following normal distribution. The node fault probability within the network ranges

from 0.05∼0.25. The specific simulation settings are listed in Table 4.2.

Table 4.2: Simulation Settings
Practical Scenario Synthetic Scenario I Synthetic Scenario II

Network Density Sparse Sparse Dense
Area 50m×50m 30m×30m 30m×30m
Num Of Nodes 54 50 150
Avg Num Of Neighbors 3 5 13
Node Distribution Map (A.1) Random Random
Path Loss Model Indoor Two-ray Two-ray
Data Fault Types Fault Model Fault Model Fault Model
Fault Probability 0.05∼0.25 0.05∼0.25 0.05∼0.25

4.4.3 Simulation Results

Simulation results in both practical and synthetic scenarios are stated in detail.

4.4.3.1 Practical Scenario

The detection accuracy and false alarm ratio of TSC algorithm in practical scenario are shown

in Fig.4.6 and Fig.4.7, as compared to iDFD and TSA∩NV algorithms. It can be seen that

the proposed TSC algorithm outperforms the other two distributed fault detection algorithms,

which improves the detection accuracy and decreases the false alarm ratio. This is because

TSC algorithm integrates temporal detection with spatial detection instead of exploiting spatial
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Figure 4.6: Detection accuracy of three algorithms in practical scenario.

detection only (iDFD) or simply uniting the detection results of two procedures (TSA∩NV).

Furthermore, the temporal and spatial correlation based TSC and TSA∩NV outperform the spa-

tial only iDFD. The false alarm ratio can be reduced to the minimum by TSC and TSA∩NV, as

shown in Fig.4.7. This is because the combined exploitation of temporal and spatial correlation

considers two dimensions of data variance so that the detection accuracy can be improved.

Additionally, algorithm performance decreases with the increment in node fault probability.

Since all the three algorithms partially or totally rely on the neighbor nodes, high ratio of faulty

neighbors can result in false diagnosis of sensor readings.

Simulation time is used to evaluate the time complexity of algorithm. Time consumed by

simulations of three algorithms is listed in Table 4.3. The values in Table 4.3 show that the

proposed TSC algorithm costs more time than the other two algorithms. It means that TSC

improves the detection accuracy while sacrifices the simulation time at the meantime.
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Figure 4.7: False alarm ratio of three algorithms in practical scenario.

Table 4.3: Simulation Time of Practical Scenario (ms)
Algorithm iDFD TSA∩NV TSC

Simulation time 16.0 17.5 20.9
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4.4.3.2 Synthetic Scenarios

Fig.4.8 shows an example of deployment of sensor nodes at synthetic Scenario II. It can be

seen that nodes are densely distributed in the area and some of them are randomly chosen to be

faulty, where black points are the normal nodes while red circles are the faulty nodes.
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Figure 4.8: Deployment of sensor nodes at synthetic Scenario II, node fault probability = 0.25.

Detection Accuracy Comparisons among TSC, iDFD and TSA∩NV algorithms at two syn-

thetic scenarios on detection accuracy are shown in Fig.4.9.

Similar to the results in Fig.4.6, the detection accuracy of TSC outperforms the other two

algorithms. Besides, it is not difficult to notice that the detection accuracy of algorithms at

Scenario II is higher than that of Scenario I. The larger average number of neighbors in the

dense network finally leads to the preciser diagnosis results, since the algorithms are based

on the spatial correlation. Additionally, the detection accuracy of TSC is 100% because the
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Figure 4.9: Detection accuracy of three algorithms in synthetic scenarios.

synthetic dataset is much more ideal than the practical dataset. The detection accuracy of

iDFD and TSA∩NV decreases with the increment in node fault probability. This is due to that

these two algorithms do not consider the potential statuses of neighbor nodes during spatial

detection so that the detection accuracy outstandingly decreases when the number of faulty

neighbors increases.

False Alarm Ratio False alarm ratio of three algorithms is compared in Fig.4.10. It shows

that the false alarm ratio of TSC and TSA∩NV is 0%. Meanwhile, the false alarm ratio of iDFD

increases from 0.0050 to 0.0269 with the increment in node fault probability at Scenario II. As

compared to the range (0.0277∼0.0667) at Scenario I, the false alarm ratio decreases. It can be

concluded that with the combination of temporal and spatial correlation, the false alarm ratio

can be controlled to the minimum. For spatial only detection, decrement in network density

not only decreases the detection accuracy, but also increases the false alarm ratio.
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Figure 4.10: False alarm ratio of three algorithms in synthetic scenarios.

Simulation Time According to the data in Table 4.4, TSC algorithm spends more simulation

time than iDFD and TSA∩NV at both synthetic scenarios. This is because with the intro-

duction of self detection result and RSSI into weighted-median detection procedure, the time

complexity of TSC algorithm is increased.

Table 4.4: Simulation Time of Synthetic Scenarios (ms)
iDFD TSA∩NV TSC

Scenario I 8.1 8.7 10.6
Scenario II 43.7 41.2 52.1

Combined with the fault detection results, it can be seen that the proposed distributed fault

detection algorithm outperforms iDFD and TSA∩NV algorithms on detection accuracy and

achieves nearly ideal results. However, the achievement of the nearly ideal results costs more

simulation time. Therefore, how to balance the algorithm performance and algorithm complex-
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ity is worthwhile to be studied in the future.

4.5 Chapter Summary

In this chapter, a new temporal and spatial correlation based distributed fault detection algo-

rithm is proposed. Within the algorithm, the Kalman filter is exploited to predict the collected

data from sensor nodes based on the temporal correlation of sensor data first. The actual sensor

reading is diagnosed as likely faulty, only if the difference between its value and the predicted

one is over a certain threshold. Then the temporal detection result and RSSI based weighted-

median detection is further implemented to diagnose the sensor data. The the sensor reading is

diagnosed as likely faulty, only when it substantially differs from the weighted median value of

its neighbors. The sensor data is detected as faulty and discarded, only if it is detected as likely

faulty at both detection procedures. Simulations based on both practical and synthetic datasets

are conducted in MATLAB. Simulation results show that the proposed data fault detection al-

gorithm improves the detection accuracy and reduces the false alarm ratio at the cost of more

simulation time, as compared to the iDFD algorithm and TSA∩NV algorithm.



Chapter 5

A Novel R-PCA based Data Aggregation

Algorithm in WSNs

5.1 Introduction

Due to the rapid progress of wireless sensor networks, a large amount of sensor data has been

generated. It is critical to develop new techniques to process the enormous and messy sensor

data. Data fault and data redundancy are two major challenges in sensor data processing. As

mentioned in Chapter 4, both sensor malfunctions and external interferences can result in faulty

sensor data. In terms of data redundancy, it is mainly caused by overfull deployment of sensor

nodes. Due to the limited transmission range of sensor nodes and suboptimal node distribution,

more sensor nodes than necessary are deployed. The high density of sensor node distribution

leads to the highly spatial correlation between sensor data, which finally results in the data

redundancy. Given the sensor data correlation, linear correlation based principal component

analysis (PCA) can be used to detect the faulty sensor data and aggregate the redundant data.

In fact, PCA based faulty data detection algorithms and PCA based data aggregation algorithms

have already been studied in the literature. The related works are summarized in Section 2.4.2.

In the previous literature, multivariate sensor data aggregation is performed at each node

locally [29][31]. Considering the high complexity of PCA model and limited computational

capacity of a sensor node, we propose a novel recursive-PCA (R-PCA) based multivariate fault-

tolerant data aggregation algorithm. In the proposed algorithm, the multivariate sensor data

67
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training and aggregating operations are implemented based on clusters instead of local nodes.

Besides, the R-PCA model recursively updates the transformation basis, which is more adapt-

able to the inner and outer changes of WSNs. The data fault detection accuracy, data restoration

accuracy and network energy consumption are evaluated based on simulations. Simulation re-

sults show that the proposed algorithm improves the network performance on these aspects.

This chapter is organized as follows. The mathematical models are introduced in Section

5.2. Section 5.3 presents the details of the proposed fault-tolerant data aggregation algorithm.

The performance evaluation of the proposed algorithm is demonstrated in Section 5.4, as com-

pared to the conventional PCA models and algorithms. Finally, the content of this chapter is

summarized in Section 5.5.

5.2 System Model

In this section, the conventional principal component analysis (PCA) model is briefly intro-

duced and the network model used in this work is presented.

5.2.1 Conventional PCA

PCA is a statistical tool that is normally used to reduce the dimension of data [27]. The math-

ematical principle behind PCA is the change of basis. Given a matrix, its natural basis is an

identity matrix, i.e., X = IX, where X is the original data matrix consisted of m physical mea-

surements and n observations. PCA aims at finding out a basis P, which makes the projection

of X, i.e., Y = PX, consist of less-dimensional and linearly uncorrelated principal components.

Since a symmetric matrix can be diagonalized by its orthogonal eigenvector matrix, the

covariance matrix of X (defined in [27]) can be diagonalized as

CX =
1

n − 1
XXT = EΛET , (5.1)

where the columns in E are the eigenvectors of CX and Λ is a diagonal matrix with the eigen-

values of CX. Based on (5.1), it can be derived that CY can be diagonalized by ET as
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CY =
1

n − 1
YYT

= ET 1
n − 1

XXT (ET )T

= ET EΛET E

= Λ.

(5.2)

Now, the matrix Y is linearly uncorrelated as the covariance matrix of Y is diagonal, but the

dimension is still the same as X. The next step is to make Y less dimensional. The new

dimension of Y is the number of principal components of X, labelled as l. It is decided by the

cumulative percentage formula as

α =

∑l
i Λ̃i∑m
i Λ̃i

× 100%, (5.3)

where Λ̃ is the reordered eigenvalue matrix Λ and α is determined by the specific application

requirements, e.g., 90%. Then the eigenvector matrix is reordered and reduced accordingly,

Ẽl. Finally, the transformation basis (P) is set to the transposition of the reordered and reduced

eigenvector matrix (Ẽl), i.e., P = ẼT
l . The generated matrix Y is an l × n linearly uncorrelated

matrix, namely, Y = PX = ẼT
l X.

5.2.2 Network Model

The proposed multivariate fault-tolerant data aggregation algorithm is based on the cluster tree

topology. The network topology is demonstrated in Fig.5.1. As shown in Fig.5.1, the leaf

sensor nodes send sensor readings to their cluster head. The cluster head is responsible for

detecting and discarding the faulty data and aggregating the redundant data. Then the fault-

free aggregated sensor data is forwarded to the sink. In the next section, the implementation

of the data fault detection and data aggregation algorithm by exploitation of the cluster tree

topology is explained in detail.
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Sensor Node

Cluster Head

Sink Node

Figure 5.1: Cluster tree topology of wireless sensor networks.

5.3 R-PCA based Multivariate Fault-tolerant Data Aggrega-

tion Algorithm

5.3.1 Recursive-PCA based Fault Detection Method

The pseudocode of recursive-PCA (R-PCA) method is given in Algorithm 3. The specific

operations in the method are depicted in the following paragraphs.

Standardization Given a raw data matrix X, X =
[
−→x1

T ,−→x2
T , . . . ,−→xm

T
]T

, where m is the num-

ber of physical measurements and−→xi is the vector of observations, −→xi = {xi(1), xi(2), . . . , xi(t), . . .}.

It is standardized to a new zero-mean and unit-variance matrix (X) first, in order to mitigate the

influence of different units. It is mathematically presented as

xi(t) =
xi(t) − µi(t)

σi(t)
, (5.4)

where µi(t) and σi(t) are the mean value and standard variance of −→xi .

Since µi(t) = 1
t

∑t
j=1 xi( j) , therefore the mean value can be recursively updated by

µi(t + 1) = (1 − β) · µi(t) + β · xi(t + 1), (5.5)
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Algorithm 3 R-PCA based Fault Detection Method
1: Initialization:
2: standardize X ⇒ X ∼ N(0, 1)
3: calculate E and Λ of 1

n−1 X X
T

4: initialize µS PE and σS PE

5: Recursion:
6: update µx and σx and standardize X(t)
7: rank Λ, E and calculate the number of PCs, l
8: reduce Ẽ → Ẽl and Λ̃→ Λ̃l

9: calculate S PE(t)
10: if |S PE(t) − µS PE | >= ξ · σS PE then
11: (fault detected)
12: else
13: update E and Λ

14: update µS PE and σS PE

15: end if

where β = 1
t+1 is the forgetting factor [63]. Similarly, the variance is recursively updated by

σ2
i (t + 1) = (1 − β) · σ2

i (t) + β · (xi(t + 1) − µi(t + 1))2. (5.6)

Principal Components (PCs) Rank the eigenvalues and reorder the eigenvector matrix ac-

cordingly. The number of principal components (PCs), l, can be calculated by cumulative

percentage formula as

η =

∑l
i=1 Λ̃i∑m
i=1 Λ̃i

, (5.7)

where the value of l is determined by the application specified η, e.g., 90%.

SPE Score SPE score is used as the detection criterion [28], which is calculated as

S PE(t) = ‖X(t) − ẼlẼT
l X(t)‖2. (5.8)

Additionally, µS PE and σS PE are updated with (5.9) and (5.10),

µS PE(t + 1) = (1 − β) · µS PE(t) + β · S PE(t + 1), (5.9)
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σ2
S PE(t + 1) = (1 − β) · σ2

S PE(t) + β · (S PE(t + 1) − µS PE(t + 1))2, (5.10)

where β is the forgetting factor.

Eigenvectors and Eigenvalues Update The covariance matrix of X at time instance t + 1 is

CX(t + 1) =
1
t

t+1∑
j=1

X( j)X
T
( j)

= (1 − ε)CX(t) + ε · X(t + 1)X
T
(t + 1)

= CX(t) + ε · (X(t + 1)X
T
(t + 1) −CX(t)),

(5.11)

where ε is the modifying factor and usually < 0.01.

The eigenvector decomposition of covariance matrix at time instance is given by

CX(t + 1) = E(t + 1)Λ(t + 1)ET (t + 1)

= E(t)Λ(t)ET (t) + ε(X(t + 1)X
T
(t + 1) − E(t)Λ(t)ET (t))

= E(t)[(1 − ε)Λ(t)]ET (t) + εX(t + 1)X
T
(t + 1),

(5.12)

let A(t + 1) = X
T
(t + 1)E(t), then

CX(t + 1) = E(t)[(1 − ε)Λ + εAT (t + 1)A(t + 1)]ET (t). (5.13)

It can be further decomposed as

(1 − ε)Λ + εAT (t + 1)A(t + 1) = U(t + 1)Σ(t + 1)UT (t + 1). (5.14)

Therefore, the eigenvectors and eigenvalues can be updated by

E(t + 1) = E(t)U(t + 1), (5.15)

Λ(t + 1) = Σ(t + 1). (5.16)
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Let

U(t + 1) = I + H1(t + 1), (5.17)

Σ(t + 1) = (1 − ε)Λ(t) + H2(t + 1). (5.18)

Based on the first-order perturbation theory [64], the H1 and H2 are derived as

H1(t + 1) =


0 , i = j,

εAi(t+1)A j(t+1)
(1−ε)(Λ2

j (t)−Λ2
i (t))+ε(A2

j (t+1)−A2
i (t+1)) , i , j.

(5.19)

and

H2(t + 1) =

 εA2
i , i = j,

0 , i , j.
(5.20)

Finally, E and Λ are updated by (5.15)-(5.20).

5.3.2 Multivariate Fault-tolerant Data Aggregation Algorithm

With the development of embedded system, one sensor node is embedded with multiple sen-

sors. Correspondingly, the data matrix generated by one node consists of multiple variables,

e.g. temperature, humidity and etc. Therefore, the current data processing in sensor network

moves forward from univariate to multivariate data model.

Given a sensor node i, its data matrix (Xi) is mathematically presented as

Xi =


xi,1(1) xi,1(2) . . . xi,1(T )
...

...
. . .

...

xi,M(1) xi,M(2) . . . xi,M(T )

 , (5.21)

where M is the number of physical variables and T is the number of observations.

Based on the cluster tree network topology, the fault detection and data aggregation are im-

plemented by the cluster head, CH. CH collects the multivariate sensor data from its members

and reorganizes the data by their physical properties. For example, if there are N nodes in the

cluster including CH, there will be M data matrices, each like
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X̂m =


x1,m(1) x1,m(2) . . . x1,m(T )
...

...
. . .

...

xN,m(1) xN,m(2) . . . xN,m(T )

 . (5.22)

The R-PCA method is implemented based on each X̂m, in order to detect and discard the

faulty data and further aggregate the redundant data. The network topology and data flow are

shown in Fig.5.2 and the algorithm works as follows.

… … 

… … 

… … 

RPCA RPCA 

… … 

… … 
RPCA RPCA 

… … 

Restoration 

Sink Node 

Cluster Head 

Sensor Node 

… … 

Figure 5.2: Multivariate fault-tolerant data aggregation algorithm.

1. The leaf sensor nodes (e.g., N1,NN) send their data to lower level cluster head (CH1).

2. CH1 reorganizes the sensor readings from its descendants to {X̂1 . . . X̂M}. For each ma-

trix, the data is diagnosed and aggregated by R-PCA method. CH1 sends the principal

components to a higher level cluster head.

3. At the higher level cluster head (CH2), the local principal components (PCs) are calcu-

lated. Then CH2 sends its own PCs and forwards the PCs from lower levels as well.

4. At the sink node, all the sensor readings are restored based on the received PCs.
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5.4 Performance Evaluation

5.4.1 Univariate Scenario: Comparisons on Fault Detection

Three models are compared, PCA, exponentially weighted PCA (EW-PCA) and recursive PCA

(R-PCA). The humidity sensor readings from Node 31 ∼ 40 are adopted as the test dataset [7].

The data fault occurs at random time instance and randomly chosen node with 10% probability.

The faulty data varies from the original data with 5% offset. SPE score is adopted as the fault

detection criterion. Detection accuracy and false alarm ratio with different thresholds are shown

in Fig.5.3, where the detection accuracy is defined as
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Figure 5.3: Detection accuracy and false alarm ratio of PCA, EW-PCA and R-PCA models
with different thresholds (ξ).

da =
T P

T P + FN
, (5.23)
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and the false alarm ratio is given by

f ar =
FP

FP + T N
, (5.24)

T P, FN, FP, T N are short for true positive, false negative, false positive and true negative,

respectively [65]. In terms of the detection accuracy and false alarm ratio, the R-PCA model

based fault detection algorithm outperforms the PCA and EW-PCA models (Fig.5.3). R-PCA

based algorithm better adapts to the gradual changes of the network system, since the R-PCA

model recursively updates the transformation basis.

5.4.2 Multivariate Scenario: Comparisons on Fault Detection

The proposed R-PCA (PR-PCA) based multivariate data aggregation algorithm is based on

clusters while the conventional R-PCA (CR-PCA) based algorithm is implemented at local sen-

sor nodes [31]. The fault detection accuracy of PR-PCA and CR-PCA algorithms is compared

in this subsection. The generation of faulty data is similar to that in the univariate scenario.

The difference is that not only humidity sensor data, but also temperature and voltage sensor

readings are used.

5.4.2.1 Fault Probability

The faulty data in this simulation is randomly generated with a certain probability, termed as

fault probability. The influence of the fault probability on the data fault detection is demon-

strated in Fig.5.4. Fig.5.4 shows that the detection accuracy of PR-PCA is higher and the false

alarm ratio of it is lower, as compared to CR-PCA. Additionally, with the increment in fault

probability, the performance of CR-PCA decreases severely while PR-PCA is stable. It can be

inferred that the PR-PCA is more trustworthy than CR-PCA when the probability of data fault

occurrence is high.

5.4.2.2 Fault Offset

The faulty data is generated by adding an offset on the original data. Then the influence of the

offset on the detection accuracy is investigated. The effect of offset on detection results tends to
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Figure 5.4: Effect of fault probability on data fault detection.
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be stable when the fault offset is larger than 10%, as shown in Fig.5.5. It indicates that the fault

detection accuracy is mainly affected by the threshold when the data outlier is over a certain

value. Besides, PR-PCA outperforms CR-PCA whatever the fault offset is.
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Figure 5.5: Effect of fault offset on data fault detection.

5.4.2.3 Threshold

Threshold ξ is used to evaluate whether the SPE score of certain data is beyond the normal

range during the detection procedure. Fig.5.6 shows the effect of threshold on detection results.

From Fig.5.6, it can be seen that PR-PCA outperforms CR-PCA at both detection accu-

racy and false alarm ratio. Additionally, the detection accuracy decreases with the increasing

threshold. The reason is that SPE scores of some faulty data are not dramatic enough to meet

the higher detection thresholds. However, the false alarm ratio is stable after the threshold is
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Figure 5.6: Effect of threshold ξ on the data fault detection.
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larger than a certain value. This is because, the possibility of the normal data detected as faulty

by mistake is lower when the threshold is large enough.

5.4.3 Multivariate Scenario: Comparisons on Restoration Error

The relative restoration error is a commonly used metric to evaluate the performance of data

aggregation and restoration algorithms [29]. As mentioned in Section 5.3, the original data

matrix X is transformed to a reduced dimensional matrix Y by Y = ẼT
l X. At the receiver end,

the data is recovered by X̃ = ẼlY . Therefore, the relative restoration error is defined as

rre =
‖X̃ − X‖
‖X‖

. (5.25)
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Figure 5.7: Relative reconstruction error of conventional and proposed algorithms, cluster
size=10.

Fig.5.7 shows the relative restoration error of the conventional and proposed algorithms.
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Cluster size refers to the number of sensor nodes in the cluster. More specific values of rre of

the 700 time instances are summarized in Table 5.1.

Table 5.1: Relative Restoration Error
rre mean rre std rre max rre min

CR-PCA 0.2291 0.0879 0.5189 0.0587
PR-PCA 0.1289 0.0313 0.2524 0.0577

Both Fig.5.7 and Table 5.1 demonstrate that in terms of the restoration accuracy, the pro-

posed cluster based multivariate data aggregation algorithm outperforms the conventional local

one. This is because the correlation between sensor readings from neighbor nodes of the same

physical parameter is stronger than that between sensor readings of different physical parame-

ters from the same node.

5.4.4 Multivariate Scenario: Comparisons on Energy Cost

In order to evaluate the network energy consumption with different data aggregation algo-

rithms, Micaz mote [66] is introduced as the energy consumption model in this work. The

transmitting and receiving energy costs are 720 and 110 nJ/bit, respectively. The energy con-

sumed by each CPU instruction is 4 nJ/instruction. Additionally, the packet header is 28 bits,

the preamble overhead is 160 bits and each component occupies 28 bits of payload.

The cumulative network energy consumption and the energy consumed at each time in-

stance by exploitation of our proposed R-PCA based data aggregation algorithm (PR-PCA)

is shown in Fig.5.8, as compared to the network energy consumption with conventional R-

PCA based data aggregation algorithm (CR-PCA) and without any data aggregation algorithm

(None). From Fig.5.8, it can be seen that both CR-PCA and PR-PCA reduce the network en-

ergy consumption, as compared to the baseline protocol. Meanwhile, PR-PCA costs nearly

21% less energy than CR-PCA. The reason is that the data compression degree at the cluster

head is larger than that at the local sensor node when the cluster size is 10. Therefore, fewer

data transmissions decrease the network energy consumption.
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Figure 5.8: Network energy consumption of different algorithms, cluster size=10.
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5.4.5 Discussion on Cluster Size

The simulation results in Subsection 5.4.3 and 5.4.4 are based on the cluster with ten nodes.

To mitigate the limitation of the results, the effect of cluster size on the restoration error and

network energy consumption is investigated below. Fig.5.9 shows the influence of cluster size

on network energy consumption with different data aggregation algorithms.
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Figure 5.9: Network energy consumption of algorithms with different cluster sizes.

It can be seen that the network energy consumption of PR-PCA decreases with the incre-

ment in cluster size. The reason is that the sensor data can be further compressed when more

sensor nodes within the same cluster. The network energy consumption is even higher than

that of CR-PCA when the sensor nodes are not clustered.

The relative restoration error of algorithms with different cluster sizes is listed in Table 5.2.

It can be seen that the rre of PR-PCA is smaller than CR-PCA. Besides, the relative restoration

error of PR-PCA increases when the cluster contains more sensor nodes.
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Table 5.2: Relative Restoration Error of CR-PCA and PR-PCA
Cluster Size 1 4 7 10

CR-PCA 0.0598 0.1022 0.1166 0.2291
PR-PCA 0 0.0866 0.0928 0.1289

Based on the discussions on Fig.5.9 and Table 5.1, it can be concluded that in terms of the

cluster size, there is a trade-off between the network energy cost and the restoration accuracy.

In practical scenarios, the specific cluster size is determined by the application requirements.

5.5 Chapter Summary

In this chapter, a new recursive principal component analysis (R-PCA) model is proposed,

which recursively updates the transformation basis. As compared to the conventional PCA

model and EW-PCA model, the R-PCA model better adapts to the changes of wireless sensor

networks and the R-PCA based fault detection method improves the fault detection accuracy.

The R-PCA model based multivariate fault detection and data aggregation algorithm consid-

ers the multiple physical parameters in WSNs and processes the data based on clusters. In

comparison with the conventional local-based algorithm, the proposed algorithm decreases the

restoration error and reduces the network energy consumption, because the correlation between

sensor readings from neighbor nodes of the same physical parameter is stronger than that of

different parameters from the same node.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, three major challenges in wireless sensor networks were investigated in detail,

namely, energy efficiency, data fault and data redundancy. In order to overcome these problems

in WSNs, three algorithms were proposed in Chapter 3-5, respectively.

In Chapter 3, a novel sensor scheduling mechanism was proposed, aiming at improving the

network energy efficiency. The basic principle behind this mechanism was reducing the data

transmission based on the highly spatial correlation of sensor data. More specifically, all the

sensor nodes within the network were clustered by the proposed adaptive DK-means algorithm

based on the spatial correlation of sensor data first. Then the order and duration of sensor nodes

working as cluster representatives were determined by the new sensor scheduling algorithm.

Instead of all the sensor nodes within the network, only the cluster representative nodes gen-

erated and transmitted sensor data at the meantime, so that the energy costed by sensing and

transmitting were saved. Simulations conducted in OPNET proved that the proposed sensor

scheduling algorithm reduced the energy cost, as compared to the baseline ZigBee protocol.

In order to detect the faulty data, a novel distributed fault detection algorithm based on

temporal and spatial correlation of sensor data was proposed in Chapter 4. Since the physi-

cal parameters changed continuously in nature, the normal range of the sensor measurements

to be collected could be predicted by both its own historical observations and its neighbor

sensor readings. Therefore, the abnormal sensor data could be detected by the dramatical
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variance from the normal range. Besides, both the result of temporal detection and received

signal strength indicator were used as weights in the spatial detection procedure, which further

improved the detection accuracy. Simulations based on both practical and synthetic datasets

showed that the proposed algorithm improved the detection accuracy indeed, as compared to

the distributed fault detection algorithms in the literature.

The last contribution of this thesis was the reduction of the data redundancy. In Chapter

5, a recursive principal component analysis (R-PCA) based data aggregation algorithm was

proposed. At the beginning, the R-PCA model was introduced based on the modification of

basic PCA model so that the transformation basis could be recursively updated. Based on the

analysis of data correlation, the proposed data aggregation algorithm was implemented along

the cluster tree instead of the local nodes, since the correlation between the same physical

measurements from neighbor nodes was stronger than that of different physical measurements

from the same node. For this reason, sensor readings from leaf nodes were aggregated by

R-PCA model at cluster head before being forwarded to the sink node. As compared to the

conventional local data aggregation algorithm, the proposed algorithm improved the restoration

accuracy and reduced the network energy consumption.

In summary, this thesis proposed several solutions to the urgent challenges in WSNs so that

the network performance could be improved. With more efforts on performance enhancement

in WSNs, the networks will be ubiquitously used soon.

6.2 Future Work

In the future, some aspects of the proposed algorithms are still worthwhile to be further inves-

tigated. Some potential research works are summarized as follows.

• Both the sensor scheduling algorithm in Chapter 3 and data aggregation algorithm in

Chapter 5 were cluster-based. As discussed in the performance evaluation sections, en-

ergy consumption could be further improved by larger cluster size. However, over-sized

cluster could deteriorate data reliability. Therefore, it is considerable to balance the en-

ergy consumption and data reliability during the procedure of cluster size determination.

According to the adaptive DK-means clustering algorithm, the number of clusters were



6.2. FutureWork 87

adaptively decided by the two thresholds. How to optimally select the thresholds could

be further investigated, in order to determine the optimal cluster size.

• Timing of the algorithms was evaluated by the simulation time in this thesis. In the future,

different time complexity analysis methods will be used to evaluate the algorithms. In

terms of the simulation time, the distributed fault detection algorithm required more

time than other algorithms in literature, although it outstandingly improved the detection

accuracy. A new study could be started on reducing the simulation time of the algorithm.

• All the proposed algorithms in this thesis were simulated in either OPNET or MATLAB.

In other words, all the algorithm performance evaluations were based on the simulated

experiments. Since applicability is important in WSNs, practical experiments should be

conducted to evaluate the algorithms in the future.
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Appendix A

Datasets

The research in this thesis is based on the intrinsic data correlation character of sensor data.

Therefore, a large amount of sensor data has been used. The resources of these sensor data are

the public datasets published by Intel Berkeley Research Lab [7] and SensorScope Group [59].

Brief introductions to these two labs are given below.

A.1 Intel Berkeley Research Lab

54 Mica2Dot sensor nodes were deployed at Intel Berkeley research lab from 2/28/2004-

4/5/2004. The sensor nodes were settled in the lab according to Fig.A.1.

Each sensor node collected four physical parameters: temperature, humidity, light and volt-

age. Specifically, temperature was in Celsius degree. Humidity ranged from 0-100%, which

was temperature corrected relative humidity. Light was in Lux and voltage was in volts. The

data was sampled every 30 seconds. 2.3 million sensor readings were collected in total.

A.2 SensorScope Station at Grand-St-Bernard

Funded by NCCR MICS, several SensorScope stations were founded in Switzerland to mon-

itor and collect the environmental parameters. The data used in our research was from the

SensorScope station located at Grand-St-Bernard pass between Switzerland and Italy, which

was collected in September 2007. The sensor nodes were practically deployed as Fig.A.2.

94



A.2. SensorScope Station at Grand-St-Bernard 95

Figure A.1: Sensor nodes deployment at Intel Berkeley research lab.
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Figure A.2: Sensor nodes deployment at Grand-St-Bernard SensorScope stations.
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Each sensor node collected several environmental parameters, i.e., temperature, relative

humidity, solar radiation, soil moisture, watermark, rain meter, wind speed and wind direction.

Besides, the node collected the parameters of itself as well, e.g., voltage and current. The

sensor nodes transmitted data back to the base station every 2 minutes.
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