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Abstract 

Stress-inducible phosphoprotein-1 (STI1) levels are increased in the brain following 

ischemia. STI1 is a co-chaperone for Hsp70/Hsp90 modulating protein folding. STI1 can also 

be secreted by a number of cells and function to activate extracellular signalling by the prion 

protein (PrP
C
) and type-I bone morphogenetic protein receptor ALK2. However, the 

mechanisms by which STI1 can protect neurons against ischemia are currently unknown. A 

caspase-3 reporter mouse line was used to evaluate the consequences of increased 

extracellular STI1 levels. Neurons were treated with recombinant STI1 and specific 

agonists/antagonists for PrP
C
, α7nAChR, and ALK2 prior to oxygen-glucose deprivation 

(OGD). STI1 treatment significantly decreased apoptosis and cell death in neurons submitted 

to OGD in a manner dependent on PrP
C
, α7nAChR, and ALK2. Activation of both the 

α7nAChR and ALK2 receptor were effective at decreasing neuronal death in response to 

ischemia, while BMP-4 treatment post-OGD also decreased neuronal death, suggesting that 

α7nAChR and ALK2 receptor may be novel targets for preventing death of neurons after 

ischemia. 
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1 Introduction and Literature Review 

1.1 Stroke  

Stroke is currently the third leading cause of death in Canada. Fifty thousand 

Canadians suffer from stroke each year, resulting in one stroke every ten minutes. With 

315,000 Canadians currently living with the effects of stroke, its societal burden is 

estimated to be $3.6 billion annually (Statistics Canada, 2012). 

Stroke occurs when blood flow towards the brain is disturbed. When blood flow is 

obstructed or reduced within a blood vessel that supplies the brain, the brain tissue 

downstream of the occlusion becomes deprived of oxygen and glucose. Deprivation of 

these essential nutrients gives rise to a rapidly expanding region of irreversible necrotic 

death. Within the tissue surrounding the perimeter of the area of necrosis, known as the 

penumbra, resides cells that receives limited blood flow. Unlike the necrotic center, the 

penumbra is an area in which damage due to ischemia is not entirely irreversible, but the 

cells are pushed towards apoptosis due to an array of insults such as rising levels of 

reactive oxygen species, depletion of cellular ATP, glutamate toxicity, and increased 

intracellular calcium (Lau et al., 2010, Lakhan et al., 2009, MacDonald et al., 2006). 

Neurons are quickly lost during stroke and permanent neurological damage, or even 

death, can occur within just minutes of oxygen deprivation. Studies have shown that for 

every minute of delay in treating stroke patients, the average brain loses 1.9 million 

neurons, 13.8 billion synapses, and 12 km of axonal fibers (Saver, 2006). To put this into 

perspective, for every 60 minutes of untreated stroke progression, the patient loses as 

many neurons in their brain as they normally would in nearly four years of aging (Saver 
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et al., 2006). This further emphasizes the importance of a rapid treatment response for 

minimizing neurological damage due to ischemia.  

1.1.1 Types of Stroke  

There are two types of stroke: ischemic stroke and haemorrhagic stroke. In 

ischemic stroke, a clot forms within the arteries that supply blood to the brain (Andersen 

et al., 2009). When formed elsewhere in the body, the clot may break off and travel 

towards the brain, arrest in a narrow artery, and block any downstream blood flow. 

Treatment for ischemic stroke typically involves the intravenous administration of tissue 

plasminogen activators that break down blood clots in order to re-introduce blood flow 

downstream of the affected areas (Lansberg et al., 2012).  Intra-arterial thrombolysis and 

mechanical clot removal have also been used. This involves using a catheter entering 

from the upper thigh, extending into the arteries of the brain, which allows a more direct 

delivery of antithrombolytics (Andersen et al., 2009). When tissue plasminogen 

activators are not readily available, an antiplatelet medicine such as aspirin can be used to 

slow or stop platelets from aggregating and forming blood clots (Andersen et al., 2009). 

Lastly, anticoagulants can also be prescribed to decrease blood clot formation (Lansberg 

et al., 2012).  

In contrast, haemorrhagic stroke involves a weakened vessel that ruptures and 

damages the surrounding areas due to both blood loss and increased pressure (Andersen 

et al., 2009). Unlike ischemic stroke, the use of antithrombolytics would exacerbate 

haemorrhagic stroke damage, by making the bleeding worse. At times, surgical 

procedures must be administered to locate and stop the source of blood loss using 

procedures such as aneurysm clipping, coil embolization, and arteriovenous 
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malformation repair (Andersen et al., 2009, NHLBI, 2014). Although accounting for only 

about 15% of all strokes, intra-cerebral haemorrhage has the highest morbidity and 

mortality rates amongst all stroke subtypes (Broderick et al., 2007). 

1.1.2 Risk Factors and Current Treatments for Ischemic Stroke  

Risk factors for stroke include diabetes, high blood pressure, and old age 

(Bousser, 2012). After the age of 55, the risk of stroke doubles every 10 years (Hinkle et 

al., 2007). Women have been found to have poorer outcomes from stroke than men, due 

to their greater longevity (Statistics Canada, 2012). Despite stroke and stroke treatments 

being studied extensively over the past two decades, patients are still limited to a single 

approved treatment: intra-venous thrombolytic therapy (Lansberg et al., 2012). To make 

matters worse, recent studies have shown that intra-venous thrombolytic therapy is only 

effective within 4 hours of the stroke (6 hours if given intra-arterially), and after this time 

its efficacy declines significantly (Lansberg et al., 2012). The limited therapeutic 

window, coupled by the lack of treatment options, has called attention to the need for 

novel therapies that aim to reduce cell death or promote survival following ischemia.  

1.1.3 Neurotoxicity during Stroke  

There are many factors that contribute to neurotoxicity following ischemic stroke. 

During ischemia, disturbances in cellular homeostasis such as ion shifts, excessive 

calcium influx, dysregulation of glutamate receptors, and ATP-depletion have been 

extensively studied (Lau et al., 2010, MacDonald et al., 2006).  

In neurons, calcium is a key regulator in numerous signalling and regulatory 

processes. Dysregulation of calcium can occur as a result of increased calcium influx and 
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excess intracellular calcium (Berridge, 1998). Thus, both intracellular and extracellular 

sources of calcium are tightly regulated. In basal conditions, the osmotic gradient (ratio 

of extracellular to intracellular calcium is 10,000:1) and the electrical gradient (negative 

on the intracellular side) creates a great potential for calcium influx (Brini et al., 2014). 

This electrochemical gradient is upheld by the active Ca
2+

-2H
+
 ion transporter and 3Na

+
-

Ca
2+

 exchanger on the cell membrane (Brini et al., 2014). Normally, signal transduction 

begins with presynaptic glutamate release, activation of AMPA and NMDA receptors, 

sodium influx, postsynaptic depolarization, and calcium influx via calcium-permeable 

channels (Brini et al., 2014). Termination of the glutamate/calcium transients occurs via 

glutamate reuptake, conversion of glutamate to glutamine/lactate via glial cells, or 

activation of potassium channels that result in hyperpolarization of the membrane 

(Attwell et al., 1994, Magistretti et al., 1996, Kennedy, 1989). The endoplasmic reticulum 

(ER) also stores calcium concentrations equal to the extracellular environment, serving as 

a source of calcium that is activated by the phospholipase-C-IP3 signalling pathway 

(Irvin, 1986). Although the extracellular environment has 10,000 times higher calcium 

concentrations than intracellular environments, almost all of the intracellular calcium is 

bound to calcium binding proteins or stored in the ER and mitochondria (Kristian et al, 

1998). This intracellular source of calcium is also believed to be a contributor to calcium-

related cell damage during ischemia excitotoxicity (Paschen, 1996) 

During ischemia, dysregulation of ion channels such as voltage-gated calcium 

channels and NMDA receptors leads to excess calcium influx resulting in neuronal 

excitotoxicity (Choi, 1992, Kristian et al., 1998). Within a minute, concentration of 

extracellular calcium drops by 90%, indicating that almost all extracellular calcium is 
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now intracellular (Kristian et al., 1994). This effect is worse in hippocampal neurons as 

CA1 cells have a higher density of NMDA receptors compared to the rest of cortex 

(Silver et al., 1992). Calcium from intracellular organelles can also contribute to 

excitotoxicity (Kristian et al., 1998). Excess accumulation of intracellular calcium leads 

to glutamate toxicity, increase in reactive oxygen species (ROS; such as ·O2
−
, H2O2, and 

·OH), peroxynitrate generation, and degradation of cytoskeletal proteins (Choi et al., 

1988, Tymianski et al., 1996, Siesjo, 1981, Eimerl et al., 1994,). Following 

excitotoxicity, many protein kinases and phosphatases are activated or inactivated 

aberrantly, and fragmentation of DNA ultimately results in cell death (Hossmann, 1993, 

Wieloch et al., 1996). 

The mitochondria have been shown to modulate calcium homeostasis by serving 

as a sink for transient increases in intracellular calcium (Nicholls, 1985). However, 

during glutamate toxicity, the mitochondria increase the production of ROS that 

deteriorates the inner mitochondrial membrane (Dykens et al., 1994, Dugan et al., 1995). 

Briefly, the electron transport chain in mitochondria relies on a large electrochemical 

gradient of H
+
 established across the inner mitochondrial membrane. In basal conditions, 

the membrane is impermeable to H
+
. However, studies have shown that exposure of 

mitochondria to excess calcium and oxidative stress leads to osmotic swelling of the 

organelle and release of intramitochondrial components (Gunter et al., 1990, 1994).  As a 

result, ATP production is stopped due to the breakdown of the electron transport chain. 

Dysfunction of the mitochondria as a result of glutamate toxicity and mitochondrial 

membrane depolarization is the primary event that leads to cell death (Schinder et al., 

1996, Richter, 1993).  
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One of the key regulators of calcium homeostasis is calcium binding proteins. 

Interestingly, studies have shown that the expression of calcium binding proteins in 

neurons is correlated to resistance against excitotoxicity (Rami et al., 1992, Freund et al., 

1990). In fact, the level of calcium binding proteins decreases during aging, as well as in 

Alzheimer’s disease and Parkinson’s disease, which may contribute to cognitive decline 

(Thibault et al., 2007, Iacopino et al., 1990). Since the major risk factor for stroke is 

aging, the decline in calcium binding protein expression may be a contributing factor as 

well.  

1.1.4 Recent Pharmacological Approaches  

Recent cellular and molecular studies have reported treatments that offer 

neuroprotection in rodent models (Tymianski et al., 2010). However, these candidate 

neuroprotectants have not been successfully translated into the clinic as treatments for 

patients. One significant barrier that needs to be overcome at the clinical trials phase of 

candidate drugs development is lack of tools and biomarkers to assess the relationship 

between brain damage due to ischemia and clinical outcome (Tymianski et al. 2010). 

Unlike myocardial infarctions, which have a straightforward relationship between 

myocardial infarct size and myocardial function, it is much more difficult to establish and 

evaluate the same relationship in stroke (Cerqueira et al., 1991).  

The majority of studies conducted for stroke treatments have been focused on the 

signalling mechanisms of regulating neuronal cell death during ischemia and how to 

decrease/prevent activation of these pathways in order to increase cell viability 

(Tymianski et al. 2010). A recent study found that treatment of hippocampal neurons 

with apoaequorin, a calcium binding protein isolated from jellyfish, protects against 
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oxygen-glucose deprivation (OGD), which models ischemia, via up-regulation of the 

anti-inflammatory cytokine interleukin-10 (Detert et al., 2013). Another study found that 

treatment of hippocampal neurons in vitro with melatonin also protected against OGD in 

manner dependent on the alpha-7 nicotinic acetylcholine receptor (α7nAChR) (Parada et 

al., 2014). Our laboratory has discovered a potential mechanism involving the prion 

protein (PrP
C
) that specifically capitalizes on an endogenous homeostatic response that 

plays a critical role during neuronal injury (Beraldo et al., 2013). We anticipate that 

understanding the brain’s defense mechanisms during ischemia could help to reveal new 

ways to interfere with neuronal death and improve outcomes of stroke patients in the 

future.  

1.2 Prion Protein 

1.2.1 Roles of the Prion Protein in the Nervous System 

The prion protein PrP
C
 is a glycosylphosphatidylinositol (GPI)-anchored protein 

found abundantly throughout the brain (Sales et al., 1998) and to a lesser degree in select 

non-neuronal tissues such as lymphoid tissues, cardiac muscle, and gastrointestinal 

mesenteric ganglion cells (Brown et al., 2000, see Table 1). PrP
C
 was first identified from 

scrapie-infected hamster brain tissue (Bolton et al., 1984). Coded by the Pnrp gene, the 

C-terminal of the PrP
C
 hosts a globular domain (consisting of three alpha-helices and 

antiparallel beta-pleated sheets) and the N-terminal hosts a random coil sequence, both of 

approximately 100 amino acids in length (Zahn et al., 2000). 
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Table 1: Overview of the expression of PrP
C 

in mice and humans 

Species Tissue  Cell type/location Reference 

Mouse Brain  

 

Neurons – Intracellular Piccardo et al., 1990 

Neuronal processes Ford et al., 2002b 

Spinal cord  Neurons Ford et al., 2002a 

Intestine  Submucosa Manson et al., 1992 

Bone marrow Hematopoietic stem cells  Kubosaki et al., 2001 

Human Brain  

 

Hippocampus – Presynaptic Fournier et al., 2000 

Cerebellum  Laine et al., 2001 

Blood Lymphocytes, monocytes, T-

cells, NK cells, B cells 

Durig et al., 2000 

Both Brain Neurons - Cortex Piccardo et al., 1990 

Muscle Subsynaptic sarcoplasm Gohel et al., 1999 
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More than two decades ago, a PrP
C
-knockout mouse named Pnrp

0/0
 was produced 

to study the functions of PrP
C
 (Bueler et al., 1992). Since then, several PrP

C
-knockout 

mouse lines have been generated. Initial studies of Pnrp
0/0

 mice showed no observable 

morphological differences in the brain, skeletal muscles, and visceral organs, nor any 

behavioural/learning deficiencies (Bueler et al., 1992). However, later studies have found 

that mice without PrP
C
 expression demonstrate increased locomotor activity when placed 

in a novel environment and reduced levels of anxiety during stress (Roesler et al., 1999, 

Nico et al., 2005), suggesting that PrP
C
 may play a role in behavioural responses during 

stress.  

PrP
C 

has also been suggested to play a role in learning. PrP
C
-null mice 

demonstrate normal short-term and long-term memory at 3 months of age, but display 

memory impairments at 9 months (Coitinho et al., 2003). Furthermore, pharmacological 

antagonism of PrP
C
 leads to impairments of memory in old rats as well (Coitinho et al., 

2003). One of the ligands of PrP
C
, which will be discussed below in greater detail, is 

stress-inducible phosphoprotein-1 (STI1). Interestingly, binding of STI1 to PrP
C 

increases 

short-term memory retention and long-term memory consolidation by acting on the CA1 

region of the hippocampus (Coitinho et al., 2007), suggesting that the interaction between 

STI1 and PrP
C
 may play an endogenous role in learning and memory. The functional 

roles of STI1 and PrP
C
 will be discussed in greater detail in the next section. 
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1.2.2 Diseases Involving the Prion Protein 

Prion diseases, such as Creutzfeldt-Jakob disease in humans and bovine 

spongiform encephalopathy (mad cow disease) in other mammals, are identified by 

protein aggregation and cellular degeneration in the brain (Prusiner et al., 1998). In prion 

diseases, PrP
C 

undergoes a conformational change of its protein structure into PrP
SC

, 

resulting in a fatal and incurable neuronal disease in mammals that leads to death within 

few months following diagnosis (Prusiner et al., 1998). The misfolded prions cause 

transmissible spongiform encephalopathies by acting as self-replicating infectious agents 

(Knight et al., 2004). Both PrP
C
 and PrP

SC
 share the same amino acid sequences coded by 

the Prnp gene, suggesting that the different functions between the two are due to post-

translational modifications (Basler et al., 1996). The conformational change from alpha-

helix to beta-sheets also explains the ability of PrP
SC

 to form and accumulate as compact 

aggregates in the brain (Baldwin et al., 1994). Interestingly, studies have shown that 

when PrP
SC

-infected tissue is grafted into a PrP
C
-knockout mouse, the host tissue is not 

affected by PrP
SC

, suggesting that the development of the prion disease requires 

misfolding of the endogenous protein (Brandner et al., 1996). 

The progression of prion diseases may also be related to the loss of the 

neuroprotective functions off the endogenous PrP
C 

(Linden et al., 2008). Studies have 

suggested that the loss of resistance to oxidative stress due the lack of PrP
C
 plays a vital 

role in the pathogenesis of prion diseases (Giese et al., 2001). Although the pathology of 

prion disease has been extensively studied, less is known about the endogenous roles of 

the PrP
C
. 
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PrP
C
 has also been identified to play a role in the progression of other 

neurodegenerative diseases such as Alzheimer’s disease. The accumulation of soluble 

oligomers of the amyloid-beta peptide has been found to contribute to the neuronal 

dysfunction of this disease in a PrP
C
-dependent way (Lauren et al., 2009). The interaction 

of the amyloid-beta oligomer and PrP
C 

leads to a variety of toxic events such as glutamate 

excitotoxicity, synaptic dysfunction, and neuronal death, although the specific 

mechanisms are still to be determined (Paula-Lima et al., 2013, Quenfurth et al., 2010). It 

is interesting to note that both Alzheimer`s disease and prion diseases involve 

aggregation of misfolded proteins. Moreover, studies have demonstrated that brains of 

scrapie-infected mice showed higher beta-secretase activity compared to their control 

counterparts (Parkin et al., 2007), suggesting that PrP
C
 has an endogenous role in beta-

secretase modulation. As mentioned earlier, STI1 is one of the ligands of PrP
C
. Recent 

studies have shown that STI1 can protect neurons against amyloid-beta oligomer toxicity 

by binding to the PrP
C
 and also activating the α7nAChR (Ostapchenko et al., 2013a). The 

role of STI1 as a ligand for PrP
C
 will be discussed in greater detail in the following 

sections. This recent finding regarding the neuroprotective role of the prion protein and 

STI1 against Alzheimer’s disease raises questions regarding what other potential 

neurological insults PrP
C
-STI1 may protect against. Oxidative stress is often implicated 

in numerous human neurodegenerative diseases such as Alzheimer’s disease and prion 

disease (Beal et al., 1995, Smith et al., 2000).  

1.2.3 The Role of the Prion Protein in Ischemic Conditions 

In vitro studies using PC-12 rat adrenal Pheochromocytoma cells showed that the 

level of prion protein expression correlated with resistance to oxidative stress, a 
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component of ischemic damage (Brown et al., 1997). Furthermore, studies have shown 

that during ischemic conditions, PrP
C 

mRNA expression is increased in both human and 

rodent tissues (McLennan et al., 2004). In a different study involving multicellular 

prostate tumour spheroids, the authors found that the generation of reactive oxygen 

species, a hallmark of ischemic damage, also led to an increase in PrP
C 

expression (Sauer 

et al., 1999). Injured neurons may increase the production of proteins vital for survival 

while decreasing the synthesis of non-relevant molecules (Papadopoulos et al., 2000). 

Thus, the observation that PrP
C
 is increased in brain tissues during ischemia supports the 

proposed protective role of PrP
C
 during hypoxia. In fact, studies involving PrP

C
-null mice 

found increased infarct volume as well as oxidative stress markers following ischemia 

compared to their wild-type counterparts (McLennan et al., 2004, Wong et al., 2011, 

Weise et al., 2006). In contrast, mice showing overexpression of PrP
C
 by adenovirus-

mediated gene targeting demonstrated presented decreased injury and behavioural 

dysfunction compared to control animals (Shyu et al., 2011, Weise et al., 2008). These 

studies involving genetically modified mice with a knockout or overexpression of PrP
C 

suggests a potential role for PrP
C
 during ischemia.  

1.2.4 Prion Protein Ligands and Targets 

The prion protein serves as a receptor for the extracellular matrix proteins laminin 

and vitronectin in modulation of neuronal processes such as neuritogenesis and axonal 

growth, respectively (Graner et al., 2000, Hajj et al., 2007). The binding of neural cell 

adhesion molecules to PrP
C
 has been found to be involved in the differentiation of 

neuronal stem cells (Schmitt-Ulms et al., 2001, Prodromidou et al., 2014). PrP
C
 has also 

been found to play a role in the homeostasis of serotonergic neuronal cells by modulation 
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of serotonergic G protein-coupled receptors (Mouillet-Richard et al., 2005). The laminin 

γ1 chain has been found to contain the laminin binding site for PrP
C
, and laminin-PrP

C
 

interaction leads to neuritogenesis and intracellular calcium mobilization modulated by 

metabotropic glutamate receptors (Beraldo et al., 2011).  

Glutamate is the major excitatory neurotransmitter in the central nervous system 

(Mayer, 2005). Glutamate acts upon both ionotropic (ion channels) and metabotropic (G 

protein-coupled receptors) glutamate receptors. AMPA, kainate, and NMDA receptors 

belong to the ionotropic glutamate receptor family (Mayer, 2005). During depolarization, 

the magnesium ion block of the channel pore is removed and activation of NMDA 

receptors by co-agonists glutamate and glycine or D-serine mediates the influx of sodium 

and calcium ions that results in excitatory postsynaptic potentials (EPSPs) (Mayer, 2005). 

However, during excitotoxicity, excess glutamate causes aberrant NMDA activity and 

subsequent uncontrolled calcium influx (Lau et al., 2010). The prion protein has been 

shown to attenuate excitotoxicity in hippocampal neurons by inhibiting NMDA receptors 

(Houman et al., 2008). Furthermore, up-regulation of NMDA receptors containing NR2D 

subunits and the resulting prolonged NMDA-evoked current was found in PrP
C
-knockout 

mouse hippocampal neurons, an effect that was reversed by treatment with exogenous 

PrP
C 

(Houman et al., 2008). Taken together, these results suggest that PrP
C
 might be 

important for the modulation of NMDA receptors during excitotoxicity.  

Based on the multi-faceted cellular mechanisms that PrP
C
 is involved in, this GPI-

anchored protein has been suggested to play the role of a scaffolding protein, serving as a 

receptor for a wide range of neuronal functions (Linden et al., 2008). The major 

characteristics of prion diseases are similar between mice and humans, as PrP
C
 is a 
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conserved protein between the two species. Coupled with the similarities in PrP
C 

expression following hypoxia, this suggests that the use of mouse models for studying the 

role of PrP
C
 is appropriate. Understanding the underlying mechanisms of PrP

C 
and its 

neuroprotective roles may help uncover novel mechanisms that could be applied to 

treatment of an array of neurodegenerative diseases. 

1.3 Stress-inducible phosphoprotein-1  

1.3.1 STI1 structure 

Stress-inducible phosphoprotein-1 (STI1), also known as the Hsp70/Hsp90 

organising protein (Hop), has recently received attention in the literature for its wide 

range of roles in both healthy and diseased cells. The structure of STI1 is composed of 

two types of domains: the tetratricopeptide repeat (TPR) motif domain and the aspartate-

protein (DP) motif domain. There are three TPR domains and two DP domains (Scheufler 

et al., 2000, Brinker et al., 2002). The TPR domains, responsible for protein-protein 

interactions, are involved in many cellular processes such as transcription and protein 

degradation (Allan and Ratajczak, 2011).  

1.3.2 Intracellular roles of STI1 

In eukaryotic cells, the final stages of translation often require heat-shock protein 

chaperones that assist in the folding of the final protein structure. Within the cell, heat 

shock proteins are expressed abundantly in both cytoplasm and the nucleus (Lassle et al., 

1997). Without the actions of chaperones, proteins will begin to aggregate due to exposed 

hydrophobic residues (Martin 2004). Hsp90, a 90kDa chaperone, is important for the 

final folding steps of many regulatory client proteins (Lee et al., 2012). The binding of 
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client proteins to Hsp90 requires prior interactions between Hsp70 and STI1. STI1 acts as 

a co-chaperone that helps the transfer of client proteins from Hsp70 to Hsp90 by binding 

onto both simultaneously via its TPR domains (Lassle et al., 1997, Schmid et al., 2012). 

Studies have shown that from the three TPR domains, the TPR1 and TPR2B domains are 

responsible for Hsp70 binding, while the TPR2AB domain is responsible for Hsp90 

binding (Odunuga et al., 2003, Rohl et al., 2015). Formation of this protein complex 

plays a role in many cellular functions in addition to protein folding, such as viral 

replication, cell division, and signal transduction (Hu et al., 2002). Without the co-

chaperone activity of STI1, the level of client proteins of Hsp90, including kinases, 

transcription factors, and steroid hormone receptors responsible for proliferation, 

apoptosis, and tumorigenesis, are significantly decreased (Caplan et al., 2007, Lanneau et 

al., 2008, Miyata et al., 2013, Walsh et al., 2011, Beraldo et al., 2013).  

The role of STI1 also extends to cancerous cells such as breast cancer and colon 

cancer cells (Willmer et al., 2013, Kubota et al., 2010). In breast cancer cells, STI1 has 

been found to be expressed in isolated pseudopodia fractions and localized with actin in 

lamellipodia, suggesting that STI1 may regulate cell migration (Willmer et al., 2013). 

STI1 expression has also been found to be increased in colon cancer cells, and the level 

of STI1 expression has been correlated with Hsp90 expression in tumour tissues (Kubota 

et al., 2010). However, the exact involvement of STI1 is not fully understood. Overall, 

studies have shown that inhibition of STI1 is toxic to cancer cells, as many of the client 

proteins of Hsp90 are involved oncogenic activity (Horibe et al., 2011). As a result, STI1 

has been recently studied as a potential therapeutic target for cancer cells (Walsh et al., 

2011, Willmer et al., 2013). 
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STI1 has also been identified as a regulator of the cellular stress response in C. 

elegans models (Song et al., 2009). In these models, both STI1 mRNA and protein 

expression is increased following heat stress, and STI1-knockout mutants have shortened 

life spans, thus suggesting that STI1 is involved in stress responses and longevity. The 

authors further suggest that the two roles are related, as stress events can induce increased 

expression of pro-survival genes, and in turn increasing longevity of the organism. In 

fact, in C. elegans, the genes that regulate lifespan including those in the insulin-

signalling pathway also regulate thermo-tolerance (Ogg et al., 1997).  

As previously mentioned, deletion of the prion protein gene Pnrp is nonessential 

for viability (Büeler et al., 1992). In contrast, STI1 appears to play a critical role during 

embryonic development. Studies involving genetically modified mice with deletion of the 

STI1 gene (Stip1) have led to the finding that mice homozygous for the STI1 knockout 

died at E9.5-E10.5 (Beraldo et al., 2013). More specifically, in these mutant mice, the 

client proteins of Hsp90 have been found to be significantly reduced, indicating that the 

cochaperone activity of STI1 for Hsp90 is important during early development. 

Interestingly, deletion of Stip1 is not lethal in C. elegans and yeast (Chang et al., 1997, 

Song et al., 2009), suggesting that despite the conservation of STI1 across a variety of 

species, there is evidence of evolution and further functions of STI1 in higher organisms. 

STI1 has also been found to be secreted by several different types of cells (Santos 

et al., 2011, Lima et al., 2007, Arantes et al., 2009, Erlich et al., 2007, Tsai et al., 2012). 

Secreted STI1 appears to function as a cytokine, inducing a wide range of signalling 

pathways (Hajj et al., 2013, Beraldo et al., 2010, Caetano et al., 2008, Erlich et al., 2007, 

Tsai et al., 2012) (See Table 2 for a summary of the roles of STI1).  
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Table 2: Cellular roles of STI1 

Cell type/Model Targets Function Reference 

Intracellular function Hsp70/Hsp90 Cochaperone Lassle et al., 1997 

Retinal/Hippocampal 

Neurons 

PrP
C
 Neuroprotection 

Neuritogenesis  

Beraldo et al., 2010 

Hippocampal 

neurons 

PrP
C
/ α7nAChR Protection against 

soluble AβO in 

Alzheimer`s disease 

Ostapchenko et al., 

2013a 

Ovarian Cancer 

Cells 

ALK2-SMAD 

signalling  

Cell proliferation Tsai et al., 2012 

Neurons PrP
C 

+ PKA and 

ERK1/2 

Neuroprotection 

Neuritogenesis 

Lopes et al., 2005 

Ischemic brain in 

vivo 

Bone Marrow 

Derived Cells 

Proliferation  

Migration  

Lee at al., 2013 

Neurons PrP
C
- PI3K -mTOR

 
 Protein Synthesis Roffe et al., 2010 

Embryonic mouse 

model 

 Embryonic 

development 

Beraldo et al., 2013 

C. elegans Hsp Stress-response  

Fertility/Lifespan  

Song et al., 2009 

Breast cancer cells Actin  Cell migration Willmer et al., 2013 

Colon cancer  Hsp70/90 Upregulation of Hsp 

complex formation 

Kubota et al., 2010 
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1.3.3 Secretion and binding of STI1 to Prion Protein 

STI1 has been found to be a ligand of PrP
C
 and STI1-PrP

C
 binding leads to a 

plethora of signalling cascades responsible for neuronal events such as neuritogenesis, 

neuronal protein synthesis, neuroprotection against staurosporine and ischemia (Zanata et 

al., 2002, Chiarini et al., 2002, Lopes et al., 2005, Roffe et al., 2010, Caetano et al., 2008, 

Beraldo et al., 2010, Beraldo et al., 2013). The secretion mechanism of STI1 is rather 

unconventional, as STI1 lacks a signalling peptide. STI1 is secreted by astrocytes and 

other cells, likely via a diverse population of extracellular vesicles derived from multi-

vesicular bodies (Hajj et al., 2013). Extracellular vesicles released by astrocytes have 

been shown to contain STI1 on the outer leaflet, and the association of STI1 with these 

extracellular vesicles greatly increased STI1 activity on PrP
C 

(Hajj et al., 2013). The 

binding sites of STI1 to PrP
C 

have been identified as amino acids 113-128 on the prion 

protein, and 230-245 on STI1 (Zanata et al., 2002). The interaction between the two 

proteins is specific and shows high affinity, with a Kd of 10
-7 

M (Zanata et al., 2002, 

Ostapchenko et al., 2013).  

Endocytosis of the PrP
C
 following STI1 binding has been found to be an 

important step in PrP
C
-STI1 signalling pathways. By using both STI1 and STI1Δ230-245 

(deletion of PrP
C
-binding site), it was determined that STI1 treatment yielded in 

dynamin-dependent PrP
C
-internalization, an effect that is not observed with STI1Δ230-245 

(Caetano et al., 2008). Endocytosis of PrP
C
 has been found to be a necessary step for 

STI1-induced ERK1/2 activation, which in turn has been shown to promote neuronal 

differentiation and synaptic plasticity (Lopes et al., 2005, Coitinho et al., 2007). 

Furthermore, STI1 itself was found to be internalized in a manner independent of the 
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PrP
C
 (Caetano et al., 2008). These results indicate that although STI1-PrP

C
 engagement 

on the cell surface results in endocytosis, the interaction between the two proteins is only 

transient once internalized.  

STI1 has been shown to convey neuroprotection of both retinal and hippocampal 

neurons against staurosporine-induced programmed cell death by the activation of protein 

kinase A (PKA) (Chiarini et al., 2002, Zanata et al., 2002, Lopes 2005, Beraldo et al., 

2010). Unlike STI1-induced ERK1/2 activation, PKA activation does not require 

endocytosis of PrP
C
 (Caetano et al., 2008). Furthermore, the interaction between STI1 

and PrP
C 

was found to induce both differentiation and protein synthesis in hippocampal 

neurons through the extracellular signal-regulated kinase 1 and 2 (ERK1/2) and 

phosphoinositide 3-kinase (PI3K)-Akt mTOR activation, respectively (Lopes et al., 2005, 

Roffe et al., 2010). Both neuroprotection and neuritogenesis mediated by the interaction 

of PrP
C 

with STI1 in hippocampal neurons depends on the α7nACh receptor, and 

inhibition of the latter with the selective α7nACh receptor antagonist α-bungarotoxin 

blocks these effects (Beraldo et al., 2010).  

Although many extracellular functions of STI1 depend on PrP
C
, few PrP

C
-

independent roles have been identified. Recently, expression and secretion of STI1 has 

been identified in both ovarian cancer cells and glioblastomas and has been shown to 

induce intracellular signalling pathways that leads to cell proliferation (Tsai et al., 2012, 

Erlich et al., 2007). However, the proliferative effect of extracellular STI1 on glioma has 

been suspected to have both PrP
C
-dependent and –independent mechanisms (Erlich et al., 

2007). Taken together, it appears that the role of STI1 expands beyond just being a ligand 
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for PrP
C
. However, these studies have not directly provided evidence that the PrP

C
 is not 

involved, thus it is still possible that PrP
C
 also play a role in these mechanisms. 

1.3.4 STI1 during Ischemia 

Recently, studies have shown that STI1 protein secretion from astrocytes is 

significantly increased following oxygen glucose deprivation (OGD) (Beraldo et al., 

2013). In fact, 9 hours following OGD, there is a 3-fold increase in extracellular STI1 

levels (Beraldo et al., 2013). This increased STI1 expression during hypoxic conditions 

has been found to result from direct binding of the hypoxia inducible factor-1-alpha onto 

the promoter of STI1 gene (Lee at al., 2013).  

The recruitment of bone marrow-derived endothelial cells has been described as 

an endogenous recovery mechanism in the brain following stroke (Hess et al., 2002). 

Recently, STI1 has also been shown to recruit bone marrow-derived stem cells (BMDCs) 

into ischemic brains in vivo (Lee et al., 2013). Furthermore, STI1 signalling promoted the 

proliferation and migration of BMDCs in vitro (Lee et al., 2013), suggesting that the 

recruitment of BMDCs into hypoxic areas of the brain by STI1 may be an endogenous 

response to facilitate recovery following ischemia. 

Apoptosis and necrosis are two forms of cell death with distinct morphological 

features. While necrosis is a passive, irreversible process, apoptosis is much more active 

and requires the action of numerous apoptotic regulatory proteins (Walker et al., 1988). 

There are two types of apoptosis. The first type is intrinsic and involves the mitochondria. 

The second type depends on the action of membrane death receptors, and is thus extrinsic 

(Walker et al., 1988). In intrinsic apoptosis, the balance of both pro-apoptotic proteins 
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(such as BIM and Bax) and anti-apoptotic proteins (such as Bcl-2 and BclXL) regulate the 

release of cytochrome c from the mitochondria. In both forms of apoptosis, caspase 

enzymes are activated and damages occur to the DNA, chromatin, and the plasma 

membrane (Walker et al., 1988). Cyclic AMP (cAMP) is one of the most well studied 

second messengers, especially in regulation of apoptosis. In neuronal cell types, cAMP 

has been found to have an anti-apoptotic effect (Insel et al., 2012). Activation of PKA, an 

effector of cAMP, has been found to protect cells against TNF-alpha-induced apoptosis 

(Kragsted et al., 2004).  

Anisomycin induces apoptosis by inhibition of protein synthesis (Croons et al., 

2009). In early studies, activation of PrP
C
 using a PrP

C
-binding peptide modeling STI1 

was found to transduce neuroprotective signals against anisomycin-induced apoptosis in 

retinal cells (Chiarini et al., 2002). While activation of PrP
C
 has been found to activate 

both cAMP/PKA and ERK pathways, inhibition of PKA activity blocked the protective 

effect of PrP
C 

(Chiarini et al., 2002). Treatment of hippocampal neurons with STI1 led to 

a PrP
C
-dependent increase of PKA activity to a level similar to that observed with 

forskolin, a potent activator of PKA (Lopes et al., 2005). Furthermore, PrP
C
 has been 

documented to modulate calcium signalling (Whatley et la., 1995). In fact, the interaction 

between STI1 and PrP
C
 triggers calcium influx via physical interaction with the 

α7nAChR, leading to protection against staurosporine-induced apoptosis (Beraldo et al., 

2010). Unlike the massive influx of calcium during excitotoxicity, this controlled 

increment of calcium influx via α7nAChR is upstream of PKA activation and is 

subsequently protective against staurosporine (Cooper et al., 1995, Beraldo et al., 2010). 
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1.4 Alpha-7 nicotinic acetylcholine receptor 

In intra-cerebral haemorrhage, the development of brain edema induces apoptosis 

in surrounding neurons, extending the damage beyond the initial site of ischemia 

(Matsushika et al., 2000). Secondary injury mechanisms, such as the inflammatory 

cascade, are significant contributors to neuronal ischemic damage (Keep et al., 2012, 

Lakhan et al., 2009). Excessive inflammation and the production of tumour necrosis 

factor (TNF) leads to tissue injury and cell death (Tracey et al., 1986). The α7nAChR is a 

member of the nicotinic acetylcholine receptor family and has been shown to have an 

important role in anti-inflammatory pathways (Rosas-Ballina et al., 2009). These 

receptors are ligand-gated pentameric ion channels that transmit signals for acetylcholine 

at neuromuscular junctions in both the central and peripheral nervous systems (Leonard 

and Bertrand, 2001, Marubio and Changeux, 2000). In human macrophages, 

acetylcholine has been found to target nicotinic receptors and inhibit the release of 

inflammatory cytokines such as TNF (Borovikova et al., 2000). Acetylcholine agonists 

such as nicotine have anti-inflammatory effects by inhibition of cytokine synthesis in 

numerous cell types (Sadis et al., 2007). However, the role of the α7nAChR during 

ischemia in the central nervous system is not completely understood. 

In rats, stimulation of the α7nAChR has been shown to attenuate apoptosis 

induced by subarachnoid haemorrhage by down-regulation of caspase-3 activity via 

increased Ak2 phosphorylation (Duris et al., 2011). More specifically, in neurons, 

activation of Akt leads to inhibition of glycogen synthase kinase-3β (GSK-3β) (Grimes 

and Jope, 2001), an enzyme that shows increased expression following oxygen-glucose 

deprivation in ischemic stroke (Valerio et al., 2011). During ischemia, phosphorylation of 
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GSK-3β in specific residues involved in its activity is increased, and the activated GSK-

3β induces caspase-3 activation and subsequent apoptosis (King et al., 2001). In addition, 

inhibition of GSK-3β also increases the expression of β-catenin, an important component 

of the blood brain barrier (Nelson and Nusse, 2004). Hence, increased phosphorylation of 

Akt by α7nAChR activation leads to decreased GSK-3β activity, thereby attenuating 

apoptosis and blood brain barrier degradation following ischemia.  

Furthermore, studies using murine models of intra-cerebral haemorrhage have 

shown that activation of the α7nAChR via PHA-543613 (an agonist of the α7nAChR) 

leads to attenuation of behavioural deficits such as sensorimotor function, reflexive motor 

ability, and spatial exploratory and cognitive performance (Krafft et al., 2012). In 

contrast, treatment with MLA (a selective α7nAChR antagonist) leads to exacerbation of 

these behavioural deficits (Krafft et al., 2012). The authors suggested that the activation 

of the α7nAChR lead to both anti-apoptotic and anti-inflammatory effects via the 

inhibition of pro-inflammatory cytokines. More recently, studies have shown that PNU 

282,987, a selective α7nAChR agonist, protects against hepatic ischemia-reperfusion 

injury (Li et al., 2013). It was found that treatment with PNU 282,987 attenuated liver 

injury following ischemia-reperfusion by suppression of cytokine and NF-κB activation. 

These findings further suggest that activation of the α7nAChR leads to attenuation of 

apoptosis and inflammation.  

 Interestingly, a recent study found that hippocampal cultures treated with 

melatonin during reperfusion protected against OGD (Parada et al., 2014). The protective 

effect of melatonin was prevented when co-treated with α-bungarotoxin, a selective 

α7nAChR antagonist, indicating that the α7nAChR plays a critical role in the protective 



28 

 

effect of melatonin against OGD (Parada et al., 2014). The authors suggest that the 

activation of the α7nAChR and subsequent overexpression of heme oxygenase-1, a key 

enzyme in the protection against oxidative and inflammatory stress (Kim et al., 2005), 

greatly contributes to the neuroprotective effect of melatonin (Parada et al., 2014). In vivo 

studies demonstrate that melatonin administration following stroke results in reduced 

infarct size and attenuated behaviour deficits, while administration of MLA partially 

blocks the protective effect of melatonin (Parada et al., 2014).  

Recently the α7nAChR has been identified in signalling pathways of STI1 and 

PrP
C
 in hippocampal neurons (Beraldo et al., 2010, Ostapchenko et al., 2013a). STI1 

binding to PrP
C
 leads to a physical interaction with the α7nAChR, inducing calcium 

influx required for protection against staurosporine-induced apoptosis via PKA activity 

(Beraldo et al., 2010). Since calcium influx induced by STI1 is abolished in both PrP
C
-

null neurons or with α7nAChR inhibition, STI1-PrP
C
 interaction is suggested to be 

upstream of α7nAChR-induced calcium influx (Beraldo et al., 2010). One possible 

mechanism could be that STI1-PrP
C
 modulates the responsiveness of the α7nAChR to 

choline present in the extracellular milieu, since the concentration of choline is too low to 

activate the α7nAChR under basal conditions (Beraldo et al., 2010). The signalling 

pathways activated by STI1 and α7nAChR overlap, including ERK1/2 inducing 

neuritogenesis and PKA inducing neuroprotection (Caetano et al., 2008, Beraldo et al., 

2010). However, the role of the α7nAChR in OGD-induced apoptosis is not fully 

understood. 
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1.5 ALK2 receptor  

1.5.1 Activin receptors 

ALK2 receptors are members of the activin receptor family, a group of growth 

and differentiation factors that belong to the transforming growth factor-beta (TGF-β) 

superfamily (Shi et al., 2003). These receptors are involved in various cell functions 

including cell proliferation and migration
 
(Kitisin et al., 2007). Activin receptors are 

involved in many biological processes during early development, particularly in the 

differentiation of stem cells during organogenesis (Pauklin et al., 2015). In embryonic 

stem cells, activin signalling has been documented to be both necessary and sufficient in 

the maintenance of pluripotency of the epiblast (Vallier et al., 2004). On the other hand, 

activin signalling has been found to be an important step for the differentiation of adult 

stem cells (Kadaja et al., 2014). In the brain, activin signalling has been found to induce 

the differentiation of neural stem cells into cortical interneurons (Cambray et la., 2012). 

However, reliable detection of activin receptors has been difficult, and their roles in adult 

tissues are yet to be fully understood (Pauklin et al., 2015). Interestingly, it has recently 

been shown that decreased activity of the Activin A-Smad pathway leads to increased 

sensitivity to OGD as evidenced by higher apoptosis rates, suggesting that this pathway 

plays a neuroprotective role against OGD (Wang et al., 2013). 

1.5.2 Activin signalling 

Activin receptors have a cysteine-rich extracellular domain, a trans-membrane 

domain, and a cytoplasmic serine/threonine-rich domain
 
(Kitisin et al., 2007). There are 

two types of activin receptors, categorized as type-I or type-II. Seven type-I receptors and 

five type-II receptors have been identified in the human genome (Manning et al., 2002). 
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All activin receptors transduce signals in a similar manner that involves one of each 

receptor dimers (Shi et al., 2003). Activation of type II receptor dimers (which are 

typically responsible for ligand-binding specificity) via ligand binding recruits the 

corresponding type I receptor dimer to form a hetero-tetrameric complex
 
(Hardwick et 

al., 2008). Type II receptors, which are serine/threonine kinase receptors, phosphorylate 

serine residues on type I receptors (Kitisin et al., 2007). Generally, type-I receptors 

determine the downstream signalling pathway to be activated (Shi et al., 2003). Once 

type I receptors are phosphorylated, SMAD anchor for receptor activation (SARA) 

recruits receptor-regulated SMADs (R-SMADs) and orients the serine residue on the C-

terminus of the R-SMAD for phosphorylation by the type I receptor (Kitisin et al., 2007). 

The phosphorylated R-SMADs dissociate from SARA, bind onto a co-SMADs, and form 

a complex that migrate to the nucleus and binds transcription factors to induce changes in 

gene expression (Kitisin et al., 2007). 

1.5.3 BMP-4 in the brain 

Bone morphogenetic proteins (BMPs) were first identified in protein extracts that 

were able to induce cartilage formation and de novo bone growth (Wozney et al., 1988).  

Since then, more than 20 BMPs have been identified and comprise the largest subgroup 

of the TGF-beta superfamily, with a wide range of cellular roles in addition to 

differentiation including proliferation, morphogenesis, and apoptosis (Hogan, 1996). 

Despite their wide range of cellular mechanisms, all BMPs signal in a similar fashion 

compared to other TGF-beta superfamily members, which is through activin receptors 

(Shi et al., 2003). BMP-4 has been found to play a critical role in the differentiation of 

neural stem cells (NSCs) into neurons, oligodendrocytes, and astrocytes during periods of 
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spatiotemporal development (Abematsu et al., 2006). Recent studies have shown that 

BMP-2 and BMP4 are highly expressed in astrocytes, thus identifying astrocytes as a 

major source of BMPs during development and differentiation of NSCs (Hu et al., 2012).  

Outside of the central nervous system, BMP signalling has also been identified in 

the mammalian neuromuscular system (Chou et al., 2013). In neuromuscular junctions, 

BMP-4 has been identified to be expressed by Schwann cells and skeletal muscle fibers 

(Chou et al., 2013). During embryonic development, peripherally derived BMP-4 was 

found to play a role in the survival of motor neurons by protecting the cells from 

glutamate toxicity (Chou et al., 2013). However, whether or not BMP-4 can protect CNS 

neurons from other types of toxicity during ischemia is not well understood.  

1.5.4 STI1 signalling via ALK2 

Recent work has shown that ovarian cancer cells release large amounts of STI1 

into the blood (Tsai et al. 2013). As a result, STI1 concentrations in the blood stream can 

be used as a potential diagnostic biomarker for patients with suspected ovarian cancer 

(Wang et al., 2010, Kim et al., 2010). Additionally it has been shown that in cancer cells, 

STI1 acts as a cytokine to stimulate cell proliferation (Wang et al., 2010). More recently, 

it has been shown that ALK2 receptors (Activin A receptor, type 1 or ACVR1) can be 

directly activated by STI1 in ovarian cancer cells
 
(Tsai et al., 2012). Secreted STI1, 

acting in an autocrine and paracrine fashion, binds and activates ALK2, which results in 

cell proliferation via SMAD-regulated transcription of target genes such as inhibitor of 

DNA binding (IDs) and increased protein synthesis (Tsai et al., 2012). However, whether 

this STI1 signalling pathway is present in neurons is unknown.  
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1.5.5 The role of activin receptors during ischemia 

A recent study focused on the role of SARA during ischemia showed that 

expression of SARA was significantly increased following OGD in PC12 cells (Wang et 

al., 2013). Furthermore, down-regulation of SARA by siRNA lead to decreased mRNA 

expression of Smad2, 3, and 4, as well as decreased phosphorylation of the Smad2 

protein (Wang et al., 2013). As a result of decreased SARA activity and ultimately the 

Activin A-Smads pathway, there was an increased sensitivity in PC12 cells to OGD as 

evidenced by higher apoptosis rates. Taken together, the authors suggested that SARA, 

along with the ActA/Smad pathway, may play a protective role against OGD (Wang et 

al., 2013).  
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1.6 Rationale, Study Aim, and Hypothesis 

Current treatment for ischemic stroke is limited to intra-venous thrombolytic 

therapy. Recent studies have shown that the therapeutic window of thrombolytic therapy 

is within 4 hours following ischemic onset (Lansberg et al., 2012). To develop novel 

therapies for stroke, the molecular mechanisms by which the brain protects itself against 

ischemia must be fully understood. One of these mechanisms activated during ischemia 

involves PrP
C
 and STI1. Studies have shown that the expression of both PrP

C
 and STI1 

are increased during stroke, and that the level of PrP
C
 expression directly correlates with 

resistance against oxidative stress (McLennan et al., 2004, Lee et al., 2013, Brown et al., 

1997). STI1, the ligand for PrP
C
, has recently been shown to protect neurons from OGD-

induced cell death (Beraldo et al., 2013). However, the exact mechanisms by which 

STI1-PrP
C
 protects neurons against ischemia is not fully understood. The aim of this 

thesis is to investigate the role of the alpha-7 nicotinic acetylcholine receptor and the 

ALK2 receptor in STI1-PrP
C
-mediated protection against ischemia.  

One of the receptors modulated by STI1-PrP
C
 is the α7nAChR. The binding of 

STI1 to PrP
C
 leads to calcium influx via the α7nAChR (Beraldo et al., 2010). 

Furthermore, the protective effect of STI1 against staurosporine has been previously 

shown to depend on the α7nAChR (Beraldo et al., 2010). On the other hand, STI1 has 

also been shown to induce cell proliferation in ovarian cancer cells via the ALK2 receptor 

of the activin receptor family (Tsai et al., 2012). Recent studies have shown that 

inhibition of the downstream effectors of activin receptors exacerbates damage induced 

by OGD (Wang et al., 2013). However, the involvement of the α7nAChR and the ALK2 

receptor in STI1-PrP
C
-mediated neuroprotection against ischemia is unknown. We 



34 

 

hypothesize that the α7nAChR is required for STI1-PrP
C
-mediated neuroprotection 

against OGD. 
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2 Materials and Methods 

2.1 Animals  

The caspase 3 reporter mouse line (ApoMouse, Nicholls et al., submitted) 

provides a way to identify living neurons that will undergo caspase-3-mediated apoptosis 

in response to insults. This mouse line is genetically modified to express cerulean 

fluorescent protein (CFP). Activated caspase can be identified thanks to using 

bimolecular complementation technique (ApoMouse, Nicholls et al., submitted). The 

prion protein-knockout mouse line (Prnp
0/0

), descendants of the Zrchl line, originally 

generated by Dr. Charles Weissman (Scripps Florida) was provided by Dr. Frank Jirik 

(University of Calgary), and had been backcrossed to C57BL/j for 10 generations 

(Khosrayani et al., 2008). The α7nAChR-knockout mouse line (B6.129S7-Chrna7
tm1Bay

/J) 

was purchased from Jax labs. The mouse line was originated on a mixed C57BL/6 and 

129/SveV background and posteriorly backcrossed to C56BL/6 for more than 8 

generations. The mouse was developed by the deletion of the last three exons of the 

Chrna7 gene. Table 3 provides a summary of mice used in this thesis.  

2.2 Ethics Statement 

The animals used in this research were maintained by the University of Western 

Ontario Animal Care and Veterinarian Services. All procedures were done in accordance 

with approved animal use protocols at the University of Western Ontario (2008-127) 

(Appendix 1) following the guidelines of the Canadian Council of Animal Care (CCAC). 
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Table 3: Mouse lines used in this thesis 

Strain Background Origin Modification Use 

Prnp0/0 

(Zurich)  

 

C57BL/6j  

 

C. Weissmann 

but strain 

donated by Frank 

Jirik (U. 

Calgary)  

Prnp (PrPC) 

knockout  
To determine if 

neuroprotection by 

STI1 against OGD 

in vitro is dependent 

on the PrP
C 

B6.129S7

-

Chrna7tm1

Bay/J  

 

C57BL/6  

 

Jax labs  

 

Chrna7 (alpha7 

nicotinic receptor)  

 

To determine the 

role of α7nAChR in 

the STI1-PrP
C 

–

mediated 

neuroprotection in 

vitro against OGD 

Apo mice  C57BL/6  

 

Generated by 

Marc Caron at 

Duke University 

Medical Centre 

Bimolecular 

fluorescence 

complementation 

technique of the 

Cerulean protein 

To determine the 

caspase-3 activity of 

neurons following 

OGD 
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2.3 Reagents 

Mouse recombinant STI1 (His6-STI1) was generated and purified as described 

previously (Zanata et al., 2002). Staurosporine (Invitrogen Burlington ON, Canada), a 

protein kinase inhibitor that triggers apoptosis, was used as a positive control in apoptosis 

experiments (Chae et al., 2000). Staurosporine was dissolved in dimethyl sulfoxide 

(DMSO) at a concentration of 25mg/mL and stored at -20°C. The concentrations used for 

staurosporine were chosen based on their effectiveness at inducing apoptosis in neuronal 

cultures as determined by our previous studies (Beraldo et al., 2010). The competitive 

inhibitor of α7nAChR, methyllyeaconitine citrate (MLA, Abcam Cambridge MA, USA), 

was used to determine if the α7nAChR is involved in the effects of STI1 (Bertrand et al., 

1997). MLA was dissolved in saline at a concentration of 100mM and stored at -20°C. To 

activate α7nAChR, its agonist PNU282987 [(N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-

chlorobenzamide hydrochloride) Abcam Cambridge MA, USA] was used (Hajós et al., 

2005). PNU 282987 was dissolved in water at a concentration of 100mM and stored at -

20°C. Effective final concentrations used for MLA and PNU 282987 in neuronal cultures 

were determined by previous studies at 20nM and 0.5μM, respectively (Bodnar et al., 

2005, Hu et al., 2007, Cheng et al., 2014). To inhibit the ALK2 receptor, LDN193189 

(Abcam Cambridge MA, USA), a small molecule inhibitor of bone morphogenetic 

protein type 1 receptors, was used (Cuny et al., 2008). LDN 193189 was dissolved in 

water at a concentration of 10mM and stored at -20°C. Final LDN 193189 concentrations 

used were determined by previous experiments describing its effect as a highly selective 

antagonist of ALK2 at 5nM (Yu et al., 2008). BMP-4 (Sigma-Aldrich St. Louis MO, 

USA), a polypeptide from the TGF-beta superfamily of proteins, was used as an agonist 
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to ALK2 receptors (Chaikuad et al., 2012). BMP-4 was dissolved in 10mM citric acid at 

a concentration of 1mg/mL and stored at -20°C. BMP-4 (EC50 ranging from 5 – 10 

ng/mL) used in our LIVE/DEAD experiments (final concentration of10ng/mL - 

100ng/mL) was determined by previous experiments that found 100ng/mL to be effective 

in vitro (Vrijens et al., 2013, La Rosa et al., 2011).   

2.4 Primary cell culture  

Male and female mice were paired and kept in the same cage for 3 days. After 3 

days, mice were separated into individual cages. This provided a 3-day window of 

estimation for the age of the embryos. On day 15, successful mating was determined by 

observing the abdomen of the female mouse for visual confirmation of pregnancy. 

Pregnant females were euthanized by decapitation at embryonic day 17 and embryos 

were collected and kept on glass plates over ice until dissection. Embryonic brains were 

dissected under the microscope for removal of the cortex and the hippocampus. In brief, 

the mouse brain was separated into halves along the sagittal section (Figure 1A,B). With 

the superficial surface facing down, the meninges were removed from the forebrain by 

gently grasping the olfactory bulb using forceps (Figure 1C,D). Then, the midbrain was 

separated from the forebrain. Once again with the superficial surface of the forebrain 

facing down, the hippocampus was observed and removed from the cortex using forceps 

(Figure 1E,F). Once separated, the fimbriae of the hippocampus were removed by careful 

clipping using forceps (Figure 1H). Tissues were kept on ice in Eppendorf tubes with 

Hank’s Balance Salt Solution (HBSS) until tissue dissociation.  
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Figure 1: Dissection of hippocampus and cortex from embryonic E16.5 brains. (a) 

The E16.5 mouse brain is (b) cut into halves via the midline sagittal section. (c) The 

halves are placed such that the cortex is facing up. (d) Meninges (arrows) are removed 

from the hemispheres with Dumont no. 5 forceps by gently pulling. (e) While holding the 

brainstem, the cortex (cx) is flipped outward and clipped off the midbrain. (f) The 

hippocampus (hip) is visible on the inner surface of the forebrain. (g) The hippocampus is 

removed with a microscissor. (h) Cortex (cx) and hippocampus (hip) are separated. (i,j) 

The fimbriae (arrowhead) on the concave side of the hippocampus are removed (open 

arrowhead). Image from Fath et al., 2008. 
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HBSS was then replaced with 37 °C trypsin-EDTA (0.25%, phenol red, (Life 

Technologies Burlington ON, Canada) and tubes were placed for 20 minutes in a 37°C 

water bath for tissue dissociation. Cells were then washed with sterile plating media 

(Minimum essential media with GlutaMAX, 20% Fetal Bovine Serum, 1% penicillin & 

streptomycin, 1% sodium pyruvate, 1.75% glucose, (Life Technologies) and incubated 

for 1 minute in plating media supplied with 0.2mg/mL DNase (Roche). Cells were then 

mechanically dissociated and homogenized by careful pipetting up and down. Cell 

concentration was determined by counting dissociated cells with a hemocytometer. 

Number of cells plated varied according to each experiment and plate sizes. Apo mouse 

neurons were plated in P35 (5 x 10
4
 cells) glass-bottom dishes. Neurons for the 

LIVE/DEAD assay were plated in 4-well P15 (8 x 10
4
 cells) dishes. Neurons for 

immunofluorescence were plated in 24-well P15 (5 x 10
4 

cells) dishes.  

Neurons were plated in dishes previously coated with poly-L-lysine under UV 

light overnight and washed with sterile HBSS prior to plating (Sigma Aldrich Canada). 

After 4 hours, the plating medium was removed and replaced with the maintenance 

medium (Neurobasal medium supplied with 1% penicillin/streptomycin mix, 0.5mM L-

glutamate, and B27 supplement, Life Technologies). Cells were maintained at 37°C and 

5% carbon dioxide for 7 days before experimentation. Half of the medium was replaced 

with fresh maintenance medium every two days. See Figure 2 for general experimental 

timelines. 
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Figure 2: Schematic illustrating the mating, culturing, and experiment of 

hippocampal neurons.  

 

 

 

 

 

 

 



42 

 

2.5 Oxygen Glucose Deprivation 

For oxygen glucose deprivation (OGD) experiments, the original media of the 

cells was replaced with a glucose-free maintenance media as described previously 

(Beraldo et al., 2013). Cells were then placed in an incubator (AutoFlow NU-4950 

Oxygen and Humidity Control Water Jacket CO2 Incubator, NuAire, Plymouth MN, 

USA) with 0% oxygen (95% nitrogen/5% carbon dioxide) for 1 hour, beginning when 

oxygen was completely depleted from the chamber. Upon completion of OGD, cells were 

removed from the incubator, glucose-free maintenance medium was replaced with the 

original maintenance medium, and the cells were returned to normal conditions at 37°C 

and 5% carbon dioxide for 3, 12, or 24 hours for reperfusion (Beraldo et al., 2013).  

2.6 Immunofluorescence 

After 7 days of culture in vitro, hippocampal neurons were isolated from E17 

wild-type mice were fixed using 2% paraformaldehyde (Millipore) and permeabilized 

using 0.5% Tritton X-100 (Millipore). Cells were then blocked using 2% BSA (Sigma) 

before applying the primary antibodies against NeuN (mouse, 1:200 dilution, Abcam) 

and ALK2 (rabbit, 1:200 dilution, Abcam) overnight at 4°C, followed by secondary 

antibodies anti-mouse Alexa Fluor-488 (1:1000 dilution, Invitrogen) and anti-rabbit 

Alexa Fluor-633 (1:1000 dilution, Life Technologies) for 1 hour at room temperature. 

Cells were also stained using Hoechst reagent (1μg/mL) to visualize the nucleus. Fifteen 

images were taken per embryo per treatment using a LSM 510 META confocal 

microscope (Zeiss Jena, Germany) equipped with 63x/1.4NA objective and analyzed 

using LSM 5 software (Zeiss Jena, Germany) and ImageJ (NIH).   
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2.7 Caspase-3 reporter mouse 

We used a caspase 3 reporter mouse line to identify living neurons that are 

undergoing caspase-3-mediated apoptosis. In a healthy cell, expression of Apo transgenes 

produces two halves of CFP, tagged with recombinant sequences (inteins) and signal 

peptides attached to the protein via caspase 3 cleavage site. These signal peptides contain 

PEST protein degradation sequences and target CFP halves to different cellular 

compartments, which prevents formation of full fluorescent CFP. In apoptotic cells, 

caspasde-3 activation removes the signal peptides and the degradation sequences, 

allowing the two halves to bind using complementary inteins and reconstitute the fully 

functional monomeric CFP (Figure 3). Fluorescence was quantified by using a confocal 

microscope (LSM 510 META, 10x, 485nm excitation, 530nm emission) and fluorescence 

per cell was normalized to the control cells that were not subjected to OGD. Eight images 

were taken per treatment per embryo dish, and four embryos were cultured per 

experiment.  
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Figure 3: Schematic illustrating the caspase-3 reporter (Apo) mouse line. (A) 

Complementary inteins, subcellular localization sequences, and the PEST protein 

degradation sequences were added and the two halves were separated under basal 

conditions. (B) Caspase-3 activation led to cleavage of the subcellular localization and 

PEST protein degradation sequence. (C) Two halves freely diffuse throughout the cell 

and bind through complementary inteins. (D) Reconstitution resulted in the fully 

functional and fluorescent Cerulean protein. 
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2.8 LIVE/DEAD assay 

The LIVE/DEAD mammalian cell viability assay (Invitrogen, Burlington ON, 

Canada) was used to analyze cell viability following OGD or staurosporine-treatment. 

Calcein-AM, a membrane permeable dye that expresses green fluorescence when cleaved 

by ubiquitous intracellular esterases, was used to determine the amount of live cells. 

Ethidium homodimer-1, a membrane impermeable dye that expresses red fluorescence 

upon binding to DNA and indicates loss of plasma membrane integrity, was used to 

determine the amount of dead cells. For the Ethidium homodimer-1 dye, 15μL of the 

2mM stock solution [dissolved in DMSO/H2O 1:4 (v/v)] was added per 10mL of 

maintenance solution for a working concentration of 3μM. For the Calcein-AM, 2.5μL of 

the 4mM stock solution (dissolved in anhydrous DMSO) was added per 10mL of 

maintenance solution for a working concentration of 1μM. Following the experiment, 

cells were incubated with the dye in the original maintenance medium for 30 minutes at 

37°C at 5% carbon dioxide and then washed three times with Krebs-Ringers Henseleit 

(KRH) solution (in mM: 125 NaCl, 5 KCl, 5 HEPES, 2.6 MgSO4, and 10 glucose, pH 

7.2). After washing, the cells were imaged using an LSM 510 META confocal 

microscope equipped with 10x/0.4NA objective. Calcein-AM was excited using a 

fluorescein optical filter (485nm) and the Ethidium homodimer-1 was excited with a 

rhodamine optical filter (530nm). Fluorescent emissions were captured at 530nm and 

645nm for the Calcein-AM and the Ethidium homodimer-1, respectively. Six random 

images were taken per embryo (dish) per treatment. Live (green) and dead (red) cells 

were counted using the Image-based Tool for Counting Nuclei (ITCN, Center for Bio-

image Informatics at UC Santa Barbara) with a diameter of 16 pixels for live cells and 8 



46 

 

for dead cells. Threshold to distinguish two adjacent cells as individual cells was set at 1 

pixel. Images were analyzed using ImageJ software (NIH) and cell death was calculated 

as the ratio of dead cells to the total number of cells.  

2.9 Statistical Analysis 

Data was obtained in each condition from cultures with at least 4 independent 

embryos of either sex. Caspase-3 activity from Apo mice was quantified in arbitrary units 

as fluorescence per cell normalized to the control. Cell death from the live/dead 

mammalian viability assay was quantified as percentage of total cells that are dead. All 

data were expressed as mean +/- standard error and analyzed using one-way or two-way 

ANOVA (When comparing multiple mouse lines) and Tukey’s post-hoc test performed 

on GraphPad Prism (Version 5.0 for Windows, La Jolla California USA). In all cases, 

P<0.05 was considered statistically significant.    
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3 Results 

3.1 STI1 decreases apoptosis and neuronal death induced 
by OGD 

To investigate the mechanisms involved with the actions of STI1 against OGD-

induced cell death, hippocampal neurons obtained from a reporter mouse for caspase-3 

activation were subjected to 1 hour OGD treatment and then reperfusion in the presence 

or absence of STI1. Caspase-3 activity and cell death were measured in the same fields 

using fluorescence from CFP and Ethidium homodimer-1 dye, respectively. Cells were 

imaged at 3, 12, and 24 hours of reperfusion after OGD. As a positive control, neurons 

were treated with 200nM of staurosporine for the same period of time as OGD treatment. 

Increased CFP fluorescence was observed in neurons after exposure to 1 hour OGD or in 

neurons treated with staurosporine as early as 3 hours after treatment (Figure 4A,B; 

P<0.05). Interestingly, the time course of apoptosis fluorescence is distinct from the cell 

death fluorescence. Cerulean fluorescence was higher at 3 hours of reperfusion and 

decreased with time, whereas labeling of dead cells increased progressively until 24 

hours (Figure 4A,B). Treatment of neurons with STI1 significantly decreased caspase-

induced fluorescence compared to non-treated cells (Figure 4A,B; P<0.05). Furthermore, 

cell death in neurons treated with STI1 was also significantly lower than non-treated 

neurons in all 3 durations of reperfusion (Figure 4A,C; P<0.05). 
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Figure 4: Time course of caspase-3 activity and cell death in neurons treated with 

STI1 and OGD. Apo mouse hippocampal neurons were treated with 1μM of 

recombinant STI1 (1μM, 30 minutes) and then subjected to 1 hour OGD. Cells were 

imaged at 3, 12, and 24 hours of reperfusion. (A) Representative images of cells per 

treatment at different time points as indicated on the left. Green fluorescence indicates 

activated caspase-3 and red fluorescence (Ethidium Homodimer-1 staining) indicates 

dead cells.  Neurons treated with staurosporine for 3, 12, and 24 hours were also imaged 

using the same methods. (B,C) Caspase-3 activity was quantified in arbitrary units as 

fluorescence per cell normalized to the control. Cell death was quantified as percentage 

of total cells that were dead. Treatment of neurons with STI1 significantly decreased 
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caspase-3 fluorescence in all 3 durations of reperfusion. The  number of dead cells in 

neurons treated with STI1 remained significantly lower than on neurons that were not 

treated with STI1 (OGD)- or staurosporine-treated cells. *P<0.05. Results are presented 

as mean +/- SEM; data were analyzed and compared by two-way ANOVA and Tukey’s 

post hoc test.  (n=4). 

Previous experiments have suggested that STI1-mediated neuroprotection against 

staurosporine or OGD-induced cell death is PrP
C
-dependent (Lopes et al., 2005, Caetano 

et al., 2008, Beraldo et al., 2010, Beraldo et al., 2013). To confirm whether STI1 prevents 

neuronal death in a PrP
C
-dependent way, wild-type and Prnp

0/0
 hippocampal neurons 

were treated with STI1 (1μM) and then submitted to 1 hour OGD and 24 hour reperfusion 

prior to live/dead imaging. Treatment with STI1 significantly decreased cell death 

induced by OGD in wild-type neurons (Figure 5; P<0.05). However, treatment with STI1 

was ineffective to decrease cell death in Prnp
0/0

 hippocampal neurons (Figure 5). 
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Figure 5: Treatment of wild-type and Prnp
0/0

 hippocampal neurons with STI1 and 

OGD. Wild-type (n=4) and Pnrp
0/0

 (n=4) hippocampal neurons were treated with 

recombinant STI1 (1μM, 30 minutes) and then subjected to 1 hour OGD. (A) 

Representative images obtained by confocal microscopy. (B) Cell death was quantified as 

percentage of total cells that were dead using Calcein-AM (Live, green) and Ethidium 

homodimer-1 (dead, red) dyes. Treatment of neurons with STI1 decreased OGD-induced 

cell death in wild-type cells, but not in Pnrp
0/0

 cells. Results are presented as mean +/- 

SEM; data were analyzed and compared by two-way ANOVA and Tukey’s post hoc test. 

(n=4). *P<0.05. 
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3.2 STI1 engages α7nAChR for neuroprotection 

Previous experiments suggested that STI1 can engage a complex containing PrP
C
 and 

α7nAChRs in hippocampal neurons for neuronal signalling and protection against 

staurosporine-induced neuronal cell death (Beraldo et al., 2010). However, in other 

neuronal types and cancer cells, STI1 can activate signalling independent of PrP
C
, 

α7nAChR or both (Arruda-Carvalho et al., 2007, Tsai et al., 2012, Santos et al., 2013). 

To determine whether α7nAChRs are important for STI1-mediated neuroprotection 

against ischemic insults, wild-type hippocampal neurons were treated with several 

concentrations of the α7nAChR-selective antagonist MLA for 30 minutes prior to 

treatments with 1 μM recombinant STI1 and 1 hour OGD plus reperfusion. Inhibition of 

α7nAChRs by MLA attenuated the neuroprotective effect of STI1 against OGD (Figure 

6; P<0.05). Interestingly, even neurons treated with the highest dose of MLA and STI1 

presented better survival than untreated neurons, where treatment with MLA was not able 

to completely abrogate the neuroprotective effect of STI1 against OGD (Figure 6A,B). 

To further investigate the role of α7nAChR in STI1-mediated neuroprotection against 

ischemic insults, we then used cultured hippocampal neurons obtained from α7nAChR-

knockout mice. Hippocampal neurons were treated with 1μM of recombinant STI1 and 

exposed to OGD for 1 hour and reperfused for 24 hours. Treatment of wild-type neurons 

with STI1 significantly decreased cell death compared to neurons that were not treated 

with STI1 (Figure 7; P<0.05), whereas this effect is lost in α7nAChR-knockout mouse 

hippocampal neurons (Figure 7). In contrast, treatment of neurons with staurosporine 

induced levels of cell death not significantly different between wild-type and α7nAChR-

knockout mouse neurons (Figure 7). These results further support the finding that STI1 
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selectively engages PrP
C
/α7nAChRs to protect neurons against OGD/reperfusion-

mediated cell death.  
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Figure 6: Neuroprotection by STI1 against OGD is attenuated in wild-type 

hippocampal neurons treated with α7nAChR inhibitor MLA. Wild-type hippocampal 

neurons were treated with a MLA (2-1000nm) and recombinant STI1 (1μM, 30 minutes) 

and then subjected to 1 hour OGD. (A) Representative images obtained by confocal 

microscopy after 24 hours of reperfusion. (B) Cell death was quantified as percentage of 

total cells that were dead using Calcein-AM (Live, green) and Ethidium homodimer-1 

(dead, red) dyes. While treatment of neurons with STI1 decreased OGD-induced cell 

death, neurons were no longer protected when treated with the α7nAChR inhibitor MLA. 

Results are presented as mean +/- SEM; data were analyzed and compared by one-way 

ANOVA and Tukey’s post hoc test. (n=4). *P<0.05.  
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Figure 7: Neuroprotection against OGD by STI1 is prevented in hippocampal 

neurons from alpha-7 nicotinic acetylcholine receptor (α7nAChR) knock-out mice. 

Wild-type and α7nAChR-KO hippocampal neurons were treated with recombinant STI1 

(1μM, 30 minutes) and then subjected to 1 hour OGD. (A) Representative images 

obtained by confocal microscopy after 24 hours of reperfusion. (B) Cell death was 

quantified as percentage of total cells that were dead using Calcein-AM (live, green) and 

Ethidium homodimer-1 (dead, red) dyes. Treatment of wild-type neurons with STI1 

significantly decreased OGD-induced cell death, an effect not observed in α7nAChR-KO 

neurons. Results are presented as mean +/- SEM; data were analyzed and compared by 

two-way ANOVA and Tukey’s post hoc test. (n=4). *P < 0.05.  
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3.3 Activation of the α7nAChR protects neurons against 
OGD 

Previous experiments have suggested that nicotinic receptors may provide a new pathway 

to interfere with outcomes in hemorrhagic stroke (Krafft et al., 2012) and activation of 

nicotinic receptors can protect neurons against OGD (Li et al., 2013). To further 

investigate the potential for activation of α7nAChR to protect neurons against OGD-

induced cell death, we used PNU 282,987, a selective α7nAChR agonist. Wild-type 

mouse hippocampal neurons were treated with variable concentrations of PNU 282,987 

for 30 minutes prior to exposure to OGD. Activation of α7nAChR with PNU 282,987 

impaired neuronal death induced by OGD in a dose-dependent manner (Figure 8A,B; 

P<0.05). Furthermore, we tested whether this effect of PNU 282,987 was selective to 

α7nAChRs. Similar to the effects of STI1, PNU 282,987 was unable to prevent OGD-

induced neuronal death of α7nAChR-knockout neurons (Figure 8A,C). 
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Figure 8: Treatment of wild-type hippocampal neurons with the α7nAChR agonist 

PNU 282,987 significantly reduced cell death due to OGD. Wild-type and α7nAChR-

KO hippocampal neurons were treated with recombinant STI1 (1μM) and/or PNU 

282,987 (1-20 μM, 30 minutes) and then subjected to 1 hour OGD. (A) Representative 

images obtained by confocal microscopy after 24 hours of reperfusion. (B,C) Cell death 

was quantified as percentage of total cells that were dead using Calcein-AM (live, green) 

and Ethidium homodimer-1 (dead, red) dyes. Treatment of neurons with 20μM of PNU 

282,987 significantly decreased OGD-induced cell death (B). However, this protection 

was not observed in α7nAChR-KO neurons (C). Results are presented as mean +/- SEM; 

data were analyzed and compared by one-way ANOVA and Tukey’s post hoc test. (n=4). 

* or different letters above the bars indicate significant difference (P<0.05), whereas bars 

denoted with the same letter are not significantly different (P>0.05).  
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3.4 STI1 activates ALK2 receptors 

Previous experiments have shown that STI1 can also modulate signalling 

pathways independent of α7nAChRs in astrocytes (Arantes et al., 2009), peripheral 

neurons (Santos et al., 2013), and cancer cells (Tsai et al., 2012). To further test whether 

other signalling pathways can be activated by STI1 in hippocampal neurons, we focused 

on ALK2, a poorly studied receptor in the brain. Expression data obtained from the Allen 

Brain Atlas indicate selective expression of ALK2 receptors in the hippocampus (Figure 

9A). Staining of mouse hippocampal neurons for the ALK2 receptor shows membrane 

expression in NeuN labeled neurons (Figure 9B). 

To determine the potential involvement of the ALK2 receptor in STI1-mediated 

neuronal protection against OGD, wild-type mouse hippocampal neurons were treated 

with variable concentrations of the ALK2 antagonist LDN 193198 and 1μM of 

recombinant STI1 prior to exposure to OGD for 1 hour followed by 24 hours of 

reperfusion. Our results show that inhibition of the ALK2 receptor prevented the effect of 

STI1 against OGD (Figure 10; P<0.05), suggesting the potential involvement of ALK2 

receptors.  

To further test the possibility that activation of ALK2 receptors can modulate cell 

death in response to ischemia-reperfusion we used the ALK2 agonist BMP-4. Treatment 

of neurons with variable concentrations of BMP-4 significantly decreased cell death 

induced by ischemia-reperfusion (Figure 11; P<0.05). 
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Figure 9: Expression of ALK2 in primary cultured wild-type hippocampal neurons. 

(A) The Allen Developing Mouse Brain Atlas image showing in situ hybridization for the 

acvr1 gene (ALK2) in a mouse brain sagittal section. Warmer colours indicate higher 

gene expression. (B) Wild-type mouse E17 primary hippocampal neurons after 7 days in 

culture were stained with nuclear marker Hoechst (blue), mature neuronal marker NeuN 

(green), and ALK2 (red). Composite image shows ALK2 and NeuN colocalization. 

ALK2 is enriched in the cell membrane.   
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Figure 10: Inhibition of the ALK2 receptor prevented the effects of STI against 

OGD. Wild-type hippocampal neurons were treated with LDN 193189 (5-200nM) and/or 

recombinant STI1 (1μM, 30 minutes) and then subjected to 1 hour OGD. Staurosporine 

(200nM) was also used as a positive control. (A) Representative images obtained by 

confocal microscopy after 24 hours of reperfusion. (B) Cell death was quantified as 

percentage of total cells that were dead using Calcein-AM (live, green) and Ethidium 

homodimer-1 (dead, red) dyes. Treatment of neurons with STI1 significantly decreased 

cell death by OGD, an effect not observed when neurons were treated with LDN 193189 

in which cell death increased in a dose-dependent manner (P<0.05). Results are presented 

as mean +/- SEM; data were analyzed and compared by one-way ANOVA and Tukey’s 

post hoc test. (n=8). Different letters above the bars indicate significant differences 

(P<0.05), whereas bars denoted with the same letter are not significantly different 

(P>0.05). 
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Figure 11: Treatment of wild-type hippocampal neurons with BMP-4 significantly 

decreased cell death due to OGD treatment. Wild-type hippocampal neurons were 

treated with recombinant STI1 (1μM) and BMP-4 (10-500ng/mL, 30 minutes) and then 

subjected to 1 hour OGD. (A) Representative images obtained by confocal microscopy 

after 24 hours of reperfusion. (B) Cell death was quantified as percentage of total cells 

that were dead using calcein-AM (Live, green) and ethidium homodimer-1 (dead, red) 

dyes. Treatment of neurons with 10ng/mL of BMP-4 for 30 minutes prior to 1 hour OGD 

significantly decreased cell death compared to neurons that were not treated with BMP-4. 

At 50ng/mL of BMP-4, cell death following OGD was not significantly different from 

cells treated with STI1. Results are presented as mean +/- SEM; data were analyzed and 

compared by one-way ANOVA and Tukey’s post hoc test. (n=4). Different letters above 

the bars indicate significant difference (P<0.05), whereas bars denoted with the same 

letter are not significantly different (P>0.05). 
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3.5 Treatment of neurons with BMP-4 during reperfusion 
rescues neurons 

The manipulations reported so far using STI1 are known to activate several 

distinct and overlapping signalling pathways (Caetano et al., 2008, Zanata et al., 2002, 

Tsai et al., 2012) prior to submitting neurons to ischemia-reperfusion. It would be 

relevant for future pharmacological manipulations to understand whether activation of 

these signalling pathways by STI1 after the onset of ischemia can also prevent neuronal 

death. To answer that question, neurons were treated with STI1, PNU 282987 or BMP-4 

prior to induce ischemia or just after the OGD treatment (during reperfusion). Figure 12 

reveals that, as expected, activation of PrP
C
/α7nAChRs by STI1 (1μM) or α7nAChRs by 

PNU 282987 (20μM) prevents neuronal death if neurons are treated prior to the OGD 

exposure. In contrast, these two treatments were ineffective if the neurons were exposed 

to them after the period of ischemia (Figure 12).  
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Figure 12: PNU 282987 and STI1 only protected neurons if treated prior to OGD, 

but not during reperfusion. Wild-type hippocampal neurons were treated with 

recombinant STI1 (1μM) or PNU 282,987 (1-20 μM, 30 minutes) and then subjected to 1 

hour OGD or treated during reperfusion. (A) Representative images obtained by confocal 

microscopy after 24 hours of reperfusion. (B) Cell death was quantified as percentage of 

total cells that were dead using calcein-AM (live, green) and ethidium homodimer-1 

(dead, red) dyes. Treatment of neurons with STI1 or PNU 282987 decreased OGD-

induced cell death, an effect not observed when these drugs were treated during the 

reperfusion period (B). Results are presented as mean +/- SEM; data were analyzed and 

compared by one-way ANOVA and Tukey’s post hoc test. (n=4). Different letters above 

the bars indicate significant difference (P<0.05), whereas bars denoted with the same 

letter are not significantly different (P>0.05). 
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Interestingly, BMP-4 (100ng/mL) was effective at protecting neurons against 

OGD-induced cell death if it was used prior or after the OGD treatment (Figure 13). In 

addition, prevention of neuronal death by BMP-4 was attenuated by the ALK2 selective 

antagonist LDN 193189 (200nM) (Figure 13). The concentrations used in these 

experiments were established as the minimum concentration for the maximum effect on 

cell death following OGD-reperfusion observed in the previous experiments. That is, we 

found that the level of cell death observed in STI1-treated neurons that received 200nM 

of LDN 193189 was similar to level of cell death observed in neurons submitted to OGD 

that did not receive STI1 (Figure 10B). For BMP-4, we found that with treatment of 

neurons with 100ng/mL was able to decrease cell death following OGD to a level not 

significantly different to cell death observed in neurons not submitted to OGD, or STI1 

treated neurons submitted to OGD (Figure 11). Thus, we used these concentrations in our 

experiments with treatments during reperfusion.  
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Figure 13: Treatment neurons with BMP-4 during reperfusion significantly 

decreased OGD-induced cell death. Wild-type hippocampal neurons were treated with 

MLA (10nM), LDN 193189 (200nM), and/or BMP-4 (100ng/mL, 30minutes) and then 

subjected to 1 hour OGD. (A) Representative images obtained by confocal microscopy 

after 24 hours of reperfusion. (B) Cell death was quantified as percentage of total cells 

that were dead using calcein-AM (Live, green) and ethidium homodimer-1 (dead, red) 

dyes. Treatment of BMP-4 (100ng/mL) either before OGD or during reperfusion 

significantly reduced cell death. Treatment of either LDN 193189 or MLA prior to OGD 

decreased protection. Results are presented as mean +/- SEM; data were analyzed and 

compared by one-way ANOVA and Tukey’s post hoc test. (n=4). Different letters above 

the bars indicate significant difference (P<0.05), whereas bars denoted with the same 

letter are not significantly different (P>0.05). 
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We have shown that neuroprotection by STI1 depends on PrP
C
 (Figure 5). We 

then tested whether neuroprotection by BMP-4 and PNU 282,987 bypasses the PrP
C
-

dependent step activated by STI1 or if it also require PrP
C
 for preventing neuronal death-

induced by OGD. We treated wild-type and Prnp
0/0 

neurons with BMP-4 and PNU 

282,987 and compared cell death between the two after OGD and reperfusion. In the 

absence of PrP
C
, both BMP-4 and PNU 282,987 were still able to prevent OGD-induced 

neuronal death (Figure 14). Furthermore, treatment of BMP-4 during reperfusion still 

protected the neurons against OGD even in the absence of PrP
C
. Interestingly, in line with 

a potential role of α7nAChRs after BMP-4 treatment, MLA or absence of α7nAChRs 

completely abolished the rescue from cell death in BMP-4-treated neurons (Figure 15). 
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Figure 14: Neuroprotection against OGD by PNU 282,987 and BMP4 was 

independent of the PrPC. Wild-type and Prnp
0/0

 hippocampal neurons were treated with 

recombinant STI1 (1μM), PNU 282,987 (20 μM), or BMP-4 (100ng/mL, 30minutes) and 

then subjected to 1 hour OGD. BMP-4 was also treated during reperfusion in a separate 

experiment group. (A) Representative images obtained by confocal microscopy after 24 

hours of reperfusion.  (B) Cell death was quantified as percentage of total cells that were 

dead using Calcein-AM (live, green) and Ethidium homodimer-1 (dead, red) dyes. Cell 

death following OGD in Prnp
0/0

 neurons treated with STI1was significantly higher 

compared to wild-type counterparts. No significant differences were found between wild-

type and Prnp
0/0

 neurons when treated with PNU 282987 or BMP-4 prior to OGD or 

during reperfusion. Results are presented as mean +/- SEM; data were analyzed and 

compared by two-way ANOVA and Tukey’s post hoc test.(n=4) *P<0.05.  
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Figure 15: BMP-4 protection against OGD was dependent on the α7nAChR. Wild-

type and α7nAChR-KO hippocampal neurons were treated with BMP-4 (100ng/mL, 30 

minutes) and then subjected to 1 hour OGD or during reperfusion. (A) Representative 

images obtained by confocal microscopy after 24 hours of reperfusion. (B) Cell death 

was quantified as percentage of total cells that were dead using Calcein-AM (live, green) 

and Ethidium homodimer-1 (dead, red) dyes. Treatment of BMP-4 (100ng/mL) either 

before OGD or during reperfusion significantly reduced cell death, an effect not observed 

in α7nAChR-null neurons. Results are presented as mean +/- SEM; data were analyzed 

and compared by two-way ANOVA and Tukey’s post hoc test. (n=4). Different letters 

above the bars indicate significant difference (P<0.05), whereas bars denoted with the 

same letter are not significantly different (P>0.05). 
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4 Discussion 

Current treatments for ischemic stroke are limited in efficacy, thus calling for the 

development of novel therapeutics. Recent studies have identified both STI1 and PrP
C
 as 

potential targets for stroke treatment. However, the exact mechanism by which STI1-

PrP
C
 protects the brain during ischemia is poorly understood. Here we demonstrated that 

the STI1-PrP
C
 neuroprotective mechanism is dependent on the α7nAChR and ALK2 

receptor. Activation of the α7nAChR and ALK2 receptor by PNU 282,987 and BMP-4, 

respectively, also protected neurons against OGD in a manner independent of PrP
C
. 

Interestingly, BMP-4 protected neurons even if treated during reperfusion. The 

neuroprotective signalling mechanisms of these receptors, limitations of this study, and 

future directions will be discussed in the following sections.  

4.1 STI1 as a neuroprotective factor 

Caspase-3 is a critical mediator of apoptosis and is often activated during 

programmed cell death as a protease in the cleavage of vital cellular proteins (Porter et 

al., 1999). Using our Apo mouse, we were able to quantify caspase-3 activity via the CFP 

technique and demonstrate that STI1 plays a vital role in cellular survival following 

OGD. One of the mechanisms suggested to be responsible for neuroprotection is 

activation of PKA. Previous studies have shown that activation of cAMP and its effector 

PKA protects cells against TNF-α-induced apoptosis (Insel et al., 2012, Kragsted et al., 

2004). In fact, PKA activation is one of the mechanisms by which STI1-PrP
C
 protects 

against staurosporine-induced cell death (Caetano et al., 2008, Beraldo et al., 2010). 

Moreover, studies have shown that inhibition of PKA activity abolished the protective 

effect of PrP
C
 activation (Lopes et al., 2005). However, unlike ERK1/2 activation by 
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STI1, PKA activation does not require PrP
C
 endocytosis (Caetano et al., 2008). The 

STI1-PrP
C
 complex may remain near the cell surface and physically interacts with the 

α7nAChR to induce calcium influx and subsequent activation of PKA, thereby inducing 

protection against elevated pro-apoptotic enzymes during ischemia. Here we showed that 

the α7nAChR is required in neuroprotection by STI1 against OGD, supporting the model 

in which α7nAChR activation by STI1-PrP
C
 interaction leads to PKA activation and 

subsequent neuroprotection against OGD. To further examine the role of PKA in 

protection against OGD-induced apoptosis, future studies should determine if the 

endocytosis of PrP
C 

is required for the anti-apoptotic effects observed is this study.  

Interestingly, the protective effect of STI1 was observed as early as 3 hours 

following OGD. Previous studies investigating signalling pathways of STI1 have shown 

that STI1 induces PrP
C
 internalization as early as 45 minutes following treatment 

(Caetano et al., 2008), with the internalization of PrP
C 

by STI1 being a necessary step in 

STI1-mediated neuritogenesis via ERK1/2 signalling. However, STI1-PrP
C
 has also been 

shown to enhance protein synthesis in neurons via PI3K-mTOR signalling (Roffe et al., 

2010). The increase in protein synthesis as evidenced by [
35

S]-methionine incorporation, 

which occurred after only 30 minutes of incubation with STI1 (Roffe et al., 2010). The 

authors suggested that the increase in protein synthesis via the interaction between PrP
C
 

and STI1 is critical for both neuritogenesis and neuroprotection against staurosporine-

induced cell death (Roffe et al., 2010). Together, the timing of STI1-mediated signalling 

demonstrated by these studies align with our observations that STI1 decreases both 

caspase-3 induced fluorescence and cell death as early as 3 hours following OGD. Future 

studies using the Apo mouse should examine the caspase-3 activity and cell death as 
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early as one or two hours following OGD to determine how quickly STI1 acts on the cell 

following or even during injury. This will help identify the timing in which signalling 

pathways are active when neurons are protected by STI1, and how quickly these cellular 

changes can translate into protection against OGD.  

STI1 has also been suggested to have cell signalling pathways independent of the 

prion protein. For example, in ovarian cancer cells, secreted STI1 acts as a ligand for 

ALK2 receptors, leading to cancer cell proliferation (Tsai et al., 2012). Furthermore, 

STI1 has also been shown to regulate retinal proliferation independent of the prion 

protein (Arruda-Carvalho et al., 2007). However, in hippocampal neurons, 

neuroprotection by STI1 against OGD was determined to be dependent on the prion 

protein. Our results confirm findings in previous studies in which neuroprotection by 

STI1 is dependent on the activation of the PrP
C
-regulated signalling pathways (Lopes et 

al., 2005, Lima et al., 2007, Caetano et al., 2008, Roffe et al., 2010). 

4.2 Activin receptor family member ALK2 offers unique 
protection against ischemia 

Activin receptors have been found to play a role in many cellular functions 

including facilitation of neuronal survival following ischemia (Mukerji et al., 2007). 

Studies have shown that endogenous activin can protect neurons in vitro from hydrogen 

peroxide free radical stress (Mukerji et al., 2007). Here we showed that ALK2 receptors 

were expressed in hippocampal neurons and played a role in STI1-PrP
C 

neuroprotection 

against OGD. In ovarian cancer cells, STI1 activates ALK2, which triggers SMAD 

signalling and induces cell proliferation. Interestingly, this pathway was also observed to 

be up-regulated in neurons adjacent to areas of ischemia in vivo (Mukerji et al., 2007). 
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Furthermore, in a separate study, SARA was found to be up-regulated following OGD in 

PC12 cells (Wang et al., 2013). As described earlier, recruitment and orientation of 

SMAD proteins for phosphorylation by ALK2 receptors is dependent on SARA activity 

(Kitisin et al., 2007). The authors found that down-regulation of SMAD signalling by 

inhibition of SARA exacerbated neuronal death during OGD. It is possible that, in 

addition to PrP
C
, STI1 also targets ALK2 receptors and subsequent SMAD signalling in 

neurons to induce neuroprotection against OGD.  

However, the two signalling pathways activated by STI1 may not be mutually 

exclusive, as we observed that inhibition of the ALK2 receptor completely abolished the 

neuroprotective effect of STI1 against OGD. PrP
C
 has been described as a multi-faceted 

scaffolding protein and modulates a plethora of cell surface receptors. One of the 

receptors modulated by the PrP
C
 is the α7nAChR (Beraldo et al., 2010). Interestingly, our 

study demonstrates that the α7nAChR is required for BMP-4 neuroprotection against 

OGD. Since BMP-4 activates ALK2, and PrP
C
 modulates the α7nAChR, it is possible 

that there is cross-talk between PrP
C
 and ALK2. The mechanisms by which PrP

C
 protects 

neurons is by activation of PKA, attenuation of excitotoxicity by modulation of NMDA 

receptors, and its interactions with the α7nAChR (Chiarini et al., 2002, Zanata et al., 

2002, Lopes 2005, Houman et al., 2008, Beraldo et al., 2010). However, in experiments 

with Pnrp
0/0 

neurons, while neuroprotection by STI1 is dependent on the PrP
C
, BMP-4 

does not require the PrP
C
 for neuroprotection. While it may be possible that BMP-4 is 

able to activate some or all of those pathways independently of the PrP
C
, it is also 

possible that BMP-4 may activate an entirely different set of signal cascades downstream 

of PrP
C
. Furthermore, neuroprotection against OGD by BMP-4 was not observed in 
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neurons from the α7nAChR-KO mouse line, suggesting an interaction between BMP-4 

and the α7nAChR. Activation of the α7nAChR has been documented to play a role in 

attenuating inflammation-induced damage following ischemia by inducing Akt 

phosphorylation and inhibition of GSK-3β activity (Duris et al., 2011, Grimes and Jope, 

2001). Neuroprotection by PKA activation from STI1-PrP
C
 is also dependent on the 

α7nAChR (Chiarini et al., 2002, Beraldo et al., 2010). It is possible that BMP-4 may also 

use these pathways in protection against OGD. While there is no direct evidence of 

interactions between BMP-4, ALK2, and the α7nAChR, future studies should examine 

both Akt/GSK-3β phosphorylation and PKA activity following treatment with BMP-4. 

Furthermore, future studies should also focus on the potential mechanism in which BMP-

4 possibly interacts with the α7nAChR to elicit a calcium influx in manner similar to 

STI1-PrP
C
 interaction.  

4.3 Treatment during reperfusion 

We have investigated the potential of the α7nAChR, ALK2 receptor, and PrP
C
 in 

protecting neurons from OGD. In the experiments described above, manipulation of these 

receptors occurred before the 1 hour exposure to OGD. However, in practical situations, 

treatments administered following ischemic insult are much more prevalent than those 

administered prior to insult. In this study we showed that neither STI1 nor PNU 282,987 

were able to protect the neurons if treated after OGD. Our findings with PNU 282,987 

were in contrast to those of a study in which continual post-intracerebral haemorrhage 

treatment with PNU 282,987 in vivo for durations ranging from 3 hours to 3 days led to 

an increased number of surviving neurons when observed three days post-insult (Hijioka 

et al., 2012). Although the study focused on haemorrhagic stroke, the authors suggested 
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that the α7nAChR agonist protected the brain in a manner that was independent of its 

anti-inflammatory properties. This was evidenced by the lack of effect of PNU 282,987 

on the expansion of the hematoma as well as the edema formation (Hijioka et al., 2012). 

One explanation was that, in vivo, α7nAChRs are also expressed by 

microglia/macrophages (Suzuki et al., 2006), which may play a role in the survival of 

neurons following intracerebral haemorrhage, a model that is absent in our in vitro 

experiments. Another explanation for PNU 282,987 not protecting neurons when treated 

during reperfusion is that compared to in vivo models, cells in vitro have been shown to 

be much more vulnerable to anoxic and excitotoxic transients (Kristian et al., 1998). To 

further evaluate this, a milder insult such as a 30-minute exposure to OGD should be 

conducted to see if PNU 282,987 can protect neurons if treated during reperfusion. 

Furthermore, since the penumbra is the primary area of interest for pharmaceutical 

intervention following stroke, a milder model of OGD using 2% oxygen and 10% of the 

original concentration of glucose should be used.  

However, although the lack of surrounding cellular architecture and increased 

vulnerability may explain why PNU 282,987 did not protect our neurons in vitro, our 

results show that BMP-4 was able to decrease cell death even if used as a treatment 

during reperfusion. Although we have shown that BMP-4 neuroprotection is dependent 

on the α7nAChR, unlike PNU 282,987, BMP-4 may interact with other receptors and 

signalling pathways in addition to the α7nAChR. In vivo studies have shown that BMP-4 

has been found to play a critical role in the differentiation of NSCs into neurons, 

oligodendrocytes, and astrocytes during periods of spatiotemporal development 

(Abematsu et al., 2006). Recent studies have also shown that BMP-4 is highly expressed 
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in astrocytes, which can be a major source of BMPs (Hu et al., 2012). In addition, STI1 

has been shown to recruit BMDCs into the area of ischemia (Lee et al., 2013). The 

recruitment of BMDCs, which have been suggested to play a vital role in recovery 

following ischemia, may be further influenced by BMP-4 to induce differentiation into 

neurons, oligodendrocytes, and astrocytes. However, this in vivo model of recovery 

following ischemia does not explain how BMP-4 protected neurons in vitro when treated 

during reperfusion. Regardless, future experiments should focus on treatment of BMP-4 

in in vivo models of stroke, and see if it can still protect if administered post-ischemia.  

4.4 Limitations and Future Directions 

4.4.1 In vivo experiments 

There were several limitations within our model of stroke. During stroke, many 

cytotoxic effects are present in addition to the lack of oxygen and glucose. In an in vivo 

model, cytotoxic effects such as ATP depletion, increase in ROS, excessive intracellular 

calcium, and ion shifts (Lau et al., 2010, MacDonald et al., 2006) may be attenuated by 

the glial, astrocyte, and macrophages within the architecture surrounding the neurons 

(Suzuki et al., 2006, Kristian et al., 1998). However, due to time limitations and the need 

to first obtain experimental data supporting the rationale for further in vivo experiments, 

all experiments in this study were carried out in vitro. It would be interesting to see if the 

findings from this study can be recapitulated in vivo. For example, BMP-4 can be 

administered to mice following various durations of middle cerebral artery occlusion. 

Neurological damage can be assessed using the Bederson scale (Bederson et al., 1986) or 

measurement of infarct size. Behavioural and neuromuscular deficits can be measured 

using tests such as grip strength (described in Lee et al., 2013), elevated body swing test 
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(Shyu et al., 2004), and adhesive removal (described in Beraldo et al., 2013). Evaluation 

of the drugs used in our study in vivo will be further characterized in future studies for 

their efficacies in treatment of stroke. 

Many recent advances in stroke treatment involve thrombolytics and therapeutic 

strategies that target the survival of the cells directly. However, secondary injury 

mechanisms involving the inflammatory cascade can be equally damaging as the initial 

cytoxicity (Aronowski et al., 2005). Cellular damage following ischemic onset is 

contributed to by the failure of membrane sodium/potassium ATPase pumps and 

intracellular calcium accumulation (Emsley et al., 2008). However, while cytotoxic 

edema develops within minutes of ischemia onset, damage due to inflammation can occur 

from hours to days, spreading from the ischemic core into the surrounding ischemic 

penumbra (Baron 2001). This suggests that treatments targeting the inflammatory 

response can have greater success in neuroprotection relative to treatments that combat 

initial cytotoxicity. Since agonists of the α7nAChR have been identified to have a potent 

anti-inflammatory effect, the α7nAChR has been discussed as a potential target for 

neuroprotection against haemorrhagic stroke (Duris et al., 2011, Krafft et al., 2012, Li et 

al., 2013). In addition, puerarin, a major isoflavonoid derived from Gegen, has been 

found to attenuate cerebral ischemia by counteracting the inflammatory response via the 

α7nAChR (Liu et al., 2013). Pro-apoptotic inflammatory enzymes such as nuclear factor 

kappa (NF-κB), interleukin-6 (IL6), and tumour necrosis factor-α (TNF-α) are increased 

following ischemia (Liu et al., 2013, Barnes et al., 1997). Future studies in vivo should 

further examine the suppression of the anti-inflammatory cascade in the STI1-PrP
C
-
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α7nAChR mechanism of neuroprotection by measuring the levels of these inflammatory 

markers. 

4.4.2 Protection beyond the hippocampus 

The most common site of stroke occurs in the middle cerebral artery (MCA) that 

supplies blood to the cerebrum, resulting in deficits in both motor and cognitive 

functions. On the other hand, damage to the hippocampus, which is often accompanied 

by amnesia, results from infarctions in the posterior cerebral artery (PCA) (Szabo et al., 

2009). Since MCA occlusions occur more often than PCA occlusions, future studies 

investigating STI1-PrP
C
 neuroprotection should also be conducted in neurons from the 

cortex and the striatum, which are more commonly damaged during ischemic stroke. 

In our experiments, we primarily used hippocampal neurons. Unlike PrP
C
 and 

STI1, the expression of ALK2 is relatively scarce, and more focused in the hippocampus. 

Future experiments should explore if our observations in hippocampal neurons are 

reflective of the rest of the brain by repeating these experiments in neurons from different 

areas of the cortex, the midbrain and the hindbrain. Immunohistochemistry experiments 

should also be conducted to further examine the expression of the α7nAChR and ALK2 

receptors.  

4.4.3 Recombinant vs. Endogenous STI1 

The difference between recombinant and endogenous astrocyte-derived STI1 has 

been studied previously (Caetano et al., 2008). In conditioned media from astrocytes, the 

amount of endogenous STI1 was estimated to be approximately 0.5nM, and 5nM of STI1 

was required to induce ERK1/2 activation. In contrast, 100 times more recombinant STI1 
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(0.5μM) was required to induce the same effect. The authors proposed that the difference 

in the efficacy may be attributed to improper folding of recombinant STI1, lack of post-

translational modifications, or absence of potential co-activators in the media (Caetano et 

al., 2008). In our experiments, we used recombinant STI1 concentration of 1μM to induce 

neuroprotection. It would be of interest in future experiments to use astrocyte-derived 

endogenous STI1 and determine if there is a difference in neuroprotection against OGD, 

or perhaps a protective effect of endogenous STI1 if treated during ischemia similar to 

BMP-4.  

4.4.4 Calcium Signalling 

Previous studies have shown that STI1 induces calcium influx via the α7nAChR 

(Beraldo et al., 2010). Here we have demonstrated that the neuroprotective effect of 

BMP-4 against OGD is dependent on the α7nAChR, as its effects were abolished by 

treatment with MLA or in α7nAChR-null neurons. Early preliminary results conducted 

showed a transient increase in calcium influx when hippocampal neurons (7 DIV) were 

treated with 100ng/mL of BMP-4 (data not shown). Future experiments should fully 

characterize the interaction of BMP-4 and calcium influx, and more specifically its 

involvement with the α7nAChR by using both pharmacological and genetic models. 

4.4.5 STI1 signalling via the ALK2 receptor in neuroprotection 

In ovarian cancer cells, the secreted STI1 binds to ALK2 receptors, leading to the 

recruitment and phosphorylation of SMAD 1/5, subsequent translocation to the nucleus, 

up-regulation of ID3 genes, and ultimately resulting in increased cell proliferation (Tsai 

et al., 2012). Here we showed that ALK2 receptors are not only expressed in 

hippocampal neurons, but are also necessary for neuroprotection by STI1 against OGD. It 
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would be interesting to see if the STI1-ALK2 signalling in neurons also acts through the 

same or a similar signalling cascade compared to ovarian cancer cells. Future studies 

should conduct Western blot analysis to see if the treatment of STI1 or BMP-4 (as a 

positive control) leads to an increase in Phospho-SMAD1/5 relative to total SMAD1/5. 

To further elucidate the signalling mechanism of STI1 and ALK2, a recombinant STI1 

deleted of amino acids 230-245, which is involved in PrP
C
 binding, should be used. This 

will allow us to determine if SMAD signalling induced by STI1 is independent from 

PrP
C
. The Prnp

0/0
 mouse line can also be used to confirm these results. In ovarian cancer 

cells, STI1 was also observed to interact with clathrin, and the inhibition of clathrin-

dependent endocytosis resulted in compromised STI1-ALK2 interaction, and ultimately 

decreased SMAD1/5 phosphorylation and cell proliferation (Tsai et al., 2012). In 

comparison, the endocytosis of STI1-PrP
C
 was also found to be necessary for ERK1/2 

signalling (Caetano et al., 2008). It would be of interest to see if clathrin-dependent 

endocytosis also plays a role in STI1/ALK2-mediated neuroprotection. Future studies 

should use immunocytochemistry to determine if treatment of neurons with STI1 

increases cytoplasmic ALK2 staining. Furthermore, treatment of neurons with Dynasore, 

the inhibitor of dynamin-dependent endocytosis, before OGD could further elucidate the 

ALK2 pathway in neuroprotection (Macia et al., 2006). 

4.5 Conclusions 

Both STI1 and PrP
C
 have been suggested to play a role in endogenous 

neuroprotective mechanisms during stroke. With our findings, we suggest that the 

α7nAChR and the ALK2 receptor are also potential targets for stroke treatments. Future 

studies should evaluate these receptors in vivo. Overall, our findings, summarized in 
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Figure 16, further elucidate the molecular mechanisms and the receptors involved in 

STI1-PrP
C
 neuroprotection, which is an important step towards the development of novel 

treatments for stroke.  
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Figure 16: Schematic of the proposed model of the α7nAChR, PrPC, ALK2, and 

their interaction with STI1. Extracellular STI1 has been shown to act as a ligand for the 

GPI-anchored PrP
C
 leading to calcium influx via the α7nAChR. Here we propose the role 

of the ALK2 receptor in hippocampal neurons as a receptor for the STI1 leading to 

neuroprotection in conjunction to PrP
C
. Arrow heads indicate activation, while blunt 

heads indicate inhibition. Future studies should aim to elucidate the interaction between 

ALK2 and α7nAChR. 
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Appendices 

Animal Protocol Certificate 

eSirius Notification - Annual Protocol Renewal APPROVED by the AUS 2008-127::6 

2008-127::6: 

AUP Number: 2008-127 

AUP Title: a)Elucidating the Function acetylcholine in the central and peripheral 

nervous system; b)Role of the Cellular Prion Protein in physiological and pathological 

conditions 

Yearly Renewal Date: 03/01/2015 

The YEARLY RENEWAL to Animal Use Protocol (AUP) 2008-127 has been 

approved, and will be approved for one year following the above review date. 
1. This AUP number must be indicated when ordering animals for this project. 

2. Animals for other projects may not be ordered under this AUP number. 

3. Purchases of animals other than through this system must be cleared through the 

ACVS office. 

Health certificates will be required. 

REQUIREMENTS/COMMENTS 
Please ensure that individual(s) performing procedures on live animals, as described in 

this protocol, are familiar with the contents of this document. 

The holder of this Animal Use Protocol is responsible to ensure that all associated safety 

components (biosafety, radiation safety, general laboratory safety) comply with 

institutional safety standards and have received all necessary approvals. Please consult 

directly with your institutional safety officers. 

Submitted by: Kinchlea, Will D  

on behalf of the Animal Use Subcommittee 
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