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Abstract 

Breast cancer (BC) patient management has been transformed over the last two decades due 

to the development and application of genome-wide technologies. The vast amounts of data 

generated by these assays, however, create new challenges for accurate and comprehensive 

analysis and interpretation. This thesis describes novel methods for fluorescence in-situ 

hybridization (FISH), array comparative genomic hybridization (aCGH), and next generation 

DNA- and RNA-sequencing, to improve upon current approaches used for these 

technologies. An ab initio algorithm was implemented to identify genomic intervals of single 

copy and highly divergent repetitive sequences that were applied to FISH and aCGH probe 

design. FISH probes with higher resolution than commercially available reagents were 

developed and validated on metaphase chromosomes. An aCGH microarray was developed 

that had improved reproducibility compared to the standard Agilent 44K array, which was 

achieved by placing oligonucleotide probes distant from conserved repetitive sequences.  

Splicing mutations are currently underrepresented in genome-wide sequencing analyses, and 

there are limited methods to validate genome-wide mutation predictions. This thesis 

describes Veridical, a program developed to statistically validate aberrant splicing caused by 

a predicted mutation. Splicing mutation analysis was performed on a large subset of BC 

patients previously analyzed by the Cancer Genome Atlas. This analysis revealed an elevated 

number of splicing mutations in genes involved in NCAM pathways in basal-like and HER2-

enriched lymph node positive tumours. Genome-wide technologies were leveraged further to 

develop chemosensitivity models that predict BC response to paclitaxel and gemcitabine. A 

type of machine learning, called support vector machines (SVM), was used to create 

predictive models from small sets of biologically-relevant genes to drug disposition or 

resistance. SVM models generated were able to predict sensitivity in two groups of 

independent patient data.  

High variability between individuals requires more accurate and higher resolution genomic 

data. However the data themselves are insufficient; also needed are more insightful analytical 

methods to fully exploit these data. This dissertation presents both improvements in data 

quality and accuracy as well as analytical procedures, with the aim of detecting and 
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interpreting critical genomic abnormalities that are hallmarks of BC subtypes, metastasis and 

therapy response. 

Keywords 

genomic technology, breast cancer, nucleic acid hybridization, fluorescence in-situ 

hybridization, microarray, copy number changes, next generation sequencing, splicing 

mutations, NCAM, mutation validation, chemosensitivity, support vector machines, machine 

learning, paclitaxel, gemcitabine, formalin fixed paraffin embedded tissue 
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Chapter 1  

1 Introduction 

1.1 Breast Cancer Overview 

Breast cancer is the most frequently diagnosed cancer worldwide (1). In Canada, 1 in 9 

women are expected develop breast cancer in their lifetime, with 24,000 new cases (26% 

of all cancer cases) in 2014 (2). Advancements in prevention, screening, and treatment 

strategies over the past 20 years have led to a steady decrease in mortality rates from 

breast cancer, yet it still accounts for 14% of cancer deaths in Canada (2). These rates are 

similar to those of the United States and other economically developed countries (1).  

After diagnosis, clinicians rely on multiple parameters to direct treatment strategies and 

predict prognosis, including clinical factors, such as patient age, lymph node status 

(positive or negative), tumour size, and histological grade, as well as the status of 

estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 

receptor 2 (HER2) in the tumour.  

1.1.1 Gene Expression Subtypes of Breast Cancer 

Although all breast tumours are grouped under the umbrella of one disease, breast cancer 

is remarkably complex. The traditional markers used for tumour classification are not 

able to fully portray the biological variability observed among breast tumours (including 

genomic alterations, cellular composition, and response to treatment). With the 

advancement of microarray technology, gene expression profiling led to the sub 

classification of breast cancer into 5 categories: Luminal A, Luminal B, HER2-enriched, 

Basal-like, and Normal-like (3,4). More recently, an additional subtype was identified, 

Claudin-low (5), to make up the 5 intrinsic subtypes of breast cancer, and the additional 

Normal Breast-like group. These subtypes are now well-characterized, and have distinct 

gene expression patterns (3), require different treatment regimens (6) and vary in 

prognoses (7). 
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Luminal A tumours make up approximately 30% of breast cancer cases, and have the 

longest relapse-free and overall survival, whereas Luminal B tumours have lower relapse-

free survival, similar to the other subtypes (8). The large majority (at least >90%) of 

Luminal A and B tumours are ER+ and can be identified by their gene expression 

signatures characteristic of luminal epithelial cells. These genes include a group of 

transcription factors, including ER, which can be used to differentiate between Luminal 

A and B tumours, because this proliferation signature is expressed at higher levels in the 

Luminal B subtype (3,8). HER2-enriched tumours are characterized by the amplification 

of the HER2 gene and historically, they have had low relapse-free and overall survival 

(8). However, the development of Trastuzumab, a monoclonal antibody against HER2, 

improved response rate and reduced the risk of death for this subtype by 20% when used 

in conjunction with chemotherapy (9). Basal-like and Claudin-low subtypes are similar in 

that they have low expression in both the Luminal and HER2-enriched intrinsic 

expression signatures, but differ in at least two groups of genes. Unlike the Basal-like 

subtype, Claudin-low tumours show low expression in a gene cluster enriched with cell-

to-cell adhesion proteins, and high expression of a group of genes enriched with immune 

system response genes (8). Both Basal-like and Cluadin-low subtypes have poorer 

prognoses compared to Luminal A tumours, and similar to the outcomes of Luminal B 

tumours (8). Normal-like tumours are those that cluster with normal breast tissue in gene 

expression profiling. They have expression of genes that are characteristic of basal 

epithelial and adipose cells, and low expression of genes usually observed in Luminal 

cells. The intrinsic subtypes of breast cancer only consider tumour differences at the gene 

expression level and do not fully portray the molecular complexity of tumours at the 

genomic level. 

1.1.2 Genomic Analyses of Breast Cancer Tumours 

Genome instability is one of the major mechanisms that allows cells to develop into 

cancer (10). The cellular characteristics that enable malignant growth are known as the 

hallmarks of cancer, and include: the evasion of apoptosis, self-sufficiency in growth 

signals, insensitivity to anti-growth signals, sustained angiogenesis, limitless replicative 

potential, tissue invasion and metastasis, reprogramming of energy metabolism and 
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evading immune destruction (10,11). Our understanding of tumour genomes, and the 

specific types of aberrations and mutations driving tumourigenesis, is increasing rapidly 

as next generation sequencing is becoming more advanced and affordable. 

At least five major genomic studies have begun to elucidate commonly mutated genes 

that may be causing or perpetuating tumour development in breast cancer (12-16). Two 

of these studies focused on tumours with specific pathological markers: one assessed 37 

Basal-like and 28 other triple negative breast cancer (ER, PR and HER2 are not 

expressed) (15), and the other study analyzed 77 ER positive (Luminal) tumours (13). 

The remaining three sequencing studies assessed either all intrinsic subtypes (12,14), or 

did not perform subtyping analysis (16). Between all five studies, whole genome or 

exome sequencing was performed on a total of 860 tumours, and reported a combined 

46,167 mutations (See Table 1.1 for a summary/breakdown of each study).  

These sequencing studies demonstrated that mutations in different tumour suppressor or 

oncogenes can lead to the same breast cancer phenotypes. A total of 55 genes were cited 

as frequently mutated, although many were mutated in less than 10% of tumours (see 

Table 1.2 for a list of all genes and their mutation frequencies). At least 33 genes were 

statistically significantly mutated in the breast cancer tumours assessed, and there was 

considerable overlap between the five studies (Figure 1.1). Not surprisingly, PIK3CA and 

TP53 were both identified to be significantly mutated in breast tumours across all five 

studies. TP53 was identified as a tumour suppressor gene more than two decades ago, and 

at that time, was observed to be the most commonly altered gene in tumours (17). 

Frequent mutations in PIK3CA in breast cancer were observed as early as 2004, where 

25% of the tumours assessed contained somatic mutations in the gene (18). Additional 

genes that were highlighted in at least two of the five studies included known breast 

cancer genes (GATA3, RB1, AKT1, CDH1, MAP3K1, MLL3, CDKN1B and PTEN) and 

newly identified ones (CBFB, RUNX1, TBX3 and SF3B1). 

These sequencing studies highlight the genomic diversity of mutations among breast 

cancer tumours. Of particular interest are the 40 (or more) genes that were identified as 

potential breast cancer genes in only one of five the studies. Discordance between the 
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Table 1.1 Summary of large-scale breast cancer sequencing studies. 

Paper No. Tum. Subtypes No. Mut.  
Ave No. 

Mut. / Tum. 
Significantly Mutated Genes 

Method to Identify Sig. 
Mutated Genes 

Banerji
12

 
(B)  

108 

Lum A = 38 
Lum B = 22  
HER2 = 21  
Basal = 13 
Norm = 5 

4985 46 
Known: PIK3CA, TP53, AKT1, GATA3, 
MAP3K1  
New: CBFB 

MutSig
19

 Algorithm - 
FDR <0.1 

Ellis
13

 (E) 77 
Lum A/B = 

77 
3208 42 

Known: PIK3CA, TP53, GATA3, CDH1, 
RB1, MLL3, MAP3K1, CDKN1B 
New: TBX3, RUNX1, LDLRAP1, STMN2, 
MYH9, AGTR2, SF3B1, CBFB, ATR 

MuSiC
20

 - Convolution 
Test FDR <0.26 

Shah
15

 (Sh) 65 Basal = 37 2414 37 
Known: TP53, PIK3CA, RB1, PTEN 
New: MYO3A, GH1 

Considered background 
mutation rates q < 0.1

21
 

Stephens
16

 
(St) 

100 N/A 7241 72 

Known*: PIK3CA, TP53, CDH1, GATA3, 
MLL3, AKT1  
New^: ARID1B, CASP8, MAP3K1, 
MAP3K13, NCOR1, SMARCD1, CDKN1B, 
AKT2, TBX3 

* cited as frequently 
mutated 
^ Searched for non-
random clustering of 
somatic mutations

22,23
 

TCGA
14

 (T) 510 

Lum A = 225 
Lum B = 126  
HER2 = 57 
Basal = 93 

28319 56 

Known: PIK3CA, PTEN, AKT1, TP53, 
GATA3, CDH1, RB1, MLL3, MAP3K1, 
CDKN1B  
New: TBX3, RUNX1, CBFB, AFF2, PIK3R1, 
PTPN22, PTPRD, NF1, SF3B1, CCND3 

MuSiC
20

 - Convolution 
and Likelihood Ratio 
Tests FDR <0.05 

N/A = subtyping analysis was not reported. 
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Table 1.2 Frequency of commonly mutated genes in breast cancer tumours (refer to Table 1.1 for study abbreviations and citations) 

 
Gene B E Sh St T 

 
Gene B E Sh St T 

1. PIK3CA 27% 58% 11% 30% 36% 29. SETD2 
  

2% 1% 
 2. TP53 27% 23% 54% 37% 37% 30. AFF2 

    
3% 

3. CDH1 
 

10% 3% 7% 7% 31. AGTR2 
 

3% 
   4. GATA3 4% 10% 

 
14% 11% 32. AKT2 

   
1% 

 5. MAP3K1 3% 17% 
 

6% 8% 33. APC 
   

1% 
 6. MLL3 

 
6% 3% 5% 7% 34. ARID1B 

   
3% 

 7. RB1 
 

5% 8% 2% 2% 35. ASXL1 
   

1% 
 8. AKT1 6% 

  
4% 2% 36. BRAF 

  
3% 

  9. CBFB 4% 3% 
  

2% 37. BRCA1 
   

1% 
 10. CDKN1B 

 
3% 

 
1% 1% 38. CCND3 

    
<1% 

11. NCOR1 
  

2% 3% 3% 39. COL6A3 
  

6% 
  12. PTEN 

  
8% 3% 3% 40. ERBB3 

  
3% 

  13. SF3B1 
 

4% 
 

4% 2% 41. GH1 
  

5% 
  14. TBX3 

 
5% 

 
3% 3% 42. KRAS 

   
1% 

 15. ARID1A 
  

2% 3% 
 

43. LDLRAP1 
 

3% 
   16. ARID2 

  
3% 1% 

 
44. MAP3K13 

   
2% 

 17. ATR 
 

8% 6% 
  

45. MYO3A 
  

9% 
  18. BAP1 

  
2% 1% 

 
46. NRAS 

  
3% 

  19. BRCA2 
  

5% 0% 
 

47. PTPN22 
    

1% 

20. CASP8 
  

3% 3% 
 

48. SMAD4 
   

1% 
 21. ERBB2 

  
3% 1% 

 
49. SMARCD1 

   
1% 

 22. MAP2K4 
   

4% 4% 50. STK11 
   

1% 
 23. MLL2 

  
2% 1% 

 
51. STMN2 

 
3% 

   24. MYH9 
 

5% 2% 
  

52. SYNE1 
  

6% 
  25. NF1 

   
2% 3% 53. SYNE2 

  
5% 

  26. PIK3R1 
  

3% 
 

3% 54. UBR5 
  

6% 
  27. PTPRD 

  
2% 

 
2% 55. USH2A 

  
9% 

  28. RUNX1 
 

5% 
  

4% 
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Figure 1.1 Significantly mutated genes in breast cancer tumours.  Genes identified as 

significantly or commonly mutated were extracted from five major sequencing studies (found 

within each circle and colour coded according to the legend on the top right): Banerji et al. (2012), 

Ellis et al. (2012), Shah et al. (2012), Stephens et al. (2012), and the Cancer Genome Atlas 

(2012). The number of studies the gene was identified in is indicated by the bottom legend on the 

right. 
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studies may be due to low mutation rates, ranging from 1-9%, or differences in the 

methods of variant calling, variant filtering, and identifying common/significantly 

mutated genes. Of the five papers, four unique methods were used to identify which 

genes were “commonly” or “significantly” mutated, which in some cases lead to 

discrepancies as to which genes were included as significant. For example, CASP8 was 

mutated in 3% of breast cancer tumours in two studies (Shah (15) and Stephens (16)), but 

only one study (Stephens) cited it as a potential new breast cancer gene. Shah et al., 

(2012), considered background mutation rates when identifying new breast cancer genes 

(q < 0.1) (21), whereas Stephens et al., (2012), searched for non-random clustering of 

somatic mutations (22,23). 

Regardless of the differences between the five studies, the long list of potential driver 

genes created from these studies provides a new gene set to be explored and analyzed by 

the breast cancer community. Mutations in newly recognized genes may have 

implications in prognosis, treatment response, or provide the opportunity to identify new 

pathways for therapeutic targeting. For example, Stephens et al., (2012), identified 9 new 

potential driver genes that have not been previously noted in either breast or other cancer 

types. These genes are involved in pathways regulating the JUN kinases MAP2K7 and 

MAP2K8. Mutations in the mitogen-activated protein kinase (MAPK) signaling pathway 

genes have been suggested to be associated with drug resistance (24), which could have 

implications for breast cancer treatment if tumours contain mutations in these genes. 

Copy number analyses identified commonly deleted or amplified genes, including well 

known tumour suppressor or oncogenes (TP53, PIK3CA, NRAS, EGFR, RB1, and ATM), 

as well as new genes of interest that were not identified through DNA sequence analysis 

(PRPS2, NRC31, and four PKC-related genes) (15). These results were similar to the 

Cancer Genome Atlas (TCGA) study that confirmed previously reported copy number 

variations, and highlighted many of the same genes affected by copy number changes 

(including PIK3CA, EGFR, FOXA1, and HER2 in amplified regions, as well as MLL3, 

PTEN, and RB1 in deleted regions) (14). The TCGA study also identified five copy 
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number clusters that correlated with the gene expression subtypes, which had been 

observed before (25).  

1.2 Genomic technologies used in breast cancer research 

and clinical management 

It is possible that in order to achieve the greatest overall success when treating patients, 

tumours will need to be characterized at the genomic and/or transcriptomic level to guide 

treatment.  This is the basis behind the NCI-Molecular Analysis for Therapy Choice 

(NCI-MATCH) trial that was recently announced in the United States, which aims to 

personalize drug selection based on analyzing patient’s tumours for specific genetic 

abnormalities for which a targeted drug exists. There are a number of cytogenetic and 

molecular techniques that can be used in both research and clinical settings to analyze 

tumours for different types of mutations, guide diagnosis, predict prognosis and select 

treatment. Among the most common include fluorescence in-situ hybridization, genomic 

or gene expression microarrays, and next generation sequencing. 

1.2.1 Fluorescence in-Situ Hybridization 

Fluorescent in situ hybridization (FISH) uses fluorescently labeled nucleic acid probes to 

detect targeted genomic or transcriptomic sequences. FISH can be used to localize 

specific DNA sequences on interphase or metaphase chromosomes, or RNA sequences in 

cells or tissue samples. FISH was first reported in 1980, by a group that used 3’ 

fluorescently labeled RNA to bind specific DNA sequences (26). Prior to the use of 

fluorophores, similar hybridization methods used radiolabelled probes, which was not 

optimal due to the instability of radiolabelled probes, low resolution, long exposure 

times, and the costs and risks associated with radioactive material (27). Before FISH was 

developed, conventional cytogenetic methods, such as karyotype analysis, were 

commonly used for disease research and diagnosis. Given its higher resolution, FISH can 

be used to detect structural rearrangements in chromosomes including translocations, 

inversions, insertions, and microdeletions, identify marker chromosomes, and delineate 

chromosomal breakpoints.  
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The first draft of the human genome provided the opportunity to develop thousands of 

DNA clones (primarily bacterial artificial chromosomes, or BACs) that contain genomic 

sequence tags, and have been mapped to specific chromosome bands (28). Libraries of 

BAC probes are commercially available, and can also be produced in the laboratory in 

high quantities using a polymerase with strand displacement activity (29). There have 

been numerous disease-specific FISH reagents and methods have been developed with 

proven clinical significance and higher resolution over conventional cytogenetic 

karyotyping (30,31). Although these BAC FISH probes are still commonly used, the 

majority of theses clones are greater than 100 kb, so their use is usually restricted to 

detecting larger rearrangements (Figure 1.2). For the majority of probe labeling and 

hybridization techniques, detecting small sequences (<10 kb) has been difficult, because 

smaller probes are often inconsistent and have low sensitivity (32). More recently, 

methods and techniques have been developed to improve the throughput, or resolution of 

FISH. For example, labeling probes using nick translation with an excess of DNA 

polymerase I has increased signal intensities of a 30 kb probe (32), using single copy 

DNA sequences has enabled FISH probe design where the exact DNA sequence and 

genomic location are known (33), and an automated analysis method using grid sampling 

was developed that reduced the time of analysis and evaluation of results down to 9 

minutes per sample (34). 

FISH is commonly used in clinical diagnosis for birth defects and developmental delay, 

prenatal testing, and acquired diseases. It is a main test for disorders caused by 

microdeletions (35) (such as Williams, Prader-Willi, Angelman, Miller-Dieker, 

DiGeorge, Wolf-Hirschhorn, Cri-du-chat, and Smith-Magenis Syndromes) or 

microduplications (35) (such as Charcot-Marie-tooth 1A and Pelizaeus-Merzbacher), and 

also has many different applications in oncology (36). For example, FISH is commonly 

used to detect specific gene fusions known to occur in certain types of cancers, such as 

the EML4-ALF fusion in non-small-cell lung cancer (37) and the BCR-ABL fusion (ie. 

the Philadelphia chromosome) in chronic myeloid leukemia (38). In breast cancer, the 

American Society of Clinical Oncology/College of American Pathologists has 

recommended that the HER2 status (amplified or not) should be tested for all invasive 

breast cancer (39). They consider tumours to be HER2-positive if there are more than 6 
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copies of HER2 per nucleus, or if the HER2 gene signal to chromosome 17 ratio is more 

than 2.2. FISH results are typically used to confirm, or are confirmed with 

immunohistochemical assays, which were 92% concordant when assessing hundreds of 

samples (40). Even so, as much as 20% of HER2 testing may be inaccurate (39), and 

probes with higher resolution to the HER2 gene may be useful in improving the precision 

of these tests. 

1.2.2 Array Comparative Genomic Hybridization  

Comparative genomic hybridization (CGH) was developed for use on solid tumours in 

1992, and was initially performed genome wide using metaphase chromosomes (41). The 

technique involves differentially labeling normal and tumour genomic DNA that are 

simultaneously hybridized to normal metaphase chromosomes in the presence of 

unlabeled Cot-1 DNA, which is used to block repetitive regions in the genome. Normal 

and tumour DNA are detected with red and green fluorophores, which allows 

quantification of the relative amount of normal versus tumour DNA using the ratio of 

green-to-red fluorescence. The resolution of CGH using metaphase chromosomes is low, 

detecting copy number changes greater than 20 megabases (Mb). However, at the time, it 

was still able to identify amplifications in tumours in regions containing oncogenes, 

including HER2 in breast cancer (41). The resolution of CGH was improved through it’s 

application to microarrays, where targeted P1 phage or BAC clones were spotted on glass 

slides, hybridized to the sample and reference genome, and then imaged to derive 

fluorescence ratios of each clone (42). The approach was validated, in part, through more 

accurately detecting HER2 amplification in a breast cancer cell line and four breast 

cancer tumours. The resolution and genomic coverage of chromosomal microarrays, 

including array comparative genomic hybridization (aCGH) was developed further, using 

cDNA as probes (43), as well as oligonucleotides, which continue to be the current 

design today (44).  

Chromosomal microarrays are now a first tier test to detect genomic aberrations 

associated with intellectual disability, autism, and many congenital disorders (45,46). 

aCGH can be used to determine major chromosomal aneuploidy as well as  
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Figure 1.2 Example of BAC end pairs and FISH clones overlapping ERBB2. A screen shot of 

the UCSC Genome Browser displays the length of BAC probes (black with arrows and green 

bars) relative to small genes, such as ERBB2 (highlighted in navy blue). The chromosome and 

scale along the top depict the genomic chromosomal and genomic location in the region 

displayed. 
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submicroscopic duplications and deletions that can not be elucidated using conventional 

karyotyping. More recently, single polymorphism nucleotide (SNP) arrays were 

developed, which can provide similar chromosomal information, but also can identify 

genomic regions with loss of heterozygosity or mosaicism. The number of 

oligonucleotides on one array now ranges from hundreds of thousands to millions, 

depending on the commercial platform, which allows for reliable detection of copy 

changes as small as 25 kb. Reliable detection of small chromosomal gains and losses are 

important in clinical diagnosis, as it is estimated that submicroscopic deletions and 

duplications may be the underlying cause of up to 15% of genetic diseases (47). 

Before the wide-spread adoption of next generation sequencing, aCGH in conjunction 

with gene expression data was used to segregate breast cancer tumours based on their 

copy number changes, and to identify likely “driver” or commonly dysregulated genes 

(48). Andre et al. (2009) found the number of copy number aberrations in any given 

tumour can range dramatically, from 1 to 318 copy number changes, and averaged 76. 

There were a total of 48 minimum common regions with frequent copy number changes 

(11 gains, 37 losses) that were found in >20% of samples. In addition, 20 genes were 

amplified in at least 10 cases, of which 15 genes were overexpressed at the mRNA level. 

Tumours were classified based their copy number profile, and there was partial overlap 

between the gene expression subtypes and aCGH-based classifications: basal-like 

tumours were more frequently class I (77%), 53% of Luminal A cancers were in class III, 

and 67% of HER2 tumours were class II (48).   

1.2.3 Gene Expression Microarrays 

Gene expression microarrays involve hybridizing fluorescently labelled complementary 

DNA (cDNA) to microarrays slides containing probes of mRNA sequences, and use 

similar principles as chromosomal microarrays. cDNA Microarrays used to analyze gene 

expression were first described by Schena and colleagues in 1995 (49). Forty-five cloned 

cDNA transcripts from Arabidopsis, a small flowering plant, were printed onto a glass 

slide for subsequent gene expression measurement using fluorescently labeled probes 

using reverse transcription of mRNA. Only one year later, microarrays containing 1,046 
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human cDNAs were described by the same group, representing one of the first parallel 

gene analyses that measured differential gene expression patterns under given 

experimental conditions (50). In this study, control treated (37°C) and heat-treated (43°C) 

human T (Jurkat) cells were fluorescently labeled with different fluorophores to identify 

gene expression changes in the heat shock response. The technique of measuring 

expression levels relative to a control sample is still widely used today. As with 

chromosomal microarrays, the resolution and capabilities of gene expression microarray 

have been significantly advanced with the application of oligonucleotide-spotted arrays 

that contain thousands of individual probes (51). Normalized gene expression values 

measured from signal intensities of the array are commonly clustered to visualize and 

quantitatively identify differences between two samples or states (52). Groups of genes 

that share biological function, chromosomal location or regulation within the differential 

gene sets can be determined, which helps infer the biological processes contributing to 

the two conditions measured (53). Gene expression microarrays have been particularly 

impactful in breast cancer, and have led to the identification of the intrinsic subtypes of 

breast cancer (3) (see section 1.1.1) and the development of gene expression signatures 

that are used for patient management and prognosis, and are described in detail in section 

1.4. 

1.2.4 Next Generation Sequencing 

DNA sequencing was first described by Sanger et al. in 1977, where chain-terminating 

dideoxynucleotides were incorporated into DNA strands by DNA polymerase during in 

vitro DNA replication (54). The first human genome was published over twenty years 

later in 2001, which was the result of a decade-long international collaboration of 20 

groups (55,56). The availability of this, and other, whole genome reference assemblies 

allow short DNA strands to be mapped, or aligned, to already known sequences in the 

genome. The possibility of short-read sequencing enabled the advancement of next-

generation DNA sequencing, which has been rapidly developed in recent years. Many 

sequencers now take less than a week to complete a reaction (57), and consequently, the 

cost per reaction has fallen dramatically, making it accessible for both research and 

clinical applications. 
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Next generation sequencing involves a multi-step process where the sample is prepared, 

sequenced, and then analyzed. Initially, DNA template preparation is required to ready 

the DNA sample for the specific sequencing platform being used. Briefly, this involves 

shearing the DNA to a smaller fragment size, ligating common primers (adapters) to both 

ends of the DNA fragments, and amplifying the template being sequenced (most 

commonly through emulsion PCR or solid-phase amplification) (58). DNA samples are 

also often enriched for a target sequence, such as all coding regions (whole exome 

sequencing) (59) or specific genomic loci of interest using customized capture methods 

(60). There are currently multiple next-generation platforms that can be used to perform 

sequencing, including ion semiconductor (Ion Torrent sequencing), Pyrosequencing (454 

Life Sciences), sequencing by synthesis (Illumina), and sequencing by ligation (SOLiD 

sequencing). Sequences are generated using the detection of individual nucleotides or 

oligonucleotides at sequential positions in the nucleic acid fragments being sequenced. 

For example, sequencing by synthesis employs nucleotides that are fluorescently 

modified with a reversible chain terminator, each nucleotide with a different colour (61), 

resulting in the addition of only a single nucleotide with DNA polymerase in a given 

cycle. The reaction is performed over millions of clusters, each containing many identical 

copies of a DNA fragment. Clusters are imaged during each cycle, and the colour the 

cluster emits indicates the nucleotide at that position. At the end of the cycle, the 

terminator is cleaved, allowing for the next nucleotide to be added. 

Once the sequencing portion is complete, the DNA sequences obtained (or “reads”) must 

be aligned to the human reference assembly to determine their specific genomic location. 

Reads can be single-end (one end of the DNA library is sequence), or paired-end (both 

ends of the DNA fragments are sequenced, meaning the sequences are in close 

chromosomal proximity to each other), and can range from 35-150 bp (ie. Illumina) to an 

average of 400 bp (ie. 454 Life Sciences). Mapping reads to the correct location of the 

approximately 3 billion nucleotides in the genome with high accuracy is an enormous 

task. For this reason, there have been over twenty sequence alignment software programs 

developed (62) (for example, Bowtie (63), Bowtie2 (64), SOAP2 (65), MAQ (66), BWA 

(67) and RMAP (68)). Many of these programs apply or improve upon the Burrows 

Wheeler Transformation, which is an algorithm that can be used to compress character 
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strings (or in this case the DNA sequence) using runs of similar characters (69). Each tool 

has strengths and caveats. Mapping quality, in many cases, is compromised for shorter 

runtimes through neglecting base quality scores, limiting the number of tolerated base 

mismatches, disabling gapped alignment or limiting gap length, and ignoring SNP 

information (62). A study comparing 6 common alignment programs found that most 

tools underestimate their mapping quality, and inaccurate alignments can be eliminated 

by removing reads with a mapping quality of less than 1 (70). 

After sequencing reads have been aligned to the genome, DNA variants, which are 

nucleotides or sets of nucleotides that differ from the reference genome, can be detected 

(most commonly SNPs, insertions, and deletions). Similar to the abundance of sequence 

alignments programs that are available, there are over thirty different programs that 

perform variant calling (71,72). The Genome Analysis Toolkit (GATK) (71), which was 

developed at the Broad Institute in Cambridge, Massachusetts, has become one of the 

most common and recommended programs used for variant calling (73,74). However, 

many other programs have strengths and are useful for certain types of experiments. For 

example, determining somatic mutations in cancer can be performed more effectively 

with programs specifically designed to compare tumour and matched normal sequences 

(75-78).  

One of the largest hurdles the genomics community will likely face over the next decade 

is the clinical interpretation of variants in genomes, exomes, and transcriptomes that 

result from next generation sequencing studies. Differentiating between non-pathogenic, 

natural variation and likely damaging mutations can be extremely difficult, and has 

significant implications for disease-related research. Once a variant list is compiled, 

which can contain thousands of variants per sample, there are a number of different 

software programs that can aid in variant interpretation. Usually, variants are assessed to 

determine whether they are common polymorphisms (79,80) (natural variation in the 

population), and whether they are likely to be pathogenic. Software programs have been 

designed for a number of different purposes, for example: to annotate whether the variant 

resides in an exon or within other genomic regions (promoters, splice sites, CpG islands) 

(81,82), to predict the effect of the variant on the protein product (83-85), and to assess 
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whether the variant is likely to cause defects in mRNA splicing (86,87). With the 

development of numerous software programs with overlapping functions, selecting which 

programs to use for sequencing analyses can be difficult. Between the numerous options 

for sequencing platforms, read alignment algorithms, and variant calling and 

interpretation software, there are hundreds of potential pipelines or combinations of 

analyses that can be performed (Table 1.3). For clinical laboratories, the American 

College of Medical Genetics does not recommend any specific software programs for 

next-generation sequencing analysis, rather, it is recommended to select programs based 

on what type of genomic variation you are expecting and the depth of sequencing 

coverage, and to explain any variant filtering criteria while clearly outlining limitations of 

the approach (89). 

1.3 DNA Variants 

Advancements in our technical ability to reliably detect mutations in thousands of genes 

in a given patient has greatly outpaced our ability to interpret and report on the data 

collected in a clinical setting (90). Single nucleotide variants (SNVs) or small 

insertions/deletions (indels) can be located in exons (protein coding regions), introns 

(between exons), or non-coding regions. A typical sequencing study usually does not 

analyze mutations in non-genic regions, given the low likelihood of pathogenicity and 

difficulty to predict its affect on cellular function. 

1.3.1 Protein Coding Mutations 

There are three possible amino acid consequences for a single nucleotide variant found in 

a coding region of a gene, and they can be classified as silent, missense, and nonsense 

(stop) mutations. Silent mutations arise when a single nucleotide is altered, but the 

mutated codon results in the incorporation of the wild-type amino acid into the protein. 

Conversely, missense mutations occur when the mutation leads to an alteration of the 

amino acid at the position of the variant. Nonsense mutations lead to a premature stop 

codon within the coding sequencing, which results in protein truncation. Small indels can 
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Table 1.3 DNA sequencing software 

Program  Citations* Reference** 

ALIGNMENT SOFTWARE 
Bowtie 4176 / 5854 Langmead B. Genome Biol. 2009;10:R25. 
BWA 3930 / 5715 Li H. Bioinformatics 2009;25:1754–1760. 
MAQ 1367 / 1975 Li H. Genome Res. 2008;18:1851–1858. 
Bowtie2 1173 / 1887 Langmead B. Nat. Methods 2012;9:357–359. 
SOAP2 997 / 1438 Li R. Bioinformatics 2009;25:1966–1967. 
BWA-SW 938 / 1412 Li H. Bioinformatics 2010;26:589–595. 
SSAHA2 563 / 828 Ning Z. Genome Res. 2001;11:1725–1729. 
BFAST 231 / 367 Homer N. PLoS ONE 2009;4:e7767. 
Stampy 227 / 333 Lunter G. Genome Res. 2011;21:936–939. 
ELAND NA / NA Cox AJ. Illumina. 2007 
Novoalign NA / NA Novoalign. http://novocraft.com. 

VARIANT CALLERS 
SAMtools  3953 / 5624 Li H. Bioinformatics 2009;25:2078–2079. 
GATK  1207 / 1756 DePristo MA. Nat. Genet. 2011;43:491–498. 
SOAP SNP  997 / 1438 Li R. Bioinformatics 2009;25:1966–1967. 
IMPUTE2  701 / 997 Howie BN. PLoS Genet. 2009;5:e1000529. 
VarScan 2 280 / 427 Koboldt DC. Genome Res. 2012;22:568–576. 
Dindel  174 / 237 Albers CA. Genome Res. 2011;21:961–973. 
CORTEX 83 / 143 Iqbal Z. Nat. Genet. 2012;44:226–232. 
SomaticSniper  84 / 117 Larson DE. Bioinformatics 2012;28:311–317. 
Beagle 73 / 105 Browning BL. Am. J. Hum. Genet. 2009;85:847–861. 
Strelka 55 / 89 Saunders CT. Bioinformatics 2012 28: 1811-7. 
CRISP  66 / 86 Bansal V. Bioinformatics 2010;26:i318–324. 
Atlas 2 58 / 82 Challis D. BMC Bioinformatics 2012;13:8. 
SliderII  24 / 43 Malhis N. Bioinformatics 2010;26:1029–1035. 
Bambino 21 / 31 Edmonson MN. Bioinformatics 2011;27:865–866. 
GSNP  2 / NA Lu M. Proc. Int. Conf. Parallel Processing. 2011; 6047227, 592-601 
MuTect  NA / NA https://confluence.broadinstitute.org/display/CGATools/MuTect. 

VARIANT INTERPRETATION 
PolyPhen  2312 / 3178 Adzhubei IA. Nat. Methods 2010;7:248–249. 
SIFT  1226 / 1682 Kumar P. Nat Protoc 2009;4:1073–1081 
ANNOVAR 910 / 1307 Wang K. Nucleic Acids Res. 2010;38:e164. 
ESEfinder  851 / 1137 Cartegni L. Nucleic Acids Res. 2003;31:3568–3571. 
PANTHER 845 / 1118 Thomas PD. Genome Res. 2003;13:2129–2141. 
ESRSearch 621 / 890 Fairbrother WG. Science 2002;297:1007–1013. 
HSF 439 / 581 Desmet F-O. Nucleic Acids Res. 2009;37:e67. 
VEP  263 / 390 McLaren W. Bioinformatics 2010;26:2069–2070 
SNAP  244 / 341 Bromberg Y. Nucleic Acids Res. 2007;35:3823–3835. 
MutationAssessor  182 / 272 Reva B. Nucleic Acids Res. 2011;39:e118. 
MutPred  173 / 251 Li B. Bioinformatics 2009;25:2744–2750. 
dbNSEP 144 / 219 Liu X. Hum. Mutat. 2011;32:894–899. 
ABSOLUTE  141 / 218 Carter SL. Nat. Biotechnol. 2012;30:413–421 
GSITIC 2.0 156 / 212 Mermel CH. Genome Biol. 2011;12:R41. 
CUPSAT  148 / 190 Parthiban V. Nucleic Acids Res. 2006;34:W239–242 
Align-GVGD  114 / 137 Mathe E. 2006;34:1317–1325 
SNPnexus  66 / 91 Chelala C. Bioinformatics 2009;25:655–661. 

*number of times the paper has been cited in Scopus / Google Scholar as of May, 2015 
** Many of the programs and references were extracted from Pabinger et al.88 
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also lead to missense or nonsense changes, insertions or deletions of one or a group of 

amino acids, or can result in a frameshift mutation, where the 3-nucleotide frame of the 

coding region is altered, leaving the portion of the protein after the mutation with an 

incorrect amino acid sequence.  

It is generally accepted that frameshift and nonsense mutations are the coding mutations 

most likely to be pathogenic or damaging to a protein. The clinical relevance or 

interpretation of these variants depends on the protein the mutation is found in, and 

whether that protein has a known cellular function or is cited to play a role in the 

phenotype being assessed. For example, a germ-line nonsense mutation in BRCA1 in an 

individual or family would be reported to the patient, as the mutation puts the individual 

at risk for developing breast or ovarian cancer (91). Correlating phenotype to genotype is 

much more difficult in the case of missense and silent mutations, as the effect on the 

protein’s function, if any, is hard to predict. However, clear and easy to interpret 

mutations account for a very low number of the overall mutational load that is detected in 

patients. In breast cancer, only 5-10% of families with a strong history of ovarian or 

breast cancer ever learn what the causal mutation is (92). For this reason, there have been 

many computational approaches, both sequence- and structure-based, that have attempted 

to assess the pathogenicity of missense mutations (93). Programs predicting splicing 

mutations or assessing their transcriptional effect, however, have been much more 

limited. 

1.3.2 Splicing Mutations 

Before proteins are translated, genes are transcribed and modified in a number of 

different ways: pre-mRNA splicing joins coding regions to be used during protein 

translation, and a 5’ cap and 3’ poly A tail are added to promote translation, and enable 

transcript transport and stability. Splicing involves over 100 factors (94), and is a multi-

step process that results in the removal of introns from RNA transcripts, adjoining 

neighbouring exons contained in the final mRNA. Splicing machinery, known as 

splicesomes, are made up of multiple proteins and recognize key sequences to delineate 

the intron/exon junctions. The 5’ and 3’ ends of the intron (known as 5’ donor or 3’ 
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acceptor sites) contain canonical dinucleotides “GT” and “AG” (95), respectively, which 

identify the intron boundaries (Figure 1.3). Within the intron there is a polypyrimidine 

tract, (Py)n, and an adenine (A), known as the “branch site” that is used for lariat 

formation. Briefly, splicing is carried out using two transesterification steps, whereby a 

2’-hydroxyl group of the adenine residue at the branch site attacks the phosphate at the 

donor site, leading to cleavage of the 5’ exon-intron boundary and lariat formation, and 

then subsequent attachment to the 3’ exon (as depicted in Figure 1.3) (96). The sequences 

spanning the intron/exon boundaries are conserved, but do have natural variation among 

different splice sites, which can be displayed as sequence logos (Figure 1.4 A). These 

sequences are 28 (acceptor) and 10 (donor) nucleotides in length, and dictate the overall 

strength of the splice site (or the likelihood of the splicing machinery recognizing the 

site) (98).  

Splicing is used in the cell as an additional level of protein diversity and regulation. 

Various protein isoforms can be produced from the same gene through the inclusion of 

different combinations of exons in the final mRNA transcript used for protein translation. 

Alternative splicing is suggested to be one of the most important components of the 

functional complexity of the human genome, and is estimated to affect 40-60% of all 

human genes (99). This natural alternative splicing is usually not pathogenic, as different 

transcripts of the same gene are often expressed in tissue specific patterns (100). 

Because splicing machinery relies on the pre-mRNA sequence to correctly remove an 

intron, mutations in these regions can lead to aberrant splicing that can damage or alter 

protein function. For example, if any of the highly conserved “GT” (or U in RNA) or 

“AG” nucleotides were altered, splicing would not properly occur at that intron (101). 

Although less common, mutations beyond these highly conserved dinucleotides in the 

splice site sequences (donor and acceptor) can lead to aberrant splicing and pathogenicity 

(97). The number of deleterious SNV splicing mutations described in the literature 

generally relates to the information content at each position of the sequence logo (Figure 

1.4 B).  
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Figure 1.3 Basic schematic of pre-mRNA splicing.  Diagram depicts an overview of mRNA 

splicing. Exons are indicated by the large blue-outlined boxes (as labeled), and introns are 

displayed as thin blue lines. Key nucleotides are labeled as “A”,”G”, and “U”, polypyrimidine tracts 

“(Py)n”. 
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Figure 1.4 Splicing 5’ donor and 3’ acceptor sequence logos and frequency of reported 

mutations.  A sequence logo for human acceptor (left) and donor (right) splice sites is displayed 

in A. The height of each nucleotide represents its frequency and the error bars indicate the 

standard deviation at that position. The distribution of deleterious single nucleotide variants 

reported in the literature to negatively affect splicing are displayed in B. This figure was adapted 

from Caminsky et al. (2014) (97) and Rogan et al. (2003) (98). 
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Splicing mutations can result in large changes to the final gene product, and hence, are 

commonly pathogenic. Up to 15% of all disease-causing mutations affect mRNA splicing 

(102), and this number is higher for certain genes, where splicing mutations can account 

for as many as 50% of the mutations reported (103). A number of different outcomes can 

arise from mutations that affect mRNA splicing. Mutations can inactivate a natural splice, 

which can result in the splicing machinery missing the corresponding donor or acceptor 

leading to intron retention (Figure 1.5 B), or the splicing machinery using a donor or 

acceptor from a neighbouring intron which would lead to exon skipping (Figure 1.5 C). 

An inactivating mutation at a natural splice site can also lead to the recognition of a 

weaker, so-called cryptic splice site in either the intron or exon, which would be 

recognized by the splicing machinery and result in the extension or truncation of the exon 

(termed cryptic splicing, Figure 1.5 D). A mutation may also activate a cryptic splice site, 

which would lead to a cryptic splicing phenotype (Figure 1.5 E). 

Numerous software programs have been developed to analyze mutations and their 

potential effect on mRNA splicing. Commonly, splicing software programs require a 

DNA sequence containing the mutation as the input (Table 1.4). The program then 

determines the presence of splice sites or splicing regulatory factor binding sites, such as 

exonic splicing enhancers. The effect of the mutation on splicing can be determined by 

comparing the mutated sequence versus the wild-type sequence. Because of the nature of 

these programs, genome-wide capabilities are limited, and analysis of thousands of 

mutations filtered from next generation sequencing studies would be extremely laborious. 

There are also programs that analyze mutations, or lists of mutations, to determine if any 

affect splicing. Many of the common variant annotation and interpretation software 

programs are limited to identifying mutations that are likely to alter splicing by their 

location at the conserved dinucleotides (for example, ANNOVAR (81)), or within a 

limited splicing region (for example, Variant Effect Predictor looks as far as 8 

nucleotides from the natural site (104)). The Automated Splice Site and Exon Definition 

Analyses (ASSEDA) (105), and the Shannon Human Splicing Pipeline (Shannon 

Pipeline) (86) software programs, however, employ information theory to extend the 

analysis to entire coding and non-coding regions of a gene. The application of 

information theory to DNA sequences was first proposed by Thomas D. Schneider in 
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Figure 1.5 Aberrant splicing patterns resulting from DNA variants. Wildtype (A) and 

aberrantly spliced (B-D) transcripts are displayed to portray examples of the potential affect a 

mutation can have on mRNA splicing. Exons are indicated by the blue boxes, white filled in exons 

represents regions not maintained in the final transcript, and the black lines correspond to the 

sequences joined after splicing has occurred. Red arrows represent splice site-inactivating 

mutations, and green arrows represent activating mutations. A mutation can decrease the 

strength of a splice site, which can lead to intron retention in the final transcript (B), the affected 

exon being skipped and not retained in the final transcript, or a now-stronger neighbouring cryptic 

splice site to be used (resulting in part of the middle exon included in the final transcript). 

Alternatively, Exonic (E-top) or intronic (E-bottom) cryptic splices can be activated, resulting in the 

extension or truncation of the exon. 



 

 

24 

 

Table 1.4 Splicing mutation and splice site analysis software. 

Program 
Genome wide 

capability? 
Analyzes 

mutations? 
Analyzes 

sequences? 

ANNOVAR81 yes yes no 

Variant Effect Predictor104 yes yes no 

ASSEDA105 no yes yes 

Shannon Pipeline86 yes yes no 

GeneSplicer107 yes no yes 

Human Splice Finder87 no yes yes (max 2500 nts) 

ESEfinder108 no no yes (max 5000 nts) 

MaxEntScan109 no no yes (9 nt sequences) 

Splice Site Prediction by Neural 
Network, NNSplice110 

no no yes 

NetGene2111,112 no no yes 

SpliceView113 no no yes (max 31000 nts) 

Splice Predictor114 no no yes 

GenScan115 no no yes 

Spliceman116 no no yes 

 

 



 

 

25 

1997 (106). The information theory-based approach is based on the formal relationship 

between information theory and the second law of thermodynamics. Each splice site is 

made up of information (measured in bits), which reflects the thermodynamic entropy 

and free energy of binding. The change in total information of the site is used to 

determine whether a mutation will strengthen or weaken the splice site. 

The limited genome-wide capabilities and regions analyzed by most splicing software 

programs has led to an underrepresentation of splicing mutations in genome-wide studies. 

In the 5 major breast cancer sequencing studies (12-16), splicing mutations accounted for 

only 1.78-2.18% of all of the mutations reported (Table 1.5). This is likely due to the 

rudimentary approaches used to identify splicing mutations, which were limited to 

mutations located at the canonical dinucleotides at donor or acceptor sites.  In addition, 

there are also currently limited efforts to attempt to validate the effect of splicing 

mutations on the mRNA transcript and protein product in large scale sequencing studies 

due to the large number of variants found, and efforts required for a single variant. 

1.4 Gene expression signatures in breast cancer 

The idea of personalized medicine is not new, however, clinical decision-making based 

on molecular profiling of individual tumours is still evolving. Early indications of 

personalized medicine date back to 1957, when 2 different papers suggested that genetic 

variation in enzymes may be linked to adverse drug response (117). Enzymes, such as 

cytochrome P450, can differ between individuals, which can determine how long and 

how much of the drug will remain active in the body. Characterizing an individual’s 

metabolizing enzymes can dictate the dose required for effective response, therefore 

tailoring the treatment strategy for each patient. Personalized medicine has now extended 

well beyond analyzing drug metabolizing enzymes. Breast cancer, even more so than 

most cancers, is a mixture of several diseases, so it is intuitive that it would be ideal to 

tailor treatment and therapy selection on an individualized basis. Although it has been 

proposed for many years, it is now becoming feasible to determine the molecular  
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Table 1.5 Splicing mutation analyses performed in previous sequencing studies. 

Paper No. Splicing 
Mutations  

(Percent of all 
mutations) 

Splicing mutation analysis  Validation approach to 
confirm affect on mRNA 
splicing. 

Banerji12  97  
(1.95%) 

Oncotator – Used gene 
annotations to identify 
mutations at splice sites. 

None 

Ellis13 69  
(2.15%) 

Used gene structure to 
annotate "splice site" 
mutations. 

None 

Shah15  43  
(1.78%) 

Mutations were called using 
RNA sequencing - de novo 
splice sites were 
determined with 
HMMSplicer. 

4 mutations were 
correlated to alternative 
splice junction usage in 
RNA sequencing data. 

Stephens16 158  
(2.18%) 

Mutations mapped to 
essential splice sites. 

None 

TCGA14 506  
(1.79%) 

Annotated at "splice site" 
with gene annotation file.  

None 

 



 

 

27 

 profile of each tumour, and personalize each clinical decision based on certain 

characteristics. Consequently, there have been many studies applying gene expression 

analyses to individualize breast cancer management, including predicting prognosis, the 

benefit of adjuvant chemotherapy, tumour response to treatment, and development of 

new therapies.  

1.4.1 Predicting prognosis and patient outcome 

Research groups have been successful identifying and analyzing gene expression 

signatures in breast cancer that outperform conventional clinicopathologic criteria in 

predicting prognosis. These tests are effective in aiding to predict which patients are most 

likely to benefit from chemotherapy. The most common tests used today include 

Oncotype DX, MammaPrint, and PAM50. Oncotype DX is made up of a 21-gene assay, 

and provides a quantitative likelihood of disease recurrence (118). It was developed and 

commercialized based off of a study from 2004 that assessed the probability of breast 

cancer recurrence at 10 years using 668 Tamoxifen-treated, lymph-node negative, and 

estrogen-receptor positive tumours. The assay employs reverse-transcriptase polymerase 

chain reaction (RT-PCR), and measures the expression of the 21 selected genes to 

calculate a recurrence score (either low, intermediate, or high). Similarly, MammaPrint 

uses a 70-gene assay to identify early-stage breast cancer patients that are at risk of 

distant recurrence or metastasis following surgery (7). The assay differs in that it was 

developed independent of ER status or any prior treatment, contrary to Oncotype DX. 

The 70-gene signature was developed using DNA microarray analysis on primary 

tumours of 117 young patients, and stratifies patients that have “poor prognosis” and 

would likely benefit from adjuvant therapy. PAM50 is a 50-gene test that has been 

optimized to stratify tumours based on the intrinsic subtypes of breast cancer, which are 

then used to develop a risk of recurrence score (119). It was developed using both 

microarray and RT-PCR using 189 protoype samples, and then tested with an additional 

761 patients to predict prognosis and 133 patients to predict complete pathological 

response to neoadjuvant chemotherapy. It is the only test of the three that directly 

leverages the intrinsic subtypes of breast cancer.  
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Gene expression signatures have an increased ability to recognize low-risk cases. This 

reduces the number of patients who receive adjuvant treatment, leads to a decrease in 

unnecessary toxicity, and lowers the cost of patient care (120). Regulatory bodies, such as 

the United States Food and Drug Administration (FDA), have recognized value and 

added benefit to patients by approving MammaPrint and PAM50 for clinical use, even 

though FDA approval is not required for laboratory-developed tests. Oncotype DX, 

which is currently the most commonly used test (121), is recommended by Cancer Care 

Ontario (122). The American Society of Clinical Oncology and the National 

Comprehensive Cancer Network also endorse these multigene assays to assist in 

treatment decisions for ER-positive cancer. Although these tests, and others, aid in 

deciding whether the patient would benefit from adjuvant therapy, clinicians still lack 

robust signatures that could indicate which specific treatments will be effective on a per 

patient basis (123,124).  

1.4.2 Selecting therapies and predicting treatment response 

Chemotherapy is currently recommended in cases where the benefit to the patient 

outweighs the risk of treatment. Conventional clinicopathological features indicating 

chemotherapy use for early breast cancer include histological grade 3 carcinomas, high 

Ki-67 levels, low hormone receptor status, HER2 amplification or triple negative status, 

and tumours that have spread to three or more lymph nodes (125). Chemotherapy can be 

used in breast cancer treatment either before (neoadjuvant) or after (adjuvant) surgery. 

Adjuvant chemotherapy using cyclophosphamide, methotrexate, and fluorouracil (CMF) 

for lymph node positive breast cancer was first cited as an effective treatment strategy in 

1976 (126), and was used until the substitution of methotrexate with epirubicin (CEF) 

(127) and then docetaxel (a taxane) (128) were later reported to be more successful 

combinations. Although clinical trials for many different adjuvant chemotherapy 

schedules have been conducted, there is ultimately still no consensus on which may be 

the most effective (129). Selection of the most effective adjuvant treatment is suggested 

to be individualized and should take into account clinical disease characteristics and 

patient-related factors (125,130,131). Treatment selection is already somewhat 
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personalized, profiling breast cancer tumours based on the intrinsic subtypes can direct 

recommendations in regard to endocrine, cytotoxic, and anti-HER2 therapies (Table 1.6).  

Numerous studies have attempted to leverage genomic profiling in order to characterize 

or predict tumour response or patient outcome when treating with specific therapies 

(Table 1.7). Gene expression is most commonly used for this type of analysis, and 

signatures or indicators have ranged from including only a few genes to many. The 

majority of the studies performed to date are completed with a limited number of samples 

and/or patients. The availability of both training and test sets can be limited for specific 

therapies, but is increasing with dataset depositories such as the Gene Expression 

Omnibus (GEO). For example, in 2003, a 92-gene expression signature was created using 

24 tumours, and was able to classify 10/11 sensitive tumours and 11/13 resistant tumours 

to neoadjuvant docetaxel in a leave-one-out analysis (132). No test set was used to 

validate the molecular profile, which was likely due to the limited availability of samples 

and/or the high costs for gene expression analyses at the time of the analysis. In contrast, 

a 20-gene signature was developed in 2014 to discriminate between chemoresistant and 

chemosensitive tumours to taxane-based therapies that used 160 tumours to develop the 

profile, and 659 datasets to test the method (133). Of the common prognostic gene 

signatures, the proliferation score from PAM50 is the only one that is able to identify 

patients that will benefit from a specific drug (low proliferation score predict weekly 

paclitaxel benefit) (134) or drug combinations (HER2-enriched tumours benefit from 

CEF over CMF) (135). Although our technological capabilities and access to data sets 

have greatly increased over the past decade, there is still no reliable genomic signature 

implemented in the clinic to select between chemotherapy agents on an individual basis. 

1.5 The Minimal Breast Cancer Genome and its Relevance 

to Chemotherapy 

Breast cancer studies to date have focused largely on genomic rearrangements, gene 

expression changes, and epigenetic alterations leading to the development and 

progression of the disease. Genomic regions in breast tumours that show high frequencies 

of abnormal rearrangements have been termed “saw-tooth” or “firestorm” regions (140),
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Table 1.6  Treatment recommendations according to tumour subtype and/or receptor 

status 

Subtype or receptor status Type of therapy 

Luminal A-like endocrine therapy is the most critical, often used alone 

Luminal B-like (HER2 -ve) endocrine therapy for all, cytotoxic therapy for most 

Luminal B-like (HER2 +ve) cytotoxic therapy + anti-HER2 + endocrine therapy 

HER2-positive cytotoxic therapy + anti-HER2  

Triple-negative cytotoxic therapy 

adopted from Schmidt et al. (2014) (129) 
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Table 1.7 Gene expression signatures developed to predict therapy response. 

Study Drug Tumour No. genes No. training 
samples  

No. test 
samples 

Indication 

Chang 
(2003)

132
 

Docetaxel (neoadjuvant)^ Locally 
advanced 

92 24 pre-operative 
core biopsies 

N/A Classifies tumours as sensitive 
or resistant (88% accuracy) 

Ma 
(2004)

136
 

Tamoxifen (adjuvant)* Hormone 
receptor 
positive 

2-gene ratio 60 N/A Predictive of disease-free 
survival 

Jansen 
(2005)

137
 

Tamoxifen (first line treatment)*  ER-positive, 
advanced 

44 46 66 Discriminate between patients 
with progressive disease and 
objective response 

Hallet 
(2012)

138
 

Chemotherapy regimens 
containing anthracycline and 
taxane drugs (neoadjuvant)^ 

N/A 2-gene 
index 

488 N/A Predicts complete pathological 
response 

He 
(2014)

133
 

Taxane-based therapies^ N/A 20 92 resistant / 68 
sensitive 

659 
datasets 

Discriminates between 
chemoresistant and 
chemosensitive individuals 

Schmitt 
(2015)

139
 

Trastuzumab and docetaxel 
(first line)*^ 

HER2-
positive 

8 79 frozen or FFPE 27 GEO 
datasets 

Predicted response to 
treatment (76% accuracy) 

* hormone therapy, ^ chemotherapy 
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and many genes have now been identified to be frequently mutated (14). However, 

studies that focus primarily on unaltered (“stable”) regions in breast cancer have been 

limited to date. 

Our laboratory has recently proposed that there is a minimal genome required for breast 

cancer cell survival (141). This minimal genome was derived by comparing independent 

data sets for regions of breast cancer genomes that are stable in copy number (140,142) 

with tumour gene expression levels that are similar to matched normal tissues (143,144). 

Genomic regions stable in copy number were obtained from two data sets that assessed a 

total of 243 (140) and 171 (142) primary breast tumours. The 812 derived “dually” stable 

regions (in both copy number and gene expression) contained a subset of 5,804 genes 

enriched for cellular metabolism, regulation of gene expression, DNA packaging, and 

regulation of apoptotic functions.  

A selection of the stable genes identified are targets of existing anti breast-cancer 

therapies, including paclitaxel, estradiol, and topotecan. Growth inhibition of the breast 

cancer cell lines MCF7, MDA-MB-231, HS578T, and T47D has been demonstrated using 

therapeutic agents that target gene products of the stable regions (145). There was not, 

however, consistent drug sensitivity across all cell lines. The average GI50 values (drug 

concentrations are –log10M units) for paclitaxel, gemcitabine, and topotecan were found 

to be 8.07, 6.65, and 6.92 respectively. Cell lines with GI50 values lower than 1 unit from 

these averages are considered outliers, as this relates to a 10-fold increase in the 

concentration of drug required for 50% growth inhibition.  

1.6 Thesis Scope and Objectives 

In order to improve patient care through tailoring therapies based on disease 

characteristics, the field will require advancements in our ability to effectively interpret 

and analyze large genomic data. We hypothesize that improvements in genome-wide 

analyses - diagnostic tools and reagents for better detection of genetic abnormalities, 

mutation interpretation, and genomic signatures for chemotherapy response - can result in 

a more accurate understanding of tumour biology. This thesis introduces improvements in 
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both the design and analysis of experiments, and then applies these techniques to breast 

cancer. We describe the generation of new data, as well as leveraging existing data sets, 

with the same overall goal of validating the proposed methods and interpreting the results 

obtained. 

Specifically, the main objectives of this thesis are to: 

1) Improve the design and analysis of nucleic acid hybridization studies (specifically 

FISH and aCGH). We sought to develop a novel method to identify single copy 

regions in the genome that contain highly divergent repetitive elements, which we 

predicted to act as single copy sequences in optimized experimental conditions. 

We aimed to generate small, single copy FISH probes that contained divergent 

repetitive elements, to confirm their predicted behavior in metaphase FISH. In 

addition, we proposed that oligonucleotide placement throughout the genome (ie. 

distance to highly conserved repetitive elements) within these single copy regions 

can affect the variation observed in microarray signal intensities. Accordingly, we 

sought to develop an aCGH microarray to test this theory and compare the 

platform’s reproducibility to a commonly used commercial platform. Both FISH 

and aCGH methods were validated on normal samples, as well as samples with 

known genomic alterations. 

2) The large number of predicted DNA variants arising from genome-wide studies 

creates new challenges to validate the effect of any given variant on the mRNA 

transcript and protein product. Splicing mutations represent a unique set of 

variants that can be validated using mRNA sequences. We aimed to develop a 

software tool that can conduct genome-wide, statistically robust validation of 

predicted splicing mutations using sample-matched RNA sequencing data.  

3) Splicing mutations are currently underpresented in large genomic studies, given 

that the majority of experiments only assess the canonical nucleotides at an 

intron/exon boundary. We aimed to carry out indepth splicing mutation analyses 

on a large set of breast cancer tumours using previously published data from the 

TCGA. We hoped to identify new underlying processes of tumour biology not 
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previously described by protein-coding dominated studies. Further, we planned to 

validate these mutations using the software described in objective 2.  

4) Current selection of the specific cytotoxic agents to be used for breast cancer 

patient care does not consider analyzing the tumour for genes involved in drug 

disposition. In addition to the classical pathological features, these genes may be 

informative in identifying which tumours are the most likely to respond to certain 

therapies. This thesis aimed to use machine learning to develop predictive models 

of breast cancer tumour sensitivity to paclitaxel and gemcitabine. Rather than 

completing a genome-wide study, we sought to start with a much smaller set of 

biologically-relevant genes based on what is known about paclitaxel and 

gemcitabine drug mechanisms of action. In addition, a set of FFPE tumour 

samples was obtained from patients that were treated with paclitaxel and 

gemcitabine, and whose response to these drugs is known. In addition to 

previously published data sets, we planned to validate the predictive gene 

signatures on these FFPE samples through nucleic acid extraction and analysis. In 

turn, we wanted to determine whether high quality data could be obtained from 

FFPE samples, and how suitable their use would be in studies involving 

chemosensitivity predictions. 
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Chapter 2  

2 Expanding probe repertoire and improving 

reproducibility in human genomic hybridization 

The work presented in this chapter is reproduced (with permission, Appendix S1) from: 

Dorman, S.N., Shirley, B.C., Knoll, J.H.M., Rogan, P.K. (2013) Expanding probe 

repertoire and improving reproducibility in human genomic hybridization. Nucleic Acids 

Research 41(7): e81. 

2.1 Introduction 

Genome-derived nucleic acid hybridization probes are routinely used diagnostically to 

identify, detect or quantify specific DNA sequences. It has long been recognized that 

repetitive sequences in these probes can interfere with the detection of chromosome 

abnormalities through cross hybridization to multiple regions of the genome. This is 

because repetitive sequences comprise at least 50% of the human genome and consist of a 

diverse set of distinct families (1) with variable degrees of divergence, many of which are 

conserved throughout mammalian evolution (2,3). Elimination of these sequences is a 

key consideration in genomic probe and experimental design. These sequences can be 

sequestered away from unique sequences in labelled probes (4,5), ‘blocked’ with 

unlabelled Cot-1 DNA (6–8), or eliminated from the probe sequence by masking all 

elements related to known repetitive sequence families (9). We present an approach to 

improve the genomic resolution and reproducibility of fluorescent in situ hybridization 

(FISH) and microarray comparative genomic hybridization (aCGH). Inclusion of 

evolutionarily highly divergent repetitive elements increases genomic coverage without 

compromising the specificity of FISH and aCGH to the extent that conserved repetitive 

sequences would. Contextual effects of proximate, conserved repetitive sequences on 

probe design are also investigated. 
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FISH is an essential diagnostic tool for detection of contextual chromosome 

rearrangements. However, the diversity of relevant chromosomal abnormalities seen in 

patients with cancer or congenital diseases far exceeds the catalogue of available 

recombinant probes. Commercial FISH probes often include multiple genes, which 

reduces their specificity for targeting abnormalities confined to individual genes. The 

Cancer Genome Project (10) has identified translocations in 317 cancer genes implicated 

in oncogenesis, 177 of which are <100 kb. Single copy FISH (scFISH) involves 

sequence-based genomic DNA probes that are 100–500-fold smaller than commercial 

FISH probes (11), thus providing the higher resolution necessary for specific detection of 

contextual changes within small genes. Nevertheless, repeat-masked probes contain 

exclusively unique genomic sequences, which limit access in genomic regions densely 

populated with repetitive elements for scFISH. 

aCGH determines copy number variation genome wide (12–14). It has been widely 

adopted in cancer research, disease gene discovery, prenatal diagnostics and has 

improved clinical diagnosis for patients with congenital and acquired diseases (15,16). 

aCGH has been recommended by the American and Canadian Colleges of Medical 

Genetics as a first-line test for individuals with development disabilities or congenital 

anomalies (17,18). Despite the ubiquity of this test, the accuracy and reproducibility of 

aCGH has recently been questioned (19–21). A study assessing 11 copy number variant 

(CNV) microarray platforms reported <50% similarity in CNV calls between software 

and analytical tools and <70% reproducibility in most replicate experiments (21). 

Multiple sources of data from different commercial platforms, analysed with the same 

software, call inconsistent copy number changes (CNC) (20), implicating the primary 

data as a significant contributor to this variability. 

In FISH and aCGH, non-specific cross-hybridization to other genomic locations is most 

commonly prevented by sequestering repetitive sequences with excess unlabelled Cot-1 

DNA (7,22). Addition of Cot-1 reduces consistency and increases variability in genomic 

hybridization to homologous targets, regardless of whether repetitive elements are 

present in the labelled DNA (23). Cot-1 DNA contains sc sequence impurities that 

increase variability in hybridizations. Probe sequences have also been designed to be 
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devoid of repetitive elements by synthesis of repeat-masked unique or sc intervals (9). 

However, the use of Cot-1 DNA in aCGH is unavoidable in order to prevent cross-

hybridization between non-allelic repetitive regions in the labelled sample. 

The proximity of repetitive elements to sc targets and the extent to which these sequences 

are conserved have not been considered in microarray probe design. We find that unique 

sequence microarray probes in close proximity to adjacent repetitive sequences, 

contribute to poor reproducibility of hybridization intensities, and the degree of repeat 

sequence divergence can affect the variability of hybridization intensities of these unique 

sequence probes. By mitigating these effects, it is possible to improve the genomic 

resolution and reproducibility of FISH and aCGH. 

2.2 Materials and methods 

2.2.1 scFISH probe design 

We deduced a complete set of effectively sc regions using an ab initio divide-and-

conquer search algorithm (24,25) directly from the reference human genome 

(GRCh37/hg19) (Appendix S2.1). This algorithm identified sc intervals without reliance 

on a catalogue of existing repetitive elements. The search constraints were tuned to 

include sequences containing highly divergent repetitive elements. Divergent copies of 

repetitive elements deviate sufficiently from conserved consensus sequences so as to 

preclude cross-hybridization to non-allelic genomic locations. A genome-wide set of ab 

initio sc intervals was derived and displayed as custom genome browser tracks. From 

these intervals, 15 scFISH probes >1.5 kb were designed to detect rearrangements within 

10 small cancer-related onco- and tumour-suppressor genes (<50 kb; CCND1, CDKN2A, 

CDKN2C, ERBB2, FGFR3, FLCN, KRAS, MYCN, NOTCH1, TP53) designated by the 

Sanger Institute Cancer Genome Project (10). Regions of at least 2.5 kb for scFISH were 

used for primer design for long polymerase chain reaction (PCR) as previously described 

(9). Appendix S2.2 indicates the eight probes that were produced, their genomic 

coordinates, length and primer sequences. 
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Divergent repetitive elements included in each probe were localized by genome-wide 

Basic Local Alignment Search Tool (BLAST) and analysed for degree and extent of 

divergence from consensus sequences of the same repeat family or subfamily. To 

estimate stability of probe sequences, nick translation products of 300 nucleotides (nt) 

were simulated by windowing along the length of a probe. Melting temperatures (Tm) for 

each imperfect duplex were estimated (26) and then plotted for higher and lower 

stringency, post-hybridization experimental wash conditions (2X SSC, 37°C, 50% 

formamide; and 2X SSC, 42°C, 50% formamide). With more stringent post-hybridization 

washing conditions, the divergent repetitive elements were not expected to cross-

hybridize to non-allelic genomic loci. Related, non-allelic sequences in the human 

genome were detected by BLAST analysis. All imperfect duplexes were estimated to 

exhibit predicted Tm at least 10°C lower than the homologous targets. 

The performance of eight probes containing divergent repetitive elements was validated 

by scFISH to human metaphase cells with a normal karyotype. Primers for a genome-

wide set of ab initio scFISH probes were designed using Primer 3 (27). Probe length and 

maximum Tm differences were optimized to produce the highest quality probes while 

maintaining genomic resolution. Primers were designed for intervals between 1.5–2 and 

3.5–4 kb, with maximum Tm differences set at 0.5°C, 1°C and 2°C. scFISH probes 

produced with maximum Tm differences did not significantly vary; therefore, 0.5°C was 

used to ensure the highest quality PCR amplification. Primer3 parameters used to 

generate the 1500–2000 bp products were PRIMER_OPT_SIZE = 27, 

PRIMER_MAX_SIZE = 28, PRIMER_MIN_SIZE = 26, PRIMER_ 

PRODUCT_SIZE_RANGE = 1500–2000, PRIMER_PAIR_MAX_DIFF_TM = 0.5, 

PRIMER_OPT_TM = 63, PRIMER_MAX_TM = 65, and PRIMER_MIN_TM = 61. To 

generate 3500–4000 bp products, the parameters used were PRIMER_OPT_SIZE = 33, 

PRIMER_MAX_SIZE = 35, PRIMER_MIN_SIZE = 30, PRIMER_PAIR_ 

MAX_DIFF_TM = 0.5, PRIMER_PRODUCT_SIZE_RANGE = 3500–4000, 

PRIMER_OPT_TM = 64, PRIMER_MAX_TM = 66, PRIMER_MIN_TM = 62. 
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2.2.2 scFISH probe development and hybridization 

Ab initio sc products were optimized by gradient thermal cycling, then amplified using 

long PCR with Platinum Pfx DNA Polymerase (Invitrogen™, CA). Amplicons were gel 

purified, extracted (QIAquick kit, Qiagen CA) and labelled by nick translation with 

digoxigenin-11-dUTP (Roche Diagnostics, ON, Can). Probes were hybridized on normal 

human lymphocyte metaphase chromosomes, detected with Cy3-conjugated anti-digoxin 

antibody (Cedarlane, CA), then washed and stained with 4',6-diamidino-2-phenylindole 

(DAPI) (28). At least 20 metaphases from cytogenetic preparations of control individuals 

were examined for each probe to confirm the chromosome location and hybridization 

efficiency. A probe from CDKN2A, which is abnormal in the preponderance of 

melanomas, was also hybridized to metaphase chromosomes of the melanoma cell line 

A-375 (29). 

2.2.3 Genome-wide aCGH 

A pool of suitable oligonucleotide probes from ab initio intervals was designed with 

PICKY (30), which matches melting temperatures to avoid complementarity between 

probes and stable hairpin formation. Default parameters were modified as follows: left 

selection boundary 200, right selection boundary 200, maximum oligonucleotide size 60, 

maximum match length 20, minimum match length 17 and probes per gene 5. PICKY-

suggested 2 057 653 coordinate-defined probes from 513 689 ab initio sc intervals. 

A subset of these probe sequences was selected to populate a custom genome-wide 

4x44K array. To minimize cross-hybridization of ab initio probes to repetitive sequences 

within the labelled genomic sample, oligonucleotides were chosen complimentary to 

genomic targets whose distance to an adjacent conserved repetitive element exceeded the 

length of the labelled extension products. Products were <300 nt. Oligonucleotide targets 

and adjacent repeat elements were separated by at least 300 nt, for repetitive sequences 

with <30% divergence (higher divergence sequences were tolerated). For purposes of 

comparison, ab initio oligonucleotide targets were paired with Agilent Technologies 

Human Catalog CGH 4 × 44K microarray (Agilent 44K) genomic probe sequences in 



 

 

59 

closest genomic proximity to ensure similar distributions. Where possible, gene coverage 

was maximized. The Galaxy metaserver (https://main.g2.bx.psu.edu) was used to ‘fetch’ 

the closest non-overlapping feature for every interval, ‘subtract’ intervals present in the 

ab initio and Agilent 44K oligonucleotide sets and determine the base ‘coverage’ of all 

intervals. We first determined the distance in nt of the closest repeat masked repetitive 

element to each probe. Oligonucleotides within 300 nt of a repeat were subtracted from 

the set. The closest ab initio probe to a corresponding sequence on the Agilent 44K array 

was fetched. The distance between ab initio probes and adjacent repeat elements was then 

maximized on the custom designed microarray by selecting oligonucleotides central to 

each ab initio interval. Gene coverage, which was determined from the proximity of 

probes to known NCBI RefSeq gene sequences, demonstrated that the paired set of ab 

initio probes did not cover all known genes (31). Gene coverage in the custom microarray 

was improved by adding 1510 probes within or adjacent to the missing genes. 

Ab initio normalization and replicate probes were also selected in close proximity of the 

corresponding Agilent probes. Both the custom designed ab initio 44K and commercial 

Agilent 44K microarrays were manufactured by Agilent. We hybridized them with 

genomic DNA from HapMap family trios (YRI: GM19143/GM19144/GM19415, and 

CEU: GM07019/GM07056/GM07022). DNA from the offspring (GM19145/GM07019) 

was used as the reference sample and co-hybridized with either the maternal 

(GM19143/GM07056) or paternal (GM19144/GM07022) sample on two replicate sectors 

of each array. To produce extension products <300 nt, DNA was subjected to heat 

fragmentation (98°C for 10′) before labelling and sized by electrophoresis. Pairs of 

genomic DNA samples (0.5 µg each) were individually enzymatically labelled using 5′-

terminally labelled, fluorescent random nonamers (either Cy3 or Cy5 from IDT) with 

5′→3′-exo- Klenow DNA polymerase (New England Biolabs), then mixed and co-

hybridized according to the Agilent Oligonucleotide Array-Based CGH for Genomic 

DNA Analysis Protocol (v6.2). Microarrays were scanned and quantified with Agilent 

Feature Extraction software (v10.5.1.1). Hybridization intensities of Agilent’s non-human 

control sequences were used to correct for background fluorescence. The coefficients of 

variation [CV = |(Log2 ratio or signal intensity) standard deviation|/mean] were 

calculated from replicate spot intensities of each autosomal probe sequence on the same 
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microarray platform. Identical probe sequences were replicated within the same and on 

different sectors on the array, enabling comparisons of both inter- and intra-array 

reproducibility on each platform. 

2.2.4 Locus-specific aCGH 

Reusable 12K oligonucleotide microarrays were produced using a microarray DNA 

synthesizer in our laboratory (CustomArray, Bothell, WA). Duplicate arrays containing 

either ab initio sc probes or the published Agilent 44K array probe sequences were 

manufactured. These arrays were designed to contain a higher concentration of probes 

mapping within chromosome 15q11.2q13 to fully assess CNCs present in patient samples 

with chromosome abnormalities in this region. In all, 125 ab initio sc probes and 84 

published Agilent 44K probes were replicated multiple times on each respective array. 

The remaining array content had genome-wide distribution which maximized gene 

coverage and minimized the distance between the pairs of Agilent and ab initio derived 

probe sequences. 

Genomic DNA from WJK35, an Angelman syndrome (AS) patient cell line with a 

previously mapped chromosome 15 deletion (32) was used to assess reproducibility for 

calling copy number differences. DNA was labelled with random Cy5 nonamers as 

indicated earlier in the text. Each array was hybridized, washed and scanned, then 

stripped and re-hybridized with the same labelled DNA product. One of the microarrays 

could not be re-hybridized to a labelled DNA after the initial hybridization study because 

it failed a quality control test for intra-array reproducibility. For all of the other arrays, 

labelled genomic DNA was removed from the microarrays after the initial hybridization 

(Stripping Kit, CustomArray) and then re-imaged. Array performance was assessed for 

quality control by re-hybridizing a Cy5-labelled, random nonamer, which verifies probe 

integrity and consistency of signal intensity before subsequent re-hybridization. Custom 

microarrays were imaged with an Axon GenePix 4000 B microarray scanner (Molecular 

Devices US). CNV was analysed with Nexus 6.0 (Biodiscovery US) software. 
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2.3 Results 

2.3.1 Genome-wide coverage of ab initio sc intervals 

The density and coverage of unique sequences for hybridization studies in any genomic 

region is finite, and in some instances, underrepresented in regions associated with 

disease or relevant to gene regulation and expression. For example, more than one-fifth 

of RefSeq genes are covered >50% in gene lengths by repetitive elements (31). We 

implemented an ab initio algorithm, which does not require a catalogue of repetitive 

elements to locate all genomic intervals devoid of multicopy sequences (Appendix S2.1). 

The density and lengths of contiguous DNA sequences used for probe design were 

increased by tuning sequence alignment stringency to include divergent repetitive 

elements with hybridization kinetics similar to sc sequences, at the same time avoiding 

segmentally duplicated and self-chained alignments of close paralogues. Before selecting 

scFISH and microarray probes, the distribution of ab initio intervals was characterized 

among previously annotated genomic features. Overlapping, adjacent intervals were 

merged to generate contiguous sequences of maximal length, then compared with the 

complement of the collective set of annotated repetitive features with an exclusive 

disjunction (OR) operation (1,33–36). The coverage or sensitivity for the ab initio set of 

intervals comprised 87% of the complementing sequences. The specificity was 83%, 

indicating 17% contained multicopy sequences. However, alignments to human self-

chained, paralogous sequence families comprised >90% of these false positive intervals, 

necessitating an additional filtering step to eliminate these potential probes. 

The ab initio probe intervals were densely distributed along chromosomes, with >50% of 

intervals exceeding 1 kb. Less than 0.2% of all ab initio intervals were separated by >32 

kb, with the majority (98%) occurring <8 kb apart. Gaps in the reference sequence 

assembly accounted for many of the widely separated ab initio regions. Gene coverage 

was assessed for ab initio intervals ≥50 nt to define potential targets for probe design of 

oligonucleotides for both aCGH and FISH. Genes with ≥50% coverage by ab initio 

intervals ranged from 5% of those on the Y chromosome to 84% of those on chromosome 

18. On average, <8% of genes were completely missed by the ab initio algorithm (from 
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3% on chromosome 3 to 87% on the Y chromosome). Genes ≤20 kb comprised 90% of 

the genes without coverage. Ab initio intervals overlapped other genomic annotations (at 

genome.ucsc.edu), including 85% of CpG islands, 99% of Vista enhancers, 98% of 

transcribed, ultraconserved intergenic sequences and 97% of intragenic sequences. Ab 

initio sequence intervals covered the majority of disease-associated genes in the 

Catalogue of Somatic Mutations in Cancer (COSMIC) (84%), Gene Reviews (93%) and 

Pathogenic International Standards for Cytogenomic Arrays (ISCA) gene (95%) 

databases. 

We then designed genome-wide sets of ab initio scFISH probes. PCR primer pairs were 

selected for 957 304 scFISH probes >1.5 kb from 194 795 unique genomic intervals 

(Supplementary Table 2.1, for all Supplementary Tables see the “Additional Files” 

electronic document). Of these, 455 978 of the scFISH probes overlap with known genes. 

Gene coverage varied from 48 to 58% for scFISH probes designed to be 1.5–2 kb and 

3.5–4 kb, respectively. These two subsets of FISH probes together cover 71% of NCBI 

RefSeq genes. The median distance between adjacent scFISH probes is 6140 nt, with 

89.5% of scFISH probes occurring within 25 kb of each other. 

A set of oligonucleotides was designed for production of genome-wide and regionally 

targeted aCGH platforms. A total of 2 057 649 oligonucleotide sequences were derived, 

756 235 of which were separated by at least 300 nt from the nearest conserved repetitive 

sequence (Supplementary Table 2.2). Oligonucleotide hybridization to these target 

sequences should reduce variability in signal intensities by minimizing cross-

hybridization of labelled DNA to repetitive regions in non-target or Cot-1 DNA (23) and 

prevent sequestration of labelled sc sequences linked to cross-hybridizing adjacent 

repetitive sequences (37). The full oligonucleotide set covers 84.7% of known genes, 

whereas the reduced subset of well-separated sc targets covers 81.5%. The reduced subset 

of adjacent sc probes is separated from each other by ≤25 kb, with a median distance of 

1.094 kb. Exceptionally long inter-probe intervals (>250 kb; n = 176) either occurred in 

centromeric regions, were enriched in multicopy sequences (i.e. paralogous self-chained 

alignments or segmental duplications), or were unsequenced. 
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2.3.2 Ab initio scFISH probes 

Cytogenetic rearrangements involving small cancer genes (<50 kb) have been 

documented; however, large commercial FISH probes may not provide adequate 

specificity to resolve intragenic CNCs or delineate intragenic juxtaposition of sequences. 

Ab initio scFISH probe sequences containing divergent repetitive elements were used to 

detect small cancer genes (9,11) for CCND1, CDKN2A, ERBB2, NOTCH1 and TP53. All 

scFISH probes hybridized to the correct chromosomal locations with high efficiency and 

specificity—17q21.1 (ERBB2), 9p21 (CDKN2A), 17p13.1 (TP53), 11q13 (CCND1) and 

9q34.3 (NOTCH1). Representative hybridizations are shown in Figure 2.1. Inclusion of 

divergent repetitive elements in these probes did not produce any observed cross-

hybridization with high stringency washing conditions. In addition, we hybridized 

CDKN2A Probe 1 to metaphase cells from a melanoma cell line (A-375). An aberrant 

hybridization pattern was observed on one chromosome 9p, with its hybridization signal 

telomeric relative to the normal chromosomal position (see Figure 2.1D). Inclusion of 

highly divergent repetitive elements significantly expands access to portions of the 

genome that were previously avoided by repeat masking sc sequences. A total of 95.6% 

(915 279) of these FISH probes overlap at least one divergent repetitive element. Ab 

initio scFISH probes consisting exclusively of sc sequences now comprise a minority of 

(3.7%; 35 658) of the genomic intervals. 

2.3.3 Ab initio aCGH 

Inclusion of divergent repetitive elements in genomic probes expands the regions 

accessible for probe development and the potential genomic resolution of aCGH. We 

have previously suggested that probe placement and, in particular, oligonucleotide targets 

in close proximity to conserved repetitive sequences may increase the variability in signal 

intensities observed in microarray hybridization (23). To test this idea, we selected 

oligonucleotide probes located greater than 300 nt away (the target size of the random 

primed DNA sample) from a conserved repetitive element. Hybridization results from our 

custom array design were directly compared with those obtained from the Agilent 44K  
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Figure 2.1: FISH validated sc probes.  Normal metaphase chromosomes from three cells 

hybridized with probes targeting TP53 on chromosome 17p13.1 (A), ERBB2 on 17q21.1 (B) and 

CDKN2A Probe1 on 9p21.3 (C) are shown. Hybridized chromosomes of each cell are enlarged 

and presented to the left of their respective metaphases. In panel (D), chromosome 9s from three 

different cells from melanoma A-375 cell line, hybridized to CDKN2A Probe 1, are presented. A 

complete metaphase is shown on the left and an ideogram of chromosome 9 on the right. One 

chromosome 9 in each cell shows hybridization as expected at 9p21.3 (white arrows), whereas 

the other homologue shows hybridization at the end of the chromosome (9p24.3-pter, red arrow). 

The aberrant location of the hybridization is likely due to a paracentric inversion between 9p21.3 

and 9p24.3. Chromosomes are counterstained with DAPI. Note: The aberrant hybridization 

pattern is consistently seen on the chromosome 9 with the pale staining heterochromatin 

polymorphism in the q arm. 
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platform using the same labeled HapMap trio samples (i.e. healthy individuals). 

Reproducibilities of the ab initio and Agilent microarrays were compared from the CV of 

hybridization intensities of replicate oligonucleotide probes. The custom oligonucleotide 

array of genomic targets with this content exhibited lower variability in hybridization 

kinetics and increased consistency of signal intensities in aCGH. The median CVs of all 

probes in both replicates were lower in the ab initio custom array for both log2 ratio 

(17.8%) and proband (green) signal intensities (24.1%; Table 2.1; Mann–Whitney rank 

sum test; P < 0.001). Red signal intensities were excluded because they represented two 

different individuals (two sectors of each mother/father), which was insufficient to 

reliably compute CVs. The subset of probes contributing to higher variability in signal 

intensities in the Agilent platform exhibited lower reproducibility as a function of 

genomic location. CVs of different subsets of Agilent probes (all probes, probes within 

300 nt of a repeat, and probes greater than 300 nt of the closest repeat) were compared 

with CVs for the closest ab initio probes. The mean CVs of the intensity log2 ratios of the 

ab initio probes were on average 48.3% below that of the corresponding Agilent genomic 

targets, when the corresponding Agilent probe was located within 300 nt of a conserved 

repetitive element (paired Student’s t-test; P < 0.05; Table 2.2). The mean CVs after 

background correction for all probes, regardless of genomic context were 34% lower for 

one HapMap family (P < 0.001); however, the difference was not significant for the other 

family. For paired sets of ab initio and Agilent probes, CVs were not significantly 

different for Agilent probes separated from adjacent repetitive sequences by >300 nt. In 

probe pairs where the Agilent oligonucleotide was within 300 nt of a repeat, the CVs of 

the ab initio proband signal were lower in all instances, consistent with our previous 

analyses (23). We interpret these findings as follows: probes within 300 nt of a repetitive 

element have the potential to hybridize to a random-primed DNA extension product that 

contains both a sc target sequence as well as adjacent repetitive elements. Conserved 

repetitive elements present in hybridized DNA sample are susceptible to cross-

hybridization with repeats in non-target labelled and Cot-1 DNA. Figure 2.2A illustrates 

an example of this for a pair of probe sequences in TP53. Labelled random-primed (or 

nick translated) extension products containing a Tigger5 conserved repeat element
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Table 2.1: Comparison of CV of replicate probes by platform: Mann–Whitney rank sum 

test 

CVs tested Log2 Ratio Proband 

Platform
a
 AG AI AG AI 

YRI DNA Samples     

Median CV 49.37 37.34 4.25 2.26 

Interquartile range 85.62 66.51 3.18 1.65 

P-value <0.001 <0.001 

CEU DNA samples     

Median CV 88.69 78.70 3.51 3.46 

Interquartile range 155.89 140.67 2.97 2.72 

P-value <0.001 <0.001 

Median CVs of the log2 ratio and proband signal intensities (‘Proband’) were compared for both 

HapMap family DNA samples (YRI/CEU). Bolded values indicate CVs that were significantly 

lower in the ab initio platform compared with the corresponding Agilent data. Interquartile range 

demonstrates the larger range of CVs in the Agilent platform. 

a
AG = Agilent; number of probes = 42 492; AI = Ab initio; number of probes = 41 898; YRI = 

Yoruban HapMap trio; CEU = Caucasian HapMap trio. 



 

 

67 

Table 2.2: Comparison of CV of replicate probes by platform: Paired t-tests 

CVs tested Log2 Ratio  

Platform
a
 AG AI P-value* 

YRI DNA Samples    

All probes 328 216 0.0019 

AG probes <300 nt 366 218 0.0046 

AG probes >300 nt 260 213 0.0855 

CEU DNA samples    

All probes 869 901 0.4655 

AG probes <300 nt 1025 449 0.0348 

AG probes >300 nt 594 1695 0.0975 

Paired t-tests were performed for log2 ratio CVs for all probe pairs, probe pairs where the Agilent 

oligonucleotide was within 300 nt of a repetitive element (AG probes <300 nt), and for probe pairs 

where the Agilent oligonucleotide probe was at least 300 nt from an adjacent repetitive element 

(AG probes >300 nt). 

a
AG = Agilent; number of probes = 42 492; AI = Ab Initio; number of probes = 41 898; YRI = 

Yoruban HapMap trio; CEU = Caucasian HapMap trio. 

*Bolded values indicate P < 0.05. 
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Figure 2.2: The effect of genomic context on hybridization signal intensity variability. (A) 

This panel demonstrates how the subtle differences in genomic location of ab initio and Agilent 

probes (dark grey; light grey vertical bars show target on extension products) may explain the 

higher CV in the Agilent platform. Simulated 5′ labelled, random-primed DNA extension products 

(of 300 nt) are windowed along the TP53 gene with the locations of a pair of Agilent and ab initio 

sc oligonucleotide probes. Increasing the distance between microarray probe sequences (in grey) 

and repetitive elements (in red) reduces the likelihood of hybridization to a labelled DNA product 

containing both the unique target (in black) and repetitive sequence. Extension products 

containing an adjacent Tigger5 repetitive element would be expected to hybridize to the Agilent 

probe located 179 nt away, but not to the ab initio sc probe situated 462 nt from the repeat, even 

though both are sc (black) probes. The average CV of this Agilent probe was 146, compared with 

the ab initio probe, which had a CV of 32. (B) Accurate hybridization signal intensity is achieved 

with sc target labelled DNA (black), exclusively hybridizing to probe sequence. Panels C and E 

depict how the presence of repetitive sequences in labelled target DNA can lead to higher than 

expected signal intensities. (C) Signals can be amplified by repeats (red) in close proximity to sc 

sequences (black), leading to non-allelic cross-hybridizations between repetitive elements 

adjacent to the labelled target DNA and other regions of the genome. (D) Unlabelled Cot-1 DNA is 

known to be contaminated with sc sequences (blue), which can serve as microarray probe 

targets. These contaminants in Cot-1 can suppress hybridization to desired target sequences by 

blocking the target labelled DNA from hybridizing to the probe sequences, reducing the overall 

fluorescent signal. (E) The major repetitive fraction in Cot-1 DNA will hybridize to labelled, 
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random-primed DNA containing repetitive sequence (e.g. Tigger5 in this instance). This can result 

in an undesirable increase in signal intensity through bridging hybridization of labelled DNA target 

to other non-allelic repetitive sequences. This can be mediated by cross-hybridization to repetitive 

sequences in Cot-1 DNA, which is usually added in stochiometric excess of the labelled sequence 

in microarray studies.   
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(11.5% divergent from the TcMar-Tigger consensus) cross-hybridized to the published 

Agilent probe sequence 179 nt away (CV = 146), but did not hybridize to the ab initio 

probe situated 462 nt from this repeat element (CV = 32). Calibration of the lengths of 

the labelled genomic DNA used in aCGH has been demonstrated to significantly improve 

microarray performance (38). Indeed, the observed CVs of these specific probes confirm 

the expected results. 

2.3.4 Probe parameters affecting CVs 

As the increased variability in microarray signal intensities can be attributed to proximate 

repetitive elements, we performed analysis of variance (ANOVA) and principal 

component analyses (PCA) to examine the characteristics of the oligonucleotide 

sequences that contribute to this source of noise. Genomic features (GC content, probe 

length, distance of nearest neighbouring repeat element and divergence) were determined 

for each set of paired probes and assessed by ANOVA for association with signal 

intensities and CVs. Repeat distance was associated with the log2 ratio CVs in both 

Agilent arrays (P < 0.05 and P < 0.001). In the second Agilent hybridization, repeat 

divergence (P < 0.05) was also associated with CVs. However, the CVs of log2 ratios 

were associated with neither repeat distance nor repeat divergence in either ab initio array 

(P > 0.05). PCA of data from both microarray platforms were consistent among replicate 

hybridizations for each platform; however, differences between Agilent and ab initio 

arrays were evident for two PCA eigenvectors (Table 2.3). The third component of the ab 

initio data was comprised of CV alone, with no significant interaction with the other 

factors, as expected from ANOVA. Differences in the Agilent data show that both the 

distance between probe and adjacent repetitive sequences, specifically within 300 nt, and 

the degree to which the repeat sequence is conserved, are not independent of the CVs of 

the probe signal intensities.  

We then analysed the CVs of signal intensities from both the Agilent and Affymetrix 

(Santa Clara, US) microarrays for the same HapMap samples analysed previously. The 

CVs of four data sets (two Agilent, two Affymetrix) were compared within the same 
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Table 2.3: Principal components analysis of genomic and probe parameters with CV in 

HapMap pedigrees 

Platform characteristics YRI trio CEU trio 

Eigenvectors 1 2 3 1 2 3 

AB INITIO       

CV intensity −0.0087 0.0734 0.9970 0.0038 −0.0723 0.9959 

GC content 0.4895 −0.4466 0.0201 0.4894 −0.4441 −0.0742 

Probe length −0.2562 0.6979 −0.0689 −0.2562 0.7002 0.0195 

Repeat distance 0.6546 0.2000 −0.0061 0.6547 0.1987 0.0268 

Repeat divergence −0.5159 −0.5178 0.0288 −0.5159 −0.5174 −0.0388 

% Variance explained 26.9705 21.6464 19.9922 26.9700 21.6461 20.0012 

 

AGILENT       

CV intensity −0.0397 −0.5311 0.8035 0.0065 0.5145 0.8554 

GC content −0.6950 0.0436 0.0250 −0.6957 0.0444 −0.0118 

Probe length 0.6976 −0.0016 −0.0149 0.6979 −0.0088 −0.0066 

Repeat distance −0.1643 −0.2629 −0.4577 −0.1647 −0.3947 0.1772 

Repeat divergence −0.0409 0.8043 0.3796 −0.0412 0.7599 −0.4865 

% Variance explained 36.8101 20.1829 19.9547 36.7845 20.1786 19.9373 

Principal component analysis was carried out to assess the relationship between probe CVs, GC 

content, probe length, distance of the closest repeat and its divergence from the consensus 

family sequence. In the ab initio probe set, the CV eigenvalues showed little or no interaction with 

other probe properties (compare eigenvectors 1 or 2 versus 3). In contrast, the corresponding 

eigenvalues were related to distance from and divergence of adjacent repetitive sequences in 

data from the Agilent platform. Bolded numbers indicate the parameter has a positive or negative 

effect of at least 15% overall. 
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hybridization. This eliminated the possibility that the observed results were derived from 

subtle differences in experimental conditions or labelling of genomic DNA. Probe CVs 

were calculated for the Agilent 44K array and the publically available Affymetrix 

Genome-Wide Human SNP Array 6.0 Sample Data Set 

(http://www.affymetrix.com/support/technical/sample_data/genomewide_snp6_data.affx)

. The median CVs were compared using a Mann–Whitney Ranked Sum Test. Probes 

were categorized based on the repeat proximity (either within or beyond 300 nt) and level 

of divergence (±20% relative to the consensus repeat) of the repetitive element adjacent  

to a probe (Table 2.4). For both commercial data sources, probes within 300 nt of a 

repetitive element exhibit significantly higher CVs (P < 0.001), though the Affymetrix 

probes had lower CVs overall than those on the Agilent array. In the Affymetrix data, the 

level of repeat divergence contributes to probe signal intensity variability to a greater 

extent than the probe proximity to adjacent repetitive elements. In particular, the 

combination of low divergence and close proximity produces the highest probe CVs in 

both commercial microarray platforms. As expected, repeat divergence did not contribute 

to probe signal intensity CVs for probes at least 300 nt away from adjacent repetitive 

elements. 

2.3.5 Targeted chromosome 15q11.2q13 aCGH detects AS deletion 

Lower variability in signal intensities is desirable in aCGH to achieve more consistent 

calling of CNCs and accurate determination of copy number using fewer probes. To 

assess the reliability of ab initio probes in CNC detection, we performed aCGH on a 

sample with a documented chromosome deletion using custom-synthesized, targeted 

microarrays. A set of 12K oligonucleotide microarrays were produced with probes 

concentrated in the chromosome 15q11.2q13 region and genome-wide representation at 

other chromosomal locations. The arrays were simultaneously hybridized to random-

primed DNA from a lymphoblastoid cell line derived from a patient with AS carrying a 

defined deletion of 5.01 Mb (32). 

The same labelled sample was used in eight hybridizations: four containing identical  

http://www.affymetrix.com/support/technical/sample_data/genomewide_snp6_data.affx
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Table 2.4: Analysis of variation of CVs in Agilent and Affymetrix aCGH probe subsets 

Repeat 

distance 

Repeat 

divergence 

No. 

probes Median P-value
a
 

Repeat 

distance 

Repeat 

divergence 

No. 

probes Median P-value
a
 

A. Affymetrix-GM07019 B. Affymetrix-GM19145 
<300 <20 576 831 0.0246 <0.001 <300 <20 576 363 0.0236 <0.001 

>300 >20 276 461 0.0235 

 

>300 >20 276 705 0.0223 

 All <20 840 370 0.0244 <0.001 All <20 840 369 0.0235 <0.001 

 

>20 880 374 0.0237 

  

>20 880 375 0.0224 

 <300 All 1 180 744 0.0242 <0.001 <300 All 1 180 033 0.023 <0.001 

>300 

 

540 000 0.0238 

 

>300 

 

540 711 0.0227 

 <300 <20 576 831 0.0246 <0.001 <300 <20 576 363 0.0236 <0.001 

 

>20 603 913 0.0238 

  

>20 603 670 0.0224 

 >300 <20 263 539 0.024 <0.001 >300 <20 264 006 0.0232 <0.001 

 

>20 276 461 0.0235 

  

>20 276 705 0.0223 

 C. Agilent-GM07019 D. Agilent-GM19145 
<300 <20 14 052 0.921 <0.001 <300 <20 14 052 0.503 <0.001 

>300 >20 6 940 0.861 

 

>300 >20 6 940 0.433 

 All <20 21 866 0.897 0.011 All <20 21 866 0.484 <0.001 

 

>20 18 644 0.875 

  

>20 18 644 0.449 

 <300 All 25 756 0.901 <0.001 <300 All 25 756 0.482 <0.001 

>300 

 

14 754 0.862 

 

>300 

 

14 754 0.443 

 <300 <20 14 052 0.921 0.007 <300 <20 14 052 0.503 <0.001 

 

>20 11 704 0.884 

  

>20 11 704 0.457 

 >300 <20 7 814 0.863 0.555 >300 <20 7 814 0.452 0.301 

 

>20 6 940 0.861 

  

>20 6 940 0.433 

 
Comparison of probe CVs of Agilent and Affymetrix platforms based on proximity to and divergence level of neighbouring repetitive elements. 

Probe CVs were calculated for Affymetrix (panels A and B) and Agilent (panels C and D) data from hybridizations with the HapMap proband 

samples (panels A and C: GM07019, panels B and D: GM19145) used in this study. Median CVs of different groups of probes within each platform 

were compared using the Mann–Whitney rank sum test. Probe subsets were selected based on the distance to the closest repetitive element in nt 



 

 

74 

(either less or greater than 300 nt) and the divergence of the repetitive element from a consensus family sequence (less than or greater than 

20%). 
a
Mann–Whitney rank sum test. 
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probe content from the ab initio custom array and four containing published probe 

sequences from the Agilent 44K array. One of the arrays containing the Agilent probe 

design failed quality control owing to uneven oligonucleotide synthesis and was excluded 

from further analyses. The ab initio platform contained 125 probes and the Agilent 

platform contained 84 within the common AS deletion-breakpoint interval. Each probe 

was replicated on the array three times. The ab initio probes were distributed on average 

52.54 kb apart throughout the CNC region, with a median distance between 

oligonucleotides of 18.01 kb. The Agilent probes were slightly more dispersed, with an 

average distance between oligonucleotides of 77.83 kb and a median distance of 52.11 

kb. CNC detection was done by Rank Segmentation (39,40) and required at least five 

probes in a segment to assign a CNC. 

Results from five of seven genomic microarrays called the AS deletion accurately: all 

four replicates of the ab initio probe set and one replicate containing Agilent probe 

sequences. Figure 2.3 indicates representative examples of primary signal intensities for 

the oligonucleotide probes spanning the deletion interval and flanking sequences for the 

ab initio and Agilent-based microarrays. The primary signal intensities of the ab initio 

probes displayed lower overall variability in the distributions of intensities in this 

genomic region. Ab initio probes within the deletion interval were then matched, based 

solely on genomic proximity, to the 76 Agilent probe sequences (excluding the 

breakpoint regions). Considering the matched probes alone, all four data sets from the ab 

initio platform were able to call the CNC, which was detectable on only a single array 

with Agilent probe content. 

We tested the limits of sensitivity of the ab initio and Agilent microarrays to call CNCs 

by reducing the probe densities in this region by selecting one of two alternating probes 

(n = 37). All four replicates of the ab initio array still detected the AS deletion. 

Interestingly, one of the Agilent replicate arrays called the deletion, but it was a different 

microarray from the one indicated in the previous analysis that involved twice as many 

probes. The resolution and consistency of both array platforms of calling deletions was 
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Figure 2.3: Primary hybridization signal intensity data from ab initio and Agilent probe 

sequences covering Angelman syndrome (AS) chromosome deletion region (chromosome 

15q11.2q13.1). Primary signal intensity data are displayed from Nexus Biodiscovery software for 

one replicate each of the (A) ab initio and (B) Agilent probe sequences. Red and blue bars 

indicate copy number loss or gain, respectively. Details on the CNCs displayed were outputted as 

follows: (A) Deletion genome coordinate range called the following: 21 937 154–30 319 444, 

length: 8 362 290 nt, probe count: 123, probe signal intensity mean: 53.84, probe signal intensity 

median: −13.00. (B) Miscalled duplication coordinate range: 22 866 888–30 322 138, length: 7 

455 250 nt, probe count: 73, probe signal intensity mean: 140.16, probe signal intensity median: 

13.7. This figure demonstrates the greater variation in Agilent probe sequence signal intensities 
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compared with those from the ab initio array. The average standard deviation of the probe signal 

intensities between replicates in the ab initio CNC region (chr15: 21 937 154–30 319 444) is 

138.08, whereas it is 238.04 (72% higher) for the Agilent probe sequences in the CNC region 

(chr15: 22 866 888–30 322 138). 
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unreliable when only 12 probes were scored (every third probe from the set of 37). A 

defined region within the deletion (ab initio—chr15:22 815 291–24 061 148 (hg19); 

Agilent—chr15:22 784 523–23 930 870) that spans the Angelman breakpoint 2 (BP2) 

(32) was called as a gain in one ab initio data set and all three Agilent data sets. By 

contrast, the region of the deletion distal to BP2 (ab initio—chr15:25 207 252–30 319 

444; Agilent—chr15:25 143 144–30 322 138) is inferred as a copy number loss in all 

seven data sets. The mean CVs of all probes within BP2 that inconsistently called CNCs 

in both platforms were 34.87% (ab initio) and 17.75% (Agilent) higher than the other 

probes in the deletion interval. This is likely due to higher noise in the observed signal 

intensities. This may be related to interference of segmental duplicons in the 

hybridization, which are known to distort aCGH results (32). Segmental duplicons span 

47% (ab initio) and 53% (Agilent) of the BP2 region. This is considerably higher 

compared with the genomic interval that was consistently called as a deletion and 

contains a smaller proportion of segmentally duplicated sequences (14%).  

2.4 Discussion 

Sequences of synthetic DNA probes used in genomic hybridization have been 

traditionally derived from unique sequences, or include repetitive elements that are 

sequestered during hybridization (4–9). The contextual effects of the genomic proximity 

of these sequences to repetitive elements have generally not been accounted for in 

assessing probe performance. Judicious selection of probes distant from adjacent 

conserved repetitive sequences can improve reproducibility of human genomic 

hybridization. Furthermore, probes incorporating divergent repetitive sequences do not 

adversely affect sc probe specificity. Under more stringent hybridization conditions, 

cross-hybridization catalysed by repetitive sequences is preventable. The inclusion of 

divergent repetitive elements expands genome-wide probe coverage, the outcome of 

which are increased lengths of scFISH probes in those regions and higher resolution in 

delineating novel genomic rearrangements by hybridization-based methods (such as 

genomic microarrays, multiplex ligation-dependent probe amplification (MLPA), PCR 

and others). 
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There are other established methods for producing short FISH probes. Software has been 

used to design smaller (10–100 kb) FISH probes (41), similar to our own scFISH 

products (9,11). Pools of labelled oligonucleotides have been used to visualize regions as 

small as 6.7 kb (42); however, the efficiency of detection with these pools is currently 

insufficient to be recommended for clinical use. Furthermore, both of these methods still 

require repeat-free regions for probe design. The ab initio scFISH probes presented here 

can reliably target small genes that are known to be commonly rearranged in cancer. By 

contrast, conventional, recombinant FISH probes extend well beyond the boundaries of 

these genes and often include neighbouring genes. Repeat-masked probes that lack 

divergent repetitive elements (9) within these genes are often too short to perform 

scFISH. 

The coverage and level of specificity achieved by ab initio scFISH can confirm 

intragenic rearrangements or define small chromosomal aberrations detected by aCGH. 

Abnormalities that can be detected by these probes include small deletions (genes or 

exons), gene amplification, translocations and inversions involving the probe’s genomic 

location. For example, CCND1 at 11q13.3 is only 13.37 kb. A common translocation 

t(11;14)(q13,q32), which over-expresses this gene has been found in 20% of multiple 

myeloma cases (43,44) and 94% of mantle cell lymphoma patients (45). We have created 

two probes (<4 kb) targeting exons 3 (probe 1) and 5 (probe 2) of CCND1. In patients 

carrying this translocation, these probes will hybridize to the derivative chromosome 14. 

Commercial and cloned probes in this genomic region are considerably longer and would 

not detect rearrangements confined to this gene. 

Despite the widespread application of aCGH for genome-wide copy number 

determination (46,47), the inter- and intra-platform reproducibility of both expression and 

copy number microarray data may be less than satisfactory (19–21,23,37,48–51). These 

previous studies have generally assumed that discrepancies resulted from stochastic noise 

in signal intensity measurements and have been attributed to algorithms used to call CNC 

analyses. Higher CVs of signal intensities have also been linked to probe length and 

composition, cross-, self- and perfect match hybridization free energies, melting 

temperatures, position within a target sequence, sequence complexity, potential 
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secondary structure and sequence information content (52). Nonetheless, these 

parameters have been described as insufficient for optimizing probe performance (53). 

Our results suggest that the variability in aCGH studies does not originate solely from 

stochastic effects, but rather a systematic error introduced during probe design. We 

demonstrated that the genomic location of the probe relative to neighbouring conserved 

repetitive elements and the level of sequence divergence of the nearest repeat can account 

for 40% of the variance observed in the Agilent genomic microarray data. We were 

however not able to explain all of the variance in the signal intensity data. It has been 

recognized that self–self hybridization in solution may be responsible for variability by 

sequestering some of the labelled hybridizable sequences (37). We propose that 

formation of these duplexes is frequently catalysed by repeats in labelled DNA 

containing the sc target sequence. Repetitive sequences throughout the genome are of 

sufficiently high concentration for such events to be commonplace during hybridization. 

Other factors such as variation in the quantity of probe on the array and hybridization 

kinetics, could also account for the unexplained variance. 

When expanding the oligonucleotide set with additional probes, it is important to 

consider the probe characteristics that are the most crucial to minimizing CVs. Probes 

within 300 nt of adjacent repetitive elements with <20% divergence from eponymic 

repeat family members have the poorest performance, with CVs on average 8.41% higher 

than those with greater separation from these elements. The variation of signal intensities 

is likely due to cross-hybridization to repetitive sequences present in the labelled target 

DNA as well as Cot-1 DNA contaminated with the sc sequences detected by the probe 

(Figure 2.2). Figure 2.2B illustrates the expected hybridization pattern, when labelled sc 

target DNA hybridizes to the probe resulting in an accurate signal intensity. Figure 2.2C 

demonstrates the cross-hybridization that can occur when the microarray probe is located 

within 300 nt of a conserved repeat element (e.g. Agilent probe in panel 2A), resulting in 

an unexpected, higher signal intensity. In Figure 2.2D, reduced signal intensity can result 

from cross-hybridization of unlabelled sc sequences present in Cot-1 DNA, which could 

block the labelled target sequences from hybridizing to the array. The signal can also be 

amplified when labelled DNA is bridged through non-allelic elements in unlabelled Cot-1 
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DNA (Figure 2.2E). Increasing the genomic distance between sc target sequences used as 

probes on the microarray and conserved repetitive elements in the genome diminishes the 

likelihood of cross-hybridization to labelled target DNA products containing non-allelic 

repetitive sequences. We demonstrated that signal intensity CVs can be reduced by 

avoiding probe placement within 300 nt of a repeat element. 

The reliability of calling CNCs is improved with probes that exhibit lower variation in 

primary signal intensities. Such probe sequences are of sufficient density in the genome 

that the same rearrangements analysed with commercial microarrays can be detected with 

greater reliability. The Agilent 44K array did not have sufficient probe density or low 

enough CVs to reliably detect a common chromosome 15q11.2q13 deletion, whereas a 

CNC based on 36 ab initio-designed probes was consistently called. Lowering CVs in 

microarray hybridization studies actually decreases the number of probes required for 

accurate CNC detection without significant loss in genomic resolution while still 

detecting small chromosome rearrangements. An implication of reliable detection of 

chromosome rearrangements with fewer probes is that it would facilitate increased 

multiplexing, with additional sectors on the same microarray allowing analysis of larger 

numbers of patient samples per array. 

To overcome limitations in sensitivity, manufacturers have increased probe densities to 

perform copy number analysis by averaging CNC calling using the results of multiple 

probes. These probe densities partially compensate for loss of dynamic range that results 

from normalization (which statistically reduces noise). We have taken a different 

approach by populating the array with probes that have inherently lower susceptibility to 

noise. Future studies will determine the minimum number of ab initio probes required to 

call well-characterized CNCs for various clinically relevant genomic imbalances. 

Optimizing CNV calling algorithms will nevertheless continue to be a crucial factor in 

aCGH microarray experiments. Reliable detection of genomic abnormalities is crucial in 

diagnostic microarray studies, especially in situations where each patient sample is 

analysed with a single hybridization array. 
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Chapter 3  

3 Validation of predicted mRNA splicing mutations using 

high-throughput transcriptome data   

The work presented in this chapter is reproduced (with permission, Appendix S1) from: 

Viner, C., Dorman, S.N., Shirley, B.C., and Rogan, P.K. (2014) Validation of predicted 

mRNA splicing mutations using high-throughput transcriptome data. [v2; ref status: 

Indexed, http://f1000r.es/378] F1000Research 3:8. DOI:10.12688/f1000research.3-8.v2 

3.1 Introduction 

DNA variant analysis of complete genome or exome data has typically relied on filtering 

of alleles according to population frequency and alterations in coding of amino acids. 

Numerous variants of unknown significance (VUS) in both coding and non-coding gene 

regions cannot be categorized with these approaches. To address these limitations, in 

silico methods that predict biological impact of individual sequence variants on protein 

coding and gene expression have been developed, which exhibit varying degrees of 

sensitivity and specificity (1). These approaches have generally not been capable of 

objective, efficient variant analysis on a genome-scale. 

Splicing variants, in particular, are known to be a significant cause of human disease (2-

5) and indeed have even been hypothesized to be the most frequent cause of hereditary 

disease
 
(6). Computational identification of mRNA splicing mutations within DNA 

sequencing (DNA-Seq) data has been implemented to varying degrees of sensitivity, with 

most software only evaluating conservation solely at the intronic dinucleotides adjacent 

to the junction (i.e.
 
(7)). Other approaches are capable of detecting significant mutations 

at other positions with constitutive, and in certain instances, cryptic, splice sites (5,8,9) 

which can result in aberrations in mRNA splicing. Presently, only information theory-

based mRNA splicing mutation analysis has been implemented on a genome scale (10). 

Splicing mutations can abrogate recognition of natural, constitutive splice sites 

http://f1000r.es/378
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(inactivating mutation), weaken their binding affinity (leaky mutation), or alter splicing 

regulatory protein binding sites that participate in exon definition. The abnormal 

molecular phenotypes of these mutations comprise: (a) complete exon skipping, (b) 

reduced efficiency of splicing, (c) failure to remove introns (also termed intron retention 

or intron inclusion), or (d) cryptic splice site activation, which may define abnormal exon 

boundaries in transcripts using non-constitutive, proximate sequences, extending or 

truncating the exon. Some mutations may result in combinations of these molecular 

phenotypes. Nevertheless, novel or strengthened cryptic sites can be activated 

independently of any direct effect on the corresponding natural splice site. The 

prevalence of these splicing events has been determined by ourselves and others (5,11-

13). The diversity of possible molecular phenotypes makes such aberrant splicing 

challenging to corroborate at the scale required for complete genome (or exome) 

analyses. This has motivated the development of statistically robust algorithms and 

software to comprehensively validate the predicted outcomes of splicing mutation 

analysis. 

Putative splicing variants require empirical confirmation based on expression studies 

from appropriate tissues carrying the mutation, compared with control samples lacking 

the mutation. In mutations identified from complete genome or exome sequences, 

corresponding transcriptome analysis based on RNA sequencing (RNA-Seq) is 

performed to corroborate variants predicted to alter splicing. Manually inspecting a large 

set of splicing variants of interest with reference to the experimental samples’ RNA-Seq 

data in a program like the Integrative Genomics Viewer (IGV) (14), or simply performing 

database searches to find existing evidence would be time-consuming for large-scale 

analyses. Checking control samples would be required to ensure that the variant is not a 

result of alternative splicing, but is actually causally linked to the variant of interest. 

Manual inspection of the number of control samples required for statistical power to 

verify that each displays normal splicing would be laborious and does not easily lend 

itself to statistical analyses. This may lead to either missing contradictory evidence or to 

discarding a variant due to the perceived observation of statistically insignificant altered 

splicing within control samples. In addition, a list of putative splicing variants returned 

by variant prediction software can often be extremely large. The validation of such a 
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significant quantity of variants may not be feasible, for example, in certain types of 

cancer, in instances where the genomic mutational load is high and only manual 

annotation is performed. We have therefore developed Veridical, a software program that 

automatically searches all given experimental and control RNA-Seq data to validate 

DNA-derived splicing variants. When adequate expression data are available at the locus 

carrying the mutation, this approach reveals a comprehensive set of genes exhibiting 

mRNA splicing defects in complete genomes and exomes. Veridical and its associated 

software programs are available at: https://mutationforecaster.com. 

3.2 Methods 

The program Veridical was developed to allow high-throughput validation of predicted 

splicing mutations using RNA sequencing data. Veridical requires at least three files to 

operate: a DNA variant file containing putative mRNA splicing mutations, a file listing of 

corresponding transcriptome (RNA-Seq) BAM files, and a file annotating exome 

structure (Appendix S3.1-S3.3). A separate file listing RNA-Seq BAM files for control 

samples (i.e. normal tissue) can also be provided. Here, we demonstrate the capabilities 

of the software for mutations predicted in a set of breast tumours. Veridical compares 

RNA-Seq data from the same tumours with RNA-Seq data from control samples lacking 

the predicted mutation. However, in principle, potential splicing mutations for any 

disease state with available RNA-Seq data can be investigated. In each tumour, every 

variant is analyzed by checking the informative sequencing reads from the corresponding 

RNA-Seq experiment for non-constitutive splice isoforms, and comparing these results 

with the same type of data from all other tumour and normal samples that do not carry the 

variant in their exomes. 

Veridical concomitantly evaluates control samples, providing for an unbiased assessment 

of splicing variants of potentially diverse phenotypic consequences. Note that control 

samples include all non-variant containing files (i.e. RNA-Seq files for those tumours 

without the variant of interest), as well any normal samples provided. Increasing the 

number of the set of control samples, while computationally more expensive, increases 

the statistical robustness of the results obtained. 
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For each variant, Veridical directly analyzes sequence reads aligned to the exons and 

introns that are predicted to be affected by the genomic variant. We elected to avoid 

indirect measures of exon skipping, such as loss of heterozygosity in the transcript, 

because of the possibility of confusion with other molecular etiologies (i.e. deletion or 

gene conversion), unrelated to the splicing mutations. The nearest natural site is found 

using the exome annotation file provided, based upon the directionality of the variant, as 

defined within Table 3.1. The genomic coordinates of the neighboring exon boundaries 

are then found and the program proceeds, iterating over all known transcript variants for 

the given gene. A diagram of this procedure is provided in Figure 3.1. The variant 

location, C, is specifically referring to the variant itself. JC refers to the variant-induced 

location of the predicted mRNA splice site, which is often proximate to, but distinct from 

the coordinate of the actual genomic mutation itself. 

The program uses the BamTools API (15) to iterate over all of the reads within a given 

genomic region across experimental and control samples. Individual reads are then 

assessed for their corroborating value towards the analysis of the variant being processed, 

as outlined in the flowchart in Figure 3.2. Validating reads are based on whether they 

alter either the location of the splice junction (i.e. junction-spanning) or the abundance of 

the transcript, particularly in intronic regions (i.e. read-abundance). Junction-spanning 

reads contain DNA sequences from two adjacent exons or are reads that extend into the 

intron (Equation 1(e)). These reads directly show whether the intronic sequence is 

removed or retained by the spliceosome, respectively. Read-abundance validated reads 

are based upon sequences predicted to be found in the mutated transcript in comparison 

with sequences that are expected to be excised from the mature transcript in the absence 

of a mutation (Equation 1(f)). Both types of reads can be used to validate cryptic splicing, 

exon skipping, or intron inclusion. A read is said to corroborate cryptic splicing if and 

only if the variant under consideration is expected to activate cryptic splicing. Junction-

spanning, cryptic splicing reads are those in which a read is exactly split from the cryptic 

splice site to the adjacent exon junction (Equation 1(a)). For read-abundance cryptic 

splicing, we define the concept of a read fraction, which is the ratio of the number of 

reads corroborating the cryptically spliced isoform and the number of reads that do not 

support the use of the cryptic splice site (i.e. non-cryptic corroborating) in the same  
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Table 3.1 Definitions used within Veridical to determine in which reads are checked. A 

and B represent natural site positions, defined in Figure 3.1(B). 

α
 – 5’ splice site 

β
 – 3’ splice site 

Pertinent Splice Site 

A B Strand Direction 

Exonic Donor
α
 +   

Exonic Donor
α
 -  

Intronic Acceptor
β
 +  

Intronic Acceptor
β
 -  
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A) 

 

B) 

 

Figure 3.1 Diagram portraying the definitions used within Veridical to specify genic variant 

position and read coordinates.  We employ the same conventions as IGV (14). Blue lines 

denote genes, wherein thick lines represent exons and thin lines represent introns. A) All reads 

overlapping or between D or E are extracted from the BAM files. We assume, for clarity of 

illustration, that the genome coordinate D < E. The variant, C, is contained somewhere within the 

middle exon or within one of its adjacent introns. B) Veridical searches for validating reads 

between A and B, the orientation of which is direction dependent. As indicated, the variant, C, is 

contained somewhere within the middle exon or within one of its adjacent introns. Depending 

upon the location of the variant, and the directionality (as described within Table 3.1), the interval 

boundaries may be delimited by either the blue or red set of labels. 
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Figure 3.2 The algorithm employed by Veridical to validate variants.   Refer to Table 3.1 for 

definitions concerning direction and Figure 3.1 for variable depictions. B is defined as follows: B 

(B site left (←) of A ⇒ B := D. B site right (→) of A ⇒ B := E.  



 

 

96 

genomic region of a sample. Cryptic corroborating reads are those which occur within the 

expected region where cryptic splicing occurs (i.e. spliced-in regions). This region is 

bounded by the variant splice site location and the adjacent (direction dependent) splice 

junction (Equation 1(a)). Non-cryptic corroborating reads, which we also termed “anti-

cryptic” reads, are those that do not lie within this region, but would still be retained 

within the portion that would be excised, had cryptic splicing occurred (Equation 1(b)). 

To identify instances of exon skipping, Veridical only employs junction-spanning reads. 

A read is considered to corroborate exon skipping if the connecting read segments are 

split such that it connects two exon boundaries, skipping an exon in between (Equation 

1(c)). A read is considered to corroborate intron inclusion when the read is continuous 

and either overlaps with the intron-exon boundary (and is then said to be junction-

spanning) or if the read is within an intron (and is then said to be based upon read-

abundance). We only consider an intron inclusion read to be junction spanning if it spans 

the relevant splice junction, A. Equation 1(d) formalizes this concept. We occasionally 

use the term “total intron inclusion” to denote that any such count of intron inclusion 

reads includes both those containing and not containing the mutation itself. Graphical 

examples of some of these validation events, with a defined variant location, are provided 

in Figure 3.3.  

We proceed to formalize the above descriptions as follows. A given read is denoted by r, 

with start and end coordinates (rs, re), if the read is continuous, or otherwise, with start 

and end coordinate pairs, (rs1, re1) and (rs2, re2) as diagrammed within Figure 3.3. Let ℓ be 

the length of the read. The set ζ denotes the totality of validating reads. The criterion for r 

∈ ζ is detailed below. It is important to note that validating reads are necessary but not 

sufficient to validate a variant. Sufficiency is achieved only if the number of validating 

reads is statistically significant relative to those present in control samples. ζ itself is 

partitioned into three sets: ζc, ζe, and ζi for evidence of cryptic splicing, exon skipping, 

and intron inclusion, respectively. We allow partitions to be empty. Let JC denote the 

adjacent splice junction, and let B denote the downstream natural site, as defined by 

Figure 3.3 and Table 3.1. Without loss of generality, we consider only the red (i.e.  
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A) 

 
B) 

  
C) 

 

Figure 3.3 Illustrative examples of aberrant splicing detection. Grey lines denote reads, 

wherein thick lines denote a read mapping to genomic sequence and thin lines represent 

connecting segments of reads split across spliced-in regions (i.e. exons or included introns). 

Dotted blue rectangles denote portions of genes which are spliced out in a mutant transcript, but 

are otherwise present in a normal transcript. Mutant reads are purple if they are junction-spanning 

and green if they are read-abundance based. Start and end coordinates of reads with two 

portions are denoted by (rs1, re1) and (rs2, re2), while coordinates of those with only a single 

portion are denoted by (rs, re). Refer to the caption of Figure 3.1 for additional graphical element 

descriptions. A) An example of a normally spliced transcript, assuming Veridical is validating a 

specific variant, C, shown in yellow. The adjacent intron-exon boundary, in this case, corresponds 

to both the adjacent splice junction, JC, and the relevant natural site A. B is the downstream 

natural site. Veridical would not identify any aberrant splicing. B) An example of the variant 

causing the activation of a cryptic splice site. Additionally, there is intron inclusion present within 

the analysis region. Veridical would identify and report read counts for reads pertaining to the 

(junction-spanning, purple) cryptic splicing event and those pertaining to the observed (junction-

spanning and read-abundance, green) intron inclusion. Since this pertains to a cryptic variant, the 

adjacent splice junction, JC, is distinct from the relevant natural site A. C) An example of the 

variant causing the containing exon to be skipped. Veridical would report read counts for reads 

pertaining to the junction-spanning exon skipping event. These discontinuous reads are those, 

that like the one shown, span the variant containing exon. 
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direction is right) set of labels within Figure 3.1(B), as further typified by Figure 3.3. 

Then the (splice consequence) partitions of ζ are given by: 

𝑟 ∈ 𝜁𝑐 ⇔ 𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑖𝑠 𝑐𝑟𝑦𝑝𝑡𝑖𝑐 ∧ (𝑟𝑆2 − 𝑟𝑒1 = 𝐵 − 𝐽𝐶 ∨ (𝑟𝑆 > 𝐽𝐶  ∧ 𝑟𝑒 < 𝐴)) (1a) 

𝑟 ∉ 𝜁𝑐 ∧ 𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑖𝑠 𝑐𝑟𝑦𝑝𝑡𝑖𝑐 ∧ ¬(𝑟𝑆2 − 𝑟𝑒1 = 𝐵 − 𝐽𝐶) ⇒ 𝑟 ∈ 𝑎𝑛𝑡𝑖 − 𝑐𝑟𝑦𝑝𝑡𝑖𝑐 (1b) 

𝑟 ∈ 𝜁𝑒 ⇔ (𝑟𝑒1 = 𝐷 ∧ 𝑟𝑆2 = 𝐸) (1c) 

𝑟 ∈ 𝜁𝑖 ⇔ (𝐴 ∈ [𝑟𝑆, 𝑟𝑒]) ∨ ((𝐴 ∉ [𝑟𝑆, 𝑟𝑒]) ∧ 𝑟𝑆 > 𝐴 − ℓ ∧ 𝑟𝑒 < 𝐵 ∧ ¬(𝐴 ∈ [𝑟𝑆, 𝑟𝑒])) (1d) 

We separately partition ζ by its evidence type, the set of junction-spanning reads, δ and 

read-abundance reads, α: 

𝑟 ∈ 𝛿 ⇔ (𝐴 ∈ [𝑟𝑆, 𝑟𝑒]) ∨ (𝑟 ∈ 𝜁𝐶 ∧ 𝑟𝑆2 − 𝑟𝑒1 = 𝐵 − 𝐽𝐶)  (1e) 

𝑟 ∈ ∝ ⇔ 𝑟 ∉  𝛿 (1f) 

Once all validating reads are tallied for both the experimental and control samples, a p-v  

alue is computed. This is determined by computing a z-score upon Yeo-Johnson (YJ) 

(16) transformed data. This transformation, shown in Equation 2, ensures that the data is 

sufficiently normally distributed to be amenable to parametric testing. 

Ψ(𝓍, 𝜆) =

{
 
 

 
 

(𝓍+1)𝜆

𝜆
 𝑖𝑓 𝓍 ≥ 0 ∧ 𝜆 ≠ 0

𝑙𝑜𝑔(𝓍 + 1) 𝑖𝑓 𝓍 ≥ 0 ∧ 𝜆 = 0

−
(−𝓍+1)2−𝜆−1

2−𝜆
 𝑖𝑓 𝓍 < 0 ∧ 𝜆 ≠ 2

− log(−𝓍 + 1) 𝑖𝑓 𝓍 < 0 ∧ 𝜆 = 2

 (2) 

The transform is similar to the Box-Cox power transformation, but obviates the 

requirement of inputting strictly positive values and has more desirable statistical 

properties. Furthermore, this transformation allowed us to avoid the use of non-

parametric testing, which has its own pitfalls regarding assumptions of the underlying 

data distribution (17). We selected λ = 12, because Veridical’s untransformed output is 

skewed left, due to their being, in general, less validating reads in control samples and the 

fact that there are, by design, vastly more control samples than experimental samples. We 
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found that this value for λ generally made the distribution much more normal. A 

comparison of the distributions of untransformed and transformed data is provided in 

Appendix S3.4. We were not concerned about small departures from normality as a z-test 

with a large number of samples is robust to such deviations (18). 

Thus, we can compute the p-value of the pairwise unions of the two sets of partitions of ζ, 

except the irrelevant ζe ∪ α = Ø. We only provide p-values for these pairwise unions and 

do not attempt to provide p-values for the partitions for the different consequences of the 

mutations on splicing. While such values would be useful, we do not currently have a 

robust means to compute them. Our previous work provides guidance on interpretation of 

splicing mutation outcomes (3-5,10). Thus for ζx ∈ {ζc, ζe, ζi}, let ΦZ (z) represent the 

cumulative distribution function of the one-sided (right-tailed — i.e. P[X > x]) standard 

normal distribution. Let N represent the total number of samples and let V represent the 

set of all ζx validations, across all samples. Then: 

𝜇 =
∑ 𝑉𝑗
𝑁
𝑗=1

𝑁
        𝜎 = √

1

𝑁
∑ (𝑉𝑗 − 𝑉̅)2
𝑁
𝑗=1     𝑧 =

|𝜁𝑥|−𝜇

𝜎
     𝑝 = Φ(Ψ(𝓏,

1

2
)) 

The program outputs two tables, along with summaries thereof. The first table lists all 

validated read counts across all categories for experimental samples, while the second 

table does the same for the control samples. P-values are shown in parentheses within the 

experimental table, which refer to the column-dependent (i.e. the read type is given in the 

column header) p-value for that read type with respect to that same read type in control 

samples. The program produces three files: a log file containing all details regarding 

validated variants, an output file with the programs progress reports and summaries, and 

a filtered validated variant file. The filtered file contains all validated variants of 

statistical significance (set as p < 0.05, by default), defined as variants with one or more 

validating reads achieving statistical significance in a strongly corroborating read type. 

These categories are limited to all junction-spanning based splicing consequences and 

read-abundance total intron inclusion. For example, a cryptic variant for which p = 0.04 

in the junction-spanning cryptic column would meet this criteria, assuming the default 

significance threshold. 
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The p-values given by Veridical are more robust when the program is provided with a 

large number of samples. The minimum sample size is dependent upon the desired 

power, α value, and the effect size (ES). The minimum samples size could be computed 

as follows: 𝑁 = ⌈
𝜎2𝓏2

𝐸𝑆2
⌉. For α = 0.05 and β = 0.2 (for a power of 0.8): z = 2.4865 for the 

one-tailed test. Then, 𝑁 = ⌈
𝜎22.48652

𝐸𝑆2
⌉. Ideally, Veridical could be run with a trial number 

of samples. 

Then, one would compute effect sizes from Veridical’s output. The standard deviation in 

the above formula could also be estimated from one’s data, although it should be 

transformed using Yeo-Johnson (such as via an appropriate R package) before computing 

this estimation. 

We elected to use RefSeq (19) genes for the exome annotation, as opposed to, the more 

permissive exome annotation sets, UCSC Known Genes (20) or Ensembl (21). The large 

number of transcript variants within Ensembl, in particular, caused many spurious intron 

inclusion validation events. This occurred because reads were found to be intronic in 

many cases, when in actuality they were exonic with respect to the more common 

transcript variant. In addition, the inclusion of the large number of rare transcripts in 

Ensembl significantly increased program run-time and made validation events much 

more challenging to interpret unequivocally. The use of RefSeq, which is a conservative 

annotation of the human exome, resolves these issues. It is possible that some subset of 

unknown or Ensemble annotated intronic transcripts could be sufficiently prevalent to 

merit inclusion in our analysis. We do not attempt to perform the difficult task of 

deciding which of these transcripts would be worth using. Indeed, the task of confirming 

and annotating of such transcripts is already done by the more conservative annotation 

we employ. 

We also provide an R program (22) which produces publication quality histograms 

displaying embedded Q-Q plots and p-values, to evaluate for normality of the read 

distribution and statistical significance, respectively. The R program performs the YJ 

transformation as implemented in the car package (23). The histograms generated by the 

program use the Freedman-Draconis (24) rule for break determination, and the Q-Q plots 
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use algorithm Type 8 for their quantile function, as recommended by Hyndman and Fan 

(25). This program is embedded within a Perl script, for better integration into our 

workflow. Lastly, a Perl program was implemented to automatically retrieve and 

correctly format an exome annotation file from the UCSC database (20) for use in 

Veridical. All data use hg19/GRCh37, however when new versions of the genome 

become available, this program can be used to update the annotation file. 

3.3 Results 

Veridical validates predicted mRNA splicing mutations using high-throughput RNA 

sequencing data. We demonstrate how Veridical and its associated R program are used to 

validate predicted splicing mutations in somatic breast cancer. Each example depicts a 

particular variant-induced splicing consequence, analyzed by Veridical, with its 

corresponding significance level. The relevant primary RNA-Seq data are displayed in 

IGV, along with histograms and Q-Q plots showing the read distributions for each 

example. The source data are obtained from controlled-access breast carcinoma data from 

The Cancer Genome Atlas (TCGA) (26). Tumour-normal matched DNA sequencing data 

from the TCGA consortium was used to predict a set of splicing mutations, and a subset 

of corresponding RNA sequencing data was analyzed to confirm these predictions with 

Veridical. Overall, 442 tumour samples and 106 normal samples were analyzed. Briefly, 

all variants used as examples in this manuscript came from running the matched TCGA 

exome files (to which the RNA-Seq data corresponds) through SomaticSniper (27) and 

Strelka (28) to call somatic mutations, followed by the Shannon Human Splicing Pipeline 

(10) to find splicing mutations, which served as the input to Veridical. Details of the 

RNA-Seq data can be found within the supplementary methods of the TCGA paper (26). 

Accordingly, the following examples demonstrate the utility of Veridical to identify 

potentially pathogenic mutations from a much larger subset of predicted variants.  

3.3.1 Leaky Mutations 

Mutations that reduce, but not abolish, the spliceosome’s ability to recognize the 

intron/exon boundary are termed leaky (3). This can lead to the mis-splicing (intron 
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inclusion and/or exon skipping) of many but not all transcripts. An example, provided in 

Figure 3.4, displays a predicted leaky mutation (chr5:162905690G>T) in the HMMR 

gene in which both junction-spanning exon skipping (p < 0.01) and read-abundance-

based intron inclusion (p = 0.04) are observed. We predict this mutation to be leaky 

because its final Ri exceeds 1.6 bits — the minimal individual information required to 

recognize a splice site and produce correctly spliced mRNA (4). Indeed, the natural site, 

while weakened by 2.16 bits, remains strong — 10.67 bits. This prediction is validated by 

the variant-containing sample’s RNA-Seq data (Figure 3.4), in which both exon skipping 

(5 reads) and intron inclusion (14 reads, 12 of which are shown, versus an average of 

4.051 such reads per control sample) are observed, along with 70 reads portraying wild-

type splicing. Only a single normally spliced read contains the G→T mutation. These 

results are consistent with an imbalance of expression of the two alleles, as expected for a 

leaky variant. Figure 3.5 shows that for the distribution of read-abundance-based intron 

inclusion is marginally statistically significant (p = 0.04). 

3.3.2 Inactivating Mutations 

Variants that inactivate splice sites have negative final Ri values (3) with only rare 

exceptions (4), indicating that splice site recognition is essentially abolished in these 

cases. We present the analysis of two inactivating mutations within the PTEN and 

TMTC2 genes from different tumour exomes, namely: chr10:89711873A>G and 

chr12:83359523G>A, respectively. The PTEN variant displays junction-spanning exon 

skipping events (p < 0.01), while the TMTC2 gene portrays both junction-spanning and 

read-abundance-based intron inclusion (both splicing consequences with p < 0.01). In 

addition, all intron inclusion reads in the experimental sample contain the mutation itself, 

while only one such read exists across all control samples analyzed (p < 0.01). The PTEN 

variant contains numerous exon skipping reads (32 versus an average of 2.466 such reads 

per control sample). The TMTC2 variant contains many junction-spanning intron 

inclusion reads with the G→A mutation (all of its junction-spanning intron inclusion 

reads: 22 versus an average of 0.002 such reads per control sample). IGV screenshots for 

these variants are provided within Figure 3.6. This figure also shows an example of 

junction-spanning cryptic splice site activated by the mutation (chr1:985377C>T) within 
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A) 

  
B) 

 

Figure 3.4 IGV images depicting a predicted leaky mutation  (chr5:162905690G>T) within the 

natural acceptor site of exon 12 (162905689–162905806) of HMMR. This gene has four transcript 

variants and the given exon number pertains to isoforms a and b (reference sequences 
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NM_001142556 and NM_012484). RNA-Seq reads are shown in the centre panel. The bottom 

blue track depicts RefSeq genes, wherein each blue rectangle denotes an exon and blue 

connecting lines denote introns. In the middle panel, each rectangle (grey by default) denotes an 

aligned read, while thin lines are segments of reads split across exons. Red and blue coloured 

rectangles in the middle panel denote aligned reads of inserts that are larger or smaller than 

expected, respectively. Reads are highlighted by their splicing consequence, as follows: cryptic 

splicing (green), exon skipping (purple), junction-spanning intron inclusion (dark green), and read-

abundance intron inclusion (cyan). (A) depicts a genomic region of chromosome 5: 162902054–

162909787. The variant occurs in the middle exon. Intron inclusion can be seen in this image, 

represented by the reads between the first and middle exon (since the direction is left, as 

described within Table 1). These 14 reads are read-abundance-based, since they do not span the 

intron-exon junction. (B) depicts a closer view of the region shown in (A) — 162905660–

162905719. The dotted vertical black lines are centred upon the first base of the variant-

containing exon. The thin lines in the middle panel that span the entire exon fragment are 

evidence of exon skipping. These 5 reads are split across the exon before and after the variant-

containing exon, as seen in (A). 
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Figure 3.5 Histogram of read-abundance-based intron inclusion with embedded Q-Q plots 

of the predicted leaky mutation (chr5:162905690G>T) within HMMR, as shown in Figure 4. 

The arrowhead denotes the number of reads (14 in this case) in the variant-containing file, which 

is more than observed in the control samples (p = 0.04).  
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C) 

  

D) 

 

Figure 3.6 Examples of validated mutations.  (A) depicts an inactivating mutation 

(chr10:89711873A>G) within the natural acceptor site of exon 6 (89711874–89712016) of PTEN. 
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The dotted vertical black line denotes the location of the relevant splice site. The region displayed 

is 89711004–89712744 on chromosome 10. Many of the 32 exon skipping reads are evident, 

typified by the thin lines in the middle panel that span the entire exon. There is also a substantial 

amount of read-abundance-based intron inclusion, shown by the reads to the left of the dotted 

vertical line. Exon skipping was statistically significant (p < 0.01), while read-abundance-based 

intron inclusion was not (p = 0.53). Panels (B) and (C) depict an inactivating mutation 

(chr12:83359523G>A) within the natural donor site of exon 6 (83359338–83359523) of TMTC2. 

(B) depicts a closer view (83359501–83359544) of the region shown in (C) and only shows exon 

6. Some of the 22 junction-spanning intron inclusion reads can be seen. In this case, all of these 

reads contain the mutation, shown by the green adenine base in each read, between the two 

vertical dotted lines. (C) depicts a genomic region of chromosome 12: 83359221–83360885, 

TMTC2 exons 6–7. The variant occurs in the left exon. 65 read-abundance-based intron inclusion 

can be seen in this image, represented by the reads between the two exons. Panel (D) depicts a 

mutation (chr1:985377C>T) causing a cryptic donor to be activated within exon 27 (the second 

from left, 985282–985417) of AGRN. The region displayed is 984876–985876 on chromosome 1 

(exons 26–29 are visible). Some of the 34 cryptic (junction-spanning) reads are portrayed. The 

dotted black vertical line denotes the cryptic splice site, at which cryptic reads end. The read-

abundance-based intron inclusion, of which two reads are visible, was not statistically significant 

(p = 0.68). Refer to the caption of Figure 4 for IGV graphical element descriptions.  
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the AGRN gene. The concordance between the splicing outcomes generated by these 

mutations and the Veridical results indicates that the proposed method detects both 

mutations that inactivate splice sites and cryptic splice site activation. 

3.3.3 Cryptic Mutations 

Recurrent genetic mutations in some oncogenes have been reported among tumours 

within the same, or different, tissues of origin. Common recurrent mutations present in 

multiple abnormal samples are recognized by Veridical. This avoids including a variant-

containing sample among the control group, and outputs the results of all of the variant-

containing samples. A relevant example is shown in Figure 3.7. The mutation 

(chr1:46726876G>T) causes activation of a cryptic splice site within RAD54L in 

multiple tumours. Upon computation of the p-values for each of the variant-containing 

tumours, relative to all non-variant containing tumours and normal controls, not all 

variant-containing tumours displayed splicing abnormalities at statistically significant 

levels. Of the six variant-containing tumours, two had significant levels of junction-

spanning intron inclusion, and one showed statistically significant read-abundance-based 

intron inclusion. Details for all of the aforementioned variants, including a summary of 

read counts pertaining to each relevant splicing consequence, for experimental versus 

control samples, are provided in Table 3.2. 

3.3.4 Performance 

The performance of the software is affected by the number of predicted splicing 

mutations, the number of abnormal samples containing mutations and control samples 

and the corresponding RNA-Seq data for each type of sample. Veridical has the ability to 

analyze approximately 3000 variants in approximately 4 hours, assuming an input of 100 

BAM files of RNA-Seq data. The relationship between time and numbers of BAM files 

and variants are plotted in Figure 3.8 for a 2.27 GHz processor. Veridical uses memory in 

linear proportion to the number and size of the input BAM files. In our tests, using RNA-

Seq BAM files with an average size of approximately 6 GB, Veridical used 

approximately 0.7 GB for ten files to 1 GB for 100 files. 
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Figure 3.7 IGV images and their corresponding histograms with embedded Q-Q plots 

depicting all six variant-containing files with a mutation  (chr1:46726876G>T) which, in some 

cases, causes a cryptic donor to be activated within the intron between exons 7 and 8 of 

RAD54L. This results in the extension of the downstream natural donor (the 5′ end of exon 8). 

This gene has two transcript variants and the given exon numbers pertain to isoform a (reference 

sequence NM_003579). Only samples IV and V have statistically significant intron inclusion 

relative to controls. read-abundance-based intron inclusion can be seen in (A), between the two 

exons. The region displayed is on chromosome 1: 46726639–46726976. (B) depicts the 

corresponding histogram for the 15 read-abundance-based intron inclusion reads (p = 0.05) that 

are present in sample IV. The intron-exon boundary on the right is the downstream natural donor. 

(C) typifies some of the 13 junction-spanning intron inclusion reads that are a direct result of the 

intronic cryptic site’s activation. In these instances, reads extending past the intron-exon 

boundary are being spliced at the cryptic site, instead of the natural donor. In particular, samples 

IV and V both have a statistically significant numbers of such reads, 7 (p = 0.01) and 5 (p = 0.04), 

respectively. This is further typified by the corresponding histogram in (D). (C) focuses upon exon 

8 from (A) and displays the genomic positions 46726908–46726957. Refer to the caption of 

Figure 4 for IGV graphical element descriptions. In the histograms, arrowheads denote numbers 

of reads in the variant-containing files. The bottom of the plots provide p-values for each 

respective arrowhead. Statistically significant p-values and their corresponding arrowheads are 

denoted in red.  
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Table 3.2 Examples of variants validated by Veridical and their selected read types.  

Gene Chr Cv Cs Variant Type Initial 

Ri 

Final 

Ri 

ΔRi # SC ET p-
value 

RE RT RN Rμ Figure 

HMMR chr5 162905690 162905689 G/T Leaky 12.83 10.67 -2.16  ES JS <0.01 5 11 0 0.02 3.4,3.5 

          ES RA 0.04 14 2133 103 4.051  

PTEN chr10 89711873 89711874 A/G Inactivating 12.09 -2.62 -14.71  ES JS <0.01 32 975 386 2.466 6(A) 

TMTC2 chr12 83359523 83359524 G/A Inactivating 1.74 -1.27 -3.01  ES JS <0.01 22 2241 383 4.754 6(B) 

          ES JSwM <0.01 22 0 1 0.002  

          ES RA <0.01 65 7293 1395 15.739 6(C) 

AGRN chr1 985377 985376 C/T Cryptic -2.24 4.79 7.03  CS JS <0.01 34 97 23 0.217 6(D) 

RAD54L chr1 46726876 46726895 G/T Cryptic 13.4 14.84 1.44 I CS JS NA 0 645 58 1.274 7 

          CS RA 0.54 3 2171 290 4.458  

         II CS JS 0.51 1 645 58 1.274  

          CS RA 0.33 6 2171 290 4.458  

         III CS JS NA 0 645 58 1.274  

          CS RA 0.33 6 2171 290 4.458  

         IV CS JS 0.01 7 645 58 1.274  

          CS RA 0.05 15 2171 290 4.458  

         V CS JS 0.04 5 645 58 1.274  

          CS RA NA 0 2171 290 4.458  

         VI CS JS NA 0 645 58 1.274  

          CS RA NA 0 2171 290 4.458  

Header abbreviations Chr, Cv, Cs, #, SC, and ET, denote chromosome, variant coordinate, splice site coordinate, sample number (where 

applicable), splicing consequence, and evidence type, respectively. Headers containing R with some subscript denote numbers of validated reads 

for the specified variant’s splicing consequence(s) and evidence type(s). RE denotes reads within variant-containing tumour samples. RT and RN 

denote control samples, for tumours and normal cells, respectively. Rμ is the per sample mean of RT and RN. Splicing consequences: CS denotes 
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cryptic splicing, ES denotes exon skipping, and II denotes intron inclusion. Evidence types: JS denotes junction-spanning and RA denotes read-

abundance. 
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Figure 3.8 Profiling data for Veridical runtime.  Tests were conducted upon an Intel Xeon @ 

2.27 GHz. Visualizations were generated with R (22) using Lattice and Effects. A surface plot of 

time vs. numbers of BAM files and variants is provided in (A). Effect plots are given in (B) and 

demonstrate the effects of the numbers of BAM files and variants upon runtime. The effect plots 

were generated using a linear regression model (R
2
 = 0.7525).  
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3.4 Discussion 

We have implemented Veridical, a software program that automates confirmation of 

mRNA splicing mutations by comparing sequence read-mapped expression data from 

samples containing variants that are predicted to cause defective splicing with control 

samples lacking these mutations. The program objectively evaluates each mutation with 

statistical tests that determine the likelihood of and exclude normal splicing. To our 

knowledge, no other software currently validates splicing mutations with RNA-Seq data 

on a genome-wide scale, although many applications can accurately detect conventional 

alternative splice isoforms (i.e. (29)). Veridical is intended for use with large data sets 

derived from many samples, each containing several hundred variants that have been 

previously prioritized as likely splicing mutations, regardless of how the candidate 

mutations are selected. It is not practical to analyze all variants present in an exome or 

genome, rather only a filtered subset, due to the extensive computations required for 

statistical validation. As such, Veridical is a key component of an end-to-end, hypothesis-

based, splicing mutation analysis framework that also includes the Shannon splicing 

mutation pipeline (10) and the Automated Splice Site Analysis and Exon Definition 

server (5). There is a trade-off between lengthy run-times and statistical robustness of 

Veridical, especially when there are either a large number of variants or a large number 

of RNA-Seq files. As with most statistical methods, those employed here are not 

amenable to small sample sets, but become quite powerful when a large number of 

controls are employed. In order to ensure that mutations can be validated, we recommend 

an excess of control transcriptome data relative to those from samples containing 

mutations (> 5 : 1), guided by the power analysis described in Methods. We do not 

recommend the use of a single nor a few control samples to corroborate a putative 

mutation. Not surprisingly, we have found that junction-spanning reads have the greatest 

value for corroborating cryptic splicing and exon skipping. Even a single such read is 

almost always sufficient to merit the validation of a variant, provided that sufficient 

control samples are used. For intron inclusion, both junction-spanning and read-

abundance-based reads are useful and a variant can readily be validated with either, 
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provided that the variant-containing experimental sample(s) show a statistically 

significant increase in the presence of either form of intron inclusion corroborating reads. 

Veridical is able to automatically process variants from multiple different experimental 

samples, and can group the variant information if any given mutation is present in more 

than one sample. The use of a large sample size allows for robust statistical analyses to be 

performed, which aid significantly in the interpretation of results. The main utility of 

Veridical is to filter through large data sets of predicted splicing mutations to prioritize 

the variants. This helps to predict which variants will have a deleterious effect upon the 

protein product. Veridical is able to avoid reporting splicing changes that are naturally 

occurring through checking all variant-containing and non-containing control samples for 

the predicted splicing consequence. In addition, running multiple tumour samples at once 

allows for manual inspection to discover samples that contained the alternative splicing 

pattern, and consequently, permits the identification of DNA mutations in the same 

location which went undetected during genome sequencing. 

The statistical power of Veridical is dependent upon the quality of the RNA-Seq data 

used to validate putative variants. In particular, a lack of sufficient coverage at a 

particular locus will cause Veridical to be unable to report any significant results. A 

coverage of at least 20 reads should be sufficient. This estimate is based upon alternative 

splicing analyses in which this threshold was found to imply concordance with 

microarray and RT-PCR measurements (30-33). There are many potential legitimate 

reasons why a mutation may not be validated: (a) A lack of gene expression in the variant 

containing tumour sample, (b) nonsense-mediated decay may result in a loss of 

expression of the entire transcript, (c) the gene itself may have multiple paralogs and 

reads may not be unambiguously mapped, (d) other non-splicing mutations could account 

for a loss of expression, and (e) confounding natural alternative splicing isoforms may 

result in a loss of statistical significance during read mapping of the control samples. The 

prevalence of loci with insufficient data is dependent upon the coverage of the 

sequencing technology used. As sequencing technologies improve, the proportion of 

validated mutations is expected to increase. Such an increase would mirror that observed 

for the prevalence of alternative splicing events (34). In addition, mutated splicing factors 
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can disrupt splicing fidelity and exon definition (35). This effect could decrease 

Veridical’s ability to validate splicing mutations affected by a disruption of the definition 

of the pertinent exon. Veridical does not currently form any equivalence between distinct 

variants affecting the same splice site. Such variants will be analyzed independently. 

Veridical is intended to be used with RNA-Seq data that not only corresponds to matched 

DNA-Seq data, but also only for sets of samples with comparable sequencing protocols, 

since the non-normalized comparisons performed rely upon the evening out of batch 

effects, due to a substantial number of control samples. It is important to note that 

acceptance of the null hypothesis, due to an absence of evidence required to disprove it, 

does not imply that the underlying prediction of a mutation at a particular locus is 

incorrect, but merely that the current empirical methods employed were insufficient to 

corroborate it. 

“Validate,” in the present context, refers to the condition where sufficient statistical 

evidence has been marshaled in support of a variant. However, the threshold for 

significance can vary so these analyses can also be thought of as strongly corroborating 

variants. Recent studies in Bayesian statistics have suggested that a p-value threshold of 

0.05 does not correspond to strong support of the alternative hypothesis. Accordingly, 

Johnson (36) recommends the use of tests at the 0.005 or 0.001 level of significance. 

We consider alternative splicing to be a different problem. Veridical does not aim to 

identify putatively pathogenic variants, but rather, to confirm existing in silico 

predictions thereof. We do infer exon skipping events (i.e. alternative splicing) de novo, 

but only to catalog dysregulated splicing “phenotypes” due to genomic sequence variants. 

This is not the first study to use a large control dataset. Indeed the Variant Annotation, 

Analysis & Search Tool (VAAST) (37) does this to search for disease-causing (non-

splicing) variants and the Multivariate Analysis of Transcript Splicing (MATS) (29) tool 

(among others) can be used for the discovery of alternative splicing events. However, in 

our case, in most instances the distribution of reads in a single sample is compared to the 

distributions of reads in the control set, as opposed to a likelihood framework-based 

approach. We are suggesting that our approach be coupled to existing approaches to act 

as an a posteriori, hypothesis-driven, check on the veridicality of specific variants. 
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While there is considerable prior evidence for splicing mutations that alter natural and 

cryptic splice site recognition, we were somewhat surprised at the apparent high 

frequency of statistically significant intron inclusion revealed by Veridical. In fact, 

evidence indicates that a significant portion of the genome is transcribed (34), and it is 

estimated that 95% of known genes are alternatively spliced (30). Defective mRNA 

splicing can lead to multiple alternative transcripts including those with retained introns, 

cassette exons, alternate promoters/terminators, extended or truncated exons, and reduced 

exons (38). In breast cancer, exon skipping and intron retention were observed to be the 

most common form of alternative splicing in triple negative, non-triple negative, and 

HER2 positive breast cancer (39). In normal tissue, intron retention and exon skipping 

has been predicted to affect 2572 exons in 2127 genes and 50 633 exons in 12 797 genes, 

respectively (40). In addition, previous studies suggest that the order of intron removal 

can influence the final mRNA transcript composition of exons and introns (41). Intron 

inclusion observed in normal tissue may result from those introns that are removed from 

the transcript at the end of mRNA splicing. Given that these splicing events are relatively 

common in normal tissues, it becomes all the more important to distinguish expression 

patterns that are clearly due to the effects of splicing mutations — one of the guiding 

principles of the Veridical method. 

Veridical is an important analytical resource for unsupervised, thorough validation of 

splicing mutations through the use of companion RNA-Seq data from the same samples. 

The approach will be broadly applicable for many types of genetic abnormalities, and 

should reveal numerous, previously unrecognized, mRNA splicing mutations in exome 

and complete genome sequences. 
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Chapter 4  

4 Splicing mutation analysis reveals previously 

unrecognized pathways in lymph node-invasive breast 

cancer 

The work presented in this chapter is reproduced (with permission, Appendix S1) from: 

Dorman, S.N., Viner, C., Rogan, P.K. (2014) Splicing mutation analysis reveals 

previously unrecognized pathways in lymph node-invasive breast cancer. Scientific 

Reports 4:7063. DOI: 10.1038/srep07063 

4.1 Introduction 

Large-scale DNA sequencing studies have attempted to elucidate the genomic landscapes 

of breast cancer tumours to identify mutated genes and genomic variation that contribute 

to tumour development and progression (1-5). Typically, somatic mutations within gene 

coding regions are identified and then filtered for rare or novel variants predicted to affect 

protein structure or function (6-9). Frequently mutated genes are cataloged, with the goal 

of inferring defective genes that are more likely to contribute to tumour phenotypes. 

However, there does not appear to be a consistent set of somatic driver mutations in most 

breast cancer cases. For instance, in 100 cases, 73 different combinations of abnormal 

gene sequences were reported (4). 

Some established cancer genes are enriched for mutations (i.e. TP53, PIK3CA, PTEN, 

MAP3K1, AKT1, CDH1, GATA3, MLL3 and RB1), in addition to genes that were not 

previously associated with breast cancer (including CBFB, RUNX1, TBX3, NF1 and 

SF3B1) (1-5). At least 49 genes (including known breast cancer genes) have been found 

to be significantly mutated, 16 of these reproducibly across multiple studies, and the 

majority were mutated in <10% of tumours. 
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Inconsistencies in mutation composition among different tumours present significant 

challenges to understanding the underlying etiology of tumour phenotypes. As a result of 

epistasis, mutations in genes with linked biochemical functions would be expected to 

reveal dysfunctional pathways in tumours (10). Focusing analyses to one molecular 

subtype of breast cancer can also be useful in delineating dysregulated pathways that 

define the basis of tumour phenotypes (3). Significant insight into tumour biology has 

come from selecting tumours with specific clinical identifiers, for example, by limiting 

mutation catalogs in metastatic tumours (10,11). 

Somatic mutation analyses of tumour exomes have focused on alteration of amino acid 

sequences, or highly conserved dinucleotides adjacent to exons, which usually impact 

mRNA splicing. Since these variants most likely comprise only a fraction of the total 

mutational load, the pathways inferred to be dysregulated in these tumours may be 

incomplete. For example, in familial breast cancer, variants of unknown significance 

have been explained by both experimental validation and in silico predictions of defects 

in BRCA 1/2 mRNA splicing (12,13). Typically, genomic studies have used tools that 

predict splicing mutations based on the highly conserved dinucleotide sequences at 

mRNA 5′ donor and 3′ acceptor sites (8,14). There are other well established methods 

that can identify splicing mutations beyond those directly at natural sites (15-17), but 

these approaches have not been applied to genome-scale cancer studies, until recently 

(18). Published studies have revealed only a small fraction of reported somatic mutations 

in cancer to be splicing mutations, accounting for only 2% of those reported (1-5). The 

present study considers the possibility that many somatic splicing mutations may be 

overlooked or are undetected by the conservative approaches currently used in analyses 

of tumour genomes. 

Splicing mutations frequently lead to changes in the sequence and structure of the 

encoded protein, which are usually distinguishable from those generated by normal 

alternative splice isoforms. Constitutive splicing mutations are frequently deleterious and 

are a major cause of inherited and acquired diseases (19). In cancer, aberrant splicing 

(including alternative isoforms that are not a result of cis mutation) is known to cause or 

promote tumour propagation (20), and has been described as an additional hallmark of 
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the disease (21). RNA analyses can detect the effect of many splicing mutations directly 

(22,23). In this paper, we comprehensively analyze predicted splicing mutations in breast 

cancer tumours using DNA sequencing data from The Cancer Genome Atlas (TCGA) 

(5). We then use tumour-matched RNA sequencing data to statistically validate aberrant 

splicing patterns of expressed genes in these tumours that result from these mutations 

(24). We extended our splicing mutation analyses beyond molecular breast cancer 

subtypes and identified other clinical parameters associated with specific mutation 

pathways. We suggest that DNA sequencing analyses that incorporate in-depth splicing 

mutation studies reveal additional mutant genes and biochemical pathways, which may 

contribute to breast cancer etiology. 

4.2 Methods 

This study involved a reanalysis of controlled-access data from The Cancer Genome 

Atlas Project (NCBI dbGaP Project #988: Predicting common genetic variants that alter 

the splicing of human gene transcripts, PI: PK Rogan). DNA and RNA breast cancer 

sequencing data were obtained for 445 tumours from 442 patients (Supplementary Table 

4.1; July, 2012 DNA-Seq download; July, 2013 RNA-Seq Download) (5). The tumour-

normal pairs used mirrored those published by the TCGA in the Level 2 mutation data. 

Duplicate mutations in the same patient from two different tumour-normal pairs are 

reported, but were treated as one tumour for the mutation summaries reported by tumour. 

Somatic mutations were predicted from the same DNA sequencing data using two 

different algorithms: Strelka (v1.0.10) (6) and SomaticSniper (v1.0.2) (44) (See 

Appendix S4.1). Realignment was not necessary before running Strelka because of the 

program's internal realignment capabilities, so Strelka was run on the raw BAM files 

downloaded from TCGA. Default parameters were used with the provided Burrows-

Wheeler Aligner (BWA) configuration file, since BWA was used in the initial exome 

alignments. Additionally, the isSkipDepthFilters configuration option was changed to 

true, since such depth filters are designed for use on whole-genome data and would 

erroneously filter out most data when used with exome sequencing data. Strelka's BWA 

quality control script was run to remove variants considered low quality. Variants that 

were found to be common SNPs, defined by those that were annotated with dbSNP135 in 



 

 

127 

over 1% of the population, were filtered out from the variant set before any subsequent 

analyses. 

Somatic mutations, including single-nucleotide variants (SNVs) and insertion/deletions 

(indels) were used to predict the coding and non-coding genic effects of the variants. 

Annovar (August 23, 2013 release) (8) was used with default parameters to predict which 

variants are likely to affect amino acid sequence and splicing at the natural splice sites. 

The Shannon Human Splicing Pipeline Version 2.0 (Shannon Pipeline) (18) was used to 

complete a more in-depth analysis of splicing mutations, which predicts variants that will 

alter the binding affinity of the natural site or cause cryptic splicing (i.e. extension or 

truncation of an exon). The Shannon Pipeline results were subsequently filtered to 

prioritize which variants are most likely to have the greatest effect on mRNA splicing, 

using the filtering criteria outlined in Appendix S4.2. 

Multiple factor analyses used the R package FactoMineR (version 1.25) (45). Clinical 

parameters were obtained from the TCGA including AJCC tumour staging (metastasis 

stage code, neoplasm disease lymph node stage, and neoplasm disease stage), receptor 

statuses (estrogen, progesterone, and HER2/neu immunohistochemistry receptor statuses) 

as well as patient status (neoplasm cancer status and vital status). These clinical 

parameters were input into FactoMineR as qualitative groups, as listed above, along with 

the number of NCAM1 pathway mutations. Within the program, options were set to 

perform clustering after MFA, and to automatically determine the choice of the number 

of clusters. A second MFA was performed based on the number of NCAM1 pathway 

mutations per tumour in genes present only in the NCAM1 related pathways that were 

also not present in the collagen or extracellular matrix pathways. 

Word Clouds were generated to portray the overrepresentation analysis of mutated 

pathway results generated with Reactome (29,30) and, in particular, the differences 

between lymph node-positive and -negative tumour samples. The primary input data for 

these graphics was the overrepresented pathways from Reactome, partitioned according 

to subtype and lymph status. Additional sets were composed of all subtypes and all 

subtypes with only pathways not found within both lymph status partitions. However, this 
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direct data was not suitable for plotting, as many pathways were vastly too specific and 

varied to portray any broader trends. Pathway abstraction was undertaken to mitigate 

these difficulties and allow for visual perception of trends in the data. The full Reactome 

human pathway hierarchy was downloaded, using the provided RESTful API (46). A 

query to abstract pathways was performed using the BaseX XML database engine (47). 

The abstraction was designed to generalize the pathways, while still maintaining 

sufficient specificity to confer biological meaning in this context. To accomplish this, 

corresponding pathways of specific depths were retrieved and abstracted by taking 

instead higher-order pathways in the hierarchy. Reactions or black box events that were 

four or five levels deep, as well as pathways that were four levels deep, were abstracted 

by taking the corresponding element of depth three (i.e. their parent or grandparent). 

Pathways one level higher in the hierarchy (i.e. the parent pathway) of all other pathways, 

reactions, or black box events (i.e. those not at the aforementioned depths) were 

retrieved. The resulting abstracted pathways were then used as input for the word clouds. 

They were generated using R (v3.0.2) with the RColorBrewer (v1.0.5 tm, and wordcloud 

packages (v2.4) (48). Parameters used to generate the word clouds were as follows: scale 

= c(wordFit,0.3), min.freq = 2, random.order = F, colors = brewer.pal(6, “Dark2”)[−1])), 

vfont = c(“serif”,“plain”). 

The Mutational Significance in Cancer (v0.4) (MuSiC) (25) suite of tools was employed 

to identify genes significantly mutated in the breast cancer samples analyzed with the 

variant set derived in this study. Three tools from genome MuSiC were used with all 

default parameters: bmr calc-bmr, bmr calc-covg, and smg. NCBI Reference Sequence 

Genes release 62 (RefSeq) (49) were used as the regions of interest (ROI) file with the 

Human Feb. 2009 (GRCh37/hg19) assembly reference sequence for bmr calc-bmr and 

bmr calc-covg. All FDRs that we report pertaining to the MuSiC analysis used the 

Fisher's combined P-value (FCPT), convolution (CT) and likelihood ratio (LRT) 

statistical tests. 

The software program Veridical (24) was used for in silico validation of all predicted 

splicing mutations using its default settings. At the time the program was run, Veridical 

rounded p-values to 2 decimal places. Validated results reported were filtered for cryptic 
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variants using reads demonstrating junction-spanning cryptic sites, junction-spanning 

exon skipping, or read-abundance intron inclusion, whereas reads for predicted natural 

splice site variants were filtered for all of the above evidence types, except for cryptic 

splice site-activating, junction-spanning reads. Variants were considered validated if at 

least one of the above categories for the indicated variant type were excluded from 

normal controls, but present in the transcriptome containing the predicted mutation (p ≤ 

0.05, after transformation of both sample and control read counts to a normal distribution 

and use of a parametric Z test). Validation was not always possible in instances where 

predicted mutations occurred in genes or exons with minimal cDNA coverage, resulting 

from either low expression in the breast tumours carrying the mutation (50), tissue-

specificity of gene expression, or transcript instability from nonsense-mediated decay. 

Although Veridical provided experimental validation of predicted splicing mutations, the 

impact of these and protein coding mutations on tumour progression and biology could 

not be determined from the present analyses. Further laboratory studies with the original 

tumour tissues (which were not available), cell line or model organism studies would be 

required to prove biological significance. 

RSeQC's (v2.3.7) ReadDist (51) script was used to generate the genome-wide intron 

inclusion data with the RefSeq gene annotation file to determine intronic genomic 

sequences. We ran BedTools multicov (v2.17.0) (52) upon the RefSeq (49) exome 

annotation BED file retrieved from the UCSC table browser (53) with a minimum map 

quality of 1. The returned coverage values were multiplied by the read length, and 

divided by the number of exonic bases. In cases of genes with more than one transcript, 

the shortest transcript was used such that the coverage values per exonic base were 

maximized, which is the most conservative assumption to adopt when excluding variants 

due to low coverage. The heat map, provided in Appendix S4.3, was generated by breast 

cancer subtype for this data using the R packages Hmisc (v3.14.3) and gplots (v2.12.1). 
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4.3 Results 

4.3.1 Derivation of mutations 

Somatic mutations in 472 breast cancer tumours from 445 breast cancer patients were 

called using matched tumour-normal DNA exome sequencing data from TCGA (5) 

(Supplementary Table 4.1). There were 149,959 single-nucleotide variants (SNVs) and 

10,000 insertion/deletions (indels) detected using the variant caller, Strelka
 
(6) (see 

Appendix S4.1 for results from an alternative variant caller and reasons for our selection 

of Strelka). Protein coding mutations were annotated by ANNOVAR (8) and splicing 

mutations with the Shannon Human Splicing Pipeline (18) (Table 4.1, see Supplementary 

Tables 4.2–4.4 for a list of all mutations). The Shannon Pipeline predicted significantly 

more splicing mutations than reported by TCGA, because the information-theoretic 

method employed enables analyses of variants beyond exon boundaries that alter mRNA 

splicing. 948 variants were found to affect both protein coding and splicing in 747 genes, 

among 319 tumours. DYNC2H1, TP53 and PASD were the most commonly mutated of 

this group, containing 21, 11, and 9 exonic variants, respectively. Alteration of mRNA 

splicing was predicted as a result of 213 substitutions at synonymous codons among 139 

tumours. Reanalysis of coding changes confirmed high concordance with the validated 

TCGA SNVs, however indels were less reproducible (Appendix S4.4). Overall, 82.1% (n 

= 21,041) of protein coding mutations, and 86.5% (n = 371) of splicing mutations 

reported by TCGA were confirmed. A small subset of protein coding TCGA substitutions 

that were missed occurred within genes commonly mutated in breast cancer (35 TP53, 13 

MLL3, 22 GATA3, 25 MAP3K1, 11 CDH1 and 10 PIK3CA; see Appendix S4.5), however 

all splicing-associated SNVs found by TCGA in cancer-related genes were detected. 

4.3.2 Significantly mutated genes 

Significantly mutated genes were identified with the Mutational Significance in Cancer 

(MuSiC) software suite (25). There were 225 genes with false discovery rates (FDR) of  
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Table 4.1: Single nucleotide variant summaries by mutation type 

Type Mutation Count 

Protein Coding  

Synonymous 14,717 

Nonsynonymous 40,649 

Stop gain or loss 2,587 

Total protein coding variants 57,953 

Splicing  

Cryptic 1,130 

Inactivating 1,355 

Leaky 2,721 

Total splicing variants 5,206 

Protein coding mutations also predicted to affect splicing  

Synonymous 213 

Nonsynonymous 664 

Stop gain or loss 71 

Total 948 

Synonymous also splicing 1.4473% 

Nonsynonymous also splicing 1.6335% 

Stop gain or loss also splicing 2.7445% 
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<0.05, based on the Fisher's combined P-value (FCPT), convolution (CT) and likelihood 

ratio (LRT) tests. These results were compared with the 49 genes previously identified as 

significantly mutated (1-5) (Appendix S4.6). Among the previous genes reported by 

TCGA, TP53, CDH1, MAP3K1, and MLL3 were significantly mutated in this study by all 

tests, and AFF2, SF3B1, and CBFB were significant for the CT and LRT tests only. We 

additionally identified ARID1A as significantly mutated, concordant with an independent, 

large-scale, breast cancer genomics study (4). 

4.3.3 Validating predicted splicing mutations 

Changes in mRNA splicing from the predicted mutations were validated with Veridical 

(24), which corroborates predicted, aberrant splice isoforms by assessing mutation-

derived sequence reads in tumour RNA relative to their abundance in controls lacking the 

mutation. Controls comprised tumours lacking a particular mutation (usually, n = 414) 

plus additional normal samples (n = 106). Of all variants analyzed from the 415 tumours 

with RNA-Seq data (n = 4,952), 988 variants (~20%) in 819 genes caused one or more 

splicing aberrations at significantly higher levels than in controls (p ≤ 0.05; i.e. intron 

inclusion, exon skipping, or cryptic splicing). Predicted natural splice site mutations (822 

of 3,863, or 21.3%), were validated by abnormal mRNA isoforms more often than cryptic 

splice site mutations (166 of 1,089 or 15.2% variants). A total of 309 mutations were 

found to cause exon skipping, of which 163 (53%) led to expected frameshift mutations. 

Sufficient expression levels for each gene, based on RNA-Seq coverage, were required 

for validation of mutations. An expression heat map, clustered by BC subtype, is shown 

in Appendix S4.3. Variants occurring within significantly expressed genes (defined as an 

average of ≥20 reads per base) were statistically validated for 862 (27%) of 3,156 

variants (p ≤ 0.05). Of 263 variants reported by TCGA in genes with at least this level of 

expression, 156 (59%) were validated by exon skipping (26 variants), by intron inclusion 

(80 variants), and by the combination of both types of evidence (50 variants, p ≤ 0.05). 

Predicted cryptic splicing mutations were confirmed based on the presence of unique 

junction-spanning reads corresponding the ectopically spliced isoforms in GATA3, 
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PALB2, CBFB, ABL1, C2CD2L, ENSA, NASP, NOP9, and TFE3 (Appendix S4.7.1). 

Four of these genes have been linked to tumourigenesis: ABL1, an oncogene, GATA3 and 

PALB2, which are associated with familial breast cancer (26,27), and CBFB has been 

recently implicated in breast cancer by TCGA (5) and others (1,2). These cryptic splicing 

mutations lead to short exonic deletions that alter the reading frame, and likely affect the 

activity of the gene products (Figure 4.1). The GATA3 cryptic isoform is the only 

detectable transcript in the majority of controls, although it is substantially more 

abundant in the tumour sample (Appendix S4.7.2). 

The most commonly mutated genes with splicing mutations were also found by MuSiC to 

be significantly mutated in these tumours (n = 13, FDR < 0.05), and at least one third of 

the mutations were validated with RNA-Seq data (Table 4.2). In TP53, which exhibited 

the highest density of splicing mutations (Figure 4.2), 18 of 23 (78%) predicted variants 

were validated to cause aberrant splicing (p ≤ 0.05). All of the validated mutations 

exhibited statistically significant intron inclusion above normal controls, which was not 

observed genome wide (Appendix S4.8). In three instances, the variants also resulted in 

exon skipping. 

4.3.4 Copy number analysis of mutated genes 

The validated mutations are organized and segregated by tumour subtype on a Circos plot 

(28) (Figure 4.3). Copy number changes portray the genomic locations of deletions or 

amplifications that coincide with these variants. Validated splicing mutations exhibit a 

relatively uniform genomic distribution, except for significantly mutated genes, such as 

TP53 on chromosome 17 and HMCN1 on chromosome 1. We investigated variants in 

regions showing copy number losses, which may constitute the “second hit” in 

oncogenesis. Of the 49 genes found to be significantly mutated in breast cancer (1-5), 

five contained splicing mutations (BRCA1 (2 tumours), PTEN (2 tumours), MAP2K4 (4 

tumours), MAP3K1 (4 tumours) and KMT2C (7 tumours; also known as MLL3)) and also 

recurred within commonly deleted intervals. Of all genes with validated mutations in 
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Figure 4.1 mRNA of ABL1, CBFB, GATA3 and PALB2, which each have validated cryptic 

splicing mutations confirmed using tumour-matched RNA-Seq data.  Full gene lengths are 

displayed with vertical black bars outlining exon boundaries. The location of the cryptic variant is 

denoted by the red V, and the variant consequence is highlighted by white (wild type), dark grey 

(exonic deletion), and red (frameshift mutation). Conserved domains and protein interactions are 

labeled by the yellow and blue horizontal bars, respectively. In ABL1, the catalytic and C-terminal 

F-actin binding domains are disrupted. In PALB2, the region that interacts with BRCA2 is 

truncated. In the GATA3 aberrant transcript, the second zinc finger domain and a conserved motif 

crucial for DNA binding and protein function are affected by the altered reading frame. 
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Table 4.2: Genes most commonly mutated with splicing mutations 

Gene Symbol* 
# Splicing 

Mutations 
# Validated % Validated 

TP53 24 18 75 

HMCN1 19 9 47 

KMT2C (MLL3) 19 7 37 

FHAD1 12 4 33 

RAB3GAP1 11 4 36 

BCLAF1 11 3 27 

ANKEF1 10 6 60 

RRM1 8 4 50 

RPRD1A 7 2 29 

SCAMP5 7 2 29 

CDH1 6 4 67 

ACTR3 6 2 33 

*FDR < 0.05 for all genes from MuSiC (Fisher's combined P-value, convolution and likelihood 

ratio tests). 
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Figure 4.2: Splicing mutations in TP53, KMT2C and CDH1. TP53, KMT2C and CDH1 gene lengths are displayed with both exons (thick 

lines/boxes) and introns (thin horizontal lines), along with the location of all splicing mutations. Diamond markers denote cryptic mutations, natural 

splice site mutations are indicated by a circle and the colour of the marker corresponds with breast cancer tumour subtype. Mutations validated by 

Veridical are found above the gene, and those mutations not assessed or not validated are below. 
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Figure 4.3: Circos plot of validated splicing mutations by tumour subtype. From the 

outermost ring in, chromosomes are labeled clockwise with copy number data inside them that 

displays deletions in red and amplifications in blue, mutations validated by Veridical (indicated by 

black ticks) are then plotted by subtype with basal-like in the outer white ring, HER2-enriched in 

the outer grey ring, then luminal A (inner white) and luminal B (inner grey). 
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deleted regions, 9 harbored more than 2 variants: 1 had three, 4 had four, and only 

KMT2C possessed more than 4 variants. 

4.3.5 Analysis of pathways enriched in mutant genes 

Mutated genes were clustered by pathway overrepresentation analysis (29) for protein 

coding (Supplementary Table 4.5, n = 202) and splicing mutations (Supplementary Table 

4.6, n = 452). There were 100 pathways common to both mutation sets (Appendix 

S4.9.1). Pathways associated with all types of mRNA splicing mutations include those 

that affect collagen structural genes and enzymes that modify or metabolize collagen (n = 

14, Appendix S4.9.2 #1–14), and several that involve the extracellular matrix (ECM, n = 

4, Appendix S4.9.2 #15–18). Many of these pathways (n = 17, Appendix S4.9.2 #1–

13,15–18) are also overrepresented by pathway analysis of protein coding mutations. 

4.3.6 Relationship of mutation spectra to clinical findings 

Segregating splicing mutations by patient lymph node status revealed significant 

differences in mutated pathways between the two groups. Biochemical pathways with 

overrepresented mutant genes in lymph node-negative (LN−) vs. lymph node-positive 

(LN+) tumours are indicated in Supplementary Tables 4.7 and 4.8, and compared in 

Supplementary Table 4.9. There are 94 pathways overrepresented in both LN+ and LN− 

(Supplementary Table 4.9 #421–514), including 17 collagen (Supplementary Table 4.9 

#421–437), and 3 ECM (Supplementary Table 4.9 #438–440) pathways. Ontologically-

related pathways (29,30) were grouped (Appendix S4.9.3) and visualized as Word Clouds 

(Figure 4.4). Pathway groups overrepresented (p < 0.05) in both tumour subsets included 

17 pathways involving collagen-ECM protein phosphorylation pathways, metabolism, 

cell cycle, DNA repair, and cellular response to stress. However, 13 pathways involving 

collagen (Supplementary Table 4.9 #1–13), and 9 pathways involving NCAM1 

(Supplementary Table 4.9 #17–25) were overrepresented uniquely in LN+ tumors, but 

not in LN− tumours. 



 

 

140 

 

Figure 4.4: Word Clouds demonstrating differences between overrepresented mutated pathways in lymph node-positive (a) and lymph 

node-negative (b) tumours.   The abstracted pathways (see methods) were plotted if present two or more times. The size of the words as well as 

the corresponding colours of the pathway names indicates the frequency of that abstracted pathway, and can be compared within and between 

the word clouds of each tumour subset. 
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NCAM1, or the neural cell adhesion molecule, is a member of the immunoglobulin super 

family with a role in cell-cell and cell-matrix interactions during development and 

cellular differentiation. Mutations in NCAM1 signaling genes for neurite outgrowth 

(Supplementary Table 4.10 #1) were still overrepresented in tumours with lymph node 

invasiveness, even after genes common to both tumour subsets were masked from the 

analysis, i.e. primarily collagen and ECM genes (Supplementary Tables 4.10 and 4.11). 

These include defects in NCAM1 interactions with FYN and GRB2, a ternary complex 

that participates in the conversion of RAS:GDP to RAS:GTP, which subsequently 

initiates the RAF/MAP kinase cascade. 

We then reanalyzed these data after conservatively limiting the set of mutant genes to 

those containing the most deleterious mutations (Appendix S4.9.4; stop-gain, stop-loss, 

frameshift/indel mutations, and validated splicing mutations). Four of the 8 sub-pathways 

of NCAM1 signaling for neurite outgrowth were overrepresented solely in LN+ tumours. 

Autophosphorylation/dephosphorylation of NCAM1- bound Fyn, as well as NCAM1-

interactions with collagens were overrepresented. The most commonly mutated genes 

within these pathways are SPTA1, CACNA1D, COL6A5, NCAM1, and COL6A6 

(Appendix S4.10). CACNA1D is a voltage-dependent Ca2+ channel (VDCC) that 

associates with NCAM1 in growth cones at the sites of NCAM1 clustering (29,30). In 

addition, 6 other channel genes that are expressed in breast tissue (31) were found to be 

frequently mutated (CACNA1C, CACNA1D, CACNA1G, CACNA1H, CACNB1, 

CACNB3). Mutations interrupting these VDCC interactions may alter the NCAM-

dependent Ca2+ influx. Collagen VI is expressed as supramolecular aggregates of 

composite structures of different chains and is among the most abundant components of 

the ECM (32). Knockdown of NCAM significantly reduces expression of ECM 

components (33), including collagen, weakening the ECM. Mutations in these ECM 

components may also diminish matrix integrity, possibly resulting in more porous 

structures (34). 
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4.3.7 Elevation of NCAM1-related gene pathway mutations in lymph 

node-positive tumours 

NCAM1, collagen, and ECM pathway mutations were assessed in tumours, stratifying by 

lymph node status and tumour stage (Figure 4.5). The percentage of tumours with 

NCAM1-related pathway splicing mutations was increased in N0 (110 localized tumours) 

and N1 (84 tumours with lymph node involvement), as well as Stage I (37) and II 

tumours (140). Advanced lymph node involvement and tumour stage were not associated 

with increased numbers of collagen and ECM pathway splicing mutations, but rather a 

decrease in the percent of tumours with these pathway mutations in advanced stages was 

observed. A multiple factor analysis (MFA; Table 4.3) was performed to assess 

contributions of the number of NCAM1-related pathway mutations per tumour (both 

protein coding and splicing), clinical parameters including stage (AJCC tumour stage, 

lymph node status and metastasis stage), receptor status (HER2, PR, and ER positivity), 

and patient outcome (relapsed, living/deceased). NCAM1-related pathway mutations 

were either absent (n = 213), harbored a single mutation (n = 117), or two or more 

mutations (n = 112) per tumour. The MFA components containing NCAM1-related 

pathway mutations were moderately correlated with both tumour stage and receptor 

status, and accounted for 11% of the variance. 

4.3.8 Analysis of tumour subtypes 

Splicing mutation analysis in different tumour subtypes revealed between 9–15 mutations 

per tumour, which generally accounted for 8–9% of all mutations detected (Appendix 

S4.11.1) and are similar levels to those previously reported (18). Pathway analyses for 

each subtype, stratified by lymph node status, indicated higher enrichment of NCAM1-

related gene mutations in basal-like and HER2/ERBB2-enriched LN+ tumours (Appendix 

S4.11.2 & S4.11.3: see word clouds). LN+ basal-like and HER2-enriched tumours were 

the only tumours found to have significant enrichment in “NCAM signaling for neurite 

out-growth”, identifying those tumour subtypes and pathways that may play a role in 

tumour migration. No single gene was significantly mutated within the NCAM1  
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Figure 4.5: Percent of tumours with mutations by pathway group and clinical factors.  The 

percent of tumours with NCAM1 (red square), collagen (blue diamond), and ECM (green triangle) 

pathway mutations were plotted by lymph node status and tumour stage for all mutations (solid 

lines), and splicing mutations alone (dashed line). 
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Table 4.3: Multiple factor analysis of NCAM1 related pathway mutations and clinical 

parameters per tumour 

 Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 

A. No. Mutations in NCAM 

Pathways* 
0.103 0.892 0.910 0.367 0.321 

Stages 0.804 0.459 0.381 0.833 0.725 

Receptor status 0.379 0.356 0.406 0.471 0.641 

Patient status 0.868 0.159 0.050 0.106 0.159 

% Variance explained 7.618 5.699 5.635 4.944 4.694 

B. No. Mutations Unique to 

NCAM Pathways∧  
0.264 0.899 0.894 0.304 0.300 

Stage 0.791 0.413 0.380 0.877 0.752 

Receptor status 0.389 0.427 0.411 0.429 0.610 

Patient status 0.851 0.083 0.158 0.168 0.221 

% Variance explained 7.716 5.816 5.534 4.941 4.743 

*mutation count for all genes in NCAM pathways. 

∧mutation count for genes unique to NCAM pathways, and not in collagen or ECM pathways. 
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pathways that were overrepresented in LN+ tumours. This suggests that a general defect 

in NCAM1-pathway signaling may be associated with lymph node metastasis in breast 

cancer. 

4.4 Discussion 

Breast carcinoma tumour exomes contain more deleterious mutations than previously 

recognized. Using Shannon information theory, we have predicted an expanded set of 

mutations that affect post-transcriptional mRNA processing that either reside in non-

coding regions, or overlap known codons. We then employed Veridical (24), a high-

throughput, genome-scale method, to statistically validate mRNA splicing consequences 

that result from the predicted variants. This study complements the analyses performed 

by TCGA (5), which comprehensively reported protein-coding mutations, along with 

gene expression, epigenetic, and copy number changes. Together with known deleterious 

coding sequence variants, the identification of such splicing mutations can refine and 

impact our understanding as to which biochemical pathways are dysregulated in these 

tumours. 

Pathway overrepresentation analyses reproduced many of the same pathways identified 

by TCGA. In our analysis, a number of these attained or increased significance when 

genes with previously unrecognized splicing mutations were included. Both splicing 

mutations alone and the complete variant set from all tumours were enriched for genes in 

pathways known to play a role in tumour development and progression including 

signaling by growth factors, cell cycle, ECM organization, and cell-to-cell 

communication. Stratifying the tumours by lymph node status revealed that splicing 

mutations were enriched for genes within NCAM1 pathways in LN+ tumours, 

exclusively. Splicing mutations in these pathways were much rarer and sparsely 

distributed in LN− tumours, with 11 mutations in 92 LN− tumours and 25 mutations in 

118 LN+ tumours. Interestingly, this enrichment was not observed when all protein 

coding substitutions were analyzed, but was significant when assessing all variants that 

were likely to be deleterious (i.e. validated splicing mutations, stop codon gain or losses 
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and frameshift substitutions). We did not attempt to differentiate loss versus gain of 

function, however splicing mutations and nonsense codons usually result in loss of 

function. The percent of tumours with NCAM1-related pathway mutations increased by 

6% from lymph node stage N0 to N1 and N3 and by 7% from stage I to III. The lower 

fraction of tumours with collagen pathway mutations at higher lymph node stages (N3, 

N4), and with ECM-related mutations in tumour stages III and IV could be related to 

clonal selection of distinct metastatic phenotypes (35), however it is also possible that the 

decreases may not be significant due to the lower numbers of tumours in these categories. 

Our results indicate that NCAM1 pathways are more likely to be dysregulated in tumours 

that have migrated to lymph nodes. We found the enrichment of NCAM1-related 

pathway splicing mutations in LN+ tumours was specifically present in HER2-enriched 

and basal-like tumours. Basal-like, specifically triple-negative, tumours have been 

associated with poor prognosis and survival (36). Early and metastatic HER2 positive 

tumours were associated with poor prognoses (37) until the more recent introduction of 

HER2-targeted therapies (38). In these tumour subtypes, the presence of NCAM1-related 

pathway mutations may indicate a propensity to migrate and/or form distant metastases. 

Dysregulated expression of NCAM1 has been suggested to contribute to tumour 

migration in other cancers: (i) gene silencing and localization studies have suggested that 

“NCAM is both necessary and sufficient to promote a migratory and invasive phenotype 

in EOC cells, with no major effect on cell proliferation” (34), (ii) overexpression of 

NCAM1 has been linked to high ovarian carcinoma tumour grade (34) and greater 

metastatic potential in melanoma cells (39); (iii) preserved NCAM1 expression in 

differentiated thyroid carcinoma has been cited as an indicator for tumours with as 

increased risk of forming distant metastases (40) and (iv) blocking NCAM1 function in 

murine lung tumour cells led to cell vulnerability to apoptosis. More generally, NCAM1 

is known to play a role in apoptotic evasion and matrix degradation, and has potential 

roles in directional cell migration, cell polarity, extravasation and immunological escape 

(41). NCAM1-mediated stimulation of FGFR activity is causally linked to tumour 

malignancy, suggesting that this NCAM1-FGFR interaction may be an effective 

therapeutic target. It is notable that we find mutations in breast tumours that affect the 
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NCAM1-FGFR interaction occur in pathways that are overrepresented in LN+, but not 

LN− tumour genomes. 

NCAM1 homophilic clusters form within lipid rafts on the cell membrane. Spectrin, an 

NCAM1-binding cytoskeletal protein, colocalizes with NCAM1 and is codistributed 

within lipid rafts (42). Frequent mutations in spectrin (SPTA1) may prevent its 

association with RPTPα, thereby impeding its subsequent association with the 

cytoplasmic NCAM1 domain, redistribution of NCAM1 and cluster formation. This 

could abrogate downstream interactions with FYN and GRB2, ultimately affecting 

activation of RAS. These findings merit further investigation into how dysregulation in 

these different partners (i.e. NCAM1, FGFR and the other interacting proteins), acting as 

an ensemble, may promote tumour metastasis. 

The number of aberrant mRNA splicing mutations reported by TCGA (5) is <10% of 

those reported here, and the variants were not functionally validated in the previous 

study. We predict that 8% of all cis-activating point mutations detected in these tumours 

will significantly reduce the strength of the corresponding natural splice sites. The 5,206 

splicing mutations reported here nearly double the number of mutations that lead to stop-

gains or losses (2,587 variants in 1,907 genes), and the number of insertions/deletions 

leading to frameshift substitutions (2,707 variants in 1,848 genes) in this set of tumours. 

It is not surprising that these analyses revealed previously unrecognized pathways that 

may be dysregulated, in addition to those already known in these tumours. 

Our analysis of significantly mutated genes based on the protein coding and splicing 

mutations reproduced many of the genes reported by TCGA, and revealed one additional 

gene, ARID1A. ARID1A has been implicated in breast cancer in a large-scale genomic 

study (4) and has also been mutated in 57% of ovarian clear-cell carcinoma tumours (43). 

Thirteen genes identified as significantly mutated in breast cancer by the TCGA did not 

reach statistical significance within our study (Supplementary Table 4.4). This can be 

explained by a number of different factors: differences in variant callers, variant 

annotation, the number of tumours analyzed and differences in the filtering of variants, 

once the gene set was derived. In addition, TCGA initially analyzed all variants (SNVs 
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and indels) by tumour subtype, unlike our study, which considered mutations in all 

tumours, then reanalyzed overrepresented pathways with mutations by subtype. 

Mutations that lead to a significant level of aberrant splicing can alter or improve 

genomic signatures, which are important when assessing potential biomarkers, diagnosis 

and prognosis, and metastatic or treatment-resistant tumour phenotypes. 
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Chapter 5  

5 Genomic signatures for paclitaxel and gemcitabine 

resistance in breast cancer derived by machine learning 

The work presented in this chapter is reproduced (with permission, Appendix S1) from: 

Dorman, S.N., Baranova, K., Knoll, J.H.M., Urquhart, B.L., Mariani, G., Carcangiu, 

M.L., Rogan, P.K. (2015) Genomic signatures for paclitaxel and gemcitabine resistance 

in breast cancer derived by machine learning. Molecular Oncology. DOI: 

10.1016/j.molonc.2015.07.006.  

5.1 Introduction 

Chemotherapeutic agents, such as paclitaxel and gemcitabine, are recommended to 

patients with developed metastases, basal-like breast cancer, and high-risk indications 

(premenopausal, ER/PR-negative, HER2-status, large tumours, or node-positive) (1,2). 

There is currently no gold standard chemotherapy regimen (1,2). Treatment selection is 

suggested to be individualized and should take into account clinical disease 

characteristics, treatment history, patient-related factors, and patient preference. 

However, resistance is one of the major barriers to successful therapy. In a recent study, 

breast cancer patient response rates to paclitaxel and gemcitabine after 6 cycles of 

chemotherapy were found to be only 50.0% and 78.6% respectively (3). This has 

motivated a number of groups to develop gene signatures aimed at predicting therapeutic 

response to these drugs in breast cancer patients (4-6).  

As in breast cancer patients, breast cancer cell lines show variable responses to growth 

inhibition by paclitaxel and gemcitabine (7,8). Cell lines mirror many of the pathological 

features of breast tumours, such as the intrinsic subtypes of breast cancer (9,10), and can 

be useful for testing anticancer therapy responses (11). Daemen et al. (2013) employed 

random forest machine learning to assess genomic information from 70 breast cancer cell 

lines (including DNA sequence, gene copy number, gene expression, promoter 
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methylation, protein expression, and the corresponding cell line response to 90 anti-

cancer compounds) with the objective of establishing pretreatment signatures that predict 

response. The gene expression profile of the tumor subtype was found to be the most 

effective way to model response to therapy. However, many molecular signatures derived 

using genome-wide approaches are inconsistent between different data sets (12,13). This 

is partly due to the fact that deriving predictive gene models using thousands of genes 

risks overtraining, that is, fitting the noise rather than the actual gene signature in the data 

(12).  

We recently defined a set of genes that are stable in gene expression and copy number in 

the majority (>90%) of breast cancer tumours (14). The stable gene set is composed of 

genes that are unmutated in the majority of tumours. Interestingly, many stable gene 

products were found to be targets of paclitaxel and gemcitabine. We examine the 

possibility that genomic differences in expression, copy number or mutation in these 

genes may be related to GI50. Rather than a genome-wide approach to predict sensitivity 

to paclitaxel and gemcitabine (eg. employed by Daemen et al. (2013)), we analyze stable 

and linked unstable genes in pathways that determine their disposition (Figure 5.1).  

Gene panels were established based on biological and experimental studies of paclitaxel 

and gemcitabine metabolism. Paclitaxel binds to the β subunit of tubulin (TUBB1), 

inhibiting microtubule formation during mitosis (15). It also binds BCL2, which induces 

programmed cell death (16). Paclitaxel is now also recognized to target microtubule-

associated proteins 2 (MAP2), 4 (MAP4) and Tau (MAPT) (17), as well as the xenobiotic 

receptor (NRI12, or PXR) (18). SLCO1B3 transports paclitaxel into cells, and it is 

exported by ABCB1  (P-glycoprotein), multidrug resistance-associated proteins ABCC1 

(19) and ABCC10 (20), and the bile salt export pump ABCB11 (21). Other genes 

previously implicated as contributing to paclitaxel resistance include TMEM243 (22), 

BCAP29 (23), GBP1 (24), TLR6 (25), NFKB2 (26), FGF2 (27), BIRC5 (28), TWIST1 

(29), FN1 (30), OPRK1 (31), CSAG2 (32), and CNGA3 (31). Additionally, genes 

expressed in breast tissue involved in paclitaxel metabolism were included: CYP2C8 and 

CYP3A4 (33), as well as stable genes in pathways of known direct targets (14): BAD, 

BBC3, BCL2L1, BMF, TUBB4A (34), and TUBB4B (34). 
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Gemcitabine, a deoxycytidine analog, is transported into the cell by SLC29A1 (35), 

SLC29A2, SLC28A1 (36), and SLC28A3 (37).The prodrug is then phosphorylated by 

DCK, CMPK1, and NME1 to gemcitabine diphosphate and triphosphate (38). These 

active forms are incorporated into DNA, which halts replication and cell growth (39). 

Gemcitabine di- and triphosphate target ribonucleotide reductase (RRM1, RRM2, and 

RRM2B), and inhibit DNA synthesis (40). An alternative metabolite, 

difluorodeoxyuridine monophosphate, which is derived by cytidine deaminase (CDA) or 

dCMP deaminase (DCTD), inhibits thymidylate synthetase (TYMS), resulting in 

apoptosis (38). 

We examine the hypothesis that genomic differences in genotypes, expression and copy 

number of these genes explain concentration-dependent growth inhibition by gemcitabine 

and paclitaxel. We then use machine learning to stratify the relative contributions of 

different genes to chemoresistance, by identifying corresponding genomic signatures at 

the transcriptional and genomic level in both cell line and patient data. 

5.2 Materials and Methods 

5.2.1 Data Acquisition 

Growth inhibition (GI50), copy number, gene expression, and exome sequencing data 

were obtained from the supplementary data of Daemen et al. (2013). GI50s (-log10M, 

where M is the drug concentration required to inhibit cell line growth by 50%) for 

paclitaxel were available for 49 cell lines and GI50s for gemcitabine were available for 

47 cell lines. Appendix S5.1 indicates the cell lines used and Appendix S5.2 indicates the 

gene, gene product names and their respective drug disposition functions. Appendix S5.3 

& S5.4 describe copy number and variant calling, results of which are shown in 

Supplementary Tables 5.1 and 5.2. Log2 normalized gene expression data were derived 

from Affymetrix Gene Chip Human Exon 1.0 ST arrays. Replication studies performed to 

re-measure and confirm GI50s, verify copy number and mutation data for a subset of the 

cell lines are outlined in Appendix S5.5. Figure 5.1 is an overview of the complete 

workflow used. 
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Figure 5.1 Workflow to derive gene signatures.  Gene sets were derived for paclitaxel and 

gemcitabine based on known drug pathways, metabolism, and genes previously implicated in 

resistance. A multiple factor analysis was completed for each gene to determine which data types 

(gene expression, copy number, and mutation data) were correlated with the growth inhibitory 

values for paclitaxel and gemcitabine. Gene expression values were used to derive the paclitaxel 

SVM classifier, and both gene expression and copy number were used for the gemcitabine SVM. 

Cell lines were then clustered on optimized gene sets to visualize stratification of tumour subtype 

and sensitivity. The SVM classifiers were validated using random gene iterations to determine the 

significance of the classification accuracy, and patient data sets to ensure robustness of the 

models derived. 
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5.2.2 Cell Lines 

Cell lines were composed of 10 basal, 9 claudin-low, 25 luminal, and 5 normal-like 

subtypes. Cell lines were designated resistant, if their GI50 was <8.0 for paclitaxel and 

<7.0 for gemcitabine, respectively. The threshold values for distinguishing sensitive from 

resistant cell lines were based on median GI50s for each particular drug (7.99 and 7.13, 

for paclitaxel and gemcitabine). Daemen et al. (2013) classified cell lines by comparing 

mean GI50s. We used median GI50, which is not impacted to the same extent by outlier 

cell lines.  

5.2.3 Multiple Factor Analysis (MFA) 

MFA was used to relate each cell line GI50 according to sets of genomic variables (41). 

The 44 (gemcitabine) or 45 (paclitaxel) breast cancer cell lines (Appendix S5.1) were 

treated as separate individuals. MFA was carried out with the R library “FactoMineR” 

(42), with GI50s, gene expression, copy number, mutation status (if the gene contained 1 

or more mutations), and 31 and 18 genes associated with paclitaxel and gemcitabine 

activity, respectively, as input. 

5.2.4 Support Vector Classification  

A binary support vector machine (SVM) was trained with the Statistics Toolbox in 

MATLAB (Natick, MA) using fitcsvm (linear kernel function) and then 

tested with a leave-one-out cross-validation (using ‘crossval’ and ‘leaveout’ 

options). The SVM was trained on the cell lines and explanatory gene variables deemed 

relevant from the MFA: expression data for the paclitaxel SVM, and copy number and 

expression data for the gemcitabine SVM. The input data consisted of measurements 

from all genes used in the MFA. Sequential backward feature selection was performed 

for feature optimization (43) to minimize the percentage of misclassified cell lines 

(classification error) returned from the leave-one-out cross validation (Appendix S5.6). 

Genes that did not reduce or change the classification error were removed from the SVM 

(one at a time). This procedure was iterated until further gene removal lead to a higher 
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classification error (stopping criterion). By contrast with the SVM, a partial-least squares 

regression was not effective in relating genomic findings to paclitaxel response 

(Appendix S5.7).  

The hinge loss was also determined for the subset of genes included in the final SVMs. 

Hinge loss applies a linear penalty for misclassified data according to their distance from 

the hyperplane. The loss function is represented by Equation 1 where yj = {-1,1} and 

f(Xj) is the score, i.e. hyperplane distance, for cell line j: 

𝐿 = max (0,1 − 𝑦𝑗𝑓(𝑋𝑗))     (1) 

5.2.5 Applying the cell line SVM to patient data 

Formalin fixed, paraffin embedded (FFPE) tumour samples were obtained from the 

Fondazione IRCCS Istituto Nazionale dei Tumori (Milan, Italy), from leftover material 

available after diagnostic procedures in consented patients (44). Samples obtained were 

from patients that were first treated with paclitaxel (or in a small number of cases 

docetaxel) and carboplatin, and then subsequently gemcitabine, upon development of 

resistance. Clinical information was available as to whether the patients responded to 

each of the drugs (paclitaxel and gemcitabine). Tumour and control normal tissues were 

analyzed for expression and copy number of SVM genes, respectively, by real-time 

reverse-transcriptase polymerase chain reaction (qRT-PCR) and real time PCR (qPCR, 

methods described in Appendix S5.8). The cell line-based SVM models were used to 

predict patient sample drug responses in a blinded manner. Two SVM models were 

trained for paclitaxel and gemcitabine: one using the normalized gene expression values, 

and the other using expression values binned into 10 categories, using the Matlab 

function: quantile(X,10). Binning was performed because amplifiable RNA template 

concentration in FFPE blocks is not known precisely, because it is subject to long term 

degradation and reactivity (45,46). Expression measurements were obtained for 11 genes 

from the paclitaxel SVM, and 6 genes for the gemcitabine SVM. The SVM was trained 

on the cell line data with these reduced gene sets. Predicted and actual responses were 
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compared, and odds risk ratios (contingency analysis) were calculated (GraphPad Prism, 

San Diego, California). 

Patient data were also obtained from GEO Accession GSE25066, in which expression 

levels of tumours that were treated with taxane and anthracycline chemotherapy were 

reported (5). Expression levels for the paclitaxel SVM genes (except BMF and CSAG2, 

which were not measured) were extracted for those patients treated with paclitaxel (n = 

319). In cases with multiple probe sets per gene, expression levels were averaged. The 

SVM predictions were then related to response to therapy and residual cancer burden 

class for each patient.  

5.2.6 Clustering cell lines and patients using expression values of the 

SVM gene subsets 

The unsupervised, hierarchical clustering function ‘clustergram’ in Matlab was used 

to cluster cell lines and patient data (described in 2.5) according to gene expression 

values included in the optimized SVM. Expression values were normalized by row so the 

mean expression of each gene across individuals was 0, and the standard deviation was 1. 

Clustering was performed by individuals and genes, and dendrograms are displayed for 

each dimension that indicate relatedness based on their lengths and hierarchical 

branching. 

5.3 Results 

5.3.1 Multiple Factor Analysis 

MFAs were performed using GI50s of 49 cell lines, and genomic measurements of 31 

and 18 genes related to paclitaxel and gemcitabine activity from an existing data set (7). 

We re-confirmed measurements for a subset of the cell lines to ensure consistency 

between cell line sources (see Appendix S5.9).  MFAs were assessed by statistics 

generated by the program, FactoMineR (42). Relationships were stratified by the 

correlation between the variable and GI50, the RV coefficient (a multivariate 

generalization of the squared Pearson correlation coefficient), the position of variables on 
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the correlation circle, and the representation quality of each variable group in the first two 

dimensions (cos2 values). These criteria were used to classify each gene as having a 

“strong relationship”, “relationship”, “possible relationship” or “no relationship” to GI50 

(see Appendix S5.10 for the thresholds for each class). Examples of correlation circles 

and individual factor maps for MAPT (paclitaxel) and DCTD (gemcitabine) are illustrated 

in Appendix S5.11. 

MFA revealed “strong relationships” between paclitaxel GI50 and copy number and/or 

gene expression for 11 genes, consisting of both negative relationships (diminished copy 

number and gene expression [-] for CYP2C8, CYP3A4, NR1I2 (previously known as 

PXR), TLR6, and TUBB1) and positive relationships (increased copy number and gene 

expression [+] for BBC3, BCL2L1, BMF, CNGA3, MAPT, and TUBB4B) with increased 

chemoresistance (Appendix S5.12 lists all MFA measurements). The gemcitabine set 

revealed strong associations between resistance and ABCB1 (+), DCTD (-), and SLC28A1 

(+) gene expression as well as strong relationships for ABCC10 (+) and CDA (+) copy 

number (Appendix S5.13). The MFA results for paclitaxel (gene expression results only) 

and gemcitabine treatment (copy number and gene expression), in the respective pathway 

contexts, are summarized in Figure 5.2. 

Point mutation status was based on 74 deleterious coding mutations (Supplementary 

Table 5.2) that were predicted to be damaging (47) or to affect mRNA splicing (48,49). 

Point mutations predicted to be damaging demonstrated strong relationships in ABCB1 (n 

= 4, in 2 cell lines) to paclitaxel resistance and in SLC28A3 (n = 3, in 2 cell lines) to 

increased sensitivity to gemcitabine. The limited number of cell lines with mutations in 

these genes cannot be effectively incorporated into machine learning models, and point 

mutation results were not included in these analyses. 

5.3.2 Support Vector Machine (SVM) Learning 

A binary SVM was employed to develop a predictive multigene classification of genomic 

signatures for resistance to these drugs (50). Based on MFA results, data types orthogonal 

to GI50 were excluded from the SVM (see section 2.5 for details). The classification 

error of the SVM model was minimized by removing genes, i.e. features, which did not  
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Figure 5.2 Genes associated with paclitaxel (A) and gemcitabine (B) mechanism of action 

(direct targets, metabolizing enzymes), genes previously associated with resistance, and 

stable genes in the biological pathways targets.  Genes with an asterisk (*) are stable genes 

(Park et al., 2012). Genes highlighted in red showed a positive correlation (within dimension 1 

and/or dimension 2) between gene expression or copy number, and resistance in the MFA, 

whereas genes highlighted in blue demonstrated a negative correlation. Genes outlined in dark 

grey are those included in the final predictive model that was derived using the SVM. Red T-

shaped bars indicate the genes that paclitaxel directly binds/inhibits. Genes outlined in light grey 

(ie. BAX/BAK) were not included in the analysis because they were not stable genes in the BCL2 

pathway. 
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improve accuracy by leave-one-out cross-validation (see section 2.5 for details). This 

feature selection process is illustrated in Figure 5.3-I. The optimized SVM was then 

trained, respectively, on 15 gene variables for paclitaxel (49 cell lines) and 10 variables 

for gemcitabine (44 cell lines). Gene expression values from ABCC10, BCL2, BCL2L1, 

BIRC5, BMF, FGF2, FN1, MAP4, MAPT, NFKB2, SLCO1B3, TLR6, TMEM243, 

TWIST1, and CSAG2 comprised the final set of features used to train the SVM for 

classification of paclitaxel sensitivity. For gemcitabine, both gene expression values 

(from ABCB1, ABCC10, CMPK1, DCTD, NME1, RRM1, RRM2B) and copy number data 

(from ABCC10, NT5C, TYMS) were used in the final SVM. The distance of each cell line 

value from the SVM hyperplane that distinguishes the degree of sensitivity or resistance 

was plotted against the corresponding GI50 (Appendix S5.14). The trained SVMs 

misclassified 9 of 49 (18%) cell lines for paclitaxel and 7 of 44 (16%) for gemcitabine, 

which is comparable to, or more accurate than other approaches (51). Partitioning by 

histological subtype did not improve the classification accuracy; a single variable SVM 

model based on subtype misclassified 30% of cell lines for paclitaxel and 45% for 

gemcitabine (Appendix S5.15). The feature-optimized SVM outperformed the signature 

derived from the initial set of genes, which misclassified resistance/sensitivity of 36% of 

cell lines for paclitaxel and 64% for gemcitabine treatments. In addition, multi-gene MFA 

analyses of the final SVM gene sets demonstrate that the individual factor maps of the 

resistant and sensitive cell lines segregate to a greater degree than MFAs based on the 

initial gene sets, which were indistinguishable (Appendix S5.16). These differences were 

larger for gemcitabine than paclitaxel.  

To assess the individual impacts of a gene on SVM accuracy, each gene remaining in the 

optimized SVM was removed, and the misclassification rate was redetermined (Figure 

5.3A-II). BCL2L1 and MAPT had the highest predictive value for paclitaxel sensitivity, 

with misclassification rates of 36% and 34%, respectively, when eliminated (compared to 

21-30% for the other genes). It is notable that the MFA also showed strong associations 

with decreasing MAPT or BLC2L1 expression and increasing paclitaxel sensitivity. 

BCL2L1 is a member of the Bcl-2 family and is involved in regulation of apoptosis (16). 

Additional apoptotic regulators, such as BMF and BCL2, also appear in our SVM results,   
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Figure 5.3 Effect of the removal of each gene on the percent of cell lines misclassified 

during the SVM feature selection process to determine the most predictive gene set (left 

panels AI and BI).  The right panels (AII and BII) demonstrate the increase in the percent of cell 

lines misclassified when the expression of genes in the inferred, optimal gene set are 

subsequently eliminated from the SVM. 
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 as paclitaxel is known to trigger apoptosis through these pathways (52). The loss of 

MAPT in breast cancer cells has been shown to sensitize those cells to the action of 

paclitaxel (53), which is supported by our analysis.  

For gemcitabine, removing NT5C copy number, NME1 gene expression, ABCC10 gene 

expression, and RRM2B gene expression had the largest effects, by respectively 

increasing misclassification rates to 34%, 32%, 32%, and 30% (Figure 5.3B-II). NT5C is 

located on 17q25.1 a region associated with cancer (54). Allelic imbalances in TYMS 

have previously been hypothesized to be involved in drug resistance in renal cell 

carcinoma (55) and ABCC10 has been associated with drug resistance (56). NME1 is a 

known metastasis suppressor gene which may have great prognostic value (57). RRM2B 

and RRM1 have been suggested to be associated with gemcitabine resistance (58) and 

have been shown to be overexpressed in a gemcitabine-resistant pancreatic cancer cell 

line (59). 

5.3.3 Applying the cell line-trained SVM to patient data 

Formalin fixed paraffin embedded (FFPE) tissue blocks were obtained from patients that 

were treated with paclitaxel and gemcitabine, and whose responses to both drugs are 

known. Gene expression measurements for 11 genes from the paclitaxel SVM, and gene 

expression (6 genes) and copy number (CN; 3 genes) from the gemcitabine SVM were 

obtained using qRT-PCR and qPCR (Supplementary Tables 5.3 and 5.4). Gene 

expression measurements were not obtained for BMF, CSAG2, SLCO1B3, TWIST1 

(paclitaxel), and ABCB1 (gemcitabine), as no amplification was observed in these 

samples by 40 cycles. The absence of amplification in these genes was related to their 

low levels of expression in breast cancer tissue (Appendix S5.17.1). In cases where qRT-

PCR showed no amplification for a specific sample out of the genes measured, the 

highest cycle run was used as the Ct value for that gene. Older samples, on average, had 

lower numbers of genes with successful measurements (Appendix S5.17.2). 

An SVM was trained using the cell line data with a reduced set of 11 (paclitaxel – 

ABCC10, BCL2, BCL2L1, BIRC5, FGF2, FN1, MAP4, MAPT, NFKB2, TLR6, and 
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TMEM243) and 9 (gemcitabine – ABCC10, CMPK1, DCTD, NME1, RRM1, RRM2B, 

ABCC10-CN, NT5C-CN, and TYSM-CN) gene values, which corresponded to the 

measurements obtained from the FFPE tissue block studies. These SVMs were then 

applied to the FFPE tissue sample data to predict their sensitivity to paclitaxel and 

gemcitabine (see Supplementary Table 5.5 for full FFPE sample predictions). The 

paclitaxel SVM predicted drug sensitivity with 71% accuracy (Table 5.1), which was 

similar to a leave-one-out analysis on the cell line data, which classified cell lines with 

70.2% accuracy (using the reduced 11-gene subset). Patients who were treated with 

docetaxel were excluded from this summary because the trained SVM only predicted cell 

line response to docetaxel with 57% accuracy (misclassified 19/44, based on GI50s). 

Docetaxel and paclitaxel GI50s for all cell lines were correlated only to a limited extent 

(R
2
 = 0.722), consistent with the possibility that there might potentially be differences in 

mechanisms of drug metabolism and resistance between these drugs. The gemcitabine 

SVM did not perform as well on the patient sample data as it did on the cell line leave-

one-out analysis, which was 79.6% accurate (using the reduced 9-gene subset). The 

gemcitabine SVM derived using binned expression values predicted patient response with 

62% accuracy, however, 72% accuracy was achieved for samples with gene expression 

measurements available for at least 4 of the 6 genes.  

Although DNA variants were not incorporated into the SVM models, we sequenced a 

subset of the FFPE samples to determine whether any potentially damaging mutations 

were present in paclitaxel/gemcitabine genes of interest, especially for genes that showed 

relationships between mutations and drug sensitivity in the MFA (Appendix S5.12 & 

S5.13). Native DNA from 8 samples (all tumours) and whole genome amplified (WGA) 

DNA from 16 samples (9 tumour and 7 matched normal tissue) were used for next 

generation sequencing that enriched for the genes of interest. WGA was required for 16 

samples, because the amount of DNA extracted from the samples was not a sufficient 

starting quantity for the sequencing protocols used. Despite the fact that the samples had 

been qualified by PCR amplification from exons of several genes (including BRCA1 and 

BRCA2), attempts to prepare NGS libraries for 2 of the original DNA samples were 

unsuccessful, presumably due to accumulated DNA damage during formaldehyde 

treatment and storage of the sample. Since spectrophotometric measurements indicated  
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Table 5.1 Using the SVM to predict patient response from archived FFPE tissue 

 
Paclitaxel Gemcitabine 

 
NORM 10 bins NORM 10 bins 

No. of accurate predictions 12 12 9 13 

Total 17* 17 21 21 

Percent accurate 71% 71% 43% 62% 

Odds Ratio 5.83 6.00 3.00 3.33 

P-value^ 0.1534 0.1534 0.5333 0.3615 

*4 patients were treated with docetaxel instead of paclitaxel, and were not included in this 

summary. ^Fisher's exact test. Gene expression values were either normalized (NORM) or 

binned into 10 categories (10 bins), as described in the methods. Please refer to Supplementary 

Table 5.5 for all FFPE clinical response/prediction data and the values used for binning. 
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that DNA was present in nearly all samples, WGA was used to recover the fraction of 

intact DNA present in the isolates that did not yield libraries by conventional procedures.  

The full methods used are described in Appendix S5.5.3, and the RNA sequences used 

for targeted DNA gene capture are listed in Supplementary Table 5.6.  

DNA sequencing coverage was variable beween samples, ranging from 7-31 reads per 

base pair for the original DNA, and between 0-139 for the WGA DNA. DNA variants 

were detected in five of the original DNA samples (each with 6, 32, 46, 8, and 32 

variants) and three of the WGA DNA samples (each with one variant). Of the variants 

residing in paclitaxel and gemcitabine genes of interest, 12 were predicted to be 

damaging (47) (two were novel with average heterozygosity <1% and 10 were known 

SNPs), and the remainder were predicted to be “tolerated” (4 novel, 108 known SNPs, 

see Supplementary Table 5.7 for full mutation list). There were very few (ie. 1 or none) 

variants detected in the WGA samples because these samples did not have uniform 

coverage throughout targeted genes. There was significant bias in the WGA DNA 

sequencing, where there were few regions with very high coverage (ie. as high as 4000 

reads per bp), and the majority of regions with no coverage (Figure 5.4 – B/C). This was 

not the case with the original DNA samples that were sequenced, as coverage was more 

uniformly distributed among the genes of interest. This mirrors what we found in the 

gene expression experiments, where measurements were not obtained for every sample in 

every gene, suggesting that there are regions of the FFPE template DNA that are more 

difficult to amplify than others. In total, 5 (22%) out of 22 samples had acceptable, 

uniform coverage, which is in line with a previous study that found ~18% of FFPE 

samples pass quality control for subsequent next generation sequencing  (81).  

Ultimately, only 4 samples harbored potentially damaging mutations (47), including 

samples from patients 2 (in SLC28A1, two in MAP4, and RRM2B), 6 (in NFKB2), 8 

(ABCC1, SLC28A1, and RRM2B), and 24 (three in MAPT and BAD). Of these genes, 

ABCC1 mutations were associated with increased sensitivity to paclitaxel in the MFA 

(Appendix S5.12), and RRM2B mutations were associated with resistance (Appendix  
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Figure 5.4 Coverage and reads from sequencing of three FFPE tumour samples using 

originally extracted (A) and whole genome amplified (B/C) DNA.  An IGV screen shot 

covering a 25 kb portion of FN1 (gene displayed at the bottom in blue shows exons [thick bars] 

and introns [thin bars]) on chromosome 2 (specific band is indicated by the red bar in the top 

chromosome diagram). Coverage values for A-C are indicted in the top panel by the grey peaks, 

with the scale in square brackets on the right hand side. DNA sequencing reads are individually 

displayed as grey (and other colour) bars in the bottom panels of A-C. 
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S5.13). This corresponds with our patient response data: sample 2B was a gemcitabine 

non-responder and sample 8C initially responded to paclitaxel (and then subsequently 

developed resistance), and was resistant to gemcitabine. Although mutation data are a 

sparse data source that is not easily modeled by SVMs, it appears that mutations on an 

individual basis may provide insight into tumour response to paclitaxel or gemcitabine.  

Gene expression measurements and clinical data were also obtained for 319 patient 

samples who were treated with paclitaxel and anthracycline chemotherapy (5). Gene 

expression data were not available for two genes from the paclitaxel SVM (BMF and 

CSAG2), which were two of the 4 genes that could not be measured in the FFPE samples. 

Consequently, the same 11-gene SVM used for the FFPE samples was applied to the data 

from Hatzis et al. (2011).  SVM predictions were compared with the clinical outcome - 

whether the patient had recurrent disease (RD) or complete pathological response (pCR, 

see Table 5.2 for a summary, and Supplementary Table 5.8 for all predictions). The SVM 

predicted sensitivity in 52 of the 63 patients (84%) that showed pCR. All patients that 

showed complete pathological response exhibited no or minimal residual disease 

(residual cancer burden [RCB] class 0/1 (60), although some patients within this subset 

did not respond to therapy. This group of patients (RCB 0/1) may derive the greatest 

benefit from the paclitaxel SVM analysis. The SVM did not perform as well in predicting 

resistance, miscategorizing 135 patients of the 257 with RD (52.5%) as sensitive. 

However, performance of the SVM exceeded that of the 512-gene signature described in 

Hatzis et al. (2011) for both sensitive and resistant patients. The odds ratio of the 11-gene 

SVM was 4.484 (Fisher’s exact test, p<0.0001), compared to the odds ratio of 3.181 of 

the  predictive signature described in that study (Fisher’s exact test, p<0.0001).   

5.3.4 Clustering cell line and patient data based on SVM gene 

subsets 

Two distinct groups emerge from unsupervised clustering using the SVM gene set for 

paclitaxel in the cell line data (Figure 5.5A). The left cluster (highlighted in light grey) 

corresponds with the luminal subtype, and the right corresponds to a mix of basal,  



 

 

173 

 

Table 5.2 SVM predictions on 319 patients treated with paclitaxel from Hatzis et al. (2011) 

 
Cell Line 11-gene SVM Hatzis "Rx" Prediction 

 
RD pCR RD pCR 

ALL RCB Classes         
Predicted Insensitive 119 10 186 28 
Predicted Sensitive 138 52 71 34 
Odds Ratio 4.484 3.181 
P-value^ <0.0001 <0.0001 

RCB Class 0/1 Only         
Predicted Insensitive 11 10 10 28 
Predicted Sensitive 19 52 20 34 
Odds Ratio 3.011 0.6071 
P-value^ 0.0359 0.3673 

RD = recurrent disease (designated "insensitive" patient response), pCR = pathological complete 

response (designated as "sensitive" patient response), RCB = residual class burden (as 

described in Symmans et al. 2007). ^ p-values were determined using a Fisher's exact test. 

Please refer to Supplementary Table 5.8 for all predictions and patient information. 
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Figure 5.5 Expression heatmap of the paclitaxel and gemcitabine SVM derived genes for 

the tested cell lines.  Each row represents a gene and each column a cell line. Red indicates 

higher expression and blue represents lower expression, as shown by the colour bar on the left. 

‘Resistant’ cell lines are coloured grey and ‘sensitive’ cell lines are coloured white in the row 

labeled ‘response’. Cell lines are labeled by subtype and copy number according to the legends. 

Clustering was done based on the similarity of each cell line’s expression profile in the 1st 

(column) dimension and each gene's expression profile in the 2nd (row) dimension. The 

dendrograms on the top and left indicate the relatedness of each cell line and gene by the length 

and subdivision of the branches, with deeper branches indicating a stronger relationship and 

branches in the same 'tree' being more closely related to each other than data in other 'trees‘. A) 

A section of the dendrogram for paclitaxel is shaded grey to indicate a cluster composed entirely 

of luminal cell lines and a higher proportion of resistant cell lines. The other section is white to 

indicate a cluster with very few luminal cell lines and a higher proportion of sensitive cell lines. B) 

A section of the dendrogram for gemcitabine is shaded grey to indicate a cluster composed of a 

higher proportion of resistant cell lines. The other section is white to indicate a cluster with a 

higher proportion of sensitive cell lines. 
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 claudin-low, and normal-like subtypes. The proportions of resistant (71% of the left 

cluster) vs. sensitive (58% of the right cluster) cell lines are not statistically significant  

(
2 

= 3.67, 1 degree of freedom, p = 0.056). Cell lines clustered using the gemcitabine 

SVM gene expression values display at least two distinct clusters that do not correspond 

to any subtype(s), but, stratify according to gemcitabine sensitivity (73%; left) or 

resistance (69%; right) (Figure 5.5B, chi-statistic = 10.75, p = 0.001, d.f. =1). Clustering 

of the FFPE derived samples was not as strong as a consequence of limited sample 

numbers and lack of expression measurements for every gene in every sample (Appendix 

S5.18.1). Nevertheless, clustering of expression in these samples mirrored the cell line 

data based on results for MAPT and BCL2 (for paclitaxel) and DCTD (for gemcitabine). 

Unsupervised clustering of expression data from Hatzis et al. (2011), using the paclitaxel 

SVM distinguished patients according to the proportions of those free of distant relapse 

(Figure 5.6 and Appendix S5.18.2). These clusters are partially distinguished by MAPT 

and BCL2 expression (Figure 5.6A, the “low MAPT” cluster is indicated in purple, “high 

MAPT” in green). MAPT and BCL2 are both components of the PAM50 Breast Cancer 

Intrinsic Classifier. Their expression patterns segregate into luminal and basal subtypes to 

a large extent. Low MAPT expressing luminal subtypes were observed to have 

significantly worse prognoses than higher MAPT expressing luminal tumours in the 

patient dataset (p<0.05, Appendix S5.19). The gene signature described by Hatzis et al. 

(2011) predicted treatment “sensitivity” and “insensitivity” accurately within the low 

MAPT cluster, where “sensitive” patients exhibit significantly longer times to distant 

relapse (Figure 5.6C, p = 0.0013, log rank test). However, this was not the case for the 

high MAPT cluster, as the proportion free of distant relapse between two predicted groups 

did not differ significantly (p = 0.10, log-rank test).   

5.3.5  Significance of SVM classification accuracy 

To assess the significance of the derived SVM, we selected 100,000 random sets of 15 

genes from a set of expression values (to compare to the paclitaxel SVM) and 10 genes 

from a set of copy number and expression values (gemcitabine SVM) for 23,030 genes. 

Only 0.14% of paclitaxel and 0.01% of gemcitabine random gene combinations exceeded  
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Figure 5.6 A) Expression heatmap of the paclitaxel SVM derived genes for 319 tumour 

samples (Hatzis et al. 2011).  See Figure 5.5 for heat map labeling and diagram details. A 

section of the dendrogram on the top is shaded purple to indicate a cluster of tumours (83% 

luminal) with a significantly worse outcome assessed by the proportion free of distant relapse 

curves (shown in B). Another section is shaded green (63% basal) with significantly better 

outcomes. The cluster shaded gray (22% basal, 53% luminal) can be clustered independently 

with similar stratification by subtype and outcome (Supplemental Information VI). C) The Hatzis et 

al. (2011) gene signature performs very well in the purple cluster and poorly in the green, based 

on the Kaplan-Meier curves constructed on each subset using their published labels ("insensitive" 

and "sensitive"). 
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Figure 5.7 The proportion of misclassified cell lines (A/C) and hinge loss scores (B/D) were 

measured on SVMs derived using randomly selected gene sets.  15-gene (to compare to the 

paclitaxel SVM, A/B) or 10-gene (to compare to the gemcitabine SVM, C/D) values were 

randomly selected from an initial set of 23,030 genes and used to derive SVMs. The performance 

of 100,000 iterations of the random signatures are plotted in the above histograms. The hinge 

loss scores for the paclitaxel and gemcitabine final SVM gene subsets lie in the lowest 2nd 

(paclitaxel, z-score -2.0, p < 0.05 one-sided) and 1st percentiles (gemcitabine, z = -2.16, p < 

0.05) of the data. Expression alone was used for the 15-gene sets (A/B). Copy number and 

expression were used for the 10-gene sets (C/D). The red arrow-heads indicate where the 

optimized paclitaxel and gemcitabine SVM gene signatures are found in the distribution. 
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the classification accuracy of the derived SVMs. (Figure 5.7 – A/C). The hinge loss, 

which increases based on the misclassified object’s distance to the hyperplane, was 0.64 

for the paclitaxel SVM and 0.66 for the gemcitabine SVM (optimal is close to zero). 

Among the random gene combinations, the likelihood of deriving SVMs with equal or 

lower scores was 1.45% and 0.83% for paclitaxel and gemcitabine, respectively (Figure 

5.7 – B/D). Thus, the accuracy of the SVMs achieved for both drugs were not likely due 

to random chance (p<0.05 in all cases, Table 5.3). 

Nearly all of the high performance random gene set combinations appear to be statistical 

artifacts. Analysis of 10,000 random gene selections found 18 combinations with lower 

paclitaxel misclassification response rates. All 18 signatures were unique (2 transcripts 

occurred twice) and transcript combinations were dominated (24%) by alternative splice 

variants and expressed pseudogenes. None of the random gene combinations were 

significantly associated with known biological pathways. Six of the random signatures 

contained ≥ 10 gene expression values in the patient data. None of these signatures 

predicted paclitaxel sensitivity, except one set containing WWP1, which has previously 

been suggested to be a prognostic indicator in breast cancer (61). This signature (and one 

based on WWP1 expression alone) predicted more patients (5) to be sensitive to 

paclitaxel than our derived SVM.  Similar numbers of patients predicted to be sensitive by 

both SVM models exhibited complete remission (52 vs. 55), however the WWP1-based 

SVM predicted sensitivity in a greater number of non-responders (n = 178) than our 

derived SVM (n= 138) and misclassified 41% of the cell lines. For the gemcitabine 

response, the SVM of a single random gene set had a lower misclassification rate than 

our derived SVM. The genes in this set were unrelated to gemcitabine metabolism, with 9 

of 10 SVM variables exhibiting copy number changes, two of which involved non-coding 

RNA genes.  

5.3.6 Translation of signature to other cancer types 

To mitigate tissue-specific effects, we rederived SVM models specific to lung cancer 

(lung) and hematopoietic and lymphoid tissue cancer (hematopoietic) cell lines using 



 

 

180 

Table 5.3 SVM performance using randomly selected genes based off 100,000 iterations 

 
minimum maximum average 

standard 
deviation 

drug 
SVM 

z-score p-value 
No. random SVMs  
≤ drug SVMs1 

percent misclassification of cell lines in leave-one-out analysis 

15-gene2 12.2% 83.7% 42.7% 8.8% 18.4% -2.78 0.0027 141 

10-gene3 12.2% 90.2% 48.0% 10.5% 15.9% -3.06 0.0011 10 

hinge loss score 

15-gene 0.39 1.66 0.93 0.14 0.64 -2.04 0.0207 1,453 

10-gene 0.30 2.02 1.05 0.18 0.66 -2.16 0.0153 826 

         

Misclassification rates and hinge loss scores were determined from SVMs derived using 100,000 random combinations of gene expression and 

copy number values from 23,0303 genes. The minimum, maximum, average, and standard deviations of each 100,000 iterations were determined, 

and compared to the paclitaxel and gemcitabine SVMs ("drug SVM"). 
1
the number of random gene combinations with equal or lower 

misclassification rates or hinge loss scores compared to the drug SVMs, 
2
random selection of 15 gene expression values were compared to the 

paclitaxel SVM, 
3
random selection of 10 gene expression or copy number values were compared to the gemcitabine SVM. 
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expression data from the broad institute (www.broadinstitute.org/ccle/home; 

“CCLE_Expression_2012-09-29.res” and  

“CCLE_NP24.2009_profiling_2012.02.20.csv”). Lung and hematopoietic tissue types 

were chosen because they contained the highest number of cell lines with expression and 

paclitaxel GI50s. The final lung SVM contained 14 genes, and classified cell lines with 

72% accuracy (Appendix S5.20.1). The final hematopoietic SVM was composed of 8 

genes, and classified cell lines with 75% accuracy (Appendix S5.20.2). Four genes were 

present in all three (breast, lung and hematopoietic) cancer cell line SVMs (BMF, FGF2, 

TMEM243, and TWIST1), and 8 genes were eliminated from all of the SVMs (ABCB11, 

BBC3, CNGA3, CYP2C8, CYP3A4, NR1I2, TUBB4A, and TUBB4B; Appendix S5.20.3). 

MFAs using the Lung and Hematopoietic SVM gene sets do not show the same degree of 

segregation between resistant and sensitive cell lines as the breast SVM (Appendix 

S5.20.4 & S5.20.5). 

5.4 Discussion 

This paper describes the development of genomic signatures using support vector 

machines that can predict breast cancer tumour response to paclitaxel and gemcitabine.  

We used a biologically-driven approach to identify a meaningful group of genes whose 

expression levels and copy number may be useful in guiding selection of specific 

chemotherapy agents during patient treatment. Previous studies have derived associations 

between the genomic status of one or more genes and tumour response to certain 

therapies (5,51,62-65). Correlations between single gene expression and tumour 

resistance (32,62) do not take into account multiple mechanisms of resistance or assess 

interactions between multiple genes. ABC transporter overexpression has long been 

shown to confer resistance, but enzymatic or functional inhibition has not substantially 

improved patient response to chemotherapy (66).  

Multi-gene analytical approaches have previously been successful in deriving prognostic 

gene signatures for metastatic risk stratification (Oncotype DX
TM

, MammaPrint®), 

subtypes (PAM50), and efforts to predict chemotherapy resistance (67). Given the 
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complexity of genomic changes and the fundamental biological differences among the 

intrinsic subtypes of breast cancer (68,69), this approach has advantages over analysis of 

isolated genes. Reasonable gene signatures associated with breast cancer outcome can be 

obtained by chance alone (70), however our results show that such signatures are 

especially rare. Gene signatures derived without reference to the underlying mechanisms 

of chemotherapy response do not capture meaningful biological results (71).  

Our approach started with a focused biologically-relevant initial gene set, rather than 

taking a genome-wide approach. The derived signatures were demonstrated to 

significantly outperform random selected combinations of genes in prediction of 

sensitivity and resistance. The random gene sets may be statistical artifacts, as they were 

not enriched for any biological relevant pathways, and included expressed pseudogenes. 

The compositions of these other gene sets were distinct from the set used to derive the 

SVM and another 20-gene signature for taxane sensitivity (6).  

Our analysis highlights the importance of the expression of genes encoding microtubule-

associated proteins and apoptotic regulators in paclitaxel resistance (17,72,73). MAPT 

expression was significantly correlated with drug resistance, and both MAPT and MAP4 

were components of the optimized paclitaxel SVM gene set. In clustering analysis of both 

cell lines and patients, MAPT was differentially expressed between tumour clusters 

stratified by subtype and outcome (Figures 5.5 and 5.6). Our results confirm that 

apoptosis-related proteins, particularly BCL2L1, but also BCL2, BMF, and BIRC5, 

contribute to paclitaxel sensitivity (74). BCL2L1, BCL2 and BMF were found to be stable 

in breast cancer tumours, reinforcing the notion that alterations in stable genes contribute 

to drug resistance (14). Supplementary Table 5.9 describes genes analyzed in the context 

of their biological pathways and relevant literature. 

The gemcitabine metabolic pathway has been well characterized (75), however the 

critical genes have not been treated as an ensemble in conferring resistance (see 

Supplementary Table 5.10 for interpretation of the MFA results for all genes). The MFA 

analyses indicated gemcitabine genes predominately contribute to drug resistance through 

overexpression. For DCTD, however, underexpression is associated with increased 
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resistance in the MFA analysis. DCTD deficiency causes an imbalance in the dNTP pool 

(76), which affects control of DNA replication. DCTD is inhibited by dFdCTP (a 

gemcitabine metabolite) through a mechanism by which gemcitabine exhibits self-

potentiation (the reduction of competing natural metabolites) (77). Lower DCTD 

expression and as a consequence, activity would reduce gemcitabine self-potentiation by 

altering the dNTP pool. This state is related to drug resistance, which was noticeably 

lower in 4 cell lines with increased resistance (HCC1187, HCC1428, HCC202, and 

MDAMB134VI). Like DCTD, CDA also catalyzes the conversion of gemcitabine 

monophosphate to difluorodeoxyuridine monophosphate (Figure 5.2B), and accounts for 

90% of this conversion in the cell (37). However, drug resistance was associated with 

CDA overexpression. Likewise, the ribonucleotide reductase subunits RRM1 and RRM2B 

make significant contributions to the gemcitabine SVM. The RRM1-RRM2B complex is 

associated with mitochondrial genomic integrity (78) and RRM2B is necessary for 

nucleotide synthesis in DNA repair (79). Changes in RRM2B expression could be 

associated with mitochondrial dysfunction, or may result from loss of p53 expression, 

which usually induces RRM2B expression (80).  

The 11-gene paclitaxel SVM was able to classify FFPE patient samples we obtained and 

measured in our lab with similar accuracy to that of the cell lines. In addition, the same 

SVM model was able to predict complete pathological response on a second patient data 

set, with greater accuracy than the originally reported gene signature (5). The SVM 

performed particularly well for predicting drug-sensitive tumours with low or no minimal 

residual disease (Table 5.2). The SVM gene signature proved to be resilient as a 

diagnostic marker, as the performance was not compromised by the lack of expression 

data for 4 genes.  

Unlike paclitaxel, gemcitabine was not used to treat patients in the study by Hatzis et al. 

(2011) or other publically available data sets.  The SVM analysis on RNA expression and 

DNA copy number from the FFPE-derived tumour punches appeared to predict response 

more accurately when expression values were obtained for most of the genes in the SVM. 

Obtaining high quality gene expression measurements from FFPE samples was especially 

difficult from older tissue blocks (Appendix S5.17.2) as previously noted (81). 
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Consequently, the SVM analysis may be better suited for fresh-frozen tumour tissue or 

more sensitive gene expression analyses (such as mRNA sequencing). Missing data 

appeared to impact the gemcitabine SVM to a greater extent than the paclitaxel SVM, 

which may be due to the smaller number of gene measurements required for this SVM.  

Including gene expression subtype in the SVM did not improve the classification 

accuracy even though subtype is known to contribute to tumour biology (11). However, 

the two paclitaxel PAM50 genes (MAPT and BCL2) partially stratify the cell lines by 

subtype during unsupervised clustering (Figure 5.6). This is not the case in the 

gemcitabine gene set. In patient data, clustering by expression of the SVM genes also 

revealed statistically significant deterioration in outcome for low MAPT expressing 

luminal tumours (Appendix S5.19).  

Machine learning may be a fruitful approach in the selection of other chemotherapy 

agents. Translating our results to the assessment of human tumour samples (4) confirmed 

our gene signature's relevance to predicting chemoresistance by SVM. A limitation of our 

work is that both SVMs were not integrated because cell lines were only treated with 

individual drugs, so predicting whether patient response to these drug interactions will be 

synergistic or antagonistic is not currently possible. In addition, while point mutations are 

well known contributors to chemoresistance of other drugs, this approach – for either 

SVM training or testing - is not conducive for prediction of chemosensitivity given the 

sparse number of observations for these types of mutations.  

In cases without residual disease, the paclitaxel SVM was particularly effective in 

predicting which tumours would show complete pathological response. Docetaxel is 

prescribed somewhat interchangeably (5,82,83) and both paclitaxel and docetaxel act 

through similar biological pathways (84). However the performance of the paclitaxel 

SVM on patients treated with docetaxel was reduced. This SVM contains 8 paclitaxel 

resistance genes. Predictions of docetaxel sensitivity might be improved by rederiving a 

specific SVM using taxane pathway genes (84), and those known to be associated with 

resistance to doclitaxel (such as CYP1B1 (85,56), miR-141 or EIF4E (87), DKK3 (88), 

ABCB1 (89,90), BIRC5 (91), ABCC10 (92), miR-452 (93), and PAWR (94)). The 
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approach that we have introduced could aid in rational selection of other therapeutic 

regimens that evade or at least minimize the effects of chemoresistance.  



 

 

186 

5.5 References 

1. Cardoso, F. et al. Locally recurrent or metastatic breast cancer: ESMO Clinical 

Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 23, vii11–

vii19 (2012). 

2. Oostendorp, L. J. M., Stalmeier, P. F. M., Donders, A. R. T., van der Graaf, W. T. 

A. & Ottevanger, P. B. Efficacy and safety of palliative chemotherapy for patients 

with advanced breast cancer pretreated with anthracyclines and taxanes: a 

systematic review. Lancet Oncol. 12, 1053–1061 (2011). 

3. Lee, S.-Y. et al. Genetic polymorphisms of SLC28A3, SLC29A1 and RRM1 

predict clinical outcome in patients with metastatic breast cancer receiving 

gemcitabine plus paclitaxel chemotherapy. Eur. J. Cancer Oxf. Engl. 1990 50, 698–

705 (2014). 

4. Gąsowska-Bodnar, A. et al. Survivin expression as a prognostic factor in patients 

with epithelial ovarian cancer or primary peritoneal cancer treated with neoadjuvant 

chemotherapy. Int. J. Gynecol. Cancer Off. J. Int. Gynecol. Cancer Soc. 24, 687–

696 (2014). 

5. Hatzis, C. et al. A genomic predictor of response and survival following taxane-

anthracycline chemotherapy for invasive breast cancer. JAMA 305, 1873–1881 

(2011). 

6. He, D.-X., Xia, Y.-D., Gu, X.-T., Jin, J. & Ma, X. A 20-gene signature in predicting 

the chemoresistance of breast cancer to taxane-based chemotherapy. Mol. Biosyst. 

10, 3111–3119 (2014). 

7. Daemen, A. et al. Modeling precision treatment of breast cancer. Genome Biol. 14, 

R110 (2013). 

8. Shoemaker, R. H. The NCI60 human tumour cell line anticancer drug screen. Nat. 

Rev. Cancer 6, 813–823 (2006). 



 

 

187 

9. Neve, R. M. et al. A collection of breast cancer cell lines for the study of 

functionally distinct cancer subtypes. Cancer Cell 10, 515–527 (2006). 

10. Prat, A. et al. Characterization of cell lines derived from breast cancers and normal 

mammary tissues for the study of the intrinsic molecular subtypes. Breast Cancer 

Res. Treat. 142, 237–255 (2013). 

11. Heiser, L. M. et al. Subtype and pathway specific responses to anticancer 

compounds in breast cancer. Proc. Natl. Acad. Sci. U. S. A. 109, 2724–2729 (2012). 

12. Ein-Dor, L., Zuk, O. & Domany, E. Thousands of samples are needed to generate a 

robust gene list for predicting outcome in cancer. Proc. Natl. Acad. Sci. 103, 5923–

5928 (2006). 

13. Nilsson, R., Björkegren, J. & Tegnér, J. On reliable discovery of molecular 

signatures. BMC Bioinformatics 10, 38 (2009). 

14. Park, N. I., Rogan, P. K., Tarnowski, H. E. & Knoll, J. H. M. Structural and genic 

characterization of stable genomic regions in breast cancer: relevance to 

chemotherapy. Mol. Oncol. 6, 347–359 (2012). 

15. Jordan, M. A. & Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. 

Cancer 4, 253–265 (2004). 

16. Ferlini, C. et al. Paclitaxel directly binds to Bcl-2 and functionally mimics activity 

of Nur77. Cancer Res. 69, 6906–6914 (2009). 

17. McGrogan, B. T., Gilmartin, B., Carney, D. N. & McCann, A. Taxanes, 

microtubules and chemoresistant breast cancer. Biochim. Biophys. Acta 1785, 96–

132 (2008). 

18. Harmsen, S., Meijerman, I., Beijnen, J. H. & Schellens, J. H. M. Nuclear receptor 

mediated induction of cytochrome P450 3A4 by anticancer drugs: a key role for the 

pregnane X receptor. Cancer Chemother. Pharmacol. 64, 35–43 (2009). 



 

 

188 

19. Heijn, M. et al. Anthracyclines modulate multidrug resistance protein (MRP) 

mediated organic anion transport. Biochim. Biophys. Acta 1326, 12–22 (1997). 

20. Chen, Z.-S. et al. Characterization of the transport properties of human multidrug 

resistance protein 7 (MRP7, ABCC10). Mol. Pharmacol. 63, 351–358 (2003). 

21. Lecureur, V. et al. Cloning and expression of murine sister of P-glycoprotein 

reveals a more discriminating transporter than MDR1/P-glycoprotein. Mol. 

Pharmacol. 57, 24–35 (2000). 

22. Duan, Z., Brakora, K. A. & Seiden, M. V. MM-TRAG (MGC4175), a novel 

intracellular mitochondrial protein, is associated with the taxol- and doxorubicin-

resistant phenotype in human cancer cell lines. Gene 340, 53–59 (2004). 

23. Rao, P. S., Bickel, U., Srivenugopal, K. S. & Rao, U. S. Bap29varP, a variant of 

Bap29, influences the cell surface expression of the human P-glycoprotein. Int. J. 

Oncol. 32, 135–144 (2008). 

24. Duan, Z., Foster, R., Brakora, K. A., Yusuf, R. Z. & Seiden, M. V. GBP1 

overexpression is associated with a paclitaxel resistance phenotype. Cancer 

Chemother. Pharmacol. 57, 25–33 (2006). 

25. Kaczanowska, S., Joseph, A. M. & Davila, E. TLR agonists: our best frenemy in 

cancer immunotherapy. J. Leukoc. Biol. 93, 847–863 (2013). 

26. Tantivejkul, K. et al. PAR1-mediated NFkappaB activation promotes survival of 

prostate cancer cells through a Bcl-xL-dependent mechanism. J. Cell. Biochem. 96, 

641–652 (2005). 

27. Carmo, C. R., Lyons-Lewis, J., Seckl, M. J. & Costa-Pereira, A. P. A novel 

requirement for Janus kinases as mediators of drug resistance induced by fibroblast 

growth factor-2 in human cancer cells. PloS One 6, e19861 (2011). 



 

 

189 

28. Lu, J. et al. Mitotic deregulation by survivin in ErbB2-overexpressing breast cancer 

cells contributes to Taxol resistance. Clin. Cancer Res. Off. J. Am. Assoc. Cancer 

Res. 15, 1326–1334 (2009). 

29. Hong, J. et al. Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 

protein and promotes breast cancer cell invasiveness. Cancer Res. 71, 3980–3990 

(2011). 

30. Xing, H. et al. Activation of fibronectin/PI-3K/Akt2 leads to chemoresistance to 

docetaxel by regulating survivin protein expression in ovarian and breast cancer 

cells. Cancer Lett. 261, 108–119 (2008). 

31. Duan, Z., Lamendola, D. E., Duan, Y., Yusuf, R. Z. & Seiden, M. V. Description of 

paclitaxel resistance-associated genes in ovarian and breast cancer cell lines. 

Cancer Chemother. Pharmacol. 55, 277–285 (2005). 

32. Duan, Z., Feller, A. J., Toh, H. C., Makastorsis, T. & Seiden, M. V. TRAG-3, a 

novel gene, isolated from a taxol-resistant ovarian carcinoma cell line. Gene 229, 

75–81 (1999). 

33. Preissner, S. et al. SuperCYP: a comprehensive database on Cytochrome P450 

enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 

38, D237–243 (2010). 

34. Kavallaris, M. Microtubules and resistance to tubulin-binding agents. Nat. Rev. 

Cancer 10, 194–204 (2010). 

35. Marcé, S. et al. Expression of human equilibrative nucleoside transporter 1 

(hENT1) and its correlation with gemcitabine uptake and cytotoxicity in mantle cell 

lymphoma. Haematologica 91, 895–902 (2006). 

36. Mackey, J. R. et al. Gemcitabine transport in xenopus oocytes expressing 

recombinant plasma membrane mammalian nucleoside transporters. J. Natl. Cancer 

Inst. 91, 1876–1881 (1999). 



 

 

190 

37. Govindarajan, R. et al. Facilitated mitochondrial import of antiviral and anticancer 

nucleoside drugs by human equilibrative nucleoside transporter-3. Am. J. Physiol. 

Gastrointest. Liver Physiol. 296, G910–922 (2009). 

38. Ueno, H., Kiyosawa, K. & Kaniwa, N. Pharmacogenomics of gemcitabine: can 

genetic studies lead to tailor-made therapy? Br. J. Cancer 97, 145–151 (2007). 

39. Plunkett, W. et al. Gemcitabine: metabolism, mechanisms of action, and self-

potentiation. Semin. Oncol. 22, 3–10 (1995). 

40. Mini, E., Nobili, S., Caciagli, B., Landini, I. & Mazzei, T. Cellular pharmacology 

of gemcitabine. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. ESMO 17 Suppl 5, v7–

12 (2006). 

41. Abdi, H. & Valentin, D. in Encyclopedia of Measurement and Statistics 657–663 

(Sage, 2007). 

42. Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. 

J. Stat. Softw. 25, 1–18 (2008). 

43. Dash, M. & Liu, H. Feature Selection for Classification. Intell. Data Anal. 131–156 

(1997). doi:10.3233/IDA-1997-1302 

44. Musella, V. et al. Use of formalin-fixed paraffin-embedded samples for gene 

expression studies in breast cancer patients. PloS One 10, e0123194 (2015). 

45. Antonov, J. et al. Reliable gene expression measurements from degraded RNA by 

quantitative real-time PCR depend on short amplicons and a proper normalization. 

Lab. Investig. J. Tech. Methods Pathol. 85, 1040–1050 (2005). 

46. Fleige, S. & Pfaffl, M. W. RNA integrity and the effect on the real-time qRT-PCR 

performance. Mol. Aspects Med. 27, 126–139 (2006). 

47. Ng, P. C. & Henikoff, S. SIFT: predicting amino acid changes that affect protein 

function. Nucleic Acids Res. 31, 3812–3814 (2003). 



 

 

191 

48. Shirley, B. C. et al. Interpretation, stratification and evidence for sequence variants 

affecting mRNA splicing in complete human genome sequences. Genomics 

Proteomics Bioinformatics 11, 77–85 (2013). 

49. Viner, C., Dorman, S. N., Shirley, B. C. & Rogan, P. K. Validation of predicted 

mRNA splicing mutations using high-throughput transcriptome data. 

F1000Research 3, 8 (2014). 

50. Furey, T. S. et al. Support vector machine classification and validation of cancer 

tissue samples using microarray expression data. Bioinforma. Oxf. Engl. 16, 906–

914 (2000). 

51. Ma, X.-J. et al. A two-gene expression ratio predicts clinical outcome in breast 

cancer patients treated with tamoxifen. Cancer Cell 5, 607–616 (2004). 

52. Kutuk, O. & Letai, A. Alteration of the mitochondrial apoptotic pathway is key to 

acquired paclitaxel resistance and can be reversed by ABT-737. Cancer Res. 68, 

7985–7994 (2008). 

53. Bhat, K. M. R. & Setaluri, V. Microtubule-associated proteins as targets in cancer 

chemotherapy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 13, 2849–2854 

(2007). 

54. Fukino, K. et al. Frequent allelic loss at the TOC locus on 17q25.1 in primary 

breast cancers. Genes. Chromosomes Cancer 24, 345–350 (1999). 

55. Colavito, D. et al. Thymidylate synthetase allelic imbalance in clear cell renal 

carcinoma. Cancer Chemother. Pharmacol. 64, 1195–1200 (2009). 

56. Hopper-Borge, E. et al. Human multidrug resistance protein 7 (ABCC10) is a 

resistance factor for nucleoside analogues and epothilone B. Cancer Res. 69, 178–

184 (2009). 



 

 

192 

57. Shoushtari, A. N., Szmulewitz, R. Z. & Rinker-Schaeffer, C. W. Metastasis-

suppressor genes in clinical practice: lost in translation? Nat. Rev. Clin. Oncol. 8, 

333–342 (2011). 

58. Aye, Y., Li, M., Long, M. J. C. & Weiss, R. S. Ribonucleotide reductase and 

cancer: biological mechanisms and targeted therapies. Oncogene (2014). 

doi:10.1038/onc.2014.155 

59. Wang, C. et al. Establishment of human pancreatic cancer gemcitabine‑ resistant 

cell line with ribonucleotide reductase overexpression. Oncol. Rep. 33, 383–390 

(2015). 

60. Symmans, W. F. et al. Measurement of residual breast cancer burden to predict 

survival after neoadjuvant chemotherapy. J. Clin. Oncol. Off. J. Am. Soc. Clin. 

Oncol. 25, 4414–4422 (2007). 

61. Nguyen Huu, N. S. et al. Tumour-promoting activity of altered WWP1 expression 

in breast cancer and its utility as a prognostic indicator. J. Pathol. 216, 93–102 

(2008). 

62. Duan, Z. et al. Overexpression of MAGE/GAGE genes in paclitaxel/doxorubicin-

resistant human cancer cell lines. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 

9, 2778–2785 (2003). 

63. Glinsky, G. V., Berezovska, O. & Glinskii, A. B. Microarray analysis identifies a 

death-from-cancer signature predicting therapy failure in patients with multiple 

types of cancer. J. Clin. Invest. 115, 1503–1521 (2005). 

64. Rajput, S., Volk-Draper, L. D. & Ran, S. TLR4 is a novel determinant of the 

response to paclitaxel in breast cancer. Mol. Cancer Ther. 12, 1676–1687 (2013). 

65. Van ’t Veer, L. J. et al. Gene expression profiling predicts clinical outcome of 

breast cancer. Nature 415, 530–536 (2002). 



 

 

193 

66. Samuels, B. L. et al. Modulation of vinblastine resistance in metastatic renal cell 

carcinoma with cyclosporine A or tamoxifen: a cancer and leukemia group B study. 

Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 3, 1977–1984 (1997). 

67. Hess, K. R. et al. Pharmacogenomic predictor of sensitivity to preoperative 

chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide 

in breast cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 24, 4236–4244 

(2006). 

68. Cancer Genome Atlas Network. Comprehensive molecular portraits of human 

breast tumours. Nature 490, 61–70 (2012). 

69. Dorman, S. N., Viner, C. & Rogan, P. K. Splicing mutation analysis reveals 

previously unrecognized pathways in lymph node-invasive breast cancer. Sci. Rep. 

4, 7063 (2014). 

70. Venet, D., Dumont, J. E., Detours, V. Most random gene expression signatures are 

significantly associated with breast cancer outcome. PLoS Comput. Biol. 7, 

e1002240 (2011). 

71.  Drier, Y. & Domany, E. Do two machine-learning based prognostic signatures for 

breast cancer capture the same biological processes? PLoS One. 6, e17795 (2011). 

72. Tanaka, S. et al. Tau expression and efficacy of paclitaxel treatment in metastatic 

breast cancer. Cancer Chemother. Pharmacol. 64, 341–346 (2009). 

73. Wang, K. et al. Tau expression correlated with breast cancer sensitivity to taxanes-

based neoadjuvant chemotherapy. Tumour Biol. J. Int. Soc. Oncodevelopmental 

Biol. Med. 34, 33–38 (2013). 

74. Flores, M. L. et al. Paclitaxel sensitivity of breast cancer cells requires efficient 

mitotic arrest and disruption of Bcl-xL/Bak interaction. Breast Cancer Res. Treat. 

133, 917–928 (2012). 



 

 

194 

75. Alvarellos, M. L. et al. PharmGKB summary: gemcitabine pathway. 

Pharmacogenet. Genomics 24, 564–574 (2014). 

76. Eriksson, S., Skog, S., Tribukait, B. & Jäderberg, K. Deoxyribonucleoside 

triphosphate metabolism and the mammalian cell cycle. Effects of thymidine on 

wild-type and dCMP deaminase-deficient mouse S49 T-lymphoma cells. Exp. Cell 

Res. 155, 129–140 (1984). 

77. Xu, Y. Z. & Plunkett, W. Modulation of deoxycytidylate deaminase in intact 

human leukemia cells. Action of 2’,2’-difluorodeoxycytidine. Biochem. Pharmacol. 

44, 1819–1827 (1992). 

78. Bourdon, A. et al. Mutation of RRM2B, encoding p53-controlled ribonucleotide 

reductase (p53R2), causes severe mitochondrial DNA depletion. Nat. Genet. 39, 

776–780 (2007). 

79. Kuo, M.-L. et al. RRM2B suppresses activation of the oxidative stress pathway and 

is up-regulated by p53 during senescence. Sci. Rep. 2, 822 (2012). 

80. Tanaka, H. et al. A ribonucleotide reductase gene involved in a p53-dependent cell-

cycle checkpoint for DNA damage. Nature 404, 42–49 (2000). 

81. Choudhary, A. et al. Evaluation of an integrated clinical workflow for targeted 

next-generation sequencing of low-quality tumor DNA using a 51-gene enrichment 

panel. BMC Med. Genomics 7, 62 (2014). 

82. Crown, J., O’Leary, M. & Ooi, W.-S. Docetaxel and paclitaxel in the treatment of 

breast cancer: a review of clinical experience. The Oncologist 9 Suppl 2, 24–32 

(2004). 

83. O’Shaughnessy, J., Gradishar, W. J., Bhar, P. & Iglesias, J. Nab-paclitaxel for first-

line treatment of patients with metastatic breast cancer and poor prognostic factors: 

a retrospective analysis. Breast Cancer Res. Treat. 138, 829–837 (2013). 

84. Oshiro, C. et al. Taxane pathway. Pharmacogenet. Genomics 19, 979–983 (2009). 



 

 

195 

85. Chang, I. et al. Loss of miR-200c up-regulates CYP1B1 and confers docetaxel 

resistance in renal cell carcinoma. Oncotarget 6, 7774–7787 (2015). 

86. Cui, J. et al. Design and Synthesis of New α-Naphthoflavones as Cytochrome P450 

(CYP) 1B1 Inhibitors To Overcome Docetaxel-Resistance Associated with 

CYP1B1 Overexpression. J. Med. Chem. 58, 3534–3547 (2015). 

87. Yao, Y.-S. et al. miR-141 confers docetaxel chemoresistance of breast cancer cells 

via regulation of EIF4E expression. Oncol. Rep. 33, 2504–2512 (2015). 

88. Tao, L., Huang, G., Chen, Y. & Chen, L. DNA methylation of DKK3 modulates 

docetaxel chemoresistance in human nonsmall cell lung cancer cell. Cancer 

Biother. Radiopharm. 30, 100–106 (2015). 

89. Hansen, S. N. et al. Acquisition of docetaxel resistance in breast cancer cells 

reveals upregulation of ABCB1 expression as a key mediator of resistance 

accompanied by discrete upregulation of other specific genes and pathways. 

Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. (2015). 

doi:10.1007/s13277-015-3072-4 

90. Kato, T. et al. Serum exosomal P-glycoprotein is a potential marker to diagnose 

docetaxel resistance and select a taxoid for patients with prostate cancer. Urol. 

Oncol. (2015). doi:10.1016/j.urolonc.2015.04.019 

91. Ghanbari, P. et al. Inhibition of survivin restores the sensitivity of breast cancer 

cells to docetaxel and vinblastine. Appl. Biochem. Biotechnol. 174, 667–681 

(2014). 

92. Domanitskaya, N. et al. Abcc10 status affects mammary tumour growth, 

metastasis, and docetaxel treatment response. Br. J. Cancer 111, 696–707 (2014). 

93. Hu, Q. et al. MicroRNA-452 contributes to the docetaxel resistance of breast cancer 

cells. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 35, 6327–6334 

(2014). 



 

 

196 

94. Pereira, M. C. et al. Prostate apoptosis response-4 is involved in the apoptosis 

response to docetaxel in MCF-7 breast cancer cells. Int. J. Oncol. 43, 531–538 

(2013). 

 

 



 

 

197 

Chapter 6  

6 Contextual Insights of Findings in this Dissertation 

It is estimated that in Canada, almost 24,000 deaths due to female breast cancer have 

been avoided since the mortality rate peaked in 1986 (1). Since then, the age-standardized 

mortality rate has fallen 43%, due to an increase in breast cancer screening and 

advancements in breast cancer treatment (1). The discoveries of the intrinsic subtypes of 

breast cancer and prognostic transcript profiles using gene expression microarrays have 

been instrumental in making breast cancer patient management to be more individualized. 

The ongoing advancements and reduction in cost of genomic technologies now provide 

even further opportunity to personalize breast cancer care. However, there are still gaps 

in genomic experiments, both in experimental design and interpretation of the data. In 

addition, there are currently no personalized genomic indicators for managing 

chemotherapy regimes that take into account drug resistance for breast cancer patients. 

The field has, and will, benefit from methods to improve upon current genomic analyses 

that detect cardinal abnormalities in driver genes, and predict metastatic progression and 

chemotherapy response. This thesis describes improvements for data quality and analysis 

for existing genomic technologies, with the aim of detecting and interpreting genomic 

abnormalities relevant to breast cancer metastasis and chemotherapy resistance. 

6.1 Current limitations of genomic technology 

Genome-wide assays, such as microarrays and next generation sequencing, have greatly 

improved our understanding of both normal and tumour genomes. The large amount of 

data generated from these experiments, however, creates new sets of challenges to ensure 

reproducible measurements, robust analyses, and meaningful interpretations. 

The issue of low reproducibility, both between and within technology platforms, has not 

been fully resolved in genome-wide analyses (2-5) (Section 2.1 describes the variability 

observed in aCGH experiments in further detail). This is not surprising, because FISH, 

microarrays, and next generation sequencing all rely on the same stochastic events: 
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nucleic acid extraction, fragmentation, labeling, and hybridization. A recent study 

assessing replicate next generation sequencing experiments demonstrated concordant 

rates in single nucleotide variant calling ranged between 54-76% (4). In addition, batch 

effects occurring from laboratory-specific conditions can create major problems if the 

batch effect results in incorrect conclusions (6). Improving the reproducibility of these 

technologies has usually involved increasing the number of measurements obtained in a 

given experiment, whether through expanding the number of probes on a single 

microarray slide, or increasing the number of reads obtained from a sequencing 

experiment. However, genomic experiments are subject to both technical (i.e. 

experimental procedure) and biological (i.e. genetic) variation (7). Tumour heterogeneity 

makes the analysis of breast cancer particularly complicated (8). For this reason, single-

cell genomic analyses (9) have been applied to cancer research (10,11). This thesis did 

not address biological variation to the same extent as technical variation, although it is 

nevertheless an extremely important aspect of tumour biology research. 

With the abundance of different technology platforms, generated data, and computer 

software programs available, establishing robust genomic analysis pipelines remains 

challenging. This is true for both microarray and next generation sequencing analyses of 

DNA or RNA. For clinical applications, working groups, such as the American College 

of Medical Genetics (ACMG), have developed thorough guidelines for such analyses 

(12-14). For example, recommendations involving next generation sequencing for 

primary (production of sequence reads and assignment of base quality scores (12,15)), 

and secondary/tertiary (variant calling and interpretation (14,16)) analyses have been well 

documented. However, the main objective for clinical analysis (and the guidelines 

created) is to accurately report genomic variants that are likely relevant to a patient’s 

diagnosis or health. This differs from research groups, who can tolerate greater difficulty 

interpreting the data and variants of unknown significance in exchange for more 

comprehensive results. There are numerous programs that can be used to discover and 

interpret data (Table 1.3), and this list is steadily increasing. Regardless, there is still an 

underrepresentation of non-coding variants in published genomic studies, such as in-

depth splicing mutation analyses outlined in this thesis (Chapters 3 and 4). The 
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emergence of new software to predict or interpret non-coding variants (17-19) indicates 

the field is still working towards filling these gaps in current genomic analyses. 

Interpreting DNA variants, how they affect cellular functions, and whether they are 

causing a certain phenoytype is still extremely difficult. Recent evidence presented in this 

thesis (Chapter 4) and others (20-24) show there is no single cause or set of abnormalities 

that account for these phenotypes. It is well thought that the interpretation of sequencing 

data from a full genome is now a much larger task than generating the data itself (25). 

Large data repositories, such as the International HapMap Project (26) and dbSNP (27), 

begin to allow us to understand which DNA variants are common among the population, 

and which variants are rare and potentially pathogenic. However, given the size of the 

human genome, the majority of variants observed in a given sample will be novel. 

Programs like SIFT (28) and PolyPhen (29) are able to provide some indication as to 

whether a mutation will be damaging to the protein’s function, but have extremely low 

specificity (30). The genomic field will still greatly benefit from new programs to 

validate the predicted effects of a mutation on a genome-wide scale.  

6.2 Advances in genomic technology described in this 

thesis 

6.2.1 Fluorescence in-situ hybridization 

FISH probes typically span a large genomic region along the chromosome, well beyond 

the length of a single gene. They have been very useful in delineating large pathogenic 

chromosomal aberrations, and have played an instrumental role in early gene and disease 

discovery. With the introduction of chromosomal microarrays, however, our ability to 

detect much smaller rearrangements has improved. In many cases, clinically significant 

findings from these high-resolution microarrays will require assays to confirm the 

suspected copy number change. Using ab initio-derived single copy intervals from the 

human genome sequence, high-resolution FISH probes were designed and validated for 

probes of small cancer genes. These FISH probes are small, usually less than 4 kb, and 

the exact genomic location of the probes is known. Further, we have automated the 
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design process, and have developed >450,000 primer pairs covering regions overlapping 

genes that could be developed into single copy probes. The advantages of this technology 

are that it can assess parts of genes and at small single copy regions that are embedded in 

highly repetitive regions. As with most methods involving nucleic acid hybridization, 

developing scFISH probes directly in highly conserved repetitive regions is not possible. 

However, scFISH probes have been used to delineate breakpoints within segmental 

duplicons (31) and telomeric regions (32). Although the scFISH probes are reproducible, 

the fluorescent signal is not as intense as traditional BAC probes, which recognize a 

much larger target on the chromosome. Developing probes with increased signal 

intensities could allow for easier analysis of interphase cells, as the ab initio probes 

developed in this thesis were only validated on metaphase chromosomes. 

Although there are cases where genome-wide analysis is more suitable, FISH is a reliable 

and inexpensive method to assess specific genomic regions. Future work could include 

validating probes for specific actionable or clinically significant genomic alterations in 

oncology (Table 6.1), which would require the development of scFISH on solid tumour 

FFPE samples. scFISH probes are especially useful for cancer types in which 

chromosomal microarrays are not routinely used or effective (i.e. balanced translocations 

(32)). For example, it is now evident that tumours with HER2 amplification, in addition 

to breast cancer for which it was originally developed, benefit from HER2 targeted 

therapies (such as trastuzumab) (33). The ERBB2/HER2 scFISH probe could be used as 

an inexpensive method to determine whether amplification is present in a tumour. 

6.2.2 Chromosomal Microarrays 

Chromosomal microarrays have been instrumental in advancing the evaluation of patients 

with constitutional abnormalities, and are now accepted as a first tier diagnostic test for 

patients with developmental delay, intellectual disability, congenital anomalies, and 

autism (34). However, using genome-wide approaches to detect copy number changes 

raises new limitations and regulatory challenges for clinical testing. There are still 

difficulties associated with accurately measuring copy number gains or losses, and the  
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Table 6.1 Examples of clinically significant genomic alterations in cancer testable by FISH. 

Gene Cancer type Aberration Clinical significance 

APC gastric  Decreased copy 

number/deletion 

Significantly associated with lymph node 

invasion and metastasis
35

 

HER2 breast, gastric  Gene amplification Higher chance of success for treatment 

with HER2 monoclonal antibody (ie. 

trastuzumab)
33,36

 

EGFR colorectal Increased copy number Higher chance of success for treatment 

with antiEGFR monocolonal antibody (ie. 

cetuximab and panitumumab)
37

 

EGFR non-small-cell 

lung 

Increased copy number Higher chance of success for treatment 

with gefitinib
38

 

MET squamous cell 

carcinoma 

(lung) 

Increased copy number Poor prognosis (shorter survival)
39

 

E2F3 Urothelial 

carcinoma 

Increased copy number Higher frequency in metastasis
40

 

ROS1 

or ALK 

non-small-cell 

lung 

rearrangement/gene 

fusion 

Treatment with crizotinib
41,42
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subsequent interpretation of the pathogenicity of any findings. The ACMG has approved 

a set of Standards and Guidelines for genomic copy number testing using microarrays 

(13,43,44). Microarray probes are suggested to be placed throughout the genome at 

regular intervals, to enable the detection of copy number changes of 400 kb or larger with 

99% sensitivity. It is also recommended that there be an emphasis on probes targeting 

haploinsufficient genes with known phenotypic abnormalities (43), or regions known to 

be associated with unbalanced genomic alterations in cancer (44). In addition, it is 

desirable to be able to detect small rearrangements with high confidence and low false 

positive rates, to improve diagnosis of small clinically significant copy number variants 

(45). 

Ab initio single copy intervals were used to design a genomic oligonucleotide microarray 

that demonstrated reduced noise in signal intensities compared to a common commercial 

platform. We suggest that genomic placement of oligonucleotides relative to repetitive 

elements can alter their susceptibility to cross hybridization, which increases variability 

in probe signal intensity. Historically, improved accuracy and resolution of commercial 

microarray platforms has been achieved by increasing the density of probes on the array 

(46). This thesis describes an alternative solution to overcoming noise: including a 

reduced set of oligonucleotides that demonstrate high reproducibility in signal intensity. 

This may offer a cost-effective solution for high throughput microarray testing by 

increasing the number of samples that can be processed per slide (through increased 

multiplexing with the same number of total probes). 

These findings are not limited to microarray analysis, but rather apply to any nucleic acid 

hybridization experiment using genomic DNA. In next generation sequencing analysis, 

solution hybrid selection is becoming a useful method to enrich for targeted genomic 

sequences (47). This approach uses biotinylated RNA ‘bait’ that is hybridized to a 

sheared DNA sample, and then purified using streptavidin-coated beads to enrich for the 

target sequence. This thesis describes the application of ab initio sequences to design the 

RNA sequences (bait) used for DNA capture and subsequent sequencing (Appendix 

S5.5.3). Where possible, sequences were selected to be distant from conserved repetitive 
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sequences to minimize cross-hybridization and wasted coverage on unintended 

sequences. In addition, capture probes were designed in divergent repetitive elements to 

allow for greater coverage in some regions that would be excluded using repeat-masking 

(48). Capture probes resulted in enrichment of the targeted 45 gene sequences, with 

sufficient coverage to allow for multiplexing of 48 samples per sequencing experiment. 

Clinics or research groups with specific gene panels of interest could use this method as a 

cost-effective alternative to whole exome sequencing. 

6.2.3 Next Generation Sequencing 

With decreasing costs and the development of more user-friendly analysis software, next 

generation sequencing is becoming mainstream in both research and clinical settings. 

During mutation analyses, and especially when clinical decisions rely on the results of a 

study, it is important that we leverage the data to the best of our ability to obtain the most 

complete and accurate results. In this thesis, the Shannon Human Splicing Pipeline (49) 

was used to improve splicing mutation detection in 445 breast cancer tumours. Further, a 

software program was developed and described, named Veridical (50), to employ RNA 

sequencing data for validation of the predicted mutations’ affect on mRNA splicing. 

Veridical was the first published genome-wide tool that is able to directly link DNA 

mutations to aberrant mRNA splicing. Before the development of Veridical, validating 

splicing mutation could be fairly laborious. RT-PCR is the most common method used to 

confirm that a splicing mutation will cause abnormal splicing, either through measuring 

patient mRNA or a transfected cell line that expresses the mutation. Although this 

method is reliable for individual mutations, it would be difficult and time consuming to 

apply this technique to all predicted splicing mutations in a genome. For example, 5,206 

splicing mutations were detected in 442 tumours (Chapter 4). Assuming patient mRNA is 

attainable, a very conservative estimate of 4-6 hours of hands-on time would be required 

to validate each mutation (to develop primers, set up and run the RT-PCR reaction, and 

analyze the results). This would amount to at least 2,600 8-hour workdays, or ~6 days per 

tumour to validate these results using a traditional approach. 
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In addition to its genome-wide capabilities, Veridical can compare the mutated sample to 

normal exome sequences or other controls to determine the corresponding frequency of 

the aberrant splicing pattern in samples that do not contain the variant of interest. 

Veridical is able to achieve high statistical power through comparing hundreds of 

controls, the extent of which would not be reasonable for a single-variant wet lab 

experiment. One additional benefit is that the RNA-Seq controls do not need to be 

generated by the group performing the study, due to the availability of data from online 

resources such as TCGA (https://tcga-data.nci.nih.gov/tcga/) and the International Cancer 

Genome Consortium (https://icgc.org). 

Other software programs with similar objectives to Veridical have also been recently 

developed, including PVAAS (51) and SNPlice (52). PVAAS uses “spliced reads” (reads 

spanning two exons) from RNA sequencing data, and identifies non-canonical splicing, 

defined as splicing where the 5’ and/or 3’ splice site(s) are not known. It works in the 

reverse order of Veridical, identifying variants that are associated with the aberrant 

splicing after the non-canonical splicing reads are discovered. SNPlice finds RNA 

sequencing reads that contain a single nucleotide variant, and span into the intronic 

sequence. It highlights variants that preferentially occur in intron-containing molecules 

versus reads that are properly spliced, to implicate the variant in abnormal splicing. 

The recent development of both PVAAS and SNPlice highlight the importance of 

identifying splicing mutations that cause aberrant splicing. They are potentially powerful 

tools that are especially useful in the absence of DNA sequencing data. However, they 

fail to address some key considerations that were incorporated into Veridical. Both 

approaches rely on associations between a variant and a splice form to potentially 

implicate the variant in abnormal splicing. There are two major flaws to this approach. 

First, the authors did not work with complete gene or genome data, and therefore all 

possible splicing variants (especially those deep in an intron) would not be present in the 

analysis. Because the true causal variant may not be detected or known, some atypical 

splicing transcripts may be miscalled as natural alternative splicing events. Second, a 

truly causal variant may be in linkage disequilibrium with the inferred variant, and 

therefore the cause of abnormal splicing is not explained correctly. Further, if two 
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variants reside in the same region, the programs may have difficulty determining which 

variant is affecting splicing. While both of these are serious drawbacks and the first is 

more likely a result of the authors’ lack of complete genome or gene data, which means 

that their inferences were based on a minor fraction of genome variation (53). 

Veridical differs in that it is hypothesis-driven, looking for aberrant splicing at the 

specific location of predicted splicing mutations rather than making post-hoc associations 

of variants to abnormal splicing, as in PVAAS and SNPlice. In addition, Veridical is able 

to perform robust statistical analyses against large sets of controls. This is important 

because it avoids mis-identifying naturally occurring abnormal splicing (i.e. the GATA3 

cryptic splicing found in all controls in Appendix S2.2.3) or intron retention (i.e. the 

abundance of intron-spanning reads in both breast cancer samples and normal controls 

demonstrated in Appendix S2.2.4) as abnormal. 

Veridical confirmed 19% of all splicing mutation predictions in a large subset of breast 

cancer tumours. That leaves the question, however, of why the other 81% of variants 

were not confirmed. The parameters outputted from the Shannon Pipeline (i.e. initial, 

final, or change in the splice site strength, distance to or strength of the nearest natural 

site) showed no obvious indications of whether the variant would be validated by RNA-

Seq. This implies that it is not due to some variable of the algorithm underlying the 

Shannon Pipeline (which uses information theory), but rather related to the methods of 

validation. 

The first of these issues is the fact that genes were not filtered based on breast tissue 

expression, so many of the genes harboring splicing mutations may be in genes not that 

are not expressed (and show minimal read coverage in the RNA-Seq data). For example, 

a donor mutation at a natural site in ACSBG1 with a ΔRi of -18.64 bits (inactivating the 

site) was not validated even though there was a dramatic decrease in the strength of the 

site. The GTEx (54) expression value, however, suggests this gene has very low 

expression in breast (mammary) tissue (Figure 6.1). Second, variants were only called 

and grouped within the tumour samples, so there was no information as to whether the 

normal breast samples contained the variant. If enough of the normal samples contained  
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Figure 6.1 Screenshot from GTEx Portal – ACSBG1 Gene View. Measured gene expression 

values of ACSBG1 for different tissue types are listed along the x-axis. The vertical red bar 

indicates the location of the breast (mammary) tissue, which is filled in light blue. The horizontal 

red bar indicates the log(expression) value measured from 66 samples. Data Source: GTEx 

Analysis Release V4 (dbGaP Accession phs000424.v4.p1). 
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the variant, the abnormal splicing would not have enough statistical power to be observed 

as significant based on the p-value cutoffs applied. This situation is less likely, because 

common variants (in dbSNP present in more than 1% of the population) were filtered out 

of the analysis. Third, although from the same tumour, the DNA- and RNA-Seq data may 

represent genotypically-different cell populations due to tumour heterogeneity. Finally, 

some of the splicing variants may have been false positives (i.e. an artifact of the 

sequencing) or there was simply no evidence of aberrant splicing. Standard quality filters 

were used during variant calling, although this only reduces and does not fully eliminate 

false positives. In addition, predicting splicing mutations using information theory has 

been shown to have a sensitivity of 85% (18), so a minority of the predicted variants may 

not affect mRNA splicing. 

In this thesis, the Shannon Pipeline and Veridical were applied to breast cancer tumours. 

Future studies could apply similar analyses (from Chapters 3 and 4) to other types of 

cancer using newly generated or previously published data (from groups like the Cancer 

Genome Atlas or International Cancer Genome Consortium). This would be particularly 

valuable in both heritable and somatic cancers where there has been either a lack of 

causal variants identified in a large portion of cases or where mutations in specific genes 

lead to clinical decisions. For example, our laboratory is applying splicing (among other 

non-coding) mutation detection to families with a strong history of breast and/or ovarian 

cancer that have tested negative for BRCA1/2 actionable mutations. BRCA testing 

primarily involves Sanger sequencing (55) of exons to assess mutations in coding 

regions, and so there are likely protein-damaging splicing mutations that are missed with 

standard techniques used in the clinic. 

Efforts are currently underway in our laboratory to expand Veridical to incorporate 

additional types of analyses. For example, it could be used to detect whether any type of 

mutation (splicing or coding) is increasing nonsense-mediated decay (NMD). Transcript 

levels of both alleles could be detected, and the proportion of the transcript with versus 

without the mutation could indicate whether the mutated mRNA is susceptible to NMD. 

A similar type of analysis with different objectives (i.e. not assessing NMD) 



 

 

208 

comprehensively mapped genotype relationships with expression of specific transcripts 

using expression quantitative trait loci (eQTLs) in over 40 different tissue types (54,56). 

In addition to allele-specific expression, the RNA-Seq read coverage in the 5’ end of the 

transcript (low) versus the 3’ end of a transcript (high) may also indicate that NMD is 

occurring. Exon-exon junction protein complexes (EJC) are thought to be removed by the 

ribosome during the first round of protein translation. When there is a premature stop 

codon (and the ribosome is released), the 3’ EJCs are not removed, and their presence on 

the transcript triggers the NMD process. Consequently, mutations in the last exon are 

often missed by NMD because they do not have any remaining EJCs. Veridical could 

also be applied to any other read-counting based analysis, such as detecting or 

quantifying non-coding or micro-RNAs in a disease sample or tissue type compared to 

controls.  

6.3 Implications for breast cancer treatment 

6.3.1 DNA mutations in metastasis 

This thesis demonstrates that there are elevated numbers of NCAM pathway mutations in 

lymph node positive tumours. Lymph node involvement compared to tumour size can be 

a marker of the metastatic potential of a tumour independent of the tumour subtype (57). 

Therefore, NCAM pathway mutations may be an indicator for tumours most likely to 

metastasize. 

Cancer has long been proposed as a multistage process, both in tumour development 

(58,59) and advancement of the disease (60). Interestingly, the percent of tumours with 

NCAM pathway mutations drops off in later (stage IV) tumours. It is possible that 

NCAM pathway mutations increase metastatic potential in early tumour development, 

but are not clonally selected for once the tumour has spread. This would explain why 

these mutations are not present at high levels in advanced disease. If the NCAM pathway 

mutations were simply passenger mutations in breast cancer, it has been proposed that 

these genes would be low expressing (61) and late replicating (62-64), which have been 

associated with higher background mutation rates (65). The stage of replication and 
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expression levels were compared between NCAM pathway genes and genes significantly 

mutated in breast cancer, which were cited to be likely driver genes (20-24). We do not 

find any differences in both replication stage and expression levels between NCAM 

pathway and other significantly mutated genes (Figure 6.2), which supports excluding the 

possibility that NCAM pathway mutations are the result of bystander effects. The 

contributions of these defects to tumour metastasis would have to be demonstrated by 

functional studies (see below). 

A high proportion of the breast cancer tumours assessed harbored extracellular matrix 

(ECM) and collagen mutations, although these mutations were found at similar levels in 

all tumours, regardless of their lymph node status. Clonal frequency was previously 

evaluated in a large set of breast tumours to segregate mutations as either early or later 

events, which delineated that mutations appear to be acquired later in tumour 

development in genes that play a role in cytoskeletal pathways, such as myosins, 

laminins, collagens, and integrins (21). In addition, the differential expression of ECM 

components has been used to classify breast cancer tumours into groups related to patient 

prognosis and tumour metastatic potential (66,67). These and other stromal signatures 

can have higher predictive power when combined with current pathogenic features 

(receptor status, tumour grade) (68). The ECM of tumours has been cited as a potential 

target for anti-cancer therapy, although it is challenging to identify which specific ECM 

component may serve as an effective therapeutic target (69). 

Alternative ways to identify tumours that are likely to migrate to other tissues, beyond 

prognostic gene expression profiling, would be beneficial for many patients. Further 

work could be completed to confirm the hypothesis that NCAM pathway mutations are 

indicators for tumour migration. There are now effective, inexpensive ways to test a cell 

line’s metastatic potential. For example, chick chorioallantonic membrane (CAM) assays 

in conjunction with multiple fluorescent imaging is a useful model to study angiogenesis, 

invasion, and metastasis (70-72). The assay involves measuring the level of intravasation 

and growth achieved by inoculated xenogenic tumour cells within the CAM of a chick 

embryo. Splicing mutations in NCAM pathway genes that were observed in this thesis 

(Section 4.3.7) could be introduced into breast cancer cell lines, and the cell line’s ability  
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A) 

B) 

 

Figure 6.2 Replicating stage and expression of NCAM pathway and significantly mutated 

genes. A) Replicating stage was determined using the MCF7 cell line data from the UCSC 

Genome Browser track “Replication Timing by Repli-seq from ENCODE/University of 

Washington” (73,74). In cases where a gene was replicated during two stages equally, the 

earliest stage was used. Gene sets used can be found in Appendix S4.3.3 (significantly mutated 
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genes), and Appendix S4.3.8 (NCAM pathway genes). B) RPKM gene expression values were 

obtained for each gene (average of 66 normal breast mammary tissue samples) from the GTEx 

portal (http://www.gtexportal.org/home/). The log(RPKM) was plotted against replication stage for 

each gene, as in described in A. 
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to migrate through the CAM could indicate the affect of that mutation on a tumour 

metastatic potential. This type of study could also potentially identify specific genes 

within NCAM pathways that contribute the greatest to lymph node invasiveness. Other 

cell migration and metastatic potential in vitro assays that could be applied to study 

NCAM pathway mutations include scratch-wound assays (75) and Boyden chamber 

assays (76). 

Our laboratory has recently proposed to carry out a prospective trial with basal-like and 

HER2-enriched breast cancer patients (Section 4.3.8 and Appendix S2.2.5) that would 

involve sequencing NCAM pathway genes at the point of diagnosis, surgery and/or 

relapse. Patients could be followed to determine whether those tumours with NCAM 

pathway mutations were more invasive than those that lacked mutations. A prospective 

trial would be required due to the fact that some patients with early stage tumours that 

contain NCAM mutations at initial diagnosis may have longer latency periods to 

metastasis. In addition, tumour dormancy (77,78) may significantly increase the time to 

distant metastasis, but the cell migration could still be due to NCAM pathway mutations 

in the primary tumour. Sequencing tumours that have already metastasized and have 

undergone further clonal selection will not necessarily harbor the same set of mutations 

as the primary tumour (21). This study would likely require several years, however would 

be non-invasive because it would not change the course of treatment for current breast 

cancer patients, meaning there would be limited downsides for patients enrolling in the 

study. 

6.3.2 Predicting tumour sensitivity to paclitaxel and gemcitabine 

Chemotherapy is widely used in breast cancer treatment, although selection of which 

specific agent to use is qualitative and variable due to patient-related factors. Developing 

robust genomic signatures to guide selection of chemotherapy agents would be 

particularly useful for triple negative (TNBC) and advanced breast cancer. In the case of 

TNBC, there are limited options for therapeutic treatment beyond conventional 

chemotherapy (79). TNBC (most commonly basal-like and Claudin-low subtypes) are 

usually aggressive and are more likely to become metastatic, however, women with 
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TNBC who have a complete pathological response to treatment have excellent outcomes 

(79). In advanced breast cancer, chemotherapy is used for palliative care and to improve 

quality of life given that the chance of survival and cure are low (80). Usually, a specific 

chemotherapy drug, or class of drugs, is only effective until the tumour develops 

resistance to the treatment. Therefore, it is advantageous to be able to identify those 

patients who would benefit from immediate treatment with cytotoxic therapies, and those 

for which surgery and radiation may be sufficient at the time of initial diagnosis. In 

addition, selecting the chemotherapy agent that is most likely to be effective early on may 

avoid periods of ineffective treatment and the corresponding unnecessary toxicity and 

side effects. 

This thesis describes a novel approach that used machine learning to generate models that 

can predict breast cancer tumour sensitivity to paclitaxel and gemcitabine. Gene selection 

was driven by the biological understanding of these drugs, rather than employing a 

genome-wide approach that risks identifying un-meaningful signatures correlating to 

tumour response by chance (81,82). A reduced 11-gene signature for paclitaxel was able 

to predict tumour response in a set of formalin-fixed paraffin-embedded breast cancer 

tissue samples with similar accuracy to the cell line data. A reduced 9-gene signature was 

able to predict tumour response to gemcitabine in samples where at least 4 of the 6 gene 

expression measurements were obtained, however, it performed poorly on those with 

limited data. This result highlights the difficulties in working with FFPE tissue samples, 

where there can be variable and low preservation of nucleic acids (83,84). Measuring the 

FFPE samples using qRT-PCR was unsuccessful for some genes due to low expression 

and/or the differences in amplifiable template between samples. 

The reduced 11-gene expression signature for paclitaxel was particularly effective in 

predicting patients with low residual cancer burden that will be have a complete 

pathological response to paclitaxel. It was not as effective at predicting tumours likely to 

show resistance, especially in advanced disease. This is not necessarily surprising, as 

primary and metastatic breast cancer tumours, both within and between lesions, are made 

up of multiple genetically diverse subpopulations of cancer cells (85). Recent data 

highlight that differences, in the case of both genomic aberrations and mutation 



 

 

214 

frequencies, have been observed between primary tumours and subsequent metastatic 

lesions (86,87). In multifocal breast cancer, it was found that the genetic differences of 

the lesions in each patient were significantly correlated with the physical differences 

between the tumours (88). Therefore, the gene signatures developed may only be relevant 

to a limited subset of the tumour populations related to primary breast cancer tumours, 

but not those of aggressive clonal isolates. In addition, it is likely that the SVM may only 

predict response to the specific lesion measured, and not to genetically differentiated 

lesions or metastases.  

Recently, a 20-gene signature (“TAXSig”) was developed that predicts chemoresistance 

to taxane-based therapies in breast cancer patients (89). This study included, but was not 

limited to, paclitaxel. There was no direct overlap in genes included in the TAXSig 

signature and the genes included in our SVM model, or randomly generated gene sets 

that had low misclassification rates from Figure 5.7. However, a pathway analysis using 

Reactome (90) revealed slight overlap in biological pathways between FGFR1 from 

TAXSig, and a subset of the paclitaxel SVM genes. The 35 genes from both signatures 

are enriched for the innate immune system (p=0.034), as 7 genes (FGF2, BCL2, BCL2L1, 

TLR6, NFKB2, FN1 from the SVM and FGFR1 from TAXSig) are part of the 1,031 

genes in this pathway. In addition, FGFR1 (from TAXSig) interacts with FGF2 and FN1 

in at least 53 and 31 additional specific signaling pathways, respectively. Although there 

is some overlap in biological pathways of the TAXSig and paclitaxel SVM gene sets, the 

majority of genes are unrelated. The taxane (TAXSig) resistance signature may be 

capturing a different mechanism (or mechanisms) of resistance, which may at least 

partially explain why chemosensitivity is not predicted with greater accuracy. The 

paclitaxel SVM was not predictive of docetaxel GI50s, further supporting the notion that 

they are unrelated processes. The paclitaxel SVM derived in this thesis was reliable in 

predicting tumours that will respond to the treatment, but nevertheless the phenotypes of 

patients or cell lines could not all be accurately predicted. One possible explanation might 

be that some of the features sensitizing a tumour to paclitaxel are independent from those 

leading to resistance. While we are not aware of any evidence that this occurs, such a 

hypothesis could explain why we are unable to predict the phenotypes of all cell lines and 

patients accurately. 
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Although previous studies have developed gene signatures to predict paclitaxel (or 

taxane) sensitivity, there has been limited work in using gene expression signatures to 

predict breast cancer sensitivity to gemcitabine. One study found that polymorphisms in 

SLC28A3, SLC29A1, and RRM1 can predict metastatic breast cancer sensitivity to 

combination therapy with paclitaxel and gemcitabine (91). RRM1 was included in the 

paclitaxel SVM, and SLC28A3 mutations and GI50s were strongly related in the set of 44 

cell lines assessed using a multiple factor analysis. A study assessing copy number 

changes in RRM1 and RRM2B found that copy number aberrations of these genes were 

present in breast cancer tumours, but were not related to clinical outcome of patients 

treated with gemcitabine (92). During feature selection (used to generate the SVM), we 

found that copy number of both RRM1 and RRM2B had no impact on the model’s ability 

to predict gemcitabine sensitivity (Figure 5.3). Given that there is a need for models to 

predict gemcitabine, further work on large patient sets could be completed to validate or 

improve upon the gemcitabine SVM derived in this thesis. Although the SVM did not 

perform as well on a small number of FFPE tumour samples as it did in the cell lines, 

obtaining reliable gene expression measurements from these tumour blocks was 

challenging. Attempting a similar analysis on fresh-frozen tumours may provide further 

insight into the utility of the gemcitabine SVM in patient care. 

Similar methods may be effective in generating models for other chemotherapy agents for 

which the biological mechanism of action is known. For example, pathways involved in 

the thiopurine class of drugs (including azathioprine, mercaptopurine, and 6-thioguanine) 

mechanisms of action and metabolism are well documented (93). As with gemcitabine, 

multiple enzymes (for example, HPRT1, IMPDH1, GMPs, and TPMT) are required to 

convert the drugs into their active metabolites before they are incorporated into RNA and 

DNA to exert cytotoxicity. Similarly, genes involved in the pathway (i.e. NQO1, NOS3, 

XDH, TOP2A, NFKB1) and transport (i.e. ABCC1, ABCB1, RALBP1, SLC22A16) of 

doxorubicin have also been previously described (94). These gene sets are strong 

candidates for use in the development of SVMs to predict chemosensitivity to the 

respective drugs (using their gene expression and/or copy number values), as the genes 

playing a role in drug disposition within the tumour itself. Therefore, it is reasonable to 

expect that changes in expression or copy number of the genes identified may predict the 
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effectiveness of thiopurine, doxorubicin, or other drugs with similar information. 

Conversely, tamoxifen metabolism largely takes place in the liver by multiple genes from 

the cytochrome P450 (CYP) and the UDP glucuronosyltransferases (UGT) families (95), 

and the exact downstream mechanism of action is not well documented. Measuring breast 

tumour expression or copy number of the CYP and UGT genes would not be informative, 

because this is not where the metabolism occurs for these drugs. We did not find the 

cytochrome P450 (CYP) genes to be informative for paclitaxel or gemcitabine, as they 

were not included in the final SVMs. Therefore, the approach described in this thesis may 

not be suitable for tamoxifen or other drugs with limited knowledge beyond the fact that 

their metabolism takes place in the liver. Eight genes were included in the final paclitaxel 

SVM that were not implicated in paclitaxel’s disposition, but were previously implicated 

in resistance (FGF2, TMEM243, BIRC5, CSAG2, FN1, NFKB2, TLR6, TWIST1). These 

genes improved the accuracy of the SVM, indicating ancillary data would be useful in 

generating chemosensitivity models for other drugs (Figure 6.3). However, there were no 

additional genes in the gemcitabine analysis other than those directly in the drug 

pathway, indicating that they are not necessary for developing a successful model. 

6.4 Thesis impact on personalized medicine in breast 

cancer  

There are still a number of challenges that researchers and healthcare providers face 

regarding data analysis, management, and interpretation. This thesis describes 

improvements upon the techniques that are increasingly used for clinical care. Although 

this thesis focuses on leveraging genomic technologies to advance our knowledge in 

breast cancer, all of the techniques and methods described could be applied to other 

disease types. 

There are many cases where point mutations in specific genes are relevant for cancer 

patient management in regard to predicting outcome or response to treatment. For 

example, Afatinib was found to be active in non-small-cell lung cancer in patients 

harboring uncommon EGFR mutations (96). The application of the Shannon Pipeline and 

Veridical for splicing mutation prediction and validation in the analysis of any tumour 
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type can expand current efforts to detect potentially damaging and relevant mutations. In 

breast cancer, this thesis found that a large subset of synonymous mutations identified by 

the TCGA to actually affect mRNA splicing. Synonymous mutations are usually not 

considered in downstream analyses (beyond variant detection), which would leave some 

potentially relevant or crucial mutations unreported due to a misidentification of their true 

effect on the protein product. 

Machine learning is proving to be a robust tool in interpreting features and making 

predictions using large biological datasets (97,98). The biologically-driven machine 

learning approach described in this thesis could be employed for additional cancer types 

that are treated with generic chemotherapy agents. While there is no single recipe that 

will assure successful prediction of chemotherapy response, there are a number of key 

considerations that need to be accounted for in applying this approach. Specifically: 

1) The quality of the tissues analyzed or data obtained should be verified before their 

application to this type of study. The availability of large genomic data sets with drug 

response information for a specific type of cancer are crucial for training and testing the 

predictive SVMs. Resources such as the Gene Expression Omnibus have greatly 

improved access to this type of data, which are usually made available from previous 

studies. However, this thesis and other studies (84) have described the level of 

degradation of nucleic acids in FFPE samples can be variable between tumours, and 

should be considered when conducting any study; 

2) The training data needs to be representative of the tumour type as a whole, and contain 

roughly equal numbers of sensitive and resistant samples. In this thesis, we demonstrated 

that cell lines are both a practical and minimally invasive tool; one that can be used to 

generate gene signatures. However, SVMs perform the best when trained on equal (or 

close to equal) numbers of data sets in each of the binary classes (i.e. resistant or 

sensitive). We found that using 44-49 cell lines was sufficient, but when reducing this set 

by half, it was not adequate for the creation of robust models (data not shown). In 

addition, the dynamic ranges of GI50 observations did not appear to greatly affect SVM 
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performance, as paclitaxel GI50s were between 6.5-8.5, and gemcitabine GI50s were 

between 2.5-9. 

3) Any SVM model generated (including the ones described in this thesis) would need to 

be validated on multiple independent patient data sets before they could be applied to 

patient treatment, where the outcome of the SVM may alter the course of therapy. For 

any biomarker, the FDA (or Health Canada) requires extensive analytical validation, 

clinical validation, and clinical qualification before it is approved to be used in the clinic 

(99). This level of validation was beyond the scope of this thesis, although we apply the 

paclitaxel derived SVMs to two different patient datasets. Ultimately, how these type of 

signatures perform in other patient groups would need to be determined before clinical 

adoption (as has been done for commercial diagnostic/prognostic assays (100,101). 

4) SVM models would likely need to be derived for each tumour type separately. As 

described in Section 5.3.6, the genes distinguishing tissue specific expression classes 

dominated those associated with chemotherapy resistance in previous studies employing 

machine learning (102), but was not true for regression models (103). For example, tissue 

specific expression patterns were dominant when using genome-wide data with the 

random forest method (unsupervised machine learning) used by Daemen et al (2013). A 

benefit to the biologically-driven approach is that SVMs have a greater likelihood of 

success when using a limited number of attributes (i.e. gene parameters). 

5) The genes selected should be relevant to chemotherapy response, and play a role in 

drug disposition within the tumour itself (as outlined in paragraph 5 of section 6.3.2). 

Pathways and genes that contribute to resistance in other less well-studied drugs may not 

be known, and the lack of these features in the SVM would lower prediction accuracy. 

There may be additional genes or biological functions involved in paclitaxel and/or 

gemcitabine mechanism of action that are not yet known, which may explain why the 

SVM is not able to predict drug sensitivity in 15-20% of cases. Alternatively, the these 

cases may habour point mutations in the present set of genes, or others, that are leading to 

chemosensitivity, which are not included in the current SVM models. 
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6) Unrelated prognostic indicators do not appear to be synergistic with our derived gene 

signatures. In section 5.3.5, this thesis demonstrated that gene signatures using randomly 

selected expression values (from 23,030 genes) that are able to predict cell line response 

to paclitaxel were not accurate in predicting response in a patient data set. Many of the 

genes included in these random signatures were pseudogenes and genes unrelated to the 

biology of a tumour or paclitaxel metabolism, which is an indication that the signatures 

derived from them could be statistical artifacts. 

The only random signature, among the 10,000 that were derived, that was able to predict 

patient sensitivity in an external patient data set contained WWP1, which has been 

previously identified as a prognostic indicator for breast cancer (104). Adding WWP1 to 

the paclitaxel SVM, however, greatly increased the misclassification rate of predicting 

cell line response (18% to 26%), and increased the number of patients predicted to be 

sensitive that were actually non-responsive. WWP1 has not been previously identified as 

having a role in paclitaxel drug disposition, indicating that adding generic patient-

outcome related genes that are not pertinent to biologically meaningful signatures of drug 

response, may not be an effective strategy to improve SVM accuracy. 

7) One strategy worth considering for improving SVM performance is to stratify tumours 

by subtype (and/or receptor status) in concert with chemotherapy response. We showed 

in Chapter 4 of this thesis that different subtypes have diverse splicing mutation profiles, 

specifically that NCAM-related pathway mutations appear to be preferentially enriched in 

basal-like and HER2-enriched lymph node positive tumours (section 4.3.8). In our 

analysis of SVMs derived using random sets of genes, we found that one signature 

containing WWP1 could be related to patient outcome. It has been suggested that WWP1 

plays a role in apoptosis in ER positive breast cancer (105), so although it did not 

improve the paclitaxel SVM for all tumour types, WWP1 incorporation into an ER 

positive-specific SVM may possibly increase the classification accuracy for this subset of 

tumours. However, there were insufficient numbers of ER positive cell lines available for 

SVM training, and too few patients available with known ER phenotype to test its 

accuracy. Incorporating additional subtype-specific genes to the current SVM models 

could be one strategy that might increase the accuracies of these gene signatures. 
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8) In order to successfully incorporate any genomic signature for clinical application 

(whether for breast cancer or other tumour types), the expression and copy number 

studies would need to be performed within the clinically relevant time window either 

preceding or early on in chemotherapy treatment. For solid tumours, the assay would 

need to be completed in the timeframe between surgical removal, or biopsy of the tumour 

tissue, and the onset of treatment. Although this time frame will vary on a case-by-case 

basis, it would be advantageous and more feasible to accurately measure a small set (10-

15) of expression and copy number values compared to performing larger scale (complete 

genome or exome) determination and analyses.  
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Appendix S2:  Supplementary Information for Chapter 2  

Appendix S2.1 Supplementary Methods: Ab Initio single copy (sc) 
sequence algorithm and implementation 

The ab initio method eliminates the requirement to exclude sequences from a catalog of 

consensus-like repetitive elements.  It exploits a state space search strategy in which a 

depth-limited search is run repeatedly, increasing the depth limit with each iteration, until 

it reaches the depth of the shallowest level, in order to determine the copy number of seed 

subsequences of a larger input sequence (e.g. a complete chromosome). In each iteration, 

progressively shorter sequences containing elements present in multiple copies in the 

genome are searched in a sequenced genome, at low stringency using BLAT (BLAST-

like alignment tool), in parallel (using threaded jobs) on a cluster computer. To define the 

boundaries of sc segments, the above steps are recursively run on branched subsequences 

of repeat-containing intervals that occur adjacent to sc segments discovered in the 

previous step. In addition to finding known repeat sequence families, ab initio eliminates 

repeat elements, segmental duplicons, and conserved paralogs that are not filtered out by 

catalogue-based approaches. The algorithm is tuned to exclude highly and moderately 

conserved multicopy and/or repetitive sequences, but not highly divergent repetitive 

elements. The algorithm can be applied to any genome. 

A secondary screen using multiprocessor BLAST analysis  (54) filtered out any residual 

repetitive sequences. Parameters were selected to maximize speed without compromising 

sensitivity. The default parameters were modified to return 2 sequence alignments, using 

a word size set to 28, the number of best hits kept limited to 2, descriptions of 5 

sequences retained, and an expected hit value threshold of 0.1. This threshold produced 

significant alignments ≤50 base pairs in length to genomic targets, when present. The 

parameters provided a reasonable level of genomic resolution and adequate sensitivity to 

detect nearly all conserved or moderately conserved repeat elements, while exhibiting 

performance suitable for genome-scale application. The average run time for the 

recursive BLAT runs, followed by filtering apparent sc results with mpiBLAST, using a 

128 CPU Xeon-based compute cluster was 19 hours 20 minutes for a chromosome length 

of~130 Mb. 
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We then compared the ab initio genomic regions output with a deduced set of annotated, 

non-repetitive intervals to determine the sensitivity and specificity of the algorithm. The 

comparison set comprised the genomic complement of the combined set including 

segmental duplication, self-chained paralogous intervals, and repeat-masked sequences.   
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Appendix S2.2  Coordinates and PCR primers of validated scFISH 
probes 

Gene 
Target 

Genomic 
Coordinates         

Probe 
Length 
(bp) 

Primers                                                                                       
Hybridization 
Efficiency* 

ERBB2 
chr17: 37861155-
37863542 

2388 

L GCATTGGGAGAATTAGTGTGTATTTATGTTG 

96/68 

R GTTAGATGTTAGAAAGGACTTCCTGGTTGAG 

CDKN2A 
(Probe 1) 

chr9: 21991990-
21995076 

3087 

L GTAAATGCACCAAGGTAGAAGTAACAAATCA 

100/79.8 

R GTTTAGTTTAATTTCGCTTGTTTTCCAAATCT 

CDKN2A 
(Probe 2) 

chr9: 21981743-
21985184 

3442 

L TAGTTCTACCACCTACTTTGTTACCCTGAAAA 

97.7/75.9 

R TATATTTCATCAAGAAGTTGATTCCCTTGAGT 

CDKN2A 
(Probe 3) 

chr9: 21984688-
21987911 

3224 

L TTTCACTGATAGGTTTAACACTGGTTTAGGAT 

91.4/75.4 

R AATCTGCATTTTAAATAAACACTTGAAGGAGA 

TP53 
chr17: 7589527-
7592796 

3270 
L CAAAGCTAGATAACAGGTAGATTGTTTTTCC 

95.7/70.3 

R TAGAAGACACAAACTGCTAGATAAAATGTAAGC 

CCND1     
(Probe 1) 

chr11: 69458658-
69461950 

3293 

L ACGATTTCATTGAACACTTCCTCTCCAAAAT 

100/94.1 

R CTGATGTAGCCCAACAATTCCAGTGACTT 

CCND1      
(Probe 2) 

chr11: 69465465-
69469037 

3573 

L ACATGGAGAGGTTAAGTCTGAAAAGGCTGA 

100/77.9 

R CTCTCGATACACACAACATCCAGGACTTG 

NOTCH1 
chr9: 139435414-
139438778 

3365 

L CCCAGCTCTCCTCAAAACAAAGAGAAAAA 

100/73.9 

R TGACTACAGAACTCTGGGCAGAATGTTGA 

scFISH probe primer design: Gene targets, genomic location, probe length and 

primers used for each validated probe. *Hybridization efficiencies are indicated as the 

percent of cells with both homologues clearly hybridized, preceded by the percent of 

cells that had at least one homologue hybridized to the correct chromosome band. 

Genomic coordinates are based on NCBI Build 37/hg19. L = left, R = right. 
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Appendix S3: Supplementary Information for Chapter 3 

Appendix S3.1 Veridical variant input format 

This input format most easily accepts formatted output from the Shannon Pipeline. In 

particular, all variants of interest should be concatenated into a single file. Once a, tab-

delimited, concatenated file has been generated, it can easily be formatted correctly by 

using FilterShannonPipelineResults.pl. All file headers must precisely match their 

outlined schema. One can also manually ensure the following: the header line has no 

quotation marks or special characters, empty columns have been replaced by a period (.) 

and each variant line contains only a single gene (comma-delimited gene lists must be 

split such that there is only one gene per line). If one wishes Veridical to consider 

variants pertaining to more than one experimental sample, a comma-delimited list of 

experimental samples, in the form of BAM file names, must be provided as the key 

column. The key column must always contain at least one file name that is present as the 

base name of one of the files listed in the BAM file list that must be passed to Veridical. 

Alternatively, one can prepare the input format as follows. The header must contain at 

least the following, case-insensitive, values to which the file’s columns must adhere to: 

chromosome, splice&coordinate, strand, type, gene, location, location_type, 

heterozygosity, variant, input, key. The column headers need only contain the given text 

(i.e. a column labeled gene_name would be sufficient to satisfy the above requirement 

for a “gene” column). Column headers with ampersands (&) denote that all words joined 

by this symbol must be present for that column (i.e. Splice_site_coordinate satisfies the 

“splice&coordinate” requirement). The order of the columns is immaterial. The input 

column can contain any identifier for the variant and need not be unique. The location 

column specifies if the site is natural or cryptic. For Veridical, all that matters is that 

cryptic variants contain the word “cryptic” as part of their value in this column and that 

non-cryptic variants do not. The location_type column is only used for cryptic variants 

and specifies if the variant is intronic or exonic. It is not currently used by the program. 

This column must be present but can always be set to null (i.e). 

 

A few rows from a sample variant file is provided below (text wrapped for readability): 
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Chromosome     Splice_site_coordinate      Strand Ri-initial Ri-

final ∆Ri Type  Gene_Name  Location Location_Type Loc._Rel._to_exon 

Dist._from_nearest_nat._site Loc._of_nearest_nat._site        

Ri_of_nearest_nat Cryptic_Ri_rel._nat. rsID  Average_heterozygosity 

Variant_coordinate    Input_variant      Input_ID RNASeqDirectory_ID 

RNA_Seq_BAM_ID_KEY 

chr10 89711874 + 12.09 -2.62 -14.71 ACCEPTOR PTEN NATURALSITE . . . 

. . . . . 89711873 A/G ID1  dir  file 

chr10 89712017 + 5.18   -1.85  -7.03  DONOR  PTEN NATURALSITE . . . 

. . . . . 89712018 T/C ID1  dir file 

chrX   9621719 + -4.78  2.25  7.03   DONOR  TBL1X CRYPTICSITE 

EXONIC . 11  9621730  2.24  GREATER . . 9621720 C/T ID1 dir file 

 

Veridical exome annotation input format 

This input format can be generated via ConvertToExomeAnnotation.pl. The file must 

be tab-delimited, excepting its header, which must be comma-delimited. It must have the 

following, case-insensitive, header columns, to which its data must adhere: transcript, 

chromosome, exon chr start, exon chr end, exon rank, gene. The column headers need 

only contain the given text (i.e. a column labeled gene_name would be sufficient to 

satisfy the above requirement for a “gene” column). The order of the columns is 

immaterial. 

A few rows from a sample exome annotation file is provided below (text wrapped for 

readability): 

 
Transcript ID,ID,ID,Chromosome Name,Strand, Exon Chr Start,Exon Chr 

End, Exon Rank in Transcript,Transcript Start, Transcript End, 

Associated Gene Name 

NM_213590 NM_213590   NM_213590 chr13  +  50571142 50571899 1 

50571142   50592603 TRIM13 

NM_213590 NM_213590   NM_213590 chr13  +  50586070 50592603 2 

50571142   50592603 TRIM13 

NM_198318 NM_198318   NM_198318 chr19  +  50180408 50180573 1 

50180408   50191707 PRMT1 

Appendix S3.2 Veridical output 

If a variant contains any validating reads, Veridical outputs the variant in question, along 

with some summary information and a table specifying the numbers of each validating 

read type detected for both the experimental and control samples. Within the output of 

Veridical, the phrase: “Validated (x) variant n times” means that the variant was validated 
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mainly for splicing consequence x and has n validating reads. The variant will only 

appear within the *.filtered output file if the p-value for either junction-spanning or read-

abundance-based reads for splicing consequence x was statistically significant (defined, 

by default, as: p < 0.05). After the variant being validated is provided, along with its 

primary predicted splicing consequence, the output is divided into two sections with 

identical contents: one for the experimental sample(s) and another for control samples. 

The summary enumerates the number of reads of each splicing consequence, partitioned 

by evidence type (junction-spanning or read-abundance-based), and by sample type 

(tumour or normal for control samples, and only tumour for experimental samples). A 

table describing the number of each read type for every file follows this summary. An 

example of this output, for the variant within RAD54L, as shown by Figure 7 and the last 

portion of Table 2, is provided. While Veridical outputs this as plain text, with the table 

in a tab-delimited format, we provide this output as an Excel document with descriptions 

of the meaning of each table heading, to clarify the presentation of the data. All input and 

output files for the five variants presented are provided. VeridicalOutExample.xls 

contains the output for the variant within RAD54L, along with descriptions of the terms 

used and the output format. all.vin contains the input variant file. 

allTumoursBAMFileList.txt and allNormalsBAMFileList.txt are the BAM file lists 

for tumour and normal samples, respectively. all.vout contains the Veridical output. The 

exome file can be retrieved using ConvertToExomeAnnotation.pl, available with the 

other programs at: www.veridical.org. The BAM file lists contain the TCGA file UUID, 

followed by a slash, followed by the file name. The RNA-Seq data itself can be 

downloaded from TCGA at: https://tcga-data.nci.nih.gov/tcga/. 

http://www.veridical.org/
https://tcga-data.nci.nih.gov/tcga/
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Appendix S3.3 Supplementary Figure 1 
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Histogram and embedded Q-Q plots portraying the difference between untransformed 

and Yeo-Johnson (YJ) transformed data. The plots depict intron inclusion for the 

inactivating mutation (chr12:83359523G>A) within TMTC2, as shown in Figures 3.6(B) 

and 3.6(C). The arrowheads denote the number of reads in the variant-containing file, 

which is, in all cases, more than observed in the control samples (p < 0.01). The figure 

legend for all panels is provided in (G), which shows that blue and red plot elements 

correspond to untransformed data, while yellow and purple correspond to YJ transformed 

elements. Dotted lines in the Q-Q plots are lines passing through the first and third 

quantiles for a normal reference distribution. (A), (C), and (E) show junction-spanning 

based reads, while (B), (D), and (F) show read-abundance-based reads. (A/B) depict 

tumour sample distributions, (B/C) depict normal sample distributions, and (E/F) depict 

combined tumour and normal sample distributions.  
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Appendix S4: Supplementary Information for Chapter 4  

Appendix S4.1 SomaticSniper Supplementary Materials 

Appendix S4.1.1 Supplementary Methods – Variant Calling Methods 

Two independent variant callers, Strelka (1) and SomaticSniper (2), were evaluated. The 

main analysis performed using results from Strelka, which has greater sensitivity and 

ability to detect subclonal mutations, by minimizing reporting of spurious variants and 

germline polymorphisms (3). Additionally, the SomaticSniper methods and results are 

reported below.  

Before running SomaticSniper, all DNA sequencing BAM files were realigned using the 

Genome Analysis Toolkit (GATK) Indel Realigner program (4). In addition to default 

parameters, the knownAlleles parameter was used with the well-documented 

insertions/deletions (indels) files: Mills_and_1000G_gold_standard. 

indels.b37.sites.vcf  (5) and 1000G_phase1.indels.b37.vcf (6), available 

through the bioinformatic resource Galaxy (7, 8). SomaticSniper data was then post-

processed to only include variants with both mapping and somatic qualities of at least 40 

(equivalent to running it with  ‐Q 40  ‐q 40). 

Appendix S4.1.2 Supplementary Results – SomaticSniper Variant 
Calling Results 

SomaticSniper variant predictions are summarized in Appendix S3.1.3. Notably, there 

were 1,208 variants from SomaticSniper that are predicted to affect both protein coding 

and splicing 594 genes. In the SomaticSniper data, mutations classified as both protein 

coding and splicing variants were found in 383 tumours, with 63 of these variants in 

PASD1, 61 in PRSS3, 52 in NF1. The variants in these genes, as well as others that were 

highly mutated, are the exact same genomic location and nucleotide change, suggesting 

that SomaticSniper reported higher numbers of SNPs (3) that were not annotated with 

dbSNP135 in >1% of the population, which was used to filter out common SNPs. There 

were 248 variants in 186 tumours from the SomaticSniper set that were classified as 
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silent amino acid changes from ANNOVAR, but were revealed to affect splicing from the 

Shannon Pipeline predictions. 

There was relatively low concordance between the two variant callers, which reported 

variant lists with less than 50% similarity. There were 21,112 protein coding and 1,811 

splicing variants common to both Strelka and SomaticSniper. The predicted variants were 

compared to the previously reported TCGA Level 2 somatic mutations (Appendix 

S3.1.4). Strelka showed the highest concordance with TCGA mutations, reporting 82.1% 

of protein coding mutations, and 86.5% of the splicing variants. Conversely, 

SomaticSniper predicted 73.4% protein coding and 75.3% splicing variants reported by 

TCGA. 

Both of the somatic variant callers we employed utilize Baysian methods to elucidate 

somatic event probabilities. Strelka and SomaticSniper were found to be the two best 

variant callers in a comparison by Roberts et al 2013. Additionally, these two are a 

valuable combination, in that SomaticSniper is useful to generate “a variety of candidate 

SNV sites without any particular drawbacks”, although with a fair amount of false 

positives, while Strelka is least prone to returning germ-line polymorphisms. The relative 

stringency of Strelka was our main reason for performing most of our analyses with it, 

along with the fact that many of its candidates (at probability 0.2) were also returned by 

other callers. It is worth mentioning that different callers have been found to have poor 

correlations at the same sites; in particular, Strelka and SomaticSniper were found to have 

a 0.21 Pearson correlation coefficient in the abovementioned study. Our use of Veridical 

to validate splicing variants with functional evidence of the mutation significantly 

resolves the inconsistency between somatic variant callers (for this type of mutation). 
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Appendix S4.1.3 Variant Summaries by Mutation Type 

 Somatic Sniper 

ANNOVAR protein coding variants  

Synonymous 23,458 

Nonsynonymous 52,634 

Stop gain or loss 2,127 

Total protein coding variants 78,219 

Shannon Pipeline splicing variants  

Cryptic 6,441 

Inactivating  2,685 

Leaky 10,648 

Total splicing variants 19,774 

Synonymous 248 

Nonsynonymous 905 

Stop gain or loss 55 

Total 1,208 

% Synonymous also splicing 1.0572% 

% Nonsynonymous also splicing 1.7194% 

% Stop gain or loss also splicing 2.5858% 

 

Appendix S4.1.4 SomaticSniper Variants Compared to TCGA 
Findings 

 
Total TCGA 

TCGA predicted by 

SomaticSniper 

TCGA Protein Coding Variants   

SNVs Validated 5,557 4,365 (77.3%) 

SNVs Not Validated 18,197 13,380 (72.2%) 

Indels Validated 125 N/A 

Indels Not Validated 1,758 N/A 

Total 25,637 17,745 (73.4%) 

TCGA Splicing Variants   

SNVs Validated 87 70 (80.5%) 

SNVs Not Validated 342 253 (74.0%) 

Total 429 323 (75.3%) 

 



 

 

247 

Appendix S4.2 Filtering criteria for splicing mutations 

Supplementary Figure S6. Flowchart 

indicating procedure for filtering splicing 

mutation variants. Shannon pipeline splicing 

variants output was filtered using the steps 

shown in this flowchart to identify those 

variants that are likely to cause aberrant 

splicing. Upon identifying variants with 

Strelka (or Somatic Sniper), the VCF files 

were submitted to the Shannon splicing 

mutation pipeline, then categorized as either 

mutations affecting natural splice sites (3’ 

acceptor, or 5’ donor) or cryptic splice site 

strengths. In a small number of cases, both 

natural and cryptic splice sites were 

simultaneously altered. Natural sites that 

were predicted to be abolished were further 

considered. Predicted leaky splicing 

mutations were excluded from the present 

analysis, since the validation methods for 

such mutations has not yet been assessed. 

Aside from standard information theory- 

based mutation criteria, cryptic splicing 

mutation candidates were also filtered for 

proximity to the nearest neighboring natural 

splice site and population frequency. The 

filtered variant subset (n = 5,206) was used 

for all subsequent analyses. 
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Appendix S4.3 Supplementary Figure 1 

RNA-Seq Coverage Heat Map by Subtype. Heatmap depicting coverage per exonic base 

of TCGA RNA-Seq tumour and normal data. Expression based on RNA-Seq datasets is 

shown along the x-axis, with tumours first, ordered by subtype, followed by matched 

normal breast tissues. These categories are demarcated within the heatmap by black 

vertical lines, which correspond to the sample types: (A) basal-like; (B) HER2-enriched; 

(C) luminal A; (D) luminal B; (E) tumour, subtype not available; (F) normal-like tumor; 

and (G) normal control samples. The y-axis consists of all RefSeq genes (with major and 

minor tick marks every 5,000 and 1,000 genes, respectively), clustered to form a 

dendrogram, which is visible on the left side of the graph. Genes with low nominal 

expression levels were below minimum threshold read counts for analysis by Veridical. 
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Appendix S4.4 Variants compared to those previously published by 
TCGA 

 
Total TCGA No. TCGA mutations 

predicted  

TCGA Protein Coding Variants   

SNVs Validated 5557 5085 (91.5%) 

SNVs Not Validated 18197 15742 (86.5%) 

Indels Validated 125 44 (35.2%) 

Indels Not Validated 1758 170 (9.7%) 

Total 25637 21041 (82.1%) 

TCGA Splicing Variants 
  

SNVs Validated 87 80 (92.0%)* 

SNVs Not Validated 342 291 (85.1%)^ 

Total 429 371 (86.5%) 

*contains two variants that were filtered out based on our filtering criteria 

^contains eight variants filtered out 
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Appendix S4.5  Overrepresentation analysis of TCGA mutations 
missed by Strelka 

A pathway analysis using G:Profiler (Reimand et al. 2011) on the 4,654 TCGA variants, 

missed by Strelka, revealed 116 overrepresented pathways including development (20), 

morphogenesis (11), cellular processes (16), regulation (10), ion binding (6) and adhesion 

(5). Details below. 

PATHWAY NAME 
Pathway 

Group 

Pathway 

Depth in 

Group 

P-VALUE 

# Genes 

mutated 

in 

pathway 

Total # 

Genes in 

Pathway 

cell adhesion 2 3 4.52E-15 200 1059 

biological adhesion 2 2 5.61E-15 200 1061 

multicellular organismal 

development 
2 4 1.35E-14 626 4561 

homophilic cell adhesion 2 5 4.26E-14 52 140 

system development 2 5 5.93E-14 552 3942 

single-organism cellular process 2 3 3.90E-13 1325 11241 

developmental process 2 2 7.50E-13 685 5169 

single-multicellular organism 

process 
2 3 2.51E-12 813 6363 

anatomical structure development 2 3 3.59E-12 614 4568 

single-organism process 2 2 7.29E-12 1438 12461 

multicellular organismal process 2 2 2.59E-11 833 6605 

cellular process 2 2 6.19E-11 1668 14918 

nervous system development 2 6 4.51E-10 296 1939 

single-organism developmental 

process 
2 3 6.29E-10 541 4033 

cell-cell adhesion 2 4 8.99E-10 99 459 

calcium ion binding 7 5 1.10E-09 139 737 

organ development 2 6 7.55E-09 396 2824 

anatomical structure morphogenesis 2 3 5.76E-08 337 2362 

cellular component movement 2 4 1.07E-07 240 1570 

neurogenesis 2 7 1.41E-07 204 1286 

cell differentiation 2 4 2.72E-07 428 3176 

cellular developmental process 2 3 3.58E-07 450 3375 

cell development 2 4 3.66E-07 254 1704 

generation of neurons 2 8 7.55E-07 192 1215 

circulatory system development 2 6 2.25E-06 144 856 

cardiovascular system development 2 6 2.25E-06 144 856 

ion binding 7 2 5.39E-06 813 6765 

cation binding 7 3 9.74E-06 565 4489 

BioGRID interaction data 6 1 1.07E-05 933 7657 

neuron differentiation 2 9 1.15E-05 176 1128 

metal ion binding 7 4 1.74E-05 556 4424 

cell communication 2 4 2.62E-05 693 5695 

cell projection organization 2 2 2.68E-05 167 1069 

organ morphogenesis 2 7 2.72E-05 145 896 

cellular component morphogenesis 2 2 4.53E-05 175 1141 
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heart development 2 7 4.84E-05 83 438 

signaling 2 2 5.57E-05 677 5571 

single organism signaling 2 3 5.57E-05 677 5571 

neuron development 2 10 6.08E-05 146 915 

Factor: LRF; motif: 

VNNRMCCCC; match class: 3 
3 2 6.81E-05 1542 12643 

regulation of cellular process 2 3 1.02E-04 1040 9037 

cell morphogenesis 2 3 1.12E-04 165 1075 

biological regulation 2 2 1.15E-04 1157 10182 

locomotion 2 2 1.87E-04 205 1410 

calcium-dependent cell-cell 

adhesion 
2 5 1.92E-04 15 31 

biological_process 2 1 2.11E-04 1812 16892 

binding 7 1 2.97E-04 1488 13523 

cell-cell junction 25 1 5.93E-04 62 313 

regulation of biological process 2 2 6.62E-04 1088 9577 

cell morphogenesis involved in 

differentiation 
2 4 7.48E-04 124 778 

cytoskeleton 15 1 7.98E-04 273 2015 

basement membrane 11 2 8.52E-04 27 93 

Small cell lung cancer 14 1 9.47E-04 25 98 

neuron projection development 2 3 9.98E-04 125 790 

localization 2 2 1.24E-03 596 4926 

tissue development 2 4 1.62E-03 226 1629 

chordate embryonic development 4 2 1.62E-03 101 610 

Factor: LRF; motif: 

VNNRMCCCC; match class: 2 
3 3 1.63E-03 1374 11197 

cytoskeletal part 15 1 2.10E-03 205 1457 

system process 2 4 2.34E-03 258 1911 

cytoskeleton organization 16 1 2.38E-03 141 931 

embryo development ending in 

birth or egg hatching 
4 1 2.77E-03 101 617 

anatomical structure formation 

involved in morphogenesis 
2 3 2.98E-03 144 959 

MI:hsa-miR-940 22 1 3.63E-03 105 625 

Factor: Sp1; motif: 

CCCCGCCCCN; match class: 3 
5 2 4.64E-03 779 6025 

cell morphogenesis involved in 

neuron differentiation 
2 5 6.22E-03 101 628 

cell projection morphogenesis 2 3 6.26E-03 119 770 

cell projection 20 1 6.88E-03 194 1389 

muscle structure development 2 4 7.08E-03 89 537 

Factor: LRF; motif: 

VNNRMCCCC; match class: 4 
3 1 7.75E-03 1600 13333 

cellular response to growth factor 

stimulus 
8 1 7.80E-03 102 639 

plasma membrane part 9 1 8.10E-03 297 2282 

negative regulation of biological 

process 
2 3 9.91E-03 453 3686 

axonogenesis 2 5 1.11E-02 92 566 

Muscle contraction 13 1 1.11E-02 12 33 

Striated Muscle Contraction 13 2 1.11E-02 12 33 

Calcium Binds Troponin-C 13 3 1.11E-02 12 33 

Myosin Binds ATP 13 3 1.11E-02 12 33 
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ATP Hydrolysis By Myosin 13 3 1.11E-02 12 33 

Release Of ADP From Myosin 13 3 1.11E-02 12 33 

response to growth factor stimulus 8 1 1.20E-02 103 653 

neuron projection guidance 2 1 1.30E-02 68 386 

axon guidance 2 2 1.30E-02 68 386 

MI:hsa-miR-939 18 1 1.36E-02 104 637 

Factor: Sp1; motif: 

CCCCGCCCCN; match class: 4 
5 1 1.41E-02 881 6940 

regulation of metabolic process 2 3 1.51E-02 660 5616 

proteinaceous extracellular matrix 11 1 1.51E-02 71 410 

Factor: LRF; motif: 

VNNRMCCCC; match class: 1 
3 4 1.56E-02 925 7323 

localization of cell 2 3 1.68E-02 150 1039 

cell motility 2 4 1.68E-02 150 1039 

cell part morphogenesis 2 3 1.70E-02 119 786 

MI:hsa-miR-615-5p 10 1 1.72E-02 125 799 

Pathways in cancer 21 1 1.80E-02 56 343 

Factor: VDR; motif: 

GGGKNARNRRGGWSA; match 

class: 3 

12 2 1.86E-02 1140 9204 

neuron projection morphogenesis 2 4 2.15E-02 100 638 

signal transduction 2 2 2.36E-02 596 5036 

regulation of nucleobase-containing 

compound metabolic process 
2 1 2.42E-02 473 3900 

Factor: AP-2; motif: 

SNNNCCNCAGGCN; match class: 

3 

26 1 2.44E-02 753 5869 

cell surface receptor signaling 

pathway 
2 3 2.64E-02 361 2886 

MI:hsa-miR-423-5p 23 1 2.68E-02 114 723 

muscle organ development 2 7 2.76E-02 69 402 

negative regulation of cytoskeleton 

organization 
16 2 2.80E-02 23 86 

in utero embryonic development 4 3 2.87E-02 66 380 

positive regulation of cellular 

process 
2 1 3.32E-02 451 3710 

regulation of nitrogen compound 

metabolic process 
2 4 3.36E-02 484 4013 

cytoskeletal protein binding 24 1 3.41E-02 111 733 

Factor: VDR; motif: 

GGGKNARNRRGGWSA; match 

class: 4 

12 1 3.45E-02 1415 11684 

Chronic myeloid leukemia 17 1 3.78E-02 18 75 

transmission of nerve impulse 2 1 3.87E-02 120 808 

blood vessel morphogenesis 2 4 3.89E-02 77 467 

cellular component organization 2 1 4.33E-02 585 4958 

cellular response to stimulus 2 1 4.44E-02 705 6085 

negative regulation of cellular 

process 
2 4 4.76E-02 411 3358 

cellular response to epidermal 

growth factor stimulus 
8 1 4.77E-02 8 14 

MI:hsa-miR-675 1 1 4.95E-02 101 635 

Phosphatidylinositol signaling 

system 
19 1 4.99E-02 19 83 



 

 

253 

Appendix S4.6 MuSiC Results Compared to Significantly Mutated Genes 

Gene Name 
# 

Studies  

Total 

Mutations 

#Stop 

Gain/ 

Loss 

# 

Missense 

# 

Silent 

# 

Splicing 

# 

Validated 

Splicing 

% Splicing 

Mutations 

Validated 

MuSiC 

P-Value 

LRT 

MuSiC 

P-Value 

CT 

MuSiC 

FDR - 

LRT  

MuSiC 

FDR - 

CT 

PIK3CA* 5 181 0 3 177 1 0 0% 0.0226 0.0493 0.4088 1 

TP53* 5 153 19 2 107 25 18 56% 0 0 0 0 

GATA3* 4 10 0 2 7 1 1 100% 0.0075 0.0232 0.1926 0.7132 

RB1* 4 19 5 1 12 1 0 0% 0.0610 0.0471 0.7410 1 

AKT1* 3 6 0 1 5 0 0 NA 1 1 1 1 

CBFB* 3 12 2 1 7 2 2 100% 0.0011 0.0001 0.0414 0.0122 

CDH1* 3 20 5 1 5 9 4 22% 0 0 0 0 

MAP3K1* 3 40 13 5 17 5 4 80% 0 0 0 0 

KMT2C 

(MLL3)* 3 
72 7 16 30 19 7 37% 0 0 0 0 

PTEN* 3 11 4 0 5 2 2 100% 0.0116 0.0023 0.2677 0.1240 

RUNX1* 3 8 1 1 6 0 0 NA 1 1 1 1 

SF3B1* 3 19 1 6 11 1 0 0% 0 0.0006 0.0009 0.0418 

CDKN1B* 2 1 0 0 1 0 0 NA 1 1 1 1 

NF1* 2 27 3 3 17 4 2 50% 1 1 1 1 

STMN2 2 1 0 0 1 0 0 NA 1 1 1 1 

TBX3* 2 5 0 0 5 0 0 NA 1 1 1 1 

AFF2* 1 20 3 5 11 1 0 0% 0.0006 0.0003 0.0257 0.0263 

AGTR2 1 0 0 0 0 0 0 NA 1 1 1 1 

APC 1 7 0 2 5 0 0 NA 1 1 1 1 

ARID1A 1 32 6 5 19 2 1 50% 0 0 0 0.0005 

ARID2 1 11 2 3 5 1 0 0% 0.4970 0.2598 1 1 

ASXL1 1 8 1 3 4 0 0 NA 0.0025 0.0089 0.0806 0.3561 

ATR 1 11 0 3 6 2 0 0% 1 1 1 1 

BAP1 1 6 1 3 2 0 0 NA 0.1206 0.1182 1 1 
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BRAF 1 7 1 0 6 0 0 NA 1 1 1 1 

BRCA1 1 15 2 2 7 4 2 50% 0.1109 0.0531 0.9945 1 

BRCA2 1 15 2 3 9 1 1 100% 0.2360 0.2227 1 1 

CCND3* 1 2 0 0 2 0 0 NA 1 1 1 1 

COL6A3 1 15 1 3 11 0 0 NA 1 1 1 1 

ERBB2 1 16 0 2 13 1 0 0% 0.1453 0.3469 1 1 

ERBB3 1 16 1 2 11 2 0 0% 0.0355 0.3206 0.5458 1 

GH1 1 1 0 1 0 0 0 NA 0.0893 0.4113 0.8910 1 

KRAS 1 3 0 0 3 0 0 NA 1 1 1 1 

LDLRAP1 1 0 0 0 0 0 0 NA 1 1 1 1 

MAP2K4 1 16 2 0 10 4 4 100% 0.0536 0.0120 0.6904 0.4405 

MLL2 1 24 1 10 13 0 0 NA 0.01427 0.02027 0.3081 0.6498 

MYH9 1 15 0 2 13 0 0 NA 1 1 1 1 

MYO3A 1 11 0 6 3 2 0 0% 0.0050 0.0009 0.1390 0.0571 

NRAS 1 0 0 0 0 0 0 NA 1 1 1 1 

PIK3R1* 1 7 0 1 5 1 0 0% 1 1 1 1 

PTPN22* 1 5 0 0 5 0 0 NA 1 1 1 1 

PTPRD* 1 25 3 4 18 0 0 NA 0.0335 0.0410 0.5258 1 

SETD2 1 16 1 3 9 3 1 0% 0.0408 0.1420 0.5975 1 

SMAD4 1 1 0 0 1 0 0 NA 1 1 1 1 

STK11 1 1 0 0 1 0 0 NA 1 1 1 1 

SYNE1 1 65 4 14 41 6 0 0% 1 1 1 1 

SYNE2 1 57 0 10 44 3 0 0% 1 1 1 1 

UBR5 1 29 0 10 18 1 1 100% 0.1179 0.0142 1 0.4993 

USH2A 1 65 0 12 52 1 0 0% 1 1 1 1 

* Identified by TCGA to be significantly mutated
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Appendix S4.7 Validated Cryptic Splicing Mutations 

Appendix S4.7.1 Cryptic Splicing Mutation Details 

Information theory based analysis and corresponding evidence demonstrating abnormal 

mRNA splicing in predicted mRNA splicing mutations. (A) Table indicates the TCGA 

sample identifier, variant, information analysis and statistical support for the mutation. 

(B) Screenshots from the Integrative Genomics Viewer (IGV) displaying junction-

spanning reads that demonstrate cryptic splicing for mutations predicted by the Shannon 

Pipeline in the genes CBFB, GATA3, PALB2, and ABL1. The normal exonic structure is 

indicated by blue, with the thick bars representing exons, and the thin lines introns. RNA-

Seq reads are shown in grey with the vertical dotted black lines demarcate the location of 

the cryptic splice site. 

(A) 

Patient Gene 
Splice Site 
Coordinate 

Variant 
Coordinate 

Ref/ 
Var 

Ri-
initial 

Ri-
final 

Δ 
Ri 

Cryptic 
Site 
Use P-
Value 

Exon 
Skipping 
P-Value 

TCGA-
A8-
A08S CBFB 

chr16: 
67070591 

chr16: 
67070577 G/T 5.6 7.5 1.9 < 0.005 0.12 

TCGA-
B6-
A0I5 GATA3 

chr10: 
8115709 

chr10: 
8115702 A/C 4.2 5.9 1.7 < 0.005 NA 

TCGA-
B6-
A0RT PALB2 

chr16: 
23637694 

chr16: 
23637710 T/A 5.3 7.0 1.7 < 0.005 0.05 

TCGA-
B6-
A0RV ABL1 

chr9: 
133750256 

chr9: 
133750254 G/C 0.8 9.6 8.8 < 0.005 NA 
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(B) CBFB 

 

(C) GATA3 
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(D) PALB2

 

(E) ABL1
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Appendix S4.7.2 The rate of GATA3 abnormal splicing in variant 
containing tumour and tumour/normal controls 

Junction-spanning, cryptic splicing read counts for GATA3 mutation (chr10: 

g.8115702A>C). The number of RNA-Seq reads per exonic base were plotted against the 

number of reads demonstrating GATA3 cryptic splicing in the variant-containing 

tumours and controls. The variant containing tumour is indicated by the number of 

cryptic splicing reads (n = 791), tumours that do not contain this variant are in red, and 

normal controls are in blue. Cryptic splicing in the control samples likely occurs because 

the cryptic splice site (Ri = 4.2 bits) exceeds the strength of the natural splice site (Ri = 

0.9 bits). However, the mutation further weakens the natural splice site (final Ri = 0.0 

bits), while simultaneously strengthening the cryptic splice site (final Ri = 5.8 bits), which 

are consistent with the RNA-Seq analysis. 
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Appendix S4.8 Supplementary Figure 4 

Intron inclusion in tumour and normal breast genomes, based on RNA-Seq evidence. 

Histogram of the density of intronic sequence reads for normal (blue) and tumour (red) 

RNA-Seq samples. Purple shading represents overlapping components of the two density 

distributions. Intron inclusion was calculated with RSeQC's ReadDist script and RefSeq’s 

gene annotation. High levels of unspliced isoforms with intron inclusion were the most 

frequent outcome of mutations with significant effects on mRNA splicing. Nevertheless, 

when considering non-specific aberrant splicing across the transcriptome, the numbers of 

junction-spanning, intron inclusion reads present in normal and tumour samples did not 

significantly differ (p > 0.1). In fact, non-junction-spanning, intronic read-abundance 

reads of normal controls exceeded those of the tumour samples (p < 0.01). This suggests 

that validation events in these tumour samples are not due solely to intron inclusion and 

aberrant mRNA splicing known to be present in breast tumours (9). It is notable, 

however, that the levels of intronic inclusion for validated mutations significantly 

exceeded the read counts for all controls that did not contain these variants. 
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Appendix S4.9 Pathway Analyses 

Appendix S4.9.1 Pathways Overrepresented by Protein Coding and 
Splicing Mutations 

Pathway 

#  

Pathways common to both Strelka splicing 

and protein coding mutations 

Present in Pathway 

Analysis with both 

Protein Coding and 

Splicing Mutations? 

 

1 Anchoring fibril formation YES Col/ECM 

2 

Assembly of collagen fibrils and other 

multimeric structures YES Col/ECM 

3 Association of procollagen chains YES Col/ECM 

4 Collagen biosynthesis and modifying enzymes YES Col/ECM 

5 Collagen formation YES Col/ECM 

6 

Collagen prolyl 3-hydroxylase converts proline 

to 3-hydroxyproline YES Col/ECM 

7 

Collagen prolyl 4-hydroxylase converts proline 

to 4-hydroxyproline YES Col/ECM 

8 

Collagen type VII binds laminin-322 and 

collagen IV YES Col/ECM 

9 DDR1 binds collagens YES Col/ECM 

10 ECM proteoglycans YES Col/ECM 

11 Extracellular matrix organization YES Col/ECM 

12 

Galactosylation of collagen propeptide 

hydroxylysines by PLOD3 YES Col/ECM 

13 

Glucosylation of collagen propeptide 

hydroxylysines YES Col/ECM 

14 Interaction of NCAM1 with collagens YES Col/ECM 

15 Non-integrin membrane-ECM interactions YES Col/ECM 

16 PDI is a chaperone for collagen peptides YES Col/ECM 

17 

Procollagen lysyl hydrolases convert lysine to 5-

hydroxylysine YES Col/ECM 

18 Procollagen triple helix formation YES Col/ECM 

19 Removal of fibrillar collagen C-propeptides YES Col/ECM 

20 Removal of fibrillar collagen N-propeptides YES Col/ECM 

21 Secretion of collagens YES Col/ECM 

22 Formation of collagen fibres NO Col/ECM 

23 Formation of collagen fibrils NO Col/ECM 

24 

Galactosylation of collagen propeptide 

hydroxylysines by procollagen 

galactosyltransferases 1, 2. NO Col/ECM 

25 PDGF binds to extracellular matrix proteins NO Col/ECM 

26 Cell Cycle, Mitotic NO Cancer 

27 Cell-Cell communication YES Cancer 

28 

CBL, GRB2, FYN and PI3K p85 subunit are 

constitutively associated NO ? 

29 Signaling by FGFR1 fusion mutants YES Cancer 

30 

Indirect recruitment of PI3K to KIT via p(Y)-

GAB2 YES Cancer 

31 Loss of Nlp from mitotic centrosomes YES ? 

32 Base Excision Repair YES Cancer 
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33 Mitotic Prometaphase YES Cancer 

34 Signaling by FGFR in disease YES Cancer 

35 PLCG1 events in ERBB2 signaling YES Cancer 

36 Downstream signaling of activated FGFR NO Cancer 

37 Signaling by FGFR1 mutants NO Cancer 

38 Separation of sister chromatids YES ? 

39 Kinetochore assembly YES ? 

40 

Recruitment of mitotic centrosome proteins and 

complexes YES ? 

41 Centrosome maturation YES ? 

42 Mitotic G2-G2/M phases YES Cancer 

43 Signaling by ERBB2 NO Cancer 

44 

Resolution of AP sites via the single-nucleotide 

replacement pathway YES Cancer 

45 G2/M Transition YES Cancer 

46 Transmembrane transport of small molecules YES Other 

47 Ion channel transport YES Other 

48 Axon guidance YES Other 

49 Integrin cell surface interactions YES Other 

50 Ion transport by P-type ATPases YES Other 

51 Developmental Biology YES Other 

52 

NICD1 displaces co-repressor complex from 

RBPJ (CSL) NO Other 

53 

NICD1 PEST domain mutants displace co-

repressor complex from RBPJ (CSL) NO Other 

54 L1CAM interactions YES ? 

55 

Transport of inorganic cations/anions and amino 

acids/oligopeptides YES Other 

56 SLC-mediated transmembrane transport YES Other 

57 cAMP degradation by Phosphodiesterases YES Other 

58 CBL is tyrosine phosphorylated YES Other 

59 Dystroglycan binds Laminins and Dystrophin YES Other 

60 Signalling by NGF YES Other 

61 

P-type ATPases type IV transport external-facing 

APLs to internal side of the plasma membrane YES Other 

62 

P-type ATPases type IV transport internal-facing 

APLs to external side of the plasma membrane YES Other 

63 NCAM signaling for neurite out-growth YES Other 

64 NRAGE signals death through JNK YES ? 

65 

p75NTR indirectly activates RAC and Cdc42 via 

a guanyl-nucleotide exchange factor YES Other 

66 Signaling by Rho GTPases YES Other 

67 Rho GTPase cycle YES Other 

68 Stimuli-sensing channels YES Other 

69 ABC-family proteins mediated transport YES Other 

70 GEFs activate RhoA,B,C NO Other 

71 Other semaphorin interactions YES Other 

72 Signaling by PDGF YES Other 

73 Semaphorin interactions YES Other 

74 Signaling by Interleukins YES Other 

75 Interaction between L1 and Ankyrins YES Other 

76 Transmission across Chemical Synapses YES Other 
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77 Plk1-mediated phosphorylation of Nlp YES Other 

78 

Loss of proteins required for interphase 

microtubule organizationÃƒâ€šÃ‚ from the 

centrosome NO ? 

79 Loss of C-Nap-1 from centrosomes YES ? 

80 

Dissociation of Phospho-Nlp from the 

centrosome YES ? 

81 Recruitment of Plk1 to centrosomes YES ? 

82 Resolution of Abasic Sites (AP sites) YES ? 

83 Platelet calcium homeostasis YES Other 

84 

Recruitment of additional gamma tubulin/ 

gamma TuRC to the centrosome YES ? 

85 Recruitment of CDK11p58 to the centrosomes YES ? 

86 

Ankyrins link voltage-gated sodium and 

potassium channels to spectrin and L1 YES Other 

87 

Translocation of Influenza A virus nonstructural 

protein 1 (NS1A) into the nucleus YES Other 

88 

Synthesis of PIPs at the early endosome 

membrane YES Other 

89 

The ABCC family mediates organic anion 

transport NO Other 

90 PLC beta mediated events YES Other 

91 Downstream signal transduction YES ? 

92 

Phosphorylation of cohesin by PLK1 at 

centromeres YES ? 

93 

PP2A-B56 dephosphorylates centromeric 

cohesin YES ? 

94 DAG and IP3 signaling YES Other 

95 G-protein mediated events YES Other 

96 Kinetochore capture of astral microtubules YES ? 

97 ESPL1 (Separase) cleaves centromeric cohesin YES Other 

98 Recruitment of Grb2 to pFAK:NCAM1 YES Other 

99 

2GABRA:2GABRB:GABRG:GABA transports 

extracellular Cl- to cytosol YES Other 

100 GABA A receptor activation YES Other 
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Appendix S4.9.2  Pathways Overrepresented by Every Splicing 
Mutation Type (inactivating, leaky, cryptic) 

   

Overrepresented by protein 

coding mutation set? 

1 Association of procollagen chains 

Collagen 

YES 

2 
Collagen biosynthesis and modifying 

enzymes YES 

3 Collagen formation YES 

4 
Collagen prolyl 3-hydroxylase converts 

proline to 3-hydroxyproline YES 

5 
Collagen prolyl 4-hydroxylase converts 

proline to 4-hydroxyproline YES 

6 DDR1 binds collagens YES 

7 
Galactosylation of collagen propeptide 

hydroxylysines by PLOD3 YES 

8 

Galactosylation of collagen propeptide 

hydroxylysines by procollagen 

galactosyltransferases 1, 2. YES 

9 
Glucosylation of collagen propeptide 

hydroxylysines YES 

10 PDI is a chaperone for collagen peptides YES 

11 
Procollagen lysyl hydrolases convert lysine 

to 5-hydroxylysine YES 

12 Procollagen triple helix formation YES 

13 Secretion of collagens YES 

14 Degradation of collagen NO 

15 ECM proteoglycans 

ECM 

YES 

16 Extracellular matrix organization YES 

17 Non-integrin membrane-ECM interactions YES 

18 Anchoring fibril formation YES 

19 Axon guidance 

Other 

YES 

20 Cell Cycle, Mitotic YES 

21 Developmental Biology YES 

22 Integrin cell surface interactions YES 

23 L1CAM interactions YES 

24 
Transmembrane transport of small 

molecules YES 

25 
Activation of Chaperone Genes by 

XBP1(S) NO 

26 Activation of Chaperones by IRE1alpha NO 

27 Cell Cycle NO 

28 Hemostasis NO 
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Appendix S4.9.3 Comparing Grouped Pathways Overrepresented between LN- and LN+ Tumour 
Mutations 

RED = collagen, BLUE = extracellular matrix, GREEN = NCAM1 pathways, No. = number of pathways in group 

Lymph Node Negative Tumours No. Lymph Node Positive Tumours No. 
Pathways in Both Lymph Node Positive and 

Negative Tumours 

No. 

LN- 

No. 

LN+ 

Signaling by FGFR1 fusion mutants 10 Neurotransmitter Release Cycle 10 Collagen biosynthesis and modifying enzymes 12 12 

Cytosolic tRNA aminoacylation 9 Complement cascade 8 Semaphorin interactions 9 10 

Striated Muscle Contraction 7 
NCAM signaling for neurite out-

growth 
8 L1CAM interactions 8 8 

PI3K events in ERBB2 signaling 6 SHC1 events in ERBB2 signaling 4 Signaling by Interleukins 12 1 

COPI Mediated Transport 6 SHC1 events in ERBB4 signaling 4 Extracellular matrix organization 4 6 

Glucose metabolism 4 Downregulation of ERBB4 signaling 3 GPCR downstream signaling 4 4 

Synthesis of PIPs at the late endosome membrane 3 Generic Transcription Pathway 3 
Regulation of Cholesterol Biosynthesis by 

SREBP (SREBF) 
2 6 

STAT6-mediated induction of chemokines 3 Nuclear signaling by ERBB4 3 Hemostasis 4 3 

Signaling by SCF-KIT 3 
Regulation of Hypoxia-inducible 

Factor (HIF) by Oxygen 
3 

Transport of inorganic cations/anions and amino 

acids/oligopeptides 
5 1 

Regulation of signaling by CBL 3 Signaling by ERBB4 3 Transmembrane transport of small molecules 3 3 

Regulation of AMPK activity via LKB1 3 Xenobiotics 3 Condensation of Prometaphase Chromosomes 3 3 

Transport of vitamins, nucleosides, and related 

molecules 
2 

Apoptosis induced DNA 

fragmentation 
2 Signal Transduction 2 4 

Synthesis of PIPs at the Golgi membrane 2 
Assembly of the pre-replicative 

complex 
2 Fc epsilon receptor (FCERI) signaling 1 5 

Signaling by constitutively active EGFR 2 
Binding and Uptake of Ligands by 

Scavenger Receptors 
2 

Recruitment of mitotic centrosome proteins and 

complexes 
3 2 

PIP3 activates AKT signaling 2 Conjugation of carboxylic acids 2 
Factors involved in megakaryocyte development 

and platelet production 
3 2 

PI3K events in ERBB4 signaling 2 DAG and IP3 signaling 2 Synthesis of PIPs at the plasma membrane 2 3 

PI3K Cascade 2 
Metabolism of amino acids and 

derivatives 
2 Non-integrin membrane-ECM interactions 2 3 

Nuclear import of Rev protein 2 Mitotic G1-G1/S phases 2 Ion channel transport 2 3 
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Metabolism of steroid hormones and vitamin D 2 
Nitric oxide stimulates guanylate 

cyclase 
2 

COPII (Coat Protein 2) Mediated Vesicle 

Transport 
2 3 

Intrinsic Pathway 2 Opioid Signalling 2 Cell Cycle 2 3 

GPVI-mediated activation cascade 2 PI Metabolism 2 
Assembly of collagen fibrils and other 

multimeric structures 
1 4 

Downstream signal transduction 2 Phospholipid metabolism 2 Muscle contraction 3 1 

Cross-presentation of particulate exogenous 

antigens (phagosomes) 
2 Scavenging of Heme from Plasma 2 Membrane Trafficking 3 1 

Costimulation by the CD28 family 2 Signaling by ERBB2 2 Integrin cell surface interactions 3 1 

Cell Cycle, Mitotic 2 
Synthesis of IP2, IP, and Ins in the 

cytosol 
2 

Inactivation, recovery and regulation of the 

phototransduction cascade 
3 1 

CD28 dependent PI3K/Akt signaling 2 
Synthesis of very long-chain fatty 

acyl-CoAs 
2 Regulation of the Fanconi anemia pathway 2 2 

Vitamin C (ascorbate) metabolism 1 
Activated NOTCH1 Transmits Signal 

to the Nucleus 
1 Nephrin interactions 2 2 

VEGF ligand-receptor interactions 1 Amino Acid conjugation 1 

Loss of proteins required for interphase 

microtubule organization√Ç¬†from the 

centrosome 

2 2 

tRNA Aminoacylation 1 
Antiviral mechanism by IFN-

stimulated genes 
1 Loss of Nlp from mitotic centrosomes 2 2 

Transport of glucose and other sugars, bile salts and 

organic acids, metal ions and amine compounds 
1 Asparagine N-linked glycosylation 1 

Fatty acid, triacylglycerol, and ketone body 

metabolism 
2 2 

Translocation of GLUT4 to the Plasma Membrane 1 
CDC6 association with the 

ORC:origin complex 
1 Developmental Biology 2 2 

Tie2 Signaling 1 CDO in myogenesis 1 Collagen formation 2 2 

TCR signaling 1 
CDT1 association with the 

CDC6:ORC:origin complex 
1 Stimuli-sensing channels 1 3 

STING mediated induction of host immune 

responses 
1 

CREB phosphorylation through the 

activation of Adenylate Cyclase 
1 Ion transport by P-type ATPases 1 3 

Smooth Muscle Contraction 1 Calnexin/calreticulin cycle 1 ECM proteoglycans 1 3 

Signaling by Rho GTPases 1 Chromosome Maintenance 1 DAP12 interactions 1 3 

Signaling by FGFR mutants 1 Circadian Clock 1 Unfolded Protein Response 2 1 

S6K1-mediated signalling 1 Conjugation of benzoate with glycine 1 
Synthesis of PIPs at the early endosome 

membrane 
2 1 

S6K1 signalling 1 
Conjugation of phenylacetate with 

glutamine 
1 Platelet activation, signaling and aggregation 2 1 
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RIG-I/MDA5 mediated induction of IFN-alpha/beta 

pathways 
1 DNA Repair 1 

NGF signalling via TRKA from the plasma 

membrane 
2 1 

Rho GTPase cycle 1 Disease 1 Cell-Cell communication 2 1 

Response to elevated platelet cytosolic Ca2+ 1 
E2F-enabled inhibition of pre-

replication complex formation 
1 Signalling by NGF 1 2 

Regulation of mRNA Stability by Proteins that Bind 

AU-rich Elements 
1 

EGFR interacts with phospholipase C-

gamma 
1 Regulation of Insulin Secretion 1 2 

Rap1 signalling 1 
ER Quality Control Compartment 

(ERQC) 
1 p75 NTR receptor-mediated signalling 1 2 

Polo-like kinase mediated events 1 Fanconi Anemia pathway 1 G2/M Checkpoints 1 2 

Platelet Adhesion to exposed collagen 1 G-protein mediated events 1 Effects of PIP2 hydrolysis 1 2 

PKB-mediated events 1 Interferon Signaling 1 Axon guidance 1 2 

Phase 1 - Functionalization of compounds 1 Interleukin-2 signaling 1 Transmission across Chemical Synapses 1 1 

Organic cation/anion/zwitterion transport 1 Lipoprotein metabolism 1 Stabilization of p53 1 1 

NRAGE signals death through JNK 1 Lysine catabolism 1 SLC-mediated transmembrane transport 1 1 

mTORC1-mediated signalling 1 
MyD88 cascade initiated on plasma 

membrane 
1 

Signaling by NOTCH1 PEST Domain Mutants 

in Cancer 
1 1 

mTOR signalling 1 
N-glycan trimming in the ER and 

Calnexin/Calreticulin cycle 
1 Signaling by FGFR1 mutants 1 1 

Metabolism of water-soluble vitamins and cofactors 1 NGF processing 1 Peroxisomal lipid metabolism 1 1 

Metabolism of nucleotides 1 Neuronal System 1 
NOTCH1 Intracellular Domain Regulates 

Transcription 
1 1 

Metabolism 1 PKA activation 1 Metabolism of proteins 1 1 

Ligand-gated ion channel transport 1 Phase II conjugation 1 Meiosis 1 1 

ISG15 antiviral mechanism 1 Platelet calcium homeostasis 1 M Phase 1 1 

Integration of energy metabolism 1 Platelet homeostasis 1 Interleukin receptor SHC signaling 1 1 

Inhibition of replication initiation of damaged DNA 

by RB1/E2F1 
1 Platelet sensitization by LDL 1 Inositol phosphate metabolism 1 1 

Homologous recombination repair of replication-

independent double-strand breaks 
1 

Pyruvate metabolism and Citric Acid 

(TCA) cycle 
1 ER to Golgi Transport 1 1 

Golgi to ER Retrograde Transport 1 Signaling by EGFR 1 
Depolarization of the Presynaptic Terminal 

Triggers the Opening of Calcium Channels 
1 1 

Gene Expression 1 Signaling by FGFR 1 
Conversion from APC/C:Cdc20 to APC/C:Cdh1 

in late anaphase 
1 1 

Gamma-carboxylation of protein precursors 1 Signaling by NOTCH2 1 Collagen degradation 1 1 
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E2F mediated regulation of DNA replication 1 Signaling by PDGF 1 
ATM mediated phosphorylation of repair 

proteins 
1 1 

Cytokine Signaling in Immune system 1 Signaling by Robo receptor 1 Activation of Chaperones by IRE1alpha 1 1 

Cyclin E associated events during G1/S transition  1 
Signaling by the B Cell Receptor 

(BCR) 
1 

   

Constitutive PI3K/AKT Signaling in Cancer 1 Syndecan interactions 1 
   

ChREBP activates metabolic gene expression 1 
Synthesis and interconversion of 

nucleotide di- and triphosphates 
1 

   

Cell surface interactions at the vascular wall 1 Synthesis of IP3 and IP4 in the cytosol 1 
   

Cell death signalling via NRAGE, NRIF and NADE 1 
Transcriptional Regulation of White 

Adipocyte Differentiation 
1 

   

CD28 co-stimulation 1 
     

Biological oxidations 1 
     

Antigen processing-Cross presentation 1 
     

AMPK inhibits chREBP transcriptional activation 

activity 
1 

     

Activation of the AP-1 family of transcription 

factors 
1 

     

Activation of Chaperones by ATF6-alpha 1 
     

Abacavir transmembrane transport 1 
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Appendix S4.9.4 Pathway Analysis of Deleterious Mutations in LN- and LN+ Tumours 

RED = collagen, BLUE = extracellular matrix, GREEN = NCAM1 pathways 

Lymph Node Positive Tumour Mutations Lymph Node Negative Tumour Mutations 
Over Represented by Both Lymph Node 

Positive and Negative Tumour Mutations 

Autophosphorylation of NCAM1 bound Fyn Activation of Chaperones by ATF6-alpha 
Assembly of collagen fibrils and other multimeric 

structures 

Dephosphorylation of NCAM1 bound pFyn Cargo, Sec31p:Sec13p, and v-SNARE recruitment Association of procollagen chains 

Interaction of NCAM1 with collagens Cell-Cell communication Collagen biosynthesis and modifying enzymes 

NCAM signaling for neurite out-growth Cleavage of ATF6-alpha by S1P Collagen formation 

NCAM1 interactions COPII (Coat Protein 2) Mediated Vesicle Transport 
Collagen prolyl 3-hydroxylase converts proline to 

3-hydroxyproline 

Formation of collagen fibres ER to Golgi Transport 
Collagen prolyl 4-hydroxylase converts proline to 

4-hydroxyproline 

Formation of collagen fibrils 
factor VIII + von Willebrand factor multimer -> 

factor VIII:von Willibrand factor multimer 

Galactosylation of collagen propeptide 

hydroxylysines by PLOD3 

Removal of fibrillar collagen N-propeptides 

factor VIII:von Willibrand factor multimer -> 

factor VIIIa + factor VIIIa B A3 acidic polypeptide 

+ von Willibrand factor multimer 

Galactosylation of collagen propeptide 

hydroxylysines by procollagen 

galactosyltransferases 1, 2. 

Syndecan-1 binds collagen types I, III, V FGFR1 fusions bind PLCgamma 
Glucosylation of collagen propeptide 

hydroxylysines 

Syndecan-1 binds collagen types I, III, V Hemostasis PDI is a chaperone for collagen peptides 

Degradation of the extracellular matrix 
Inhibition of integrin activation by sequestering 

PIP5KIgamma 

Procollagen lysyl hydrolases convert lysine to 5-

hydroxylysine 

ECM proteoglycans Interaction of integrin alphaEbeta7 with Cadherin-1 Procollagen triple helix formation 

Non-integrin membrane-ECM interactions Interleukin-1 receptor type 1 binds Interleukin 1 Removal of fibrillar collagen C-propeptides 

PDGF binds to extracellular matrix proteins Interleukin-2 signaling Secretion of collagens 

Activation of Adenylate Cyclase Interleukin-7 signaling Extracellular matrix organization 

Activation of Chaperones by IRE1alpha Na+-coupled HCO3- cotransport Axon guidance 

Activation of PPARA by Fatty Acid Ligands NrCAM interactions Cell Cycle 

AGRN binds Laminins with gamma-1 subunit p-PLCgamma dissociates from FGFR1 fusions Developmental Biology 

Ankyrins link voltage-gated sodium and potassium 

channels to spectrin and L1 
Phosphorylation of STAT5 by FGFR1 fusions Dissociation of Phospho-Nlp from the centrosome 

Antiviral mechanism by IFN-stimulated genes 
PI is phosphorylated to PI5P by PIKFYVE at the 

late endosome membrane 
DOCKs bind to RhoGEFs 
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Association of MCM8 with ORC:origin complex 
PI is phosphorylated to PI5P by PIKFYVE at the 

late endosome membrane 
Integrin cell surface interactions 

Binding of Beta-TrCP1 to phosphorylated PER 

proteins 

PI(3,5)P2 is dephosphorylated to PI3P by FIG4 at 

the early endosome membrane 
Interaction between L1 and Ankyrins 

Binding of IP3 to IP3 receptor 
PI(3,5)P2 is dephosphorylated to PI3P by FIG4 at 

the Golgi membrane 
Loss of C-Nap-1 from centrosomes 

Ca2+ influx through voltage gated Ca2+ channels 
PI(3,5)P2 is dephosphorylated to PI3P by FIG4 at 

the late endosome membrane 
Loss of Nlp from mitotic centrosomes 

Calcium Influx through Voltage-gated Calcium 

Channels 

PI3P is phosphorylated to PI(3,5)P2 by Pikfyve at 

the early endosome membrane 

Loss of proteins required for interphase 

microtubule organizationÃ‚Â from the centrosome 

Calnexin/calreticulin cycle 
PI3P is phosphorylated to PI(3,5)P2 by Pikfyve at 

the early endosome membrane 
Meiosis 

Cell Cycle, Mitotic 
PI3P is phosphorylated to PI(3,5)P2 by PIKFYVE 

at the Golgi membrane 
Phosphorylation of MEK4 by MEKK1 

Cell death signalling via NRAGE, NRIF and 

NADE 

PI3P is phosphorylated to PI(3,5)P2 by PIKFYVE 

at the Golgi membrane 
Phosphorylation of p53 at ser-15 by ATM kinase 

cGMP effects 
PI3P is phosphorylated to PI(3,5)P2 by PIKFYVE 

at the late endosome membrane 
Plk1-mediated phosphorylation of Nlp 

Dephosphorylation of CK2-modified condensin I 
PI3P is phosphorylated to PI(3,5)P2 by PIKFYVE 

at the late endosome membrane 
Recruitment of CDK11p58 to the centrosomes 

Depolarization of the Presynaptic Terminal 

Triggers the Opening of Calcium Channels 
PLCgamma is phosphorylated by FGFR1-fusions Recruitment of Plk1 to centrosomes 

Dystroglycan binds Laminins and Dystrophin Plexin-A1-4 binds NRP1 
Transport of inorganic cations/anions and amino 

acids/oligopeptides 

ER Quality Control Compartment (ERQC) 
Recruitment of additional gamma tubulin/ gamma 

TuRC to the centrosome  

ERBB4:TAB2:NCOR1 complex translocates to the 

nucleus 
Release of platelet cytosolic components 

 

ERBB4:TAB2:NCOR1 complex translocates to the 

nucleus 
Replication initiation regulation by Rb1/E2F1 

 

ERBB4s80 binds Tab2:Ncor1 complex Semaphorin interactions 
 

ERBB4s80 binds Tab2:Ncor1 complex Signaling by FGFR1 fusion mutants 
 

Fanconi Anemia pathway SLC-mediated transmembrane transport 
 

Formation of the BRCA1-PALB2-BRCA2 

complex 
Stabilization of mRNA by HuR 

 

Interaction of L1 with Laminin-1 Synthesis of IP3 and IP4 in the cytosol 
 

Interaction of nephrin with adherens junction- Transcriptional activation of Acetyl-CoA 
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associated proteins carboxylase by ChREBP:MLX 

IP3 binds to the IP3 receptor, opening the 

endoplasmic reticulum Ca2+ channel 
Transmembrane transport of small molecules 

 

ISG15 antiviral mechanism Vesicle Budding 
 

L1CAM interactions Vesicle Uncoating 
 

Mitotic Prometaphase Vesicular glutamate transport 
 

N-glycan trimming in the ER and 

Calnexin/Calreticulin cycle   

NDP + reduced thioredoxin => dNDP + oxidized 

thioredoxin + H2O   

Neurofascin binds contactin-1:CASPR complex 
  

NICD1 displaces co-repressor complex from RBPJ 

(CSL)   

NICD1 displaces NCOR co-repressor complex 

from CSL   

NICD1 PEST domain mutants displace co-

repressor complex from RBPJ (CSL)   

Nitric oxide stimulates guanylate cyclase 
  

NTN4 binds laminins with gamma-1, gamma-3 
  

Opening of ER calcium channels by activated PKA 
  

p75 NTR receptor-mediated signalling 
  

Phosphorylation of FANCD2 by ATR/ATM 
  

Phosphorylation of FANCI by ATM/ATR 
  

Release of calcium from intracellular stores by IP3 

receptor activation   

Signaling by ERBB4 
  

Signaling by PDGF 
  

Signalling by NGF 
  

Syndecan interactions 
  

Transport of Ca++ from platelet dense tubular 

system to cytoplasm   

Unfolded Protein Response 
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Appendix S4.10 Frequency of Mutations in NCAM1 Pathway Genes 

Gene Name All Mutations Splicing Mutations 

Indel Frameshift & 

Stop Gain/Loss 

Mutations 

Total: 425 37 35 

SPTA1 30 2 3 

CACNA1D 22 3 7 

COL6A5 19 1 0 

NCAM1 17 2 1 

COL6A6 16 1 1 

COL6A3 15 0 3 

CACNA1G 13 2 0 

CACNA1I 13 1 0 

COL4A1 13 4 0 

CACNA1C 12 0 1 

SPTBN1 12 2 1 

COL3A1 11 0 2 

SPTBN4 11 0 0 

CACNB2 10 1 1 

COL4A4 10 0 0 

COL4A5 10 1 1 

SPTB 10 0 2 

CACNA1S 9 0 0 

COL4A3 9 2 0 

COL5A2 9 2 1 

CNTN2 8 1 1 

COL5A3 8 1 2 

COL9A2 8 4 0 

NCAN 8 1 1 

SPTAN1 8 0 0 

AGRN 6 0 0 

COL5A1 6 0 2 

COL6A2 6 0 0 

PTPRA 6 0 0 

CACNA1H 5 0 0 

CACNB1 5 1 0 

COL9A3 5 1 0 

FGFR1 5 0 0 

PRNP 5 0 0 

SOS1 5 0 1 

SPTBN5 5 0 0 

COL9A1 4 0 0 

CREB1 4 0 0 
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PTK2 4 0 0 

CACNB3 3 0 0 

COL4A2 3 0 0 

KRAS 3 0 0 

MAPK3 3 0 1 

RAF1 3 1 0 

RPS6KA5 3 0 0 

CDK1 2 0 0 

COL2A1 2 0 1 

FYN 2 1 0 

GDNF 2 0 0 

GFRA1 2 0 0 

GFRA2 2 0 0 

GRB2 2 1 0 

MAPK1 2 1 0 

SPTBN2 2 0 0 

SRC 2 0 0 

ST8SIA2 2 0 1 

HRAS 1 0 0 

MAP2K2 1 0 0 

YWHAB 1 0 1 
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Appendix S4.11 Breast Cancer Mutations by Subtype 

Appendix S4.11.1 Number of Mutations by Subtype 

Subtype* 
No. 

Tumours 
All Coding 

Deleterious 

Coding^ 
Splicing 

  

No.  Av. No. Av. No. Av. 

Basal Like 81 15,383 190 1,350 16.7 1,288 15.9 

HER2-

enriched 
51 8,633 169 708 13.9 729 14.3 

Luminal A 192 22,634 118 1,889 9.8 1,786 9.3 

Luminal B 104 14,501 139 1,166 11.2 1,209 11.6 

"Normal 

Like" 
6 1,105 184 105 17.5 78 13 

*subtype not available for 8 tumours, ^ Frameshift indels, stop codon gain or loss, No. = 

total number of mutations, Av. = average number of mutations per tumour 
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Appendix S4.11.2 Pathway Analysis of Mutations by Subtype 
and Lymph Node Status 

 
Basal Her2 Luminal A Luminal B 

Normal-

Like 

 

- + - + - + - + - + 

# Tumours 50 31 18 32 89 96 43 59 1 5 

# Enriched 

Pathways Total 
115 115 132 120 122 142 185 147 8 7 

# NCAM Pathways 0 9 2 7 0 2 1 2 0 0 

# Collagen 

Pathways 
0 26 16 3 11 36 21 15 0 0 

# ECM Pathways 0 4 3 0 1 5 4 4 0 0 

# Mutations Total 844 444 300 414 1013 698 548 639 29 49 

# NCAM Pathway 

Mutations 
3 6 3 4 3 7 4 5 0 0 

# Collagen Pathway 

Mutations 
9 11 4 5 13 11 7 8 1 0 

The “NCAM1 Interactions” and “Interaction of NCAM1 with collagens” pathways, were 

overrepresented in luminal B and HER2-enriched LN+ tumours. The NCAM1 interaction 

pathways contain a large number (n = 153) of different proteins where NCAM1 acts as a 

signal transducing receptor molecule. These functions are tangential to NCAM1’s role in 

neurite outgrowth and may explain why they are overrepresented in tumours that have 

not invaded the lymph nodes. 



 

 

275 

Appendix S4.11.3 Word clouds of overrepresented pathways by 
subtype. 

Word clouds of generalized overrepresented Reactome pathways for mutations stratified 

by lymph node status (positive or negative) and breast cancer subtype (basal-like (A), 

HER2-enriched (B), Luminal A (C), or Luminal B (D)). The size of each word is 

proportional to its frequency in the abstracted list of overrepresented pathways. 

(A)  Basal Like Lymph Node Positive 
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Basal Like Lymph Node Negative
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 (B)  HER2-enriched lymph node positive 

 

 HER2-enriched lymph node negative 
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(C) Luminal A lymph node positive 

 

 Luminal A lymph node negative 
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(D)  Luminal B lymph node positive 
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Luminal B lymph node negative 
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Appendix S5: Supplementary Information for Chapter 5 

Appendix S5.1 Cell Lines Used 

Cell Line 
Transcriptional 

subtype 
Pac 
GI50 

Gem 
GI50 

Mut CN Exp 
Pac 
SVM 

Gem 
SVM 

Pac 
MFA 

Gem 
MFA 

Total Count   49 47 48 46 49 49 44 45 44 

184A1 Normal-like 7.35 6.16 1 1 1 1 1 1 1 

184B5 Normal-like 7.74 6.14 1 1 1 1 1 1 1 

600MPE Luminal 7.51 7.64 1 1 1 1 1 1 1 

AU565 Luminal (Her2+) 8.14 7.81 1 1 1 1 1 1 1 

BT474 Luminal (Her2+) 7.99 4.88 1 1 1 1 1 1 1 

BT483 Luminal 7.00 8.05 1 1 1 1 1 1 1 

BT549 Claudin-low 8.16 8.08 1 1 1 1 1 1 1 

CAMA1 Luminal 7.95 6.79 1 1 1 1 1 1 1 

HCC1143 Basal 7.80 7.92 1 1 1 1 1 1 1 

HCC1187 Basal 8.05 5.07 1 1 1 1 1 1 1 

HCC1395 Claudin-low 7.71 6.47 1 1 1 1 1 1 1 

HCC1419 Luminal (Her2+) 7.04 4.81 0 1 1 1 0 0 0 

HCC1428 Luminal 7.58 3.58 1 1 1 1 1 1 1 

HCC1569 Basal (Her2+) 7.95 6.76 1 1 1 1 1 1 1 

HCC1806 Basal 8.11 8.72 1 1 1 1 1 1 1 

HCC1937 Basal 7.81 5.97 1 1 1 1 1 1 1 

HCC1954 Basal (Her2+) 8.15 4.51 1 1 1 1 1 1 1 

HCC202 Luminal (Her2+) 8.10 4.82 1 1 1 1 1 1 1 

HCC2185 Luminal 8.22 7.61 1 1 1 1 1 1 1 

HCC3153 Basal 7.70 7.19 1 1 1 1 1 1 1 

HCC38 Claudin-low 8.13 8.17 1 1 1 1 1 1 1 

HCC70 Basal 8.03 4.58 1 1 1 1 1 1 1 

HS578T Claudin-low 8.38 5.66 1 1 1 1 1 1 1 

LY2 Luminal 7.97 7.62 1 1 1 1 1 1 1 

MCF10A Normal-like 8.03 7.70 1 1 1 1 1 1 1 

MCF10F Normal-like 8.08 7.08 1 1 1 1 1 1 1 

MCF12A Normal-like 7.97 7.17 1 1 1 1 1 1 1 

MCF7 Luminal 7.79 4.77 1 1 1 1 1 1 1 

MDAMB134VI Luminal 7.99 2.85 1 1 1 1 1 1 1 

MDAMB157 Claudin-low 8.27 NA 1 1 1 1 0 1 0 

MDAMB175VII Luminal 7.74 8.12 1 1 1 1 1 1 1 

MDAMB231 Claudin-low 8.37 5.93 1 1 1 1 1 1 1 

MDAMB361 Luminal (Her2+) 7.79 8.23 1 1 1 1 1 1 1 

MDAMB415 Luminal 8.18 6.05 1 1 1 1 1 1 1 

MDAMB436 Claudin-low 7.65 7.49 1 1 1 1 1 1 1 

MDAMB453 Luminal 7.99 7.85 1 1 1 1 1 1 1 

MDAMB468 Basal 8.06 7.01 1 1 1 1 1 1 1 

SKBR3 Luminal (Her2+) 7.94 7.97 1 1 1 1 1 1 1 

SUM1315MO2 Claudin-low 8.29 6.91 1 1 1 1 1 1 1 
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SUM149PT Basal 8.03 7.84 1 0 1 1 0 0 0 

SUM159PT Claudin-low 8.24 7.99 1 1 1 1 1 1 1 

SUM185PE Luminal 6.64 6.44 1 1 1 1 1 1 1 

SUM52PE Luminal 8.20 8.15 1 1 1 1 1 1 1 

T47D Luminal 8.02 6.02 1 1 1 1 1 1 1 

UACC812 Luminal (Her2+) 8.08 7.75 1 1 1 1 1 1 1 

UACC893 Luminal (Her2+) 7.93 3.54 1 0 1 1 0 0 0 

ZR751 Luminal 7.76 7.45 1 1 1 1 1 1 1 

ZR7530 Luminal (Her2+) 7.66 NA 1 0 1 1 0 0 0 

ZR75B Luminal 7.38 7.34 1 1 1 1 1 1 1 

Pac = paclitaxel, Gem = gemcitabine, GI50 = -log(M), where M is the concentration of 

drug to inhibit cell growth by 50%, Mut = mutation data (exome sequencing), CN = copy 

number data (microarray), Exp = expression data (microarray), SVM = support vector 

machine, MFA = multiple factor analysis. For Mut, CN, and Exp, 1 indicates the data 

type was available for analysis, 0 indicates the data type was unavailable (from Daemen 

et al. 2013). For the SVM and MFA columns, 1 indicated that the cell line was included 

in the analysis, and 0 indicates that the cell line was not included (based on data 

availability). 
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Appendix S5.2 Genes Included in the study relevant to paclitaxel and gemcitabine drug disposition 

Paclitaxel 
Genes 

Full Gene/Protein Name Drug Disposition 
In Capture 

Array? 

ABCB1 ATP-binding cassette, sub-family B (MDR/TAP), member 1 transporter (out of cell) YES 

ABCB11 ATP-binding cassette, sub-family B (MDR/TAP), member 11 transporter (out of cell) YES 

ABCC1 ATP-binding cassette, sub-family C (CFTR/MRP), member 1 transporter (out of cell) YES 

ABCC10 ATP-binding cassette, sub-family C (CFTR/MRP), member 10 transporter (out of cell) YES 

BAD BCL2-associated agonist of cell death in target pathway (BCL2) YES 

BBC3 BCL2 binding component 3 in target pathway YES 

BCAP29 B-cell receptor-associated protein 29 associated with resistance YES 

BCL2 B-cell CLL/lymphoma 2 direct target YES 

BCL2L1 BCL2-like 1 in target pathway (BCL2) YES 

BIRC5 baculoviral IAP repeat containing 5 associated with resistance YES 

BMF Bcl2 modifying factor in target pathway YES 

CNGA3 cyclic nucleotide gated channel alpha 3 associated with resistance YES 

CSAG2 CSAG family, member 2 associated with resistance NO 

CYP2C8 cytochrome P450, family 2, subfamily C, polypeptide 8 metabolizing enzyme YES 

CYP3A4 cytochrome P450, family 3, subfamily A, polypeptide 4 metabolizing enzyme YES 

FGF2 fibroblast growth factor 2  associated with resistance YES 

FN1 fibronectin 1 associated with resistance YES 

GBP1 guanylate binding protein 1, interferon-inducible associated with resistance YES 

MAP2 microtubule-associated protein 2 direct target YES 

MAP4 microtubule-associated protein 4 direct target YES 

MAPT microtubule-associated protein tau direct target YES 

NFKB2 
nuclear factor of kappa light polypeptide gene enhancer in B-
cells 2 (p49/p100) 

associated with resistance 
YES 

NR1I2 nuclear receptor subfamily 1, group I, member 2 direct target YES 

OPRK1 opioid receptor, kappa 1 associated with resistance YES 

SLCO1B3 solute carrier organic anion transporter family, member 1B3 transporter (into cell) YES 

TLR6 toll-like receptor 6 associated with resistance YES 

TMEM243 transmembrane protein 243, mitochondrial associated with resistance YES 

TUBB1 tubulin, beta 1 class VI direct target YES 

TUBB4A tubulin, beta 4A class IVa in target pathway (TUBB1) YES 
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TUBB4B tubulin, beta 4B class IVb in target pathway (TUBB1) YES 

TWIST1 twist family bHLH transcription factor 1 associated with resistance YES 

    Gemcitabine Genes 

ABCB1 ATP-binding cassette, sub-family B (MDR/TAP), member 1 transporter (out of cell) YES 

ABCC10 ATP-binding cassette, sub-family C (CFTR/MRP), member 10 transporter (out of cell) YES 

AK1 adenylate kinase 1 nucleotide metabolism YES 

CDA cytidine deaminase metabolizing enzyme YES 

CMPK1 cytidine monophosphate (UMP-CMP) kinase 1, cytosolic direct target YES 

CTPS1 CTP synthase 1 direct target NO 

DCK deoxycytidine kinase metabolizing enzyme YES 

DCTD dCMP deaminase metabolizing enzyme NO 

NME1 NME/NM23 nucleoside diphosphate kinase 1 metabolizing enzyme NO 

NT5C 5', 3'-nucleotidase, cytosolic metabolizing enzyme NO 

RRM1 ribonucleotide reductase M1 direct target YES 

RRM2 ribonucleotide reductase M2 in target pathway (RRM1) YES 

RRM2B ribonucleotide reductase M2 B (TP53 inducible) in target pathway (RRM1) YES 

SLC28A1 
solute carrier family 28 (concentrative nucleoside transporter), 
member 1 transporter (into cell) YES 

SLC28A3 
solute carrier family 28 (concentrative nucleoside transporter), 
member 3 transporter (into cell) YES 

SLC29A1 
solute carrier family 29 (equilibrative nucleoside transporter), 
member 1 transporter (into cell) YES 

SLC29A2 
solute carrier family 29 (equilibrative nucleoside transporter), 
member 2 transporter (into cell) YES 

TYMS thymidylate synthetase direct target YES 
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Appendix S5.3 Copy Number Calling Methods 

Copy number data were available as CEL files from Affymetrix Genome-Wide Human 

SNP Array 6.0. CNV calls were generated with the PennCNV software
1
 (2011 June 16 

version) using the software pipeline and commands found at 

http://www.openbioinformatics.org/penncnv/penncnv_tutorial_affy_gw6.html. 

PennCNV output with copy number changes for all cell lines and genes can be found in 

Supplementary Table 5.1. 

Appendix S5.4 DNA Sequencing Analysis Pipeline– Variant Calling 
and Interpretation Methods 

Whole exome aligned sequencing data were available in the form of .bam files from 

Illumina Genome Analyzer IIx runs aligned to an hg19 genome build 

(“NCI60_WES_BAM_files:,” n.d.). Variants were detected using the software workflow 

below (A-D). The Genome Analysis Toolkit (GATK)
2
was used for variant calling and 

filtering with default parameters (exceptions): Realigner Target Creator, IndelRealigner, 

Haplotype Caller, Variant Recalibrator (for indels, --minNumBadVariants was set to 

5000 for LY2 and SUM159PT), and Apply Recalibration (ts_filter_level for indels was 

set at 99.0 and for SNPs at 99.9). VariantSelect was called to exclude non-variant loci 

and filtered loci with the default parameters for this purpose provided by GATK.  

Annovar
3
 was used to annotate the variants (both single nucleotide changes and 

insertions/deletions) and filter variants present in dbSNP 135. SIFT
4
 was used to predict 

which mutations (SNPs and indels) are likely damaging to the protein product, which 

were used in further analyses. Two software programs were used for splicing mutation 

analysis: Shannon Pipeline
5
 was used to predict splicing mutations, and Veridical

6
 was 

used to confirm aberrant splicing patterns in cell line-matched RNA-Seq data. In the 

Multiple Factor Analysis (MFA), mutation status was depicted with a binary variable in 

which the gene was assigned to be mutated or not. MFAs were also completed with total 

counts of likely deleterious mutation per cell line, which affected 10 genes, but did not 

alter the interpretation of the analysis. 

 

http://www.openbioinformatics.org/penncnv/penncnv_tutorial_affy_gw6.html
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A) Bam File Processing B) Bam File Realignment C) Variant Discovery 

 

D) Variant Analysis 
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Appendix S5.5 Reproducibility of Cell Line Data 

Appendix S5.5.1 GI50 Studies 

Growth inhibition (GI50) values represent the concentration of the chemical required to 

inhibit cell growth by 50% in comparison with untreated controls, and the study was 

carried out as previously described
7
. GI50 values were calculated using a sulforhodamine 

B (SRB) assay, which provides a sensitive method to measure cellular protein content. 

Cells were grown in 96 well plates for 24 hours, and then exposed to either paclitaxel or 

gemcitabine for 48 hours. We repeated triplicate GI50 measurements for 5 NCI-60 breast 

cancer cell lines: SKBR3, HS578T, BT549, MDAMB231, and T47D. Additionally, we 

quantified cell densities, and determined growth inhibition in order to resolve drug-

induced cytotoxicity. Percent of cytotoxicity was calculated as 100 x (Cell Control – 

Experimental) ÷ (Cell Control). GI50 was then derived using Graph Pad Prism. Data were 

transformed using X = Log(X) and then a non-linear regression was performed using 

options: “dose-response inhibition” and “Log [inhibitor] vs. response (variable slope).” 

Appendix S5.5.2 CytoScan HD Array 

The re-measured microarray analyses for 5 cell lines in our laboratory (MDAMB231, 

HS578T, MCF7, T47D, and SKBR3) were completed using the CytoScan HD Array Kit 

and Reagent Kit Bundle (catalog #901835) following the recommended manufacturer’s 

protocol  (Affymetrix, Santa Clara, CA). The AffymetrixGeneChip Command Console 

Software was used with default options to analyze the .CEL files for copy number change 

calls, which were visualized and manually confirmed using the Chromosome Analysis 

Suite (version 2.1.0.16). 

Appendix S5.5.3 Gene Capture and DNA Sequencing 

Capture probes were designed (genomic coordinates of probes listed in Supplementary 

Table 5.6, and then produced on a cleavable microarray using Custom Array Microarray 

Synthesizer (Bothell, WA). Exons and 300 bp into the introns, for 44 of the 49 genes, 

were targeted. Genomic DNA was sheared to ~300bp fragments using the Covaris S220 

Focused-ultrasonicator. Library preparation was carried out using the KAPA Biosystems 
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Standard High Throughput Library Preparation Kit and RNA bait from the capture array 

probes was used to enrich for the genes of interest
8
. DNA samples were quantified using 

qPCR (KAPA Library Quantification Kit for Illumina Platform) and then paired end 

reads (70 bp each side) were obtained using the standard Illumina Genome Analyzer IIX 

paired-end sequencing protocol.  

 Sequences of all exons (and 300 bp into each intron) for the 45 genes were 

selected using an ab initio approach
9
. Probe sequences were selected using PICKY 2.2 

software
10

 using the default settings with few exceptions (65ºC Tm, 30-70% GC content, 

5 probes per sequence, 20 nt maximum overlap). MPI-BLAT was used to ensure the 

probes align only to the targeted sequence.  

Generation, Cleavage and Purification Microarray Oligos 

 The selected sequences, with primer binding sites added to each end (5’ 

ATCGCACCAGCGTGTN36-70CACTGCGGCTCCTCA), were then synthesized onto 

two cleavable 12K microarray chips using a CustomArray Microarray Synthesizer 

(Bothell, WA). Probes were cleaved from the microarrays with concentrated (14.5N) 

ammonium hydroxide at 65ºC for 4 hours. Purified oligos were then amplified by 25 

cycles of conventional PCR using KapaHiFi DNA Polymerase (KapaBiosystems). 

Biotin-labelled RNA bait was generated from this product with nested PCR on the 

amplified oligosusgin a MAXIscript SP6 in vitro transcription kit (Ambion) with a UTP 

to biotin-16-UTP (Roche) ratio of 4 to 1. 

Sample Preparation 

Genomic DNA (gDNA) from the MDAMB231 cell line was diluted to 100 ng/μL in a 

volume of 51 μL for S220 Focused-ultrasonicator (Covaris) shearing (150-300nt 

fragments generated with the following settings: Time 120 sec, Duty cycle 10%, Intensity 

5, and Cycles per burst 200).  

Library Preparation and Capture 
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 The sheared samples were prepared using a KAPA Biosystems Standard 

(KK8200) and High Throughput (KK8234) Library Preparation kits, following the 

manufacturer’s protocol (KapaBiosystems). Genes of interest were captured using the 

Tiled RNA bait, using the hybridization selection protocol from Gnirke et al (2009) with 

1 to 2 ug of sample prep, 1.5 ug of RNA bait, and 75 uL of M-280 streptavidin 

Dynabeads (Invitrogen). DNA samples were quantified using qPCR following the 

protocol outlined by KAPA Library Quantification Kit for Illumina Platform (KAPA 

Biosystems, catalog# KK4824). Samples were then treated to standard Illumina paired-

end sequencing on a Genome Analyzer IIx, with 70 bp, then a 7 bp index (used during 

multiplexing), and then 70 bp. 

Bioinformatic Analysis 

When sequencing was completed, data was demultiplexed (when necessary) and aligned 

to the human reference genome (hg19) using CASAVA v1.8.2 and CRAC (v1.3.0). BAM 

files were prepared for variant calling using Picard, and variant calling was performed on 

both sets of aligned sequences using the UnifiedGenotyper tool in the Genome Analysis 

Toolkit (GATK). Variants called outside of target regions were ignored. Variant analysis 

was completed as outlined in Supplementary Methods IID. 
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Appendix S5.6 Support vector machine feature selection 

 

 

Adapted from Dash and Liu (1997)1
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Appendix S5.7 Partial-Least Squares Regression 

A partial-least squares regression (PLSR) was also performed to attempt to relate 

genomic findings to paclitaxel response, based on the fact that GI50 is a continuous 

variable. The predictive error of the model was measured by taking the absolute sum of 

the residuals (the actual GI50 minus the predicted GI50) of a leave-one-out cross-

validation. One cell line at a time was left out of the analysis and its paclitaxel GI50 value 

was predicted using the beta values given by the regression line and then compared with 

its measured GI50 value. 

Using the absolute sum of error as a measurement of predictive accuracy, we randomly 

selected subsets of genes ranging in number from 1 gene to 30 genes (out of a total of 31 

genes) for 1,000 iterations each to attempt to find the most optimal number of genes. Of 

the 9 paclitaxel genes with the lowest error, two million model iterations were performed 

to find the best predictive subsets with the lowest error values. However, the lowest 

absolute sum of residual errors was ~10. The high residual means imply a lack of 

confidence that the genomic signature will reliably predict GI50. For this reason, we 

discontinued attempts to use PLSR to predict gemcitabine (or paclitaxel) 

chemosensitivity.  

Appendix S5.8 Gene expression and Copy Number analyses on 
FFPE tumour blocks 

Nucleic acids were extracted from the FFPE tissue samples using Qiagen’sAllPrep 

DNA/RNA FFPE Kit (Cat. No. 80234, Venlo, Limburg, Netherlands). The recommended 

protocol was used with the following exceptions: 1) Tissue used for the nucleic acid 

extraction was obtained using 1 mm Miltex Sterile Disposable Biopsy Punches (Cat. No. 

33-31AA-P/25, Plainsboro, New Jersey), as opposed to using thin slices of the full block. 

Hematoxylin and eosin stained slides of each tissue block were marked by a pathologist 

to identify cancerous lesions and direct specific regions to punch. Using a biopsy punch 

allowed for targeted extractions, and minimized the amount of normal surrounding tissue 

used in the analysis. 2) 75 μl of mineral oil was used for tissue deparaffinization at 90°C 
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for 20 minutes, as previously described
12

. 3) The first proteinase K incubation was 

performed at 56°C for 2 hours.  

cDNA was produced from tumour RNA using SuperScript II Reverse Transcriptase (Cat. 

No. 18064-014, Invitrogen, Carlsbad, CA, USA) and 250ng IDT ReadyMade random 

hexamer per reaction. (Cat. No. 51-01-18-25, San Jose, CA, USA). cDNA synthesis was 

carried out following the manufacturer’s protocol, and purified using ethanol 

precipitation with 0.1X sodium acetate and 2.5X 100% anhydrous ethanol. Every cDNA 

sample used for gene expression measurement was then re-suspended in RNAse-free 

water, and diluted to 20 ng/μl for gene expression measurement. Purified DNA from the 

QiagenAllPrep columns were diluted to 9 ng/μl for copy number analysis. 

qPCR (gemcitabine copy number genes only) and qRT-PCR (all expression genes) were 

performed with the SensiFast SYBR No-ROX kit (Cat. No. BIO-98020, Bioline, London, 

UK) using the recommended protocol. Primer pairs were designed using PrimerQuest 

(Integrated DNA Technologies, Coralville, Iowa), spanning exons when possible (qRT-

PCR only). Each primer pair was optimized using duplicate 10 μl reactions for forward 

and reverse primer concentrations, and in some cases annealing temperatures. Primer 

sequences, annealing temperatures, and final concentrations used are listed in Table 

S5.6.1. NT5C qPCR was performed with a 10-second denaturation and 20-second 

extension in every cycle. All real-time PCR experiments used an Eppendorf Mastercycler 

realplex machine and followed the program: 95°C for 2 min, and 40 cycles of 5 s at 95°C, 

10 s at 60°C (copy number and some gene expression primers) or 64.5°C (only gene 

expression primers), and 15 s at 72°C. A melting curve was measured for all reactions, 

and any measurements with abnormal melting curve (ie. at a lower temperature due to 

primer diming) were removed from any further analysis. Two 10 μl reactions were 

performed per primer pair, per sample. 
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Table S5.6.1 

Gene Name 
Amplicon 

Size 
F/R Sequence 

Anneal. 

Temp. 

Opt. Conc. 

(nM) 

PACLITAXEL - qRT-PCR 

ABCC10 109 
F TGGGAAGACATTTGATGCAC  

64.5 
400 

R CTTCTCCCCCACCTCTGTCT  900 

BCL2 90 
F CCTGTGGATGACTGAGTACCTGAA 

64.5 
400 

R GGGCCGTACAGTTCCACAAAG 900 

BCL2L1 94 
F CTTGGATGGCCACTTACCTGAATG 

64.5 
900 

R GCATTGTTCCCATAGAGTTCCACAA 400 

BIRC5 113 
F GCAGTTTGAAGAATTAACCCTTGGTG 

64.5 
900 

R CCGCAGTTTCCTCAAATTCTTTCTTC 900 

FGF2 86 
F AGAAGAGCGACCCTCACATCAA 

64.5 
900 

R GTAACGGTTAGCACACACTCCTTTG 900 

FN1 120 
F TTGGAGATTCATGGGAGAAGTATGTG 

64.5 
900 

R CAGGACCACTTGAGCTTGGATAG 900 

MAP4 91 
F TCCTCTCCTGGATGTTGATGAGAA 

64.5 
900 

R AGATGGAGTATCTTCAATCTGGCTAGT 900 

MAPT 93 
F GGCTCATTAGGCAACATCCATCATAA 

64.5 
900 

R CTTCGACTGGACTCTGTCCTTGA 900 

NFKB2 101 
F AGATGACATTGAGGTTCGGTTCTATG 

64.5 
400 

R ACACAATGGCATACTGTTTATGCAC 400 

TLR6 115 
F CCGACGGAAATGAATTTGCAGTAGAC 

64.5 
900 

R AGCTCAGCGATGTAGTTCTGAGAC 900 

TMEM243 104 
F AGGACTTTGCTACCAGGACCTAC 

64.5 
900 

R GCTGCCAACAACTAAATTGATGATTCG 100 

GEMCITABINE - qRT-PCR 

ABCC10 109 
F TGGGAAGACATTTGATGCAC  

64.5 
400 

R CTTCTCCCCCACCTCTGTCT  900 

CMPK1 84 
F GGGAAAGAGTAGTGGTAGGAGTGATG 

64.5 
900 

R ATTGGCTTTGTTGACTGAAGGTAGG 400 

DCTD 96 
F TACCATGATAGTGACGAGGCAACTG 

64.5 
400 

R GACAATCTTGCTGCACTTCGGTATG 900 

NME1 120 
F CCTTCATTGCGATCAAACCAGATG 

64.5 
400 

R GATCTTCGGAAGCTTGCATGAATTT 400 

RRM1 103 
F ACTATTTATTATGGTGCTCTGGAAGCC 

64.5 
400 

R ACTGAAGAATTCCTTTGCTAACTGGAG 900 

RRM2B 80 
F TCTGGCTAAAGAAGAGAGGTCTTATGC 

64.5 
400 

R ACAGTGAAGTCCTTCATCTCTGCTG 400 

GEMCITABINE - qPCR 

ABCC10 93 
F GAGAATAGTAGTAGCTTACCTTGTAG 

60 
400 

R CATGTATTCAGAGCTTACTTTGTG 400 

NT5C 126 
F CCTTGTCAGGATAATTCGTTCTAC 

57.2 
400 

R CCAAGTCCCTATCCCTGAAT 400 

TYMS 107 
F  GTATGTCAGCCTTTCCCTTC 

60 
400 

R  CAGTGAACACGAGAAACAAATC 400 

STANDARDS - qRT-PCR 

ACTB 101 
F TTGTTACAGGAAGTCCCTTGCC 

64.5 
400 

R ATGCTATCACCTCCCCTGTGTG  400 

B2M 86 
F TGCTGTCTCCATGTTTGATGTATCT 

60 
400 

R TCTCTGCTCCCCACCTCTAAGT 400 

GAPDH 87 
F TGCACCACCAACTGCTTAGC 

60 
400 

R GGCATGGACTGTGGTCATGAG 900 

STANDARDS - qPCR 

ACTB 101 
F TTGTTACAGGAAGTCCCTTGCC 

64.5 
400 

R ATGCTATCACCTCCCCTGTGTG  400 

RMND5A 99 
F GCCAGCTTCTGAATTATGGTCTTC 

60 
400 

R GAAACTCAATGGAACCTTCTGTTTC 400 
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Expression values were normalized per sample based off of three genes: ACTB, B2M, and 

GAPDH using the equation (as previously described
13

): 

𝒆𝒙𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏𝒗𝒂𝒍𝒖𝒆 =  𝟐−∆𝑪𝒕 = 𝟐−(𝑪𝒕  𝒐𝒇 𝑮𝑶𝑰 – 𝑪𝒕 𝒐𝒇 𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅𝒔) 

Gene expression values for the FFPE samples were clustered as described in main 

Methods.  

For copy number, 5 or 6 dilutions from hgDNA (9, 3, 1, 0.33, 0.11, and in some cases 

0.037 ng/µl) were used to construct a standard curve for each primer pair (Figure S5.6.1). 

Two reference genes (ACTB and RNMD5A) were used to normalize for sample variation. 

ACTB is a single copy gene (1 haploid gene), and RMND5A is a multicopy gene (3 

haploid copies
14

). DNA from 9 lymph-node negative samples were used as normal 

controls to adjust for differences in primer efficiencies. Copy number calling was 

determined as previously described
15

: 

Ct Values were measured using two 10 μl reactions for each sample and gene. 

Raw copy values were derived from the equation of the standard curves for each gene 

(Figure S5.6.1), where y = Ct and x = log(Q). 

Copy number calibration was performed per gene for each sample (both tumour and 

normal) by dividing the raw copy value call by the average of the copy value call of 

ACTB and RMND5A for that sample. This adjusted for differences in Ct values between 

samples. 

𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 𝑐𝑜𝑝𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 =
𝑟𝑎𝑤 𝑐𝑜𝑝𝑦 𝑣𝑎𝑙𝑢𝑒

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝐴𝐶𝑇𝐵 𝑎𝑛𝑑 𝑅𝑀𝑁𝐷5𝐴 𝑟𝑎𝑤 𝑐𝑜𝑝𝑦 𝑣𝑎𝑙𝑢𝑒𝑠)
 

Final copy number values were determined by adjusting for the average calibrated copy 

numbers of the normal (lymph node negative) samples to adjust for differences in 

primers/gene measurements. 

𝑓𝑖𝑛𝑎𝑙 𝑐𝑜𝑝𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 =
𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 𝑐𝑜𝑝𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑝𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 𝑐𝑜𝑝𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 9 𝑛𝑜𝑟𝑚𝑎𝑙𝑠
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Copy number gains and losses were determined if the copy number call was at least 3 

standard deviations (of ACTB and RMND5A) from the mean copy number for that gene 

(see Figure S5.6.2 for copy number changes highlighted in yellow, and Supplementary 

Table 5.3 for copy number calls). Because no copy number changes were expected for 

ACTB and RMND5A, the average standard deviation between the two, when calibrated 

against each other, was used (standard deviation = 0.06269). Any copy number gains 

were assumed to be a copy of 3, whereas losses were assumed to be 1.  
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Figure S5.6.1 – Copy number standard curves 
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Figure S5.6.2 – Copy number gains and losses per gene 

 

Note: For illustrative purporses only. Each gene lists samples (x-axis) in a different order, and not all samples are labeled. See 

Supplementary Table 5.3 for exact copy number calls per sample and gene. 
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Appendix S5.9 Reproducibility of Data 

To assess reproducibility of the data used to derive the genomic signatures for paclitaxel 

and gemcitabine, we sought to determine the degree to which a sample of the cell line 

data was consistent between cell line sources.  We obtained a subset of the cell lines used 

in the prior study by Daemon et al. from the Coriell Institute, and, redetermined their GI50 

and copy number values as well as the variants present in the candidate gene sequences in 

one of the lines. Growth inhibition studies were carried out for 5 breast cancer cell lines 

(BT549, MDAMB231, HS578T, T47D, SKBR3) to determine the reproducibility of cell 

line sensitivity to paclitaxel and gemcitabine (Figures 5.7.1 and 5.7.2). Re-measured GI50 

values were compared to GI50s from Daemen et al. and those previously reported from 

Ring et al., 2008. The standard deviations of the GI50 values between studies were low for 

all measurements, except for the SKBR3 treated with gemcitabine (GI50 for SKBR3 was 

not determined by Ring et al., 2008). Although the differences in cell line growth 

inhibition were minimal (< 1 log10), our results were more similar to those reported by 

Daemen et al., 2013. The standard deviations between replicates from the Ring et al. 

study were more than twice our measurements for the same cell lines, except for BT549 

paclitaxel and MDAMB231 gemcitabine GI50 values. In some instances, substitution of 

our GI50 values (or those obtained by Ring et al., 2008) for those determined by Daemen 

et al., 2013, could affect the subsequent classification of the cell line. For paclitaxel, 

triplicate assays of 4 of 5 lines (all but HS578T) exhibit GI50 values close to the median 

GI50 threshold for distinguishing sensitivity from resistance (-log10M = 8). For 

gemcitabine, a single cell line (SKBR3, -log10M = 7) was close to this threshold. This 

highlights the importance of conducting genomic analyses and GI50 studies on the same 

source line, given that clonal variation and genetic evolution can occur in cancer cell 

lines
16

.  

Copy number data of 5 cell lines (MDAMB231, T47D, MCF7, HS578T, and SKBR3) 

were measured using an AffymetrixCytoScan HD array and analyzed using the 

Affymetrix Chromosome Analysis Suite (ChAS; CytoScan HD data). The 

AffymetrixCytoScan HD array contains approximately 2.6 million copy probes and 

750,000 SNP probes, whereas the Affymetrix SNP 6.0 array contains approximately 
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946,000 copy number probes and 906,600 SNP probes. DNA from MDAMB231 was 

extracted in May 2010 and again in February 2013 to compare different time 

points/passages of the cell line from the same batch.  The copy number calls of the SNP 

6.0 DNA data from the Daemen et al., 2013 study analyzed by PennCNV, and re-

analyzed by ChAS, were compared with our CytoScan HD data (Supplementary Table 

5.11). Copy number changes between the two time points of MDAMB231 were the same 

for all 49 genes. Copy number calls between the Daemen et al. and CytoScan HD data 

were largely concordant. Of the 49 genes and 5 cell lines (total of 245 copy number 

calls), 151 were the same (62%), and an additional 6 (2%) were concordant between our 

CytoScan HD data and PennCNV, but not the Daemen et al. data analyzed by ChAS. 33 

(15%) of the copy number calls were different between our CytoScanHD data and 

Daemen data, but these appear to be real differences between the cell line karyotypes, 

because PennCNV and ChAS were consistent for the Daemen et al. data. Conversely, 33 

(15%) copy number changes were inconsistently called between the PennCNV analyses, 

and the ChAS analyses of both data sets. In these cases, it is likely that PennCNV 

miscalled the copy number state. None of these copy number changes occurred in NT5C, 

ABCC10, and TYMS, which were present in the final SVM model for gemcitabine 

resistance. Another 22 (9%) copy number calls were inconsistent between our CytoScan 

HD data and PennCNV. Upon further analysis of the Daemen data set with ChAS, these 

differences appear to be due to noise in the SNP 6.0 data.  One possible explanation is 

that SNP 6.0 probes neighboring conserved repetitive elements exhibit higher variation in 

signal intensities than probes in the Cytoscan HD, which are located further away from 

these sequences
9
.  Inconsistencies may be also due to heterogeneous populations of 

mixtures of tumour cells each with different copy numbers within these populations. 

Concordant calls, the different noise levels in the data, and ambiguous copy number calls 

(ie. between a copy number of 1 and 2), and actual copy number differences are indicated 

in Figure 5.7.3.  

The relevant gene sequences from MDAMB231 were derived using next generation 

sequencing with a custom oligonucleotide enrichment reagent that targeted 44 of the 49 

genes (Supplementary Table 5.12; CSAG2, CTPS1, DCTD, NME1, and NT5C are not 

included). Results were compared with MDAMB231 exonic sequences 
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(“NCI60_WES_BAM_files:,” n.d.).  In our analysis, which also includes newly 

determined intronic sequences flanking each exon (300 nt), 59 mutations were detected 

(Supplementary Table 5.12). Five variants were predicted to be damaging by SIFT and 

37 were reproduced in both studies (36 SNPs and 1 insertion), of which 35 were known 

variants present in greater than 1% of the population, and 2 were novel. None of the 

damaging mutations were used in the MFA for MDAMB231, because the only likely 

damaging mutations between the two data sets were known, frequent variants. 

GI50s (GI50 drug concentrations are in –log10M) were re-measured for paclitaxel and 

gemcitabine in cell lines BT549, HS578T, MDAMB231, T47D, and SKBR3, and then 

compared to 2 sets of previously published values
17,18

. The yellow bar indicated the GI50 

threshold for resistant (below the line) and sensitive (above) cell lines.  

Figure 5.7.1 – GI50s for Paclitaxel 
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Figure 5.7.2 – GI50s for Gemcitabine 

 

 

Figure 5.7.3 – MDAMB231 Copy Number Analysis 

MDAMB231: Copy number analysis was performed using an AffymetrixCytoScan HD 

with DNA extracted from MDAMB231 in February of 2013 (dark blue in screen shots), 

and May of 2010 (pink). Both time points were compared to the Affymetrix SNP 6.0 data 

from Daemen et al. (light blue). Screen shots from ChAS are displayed for ABCC10, 

NT5C, OPRK1, and TYMS. Log 2 Ratios (green and red bars), copy number state, smooth 

signal, and genes are displayed for all three analyses (top to bottom). Log2 Ratios are 

displayed using a heat map between -1.5 and 1.5 (below). 

Log2 Ratio Heat Map:  

    

-1.5        0           1.5
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ABCC10 (at dotted line), chr6: 42,943,397 – 43,876,083, PennCNV call for Daemen data set: 2. A small deletion is detected by ChAS because the smooth 

signal drops below 1.5.It isn’t clear whether it is a real copy number change because it is small, and the Log2Ratios are noisy (red and green bars). 
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NT5C (at dotted line), chr17: 72,625,852 – 73,628,356, PennCNV call for Daemen data set: 2. Normal copy number of 2 is seen in all three analyses. There is a 

larger range of log 2 ratios seen in the SNP 6.0 array. 
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OPRK1 (at dotted line), chr8: 53,664,288 – 54,638,171, PennCNV call for Daemen data set: 2. A deletion of 1 copy is evident for the two re-measured sets, and 

may be present in the Daemen et al. data. PennCNV called this region a copy number of 2, although the data is noisy and the smooth signal is between a copy of 

1 and 2. This is an example where the noise in the data, or the cells are mosaic, may explain the discordant results between Daemen et al. and re-measured data. 
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TYMS (at dotted line), chr18: 177,496 – 1,153,659, PennCNV call for Daemen data set: 2. This demonstrates an example where the copy number is different 

between the Daemen data set and the re-measured data set. This appears to be a real change, as PennCNV and ChAS both clearly call a copy number of 2, but 

there is one extra copy detected in the re-measured data. 
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Appendix S5.10 MFA Criteria 

Classification 

Criteria (all are required for any given classification) 

RV 
coefficient 
of Factor* 

cos2 value 
of Factor* 

RV 
Coefficient 

of GI50 

cos2 value 
of GI50 

% variance 
explained 

Strong Relationship 
(Str Rel)^ >0.6 >0.4 >0.6 >0.4 >25% 

Relationship (Rel)~ >0.5 >0.25 >0.5 >0.25 >25% 

Possible 
Relationship (Pos) >0.3 >0.1 >0.5 >0.25 >25% 

*gene expression, copy number or mutation status, ^all dimension 1, ~dimensions 1 and 2 

 

Appendix S5.11 Multiple Factor Analysis 

Appendix S5.11.1 Cell Line Numbers in the Multiple Factor 
Analyses Individual Factor Maps: 

Cell Line 
Pac 
MFA 

# 

Gem 
MFA 

# 
Cell Line 

Pac 
MFA 

# 

Gem 
MFA 

# 
Cell Line 

Pac 
MFA 

# 

Gem 
MFA 

# 

184A1 1 HCC1954 16 MDAMB231 31 30 

184B5 2 HCC202 17 MDAMB361 32 31 

600MPE 3 HCC2185 18 MDAMB415 33 32 

AU565 4 HCC3153 19 MDAMB436 34 33 

BT474 5 HCC38 20 MDAMB453 35 34 

BT483 6 HCC70 21 MDAMB468 36 35 

BT549 7 HS578T 22 SKBR3 37 36 

CAMA1 8 LY2 23 SUM1315MO2 38 37 

HCC1143 9 MCF10A 24 SUM159PT 39 38 

HCC1187 10 MCF10F 25 SUM185PE 40 39 

HCC1395 11 MCF12A 26 SUM52PE 41 40 

HCC1428 12 MCF7 27 T47D 42 41 

HCC1569 13 MDAMB134VI 28 UACC812 43 42 

HCC1806 14 MDAMB157 29 N/A ZR751 44 43 

HCC1937 15 MDAMB175VII 30 29 ZR75B 45 44 

Individual factor maps, correlation circles, and groups representations are all formatted 

the same throughout the document. Factors (copy number, gene expression, mutation 

status and GI50) are labeled in the correlation circle arrows (overlaid on the individual 

factor map) and the groups representation. Cell lines are numbered according to the 

legend in the table of contents. Additional quantitative details of the MFAs can be found 

below.  
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Appendix S5.11.2 Paclitaxel Example - MAPT 

Individual Factor Map – Dimensions 1 and 2 (% variance explained in brackets) 

 

Groups Representation 
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Appendix S5.11.3 Gemcitabine Example - DCTD 

Individual Factor Map – Dimensions 1 and 2 (% variance explained in brackets) 

 

Groups Representation 
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Appendix S5.12 Paclitaxel Multiple Factor Analysis Results by Gene 

 

Negative (-) = Higher predictive variable is associated with lower GI50 value (ie. Increased resistance), Positive = Higher predictive 

variable is associated with higher GI50 value (ie. Decreased resistance), CN = copy number, GE = gene expression, Mut = somatic 

SMV*

Gene Name % VE GI50 CN GE Mut % VE GI50 CN GE Mut GI50 CN GE Mut GI50 CN GE Mut CN GE Mut

ABCB1 31% 0.77 0.08 0.17 0.78 28% 0.17 0.75 0.71 0.06 0.60 0.01 0.03 0.61 0.03 0.56 0.51 0.00 Str Rel (-)

ABCB11 41% 0.54 0.61 0.76 NA 32% 0.75 0.63 0.02 NA 0.29 0.37 0.58 0.57 0.40 0.00 Pos (+) Rel (+)

ABCC1 34% 0.22 0.82 0.80 0.08 27% 0.72 0.02 0.10 0.76 0.05 0.67 0.64 0.01 0.51 0.00 0.01 0.57 Pos (+)

ABCC10 43% 0.28 0.80 0.91 0.39 26% 0.38 0.48 0.04 0.81 0.08 0.65 0.83 0.15 0.15 0.23 0.00 0.65 21.28

BAD 55% 0.23 0.90 0.89 NA 33% 0.97 0.09 0.16 NA 0.05 0.81 0.80 0.95 0.01 0.02

BBC3 39% 0.77 0.00 0.77 NA 35% 0.28 0.94 0.28 NA 0.59 0.00 0.59 0.08 0.88 0.08 Str Rel (-)

BCAP29 34% 0.40 0.16 0.82 0.72 26% 0.31 0.93 0.19 0.24 0.16 0.02 0.66 0.52 0.10 0.86 0.04 0.06

BCL2 39% 0.36 0.63 0.80 NA 35% 0.83 0.58 0.08 NA 0.13 0.39 0.63 0.70 0.33 0.01 Rel (+) 25.53

BCL2L1 38% 0.67 0.70 0.74 0.15 32% 0.38 0.52 0.32 0.88 0.45 0.49 0.55 0.02 0.15 0.27 0.10 0.77 Rel (-) Str Rel (-) 36.17

BIRC5 35% 0.14 0.77 0.80 0.42 28% 0.89 0.00 0.39 0.43 0.02 0.59 0.63 0.18 0.79 0.00 0.15 0.19 27.66

BMF 46% 0.77 0.28 0.83 NA 34% 0.38 0.93 0.04 NA 0.59 0.08 0.70 0.14 0.87 0.00 Str Rel (-) 25.53

CNGA3 43% 0.72 0.75 0.46 NA 31% 0.35 0.21 0.88 NA 0.52 0.56 0.21 0.12 0.04 0.78 Str Rel (-)

CYP2C8 32% 0.74 0.76 0.17 0.33 25% 0.30 0.14 0.95 0.13 0.55 0.57 0.03 0.11 0.09 0.02 0.89 0.02 Str Rel (+)

CYP3A4 29% 0.76 0.11 0.68 0.34 27% 0.17 0.69 0.39 0.63 0.58 0.01 0.46 0.11 0.03 0.48 0.15 0.40 Str Rel (+)

FGF2 36% 0.75 0.29 0.57 0.67 26% 0.18 0.89 0.17 0.44 0.56 0.08 0.33 0.45 0.03 0.79 0.03 0.19 Rel (+) Rel (-) 27.66

FN1 32% 0.75 0.53 0.62 0.25 27% 0.25 0.30 0.39 0.87 0.56 0.28 0.39 0.06 0.06 0.09 0.15 0.76 Rel (+) Rel (+) 29.79

GBP1 52% 0.54 0.75 0.84 NA 30% 0.81 0.49 0.09 NA 0.29 0.56 0.71 0.66 0.24 0.01 Rel Rel (+)

MAP2 31% 0.43 0.32 0.65 0.72 28% 0.55 0.73 0.48 0.22 0.19 0.10 0.43 0.52 0.31 0.54 0.23 0.05 Pos (+)

MAP4 43% 0.38 0.74 0.81 0.60 27% 0.77 0.44 0.29 0.45 0.14 0.55 0.66 0.36 0.59 0.19 0.08 0.20 25.53

MAPT 33% 0.81 0.11 0.82 0.10 27% 0.32 0.45 0.27 0.83 0.65 0.01 0.67 0.01 0.10 0.20 0.07 0.69 Str Rel (-) 34.04

NFKB2 31% 0.68 0.72 0.52 0.06 29% 0.40 0.06 0.54 0.83 0.46 0.52 0.27 0.00 0.16 0.00 0.29 0.69 Rel (+) Pos (+) 23.4

NR1I2 38% 0.74 0.74 0.21 NA 33% 0.12 0.16 0.98 NA 0.55 0.54 0.04 0.01 0.03 0.96 Str Rel (+)

OPRK1 33% 0.57 0.82 0.57 0.16 26% 0.52 0.07 0.60 0.65 0.32 0.67 0.32 0.03 0.27 0.00 0.36 0.42 Pos Pos(-) Rel (+)

SLCO1B3 35% 0.55 0.49 0.74 0.56 30% 0.68 0.70 0.26 0.39 0.30 0.24 0.55 0.31 0.47 0.50 0.07 0.16 Rel (-) Rel (+) 23.4

TLR6 32% 0.69 0.44 0.70 0.35 27% 0.38 0.44 0.47 0.73 0.48 0.19 0.49 0.12 0.14 0.19 0.22 0.53 Pos Str Rel (+) 25.53

TMEM243 50% 0.04 0.87 0.87 NA 33% 1.00 0.06 0.01 NA 0.00 0.75 0.76 1.00 0.00 0.00 21.28

TUBB1 39% 0.66 0.49 0.71 NA 32% 0.45 0.85 0.17 NA 0.43 0.24 0.50 0.20 0.73 0.03 Str Rel (+)

TUBB4A 43% 0.30 0.78 0.76 NA 33% 0.95 0.11 0.27 NA 0.09 0.61 0.58 0.90 0.01 0.07

TUBB4B 36% 0.75 0.33 0.64 NA 34% 0.05 0.87 0.50 NA 0.56 0.11 0.41 0.00 0.75 0.25 Pos Str Rel (-)

TWIST1 38% 0.75 0.53 0.53 NA 33% 0.00 0.71 0.70 NA 0.57 0.28 0.29 0.00 0.50 0.50 Rel (+) Rel (+) 21.28

CSAG2 29.79

Dim 1 Dim 2

Groups Representation - 

Dim 1 

Groups Representation - 

Dim 2 GI50 Relationship ^
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mutations, % VE = % variance explained, Dim = dimension, SVM = support vector machine, * = percent of misclassification if the 

gene is removed from the SVM, Str Rel = strong relationship to GI50, Rel = relationship to GI50, Pos = possibly a relationship to 

GI50. ^ blank boxes indicate no relationship. 

Appendix S5.13 Gemcitabine Multiple Factor Analysis Results by Gene 

 

Abbreviations for table listed in Appendix S5.12

SVM*

Gene Name % VE GI50 CN GE Mut % VE GI50 CN GE Mut GI50 CN GE Mut GI50 CN GE Mut CN GE Mut

ABCB1 0.32 0.76 0.31 0.77 0.15 0.26 0.26 0.59 0.17 0.79 0.58 0.10 0.60 0.02 0.07 0.35 0.03 0.62 Str Rel (-) 20.45 (Exp)

ABCC10 0.34 0.31 0.20 0.83 0.71 0.27 0.77 0.67 0.06 0.22 0.10 0.04 0.70 0.51 0.60 0.45 0.00 0.05 Str Rel (-) 31.82 (Exp), 25 (CN)

AK1 0.36 0.44 0.35 0.85 0.63 0.26 0.45 0.65 0.03 0.65 0.19 0.12 0.72 0.39 0.20 0.43 0.00 0.42 Pos (-) Pos (-)

CDA 0.42 0.77 0.79 0.16 NA 0.33 0.22 0.01 0.98 NA 0.60 0.63 0.03 0.05 0.00 0.95 Str Rel (-)

CMPK1 0.37 0.55 0.63 0.82 0.29 0.26 0.10 0.42 0.07 0.91 0.31 0.40 0.67 0.08 0.01 0.18 0.00 0.83 Rel (-) Rel (-) 18.18 (Exp)

CTPS1 0.35 0.52 0.77 0.70 0.18 0.27 0.51 0.33 0.22 0.83 0.27 0.59 0.49 0.03 0.26 0.11 0.05 0.68 Pos Pos (-)

DCK 0.31 0.83 0.57 0.43 0.15 0.28 0.04 0.31 0.73 0.71 0.69 0.32 0.18 0.02 0.00 0.09 0.53 0.51 Rel (+)

DCTD 0.40 0.81 0.51 0.83 0.11 0.26 0.21 0.18 0.19 0.96 0.66 0.26 0.68 0.01 0.04 0.03 0.03 0.93 Rel (+) Str Rel (+) 25 (Exp)

NME1 0.53 0.43 0.85 0.82 NA 0.31 0.90 0.15 0.31 NA 0.19 0.73 0.68 0.81 0.02 0.10 Pos (-) Pos (-) 31.82 (Exp)

NT5C 0.55 0.46 0.84 0.87 NA 0.30 0.89 0.30 0.17 NA 0.21 0.70 0.75 0.79 0.09 0.03 34.09 (CN)

RRM1 0.45 0.5 0.82 0.9 0.24 0.25 0.19 0.31 0.07 0.92 0.25 0.67 0.81 0.06 0.03 0.1 0.01 0.85 20.45 (Exp)

RRM2 0.35 0.49 0.66 0.78 0.32 0.27 0.51 0.52 0.18 0.73 0.24 0.44 0.62 0.10 0.26 0.27 0.03 0.53 Pos (-) Pos (-)

RRM2B 0.43 0.37 0.86 0.82 0.41 0.25 0.64 0.12 0.19 0.72 0.13 0.74 0.67 0.16 0.41 0.01 0.04 0.52 Rel (-) 29.55 (Exp)

SLC28A1 0.37 0.36 0.73 0.48 0.76 0.27 0.75 0.25 0.63 0.20 0.13 0.53 0.23 0.58 0.56 0.06 0.40 0.04 Str Rel (-)

SLC28A3 0.31 0.76 0.16 0.31 0.73 0.26 0.21 0.75 0.62 0.21 0.58 0.03 0.10 0.54 0.04 0.56 0.39 0.04 Str Rel (+)

SLC29A1 0.54 0.02 0.90 0.90 NA 0.33 1.00 0.05 0.07 NA 0.00 0.81 0.81 1.00 0.00 0.00

SLC29A2 0.46 0.34 0.87 0.76 0.62 0.25 0.84 0.08 0.14 0.53 0.12 0.76 0.57 0.38 0.71 0.01 0.02 0.28 Pos (-)

TYMS 0.50 0.16 0.87 0.85 NA 0.33 0.98 0.00 0.18 NA 0.02 0.75 0.73 0.97 0.00 0.03 25 (CN)

Dim 1 Dim 2

Groups Representation - 

Dim 1 

Groups Representation - 

Dim 2 GI50 Relationship^
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Appendix S5.14 Cell Line GI50 vs. SVM Classification Score 

Appendix S5.14.1 Paclitaxel SVM 

 

Support vector machine classification score plotted against the GI50 of the cell line for 

paclitaxel. The vertical axis crosses the horizontal axis at the median GI50 of all cell lines 

analyzed.  Cell lines with scores >0 were classified as resistant, those with scores <0 are 

classified as sensitive. Cell lines outlined in a blue box are those classified as resistant, 

but are actually sensitive to the drug (false positives); cell lines outlined in purple box 

were misclassified as sensitive (false negatives). 
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Appendix S5.14.2 Gemcitabine SVM 

 

Support vector machine classification score plotted against the GI50 of the cell line for 

gemcitabine. The vertical axis crosses the horizontal axis at the median GI50 of all cell 

lines analyzed.  Cell lines with scores >0 were classified as resistant, those with scores <0 

are classified as sensitive. Cell lines outlined in a blue box are those classified as 

resistant, but are actually sensitive to the drug (false positives); cell lines outlined in 

purple box were misclassified as sensitive (false negatives) 
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Appendix S5.15 Single Gene paclitaxel and gemcitabine SVMs 
using cell line data 

Paclitaxel 

SVM single variable Percent misclassified Hinge loss 

Subtype 30.6% 0.69 

ABCB1 44.9% 0.90 

ABCB11 44.9% 0.90 

ABCC1 44.9% 0.90 

ABCC10 44.9% 0.90 

BAD 46.9% 0.95 

BBC3 34.7% 0.87 

BCAP29 44.9% 0.90 

BCL2 44.9% 0.90 

BCL2L1 44.9% 0.92 

BIRC5 44.9% 0.90 

BMF 42.9% 0.86 

CNGA3 44.9% 0.90 

CSAG2 36.7% 0.80 

CYP2C8 44.9% 0.90 

CYP3A4 44.9% 0.90 

FGF2 42.9% 0.91 

FN1 44.9% 0.85 

GBP1 36.7% 0.77 

MAP2 40.8% 0.86 

MAP4 44.9% 0.90 

MAPT 34.7% 0.81 

NFKB2 32.7% 0.85 

NR1I2 44.9% 0.90 

OPRK1 44.9% 0.90 

SLCO1B3 34.7% 0.78 

TLR6 38.8% 0.81 

TMEM243 44.9% 0.90 

TUBB1 44.9% 0.90 

TUBB4A 46.9% 0.94 

TUBB4B 44.9% 0.90 

TWIST1 44.9% 0.90 

15 Genes: 18% 0.64 
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Gemcitabine 

SVM single variable Percent misclassified Hinge loss 

Subtype 45.5% 0.95 

ABCB1-GE 45.5% 0.94 

ABCC10-CN 47.7% 0.95 

ABCC10-GE 36.4% 0.90 

CMPK1-GE 40.9% 0.87 

DCTD-GE 36.4% 0.90 

NME1-GE 45.5% 0.91 

NT5C-CN 47.7% 1.01 

RRM1-GE 38.6% 0.95 

RRM2B-GE 50.0% 0.98 

TYMS-CN 45.5% 0.91 

All Genes: 15% 0.66 
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Appendix S5.16 Multiple Factor Analysis– Entire and SVM Gene 
Sets 

(for dimensions 1 and 2, % variance explained in brackets) 

Appendix S5.16.1 Paclitaxel – SVM Gene Set 

Individual Factor Map 

 

The individual factor maps generated with a multiple factor analysis using the gene set 

derived from the respective SVMs are displayed for paclitaxel. Purple points are resistant 

cell lines, blue points are sensitive cell lines. Cell lines outlined in a blue box are those 

classified as resistant, but are actually sensitive to the drug (false positives); cell lines 

outlined in purple box were misclassified as sensitive (false negatives). 9 of 49 cell lines 

were misclassified for paclitaxel. 
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Correlation Circle 

 

Groups Representation 
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Appendix S5.16.2 Paclitaxel – Entire Gene Set 

Individual Factor Map 
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Appendix S5.16.3 Gemcitabine – SVM Gene Set 

Individual Factor Map 

 

The individual factor maps generated with a multiple factor analysis using the gene set 

derived from the SVM are displayed for gemcitabine. Purple points are resistant cell 

lines, blue points are sensitive cell lines. Cell lines outlined in a blue box are those 

classified as resistant, but are actually sensitive to the drug (false positives); cell lines 

outlined in purple box were misclassified as sensitive (false negatives). 7 of 44 cell lines 

were misclassified for gemcitabine. 
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Correlation Circle 

 

Groups Representation 
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Appendix S5.16.4 Gemcitabine– Entire Gene Set 

Individual Factor Map 

 

−5 0 5 10 15

−
1
0

−
5

0
5

Individual factor map

Dim 1 (16.28%)

D
im

 2
 (

1
4
.1

9
%

)

1
2

3

4

5

6

7 8

9

10

1112

13

14

15

16

17

18

19
20 21

22

23

24

25

26

27

28

29

30

31
32

33

34

35

36

37

38

39

40

41
42

43

44

Resistant

Sensitive

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

Resistant

Sensitive



 

 

322 

Appendix S5.17 FFPE Samples – Gene expression measurements summary 

Appendix S5.17.1 Number of measurements by gene compared to GTEx expression levels 
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Appendix S5.17.2 Year of tissue block compared to number of measurements per sample 
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Appendix S5.18 Patient Clustering Supplementary Results. 

Clustering was performed as in main Methods. Each cluster derived from the MD 

Anderson Patient Data was isolated and the tumours in each were summarized by 

subtype, number of distance recurrences ("events"), and mean time to distant recurrence 

(Tables S5.1-S5.3 – see below). 

The 'grey' clusters were isolated and further clustered with similar stratification by gene 

expression and outcome (Supplementary Figure VI. 1).  

Appendix S5.18.1 FFPE Patient Samples 

Figure VI.1 – Paclitaxel FFPE Clustering Results 
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Expression heatmap of the paclitaxel SVM derived genes for our set of 32 FFPE samples, 

as measured by qPCR. Each row represents a gene and each column a tumour. Red 

indicates higher expression and blue represents lower expression, as shown by the colour 

bar on the left. Clustering was done based on the similarity of each tumour's and gene's 

expression profile. The dendrograms on the top and left indicate the relatedness of each 

tumour and gene by the length and subdivision of the branches, with deeper branches 

indicating a stronger relationship and branches in the same 'tree' being more closely 

related to each other than data in other 'trees'. 

Figure VI.2 – Gemcitabine FFPE Clustering Results 

 

Figure legend as above (Figure VI. 3). 

Note: sample 3A had an extremely high expression value for DCTD and distorted the row 

view for that gene. It has been removed in this figure for ease of visualization. 
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Appendix S5.18.2 Hatzis et al. Patient Data 

Supplementary Figure VI.3 - Further Clustering of the 'Grey' Cluster 

  

The 'grey' cluster from the previous clustering analysis was isolated and clustered further. 

The leftmost cluster (shaded a lighter grey) is composed of 70% luminal tumours with a 

mean survival time of 3.14 years. The rightmost cluster is composed of 43% basal 

tumours with a mean survival time of 2.45 years. The leftmost cluster also contains only 

3 distant recurrences, with two of those being classified by the MD Anderson signature as 

"Sensitive". The 'light grey' cluster, meanwhile, is stratified very well on the basis of the 

MD Anderson signature (results not shown). This mirrors the results of the clustering 

analysis on the 'green' and 'purple' tumour clusters. 
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Supplementary Figure VI.4 - Zoom on the 'purple' and 'green' clusters. 

 

The clusters from Figure 11 in the main paper were isolated from the main heatmap for 

easier visualization of the differential gene expression that distinguishes each cluster. 

Figure legend as in the main paper. 
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Table S5.1: Summary of tumours contained in each cluster. 

 

Table S5.2: Summary of tumours contained in each cluster. 
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Table S5.3: Summary of tumours contained in each cluster. 

 

RD: recurrent disease pCR: pathological complete response 

Insensitive/Sensitive as predicted by Hatzis et. al. (2011) 

Events: distant relapse Time: time to distant relapse 

Appendix S5.19 MAPT Expression Affects Prognosis in Luminal 
Tumours. 

 MAPT is part of the PAM50 and clearly segregates the data into luminal and basal 

subtype to a large extent. However, some luminal tumours express MAPT at a lower level 

than the majority. Low MAPT expressing luminal subtypes fall into the low MAPT 

expressing 'purple' cluster (Supplementary Figure VI. 4) and have a significantly worse 

prognosis than higher MAPT expressing luminal tumours in the patient dataset 

(Supplementary Figure VII. 1). 
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Supplementary Figure VII. 1 - Kaplan-Meier curves for low MAPT expressing luminal 

tumours vs. higher MAPT expressing luminal tumours. 

 

'Low' vs. 'high' expression was stratified by median MAPT expression across all tumours, 

regardless of subtype. Luminal tumours with expression values below the overall median 

were classified as 'low MAPT' and those with values above were classified as 'high 

MAPT'. There were 32 low MAPT expressing' luminal tumours in the low MAPT set and 

123 high MAPT expressing luminal tumours.  In the log-rank test, the Kaplan-Meier 

results are significant (p = 0.037). The log-rank hazard ratio is 2.503 (95% CI of ratio: 

1.071 to 9.203). 
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Appendix S5.20 Creating SVM models using lung and hematopoietic 
cell lines. 

We initially investigated the possibility that the paclitaxel breast cancer SVM model 

could predict cell line sensitivity to this drug in 22 other cancer cell line types. The 

respective misclassification rates were higher than with the breast cancer cell lines. We 

attempted to classify resistance with the SVM model in other neoplastic tissues, including 

from autonomic ganglia (10 cell lines), biliary tract (1), bone (10), central nervous system 

(27), endometrium (17), hematopoietic and lymphoid tissue (55), kidney (8), large 

intestine (18), liver (15), lung (76), oesophagus (15), ovary (24), pancreas (25), pleura 

(7), prostate (3), salivary gland (1), skin (35), soft tissue (11), stomach (14), thyroid (3), 

upper aerodigestive tract (6), and urinary tract (12). As Daemon et al., 2013 reported, 

clustering of individual tissue types dominates the analysis of chemosensitivity. The 

tissue-specific gene expression program of the cell lines could explain why the breast 

cancer signature was not transferable.  

Appendix S5.20.1 Feature Selection Process – Lung Cancer Cell 
Lines 
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Appendix S5.20.2 Feature Selection Process – Hematopoietic 
and Lymphoid Tissue Cancer Cell Lines 

 

Appendix S5.20.3 Final SMV Gene Sets for Paclitaxel 
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Appendix S5.20.4 MFA Using Genes in SVM – Lung 
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Appendix S5.20.5 MFA Using Genes in SVM – Hematopoietic 
and Lymphoid Tissue 

 

 

−6 −4 −2 0 2 4

−
2

−
1

0
1

2
3

4

Dim 1 (22.06%)

D
im

 2
 (

1
7
.8

0
%

)

1

2

3

4

5

6

78

9

10

11

12

13

14

15

16
17

18
19

20

21

22

23

24

2526

27 28

29

30

31

32

33

34

35

36

37

38

39
40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Resistant
Sensitive

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Resistant

Sensitive

−1.0 −0.5 0.0 0.5 1.0

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Dim 1 (22.06%)

D
im

 2
 (

1
7
.8

0
%

)

IC50
ABCC1
BAD
BCL2
BMF
TMEM243
FGF2
TLR6
TWIST1

IC50

ABCC1

BAD

BCL2

BMF

C7orf23

FGF2

TLR6

TWIST1



 

 

335 

Appendix S5.21 References for Appendix S5 

1. Wang, K. et al. PennCNV: an integrated hidden Markov model designed for high-

resolution copy number variation detection in whole-genome SNP genotyping data. 

Genome Res. 17, 1665–1674 (2007). 

2. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for 

analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010). 

3. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic 

variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010). 

4. Ng, P. C. & Henikoff, S. SIFT: predicting amino acid changes that affect protein 

function. Nucleic Acids Res. 31, 3812–3814 (2003). 

5. Shirley, B. C. et al. Interpretation, stratification and evidence for sequence 

variants affecting mRNA splicing in complete human genome sequences. Genomics 

Proteomics Bioinformatics 11, 77–85 (2013). 

6. Viner, C., Dorman, S. N., Shirley, B. C. & Rogan, P. K. Validation of predicted 

mRNA splicing mutations using high-throughput transcriptome data. F1000Research 3, 8 

(2014). 

7. Skehan, P. et al. New colorimetric cytotoxicity assay for anticancer-drug 

screening. J. Natl. Cancer Inst. 82, 1107–1112 (1990). 

8. Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for 

massively parallel targeted sequencing. Nat. Biotechnol. 27, 182–189 (2009). 

9. Dorman, S. N., Shirley, B. C., Knoll, J. H. M. & Rogan, P. K. Expanding probe 

repertoire and improving reproducibility in human genomic hybridization. Nucleic Acids 

Res. 41, e81 (2013). 

10. Chou, H.-H., Hsia, A.-P., Mooney, D. L. & Schnable, P. S. Picky: oligo 

microarray design for large genomes. Bioinforma. Oxf. Engl. 20, 2893–2902 (2004). 



 

 

336 

11. Dash, M. & Liu, H. Feature Selection for Classification. Intell. Data Anal. 131–

156 (1997). doi:10.3233/IDA-1997-1302 

12. Heikal, N., Nussenzveig, R. H. & Agarwal, A. M. Deparaffinization with mineral 

oil: a simple procedure for extraction of high-quality DNA from archival formalin-fixed 

paraffin-embedded samples. Appl. Immunohistochem. Mol. Morphol. AIMM Off. Publ. 

Soc. Appl. Immunohistochem. 22, 623–626 (2014). 

13. Cronin, M. et al. Measurement of gene expression in archival paraffin-embedded 

tissues: development and performance of a 92-gene reverse transcriptase-polymerase 

chain reaction assay. Am. J. Pathol. 164, 35–42 (2004). 

14. Park, N. I., Rogan, P. K., Tarnowski, H. E. & Knoll, J. H. M. Structural and genic 

characterization of stable genomic regions in breast cancer: relevance to chemotherapy. 

Mol. Oncol. 6, 347–359 (2012). 

15. Yu, J. et al. Copy-number analysis of topoisomerase and thymidylate synthase 

genes in frozen and FFPE DNAs of colorectal cancers. Pharmacogenomics 9, 1459–1466 

(2008). 

16. Nugoli, M. et al. Genetic variability in MCF-7 sublines: Evidence of rapid 

genomic and RNA expression profile modifications. BMC Cancer 3, (2003). 

17. Ring, B. Z., Chang, S., Ring, L. W., Seitz, R. S. & Ross, D. T. Gene expression 

patterns within cell lines are predictive of chemosensitivity. BMC Genomics 9, 74 (2008). 

18. Daemen, A. et al. Modeling precision treatment of breast cancer. Genome Biol. 

14, R110 (2013). 



 

 

337 

Curriculum Vitae 

 

Name:   Stephanie N. Dorman 

 

Post-secondary  University of Western Ontario 

Education and  London, Ontario, Canada 

Degrees:   2005-2010 B.M.Sc. 

 

University of Western Ontario 

London, Ontario, Canada 

2005-2010 H.B.A. 

 

University of Western Ontario 

London, Ontario, Canada 

2010-2015 Ph.D. 

 

Honours and   Dr. Bishnu D. Sanwal Graduate Performance Award 

Awards:   2015 

 

Ontario Graduate Scholarship 

2012-2013, 2013-2014, 2014-2015 

 

CIHR Strategic Training Program in Cancer Research and 

Technology Transfer 

2011-2012, 2012-2014, 2014-2015 

 

Translational Breast Cancer Research Studentship 

2011-2012, 2012-2014, 2014-2015 

 

Canadian Cancer Society Research Institute Travel Award 

2014 

 

CIHR Institute Community Support Travel Award 

2014 

 

Global Opportunities Award 

2013 

 

Graduate Thesis Research Fund Award 

2011-2012, 2012-2013 

 

 

Related Work  Teaching Assistant, Biochemistry 2280 



 

 

338 

Experience   The University of Western Ontario 

2012-2015 

 

 

 

 

Publications: 

 

Dorman SN, Baranova K, Rogan PK. (2015) A genomic signature for Paclitaxel and 

Gemcitabine resistance in breast cancer. Molecular Oncology. DOI: 

10.1016/j.molonc.2015.07.006. 

 

Dorman SN, Viner C, Rogan PK. (2014) Splicing mutation analysis reveals previously 

unrecognized pathways in lymph node-invasive breast cancer. Scientific Reports. 4:7063, 

1-9. 

 

Viner C, Dorman SN, Shirley BC and Rogan PK. (2014) Validation of predicted mRNA 

splicing mutations using high-throughput transcriptome data F1000Research. 3:8. [v2; 

status: indexed, http://f1000r.es/378] 

 

Dorman SN, Shirley BC, Knoll JHM, Rogan PK. (2013) Expanding probe repertoire and 

improving reproducibility in human genomic hybridization. Nucleic Acids Research. 

41:7, e81.  

 

 


	Interpretation of Mutations, Expression, Copy Number in Somatic Breast Cancer: Implications for Metastasis and Chemotherapy
	Recommended Citation

	ETD word template

