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Abstract

Periodicity, primitivity and borderedness are some of the fundamental notions in combi-

natorics on words. Motivated by the Watson-Crick complementarity of DNA strands wherein

a word (strand) over the DNA alphabet {A, G, C, T} and its Watson-Crick complement are

informationally equivalent, these notions have been extended to consider pseudo-periodicity

and pseudo-borderedness obtained by replacing the “identity” function with “pseudo-identity”

functions (antimorphic involution in case of Watson-Crick complementarity). For a given al-

phabet Σ, an antimorphic involution θ is an antimorphism, i.e., θ(uv) = θ(v)θ(u) for all u, v ∈ Σ∗

and an involution, i.e., θ(θ(u)) = u for all u ∈ Σ∗. In this thesis, we continue the study of

pseudo-periodic and pseudo-bordered words for pseudo-identity functions including involu-

tions.

To start with, we propose a binary word operation, θ-catenation, that generates θ-powers

(pseudo-powers) of a word for any morphic or antimorphic involution θ. We investigate various

properties of this operation including closure properties of various classes of languages under

it, and its connection with the previously defined notion of θ-primitive words.

A non-empty word u is said to be θ-bordered if there exists a non-empty word v which is

a prefix of u while θ(v) is a suffix of u. We investigate the properties of θ-bordered (pseudo-

bordered) and θ-unbordered (pseudo-unbordered) words for pseudo-identity functions θ with

the property that θ is either a morphism or an antimorphism with θn = I, for a given n ≥ 2, or θ

is a literal morphism or an antimorphism.

Lastly, we initiate a new line of study by exploring the disjunctivity properties of sets of

pseudo-bordered and pseudo-unbordered words and some other related languages for various

pseudo-identity functions. In particular, we consider such properties for morphic involutions θ

and prove that, for any i ≥ 2, the set of all words with exactly i θ-borders is disjunctive (under

certain conditions).

Keywords: morphic and antimorphic involutions, pseudo-bordered words, pseudo-unbordered

words, disjunctivity, pseudo-identity, pseudo-power, pseudo-periodicity, pseudo-primitivity.

ii



Co-authorship statement
This thesis consists of three research articles out of which the articles presented in Chapter

3 and 4 are published while the article in Chapter 5 is submitted for publication to the journal

Acta Informatica and is undergoing a review process. All of them are co-authored with my

supervisor Prof. Lila Kari. Note that, as customary in computer science, the author order is

alphabetical.

The major individual contributions are listed below. However, the results of this collabo-

ration cannot be decomposed into discrete sets of individual contributions, as some key results

arose during discussions, and would not have existed without this interaction.

Chapter 3, “Generating pseudo powers of a word”,

L.K. - topics, research ideas, manuscript writing and editing

M.K. - research ideas and proofs, results, manuscript draft and manuscript editing

Chapter 4, “Pseudo-identities and bordered words”,

L.K. - topics, research ideas, manuscript writing and editing

M.K. - research ideas and proofs, results, manuscript draft and manuscript editing

Chapter 5, “Disjunctivity and other properties of sets of pseudo bordered words”,

L.K. - topics, research ideas, manuscript writing and editing

M.K. - research ideas and proofs, results, manuscript draft and manuscript editing

iii



Acknowledgements
First and foremost I would like to express my immense gratitude to my supervisor Dr. Lila

Kari for her support and guidance throughout my Ph.D. studies. She is an excellent mentor.

Not only did she guide me in my studies but she extended her warm support in my tough times.

I have hardly seen anybody who is always so energetic, enthusiastic and motivating. My doc-

toral program has been partially supported financially by the Natural Science and Engineering

Research Council of Canada Discovery grant to Dr. Lila Kari.

I would like to thank Prof. Lucian Ilie and Prof. Kaizhong Zhang for reading my thesis

proposal and for their constructive comments and suggestions.

I would like to acknowledge the University of Western Ontario for Western Graduate Re-

search Scholarship, and also for providing excellent teaching related and other workshops. I

would like to take this opportunity to thank the faculty and staff in the Department of Com-

puter Science for providing me with a supportive environment to carry out my research, and

for giving me an opportunity to demonstrate my leadership abilities.

Thanks to my colleagues in Biocomputing lab: Amirhossein Simjour, Rallis Karamichalis,

Srujan Kumar Enaganti and Dr. Steffen Kopecki for maintaining a friendly atmosphere in the

lab. Special thanks to Rallis Karamichalis for fruitful discussions and for reading drafts of my

work whenever I asked him to do so. I am very grateful to all my friends and roommates for

supporting me. Thanks to Amita, Ansh, Nikhil and London Marathi Mandal for providing me

with a home away from home.

Thanks to Dr. Kalpana Mahalingam and Mr. Shriprasad Tambe for their motivation and

encouragement to pursue Ph.D. studies.

Special thanks to my husband Amit, who supported me in all possible ways to pursue my

career and dreams. Without his support it would have been really hard to achieve this milestone

of my life. Last but not least, it would have been impossible to complete this journey without

the support of my parents and my brother, Saurabh. In spite of being thousands of miles away

they provided me with emotional support and constant encouragement. I never got a chance to

iv



say thanks to my late grandfather, Eknath Shankpal who taught me to love mathematics. His

contribution to my success is enormous.

v



To my loving parents, Shrikant and Prachi, and to the memory of my late grandfather,

Eknath Shankpal

vi



Contents

Abstract ii

Co-authorship Statement iii

Acknowledgements iv

List of Figures x

List of Tables xii

1 Introduction 1

2 DNA Encoded Information: A Literature Review 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 DNA codeword design and formal languages . . . . . . . . . . . . . . . . . . . 6

Basic definitions and notations . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Intra-molecular hybridizations: hairpins and pseudoknots . . . . . . . . 8

Mathematical formalization . . . . . . . . . . . . . . . . . . . . . . . . 8

Hairpin and pseudoknot avoidance . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Inter-molecular hybridizations . . . . . . . . . . . . . . . . . . . . . . 15

2.3 DNA codeword design problem: other approaches . . . . . . . . . . . . . . . . 20

2.4 DNA memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 In vitro DNA memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Nested Primer Molecular Memory (NPMM) . . . . . . . . . . . . . . . 25

vii



2.4.2 Organic DNA memory . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 DNA computing inspired combinatorics on words . . . . . . . . . . . . . . . . 29

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Generating Pseudo-Powers of A Word 44

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Basic definitions and notations . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 θ-catenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 θ-primitive words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Closure properties and language equations . . . . . . . . . . . . . . . . . . . . 59

3.6 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Pseudo-Identities and Bordered Words 66

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Basic definitions and notations . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Properties of pseudo-(un)bordered words . . . . . . . . . . . . . . . . . . . . . 70

4.4 Disjunctivity of the set of θ-(un)bordered words . . . . . . . . . . . . . . . . . 80

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Disjunctivity and Other Properties of Sets of Pseudo-Bordered Words 92

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Basic definitions and notations . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Disjunctivity properties of Dθ(i) . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Disjunctivity of the set Di
θ(1)\D(i) . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Disjunctivity of the set (Dθ(2) ∩ D(2))\(Dθ(1) ∩ D(1))k for k = 1, 2 . . . . . . . 108

5.6 Further remarks on Dθ(i) and related languages . . . . . . . . . . . . . . . . . 115

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6 Conclusion and Discussion 127

viii



7 Addendum 130

A Appendices 132

Curriculum Vitae 136

ix



List of Figures

2.1 DNA hairpin structure formed by a θ-bordered word over the DNA alphabet

with non-overlapping θ-border, GTCAGCGATAG (θ is an antimorphic involu-

tion over {A,G,C,T }) [39] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Left: A pseudoknot found in E.coli transfer-messenger-RNA. Right: Mathe-

matical formalization in terms of a string v1xv2yv3θ(x)v4θ(y)v5 [43] . . . . . . . 10

2.3 Pseudoknot structure formed due to intra-molecular hybridization modelled as

a θ-pseudoknot-bordered word xyγθ(x)θ(y) [43] . . . . . . . . . . . . . . . . . 10

2.4 Hairpin constructions corresponding to the languages αHk where

α ∈ {u, b, c, f , bc, b f , c f , bc f }, [56] . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 A θ-bordered word u over the DNA alphabet, with overlapping θ-border v

where w = θ(v) [39] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Pseudoknot-like structure formed due to inter-molecular hybridization between

words βθ(x)θ(y) and xyα [43] . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Inter-molecular hybridization between two strands u and v, θ(v) being a sub-

word of u [34] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Undesired inter-molecular hybridizations, (a): two words that have WK-complementary

subwords, (b): a word that is WK-complementary to the catenation of two other

words [37] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.9 Classes of languages free from certain types of undesired hybridization [44] . . 19

x



2.10 Protocol to select maximally mismatched oligonucleotides, starting with a pop-

ulation of strands with primer pair P1 and P2C, which amplifies only very mis-

matched oligonucleotides [16] . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.11 A recombinant plasmid with two DNA fragments as sentinels protecting the

encoded message in between, [68] . . . . . . . . . . . . . . . . . . . . . . . . 28

2.12 Encryption of the first word of Richard Feynman’s suggested message to future

civilizations [11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

xi



List of Tables

2.1 Solutions to the extended Lyndon-Schützenberger equation . . . . . . . . . . . 33

xii



Chapter 1

Introduction

The study on repetitions and square-free words by Axel Thue [2] initiated the further explo-

ration of word properties and formal languages, an area of discrete mathematics known as

combinatorics on words. This exploration includes studies about word operations and prop-

erties of words ([6]) such as periodicity, primitivity, conjugacy, commutativity, palindromes,

etc. It has also opened the door to the study of infinite words and sequences, with Thue-Morse

words, Sturmian words, Fibonacci words ([5]) being some of the representatives.

Due to the close connection of this field with mathematics, the question that arose in this

context was to generalize word properties by replacing the identity mapping with pseudo-

identity functions. The experiment that used Deoxyribonucleic Acid (DNA) as a medium to

encode information and solve computational problems, performed by Adleman ([1]) triggered

the study of word and language properties using the pseudo-identity functions such as the

antimorphic involution which is the mathematical formalization of the DNA Watson-Crick

(WK) complementarity (see Chapter 2).

A DNA strand can be viewed as a word over the DNA alphabet {A, G, C, T} wherein A

is a WK-complement of T and G is aWK-complement of C and vice versa. Two single DNA

strands, that are WK complements of each other and have opposite orientations, bind to each

other to form a DNA double strand via a process called base-pairing, or hybridization. Thus,

1



2 Chapter 1. Introduction

DNA WK-complementarity can be modelled as an antimorphic involution, a function that is

an antimorphism, i.e., for all u, v ∈ Σ∗ θ(uv) = θ(v)θ(u) and an involution, i.e., θ(θ(u)) = u for

all u ∈ Σ∗.

In this thesis, we continue the exploration of word operations and properties for various

pseudo-identity functions including morphic and antimorphic involutions.

In Chapter 2, we give an overview of research related to theoretical aspects of DNA encoded

information along with some DNA memory models proposed in the literature.

Chapter 3 contains the article, “Generating pseudo-powers of a word”, in which we propose

binary word operations that produce θ-powers (θ-catenation) and Abelian-powers (Abelian-

catenation) for any morphic or an antimorphic involution θ, thereby generalizing the notion

of identity to pseudo-identity in terms of the binary word operation of catenation. We mainly

focus on the properties of the operation of θ-catenation.

Chapter 4 contains the article, “Pseudo-identities and bordered words” where we continue

the study of θ-bordered words initiated in [4] for θ being not just a morphic or an antimorphic

involution, but any literal morphism or an antimorphism.

In Chapter 5, which contains the article, “Disjunctivity and other properties of sets of

pseudo-bordered words”, we continue to explore disjunctivity properties of some languages

related to the set of θ-bordered words for (anti)morphic involutions θ which was initiated in

[3]. In particular, we prove that, for all i ≥ 1, the set of all words with exactly i θ-borders,

Dθ(i), is disjunctive (under certain conditions).

We conclude the thesis with Chapter 6, a discussion of the main results in the thesis and

future work.
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Chapter 2

DNA Encoded Information: A Literature

Review

2.1 Introduction

The demand for reliable media to store information safely is growing rapidly with the vastly

increasing amount of data. Present day technologies are catering to the need to the best of

their abilities, but many of these commonly used technologies such as hard drives and flash

drives suffer from a lack of being sustainable through extreme environmental and some other

conditions such as drought, earthquake, radiation, etc. Hence, scientists are in search of reli-

able media as an alternative to present-day silicon-based computers and hard drives. DNA is

believed to be one of the very strong candidates, due to its natural ability to store the informa-

tion about the genetic make-up of an organism, and the information storage density. According

to [58], DNA can store up to 4.2 × 1021 bits per gram whereas conventional technologies can

store maximum of 109 bits per gram. The experiment performed by Leonard Adleman ([1])

confirmed the fact that DNA indeed can be used for computation and data storage purposes.

Adleman conducted an experiment to solve a 7-node instance of the NP-complete Hamiltonian

Path Problem. The basic idea was to encode the vertices and edges of the graph into DNA

4



2.1. Introduction 5

molecules and then to use sets of bio-operations to find the solution to the problem. This ex-

periment initiated the field of DNA or bio-molecular computing which studies the arithmetic

and logic operations that can be performed using molecular biology processes.

Recall that DNA (Deoxyribonucleic Acid) is the genetic information storage unit of every

cell in all living organisms (and many viruses). Each single-stranded DNA molecule consists

of a sequence of nucleotides. Each nucleotide is composed of: a cyclic five-carbon sugar ring

(the carbon atoms are numbered 1’ through 5’), a phosphate group, and a nitrogenous base

(Adenine, Guanine, Cytosine, or Thymine abbreviated as A, G, C, or T respectively). The

phosphate group is linked to the 5’ carbon of the sugar, and the nitrogenous base attaches to

the 1’ carbon of the sugar. The 5’-phosphate group of one nucleotide binds to the 3’-hydroxyl

group (the hydroxyl group attaches to the 3’ carbon of the sugar) of other nucleotide by covalent

bonds. This chain of alternating sugar and phosphate molecules forms the so called sugar-

phosphate backbone of a DNA strand. A single-stranded DNA molecule has an orientation

with one end being called the 5’ end (since the free phosphate group attaches to the 5’ carbon

of the sugar) and the other end the 3’ end (since the free hydroxyl group attaches to the 3’

carbon of the sugar). A double-stranded DNA molecule consists of two single-stranded DNA

molecules with opposite orientation which bind to each other with hydrogen bonds between

nucleotides in the process of hybridization: the nucleotide A binds to the nucleotide T and vice

versa, with double hydrogen bonds, whereas the nucleotide G binds to the nucleotide C and

vice versa, with triple hydrogen bonds. The bases A, T and G, C are said to be Watson-Crick

(WK)-complements of each other [67].

To bring the idea of storing information on DNA into practice, there are two issues that need

to be taken into consideration. First, we need to find a suitable encoding method considering

various constraints, so that the information can be stored and retrieved unambiguously without

losing it. Second, we need to find a suitable host to store this encoded information. The first

issue is called the codeword design problem and it is usually defined as finding short words

over the DNA alphabet, which are usually equi-length, [44], that satisfy certain combinatorial
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constraints. This chapter gives an overview of the solutions that deal with the above mentioned

issues. Note that rather than focussing on algorithmic aspects more emphasis will be given to

formal-language theoretical solutions that overcome the codeword design problem.

While synthesizing artificial DNA strands for the purpose of computation and storage, it

is important to design these strands in such a way that only the desired computations and

interactions will take place (positive design problem) while all other undesired computations

and interactions are avoided (negative design problem). Briefly, the positive design problem

is to design a set of DNA strands so that they will interact with each other in a programmable

way so as to produce the desired results, whereas the negative design problem is to design a

set of DNA strands so that these strands will not interact with each other in an unprogrammed

way and will not produce undesired outputs [17, 52, 59]. Here undesired outputs mean strands

that are the result of undesired self- or cross-hybridization.

The chapter is organized as follows. In Section 2.2 we discuss formal-language theoretical

solutions to the codeword design problem, followed by other solutions such as, software simu-

lation, and test tube experiments in Section 2.3. In Section 2.4 we discuss some in vitro and in

vivo DNA memory models. In Section 2.5 we discuss generalizations of many classical con-

cepts from the combinatorics on words inspired by the WK-complementarity of DNA strands,

with concluding remarks in Section 2.6.

2.2 DNA codeword design and formal languages

In this section we discuss mainly formal language theoretic and combinatorial solutions to the

negative design problem. According to [59] the input DNA strands involved in the computation

which need to avoid unwanted hybridizations should satisfy certain conditions such as: (i) there

should not be any strands with undesired secondary structures such as hairpin loops, (ii) no two

strings in the library should hybridize with each other, and (iii) no string and a complement of

another string in the library should hybridize with each other.
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The hybridization in which two parts of the same DNA strand are WK-complements of

each other, forming hairpin-like structures, is known as intra-molecular hybridization. When

two DNA strands that are complete or partial WK-complements of each other hybridize then

such a hybridization is called inter-molecular hybridization. Let us discuss some notations and

definitions used in this section and in Section 2.5.

Basic definitions and notations

An alphabet Σ is a finite non-empty set of symbols. Σ∗ denotes the set of all words over

Σ including the empty word λ and Σ+ = Σ∗\λ. We will denote the DNA alphabet by ∆ =

{A,C,G,T }. In this context, a set of codewords is a set of equi-length words over the DNA

alphabet. The length of a word u ∈ Σ+ is denoted by |u|, whereas the length of an empty word

|λ| = 0, and Σi denotes the set of all words of length i over Σ for i ≥ 1. An involution θ is a map

θ : Σ∗ → Σ∗ with the property that θ2 is the identity function. A mapping θ is called a morphism

if for any words u, v ∈ Σ∗, θ(uv) = θ(u)θ(v) and an antimorphism if θ(uv) = θ(v)θ(u). Recall that

DNA WK-complementarity can be formalized as an antimorphic involution, a function which

is an antimorphism and an involution.

A word x ∈ Σ+ is a prefix (proper prefix) of the word u if u = xy for y ∈ Σ∗ (y ∈ Σ+), and this

is denoted by x ≤p u (x <p u). Similarly, for u = xy, y is a suffix (proper suffix) of u if x ∈ Σ∗

(x ∈ Σ+) and this is denoted by y ≤s u (y <s u). Let us denote the set of all prefixes (proper

prefixes, suffixes, proper suffixes, respectively) of u by Pref(u) (PPref(u), Suff(u), PSuff(u),

respectively). A word v ∈ Σ+ is a subword of a word u if u = xvy for x, y ∈ Σ∗. By Sub(u)

and Subk(u), we denote the set of all subwords of u, and the set of all subwords of length k of

u, respectively. For a word u such that u = xy for x, y ∈ Σ∗, yx is called a cyclic permutation

of u. The set of all cyclic permutations of u is denoted by cp(u). For all other concepts in the

combinatorics on words and formal languages, the reader is referred to [30, 47, 61, 70].

In the following subsection we discuss some secondary structures such as hairpins and

pseudo-knots which are result of an intra-molecular hybridization of a DNA or an RNA molecule,
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respectively. Note that the terms “words” and “strands” will be used interchangeably in the fol-

lowing sections.

2.2.1 Intra-molecular hybridizations: hairpins and pseudoknots

The hairpin loop is one of the primary secondary structures formed due to the intra-molecular

hybridization of a DNA molecule. Although the hairpin loop formation by a single-stranded

DNA molecule is useful in solving some combinatorial problems (see, e.g., [1, 60]) and in

improving the data transmission between two logic gates in DNA-based logic circuits [32], it is

undesirable for the purpose of encoding information, since such molecules become unavailable

for further computations. Hence, they should be avoided in most DNA computing experiments.

In this section we first discuss the formalization of hairpin loops as words over the DNA

alphabet, and present some combinatorial and formal language-theoretic properties of such

(sets of) words, and then we discuss languages which avoid DNA hairpin loop formation.

Mathematical formalization

A word u is called bordered if there exists a word v ∈ Σ+ such that u = vx = yv for x, y ∈ Σ+

and this is denoted by v <d u. Similarly,

Definition 2.1 [39] For any (anti)morphism1 θ, a word u ∈ Σ+ is said to be θ-bordered if there

exists v ∈ Σ+ such that u = vx = yθ(v) for some x, y ∈ Σ+ and this is denoted by v <θd u. A

non-empty word which is not θ-bordered is called θ-unbordered.

Let us denote by Lθd(u) = {v | v ∈ Σ∗, v <θd u} the set of all θ-borders of a word u ∈ Σ∗; by

νθd(u) = |Lθd(u)| the number of θ-borders of a word u ∈ Σ∗, and by Dθ(i) = {u | u ∈ Σ+, νθd(u) = i}

the set of all words with exactly i θ-borders, for i ≥ 1. When θ is an antimorphic involution and

a θ-bordered word over the DNA alphabet has non-overlapping θ-borders, it forms a hairpin-

like structure as shown in Figure 2.1.

1By (anti)morphism we mean either a morphism or an antimorphism.
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Figure 2.1: DNA hairpin structure formed by a θ-bordered word over the DNA alphabet with
non-overlapping θ-border, GTCAGCGATAG (θ is an antimorphic involution over {A,G,C,T })
[39]

Example 2.1 Let Σ = {A,C,G,T } and θ be an antimorphic involution such that θ(A) = T,

θ(C) = G and vice versa. Then, w = TCGTCTT ACGA = (TCGT )CTTθ(TCGT ) is θ-

bordered whereas w′ = TGCT is θ-unbordered.

The following result provides a necessary and sufficient condition for a word to be θ-

bordered for an antimorphic involution θ.

Lemma 2.2.1 [39] Let θ be an antimorphic involution. Then x ∈ Σ+ is θ-bordered iff x =

ayθ(a) for some a ∈ Σ and y ∈ Σ∗.

For a morphic involution θ, the set of all θ-bordered words over Σ is not context-free but

it is context-sensitive, whereas for an antimorphic involution θ, the set of all θ-bordered words

over Σ∗ is a regular and dense language, [39].

Proposition 2.2.2 [39] Let u ∈ Σ+. Then

1. For a morphic involution θ, Lθd(u) is a totally ordered set with <d.

2. For an antimorphic involution θ, Lθd(u) is a totally ordered set with <p and θ(Lθd(u)) is a

totally ordered set with <s.

Similar to a DNA strand, an RNA strand, which is a strand over the alphabet {A, G, C, U}

(U-uracil) such that θ(A) = U and θ(G) = C and vice versa, can interact with itself to form

pseudoknot like intra-molecular structures. An example of such a structure can be found in
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E. Coli transfer-messenger-RNA as shown in Figure 2.2 and has been formalized in [43] as a

string v1xv2yv3θ(x)v4θ(y)v5. However the authors of [43] consider a special case of the general

model of pseudoknot where v1 = v2 = v4 = v5 = λ and call such words θ-pseudoknot-bordered

words. Formally, a non-empty word u is θ-pseudoknot-bordered if u = xyα = βθ(yx) for some

words x, y, α, β ∈ Σ+. An example of a pseudoknot, that is, a word of the form xyγθ(x)θ(y), is

given in Figure 2.3.

Figure 2.2: Left: A pseudoknot found in E.coli transfer-messenger-RNA. Right: Mathematical
formalization in terms of a string v1xv2yv3θ(x)v4θ(y)v5 [43]

Figure 2.3: Pseudoknot structure formed due to intra-molecular hybridization modelled as a
θ-pseudoknot-bordered word xyγθ(x)θ(y) [43]

A word u is said to be θ-pseudoknot-border (or θ-pk-border) of a word v ∈ Σ∗ if there exists

a cyclic permutation w of u such that v = uα = βθ(w) for some α, β ∈ Σ∗. Furthermore, a non-

empty word is said to be θ-pseudoknot-unbordered (or θ-pk-unbordered) if it does not have any

non-empty θ-pk-borders. Let Lθcd(u) denote the set of all θ-pk-borders of a non-empty word u
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and Kθ(i) = {u ∈ Σ+ | |Lθcd(u)| = i}, the set of all words with exactly i θ-pk-borders.

Example 2.2 Let θ be an antimorphic involution and let {a, b} ∈ Σ be such that θ(a) = b and

θ(b) = a. Then for x = baa and y = b, we have w = baabbaa = xybaa = baaθ(yx) which is a

θ-pk-bordered word, whereas w = aab is θ-pk-unbordered.

We state the following results from [43] regarding some properties of θ-pk-borders of a

word.

Proposition 2.2.3 [43] Let θ be an (anti)morphic involution on Σ∗. The following hold:

1. If a word w ∈ Σ+ has a θ-pk-border of length n then, for every a ∈ Σ, the number

of occurrences of a letter a in the prefix of length n of w is equal to the number of

occurrences of the letter θ(a) in the suffix of length n of w.

2. For all a ∈ Σ such that θ(a) , a, ak is θ-pk-unbordered, for all k ≥ 1.

3. For words v,w ∈ Σ+ and n ≥ 1, if v ∈ Lθcd(wn) and |wm−1| < |v| ≤ |wm| for some m ≥ 1,

then v ∈ Lθcd(wk), for all k with m ≤ k ≤ n.

Now, we will discuss properties of languages that prevent the words of the language from

interacting with themselves in an undesirable manner.

Hairpin and pseudoknot avoidance

It is believed that the hairpins with smaller stem length are less stable than those with bigger

stem length, [44]. Hence, a strand which does not satisfy the stem length condition (of the stem

length being smaller than a given value) is free from such hairpin structures. Formally,

Definition 2.2 1. [38] Let θ be an (anti)morphic involution of Σ∗ and k be a positive integer.

A word u ∈ Σ∗ is said to be θ-k-hairpin-free or simply hp(θ, k)-free if u = xvyθ(v)z for

some x, v, y, z ∈ Σ∗ implies |v| < k.
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2. [38] Denote by hpf(θ, k), the set of all hp(θ, k)-free words in Σ∗. The complement of

hpf(θ, k) is hp(θ, k)=Σ∗\hpf(θ, k).

3. [38] A language L is called θ-k-hairpin-free or simply hp(θ, k)-free if L ⊆ hp f (θ, k).

It is obvious that an empty word and single letter words are hp(θ,1)-free whereas words of

length less than 2k are hp(θ,k)-free.

Proposition 2.2.4 [38] The languages hp(θ, k) and hp f (θ, k) are regular for k ≥ 1.

Since the languages given in Proposition 2.2.4 are regular, it is interesting from a theoret-

ical point of view to see whether or not for a given automaton we can decide if the language

accepted by this automaton is free from hairpin structures. Kari et al. ([38]) formalizes these

problems as Hairpin-Freedom Problem and Maximal Hairpin-Freedom Problem as follows:

Hairpin-Freedom Problem

Input: A non-deterministic automaton M.

Output: Yes/No depending on whether L(M) is hp(θ, k)-free.

Maximal Hairpin-Freedom Problem

Input: A deterministic automaton M1 accepting a hairpin-free language, and a NFA M2.

Output: Yes/No depending on whether there is a word w ∈ L(M2)\L(M1) such that L(M1)∪

{w} is hp(θ, k)-free.

The following theorem provides an answer to the question of decidability of hairpin-freedom

problems.

Theorem 2.2.5 [38]

1. The hairpin-freeness problem for regular (respectively context-free) languages is decid-

able in linear (respectively cubic) time with respect to |M|.

2. The maximal hairpin-freeness problem for regular (respectively deterministic context-

free) languages is decidable in time proportional to |M1| · |M2| (respectively O((|M1| ·

|M2|)3).
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Kari et al., [38], also discusses other variants of hairpins such as scattered hairpin and

hairpin frames and also the decidability problems for hairpin-freeness of these other variants.

Paun et al., [56], denotes by uHk the language hp(θ, k) which contains words of the form

xvyθ(v)z where |v| ≥ k and calls it unrestricted hairpin language. The authors of [56] also

define restricted hairpin languages in which the restriction is put on the annealing site2 of a

strand. We will mention these restricted languages and some of the properties of complements

of these languages, i.e., languages which are hairpin-free.

Definition 2.3 [56] For an antimorphic involution θ,

uHk = {zvwxy | z, v,w, x, y ∈ Σ∗, x = θ(v) and |v| ≥ k},

bHk = {vwxy | v,w, x, y ∈ Σ∗, x = θ(v) and |v| ≥ k},

cHk = {zvxy | z, v, x, y ∈ Σ∗, x = θ(v) and |v| ≥ k},

f Hk = {zvwx | z, v,w, x ∈ Σ∗, x = θ(v) and |v| ≥ k},

bcHk = {vxy | v, x, y ∈ Σ∗, x = θ(v) and |v| ≥ k},

b f Hk = {vwx | v,w, x ∈ Σ∗, x = θ(v) and |v| ≥ k},

c f Hk = {zvx | z, v, x ∈ Σ∗, x = θ(v) and |v| ≥ k},

bc f Hk = {vx | v, x ∈ Σ∗, x = θ(v) and |v| ≥ k}

The hairpin constructions corresponding to languages in Definition 2.3 are illustrated in

Figure 2.4.

Along with Proposition 2.2.4 which states that the languages hp(θ, k) and hp f (θ, k) are

regular, results from [56] state that the languages bHk, cHk, f Hk and b f Hk in Definition 2.3 are

regular as well. We mention some of the results from [56] which are related to the complements

of languages defined above.

Theorem 2.2.6 1. The complement of the language bc f Hk, for k ≥ 1, is linear.

2. The complements of languages bcHk and c f Hk, for k ≥ 1, are not context-free.

2A site where two WK-complementary single-stranded DNA sequences hybridize to form double-stranded
DNA molecule
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Figure 2.4: Hairpin constructions corresponding to the languages αHk where
α ∈ {u, b, c, f , bc, b f , c f , bc f }, [56]

Kari et al., [40], calls the words of the language bc f Hk, θ-palindromes for (anti)morphic

involutions θ. Formally, a word x ∈ Σ∗ is called a θ-palindrome if x = θ(x). Let Pθ denote the

set of all θ-palindromes. The notion of θ-palindromes was independently introduced in [15].

We discuss the properties of Pθ in Section 2.5.

As discussed in the previous subsection, hairpins can be modelled as θ-bordered words

with non-overlapping θ-borders. Hence, θ-unbordered words are the strings which will be free

from hairpin structures. Let us look at the necessary and sufficient condition for a word to be

θ-unbordered.

Proposition 2.2.7 [39] Let θ be either a morphic or an antimorphic involution. Then for

u ∈ Σ+ such that |u| ≥ 2, u is θ-unbordered iff θ(PPref(u)) ∩ PSuff(u) = ∅.

The following proposition provides a necessary and sufficient condition for the catenation

of θ-unbordered words to be θ-unbordered.

Proposition 2.2.8 [39] Let θ be either a morphic or an antimorphic involution and let u, v ∈ Σ+

be θ-unbordered. Then uv is θ-unbordered iff θ(Pref(u)) ∩ Suff(v) = ∅.

Also, for an antimorphic involution θ on Σ∗, the set of all θ-unbordered words Dθ(1) is

regular. A result from [39] states that it is decidable for a given non-empty word whether or

not it belongs to Dθ(1).
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We have seen another type of structure formed due to intra-molecular hybridization of RNA

strands, pseudoknots. It is clear that θ-pseudoknot-unbordered (θ-pk-unbordered) words will

be free from pseudoknot-like secondary structures. The following result gives a necessary and

sufficient condition for a word to be θ-pk-unbordered.

Proposition 2.2.9 [43] Let θ be an antimorphic involution on Σ∗. Then for u ∈ Σ+, u is θ-pk-

unbordered iff θ(cp(Pref(u)) ∩ Suff(u) = ∅.

Also, for an (anti)morphic involution θ on Σ∗, the set of all θ-pk-unbordered words over Σ∗,

Kθ(1), is a subset of set of all θ-unbordered words, Dθ(1), and a dense set, [43].

2.2.2 Inter-molecular hybridizations

In this section, we explore some secondary structures that result from inter-molecular hy-

bridizations of DNA strands, and solutions preventing the formation of such structures using

formal languages as a tool.

Let us begin with the notion of θ-bordered and θ-pseudoknot-bordered words defined in

the earlier section. Recall that a θ-bordered words with non-overlapping θ-borders can form

a hairpin-like structure. However, if such a word has overlapping θ-borders then it can inter-

act with another copy of itself forming a secondary structure as shown in Figure 2.5. Simi-

larly, RNA strands can form pseudoknot-like inter-molecular structures such as those depicted

in Figure 2.6. We have already seen some properties of the set of all θ-unbordered and θ-

pseudoknot-unbordered words in the previous subsection.

If a DNA strand involved in the computation, say v, is WK-complementary to part of some

other strand, say u, in the computation, then this results in a secondary structure as shown in

Figure 2.7.

Similarly, if subwords of two words are WK-complements of each other, then this results

into a secondary structure as shown in Figure 2.7(a). The structure shown in Figure 2.7(b) is a

result of the hybridization between a word and the catenation of two other words.
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Figure 2.5: A θ-bordered word u over the DNA alphabet, with overlapping θ-border v where
w = θ(v) [39]

Figure 2.6: Pseudoknot-like structure formed due to inter-molecular hybridization between
words βθ(x)θ(y) and xyα [43]

The following definition gives the properties of languages that need to be satisfied for the

words of the language to avoid the above-mentioned undesired inter-molecular hybridizations.

Definition 2.4 For an (anti)morphic involution θ, the language L is called:

1. [34] θ-nonoverlapping if L ∩ θ(L) = ∅;

2. [34] θ-compliant if ∀w ∈ L, x, y ∈ Σ∗,w, xθ(w)y ∈ L⇒ xy = λ;

3. [34] θ-p-compliant if ∀w ∈ L, y ∈ Σ∗,w, θ(w)y ∈ L⇒ y = λ;

4. [34] θ-s-compliant if ∀w ∈ L, x ∈ Σ∗,w, xθ(w) ∈ L⇒ x = λ;

5. [34] strictly θ-compliant if ∀w ∈ L, x, y ∈ Σ∗,w, xθ(w)y ∈ L⇒ xy = λ and w , θ(w);

6. [31] θ-free if L2 ∩ Σ+θ(L)Σ+ = ∅;
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Figure 2.7: Inter-molecular hybridization between two strands u and v, θ(v) being a subword
of u [34]

Figure 2.8: Undesired inter-molecular hybridizations, (a): two words that have WK-
complementary subwords, (b): a word that is WK-complementary to the catenation of two
other words [37]

7. [35] θ-sticky-free if ∀w ∈ Σ+, x, y ∈ Σ∗,wx, yθ(w) ∈ L⇒ xy = λ;

8. [35] θ-3’-overhang-free if ∀w ∈ L, x, y ∈ Σ∗wx, θ(w)y ∈ L⇒ xy = λ;

9. [35] θ-5’-overhang-free if ∀w ∈ L, x, y ∈ Σ∗xw, yθ(w) ∈ L⇒ xy = λ;

10. [35] θ-overhang-free if L is both θ-3’-overhang-free and θ-5’-overhang-free;

11. [33] θ(k,m1,m2)-subword compliant if ∀u ∈ Σ∗ such that ∀u ∈ Σk we have Σ∗uΣmθ(u)Σ∗∩

L = ∅ for m1 ≤ m ≤ m2;

12. [33] θ-k-code if Subk(L) ∩ Subk(θ(L)) = ∅ for some k > 0.

Note that θ-compliant languages avoid the situation in Figure 2.7, θ-k-codes avoid the situa-

tion in Figure 2.8(a), and θ-free languages avoid situation in Figure 2.7(b). Also, θ-p-compliant

and θ-s-compliant languages avoid some special case of situations in Figure 2.7 and 2.8(a).

Languages which satisfy properties 11 (θ(k,m1,m2)-subword compliant) and 12 (θ-k-code)

from Definition 2.4 avoid hairpin-like structures with restriction on the length of a stem of
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a hairpin. Figure 2.9 depicts the unwanted hybridizations that other languages in Definition 2.4

avoid.

The following proposition shows the relationship between θ-sticky-free and θ-compliant

languages.

Proposition 2.2.10 [35] For every language L ⊆ Σ+ and for every given (anti)morphic invo-

lution θ : Σ+ → Σ+, the following are equivalent:

1. L is θ-sticky-free;

2. θ(L) is θ-sticky-free;

3. PPref(L) ∩ θ(PSuff(L)) = ∅ and L is both θ-p-compliant and θ-s-compliant.

For an antimorphic involution θ, a language which is θ-compliant and either θ-3’-overhang-

free or θ-5’-overhang free is θ-free, [35]. Figure 2.9 shows an overview of the relationships

between the aforementioned DNA languages, where arrows indicate the inclusion relation

among classes of languages that satisfy certain properties. For example, a language that is

θ-p-compliant is θ-3’-overhang free. For further details about the properties of DNA languages

defined in Definition 2.4, such as closure properties and relationship among these languages,

the reader is referred to [31, 33, 34, 35].

Kari et al., [37], introduced a general framework of bond-free property to analyse if a given

DNA language is free from certain type of undesirable bonds. A property P is a mapping

P : 2Σ∗ → {true, false}. A language L satisfies the property P if P(L) = true.

Definition 2.5 [37] A language property P is called a bond-free property of degree 2 if there

exists binary word operations ^lo,^up and an antimorphic involution θ such that for an arbi-

trary L ⊆ Σ∗, P(L) = true iff

∀w ∈ Σ+, x, y ∈ Σ∗, (w^lox ∩ L , ∅,w^upy ∩ L , ∅)⇒ xy = λ,
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Figure 2.9: Classes of languages free from certain types of undesired hybridization [44]

where a binary word operation is a mapping ^ : Σ∗ × Σ∗ → 2Σ∗ , where 2Σ∗ is the set of all

subsets of Σ∗.

To study the bond-free properties of various languages, the tool that is used is word op-

eration on trajectories. Consider a trajectory alphabet V = {0, 1} and assume V ∩ Σ = ∅. A

trajectory is any string t ∈ V∗ which specifies the way in which an operation ^ is applied to

the letters of its two operands. As an example, we mention the definition of the binary word

operation shuffle on trajectories.

Definition 2.6 [37] Let t ∈ V∗ be a trajectory and let α, β ∈ Σ∗. Then, the shuffle of α with β

on the trajectory t, denoted by α�t β is defined as follows:

α�t β = {α1β1 . . . αkβk|α = α1 . . . αk, β = β1 . . . βk, t = 0i11 j1 . . . 0ik1 jk ,

where |αm| = im and |βm| = jm for all m, 1 ≤ m ≤ k}.

We mention the following results from [37].
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Theorem 2.2.11 [37] The languages properties 2, 3, 4, 7, 8, 9 in Definition 2.4 are bond-

free properties. Moreover, the associated sets of trajectories Tlo,Tup are regular where ^lo =

�Tlo ,^up = �Tup .

Theorem 2.2.12 [37] Let P be a bond-free property associated with the regular set of trajec-

tories Tlo,Tup. Then the following problem is decidable in quadratic time:

Input: an NFA A.

Output: Yes/No depending on whether L(A) satisfies P.

For more properties of bond-free languages the reader is referred to [36, 37].

2.3 DNA codeword design problem: other approaches

In Section 2.2, we have seen a theoretical approach to address the DNA codeword design

problem. In this section, we explore a few other approaches including algorithmic, software

simulation and the construction of in vitro DNA libraries.

In [5, 53, 58], authors considered the use of a restricted genetic alphabet in order to re-

duce the chances of undesirable secondary structure formations, in particular, the ones that

are formed due to inter-molecular hybridization of DNA strands. Brenner et al., [5], observed

that all the strands in the library that use all the four nitrogen bases, A, C, G, T increase the

chance of secondary structure formation to a great extent. Motivated by this observation, [58]

constructed DNA libraries using the restricted DNA alphabet {A,C,T }, with the help of a set

of programs written in C++.

In order to avoid undesirable inter- and intra-molecular hybridizations it is clear that the

strands involved should be as dissimilar as possible. Hence, it was intuitive to consider a re-

striction on the Hamming distance between the strands. The Hamming distance H(w1,w2), for

two equi-length words w1 and w2, is the number of positions in which the words w1 and w2

differ. The Hamming distance constraint poses the condition on any two words w1 and w2 to

have H(w1,w2) ≥ d. Also, the Hamming distance between a word w1 and WK-complement of



2.3. DNA codeword design problem: other approaches 21

w2 needs to be H(w1,WK(w2)) ≥ d. In addition, due to the parallelism in DNA computation,

another condition that usually needs to be satisfied is that all the strands should have the similar

melting temperatures3. Several software simulation packages and algorithms have been con-

structed that consider the Hamming distance, melting temperature and some other conditions

to design DNA codewords and build DNA libraries that are free from undesirable secondary

structures (see, e.g., [2, 21, 29, 51, 65, 66]).

For example, [51] proposed a dynamic programming algorithm to calculate the total num-

ber of words of some specified length n which satisfy the following four constraints and ran-

domly output such a word. Firstly, the Hamming distance between all pairs of distinct words

w1 and w2 should satisfy H(w1,w2) ≥ d, secondly, the Hamming distance between the com-

plement of one strand, wC
1 and reverse of another strand, wR

2 should be H(wC
1 ,w

R
2 ) ≥ d, thirdly,

all the pairs of strands w1,w2 should satisfy H(w1,wR
2 ) ≥ d and lastly, all the strands should

have a certain value of free energy 4G4. The time complexity of this algorithm, as reported by

authors, is O(n2).

DNASequenceGenerator, a software tool created by [19], is capable of creating DNA se-

quences that meet user’s requirements of melting temperature value, GC ratio values and

uniqueness. The GC ratio is the percentage of nucleotides G or C present in each word, whereas

uniqueness requests that any subsequence of certain length is allowed to occur at most once

in the pool. Another tool, DNASequenceCompiler, [18], is very similar to DNASequenceGen-

erator. It translates formal grammars into DNA molecules representing the rules of the gram-

mar. This compiler translates each rule of the grammar as a partially double-stranded DNA

molecule where the double-stranded part represents a terminal letter, and the single-stranded

“sticky-ends” represent variables. The parse module of the compiler reads the symbol sets and

the rules of the grammar, and the physical and chemical requirements for the sequences. The

generator module (DNASequenceGenerator) generates the DNA sequences (of the form men-

3The melting temperature is the temperature at which half of the strands of DNA are in double helical structure
and the rest are in a dissociated state, i.e., they exists as two independent single strands.

4The (Gibbs) free energy G is usually given by the formula G = H − TS , where H is the enthalpy, S is the
entropy (measure of disorder) and T is the temperature.
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tioned above). In order to produce the final word, these DNA sequences, which represent the

rules of the grammar, need to be concatenated and the concatenated DNA sequences need to

be unique. The coordinating module takes care of the uniqueness requirement for sequences.

Garzon, [23], observed that the set of molecules/strands produced by in silico methods

is relatively smaller in size compared to those produced by in vitro methods. Deaton et al.,

[16], proposed a Polymerase Chain Reaction5 (PCR)-based protocol (Figure 2.10) to select a

library of non-cross-hybridizing oligonucleotides6 (shortly, oligos) in vitro. The key concept

is to regulate the temperature of the reaction so as to amplify (multiply) the desired DNA

molecules, i.e., the oligonucleotides which are maximally mismatched, with the help of PCR.

The initial population of equi-length oligos consisted of random sequences with the specific

primers P1 and WK-complement of P2, i.e., P2C attached to them at either ends (the same for

all strands). In the subsequent computation, by regulating the temperature, only strands that

are not perfect WK-complements of each other melted apart and were amplified using PCR

and hence the test tube ultimately contained a non-cross(self)hybridizing set of oligos. It was

observed that, at lower temperatures, maximally mismatched oligos were amplified over the

other oligos which are perfectly matched or had lower degree of mismatches.

Nuser et al., [55], proposed a computer simulation of the above mentioned PCR-based

protocol to gain insight about the behaviour of the protocol and to explore the computational

capability of the same. Instead of representing DNA words by a DNA sequence, the simulation

experiment rather represents such words by their concentration, i.e., the number of such words

present in the test tube and a vector of pairwise hybridization energies7 with all other words in

the test tube. This facilitates the analysis of the result produced by the simulation in terms of

the number of maximally mismatched words produced. Initially, all the words in the test tube

had equal concentration. The simulation chose two random words according to their relative

concentrations in the test tube and each such pair was analysed for their hybridization energies.

5PCR is a technique used in molecular biology to amplify DNA molecule(s),that is, to generate many copies
of the particular DNA sequence with the help of DNA polymerase enzyme.

6Short, approximately 15-20bp DNA molecules
7Here hybridization energy represents the strength of interaction between two words
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It was observed that if this (hybridization) energy value was less than the threshold of 0.5,

the two words hybridized with each other and hence they were not selected. Thus, only those

words with pairwise hybridization energy greater than 0.5 were selected and amplified, since

they did not hybridize with each other. The authors suggest that a modification in the protocol

can result into making the protocol useful for computations and, as an example, they generated

the sequence of Fibonacci numbers. Furthermore [7] attempted to characterize the library of

oligonucleotide that was generated by the PCR-based protocol and simulation experiment.

Figure 2.10: Protocol to select maximally mismatched oligonucleotides, starting with a popu-
lation of strands with primer pair P1 and P2C, which amplifies only very mismatched oligonu-
cleotides [16]

For a more detailed and exhaustive review of solutions, non-theoretical, in particular, to the

codeword design problem, we refer reader to [23, 52].

As we have seen in this and earlier sections, many attempts have been made to find the

optimal solution to the codeword design problem for DNA computing experiments. Note that,

according to [57], the solution to the general codeword design problem is NP-complete.
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2.4 DNA memory

As seen in earlier sections, extensive work was done to find a good encodings of DNA strands

considering various combinatorial and thermodynamic constrains. The next major step is to

store these encoded data effectively in reliable media, resistant to external factors, as well as

allowing easy and unambiguous retrieval.

Most of the work in the area of molecular memory is around the aim of building a content-

addressable memory8 using DNA. Eric Baum [3] was the first one to propose the idea of a

content-addressable DNA memory. Out of many approaches that he suggested in his paper,

one was to store binary words of a fixed length. He suggested to use two distinct single-

stranded DNA molecules to encode the bit “1” and the bit “0” and that, in order to obtain a

DNA molecule encoding for specific binary word, appropriate DNA sequences can be concate-

nated. To retrieve the required data from the memory, the technique to be used is to introduce

complementary sequences to the address correspondent of the data to be searched, attached to

magnetic beads. Thus, these complementary subsequences can then bind to the corresponding

sequence in the memory and such molecules could be further extracted and sequenced in order

to read the stored data.

Subsequently, several other attempts have been made to store data on DNA, including mod-

elling of DNA memories with the help of computer simulation (in silico) [28, 64], hairpin DNA

memories [63], and some in vitro and in vivo experiments. In this section, we particularly ex-

plore the Nested Primer Molecular Memory (in vitro) experiment and some organic (in vivo)

DNA memory experiments.

2.4.1 In vitro DNA memory

The first use of in vitro memory was demonstrated by Adleman’s experiment ([1]) to solve a 7-

node instance of the Hamiltonian Path Problem wherein the vertices were encoded as suitable

8A memory where the data is located by the content of its address rather than by location.
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DNA strands and some operations such as PCR and gel electrophoresis were performed to

find the solution to the problem. Subsequently, several attempts have been made in order to

attain Baum’s dream of a content-addressable memory (e.g., see [8, 9, 22, 54, 69]). In [9],

the authors stored a book with 53,426 words, 11 JPG images and 1 JavaScript program on a

DNA microchip. The book was first converted to an html format and then encoded as DNA

strands by using an encoding scheme where 0 was represented as the bases A and C and 1

was represented as the bases G and T. Also, a 19-bit binary sequence was used for addressing

purposes and the data was read and retrieved using next-generation DNA sequencing9.

Recently, Goldman et al., [27] successfully encoded and decoded 154 Shakespeare’s son-

nets (ASCII text), a scientific paper (PDF format), a medium-resolution coloured photograph

(JPEG 2000 format) and 26-second excerpt from Martin Luther King’s 1963 ‘I have a dream’

speech (MP3 format). In the encoding scheme, they first replaced each byte of ASCII text with

five or six base-3 digits (trit), using a Huffman code, and each trit was in turn converted to a

DNA letter using an encoding scheme which ensures that no two nucleotides appear consecu-

tively. The authors reported successful and unambiguous retrieval of all the files using DNA

sequencing procedures.

Nested Primer Molecular Memory (NPMM)

The in vitro DNA memory model proposed by [45] is one of the best examples of implementa-

tion of the idea of content-addressable memory proposed by Baum. The model uses the simple

operation of nested PCR. In the proposed model, each DNA strand consists of three types of

blocks, a data block (the site for storing the encoded data over the DNA alphabet), the address

block (the site for specifying the address of the data block, namely the A block, the B block

and the C block) and the Re block (the site for the reverse primer to hybridize). The memory

9A term that is used to describe number of different modern, high-throughput DNA sequencing technologies.
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capacity, M of NPMM is calculated as follows:

M(bit) = 2 × Data(bp) × PrimerBlock

where Data is the length of the sequence in the data block, Block is the number of address

blocks and Primer is the number of primers in each address block. In the initial NPMM ex-

periment, [45], the authors could extract a single target DNA strand from the diluted solution

of 27 strands (3 address blocks with 3 sequences in each address block). In the subsequent

experiment, the authors of [46] could extract a single DNA strand from the diluted solution of

12,167 strands (3 address blocks with 23 sequences in each address block). Finally, the authors

of [69] were able to retrieve the target DNA strand from the diluted solution of 16.8M strands

(6 address blocks with 16 sequences in each block). We will briefly explore the NPMM model

that was used to achieve this huge address space.

The NPMM consists of three layers of address space on each side of the data space (CLi, BL j,

ALk on the left and ARl, BRm,CRn on the right) with sixteen 20-mer sequences in each layer,

hence it is of the form [CLi, BL j, ALk,DATA, ARl, BRm,CRn], where i, j, k, l,m, n ∈ {0, 1, . . . , 15}

and DATA is either a 20-mer, a 40-mer or a 60-mer DNA sequence. As an example, we will

describe the working of NPMM for the address

[CL3, BL0, AL10,DATA, AR12, BR4,CR1].

In the first step, PCR is performed using the primer pair CL3 and WK(CR1) and as a result the

solution will have in large quantity molecules containing only CL3 and CR1. In the next step,

considering only the amplified molecules obtained from first step, PCR is performed using the

primer pair BL0 and WK(BR4). In the last step, PCR is performed using AL10 and WK(AR12)

and as a result, the solution will contain only those DNA molecules which have the above

mentioned address, from which the data can then be retrieved by sequencing and decoding.

The authors also proposed a solution to a combinatorial optimization problem demonstrating
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the limitation for NPMM’s capacity. One major disadvantage of NPMM is the occurrence of

mutations that can happen during PCR.

2.4.2 Organic DNA memory

So far we have seen memory models which are either implemented using computer simulation

experiments or test tube experiments. In this section, we briefly explore memory models imple-

mented using living organisms as hosts to store the encoded data. One of the major obstacles in

using living organisms as a host can be the lack of substantial knowledge about the cellular and

molecular mechanism of the host organism, since inadequate knowledge about these mecha-

nisms can lead to the misinterpretation of foreign DNA sequences by these organisms which

subsequently can kill the host organism. Since the molecular mechanism of many bacteria is

well known, bacteria are one of the widely used hosts .

The authors of [68] identified two such hosts in Escherichia coli (E.coli) and Deinococcus

radiodurans (Deinococcus) as the cellular and molecular mechanism of these bacteria is well

understood, and the latter can survive in extreme conditions such as cold, dehydration, vacuum,

acid and radiation and hence can be an ideal host candidate. The encoding scheme that was

used was to assign 3-mer sequences to numbers and various symbols in the English alphabet.

For example, “1” was encoded as AAC, the letter “A” was encoded as AGG, etc. The next step

was to identify two fixed size DNA sequences (20-base-pair long) with the condition that they

should not occur in the bacterial genome yet they should satisfy all the genomic constraints

so that the introduction of such sequences should not cause any mutation, or kill the bacteria.

Another condition that had to be satisfied so as to preserve the integrity of the message without

killing the bacterium, was the introduction of stop codons in these DNA sequences so that the

bacterium would not misinterpret the embedded message as a protein-coding sequence. As a

first step, two 46bp long complementary oligonucleotides consisting of two different 20bp long

DNA sequences connected by a 6bp long restriction enzyme10 site were created. In addition,

10DNA-cutting enzymes
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this (restriction enzyme) site served as the location for the encoded message to be inserted

in the subsequent computation. Then this double stranded DNA molecule was cloned into a

recombinant plasmid11 as shown in Figure 2.11.

Figure 2.11: A recombinant plasmid with two DNA fragments as sentinels protecting the en-
coded message in between, [68]

This embedded DNA was then inserted into cloning vectors12 which then were transferred

into E.coli by high voltage shocks. As a next step, the cloning vectors and encoded DNA were

incorporated into the genome of Deinococcus and retrieved by PCR. The authors reported the

successful storage and retrieval of seven chemically synthesized DNA fragments with 57-99

base pairs of non-native information.

Other host organisms suggested (but not experimentally verified) by [11] were Bacillus

subtilis (B. subtilis) and Saccharomyces cerevisiae (S. cerevisiae). The spore-forming capacity

of these microorganisms is believed to be a protected medium, since it is a resistant structure

that bacteria use for survival in unfavourable conditions. Also, the molecular genetics of these

species is well-known, making them suitable hosts. Along with this, the authors also suggested

a few possible encodings to encode the message, as shown in Figure 2.12. Three encodings

were suggested: encode a complete word by a DNA sequence, encode each syllable of a word

by a different DNA sequence, or encode each letter of a word by a different DNA sequence.

The authors of [62] proposed some codes that can be useful for encrypting data in DNA and

name them Huffman code, comma code and alternating code. The Huffman code is constructed

using Huffman’s method which is based on the fact that some letters like a, e, s are used more

frequently than letters q, z, and hence encodes the former by short k-mers such as AT, T, GT (for
11A union of foreign DNA molecules inserted into a circular DNA molecule
12A circular DNA molecule that can self-replicate within a bacterial host
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Figure 2.12: Encryption of the first word of Richard Feynman’s suggested message to future
civilizations [11]

a, e and s respectively) and the latter by comparatively longer k-mers such as CCCTA, CCCTG

(for q and z respectively). In the comma code, consecutive 5-base codons are separated by a

single uniform base which does not occur in 5-base codon, e.g., A A A A. This kind

of design would help the user to orient the message even if the starting point is not mentioned,

and it is effective in detecting insertion and deletion mutations. An alternating code consists

of sixty four 6-base long alternating sequences of purines (A and G) and pyrimidines (C and

T), e.g., PQPQPQ where P=A or G and Q=C or T. Even though the comma code and the

alternating code are not economical to use (unlike the Huffman code), they are more suitable

for encoding data for long-term storage.

2.5 DNA computing inspired combinatorics on words

The mathematical formalization of DNA WK-complementarity as an antimorphic involution

has inspired generalizations of many classical and fundamental notions of formal languages

and combinatorics on words including conjugacy, commutativity, borderedness, periodicity,

palindromic property, etc. In this section, we discuss some generalizations of the above men-

tioned concepts, some of their properties, and generalization of two important results from

combinatorics on words, namely Fine and Wilf’s theorem and the Lyndon-Schützenberger

equation. Note that, in this section, θ always denotes an (anti)morphic involution unless other-

wise specified.
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Recall that a word and its WK-complement encode the same information and that one can

be obtained from the other by an application of an antimorphism that interchanges A with T

and G with C and vice versa. Thus, it is natural to consider the notion of repetitions not being

limited to just a finite concatenation of a word with itself, but rather a finite concatenation

of a word and its WK-complement in some random order, thereby extending the notion of

repetitions to pseudo-repetitions. [14] defines the θ(pseudo)-power of a word u as a word of

the form u1u2 . . . un where u1 = u and ui ∈ {u, θ(u)} for 2 ≤ i ≤ n. As the notion of repetition

leads to the notion of primitivity, the notion of pseudo-repetitions can lead to the concept of a

θ-primitive word. A word is said to be primitive if it cannot be expressed as a power of any

other word and a word is said to be θ-primitive if it cannot be expressed as a θ-power of any

other word, [14]. If w ∈ {u, θ(u)}∗ such that u is a smallest such word, then u is said to be the

θ-primitive root of w and is denoted by ρθ(w).

Example 2.3 Let θ be an antimorphic involution on Σ = {A,C,G,T } such that θ(A) = T,

θ(G) = C and vice versa. Then w = GTCGTCGAC = (GTC)(GTC)θ(GTC) is not θ-primitive,

whereas v = GT AG and u = GTC are θ-primitive.

The following result states the relationship between primitive and θ-primitive words.

Proposition 2.5.1 [14] If a word w ∈ Σ+ is θ-primitive then it is also primitive. The converse

is not always true.

Note that the θ-primitive root of a word is θ-primitive. The notion of θ-primitive words

leads to a generalization of the classical result of Fine and Wilf. We will first state the classical

result.

Theorem 2.5.2 [20] Let u, v, ∈ Σ∗, |u| = n, |v| = m and d = gcd(n,m)13. If two powers ui and

v j of u and v have a common prefix of length at least n + m − d, then u and v are powers of a

common word. Moreover, the bound n + m − d is optimal.

13gcd(n,m) denotes the greatest common divisor of integers n and m respectively.
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Theorem 2.5.3 [14] Let θ : Σ∗ → Σ∗ be a morphic involution, u, v ∈ Σ+ with n = |u|,m = |v|

and d = gcd(n,m), α(u, θ(u)) ∈ u{u, θ(u)}∗ and β(v, θ(v)) ∈ v{v, θ(v)}∗. If two θ-powers α(u, θ(u))

and β(v, θ(v)) have a common prefix of length at least n + m− d, then there exists a word t ∈ Σ+

such that u, v ∈ t{t, θ(t)}∗, i.e., ρθ(u) = ρθ(v). Moreover, the bound n + m − d is optimal.

Theorem 2.5.4 [14] Let θ : Σ∗ → Σ∗ be an antimorphic involution and u, v ∈ Σ+ be such that

|u| > |v|. If there exists two θ-powers α(u, θ(u)) ∈ u{u, θ(u)}∗ and β(v, θ(v)) ∈ v{v, θ(v)}∗ sharing

a common prefix of length 2|u|+ 2|v| − gcd(|u|, |v|), then ρθ(u) = ρθ(v). Furthermore, this bound

is optimal.

We know that every non-empty word is a unique power of a unique primitive word. We

state the similar result concerning the uniqueness of θ-primitive words.

Theorem 2.5.5 [14] For any word w ∈ Σ+ there exists a unique θ-primitive word t ∈ Σ+ such

that w ∈ t{t, θ(t)}∗, i.e., ρθ(w) = t.

The study of θ-periodicity has motivated researchers to consider further generalizations of

the concept of θ-periodicity, replacing the (anti)morphic involution with some more general

functions such as literal, erasing and uniform homomorphisms, [24, 25, 26]. Also, this notion

was independently generalized to periodic-like words [6], pseudoperiodic words [4], weakly-

periodic words [12] also known as Abelian periodic words [10].

The study of primitive words has inspired the study for a solution of a well-known equation

am = bncp where m, n, p ≥ 2

known as the Lyndon-Schützenberger equation, [48]. The following result demonstrates the

solution to the Lyndon-Schützenberger equation.

Theorem 2.5.6 [48] If words u, v,w satisfy the relation ul = vnwm for some positive integers

l,m, n ≥ 2, then they are all powers of a common word, i.e., there exists a word t such that

u, v,w, ∈ {t}∗.
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Czeizler et al., [13], initiated the study of a generalization of the Lyndon-Schützenberger

equation to accommodate θ-powers of a word. The equation that authors have considered is

u1 . . . ul = v1 . . . vnw1 . . .wm

where u1, . . . , ul ∈ {u, θ(u)}, v1, . . . , vn ∈ {v, θ(v)} and w1, . . . ,wm ∈ {w, θ(w)} for l,m, n ≥ 2. We

mention the following result as a special case of the solution to the equation where n,m ≥ 3

and l ≥ 6, whereas the Table 2.1 summarizes the remaining results proved in [13, 42, 49, 50].

Theorem 2.5.7 Let u, v,w ∈ Σ+, n,m ≥ 3, l ≥ 6, ui ∈ {u, θ(u)} for 1 ≤ i ≤ l, v j ∈ {v, θ(v)} for

1 ≤ j ≤ n and wk ∈ {w, θ(w)} for 1 ≤ k ≤ m. If u1 . . . ul = v1 . . . vnw1 . . .wm, then there exists a

word t ∈ Σ+ such that u, v,w ∈ {t, θ(t)}+.

A word u ∈ Σ∗ is called a conjugate of a word w ∈ Σ∗ if there exists a word v ∈ Σ∗ such that

uv = vw. The notion of conjugacy was extended to the notion of θ-conjugacy by [40]: if θ is

either a morphic or an antimorphic involution then a word u is θ-conjugate of another word w

if uv = θ(v)w for some v ∈ Σ∗.

Example 2.4 Let θ be an antimorphic involution on Σ = {A,C,G,T } such that θ(A) = T,

θ(G) = C and vice versa. Then u = ACCT and w = CTGT are θ-conjugates of each other for

v = GT since (ACCT )(GT ) = θ(GT )(CTGT ).

Note that the θ-conjugacy relation for a morphic involution is transitive, whereas for an

antimorphic involution it need not be transitive. The following proposition provides the char-

acterization of θ-conjugate words.

Proposition 2.5.8 [40] Let u be a θ-conjugate of w such that uv = θ(v)w for some v ∈ Σ∗. Then

1. For a morphic involution θ there exists x, y ∈ Σ∗ such that u = xy and one of the following

hold:
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Table 2.1: Solutions to the extended Lyndon-Schützenberger equation
l m n θ-periodicity
≥ 4 ≥ 3 ≥ 3 YES ([13, 42])
3 ≥ 12 ≥ 12 YES ([49])
3 5 ≤ min{m, n} m or n odd YES ([49])
3 5 ≤ min{m, n} < 12 m or n even YES ([50])
3 4 ≥ 5 and odd YES ([50])
3 4 ≥ 4 and even NO ([42])
3 3 ≥ 3 NO ([42])
≥ 3 2 ≥ 2 NO ([13])

one of {l,m, n} equals 2 NO ([13, 42])

(a) w = yθ(x) and v = (θ(x)θ(y)xy)iθ(x) for some i ≥ 0.

(b) w = θ(y)x and v = (θ(x)θ(y)xy)iθ(x)θ(y)x for some i ≥ 0.

2. For an antimorphic involution θ, there exists x, y ∈ Σ∗ such that either u = xy and

w = yθ(x), or w = θ(u).

According to Proposition 2.5.8, for an antimorphic involution θ, if two words u and w are θ-

conjugates of each other, then one of the possibilities is that w = θ(u), and hence the existence

of a word and its θ-conjugate in the computation can lead to the formation of undesirable

secondary structures.

Corollary 2.5.9 [40] For a morphic involution θ on Σ∗, θ-conjugacy on words is a symmetric

relation.

A word u is said to commute with the word v if uv = vu, [61]. Similarly, a word u is said to

θ-commute with the word y if xy = θ(y)x, [40]. Hence the existence of words that θ-commute

with each other can lead to the formation of undesirable secondary structures.

Example 2.5 Let θ be an antimorphic involution on Σ = {A,C,G,T } such that θ(A) = T,

θ(G) = C and vice versa. Then the two words x = AT and y = CGAT θ-commute since

(AT )(CGAT ) = θ(CGAT )AT.
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Let us denote the θ-commutativity order by v ≤θc u iff u = vx = θ(x)v for some x ∈ Σ∗,

Cθ(1) = {u ∈ Σ+|v ≤θc u ⇔ v = u}, and by Lθc(u) = {v|v ∈ Σ∗, v ≤θc u} the set of all words that

θ-commute with a word u ∈ Σ∗. We discuss some results related to θ-commutativity, important

from a combinatorial perspective.

Lemma 2.5.10 [40] For an antimorphic involution θ and u ∈ Σ+, Lθc(u) is a totally ordered set

with ≤θc.

The following proposition characterizes the words that θ-commute with each other.

Proposition 2.5.11 [40] Let u, v ∈ Σ+ be such that u θ-commutes with v, i.e., uv = θ(v)u.

1. If θ is an antimorphic involution then u = x(yx)i, v = yx where i ≥ 0 and u, x, y are

θ-palindromes where x ∈ Σ+, y ∈ Σ∗.

2. If θ is a morphic involution then u = x(yx)i and v = yx where yx = θ(x)θ(y) and i ≥ 0

with x ∈ Σ+, y ∈ Σ∗.

For an antimorphic involution θ, the set L = Σ∗\Cθ(1) is context-free. Also, if θ(a) , a for

any a ∈ Σ, the set of all θ-unbordered words, Dθ(1), is a subset of Cθ(1), i.e., Dθ(1) ⊆ Cθ(1),

[40].

Let us recall the definition of a θ-palindrome ([15, 40]) mentioned in the earlier section.

A word u is said to be a θ-palindrome if u = θ(u) for the (anti)morphic involution θ, and Pθ

denotes the set of all θ-palindromes. Kari et al., [41], has extended this line of research into

a further exploration of the properties of Pθ as well as Pθ, the set of all non θ-palindromes.

Note that, if a strand involved in the computation is a WK-palindrome, then it can hybridize

to another copy of itself forming undesirable structures. One can easily observe that a non-

empty θ-palindromic word always has length greater than or equal to 2, and that a power of

a θ-palindromic word is again a θ-palindrome, [41]. The following proposition provides a

necessary and sufficient condition for a word to be θ-palindrome.
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Proposition 2.5.12 Let θ be an antimorphic involution. Then w ∈ Pθ iff w = α(βα)i for α, β ∈

Pθ and i ≥ 0.

The set Pθ is not regular, but is context-free, and the sets Pθ and Pθ are dense. The fol-

lowing result establishes a connection between the primitive root of a non θ-palindrome and

θ-palindromes.

Proposition 2.5.13 [41] Let θ be anitmorphic involution and let v ∈ Σ+\Pθ. Then the primitive

root of v is the product of two non-empty Watson-Crick palindromes iff there exists a non-empty

word u ∈ Pθ such that u θ-commutes with v.

2.6 Conclusion

The idea of storing encoded data in DNA of micro-organisms and using DNA as a tool to

solve problems in mathematics and computer science is undoubtedly a breakthrough, although

there are several theoretical and practical constrains. In this chapter, we reviewed and reported

some of the attempts that have been made to address the problem of encoding and storing

encoded data on DNA. Also, we have discussed how the field of DNA computing has motivated

the study of some meaningful generalizations of classical concepts in formal languages and

combinatorics on words.
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Chapter 3

Generating Pseudo-Powers of A Word

3.1 Introduction

Periodicity and primitivity of words are fundamental properties in combinatorics on words and

formal language theory. Their wide-ranging applications include pattern-matching algorithms

(see e.g. [3], and [4]) and data-compression algorithms (see, e.g., [27]). Sometimes motivated

by their applications, these classical notions have been modified or generalized in various ways.

A representative example is the “weak periodicity” of [5] whereby a word is called weakly

periodic if it consists of repetitions of words with the same Parikh vector. This type of period

was also called Abelian period in [2]. Carpi and de Luca extended the notion of periodic words

to that of periodic-like words, according to the extendability of factors of a word [1]. Czeizler,

Kari, and Seki have proposed and investigated the notion of pseudo-primitivity (and pseudo-

periodicity) of words in [6, 20], motivated by the properties of information encoded as DNA

strands.

Indeed, one of the particularities of information encoded as DNA strands is that a word

u over the DNA alphabet {A,C,G,T } contains basically the same information as its Watson-

Crick complement, denoted here by θ(u). This led to natural as well as theoretically interesting

0A version of this chapter has been published (L. Kari, M.S. Kulkarni. Generating the pseudo-powers of a
word. Journal of Automata, Languages and Combinatorics, 19(2014), 1-4, 157-171)
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extensions of various notions in combinatorics on words and formal language theory such

as pseudo-palindrome [7], pseudo-commutativity [18], as well as hairpin-free and bond-free

languages (e.g., [17, 19, 25, 13, 16]). In this context, Watson-Crick complementarity has been

modeled mathematically by an antimorphic involution θ over an alphabet Σ, i.e., a function

that is an antimorphism, θ(uv) = θ(v)θ(u), ∀u, v ∈ Σ∗, and an involution, θ(θ(x)) = x, ∀x ∈ Σ∗.

In [6], a word w is called θ-primitive, or pseudo-primitive, if we cannot find any word u that

is strictly shorter than w such that w can be written as repetitions of u and θ(u). A word w is

called a θ-power or pseudo-power if w ∈ {u, θ(u)}+ for some u ∈ Σ+, and is called θ-periodic or

pseudo-periodic if it can be written as two or more repetitions of a word u and its image under

θ.

The static notions of the power of a word, period of a word, and primitive word are intrinsi-

cally connected to the operation of catenation, that dynamically generates word repetitions. In

the case of generalizations of the notion of power of a word (primitive word), other operations

will be the ones that dynamically produce such generalized powers, [26, 21, 10, 14, 22, 9].

In this paper we define and investigate the operation of θ-catenation that gives rise to the

notion of θ-power (pseudo-power) and θ-periodicity (pseudo-periodicity). We namely investi-

gate the properties of θ-catenation (Section 3), its connection to the previously defined notion

of θ-primitive word (Section 4), briefly explore closure properties of language families un-

der θ-catenation and language operations involving this operation (Section 5), and conclude by

proposing Abelian catenation as the operation that generates Abelian powers of words (Section

6).

3.2 Basic definitions and notations

An alphabet Σ is a finite non-empty set of symbols. Σ∗ denotes the set of all words over Σ,

including the empty word λ. Σ+ is the set of all non-empty words over Σ. The length of a word

u ∈ Σ∗ (i.e. number of symbols in the word) is denoted by |u|. A word u ∈ L is said to be
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minimal if for all w ∈ L, |w| ≥ |u|. |u|a denotes the number of occurrences of a letter a in u. The

complement of a language L ⊆ Σ∗ is Lc = Σ∗\L.

An involution is a function θ : Σ∗ → Σ∗ with the property that θ2 is identity. θ is called

a morphism if for all words u, v ∈ Σ∗ we have that θ(uv) = θ(u)θ(v), and an antimorphism if

θ(uv) = θ(v)θ(u).

A word is called primitive if it cannot be expressed as a power of another word. Similarly,

[6], a word is called as θ-primitive if it cannot be expressed as a non-trivial θ-power of another

word. A θ-power of u is a word of the form u1u2 · · · un for some n ≥ 1, where u1 = u and for

any 2 ≤ i ≤ n, ui is either u or θ(u). Also, θ-primitive root of w denoted by ρθ(w) is the shortest

word t such that w is a θ-power of t.

The left quotient of a word u by a word v is defined by

v−1u = w iff u = vw,

and the right quotient of u by v,

uv−1 = w iff u = wv.

A language L ⊆ Σ+ is said to be a prefix code if L ∩ LΣ+ = ∅. For all other concepts related to

formal language theory and combinatorics on words, the reader is referred to [11] and [23].

A binary word operation with right identity, [12, 26], (shortly bw-operation) is defined as

a mapping ◦ : Σ∗ × Σ∗ −→ 2Σ∗ with u ◦ λ = {u}. Furthermore, L1 ◦ L2 =
⋃

u∈L1,v∈L2
(u ◦ v) and

L1 ◦ ∅ = ∅ ◦ L2 = ∅ for any two languages L1 and L2. The iterated bw-operation ◦i for i ≥ 1

and languages L1 and L2 is defined as L1 ◦
0 L2 = L1 and L1 ◦

i L2 = (L1 ◦
i−1 L2) ◦ L2. The

i-th ◦-power of a non-empty language L is defined as L◦(0)= {λ} and L◦(i) = L ◦i−1 L for i ≥ 1.

If ◦ is the operation of catenation, then L0 = {λ}, L1 = L and Ln = Ln−1L, corresponding to the

usual notions of power of a language.

A non-empty word w is called ◦-primitive if w ∈ u◦(i) for some word u ∈ Σ+ and i ≥ 1

yields i = 1 and w = u.
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The +-closure of a non-empty language L with respect to a bw-operation ◦, denoted by

L◦(+), is defined as L◦(+) = ∪k≥1L◦(k). A language L is ◦-closed if u, v ∈ L imply u ◦ v ⊆ L. A

bw-operation is called plus-closed if for any non-empty language L, L◦(+) is ◦-closed.

Given a non-empty language L, a word u is a right ◦-residual of L if w ◦ u ⊆ L for all

w ∈ L, i.e., L ◦ u ⊆ L. Let ρ◦(L) denote the set of all right o-residuals of L, i.e., ρ◦(L) = {u ∈

Σ∗|∀w ∈ L, (w ◦ u) ⊆ L}. Note that ρ◦(∅) = ∅ and λ ∈ ρ◦(L) for any non-empty language L.

The ◦-left-quotient, denoted by C◦, is defined as

L1 C◦ L2 = {w ∈ Σ∗|(L2 ◦ w) ∩ L1 , ∅}.

3.3 θ-catenation

We introduce a new bw-operation (binary word operation with right identity) called θ-catenation

which generates pseudo-powers, that is, θ-powers where θ is a morphic or antimorphic invo-

lution. In this section we will give a formal definition of θ-catenation and discuss some of its

properties. Note that, unless otherwise specified, θ is any morphic or antimorphic involution.

Definition 3.1 Given a morphic or antimorphic involution θ on Σ∗ and any two words u, v ∈ Σ∗,

we define the binary operation θ-catenation as

u � v = {uv, uθ(v)}.

For example, consider the DNA alphabet Σ = {A,G,C,T } and its associated antimorphic

involution defined by θ(A) = T, θ(T ) = A, θ(C) = G and θ(G) = C. If u = ATC and v = GCT A

then

u � v = {ATCGCT A, ATCT AGC}

The operation of θ-catenation can be generalized to languages in the usual way.



48 Chapter 3. Generating Pseudo-Powers of A Word

Note that for any (anti)morphic involution θ, the operation of θ-catenation has a right iden-

tity since u � λ = {u} for all u ∈ Σ∗.

A bw-operation ◦ is called length-increasing if for any u, v ∈ Σ+ and w ∈ u ◦ v, |w| >

max{|u|, |v|}. The operation of θ-catenation is length-increasing since, if w ∈ u� v = {uv, uθ(v)}

then |w| = |u| + |v| >max{|u|, |v|}.

A bw-operation ◦ is called propagating if for any u, v ∈ Σ∗, a ∈ Σ and w ∈ u ◦ v, |w|a =

|u|a + |v|a. The operation of θ-catenation is clearly not propagating. However, a similar property

does hold. We will namely call a bw-operation ◦ θ-propagating if for any u, v ∈ Σ∗, a ∈ Σ and

w ∈ u ◦ v, |w|a,θ(a) = |u|a,θ(a)+|v|a,θ(a). (The mapping which counts number of a’s and θ(a)’s

together is the characteristic function on the alphabet Σ defined in [6].)

Proposition 3.3.1 For a given (anti)morphic involution θ of Σ∗, the operation of θ-catenation

is θ-propagating.

Proof Let u, v ∈ Σ∗ and let w ∈ u� v = {uv, uθ(v)}. If w = uv then the required equality clearly

holds.

If w = uθ(v), we have

|w|a,θ(a) = |u|a,θ(a) + |θ(v)|a,θ(a)

= |u|a,θ(a) + (|θ(v)|a + |θ(v)|θ(a))

= |u|a,θ(a) + (|v|θ(a) + |v|a)

= |u|a,θ(a) + |v|a,θ(a).

�

A bw-operation ◦ satisfies the left-identity condition if λ ◦ L = L for any language L ⊆ Σ∗.

Note that, in general, the operation of θ-catenation does not satisfy the left-identity condition.

However, there exists languages of Σ∗ which satisfy this condition, such as the language of

θ-palindromes Pθ = {u ∈ Σ∗|u = θ(u)} for which λ � Pθ = Pθ.
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A bw-operation ◦ is called left-inclusive if for any three words u, v,w ∈ Σ∗ we have

(u ◦ v) ◦ w ⊇ u ◦ (v ◦ w)

and is called right-inclusive if

(u ◦ v) ◦ w ⊆ u ◦ (v ◦ w).

If θ is a morphic involution then the θ-catenation is trivially associative. However, if θ is

an antimorphic involution then θ-catenation is not associative in general, and not even right-

or left-inclusive . The following proposition provides necessary and sufficient conditions for

associativity to hold in the antimorphic case. To prove Proposition 3.3.4, we will make use of

the following Lemmas from [24].

Lemma 3.3.2 Let u, v ∈ Σ+. Then uv = vu implies that u and v are powers of a common word.

Lemma 3.3.3 If um = vn and m, n ≥ 1, then u and v are powers of a common word.

Proposition 3.3.4 Let � denote the operation of θ-catenation associated with an antimorphic

involution θ of Σ∗. Given words u, v,w ∈ Σ∗ we have (u � v) � w = u � (v � w) if and only if v

and w are powers of the same θ-palindromic word.

Proof For the direct implication, let us assume that (u � v) � w = u � (v � w), i.e.,

{uvw, uθ(v)w, uvθ(w), uθ(v)θ(w)} = {uvw, uvθ(w), uθ(w)θ(v), uwθ(v)}, i.e.

{uθ(v)w, uθ(v)θ(w)} = {uθ(w)θ(v), uwθ(v)}.

Case 1 : uθ(v)θ(w) = uθ(w)θ(v) and uθ(v)w = uwθ(v) implies θ(wv) = θ(vw) and θ(v)w =

wθ(v) which further implies wv = vw and θ(v)w = wθ(v), respectively. So, according to

Lemma 3.3.2, v and w are powers of a common word, as well as w and θ(v) are powers of a

common word. This means, v, w and θ(v) are all powers of a common word, say p. So, we

have v = pi, w = p j and θ(v) = pk for some i, j, k ≥ 1. It implies, θ(v) = θ(p)i = pk, which
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further implies i = k and p = θ(p). Hence v and w are powers of the same θ-palindromic word

p.

Case 2 : uθ(v)w = uθ(w)θ(v) and uθ(v)θ(w) = uwθ(v) implies

θ(v)w = θ(w)θ(v). (3.1)

and

θ(v)θ(w) = wθ(v). (3.2)

Let us catenate θ(v) to the right of Equation (3.2). It will give, θ(v)θ(w)θ(v) = wθ(v)θ(v), which

in turn along with Equation (3.1) implies

θ(v)θ(v)w = wθ(v)θ(v) (3.3)

According to Lemma 3.3.2 w and (θ(v))2 are powers of a common word, say p. So, we will

get w = pi and (θ(v))2 = p j for some i, j ≥ 1. Now, according to Lemma 3.3.3 θ(v) and p are

powers of a common word, say q. So, we get

p = ql, θ(v) = qm and w = qn for l,m, n ≥ 1. (3.4)

Substituting Equation (3.4) in the Equation (3.1) we get

qmqn = θ(qn)qm (3.5)

which implies that q = θ(q), i.e. q is a θ-palindromic word and v and w are powers of q.

Conversely, suppose v and w are powers of the same θ-palindromic word, say p. This

implies, v = pi,w = p j for i, j ≥ 1 and p = θ(p), which further implies

θ(v) = (θ(p))i = pi and θ(w) = p j. (3.6)
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Now, we know that, (u � v) � w = {uvw, uθ(v)w, uvθ(w), uθ(v)θ(w)} and

u� (v�w) = {uvw, uvθ(w), uθ(w)θ(v), uwθ(v)}. If we compare these two expressions, we are

left to show that {uθ(v)w, uθ(v)θ(w)} = {uθ(w)θ(v), uwθ(v)}, which is clear from Equation (3.6).

�

In the previous section, we have seen the definition of i-th ◦-power of a non-empty lan-

guage L. The following Lemma and its Corollary clarify this definition in the case of any

bw-operation.

Lemma 3.3.5 Given a bw-operation ◦, we have

L◦(0) = {λ},

L◦(1) = L,

L◦(n) = L◦(n−1) ◦ L, ∀n ≥ 2.

Proof Fistly, L◦(0) = {λ} by definition. Secondly, L◦(1) = L ◦0 L = L. Thirdly, for n ≥ 2 we

have L◦(n) = L ◦n−1 L = (L ◦n−2 L) ◦ L = L◦(n−1) ◦ L. �

Corollary 3.3.6 Given a bw-operation ◦, we have

u◦(0) = λ,

u◦(1) = u,

u◦(n) = u◦(n−1) ◦ u, ∀n ≥ 2.

The following lemma characterizes the form of the words in L�(n) when the operation that

is applied iteratively is the θ-catenation.
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Lemma 3.3.7 If � denotes the operation of θ-catenation associated to a morphic or antimor-

phic involution θ of Σ∗ then for n ≥ 1,

L�(n) = {uv1v2 · · · vn−1|u ∈ L, vi ∈ L ∪ θ(L), 0 ≤ i ≤ n − 1}.

In particular, when n = 1 we have L�(1) = L.

Proof We will prove this by induction on n.

For n = 1, L�(1) = L �0 L = L.

For n = 2, L�(2) = LL ∪ Lθ(L) = {uv|u ∈ L, v ∈ L ∪ θ(L)}.

Assume that the result is true for an arbitrary k ≥ 2, i.e.,

L�(k) = {uv1v2 · · · vk−1|u ∈ L, vi ∈ L ∪ θ(L), 1 ≤ i ≤ k − 1}.

For k+1 ≥ 2 the last equation of Lemma 3.3.5 holds and, together with the induction hypothesis

we have

L�(k+1) = L�(k) � L

= {uv1v2 · · · vk−1|u ∈ L, vi ∈ L ∪ θ(L), 1 ≤ i ≤ k − 1} � L

= {uv1v2 · · · vk|u ∈ L, vi ∈ L ∪ θ(L), 1 ≤ i ≤ k}.

�

The following Corollary demonstrates that, in the same way the operation of catenation

dynamically generates regular powers of words, the operation of θ-catenation is the one that

generates the θ-powers of a word.

Corollary 3.3.8 If � denotes the operation of θ-catenation associated to a morphic or anti-
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morphic involution θ of Σ∗, then every word w ∈ u�(n), n ≥ 1, is of the form

w = uv1v2 · · · vn−1

where vi ∈ {u, θ(u)} for 0 ≤ i ≤ n − 1. In particular, for n = 1 we have w = u.

The following Proposition relates the number of occurrences of a letter a and θ(a) in a word

to the number of occurences of a and θ(a) of its ◦-power.

Proposition 3.3.9 If ◦ is θ-propagating bw-operation, then for any w ∈ u◦(n), |w|a,θ(a) = n ·

|u|a,θ(a), for n ≥ 1.

Lemma 3.3.10 If ◦ is an associative bw-operation and L ⊆ Σ∗, L , ∅, we have

L◦(m) ◦ L◦(n) = L◦(m+n) for m, n ≥ 1.

Proof

L◦(m+n) = L◦(m+(n−1)) ◦ L

= (L◦(m+(n−2)) ◦ L) ◦ L

= L◦(m+(n−2)) ◦ (L ◦ L)

= L◦(m+(n−2)) ◦ L◦(2)

= L◦(m+(n−3)) ◦ L◦(3) = ...

= L◦(m) ◦ L◦(n).

�

Lemma 3.3.10 does not hold in general for operations that are not associative. However,

in the case of θ-catenation, when θ is an antimorphic involution, one of the inclusions in

Lemma 3.3.10 holds, even though θ-catenation is not right- or left-inclusive. As a conse-

quence, as seen in Corollary 3.3.12, θ-catenation is plus-closed.
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Lemma 3.3.11 If � is the operation of θ-catenation associated with any morphic or antimor-

phic involution θ of Σ∗ and L ⊆ Σ∗ is a nonempty language, then

L�(m) � L�(n) ⊆ L�(m+n), ∀m, n ≥ 1.

Proof If θ is a morphic involution then the operation of θ-catenation is associative and the

inclusion holds by Lemma 3.3.10.

If θ is an antimorphic involution then, by Lemma 3.3.7, for every n ≥ 1 we have

L�(n) = {uv1v2 · · · vn−1|u ∈ L, vi ∈ L ∪ θ(L), 0 ≤ i ≤ n − 1}.

Let x ∈ L�(m) and y ∈ L�(n) for some m, n ≥ 1. Then by Corollary 3.3.7 x = uv1v2 · · · vm−1

and y = u′v′1v′2 · · · v
′
n−1 for some u, u′ ∈ L, vi, v′i ∈ L∪ θ(L), 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1. By

the definition of θ-catenation,

x � y = {uv1v2 · · · vm−1u′v′1v′2 · · · v
′
n−1, uv1v2 · · · vm−1θ(v′n−1) . . . θ(u′)},

which is a word in L�(m+n). �

Corollary 3.3.12 The operation of θ-catenation is plus-closed for morphic as well as antimor-

phic involutions θ.

A non-empty language L ⊆ Σ∗ is called ◦-free if (L◦(+) ◦ L) ∩ L = ∅. In the case of θ-

catenation, for example, if L ⊆ Σ∗ and

R = {uv1v2...vk|u ∈ L, vi ∈ L ∪ θ(L), k ≥ 1, 1 ≤ i ≤ k}

then, if L ∩ R = ∅, L is �-free. The following proposition provides more examples of �-free

languages.
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Proposition 3.3.13 Given a morphic or antimorhic involution θ over Σ, and the operation �

(θ-catenation), any prefix code is �-free.

Proof Let L ⊆ Σ∗ be a prefix code, and assume that L is not �-free. Then there exist w ∈ L,

u ∈ L�(+) and v ∈ L such that w ∈ u � v = {uv, uθ(v)}. By the definition of θ-catenation

and Lemma 3.3.7, w is of the form αβ1β2 . . . βn−1v or αβ1β2 . . . βn−1θ(v), where α ∈ L and

βi ∈ L ∪ θ(L), 1 ≤ i ≤ n − 1, n ≥ 2. This is a contradiction to the fact that L is a prefix code. �

The converse of the previous Proposition does not hold, as shown by the following example.

Example 3.1 Let Σ = {A,G,C,T }, θ(A) = T, θ(G) = C, L = {AG,TT, AGCA}. The language

L is �-free, but not a prefix code.

Another way of obtaining �-free languages is given by means of the left θ-quotient. The

left θ-quotient of two languages L1, L2 ⊆ Σ∗ is defined as

L1 C� L2 = {w ∈ Σ∗| (L2 � w) ∩ L1 , ∅}.

Lemma 3.3.14 If θ is a morphic involution then the left θ-quotient is given by

u C� v = {v−1u, θ(v)−1θ(u)}

and if θ is an antimorphic involution then the left θ-quotient is given by

u C� v = {v−1u, θ(u)θ(v)−1}.

Proof Let θ be a morphic involution and let w ∈ (u C� v). This implies (v � w) ∩ {u} , ∅, that

is u ∈ {vw, vθ(w)}, which further implies w ∈ {v−1u, θ(v)−1θ(u)}.

Let θ be an antimorphic involution and let w ∈ (uC� v). This implies (v�w)∩ {u} , ∅, that

is u ∈ {vw, vθ(w)}, which further implies w ∈ {v−1u, θ(u)θ(v)−1}. �
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Lemma 3.3.15 Let θ be a morphic or antimorphic involution over Σ and let L be a language

in Σ∗. If L closed under left θ-quotient then L is not �-free.

Proof C�(L, L) = {w ∈ Σ∗|(L � w) ∩ L , ∅}. As L is C�-closed, C�(L, L) ⊆ L, which implies

that (L � L) ∩ L , ∅ which, since L ⊆ L�(+), further implies that L is not �-free. �

3.4 θ-primitive words

In this section we show that if the operation under consideration is θ-catenation, denoted by

�, then the �- primitive words coincide with the θ-primitive words defined in section 3.2. We

study some properties of such θ-primitive words. Recall the following result from [12].

Proposition 3.4.1 [12] Let ◦ be plus-closed and length-increasing. Then for every word w ∈

Σ+ there exists a ◦-primitive word u and an integer n ≥ 1 such that w ∈ u◦(n).

The following results (Proposition 3.4.2, Lemma 3.4.4, and Proposition 3.4.5) are similar

to analogous results in [26], involving propagating bw-operations.

Proposition 3.4.2 Let ◦ be plus-closed and θ-propagating. Then for every word w ∈ Σ+ there

exists a ◦-primitive word u and a unique integer n ≥ 1 such that w ∈ u◦(n).

Proof Every θ-propagating bw-operation is length-increasing. Now, by Proposition 3.4.1, for

every word w ∈ Σ+ there exists a ◦-primitive word u and an integer n ≥ 1 such that w ∈ u◦(n).

Consider a ∈ Σ such that |u|a,θ(a) , 0. Since ◦ is θ-propagating, for any w1 ∈ u◦(m) with m , n,

by Proposition 3.3.9, we get |w1|a,θ(a) = m|u|a,θ(a) , n|u|a,θ(a) = |w|a,θ(a). Thus w < u◦(m) for any

m , n. Hence n is such an unique integer. �

A ◦-primitive word u ∈ Σ+ such that w ∈ u◦(n) for some n ≥ 1, is called a ◦-root of w. In

general, a word may not have a unique ◦-root. However, if ◦ is the operation of θ-catenation,

then every word w ∈ Σ+ has an unique �-root, also called θ-root, denoted by ρθ(w). The

uniqueness of the θ-root of a word was demonstrated by the following theorem (corollary of

Theorems 13 and 14 from [6]).
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Theorem 3.4.3 If θ is a morphic or antimorphic involution on Σ∗ then for any word w ∈ Σ+

there exists a unique θ-primitive word t ∈ Σ+ such that w ∈ t{t, θ(t)}∗, i.e., ρθ(w) = t.

Lemma 3.4.4 Let Σ be an alphabet with |Σ| ≥ 2 and ◦ be plus-closed and θ-propagating bw-

operation. If a word w ∈ Σ+ is not ◦-primitive, then for any a , b, a, b ∈ Σ we have that |w|a,θ(a)

and |w|b,θ(b) have a common factor n > 1.

Proof If w is not ◦-primitive, then according to Proposition 3.4.1, w ∈ u◦(n) for some ◦-

primitive word u ∈ Σ+ and n > 1. Since ◦ is θ-propagating and Proposition 3.3.9 holds,

|w|a,θ(a) = n · |u|a,θ(a) for all a ∈ Σ. Similarly, |w|b,θ(b) = n · |u|b,θ(b). Hence, for any a, b ∈ Σ, we

have that |w|a,θ(a) and |w|b,θ(b) have the common factor n > 1. �

Proposition 3.4.5 Let Σ be an alphabet with |Σ| ≥ 3 and ◦ be plus-closed and θ-propagating

bw-operation. If w ∈ Σ+, a ∈ Σ, w < {a, θ(a)}+, then there is an integer m ≥ 1 such that all the

words v1 ∈ (w ◦ wm−1a), v2 ∈ (awm−1 ◦ w), v3 = wma and v4 = awm are ◦-primitive.

Proof For w ∈ Σ+, let m =
∏

b∈Σ,|w|b,θ(b),0 |w|b,θ(b). For any a ∈ Σ, suppose w < {a, θ(a)}+. Such a

word exists since |Σ| ≥ 3. Let v1 ∈ (w ◦ wm−1a), v2 ∈ (awm−1 ◦ w), v3 = wma and v4 = awm. If

b < {a, θ(a)} is a letter occurring in w, |v1|a,θ(a) = |v2|a,θ(a) = |v3|a,θ(a) = |v4|a,θ(a) = m · |w|a,θ(a) + 1

whereas |v1|b,θ(b) = |v2|b,θ(b) = |v3|b,θ(b) = |v4|b,θ(b) = m · |w|b,θ(b). As the number of occurrences of

a together with θ(a) respectively the number of occurrences of b together with θ(b) in each vi,

i = 1, 2, 3, 4, are relatively prime, by Lemma 3.4.4, v1, v2, v3 and v4 are ◦-primitive words. �

In the remainder of the section we will investigate some properties of θ-primitive words.

Definition 3.2 [12] A language L ⊆ Σ∗ is called right-◦-dense (resp. left-◦-dense) if for each

w ∈ Σ+, there exists u ∈ Σ∗ such that (w ◦ u) ∩ L , ∅ (resp. (u ◦ w) ∩ L , ∅).

If ◦ is the catenation of words, then the right and left ◦-dense languages are called right and

left dense languages, respectively. Let Q◦(Σ) denote the set of all ◦-primitive words over Σ.
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Proposition 3.4.6 If Σ is an alphabet with |Σ| ≥ 3 and ◦ is plus-closed and θ-propagating

bw-operation, then Q◦(Σ) is right and left ◦-dense.

Proof For each w ∈ Σ+, since |Σ| ≥ 3, there exists a ∈ Σ such that w < {a, θ(a)}+. As ◦ is plus-

closed and θ-propagating, by Proposition 3.4.5, there exists m ≥ 1, such that (w ◦ wm−1a) ∈

Q◦(Σ) and (awm−1 ◦ w) ∈ Q◦(Σ). This proves that Q◦(Σ) is right and left ◦-dense. �

Next, we show that the set of θ-primitive words Q�(Σ) is right and left dense.

Proposition 3.4.7 Let the operation of θ-catenation � associated to morphic or antimorphic

involution θ be plus-closed and θ-propagating and let |Σ| ≥ 3. Then Q�(Σ) is right and left

dense.

Proof Let w ∈ Σ+. If w ∈ {a, θ(a)}+ and b ∈ Σ such that b < {a, θ(a)}, then, |wb|a,θ(a) =

|bw|a,θ(a) = m ≥ 1. Also, |wb|b,θ(b) = |bw|b,θ(b) = 1, hence by Lemma 3.4.4 wb ∈ Q�(Σ) and

bw ∈ Q�(Σ). If w < {a, θ(a)}+, then by Proposition 3.4.5, wma ∈ Q�(Σ) and awm ∈ Q�(Σ) for

some m ≥ 1. This proves that Q�(Σ) is right and left dense. �

Proposition 3.4.8 Let ◦ be a plus-closed and θ-propagating bw-operation and L ⊆ Σ+ a non-

empty ◦-closed language such that Lc is also ◦-closed. Let F(L) be the set of length-minimal

words of L and P◦(L) = L ∩ Q◦(Σ). Then

1. If w ∈ L and if u is a ◦-root of w, then u ∈ L.

2. If L
′

is a ◦-closed language containing P◦(L), then L ⊆ L
′

.

3. Every word w ∈ F(L) is ◦-primitive.

Proof 1. Since u is a ◦-root of w, w ∈ u◦(n), for some n ≥ 1. If u ∈ Lc, then, since Lc is

◦-closed, u◦(n) = (u ◦n−1 u) ⊆ Lc and therefore, w ∈ Lc, which is a contradiction. Hence

u ∈ L.
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2. Let w ∈ L, then there are two possibilities, either w ∈ P◦(L) or w < P◦(L). If w ∈ P◦(L),

then w ∈ L
′

as P◦(L) ⊆ L
′

. If w < P◦(L) then w is not ◦-primitive. That means there

exists a ◦-primitive word u and n ∈ N such that w ∈ u◦(n). But as u is ◦-primitive,

u ∈ P◦(L) ⊆ L
′

, so w ∈ L
′

. So, we have showed that in both cases L ⊆ L
′

.

3. Assume that w ∈ F(L) is not ◦-primitive. Then by Proposition 3.4.1, w ∈ u◦(n), for some

◦-primitive word u and n > 1. By (1), u ∈ L.

Case (i): There is no a ∈ Σ such that θ(a) = a. Then, as Proposition 3.3.9 holds,

|w| =
1
2

∑
a∈Σ,a,θ(a)

|w|a,θ(a) >
1
2

∑
a∈Σ,a,θ(a)

|u|a,θ(a) = |u|

which contradicts the fact that w ∈ F(L).

Case (ii): There exists a ∈ Σ such that θ(a) = a. Then as Proposition 3.3.9 holds true,

|w| =
∑

a∈Σ,a=θ(a)

|w|a,θ(a) +
1
2

∑
a∈Σ,a,θ(a)

|w|a,θ(a)

>
∑

a∈Σ,a=θ(a)

|u|a,θ(a) +
1
2

∑
a∈Σ,a,θ(a)

|u|a,θ(a) = |u|

which contradicts the fact that w ∈ F(L). �

3.5 Closure properties and language equations

In this section we will briefly discuss the closure properties of families of languages under

θ-catenation and explore language equations involving this operation.

Proposition 3.5.1 The families of regular, context-free and context-sensitive languages are

closed under the operation of θ-catenation.
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Binary word operations can be extended naturally to binary language operations by defin-

ing,

L1 � L2 =
⋃

u∈L1,v∈L2

(u � v)

Language equations of type L � Y = R and X � L = R, where � is an invertible binary word

operation and L and R are two given languages have been extensively studied, e.g., in [15].

Finding the solutions to such equations involves the concept of “right inverse” and “left inverse”

of an operation.

Definition 3.3 [15] Let ◦ and � be two binary word operations. The operation � is said to be

the right-inverse of the operation ◦ if for all words u, v,w over the alphabet Σ the following

relation holds:

w ∈ (u ◦ v) iff v ∈ (u � w).

Definition 3.4 [15] Let ◦ and • be two binary word operations. The operation • is said to

be the left-inverse of the operation ◦ if for all words u, v,w over the alphabet Σ, the following

relation holds:

w ∈ (u ◦ v) iff u ∈ (w • v).

Proposition 3.5.2 and 3.5.3 find the right and left inverses of θ-catenation for θ morphic as

well as antimorphic involution. Given a bw-operation ◦, the reverse of this operation, denoted

by ◦′, is defined as

u ◦′ v = v ◦ u.

Proposition 3.5.2 If θ is a morphic or antimorphic involution then the right-inverse of the

operation of θ-catenation � is the reverse left θ-quotient.

Proof Let θ be a morphic involution, and let w ∈ u � v. Then either w = uv or w = uθ(v). By

the definition of left quotient, w = uv implies that v = u−1w. Also, w = uθ(v) which implies

that θ(w) = θ(u)v and thus that v = θ(u)−1θ(w). This shows that v ∈ {u−1w, θ(u)−1θ(w)} = uC′�w.

The converse is similar.
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Let θ be an antimorphic involution and let w ∈ u � v. Then either w = uv or w = uθ(v).

By the definition of left quotient, w = uv implies that v = u−1w. Also, w = uθ(v) implies

that θ(w) = vθ(u). Then, by the definition of right quotient, θ(w) = vθ(u) which implies that

v = θ(w)θ(u)−1. This shows that

v ∈ {u−1w, θ(w)θ(u)−1} = u C′� w.

The converse is similar. �

Proposition 3.5.3 Let θ be a morphic or antimorphic involution, and let the binary word op-

eration • be defined as w • v = {wv−1,wθ(v)−1}. Then θ-catenation and • are left inverses of

each other.

Proof Let w ∈ u � v. Then either w = uv or w = uθ(v). By definition of right quotient, w = uv

implies u = wv−1. Also, w = uθ(v) implies u = wθ(v)−1. This shows that u ∈ {wv−1,wθ(v)−1} =

w • v. The converse is similar. �

The preceding results provide tools to solve language equations involving the operation of

θ-catenation. The following two propositions are consequences of more general results from

[15].

Proposition 3.5.4 Let L, R be languages over an alphabet Σ. If the equation L � Y = R has a

solution Y, then the language R
′

= (L C′� Rc)c is also a solution of the equation. Moreover, R
′

includes all the other solutions of the equation (set inclusion).

Corollary 3.5.5 Let L be a language in Σ∗. If the equation L � Y = L has a solution, then

ρ�(L), the set of all right �-residuals of L is a solution, which moreover includes all the other

solutions to the equation.

Proof By the previous proposition, if a solution to the equation L � Y = L exists, then also

R
′

= (L C′� Lc)c = (Lc C� L)c is a solution. By a result in [12], for any language L ⊆ Σ∗ and
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bw-operation ◦, the set of all right ◦ residuals of L, denoted by ρ◦(L), equals (C◦(Lc, L))c, which

proves the statement of the corollary. �

Proposition 3.5.6 Let L,R be languages over an alphabet Σ. If the equation X � L = R has a

solution X ⊆ Σ∗, then also the language R
′

= (RcC′� L)c is a solution of the equation. Moreover,

R
′

includes all the other solutions of the equation (set inclusion).

3.6 Conclusions and future work

This paper proposes and investigates the operation of θ-catenation, that generates the pseudo-

powers (θ-powers) of a word. An avenue of further research is to determine and investigate

operations that generate other types of generalized powers. One such type is the Abelian power,

[8] defined as follows.

A word w is an k-th Abelian power if w = u1u2 · · · uk for some u1, u2, · · · uk, ui ∈ Σ+,

1 ≤ i ≤ k, such that for all 1 ≤ i, j ≤ k, π(ui) = π(u j), where π(u) denotes the set of all words

obtained by permuting the letters of u. A word w is Abelian primitive if w fails to be a k-th

Abelian power for every k ≥ 2. A word u is an Abelian root of w if w = uu1u2 · · · uk−1 for some

u1 · · · uk−1 ∈ Σ+ with π(u) = π(ui) for all 1 ≤ i ≤ k − 1. Unlike words that are not primitive or

not θ-primitive, a word that is not Abelian primitive may have several Abelian roots.

We can now define a bw-operation �, called Abelian-catenation, as u � v = uπ(v). For

example, if we consider the alphabet Σ = {a, b, c} and the words u = acba and v = bcc, then

u � v = {acbabcc, acbacbc, acbaccb}.

The operation of Abelian-catenation is length-increasing as well as propagating, but its

neither left-inclusive nor right-inclusive and therefore is not plus-closed.

Note that the operation of Abelian-catenation generates Abelian-powers. Indeed, if w ∈

u�(k), for k ≥ 1, then w = uv1v2 · · · vk−1, where vi ∈ {π(u)}, for 1 ≤ i ≤ k − 1.
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Chapter 4

Pseudo-Identities and Bordered Words

4.1 Introduction

Periodicity, primitivity, and repetitions of words are fundamental properties in combinatorics

on words and formal language theory. Their applications include pattern-matching algorithms

(see e.g. [3], and [4]) and data-compression algorithms (see, e.g., [23]). Sometimes moti-

vated by their applications, these classical notions have been modified in various ways that,

in essence, replace the identity function with a pseudo-identity, and the notion of repetition

with the notion of pseudo-repetition. A representative example is the “weak periodicity” of

[5] whereby a word is called weakly periodic if it consists of repetitions of words with the

same Parikh vector. This type of period was also called Abelian period in [2]. Carpi and de

Luca extended the notion of periodic words to that of periodic-like words, according to the

extendability of factors of a word [1].

Czeizler, Kari, and Seki have proposed and investigated the notion of pseudo-primitivity

(and pseudo-periodicity) of words in [6, 20], motivated by the properties of information en-

coded as DNA strands. One of the particularities of information encoded as DNA strands is

0A version of this chapter has been published (L. Kari, M.S. Kulkarni. Pseudo-identities and bordered words.
In G. Păun, G. Rozenberg, A. Salomaa editors, Discrete Mathematics and Computer Science, Editura Academiei
Române, 2014, 207-222)
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that a word u over the DNA alphabet {A,C,G,T } contains basically the same information as its

Watson-Crick complement, denoted here by θ(u). This led to natural as well as theoretically in-

teresting extensions of the notion of “identity”, leading to several new notions in combinatorics

on words and formal language theory such as pseudo-palindrome [7], pseudo-commutativity

[18], as well as hairpin-free and bond-free languages (e.g., [13, 14, 15, 19, 21]). In this context,

Watson-Crick complementarity has been modeled mathematically by an antimorphic involu-

tion θ over an alphabet Σ, i.e., a function that is an antimorphism, θ(uv) = θ(v)θ(u), ∀u, v ∈ Σ∗,

and an involution, θ(θ(x)) = x, ∀x ∈ Σ∗.

In [16], given a morphic or antimorphic involution θ, a nonempty word u was defined to

be θ-bordered if there exists v ∈ Σ+ that is a proper prefix of u, while θ(v) is a proper suffix

of u. A nonempty word u was called θ-unbordered if it was not θ-bordered, and properties of

θ-bordered and θ-unbordered words were investigated in [16], [17]. Other generalizations of

the classical notions of bordered and unbordered words include pseudo-knot-bordered words,

defined in [19] as nonempty words w with the property that w = xyα = βθ(yx) for some words

x, y, α, and β.

In [8, 9, 10], studies of θ-periodicity have been extended to consider the cases where the

morphism or antimorphism θ is literal, non-erasing or uniform. We continue this line of study

by extending the investigation of θ-bordered words from the case of morphic or antimorphic

involutions θ to cases where θn is the identity function, for some n ≥ 2, and the case where θ is

a literal morphism or antimorphism. We study properties of θ-(un)bordered words in Section

4.3, some properties of the set θ-(un)bordered words where θ is a morphic involution in Section

4.4, and conclude with several directions of further research in Section 4.5.

4.2 Basic definitions and notations

An alphabet Σ is a finite non-empty set of symbols. Σ∗ denotes the set of all words over Σ,

including the empty word λ. Σ+ is the set of all non-empty words over Σ. The length of a word
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u ∈ Σ∗ (i.e. the number of symbols in a word) is denoted by |u|. By Σm we denote the set of all

words of length m > 0 over Σ. The complement of a language L ⊆ Σ∗ is Lc = Σ∗\L. A word is

called primitive if it cannot be expressed as a power of another word. Let Q denote the set of

all primitive words. A function θ : Σ∗ → Σ∗ is said to be a morphism if for all words u, v ∈ Σ∗

we have that θ(uv) = θ(u)θ(v), an antimorphism if θ(uv) = θ(v)θ(u) and an involution if θ2 is an

identity on Σ∗. If for all a ∈ Σ, |θ(a)| = 1, then θ is called literal (anti)morphism1. A θ-power

of a word u is a word of the form u1u2 · · · un for n ≥ 1 where u1 = u and ui ∈ {u, θ(u)} for

2 ≤ i ≤ n. A word is called θ-primitive if it cannot be expressed as a θ-power of another word.

Let Qθ denote the set of all θ-primitive words.

For a language L ⊆ Σ∗, the principal congruence PL determined by L is defined as follows:

for any x, y ∈ Σ∗ such that x , y, x ≡ y(PL) if and only if uxv ∈ L ⇔ uyv ∈ L for all u, v ∈ Σ∗.

The index of PL is the number of equivalence classes of PL. L is said to be disjunctive if PL is

the identity, i.e., for any x , y ∈ Σ∗ there exists u, v ∈ Σ∗ such that uxv ∈ L and uyv < L or vice

versa.

A language L ⊆ Σ∗ is said to be dense if for all u ∈ Σ∗, L ∩ Σ∗uΣ∗ , ∅.

Definition 4.1 1. For v,w ∈ Σ∗, w ≤p v iff v ∈ wΣ∗.

2. For v,w ∈ Σ∗, w ≤s v iff v ∈ Σ∗w.

3. ≤d=≤p ∩ ≤s.

4. For u ∈ Σ∗, v ∈ Σ∗ is said to be a border of u if v ≤d u, i.e., u = vx = yv.

5. For v,w ∈ Σ∗, w <p v iff v ∈ wΣ+.

6. For v,w ∈ Σ∗, w <s v iff v ∈ Σ+w.

7. <d=<p ∩ <s.

8. For u ∈ Σ∗, v ∈ Σ∗ is said to be a proper border of u if v <d u.

1By (anti)morphism we mean either a morphism or an antimorphism.
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9. For u ∈ Σ+, Ld(u) = {v ∈ Σ∗|v <d u}.

10. νd(u) = |Ld(u)|.

11. D(i) = {u ∈ Σ+|νd(u) = i}.

12. A word u ∈ Σ+ is said to be a bordered word if there exists v ∈ Σ+ such that v <d u, i.e.,

u = vx = yv for some x, y ∈ Σ+.

13. A non-empty word which is not bordered is called unbordered.

For a word w, Pref(w) = {u ∈ Σ+|∃v ∈ Σ∗,w = uv} and Suff(w) = {u ∈ Σ+|∃v ∈ Σ∗,w = vu}

denotes the set of all prefixes and suffixes respectively. Similarly, the set of proper prefixes

and proper suffixes of a word w can be defined as PPref(w) = {u ∈ Σ+|∃v ∈ Σ+,w = uv} and

PSuff(w) = {u ∈ Σ+|∃v ∈ Σ+,w = vu} respectively.

Definition 4.2 [16] Let θ be either a morphism or an antimorphism on Σ∗.

1. For v,w ∈ Σ∗, w ≤θp v iff v ∈ θ(w)Σ∗.

2. For v,w ∈ Σ∗, w ≤θs v iff v ∈ Σ∗θ(w).

3. ≤θd=≤p ∩ ≤
θ
s.

4. For u ∈ Σ∗, v ∈ Σ∗ is said to be a θ-border of u if v ≤θd u, i.e., u = vx = yθ(v).

5. For w, v ∈ Σ∗, w <θp v iff v ∈ θ(w)Σ+.

6. For w, v ∈ Σ∗, w <θs v iff v ∈ Σ+θ(w).

7. <θd=<p ∩ <
θ
s.

8. For u ∈ Σ∗, v ∈ Σ∗ is said to be a proper θ-border of u if v <θd u.

9. For u ∈ Σ+, define Lθd(u) = {v ∈ Σ∗|v <θd u}.

10. νθd(u) = |Lθd(u)|.
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11. Dθ(i) = {u ∈ Σ+|νθd(u) = i}.

12. A word u ∈ Σ+ is said to be θ-bordered if there exists v ∈ Σ+ such that v <θd u, i.e.,

u = vx = yθ(v) for some x, y ∈ Σ+.

13. A nonempty word which is not θ-bordered is called θ-unbordered. Thus, Dθ(1) is the set

of all θ-unbordered words over Σ.

For u, v ∈ Σ∗, [11] calls u <d x1 <d x2 <d · · · <d v a u − v chain. A u − v chain, u = x1 <d

x2 <d · · · <d xn = v is said to be maximal if for u′ ∈ Σ∗, u <d u′ <d v implies u′ = xi for some

1 < i < n. Similarly, we can define u −θ v chain as a sequence u = x1 <
θ
d x2 <

θ
d · · · <

θ
d xn = v.

The notion of maximal chain can be extended to that of θ-maximal chain in a similar fashion.

4.3 Properties of pseudo-(un)bordered words

In this section, we study some basic properties of θ-bordered and θ-unbordered words where θ

is a (anti)morphism with the property that θn = I on Σ∗ for n ≥ 2 or any literal (anti)morphism.

In the case where θn = I and θ is an antimorphism, it is clear that n has to be an even number.

The following result was proved in [11], and can be easily generalized to the case of mor-

phic involutions.

Lemma 4.3.1 [11] Let u ∈ Σ+\D(1). Then there exists v ∈ Σ∗ with |v| ≤ |u|2 such that v <d u.

Lemma 4.3.2 Let θ be a morphic or an antimorphic involution and let u ∈ Σ+\Dθ(1). Then

there exists v ∈ Σ∗ with |v| ≤ |u|2 such that v <θd u.

The next two results, Propositions 4.3.3 and 4.3.4, establish some relations between the set

of θ-borders of a word u, namely Lθd(u), and the set of θ-borders of θ(u), namely Lθd(θ(u)).

Proposition 4.3.3 Let u ∈ Σ+. Then for a morphism θ on Σ∗ such that θn = I for n > 2,

Lθd(θ(u)) = θ(Lθd(u)).
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Proof Let v ∈ Lθd(θ(u)) which implies θ(u) = vx = yθ(v) for some x, y ∈ Σ+ which further im-

plies θ2(u) = θ(v)θ(x) = θ(y)θ2(v). Continuing in this way, we will get θn(u) = θn−1(v)θn−1(x) =

θn−1(y)θn(v) and thus u = θn−1(v)θn−1(x) = θn−1(y)θn(v) which implies θn−1(v) ∈ Lθd(u) and hence

v ∈ θ(Lθd(u)). Thus, Lθd(θ(u)) ⊆ θ(Lθd(u)).

Conversely, let v ∈ Lθd(u) which implies u = vx = yθ(v) for x, y ∈ Σ+ and hence θ(u) =

θ(v)θ(x) = θ(y)θ2(v) which further implies θ(v) ∈ Lθd(θ(u)). Also, since v ∈ Lθd(u), θ(v) ∈

θ(Lθd(u)). Thus, Lθd(θ(u)) = θ(Lθd(u)).

However, if θ is literal (anti)morphism that is not bijective, Proposition 4.3.3 does not

necessarily hold, as demonstrated by Example 4.1.

Example 4.1 Let Σ = {a, b} and θ be (anti)morphism such that, θ(a) = a, θ(b) = a, u = ababaa.

Then θ(u) = aaaaaa, Lθd(u) = {λ, a, ab}, θ(Lθd(u)) = {λ, a, aa}, Lθd(θ(u)) = {λ, a, aa, · · · , aaaaa}.

Clearly, Lθd(θ(u)) , θ(Lθd(u)).

Note that the inclusion θ(Lθd(u)) ⊆ Lθd(θ(u)) holds in case of Example 4.1. Moreover, the

inclusion holds in general for any literal morphism θ.

Proposition 4.3.4 Let u ∈ Σ+. Then for any literal morphism θ on Σ∗, θ(Lθd(u)) ⊆ Lθd(θ(u)).

Proof Let v ∈ Lθd(u) which implies u = vx = yθ(v) for x, y ∈ Σ+ and hence θ(u) = θ(v)θ(x) =

θ(y)θ2(v) which further implies θ(v) ∈ Lθd(θ(u)). Also, since v ∈ Lθd(u), θ(v) ∈ θ(Lθd(u)). Thus,

θ(Lθd(u)) ⊆ Lθd(θ(u)).

It is known, [16], that, for an antimorphic involution θ, the relation <θd is transitive.

Lemma 4.3.5 [16] Let u ∈ Σ∗ and v,w ∈ Σ+ such that u <θd w and w <θd v. Then for a morphic

involution θ, we have u <d v and for an antimorphic involution θ, we have u <θd v.

The statement of Lemma 4.3.5 does not necessarily hold in the case when θ is a morphism

which is literal and not bijective, as demonstrated by Example 4.2.
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Example 4.2 Let Σ = {a, b} and θ be a morphism such that θ(a) = a, θ(b) = a, u = ab,

w = abaa, v = abaabbaaaa. Then u <θd w and w <θd v but u ≮d v.

The following proposition demonstrates the transitivity of relation <θd for literal antimor-

phisms θ.

Proposition 4.3.6 If θ is any literal antimorphism on Σ∗, then the relation <θd is transitive, i.e.

for u ∈ Σ∗ and v,w ∈ Σ+ such that u <θd w and w <θd v, we have u <θd v.

Proof Let θ be any literal antimorphism such that u <θd w and w <θd v which implies w = ux =

yθ(u) and v = wα = βθ(w) for some x, y, α, β ∈ Σ+, hence v = uxα = βθ(ux) which further

implies v = uxα = βθ(x)θ(u). Hence u <θd v.

Corollary 4.3.7 Let v ∈ Lθd(u) and w ∈ Σ+. Then for any literal antimorphism θ on Σ∗, if

w <θd v then w ∈ Lθd(u).

The converse of the Corollary 4.3.7 does not hold in general. In fact, in the case of an

antimorphism, Proposition 4.3.9 holds.

The next results describe relations between the θ-borders of a word u when θ is a morphism

with θn = I, n > 2, (Proposition 4.3.8) or literal (anti)morphisms (Proposition 4.3.9).

Proposition 4.3.8 Let u, v,w ∈ Σ+, u , v and u <θd w, v <θd w. If θ is a morphism on Σ∗ such

that θn = I for n > 2, then either v <d u or u <d v.

Proof Let θ be a morphism such that θn = I and u <θd w, v <θd w which implies w = ux = yθ(u)

and w = vα = βθ(v) for some x, y, α, β ∈ Σ+. If |u| > |v|, then u = vp and θ(u) = qθ(v) for

some p, q ∈ Σ+ which imply θn(u) = θn−1(q)θn(v) = θn−1(q)v. Thus, we get u = vp = θn−1(q)v

which implies v <d u. Similarly, if |u| < |v| then v = up′ and θ(v) = q′θ(u) for some p′, q′ ∈ Σ+

which imply θn(v) = θn−1(q′)θn(u) = θn−1(q′)u. Thus, we get v = up′ = θn−1(q′)u which implies

u <d v.
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Proposition 4.3.8 does not necessarily hold if θ is a literal (anti)morphism that is not bijec-

tive, as demonstrated by Example 4.3.

Example 4.3 Let Σ = {a, b}, and θ be a morphism or antimorphism such that θ(a) = a, θ(b) =

a, u = ab, v = abaa, and w = abaabbaaaa. Then u <θd w, v <θd w but neither v <d u nor u <d v.

Proposition 4.3.9 Let u, v,w ∈ Σ+, u , v and u <θd w, v <θd w. Then for any literal morphism θ

on Σ∗, either θ(v) <d θ(u) or θ(u) <d θ(v). If θ is any literal antimorphism, then either v <p u

or u <p v.

Proof Let θ be any literal morphism and u <θd w, v <θd w which imply w = ux = yθ(u) and

w = vα = βθ(v) for some x, y, α, β ∈ Σ+. If |u| > |v|, then u = vp and θ(u) = qθ(v) for some

p, q ∈ Σ+ which imply θ(u) = θ(v)θ(p) = qθ(v). Thus, we get θ(v) <d θ(u). Similarly, if |u| < |v|

then v = up′ and θ(v) = q′θ(u) for some p′, q′ ∈ Σ+ which imply θ(v) = θ(u)θ(p′) = q′θ(u).

Thus, we get θ(u) <d θ(v).

Let θ be any literal antimorphism and u <θd w, v <θd w which imply that w = ux = yθ(u) and

w = vα = βθ(v) for some x, y, α, β ∈ Σ+. Hence, we have, ux = vα. If |u| > |v|, v <p u and if

|v| > |u| then u <p v.

Corollary 4.3.10 Let u, v,w ∈ Σ+, u , v and u <θd w, v <θd w. Then for any literal antimor-

phism θ on Σ∗, either θ(v) <s θ(u) or θ(u) <s θ(v).

Corollary 4.3.11 Let u ∈ Σ+. Then

1. For any morphism θ on Σ∗ such that θn = I for n > 2, Lθd(u) is a totally ordered set with

<d, i.e. Lθd(u) = {λ <d u1 <d u2 <d · · · <d ui−1}.

2. For any literal morphism θ on Σ∗, θ(Lθd(u)) is a totally ordered set with <d.

3. For any literal antimorphism θ on Σ∗, Lθd(u) is a totally ordered set with <p, i.e. Lθd(u) =

{λ <p u1 <p u2 <p · · · <p ui−1} and θ(Lθd(u)) is a totally ordered set with <s.
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Proof Statement 1 follows from Proposition 4.3.8, statement 2 from Proposition 4.3.9 and

statement 3 from Proposition 4.3.9 and Corollary 4.3.10, respectively.

The next two propositions (Proposition 4.3.12, 4.3.13) list some properties of θ-unbordered

words for (anti)morphisms θ such that θn = I, n > 2.

Proposition 4.3.12 Let θ be a morphism on Σ∗ such that θn = I for n > 2. Then for all

x, y ∈ Dθ(1) such that x , y, we have that xy , θn−1(y)x.

Proof Let x, y ∈ Dθ(1). As Dθ(i) ⊆ Σ+ for i ≥ 1, both x and y are non-empty. Suppose

xy = θn−1(y)x, then we have following three cases to consider.

Case 1: |x| = |y|. Then x = θn−1(y) and y = x, which is a contradiction since x , y.

Case 2: |x| > |y|. Then there exists p ∈ Σ+ such that x = θn−1(y)p and x = py which imply

that x = θn−1(y)p = pθn(y), which is a contradiction since x ∈ Dθ(1).

Case 3: |y| > |x|. Then there exists q ∈ Σ+ such that θn−1(y) = xq and y = qx which imply

that y = qx = θ(x)θ(q), which is a contradiction since y ∈ Dθ(1).

Since all the three cases leads to a contradiction xy , θn−1(y)x.

Proposition 4.3.13 Let θ be an antimorphism on Σ∗ such that θn = I for n > 2. Then for

x ∈ Dθ(1) and y ∈ Σ+ such that x , y and θ(x) , x, we have that xy , θn−1(y)x.

Proof Let x ∈ Dθ(1). As Dθ(i) ⊆ Σ+ for i ≥ 1, x is non-empty. Suppose xy = θn−1(y)x, then we

have following three cases to consider.

Case 1: |x| = |y|. Then x = θn−1(y) and y = x, which is a contradiction since x , y.

Case 2: |x| > |y|. Then there exists p ∈ Σ+ such that x = θn−1(y)p and x = py which imply

that x = θn−1(y)p = pθn(y), which is a contradiction since x ∈ Dθ(1).

Case 3: |y| > |x|. Then there exists q ∈ Σ+ such that θn−1(y) = xq and y = qx which imply

that y = qx = θ(q)θ(x), which further implies θ(q) = q and θ(x) = x which is a contradiction

since θ(x) , x.

Since all the three cases leads to a contradiction xy , θn−1(y)x.
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The following lemma provides a necessary and sufficient condition for a word to be θ-

bordered, in the case when θ is a literal antimorphism.

Lemma 4.3.14 Let θ be any literal antimorphism on Σ∗. Then x ∈ Σ+ is θ-bordered iff x =

ayθ(a) for some a ∈ Σ and y ∈ Σ∗.

The result below gives several properties of θ-unbordered words, for literal antimorphisms

θ.

Proposition 4.3.15 Let θ be any literal antimorphism on Σ∗, then

1. For all u, v ∈ Σ+ and w ∈ Σ∗, we have uwv ∈ Dθ(1) iff uv ∈ Dθ(1).

2. If Σ is an alphabet such that there exist a, b ∈ Σ with θ(a) , b, then Dθ(1) is a dense set.

3. Let a, b ∈ Σ such that a , b. Then for all u ∈ Σ+, either ua or ub is θ-unbordered.

Proof 1. Suppose uwv ∈ Dθ(1) and uv < Dθ(1) which imply that uv = ayθ(a) for some

a ∈ Σ and y ∈ Σ∗. If w = λ, then clearly uwv < Dθ(1), a contradiction. Now, if w , λ,

then we have three possibilities.

Case a: u = a, v = yθ(a), hence uwv = awyθ(a) < Dθ(1).

Case b: u = ay, v = θ(a), hence uwv = aywθ(a) < Dθ(1).

Case c: u = ap, v = qθ(a) where y = pq for some p, q ∈ Σ∗, hence uwv = apwqθ(a) <

Dθ(1).

Since all the three cases leads to a contradiction, uv ∈ Dθ(1).

Conversely, suppose uwv < Dθ(1) which imply that uwv = ayθ(a) for some a ∈ Σ and

y ∈ Σ∗. Hence, u = au1 and v = v1θ(a) for some u1, v1 ∈ Σ∗ which further implies,

uv = au1v1θ(a) < Dθ(1), a contradiction. Hence uwv ∈ Dθ(1).

2. Choose a, b ∈ Σ such that θ(a) , b. Then for all w ∈ Σ∗, there exists a, b ∈ Σ∗ such that

awb ∈ Dθ(1). Hence Dθ(1) is a dense set.



76 Chapter 4. Pseudo-Identities and BorderedWords

3. Let us assume that both ua and ub are θ-bordered. Then we have, ua = a1y1θ(a1) and

ub = a2y2θ(a2) for some a1, a2 ∈ Σ and y1, y2 ∈ Σ∗ which implies u = a1y1 = a2y2 and

a = θ(a1), b = θ(a2). This further implies that a1y1 = a2y2 which implies a1 = a2 and

y1 = y2 which further implies a = θ(a2) = b, a contradiction. Hence, either ua or ub is

θ-unbordered.

If θ is an antimorphism such that θn = I, n > 2, the following result holds.

Proposition 4.3.16 Let θ be an antimorphism on Σ∗ such that θn = I for n > 2. Then u ∈ Dθ(1)

iff θn−2(u) ∈ Dθ(1).

Proof Let u ∈ Dθ(1) and suppose θn−2(u) < Dθ(1) then we have θn−2(u) = ayθ(a) for some a ∈ Σ

and y ∈ Σ∗ which imply that u = θn(u) = θ2(a)θ2(y)θ3(a) and thus u < Dθ(1), a contradiction.

Hence θn−2(u) ∈ Dθ(1).

Conversely, suppose θn−2(u) ∈ Dθ(1) and u < Dθ(1). Then u = ayθ(a) for some a ∈ Σ and

y ∈ Σ∗. Since n is even and θn = I, n − 2 is also even and thus θn−2(u) = θn−2(a)θn−2(y)θn−1(a) <

Dθ(1), a contradiction. Hence u ∈ Dθ(1).

Lemma 4.3.17 Let θ be a morphic involution on Σ∗ and u ∈ Σ+ such that u ∈ D(1), then

θ(u) ∈ D(1).

Proof Let u ∈ D(1). Suppose θ(u) < D(1). Then θ(u) = αβ1 = β2α for α, β1, β2 ∈ Σ+. Thus,

u = θ(α)θ(β1) = θ(β2)θ(α) < D(1), a contradiction. Thus, θ(u) ∈ D(1).

Along similar lines, we can prove the following result concerning Dθ(1) for a morphism of

the form θn = I, n ≥ 2.

Lemma 4.3.18 Let θ be a morphism on Σ∗ such that θn = I, n ≥ 2 and u ∈ Σ+. Then the

following are equivalent:

1. u ∈ Dθ(1).
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2. θn−1(u) ∈ Dθ(1).

3. θ(u) ∈ Dθ(1).

Proof (1) ⇒ (2): Let u ∈ Dθ(1) and suppose θn−1(u) < Dθ(1). Then θn−1(u) = vx = yθ(v)

for some v, x, y ∈ Σ+. This implies u = θ(v)θ(x) = θ(y)θ2(v), a contradiction since u ∈ Dθ(1).

Hence θn−1(u) ∈ Dθ(1).

(2) ⇒ (3): Let θn−1(u) ∈ Dθ(1) and suppose θ(u) < Dθ(1). Then θ(u) = vx = yθ(v) for

some v, x, y ∈ Σ+. This implies θn−1(u) = θn−2(v)θn−2(x) = θn−2(y)θn−1(v), a contradiction since

θn−1(u) ∈ Dθ(1). Hence θ(u) ∈ Dθ(1).

(3) ⇒ (1): Let θ(u) ∈ Dθ(1) and suppose u < Dθ(1). Then u = vx = yθ(v) for some

v, x, y ∈ Σ+. This implies θ(u) = θ(v)θ(x) = θ(y)θ2(v), a contradiction since θ(u) ∈ Dθ(1).

Hence u ∈ Dθ(1).

In fact, the implication θn−2(u) ∈ Dθ(1)⇒ u ∈ Dθ(1) of Proposition 4.3.16 and implications

(2) ⇒ (3) and (3) ⇒ (1) in Lemma 4.3.18 hold if θ is a literal morphism, not necessarily

bijective.

Proposition 4.3.19 Let θ be a morphism on Σ∗ such that θn = I and u ∈ Σ+. If u ∈ Dθ(i) for

some i ≥ 2, then for all 1 ≤ k < i, Lθd(u) ∩ D(k) , ∅.

Proof By Corollary 4.3.11 we have

Lθd(u) = {λ <d u1 <d u2 <d · · · <d ui−1}.

Note that uk <
θ
d u for all 1 ≤ k ≤ i − 1. Now, since u j ∈ Lθd(u) and |u j| < |uk| for all 1 ≤ j < k,

by Proposition 4.3.8 we have that u j <d uk. Hence,

Ld(uk) = {λ, u1, · · · uk−1}.

Thus uk ∈ D(k) and Lθd(u) ∩ D(k) , ∅.



78 Chapter 4. Pseudo-Identities and BorderedWords

Recall that, a u −θ v chain, u = x1 <
θ
d x2 <

θ
d · · · <

θ
d xn = v is said to be θ-maximal if for

u′ ∈ Σ∗, u <θd u′ <θd v implies u′ = xi for some 1 < i < n.

Lemma 4.3.20 [6] Let u ∈ Σ+ be a primitive word. Then u cannot be a factor of u2 in a

nontrivial way, i.e., if u2 = xuy, then necessarily either x = λ or y = λ.

Proposition 4.3.21 Let θ be an antimorphic involution on Σ∗ and f ∈ Q. If f ≤θd u ≤θd f 2, then

u = f or u = f 2, i.e., f ≤θd f 2 is a θ-maximal chain.

Proof Suppose f ≤θd f 2 is not a θ-maximal chain, i.e., u , f and u , f 2. Since f ≤θd u ≤θd f 2,

we have u = f x = yθ( f ) and f 2 = uα = βθ(u) for x, y, α, β ∈ Σ∗ with |x| = |y| and |α| = |β|.

Then,

f 2 = f xα = yθ( f )α = βθ(x)θ( f ) = β f θ(y).

Now, since f 2 = β f θ(y), by Lemma 4.3.20 either β = λ or θ(y) = λ.

Case 1: Suppose, β = λ. This implies f = θ(y). Since, f xα = f 2, we get xα = f = θ(y).

But since, |x| = |y|, x = θ(y) = f and thus u = f x = f 2, a contradiction.

Case 2: Suppose, θ(y) = λ. This implies β = f . Since, f xα = f 2, we get xα = f = β. But

since, |α| = |β|, α = β = f which implies f 2 = uα = u f and thus u = f , a contradiction.

Since both the cases leads to a contradiction, f ≤θd f 2 is a θ-maximal chain.

The θ-unbounded annihilator αub(u) of a word u is defined, [12], as

αub(u) = {v ∈ Σ+|uv ∈ Dθ(1)}.

The following results find a relationship between the θ-unbounded annihilator of a word u

and the set of catenations of suffixes of u, for θ-unbordered words u, and morphisms θ with

θn = I, n ≥ 2 (Proposition 4.3.22) or literal antimorphisms (Proposition 4.3.23).

Proposition 4.3.22 Let θ be a morphism on Σ∗ such that θn = I, n ≥ 2. If u ∈ Dθ(1), then

(PSuff(u))+ ⊆ αub(u).
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Proof Let u ∈ Dθ(1). Let v = u1u2 · · · um for some ui ∈ PSuff(u) and 1 ≤ i ≤ m. Suppose

that uv < Dθ(1). Then there exists α, α1, β1 ∈ Σ+ such that uv = αα1 = β1θ(α). Then, we have

following two cases:

Case 1: |α| > |v|. Then, we have θ(α) = u′′v and u = u′u′′ for some u′, u′′ ∈ Σ+. This

implies u′′ <s u. From uv = αα1, we get uv = θn−1(u′′)θn−1(v)α1. This implies θn−1(u′′) <p u.

This will further imply that u < Dθ(1), a contradiction.

Case 2: |α| ≤ |v|. Also, we have v = u1u2 · · · um for some ui ∈ PSuff(u) for 1 ≤ i ≤ m. Thus

we have following two sub-cases:

Case 2(a): |α| < |um|. Then, we have θ(α) = um′′ and um = um′um′′ for some um′ , um′′ ∈ Σ+.

Since, um ∈ PSuff(u), we have u = u′mum = u′mum′um′′ for some u′m ∈ Σ+. Thus, we have

um′′ <s u. From uv = αα1, we get uv = θn−1(um′′)α1. This implies θn−1(um′′) <p u. This will

further imply that u < Dθ(1), a contradiction.

Case 2(b): |α| ≥ |um|. Then, we have θ(α) = u′′i ui+1 · · · um for ui = u′iu
′′
i , u′i ∈ Σ∗, u′′i ∈ Σ+

and i = 1, 2, · · · ,m − 1. Since, ui ∈ PSuff(u), we have u = ui′ui = ui′u′iu
′′
i for some ui′ ∈ Σ+.

Thus, we have u′′i <s u. From uv = αα1, we get uv = θn−1(u′′i )θn−1(ui+1 · · · um)α1. This implies

θn−1(u′′i ) <p u. This will further imply that u < Dθ(1), a contradiction.

Since all the cases leads to a contradiction, (PSuff(u))+ ⊆ αub(u).

Proposition 4.3.23 Let θ be any literal antimorphism on Σ∗. If u ∈ Dθ(1), then (PSuff(u))+ ⊆

αub(u).

Proof Let v = u1u2 · · · um for some ui ∈ PSuff(u) and 1 ≤ i ≤ m. Suppose, uv < Dθ(1). Then

uv = ayθ(a) for some a ∈ Σ and y ∈ Σ∗. This further implies, u = ay1, v = y2θ(a) and y = y1y2

for some y1, y2 ∈ Σ∗. Clearly, a <p u. But, since, v = u1u2 · · · um = y2θ(a) where um ∈ PSuff(u),

we will have um = um′θ(a) for um′ ∈ Σ∗. Also, u = u′um = u′um′θ(a) and thus θ(a) <s u. This

imply u < Dθ(1), a contradiction.
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4.4 Disjunctivity of the set of θ-(un)bordered words

In this section we study some properties of the set of θ-bordered and θ-unbordered words. In

[11] it was shown that, for every i ≥ 1, the set of all (un)bordered words D(i) is disjunctive.

Similarly, we will show that, under some conditions, if θ is a morphic involution then the set of

all θ-unbordered words Dθ(1) is disjunctive, and the set of all words with exactly two θ-borders

Dθ(2), are also disjunctive (Theorem 4.4.7). We also study the disjunctivity of some related

languages (Theorem 4.4.13).

The following proposition provides a necessary and sufficient condition for a language to

be disjunctive.

Proposition 4.4.1 [22] Let L ⊆ Σ∗. Then the following two statements are equivalent:

1. L is a disjunctive language.

2. If u, v ∈ Σ+, u , v, |u| = |v|, then u . v(PL).

The following auxiliary lemmas are needed for the main results of this section, Theorem

4.4.7 and Theorem 4.4.13.

Lemma 4.4.2 Let θ be a morphic involution and a, b ∈ Σ, a , b. Let x, y ∈ Σm, m > 0. Then,

1. amxθ(b) ∈ Dθ(1).

2. If a , θ(a), x = θ(b)x′, x′ ∈ Σ∗ and k ≥ m, then (akyθ(b))(akxθ(b)) ∈ Dθ(1).

Proof 1. Since there does not exist any word u ∈ Σ+ with |u| ≤ m such that u <θd amxθ(b),

by Lemma 4.3.2, amxθ(b) ∈ Dθ(1).

2. Let (akyθ(b))(akxθ(b)) < Dθ(1). Then there exists u ∈ Σ+ such that

u <θd (akyθ(b))(akxθ(b)).

By Lemma 4.3.2, it is enough to consider only the case |u| ≤ m + k + 1.
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Case (i): |u| ≤ k. Then u = an for some n ≤ k and θ(u) = α′′θ(b) for x = α′α′′, α′ ∈

Σ+, α′′ ∈ Σ∗. Hence an = θ(α′′)b which implies a = b, a contradiction.

Case (ii): k < |u| < m + k + 1. Then u = aky′ for y = y′y′′, y′ ∈ Σ+, y′′ ∈ Σ∗ and

θ(u) = anxθ(b) = anθ(b)x′θ(b) for 0 ≤ n < k. Hence aky′ = θ(an)bθ(x′)b which implies

a = b, a contradiction.

Case (iii): |u| = m + k + 1. Then u = akyθ(b) = θ(ak)θ(x)b which implies a = θ(a), a

contradiction.

Since, all the three cases leads to a contradiction (akyθ(b))(akxθ(b)) ∈ Dθ(1).

Lemma 4.4.3 Let θ be a morphic involution and let a, b ∈ Σ, a , θ(b). Let x , y, x, y ∈ Σm,

m > 0. If x = θ(b)x′, x′ ∈ Σ∗ and k ≥ m, then (akyθ(b))(θ(akxθ(b))) ∈ Dθ(1).

Proof Let (akyθ(b))(θ(akxθ(b))) < Dθ(1). Then there exists u ∈ Σ+ such that

u <θd (akyθ(b))(θ(akxθ(b))).

By Lemma 4.3.2, it is enough to consider only the case |u| ≤ m + k + 1.

Case (i): |u| ≤ k. Then u = an for some n ≤ k and θ(u) = θ(α′′)b for x = α′α′′, α′ ∈ Σ+, α′′ ∈

Σ∗. Hence an = α′′θ(b) which implies a = θ(b), a contradiction.

Case (ii): k < |u| < m + k + 1. Then u = aky′ for y = y′y′′, y′ ∈ Σ+, y′′ ∈ Σ∗ and

θ(u) = θ(an)θ(x)b = θ(an)bθ(x′)b for 0 ≤ n < k. Hence aky′ = anθ(b)x′θ(b) which implies

a = θ(b), a contradiction.

Case (iii): |u| = m+k+1. Then u = akyθ(b) = akxθ(b) which implies y = x, a contradiction.

Since, all the three cases lead to a contradiction (akyθ(b))(θ(akxθ(b))) ∈ Dθ(1).

Lemma 4.4.4 Let θ be a literal (anti)morphism on Σ∗ and a, b ∈ Σ such that a , θ(b). Let

x , y, x, y ∈ Σm, m > 0. Then:

1. amxθ(b) ∈ D(1).
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2. If x = θ(b)x′, x′ ∈ Σ∗ and k ≥ m, then (akyθ(b))(akxθ(b)) ∈ D(1).

Proof Let θ be a literal (anti)morphism.

1. Since there does not exist any word u ∈ Σ+ with |u| ≤ m such that u <d amxθ(b), by

Lemma 4.3.1, amxθ(b) ∈ D(1).

2. Let (akyθ(b))(akxθ(b)) < D(1). Then there exists u ∈ Σ+ such that

u <d (akyθ(b))(akxθ(b)).

By Lemma 4.3.1, it is enough to consider only the case |u| ≤ m + k + 1.

Case (i): |u| ≤ k. Then u = an = α′′θ(b) for some n ≤ k and x = α′α′′, α′ ∈ Σ+, α′′ ∈ Σ∗,

which implies a = θ(b), a contradiction.

Case (ii): k < |u| < m + k + 1. Then u = aky′ = anxθ(b) = anθ(b)x′θ(b) for y = y′y′′,

y′ ∈ Σ+, y′′ ∈ Σ∗ and 0 ≤ n < k, which implies a = θ(b), a contradiction.

Case (iii): |u| = m + k + 1. Then u = akyθ(b) = akxθ(b) which implies x = y, a

contradiction.

Since, all the three cases leads to a contradiction (akyθ(b))(akxθ(b)) ∈ D(1).

Corollary 4.4.5 follows immediately from Lemma 4.4.2 and 4.4.4.

Corollary 4.4.5 Let θ be a morphic involution on Σ∗, where Σ is an alphabet with |Σ| ≥ 3 that

contains letters a , b such that a < {θ(b), θ(a)}. Let x , y, x, y ∈ Σm, m > 0. Then:

1. amxθ(b) ∈ Dθ(1) ∩ D(1).

2. If x = θ(b)x′, x′ ∈ Σ∗ and k ≥ m, then (akyθ(b))(akxθ(b)) ∈ Dθ(1) ∩ D(1).

Lemma 4.4.6 Let θ be a morphic involution and let a, b ∈ Σ such that a < {b, θ(b)}. Let x ∈ Σm,

m > 0. If x = θ(b)x′, x′ ∈ Σ∗ , then (amxθ(b))(θ(amxθ(b))) ∈ Dθ(2).
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Proof Clearly λ, amxθ(b) ∈ Lθd((amxθ(b))(θ(amxθ(b)))).

Let (amxθ(b))(θ(amxθ(b))) < Dθ(2). Then there exists u ∈ Σ+ such that

u <θd (amxθ(b))(θ(amxθ(b)))

and u < {λ, amxθ(b)}. Then, we have following cases to consider.

Case (i): |u| ≤ m. Then, u = an for some n ≤ m and θ(u) = θ(α′′)b for x = α′α′′, α′ ∈ Σ+

and α′′ ∈ Σ∗. Hence an = α′′θ(b) which implies a = θ(b), a contradiction.

Case (ii): m < |u| < 2m + 1. Then, u = amα′ for x = α′α′′, α′ ∈ Σ+, α′′ ∈ Σ∗ and

θ(u) = θ(an)θ(x)b = θ(an)bθ(x′)b for 0 ≤ n < m. Hence amα′ = anθ(b)x′θ(b) which implies

a = θ(b), a contradiction.

Case (iii): 2m + 1 < |u| ≤ 3m + 1. Then, u = amxθ(b)θ(ak) for some 0 < k ≤ m and θ(u) =

α′′θ(b)θ(am)θ(x)b for x = α′α′′, α′ ∈ Σ+, α′′ ∈ Σ∗. Hence, u = amxθ(b)θ(ak) = θ(α′′)bamxθ(b)

which implies a = b, a contradiction.

Case (iv): 3m + 1 < |u| ≤ 4m + 1. Then, u = amxθ(b)θ(am)θ(α′) for x = α′α′′, α′ ∈ Σ+,

α′′ ∈ Σ∗ and θ(u) = akxθ(b)θ(am)θ(x)b for 0 ≤ k < m. Hence, u = amxθ(b)θ(am)θ(α′) =

θ(ak)bθ(x′)bamxθ(b) which implies a = b, a contradiction.

Since all the cases leads to a contradiction (amxθ(b))(θ(amxθ(b))) ∈ Dθ(2).

Theorem 4.4.7 Let θ be a morphic involution on Σ∗, where Σ is an alphabet with |Σ| ≥ 2 that

contains letters a , b such that a , θ(b). Then the set of θ-unbordered words, Dθ(1) and set of

words with exactly two θ-borders Dθ(2) are disjunctive.

Proof Let x, y ∈ Σm, x , y, m > 0. Without loss of generality let us assume that x = θ(b)x′,

x′ ∈ Σ∗. Let u = am, v = θ(b)θ(amxθ(b)). Since a , b, by Lemma 4.4.2(1), we have amxθ(b) ∈

Dθ(1) and by Lemma 4.4.6,

uxv = amxθ(b)θ(amxθ(b)) ∈ Dθ(2).
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Since Dθ(2) ∩ Dθ(1) = ∅, it follows that uxv < Dθ(1). Further, by Lemma 4.3.18 θ(amxθ(b)) ∈

Dθ(1). Since a , θ(b), by Lemma 4.4.3,

uyv = amyθ(b)(θ(amxθ(b))) ∈ Dθ(1).

Since, for x, y ∈ Σ+ x , y, |x| = |y|, we got x . y(PL) where L = Dθ(1). Hence, by Propo-

sition 4.4.1, we have that Dθ(1) is disjunctive. From the proof it follows that also Dθ(2) is

disjunctive.

The following Lemmas are needed for the proof of Theorem 4.4.13.

Lemma 4.4.8 Let m ≥ 1, x ∈ Σ+, u′, u′′, y ∈ Σ∗ and θ be a morphic involution on Σ∗. For any

u ∈ Dθ(1) ∩ D(1), if (x1y1 · · · xmym)xm+1 = u′uu′′, where xi = x and y j = y if i and j are odd,

xi = θ(x) and y j = θ(y) if i and j are even for 1 ≤ i ≤ m + 1 and 1 ≤ j ≤ m , then |u| ≤ |xy|.

Proof Suppose, |u| > |xy|. We will prove just 3 cases here, the other cases follow similarly.

Case (i): u occurs as a subword of yθ(x)θ(y). Then there exists α1, α2 ∈ Σ+ and β1, β2, β
′
1, β

′
2 ∈

Σ∗ such that x = α1α2, y = β1β
′
1 = β′2β2, |β2| > |β

′
1|, then there exists α ∈ Σ+ such that β1 = β′2α,

β2 = αβ′1 and we have

u = β2θ(α1)θ(α2)θ(β1) = αβ′1θ(α1α2)θ(β′2)θ(α) < Dθ(1)

Case (ii): u occurs as a subword of yθ(x)θ(y)x. Then there exists α1, α2 ∈ Σ+ and β1, β2 ∈ Σ∗

such that x = α1α2, y = β1β2, then

u = β2θ(α1)θ(α2)θ(β1)θ(β2)α1 < Dθ(1)

a contradiction.

Case (iii): u occurs as a subword of yθ(x)θ(y)xyθ(x). Then α1, α2 ∈ Σ+ and β1, β2 ∈ Σ∗ such
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that x = α1α2, y = β1β2, then

u = β2θ(α1)θ(α2)θ(y)xβ1β2θ(α1) < D(1)

a contradiction.

All the other cases will lead to a similar contradiction, hence |u| ≤ |xy|.

Lemma 4.4.9 Let θ be a morphic involution on Σ∗. If f1 · · · fm = u1u2 · · · uk with ui ∈ Dθ(1) ∩

D(1), i = 1, 2, · · · , k such that f j = f if j is odd and f j = θ( f ) if j is even, 1 ≤ j ≤ m, then

|ui| ≤ | f | for all 1 ≤ i ≤ k.

Proof Follows from the proof of Lemma 4.4.8 replacing y by an empty word λ.

Lemma 4.4.10 Let m ≥ 2, m ≥ n ≥ 1, θ be a morphic involution on Σ∗. Then for any x ∈ Σ+,

y ∈ Σ∗, (x1y1 · · · xmym)xm+1 < [Dθ(1) ∩ D(1)]n, where the conditions placed on xi and y j for

1 ≤ i ≤ m + 1 and 1 ≤ j ≤ m are the same as those in Lemma 4.4.8.

Proof Suppose (x1y1 · · · xmym)xm+1 ∈ [Dθ(1) ∩ D(1)]n. Then there exists

u1, u2, · · · , un ∈ Dθ(1) ∩ D(1) such that (x1y1 · · · xmym)xm+1 = u1u2 · · · un. By Lemma 4.4.8,

we will get |ui| ≤ |xy| for 1 ≤ i ≤ n. However, this would further imply,

|u1u2 · · · un| ≤ n|xy| ≤ m|xy| < m|xy| + |x|

which is a contradiction. Hence (x1y1 · · · xmym)xm+1 < [Dθ(1) ∩ D(1)]n.

Lemma 4.4.11 Let m > n ≥ 1 and θ be a morphic involution on Σ∗. Then for any f , θ( f ) ∈ Σ+,

we have f1 · · · fm < [Dθ(1) ∩ D(1)]n, where the conditions placed on fi for 1 ≤ i ≤ m are the

same as those of Lemma 4.4.9.

Proof Follows from the proof of Lemma 4.4.10 replacing y by an empty word λ.
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Lemma 4.4.12 Let θ be a morphic involution on Σ∗. For any f , θ( f ) ∈ Dθ(1)∩D(1) and n ≥ 2,

f1 · · · fn < [Dθ(1) ∩ D(1)]n−1, where the conditions placed on fi for 1 ≤ i ≤ n are the same as

those of Lemma 4.4.9.

Proof We will prove this result by induction on n. For n = 2 result holds trivially as f θ( f ) <

Dθ(1) ∩ D(1). Assume that the result holds for n = k, i.e., f1 · · · fk < [Dθ(1) ∩ D(1)]k−1.

Suppose, f1 · · · fk+1 ∈ [Dθ(1) ∩ D(1)]k, then there exists u, v ∈ Σ+ such that uv = f1 · · · fk+1,

u ∈ Dθ(1)∩D(1) and v ∈ [Dθ(1)∩D(1)]k−1. By Lemma 4.4.9, |u| ≤ | f |. If |u| < | f |, then f = uu′

for some u′ ∈ Σ+. Hence, we get

f1 · · · fk+1 = u1u′1 · · · uk+1u′k+1 = u1(u′1u2 · · · u′kuk+1)u′k+1

where uiu′i = uu′ if i is odd and uiu′i = θ(u)θ(u′) if i is even. But then (u′1u2 · · · u′kuk+1)u′k+1 ∈

[Dθ(1) ∩ D(1)]k−1 which is a contradiction to Lemma 4.4.10. If |u| = | f |, then u = f . Thus,

v = f2 · · · fk+1 ∈ [Dθ(1)∩D(1)]k−1, which is a contradiction to Lemma 4.4.11. Hence f1 · · · fn <

[Dθ(1) ∩ D(1)]n−1.

Theorem 4.4.13 Let θ be a morphic involution on Σ∗, where Σ is an alphabet with |Σ| ≥ 3 that

contains letters a , b such that a < {θ(b), θ(a)}. Then the set [Dθ(1) ∩ D(1)]n is disjunctive for

any even number n ≥ 2.

Proof Choose x , y ∈ Σm, m > 0 with y = θ(b)y′ for some y′ ∈ Σ∗. Let L = [Dθ(1)∩D(1)]n. By

Corollary 4.4.5(1), amxθ(b) ∈ Dθ(1)∩D(1) and thus by Lemma 4.3.17 and 4.3.18 θ(amxθ(b)) ∈

Dθ(1)∩D(1). Since x , y and a , θ(b), by Lemma 4.4.3 we have amxθ(b)θ(amyθ(b)) ∈ Dθ(1)∩

D(1), which further by Lemma 4.3.17 and 4.3.18 implies θ(amxθ(b))amyθ(b) ∈ Dθ(1) ∩ D(1) .

Let

u = (u1 · · · un)am, v = θ(b).

where ui = amxθ(b) if i is odd and ui = θ(amxθ(b)) if i is even.
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Since n is even, we obtain

uyv = (u1 · · · un)amyθ(b) = (u1 · · · un−1)(θ(amxθ(b))amyθ(b)) ∈ L.

On the other hand, by Lemma 4.4.12,

uxv = (u1 · · · un)amxθ(b) = u1 · · · un+1 < L.

Since, for x, y ∈ Σ+, x , y, |x| = |y|, we got x . y(PL) , by Proposition 4.4.1, L is disjunctive.

In [11], it was shown that the language D(i) ∩ Q is disjunctive for i ≥ 1. However, the

following example shows that there exist morphic involutions θ for which the language Dθ(1)∩

Qθ is not disjunctive.

Example 4.4 Let Σ = {A,C,G,T } with θ being the morphic involution defined as θ(A) = T,

θ(T ) = A, θ(G) = C and θ(C) = G. Let u = ACT, v = CA, x = AGG and y = TCA. Then

uxv = ACT AGGCA ∈ Dθ(1) ∩ Qθ and uyv = ACTTCACA ∈ Dθ(1) ∩ Qθ, which shows that

Dθ(1) ∩ Qθ is not disjunctive.

Proposition 4.4.14 If θ is any literal antimorphism on Σ∗, Dθ(1) is a regular language.

Proof We know that, for all a ∈ Σ, a is θ-unbordered and from Lemma 4.3.14, we have

Dθ(1) = Σ ∪ Y where Y = ∪a,b∈ΣaΣ∗b such that θ(a) , b. Since Σ is finite, Y is regular and

hence Dθ(1) is regular.

4.5 Conclusions

In this paper we investigate properties of θ-bordered words, where θ is not just the identity

function or a morphic or antimorphic involution, but, more generally, a morphism or an anti-

morphism with the property that θn = I, for n ≥ 2, or a literal (anti)morphism θ. Results we
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obtained include the transitivity of the relation <θd for literal antimorphisms θ, and the disjunc-

tivity of the set of all θ-unbordered words for morphic involutions θ.

Future directions of research includes exploring other properties of θ-bordered and θ-unbordered

words, as well as the disjunctivity of other languages related to Dθ(i).
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Chapter 5

Disjunctivity and Other Properties of Sets

of Pseudo-Bordered Words

5.1 Introduction

Combinatorics on words, coding theory, and formal language theory have had a wide range of

applications ranging from bioinformatics, to cryptography, to DNA computing. For example,

the concepts of periodicity and primitivity are at the root of pattern-matching and data com-

pression algorithms, [5, 6, 33], and the study of codes is essential in determining the unique

decipherability of encoded messages, [28]. Notably, the recent connection with DNA comput-

ing has motivated a new line of study wherein classical concepts are generalized to ones where

the identity function is replaced with more general pseudo-identity functions. A representative

example of such a generalization is the concept of antimorphic involution which models the

DNA Watson-Crick complementarity, as described below.

DNA single strands can be viewed as strings over the DNA alphabet {A,C,G,T }. The

Watson-Crick complementarity is the property whereby two DNA single strands of opposite

orientation and with complementary “letters” at each position can bind together by hydro-

0A version of this chapter has been submitted for publication (Acta Informatica)
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gen bonds to form a DNA double strand with its well-known double helical structure [29].

Given an alphabet Σ, an antimorphic involution θ is a function that is an antimorphism, that

is, θ(uv) = θ(v)θ(u), ∀u, v ∈ Σ∗, and an involution, that is, θ(θ(x)) = x, ∀x ∈ Σ∗. Thus, the

first property (antimorphism) models the fact that DNA single strands that bind to each other

must have opposite orientations, and the second property (involution) models the letter-to-letter

complementarity of the two single strands (whereby A binds to a T , and C binds to a G) that is

necessary for the binding to occur.

Note that a DNA single strand and its Watson-Crick complement are informationally equiv-

alent, since one uniquely determines the other and viceversa. Thus, a DNA strand and its

Watson-Crick complement can be viewed in a sense as “identical”, and this motivated the idea

of generalizing the notion of identity function to pseudo-identity functions, such as antimorphic

involutions. Some of the new concepts in combinatorics on words and coding theory that were

thus obtained are: Pseudo-periodicity, [8, 23], pseudo-commutativity, pseudo-conjugacy, [20],

pseudo-palindrome, [21, 9], involution codes, [3, 16, 17], etc. Some of these concepts were

further generalized in [10, 11, 12] by replacing the morphic involution with length-preserving,

erasing and uniform morphism functions. Also, independently, the notion of periodicity was

extended to periodic-like words, [2], weakly periodic words, [7], also known as Abelian peri-

odic words, [4], and pseudoperiodic words, [1].

A non-empty word w is said to be bordered if there exists a word that is a proper prefix

and a proper suffix of w. A word which is not bordered is called unbordered. In [19] the no-

tion bordered word was generalized to that of a θ-bordered word (also called pseudo-bordered

word), where θ is (anti)morphic involution: A word w is said to be θ-bordered if there exists a

word v ∈ Σ+ that is a proper prefix of w, while θ(v) is a proper suffix of w. Naturally, a word

which is not θ-bordered is θ-unbordered. Properties of θ-bordered and θ-unbordered words

were explored in, e.g., [15, 19]. The classical notions of bordered and unbordered words have

also been generalized to pseudo-knot-bordered words in [22], where a non-empty word w is

said to be pseudo-knot-bordered if w = xyα = βθ(yx) for α, β, x, y ∈ Σ+.
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In this paper we continue to explore the properties of θ-bordered and θ-unbordered words,

for morphic involutions θ. The main focus is on disjunctivity properties of sets of θ-bordered

words and some other related languages. The paper is organized as follows. Section 5.2 in-

cludes basics definitions and notions used throughout the paper. In Section 5.3 we prove, e.g.,

that under some conditions, the set of all θ-bordered words with exactly i θ-borders, Dθ(i), is

disjunctive for all i ≥ 1 (Theorem 5.3.8). In Section 5.4 and 5.5, we discuss relationships

between and among the sets Dθ(1), the set of all θ-unbordered words, and the set D(i), of all

bordered words with exactly i borders. In particular, we show that, under some conditions, the

set Di
θ(1) \ D(i) is disjunctive for all i ≥ 2 (Theorem 5.4.4). In Section 5.6 we discuss some

conditions for catenations of languages of θ-unbordered words to remain θ-unbordered, and of-

fer a preview of further generalizations of these results by proving that the set of all θ-bordered

words is not context-free for all morphisms θ over an alphabet Σ with |Σ| ≥ 3 such that θ(a) , a

for all a ∈ Σ and θ3 equals the identity function on Σ.

5.2 Basic definitions and notations

An alphabet Σ is a finite non-empty set of symbols. Σ∗ denotes the set of all words over Σ,

including the empty word λ. Σ+ is the set of all non-empty words over Σ. The length of a word

u ∈ Σ∗ (i.e. the number of symbols in a word) is denoted by |u|. By Σm we denote the set of

all words of length m > 0 over Σ. The complement of a language L ⊆ Σ∗ is Lc = Σ∗\L. For a

language L ⊆ Σ∗ and i ≥ 2, let L(i) = {ui|u ∈ L} and L1 = L and Ln = Ln−1L for n ≥ 2. A word is

called primitive if it cannot be expressed as a power of another word. Let Q denote the set of

all primitive words. A function θ : Σ∗ → Σ∗ is said to be a morphism if for all words u, v ∈ Σ∗

we have that θ(uv) = θ(u)θ(v), an antimorphism if θ(uv) = θ(v)θ(u), and an involution if θ2 is an

identity on Σ∗. If for all a ∈ Σ, |θ(a)| = 1, then θ is called literal (anti)morphism1. A θ-power

of a word u, [8] is a word of the form u1u2 . . . un for n ≥ 1 where u1 = u and ui ∈ {u, θ(u)} for

1By (anti)morphism we mean either a morphism or an antimorphism.
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2 ≤ i ≤ n. A word is called θ-primitive, [8], if it cannot be expressed as a θ-power of another

word. Let Qθ denote the set of all θ-primitive words. For (anti)morphic involution θ, a word

u ∈ Σ∗ is called a θ-palindrome, [21, 9], if u = θ(u). Let Pθ denote the set of all θ-palindromes.

For a language L ⊆ Σ∗, the principal congruence PL determined by L is defined as follows:

for any x, y ∈ Σ∗ such that x , y, x ≡ y(PL) if and only if uxv ∈ L ⇔ uyv ∈ L for all u, v ∈ Σ∗.

The index of PL is the number of equivalence classes of PL. L is said to be disjunctive if PL

is the identity, i.e., for any x , y ∈ Σ∗ there exists u, v ∈ Σ∗ such that uxv ∈ L and uyv < L

or viceversa. A language L ⊆ Σ∗ is said to be dense if for all u ∈ Σ∗, L ∩ Σ∗uΣ∗ , ∅. Every

disjunctive language is dense and every dense language contains a disjunctive subset, [27].

Definition 5.1 1. For v,w ∈ Σ∗, w is a prefix of v (w ≤p v) iff v ∈ wΣ∗.

2. For v,w ∈ Σ∗, w is a suffix of v (w ≤s v) iff v ∈ Σ∗w.

3. ≤d=≤p ∩ ≤s.

4. For u ∈ Σ∗, v ∈ Σ∗ is said to be a border of u if v ≤d u, i.e., u = vx = yv.

5. For v,w ∈ Σ∗, w is a proper prefix of v (w <p v) iff v ∈ wΣ+.

6. For v,w ∈ Σ∗, w is a proper suffix of v (w <s v) iff v ∈ Σ+w.

7. <d=<p ∩ <s.

8. For u ∈ Σ∗, v ∈ Σ∗ is said to be a proper border of u if v <d u.

9. For u ∈ Σ+, denote by Ld(u) = {v ∈ Σ∗|v <d u}, the set of all borders of a word u ∈ Σ∗.

10. νd(u) = |Ld(u)|.

11. Denote by D(i) = {u ∈ Σ+|νd(u) = i}, the set of all words with exactly i borders for i ≥ 1.

12. A word u ∈ Σ+ is said to be a bordered word if there exists v ∈ Σ+ such that v <d u, i.e.,

u = vx = yv for some x, y ∈ Σ+.
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13. A non-empty word which is not bordered is called unbordered. Thus, D(1) is the set of

all unbordered words over Σ.

For a word w, Pref(w) = {u ∈ Σ+|∃v ∈ Σ∗,w = uv} and Suff(w) = {u ∈ Σ+|∃v ∈ Σ∗,w = vu}

denotes the set of all prefixes and suffixes respectively. Similarly, the set of all proper prefixes

and proper suffixes of a word w can be defined as PPref(w) = {u ∈ Σ+|∃v ∈ Σ+,w = uv} and

PSuff(w) = {u ∈ Σ+|∃v ∈ Σ+,w = vu} respectively. For further notions in formal language

theory and combinatorics on words the reader is referred to [13, 25, 27, 32].

The following definitions extend the notion of bordered and unbordered words to θ-bordered

and θ-unbordered words and for any (anti)morphism on Σ∗.

Definition 5.2 [19] Let θ be either a morphism or an antimorphism on Σ∗.

1. For v,w ∈ Σ∗, w is a θ-prefix of v (w ≤θp v) iff v ∈ θ(w)Σ∗.

2. For v,w ∈ Σ∗, w is a θ-suffix of v (w ≤θs v) iff v ∈ Σ∗θ(w).

3. ≤θd=≤p ∩ ≤
θ
s.

4. For u ∈ Σ∗, v ∈ Σ∗ is said to be a θ-border of u if v ≤θd u, i.e., u = vx = yθ(v).

5. For w, v ∈ Σ∗, w is a proper θ-prefix of v (w <θp v) iff v ∈ θ(w)Σ+.

6. For w, v ∈ Σ∗, w is a proper θ-suffix of v (w <θs v) iff v ∈ Σ+θ(w).

7. <θd=<p ∩ <
θ
s.

8. For u ∈ Σ∗, v ∈ Σ∗ is said to be a proper θ-border of u if v <θd u.

9. For u ∈ Σ+, define by Lθd(u) = {v ∈ Σ∗|v <θd u}, the set of all θ-borders of a word u ∈ Σ∗.

10. νθd(u) = |Lθd(u)|.

11. Denote by Dθ(i) = {u ∈ Σ+|νθd(u) = i}, the set of all words with exactly i θ-borders for

i ≥ 1.
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12. A word u ∈ Σ+ is said to be θ-bordered if there exists v ∈ Σ+ such that v <θd u, i.e.,

u = vx = yθ(v) for some x, y ∈ Σ+.

13. A nonempty word which is not θ-bordered is called θ-unbordered. Thus, Dθ(1) is the set

of all θ-unbordered words over Σ.

Recall that every disjunctive language has infinitely many principle congruence classes

whereas the number of principle congruence classes for regular language is finite. Hence, it is

clear that disjunctive languages are not regular.

The following proposition provides a necessary and sufficient condition for a language to

be disjunctive, and will be used throughout this paper.

Proposition 5.2.1 [27] Let L ⊆ Σ∗. Then the following two statements are equivalent:

1. L is a disjunctive language.

2. If u, v ∈ Σ+, u , v, |u| = |v|, then u . v(PL).

While proving disjunctivity or any other properties of the sets of words with exactly i

borders or i θ-borders, D(i) or Dθ(i) respectively, one of the important tools is the knowledge

about the number of borders and θ-borders of a word. Proposition 5.2.2 characterizes the

number of borders of a power of a primitive word.

Proposition 5.2.2 [14] For any f ∈ Q and j ≥ 1, νd( f j) = νd( f ) + j − 1.

Similarly, Lemma 5.2.3 provides a characterization for the number of θ-borders of a θ-

palindrome, for morphic involutions.

Lemma 5.2.3 [19] Let u be a θ-palindromic primitive word and j be an integer, j > 1. Then,

for a morphic involution θ, νθd(u j) = νθd(u) + j − 1.

The following lemma provides a sufficient condition for a word to be bordered.
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Lemma 5.2.4 [14] Let u ∈ Σ+\D(1). Then there exists v ∈ Σ∗ with |v| ≤ |u|2 such that v <d u.

By the definition of an unbordered word, it is clear that the set of all unbordered words D(1)

is a subset of set of all primitive words Q, i.e., D(1) ⊆ Q. A similar inclusion does not hold

in the case of set of all θ-unbordered words Dθ(1) and the set of all θ-primitive words Qθ for a

morphic involution θ, as demonstrated by following example. The example also demonstrates

the fact that Qθ is not a subset of Dθ(1).

Example 5.1 Let Σ = {a, b, c}, θ be a morphic involution such that θ(a) = b, θ(b) = a and

θ(c) = c. Let u = abaa, then u ∈ Dθ(1) but u = abaa = aθ(a)aa < Qθ and hence Dθ(1) * Qθ.

Now, let v = acb, then u ∈ Qθ but u = acb = acθ(a) < Dθ(1) and hence Qθ * Dθ(1).

However, for a morphic involution θ, the set Dθ(1) ∩ Qθ , ∅. For example, if Σ = {a, b, c}

such that θ(a) = b, θ(b) = a and θ(c) = c, then abc ∈ Dθ(1)∩Qθ. Moreover, the set Dθ(i)∩Qθ ,

∅ for all i ≥ 1.

5.3 Disjunctivity properties of Dθ(i)

In [14] it was shown that the languages D(i), D(i) ∩ Q and D(i) ∩ Q( j) are disjunctive for

i ≥ j ≥ 1. In this section, we will prove the disjunctivity of the set Dθ(i) for all i ≥ 1

(Theorem 5.3.8). Also, we know from Example 5.1 that neither Dθ(1) ⊆ Qθ nor Qθ ⊆ Dθ(1)

but Dθ(i) ∩ Qθ , ∅ for all i ≥ 1. Furthermore, in this section we will prove that the set

Dθ(i) ∩ Q2i−2
θ is disjunctive for i ≥ 2 (Corollary 5.3.9).

In the previous section, we have seen a sufficient condition for a word to be bordered. The

following lemma provides a sufficient condition for a word to be θ-bordered in the case when

θ is a morphic involution.

Lemma 5.3.1 [18] Let θ be a morphic involution and let u ∈ Σ+\Dθ(1). Then there exists

v ∈ Σ∗ with |v| ≤ |u|2 such that v <θd u.
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Theorem 5.3.2 and 5.3.3 are mentioned for completeness.

Theorem 5.3.2 [18] Let θ be a morphic involution on Σ∗, where Σ is an alphabet with |Σ| ≥ 2

that contains letters a , b such that a , θ(b). Then the set of all θ-unbordered words, Dθ(1)

and set of words with exactly two θ-borders Dθ(2) are disjunctive.

Theorem 5.3.3 [18] Let θ be a morphic involution on Σ∗, where Σ is an alphabet with |Σ| ≥ 3

that contains letters a , b such that a < {θ(b), θ(a)}. Then the set [Dθ(1)∩D(1)]n is disjunctive

for any even number n ≥ 2.

While Theorem 5.3.2 proves the disjunctivity of the set Dθ(i) for the cases i = 1, 2, we will

prove (Theorem 5.3.8) that the set Dθ(i) is disjunctive for all i ≥ 3 as well.

We first need several auxiliary results. In the previous section, we mentioned a charac-

terization of the number of borders of a power of a primitive word. Now, we will provide a

characterization of the number of θ-borders of a θ-power of a θ-unbordered word for morphic

involution θ (Proposition 5.3.5). Note that here we consider a special case of a θ-power of a

word w = u1u2 . . . un, where ui = u when i is odd and ui = θ(u) when i is even for 1 ≤ i ≤ n.

The following lemma is needed for the proof of Proposition 5.3.5.

Lemma 5.3.4 Let θ be morphic involution such that θ(a) , a for all a ∈ Σ. If u ∈ Dθ(1), then

for w = (uθ(u))k, u′ <p u we have that (uθ(u)) ju′, (uθ(u)) juθ(u′) < Lθd(w) for all k > j ≥ 1.

Proof We will prove the result by contradiction. Let k > j ≥ 1 and u′ <p u.

First, assume that (uθ(u)) ju′ <θd w. Then, there exists α, β ∈ Σ+ such that w = (uθ(u))k =

(uθ(u)) ju′α = β(θ(u)u) jθ(u′). Since |u′| < |u|, we have that θ(u′) <s θ(u) which implies θ(u) =

u′′θ(u′) for u′′ ∈ Σ+. This implies that θ(u′′) <p u since u′′ <p θ(u). But then, (uθ(u))k =

(uθ(u))k−1uu′′θ(u′) = β(θ(u)u) j−1θ(u)uθ(u′) which implies u′′ <s u since |u′′| < |u| which further

implies that θ(u′′) <θd u, i.e., u < Dθ(1), a contradiction. Hence, (uθ(u)) ju′ < Lθd(w).

Now, let (uθ(u)) juθ(u′) <θd w. Then there exists α′, β′ ∈ Σ+ such that w = (uθ(u))k =

(uθ(u)) juθ(u′)α′ = β′(θ(u)u) jθ(u)u′. Since |u′| < |u|, which implies u′ <s θ(u), i.e., θ(u′) <s u

which further implies u′ <θd u and hence u < Dθ(1), a contradiction. �
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Proposition 5.3.5 Let θ be morphic involution such that θ(a) , a for all a ∈ Σ. If u ∈ Dθ(1),

then w = (uθ(u))n ∈ Dθ(n + 1) for all n ≥ 1.

Proof We will prove this statement by induction on n.

Let n = 1, then for w = uθ(u), since u ∈ Dθ(1), Lθd(w) = {λ, u}. Hence w = uθ(u) ∈ Dθ(2).

Let n = 2, then for w = uθ(u)uθ(u), by Lemma 5.3.4 uθ(u)u′, uθ(u)uθ(u′) < Lθd(w) where

u′ ∈ PPref(u) and hence Lθd(w) = {λ, u, uθ(u)u}. Thus w ∈ Dθ(3).

Let us assume that the result holds for n = k, i.e., w = (uθ(u))k ∈ Dθ(k + 1).

Now, we will prove that the result holds for n = k + 1. We have w = (uθ(u))k+1 =

(uθ(u))kuθ(u). By inductive hypothesis, we know that (uθ(u))k ∈ Dθ(k+1). Also, by Lemma 5.3.4,

(uθ(u))ku′, (uθ(u))kuθ(u′) < Lθd(w) for some u′ <p u. Thus, Lθd(w) = Lθd((uθ(u))k) ∪ {(uθ(u))ku}

and hence w ∈ Dθ(k + 2).

Hence, w = (uθ(u))n ∈ Dθ(n + 1) for all n ≥ 1. �

In the preceding two results we considered a special case of θ-powers, namely, words w

consisting of alternations of u and θ(u). Under certain conditions, if in such words the first

occurrence of u is replaced by v , u, then the word w becomes θ-unbordered, as showed by the

following result.

Lemma 5.3.6 Let θ be a morphic involution on Σ∗, where Σ is an alphabet with |Σ| > 2 that

contains letters a , b such that a , θ(b). Let x , y, x, y ∈ Σm, m > 0, x, y ∈ θ(b)Σ∗. Then, for

all i ≥ 2,

amyθ(b)(θ(amxθ(b))amxθ(b))i−2θ(amxθ(b)) ∈ Dθ(1).

Proof Let us assume that

w = amyθ(b)(θ(amxθ(b))amxθ(b))i−2θ(amxθ(b)) < Dθ(1).

Then there exists v ∈ Σ+ such that v <θd w, i.e., w = vα = βθ(v) for some α, β ∈ Σ+. Let

w = w′θ(amxθ(b)) where w′ = amyθ(b)(θ(amxθ(b))amxθ(b))i−2. Then, by Lemma 5.3.1, it is

enough to consider only the cases when 1 ≤ |v| < (2m + 1)(i − 1).
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Case 1: v = ak for 1 ≤ k ≤ m. Then,

w = w′θ(amxθ(b)) = βθ(ak)

which implies θ(a) = b, a contradiction.

Case 2: v = amy′ for y = y′y′′ where y′ ∈ Σ+ and y′′ ∈ Σ∗. Then,

w = w′θ(amxθ(b)) = βθ(amy′).

Now, since |amy′| < |amxθ(b)|, θ(amy′) <s θ(amxθ(b)), i.e., θ(amxθ(b)) = θ(am)bθ(x′)b =

β′θ(amy′) for x = θ(b)x′ where x′ ∈ Σ∗. This implies θ(a) = b, a contradiction.

Case 3: v = amyθ(b). Then,

w = w′θ(amxθ(b)) = βθ(amyθ(b))

which implies x = y, a contradiction.

Case 4: v = amyθ(b)θ(ak) for 1 ≤ k ≤ m. Then,

w = w′θ(amxθ(b)) = βθ(amyθ(b))ak

which implies a = b, a contradiction.

Case 5: v = amyθ(b)θ(amx1) for x = x1x2 where x1 ∈ Σ+ and x2 ∈ Σ∗. Then,

w = w′θ(amxθ(b)) = βθ(amyθ(b))amx1.

Now, since 2m ≥ |amx1| ≥ |θ(x)b| = m + 1, θ(x)b ≤s amx1, i.e., amx1 = α′θ(x)b = α′bθ(x′)b with

|α′| < m and x = θ(b)x′ for x′ ∈ Σ∗. This implies a = b, a contradiction.
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Case 6: v = amyθ(b)θ(amxθ(b)). Then,

w = w′θ(amxθ(b)) = βθ(amyθ(b))amxθ(b)

which implies θ(a) = a, a contradiction.

Case 7: v = amyθ(b)θ(amxθ(b))ak for 1 ≤ k ≤ m. Then,

w = w′θ(amxθ(b)) = βθ(amyθ(b))amxθ(b)θ(ak).

which implies θ(a) = b, a contradiction

Case 8: v = amyθ(b)θ(amxθ(b))amx′1 for x = x′1x′2 where x′1 ∈ Σ+ and x′2 ∈ Σ∗. Then,

w = w′θ(amxθ(b)) = βθ(amyθ(b))amxθ(b)θ(amx′1).

Now, since |bamx′1| ≤ |a
mxθ(b)| = 2m+1, θ(bamx′1) ≤s θ(amxθ(b)), i.e., θ(amxθ(b)) = α2θ(bamx′1)

where |α2| < m. This implies θ(a) = θ(b), i.e., a = b, a contradiction.

Case 9: v = amyθ(b)(θ(amxθ(b))amxθ(b))k where 1 ≤ k < i−2
2 . Then,

w = amyθ(b)(θ(amxθ(b))amxθ(b))i−2θ(amxθ(b))

= amyθ(b)(θ(amxθ(b))amxθ(b))i−2−kθ(amxθ(b))(amxθ(b)θ(amxθ(b)))k

= βθ(amyθ(b))(amxθ(b)θ(amxθ(b)))k.

which implies θ(x) = θ(y), i.e., x = y, a contradiction.

Since all the cases lead to a contradiction, w ∈ Dθ(1). �

The next lemma is used for proving the main result of this section.

Lemma 5.3.7 [18] Let θ be a morphic involution and a, b ∈ Σ, a , b. Let x, y ∈ Σm, m > 0.

Then
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1. amxθ(b) ∈ Dθ(1).

2. If a , θ(a), x = θ(b)x′, x′ ∈ Σ∗ and k > m, then (akyθ(b))(akxθ(b)) ∈ Dθ(1).

Now, we will prove the main result of the section which shows that, under certain condi-

tions, the set of words with exactly i θ-borders, Dθ(i), is disjunctive for all i ≥ 1 and morphic

involutions θ.

Theorem 5.3.8 Let θ be a morphic involution on Σ∗, where Σ is an alphabet with |Σ| > 2 that

contains letters a , b such that a , θ(b) and θ(a) , a for all a ∈ Σ. Then the set of all

θ-bordered words with exactly i θ-borders, Dθ(i), is disjunctive for all i ≥ 1.

Proof By Theorem 5.3.2, Dθ(i) is disjunctive for i = 1, 2. Now, we will prove the result for

i ≥ 3. Let x, y ∈ Σn, x , y, m = n + 1, n > 0. Let u = amθ(b),

v = θ(b)(θ(amθ(b)xθ(b))amθ(b)xθ(b))i−2θ(amθ(b)xθ(b))

. Since a , b, by Lemma 5.3.7, we have amθ(b)xθ(b) ∈ Dθ(1) and by Proposition 5.3.5,

uxv = [amθ(b)xθ(b)θ(amθ(b)xθ(b))]i−1 ∈ Dθ(i).

Further by Lemma 5.3.6,

uyv = amθ(b)yθ(b)[θ(amθ(b)xθ(b))amθ(b)xθ(b)]i−2θ(amθ(b)xθ(b)) ∈ Dθ(1).

Therefore, x . y(PDθ(i)) for every x, y ∈ Σ+, x , y, |x| = |y| and i ≥ 3. Hence, by Proposi-

tion 5.2.1, Dθ(i) is disjunctive for i ≥ 1. �

Let {a, b} ⊆ Σ be such that a < {b, θ(b)} and θ be a morphic involution. Then for x ∈ Σn,

n > 0 and m = n + 1, it is clear that amθ(b)xθ(b), θ(amθ(b)xθ(b)) ∈ Qθ. Thus, we have following

result as a consequence of Theorem 5.3.8.
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Corollary 5.3.9 Let θ be a morphic involution on Σ∗, where Σ is an alphabet with |Σ| > 2 that

contains letters a , b such that a , θ(b) and θ(a) , a for all a ∈ Σ. Then the set Dθ(i) ∩ Q2i−2
θ

is disjunctive for all i ≥ 2.

5.4 Disjunctivity of the set Di
θ(1)\D(i)

Let us consider the relationship between the set of all words with exactly i θ-borders, Dθ(i),

and the set of all words with exactly i borders, D(i), for i ≥ 1, an alphabet Σ, and morphic

involutions θ such that θ(a) , a for all a ∈ Σ. It is clear that in general neither Dθ(i) ⊆ D(i)

nor D(i) ⊆ Dθ(i). However, the set Dθ(i) ∩ D(i) , ∅ for all i ≥ 1. For example, if Σ = {a, b, c}

such that θ(a) = b, θ(b) = a and θ(c) = c, then abc ∈ Dθ(1) ∩ D(1) and abba ∈ Dθ(2) ∩ D(2).

Moreover, Theorem 5.3.3 proved that the set (Dθ(1)∩D(1))n is disjunctive for any even number

n ≥ 2. In this section, we will show that, under certain conditions, the set Di
θ(1)\D(i) is

disjunctive for i ≥ 2 (Theorem 5.4.4).

In order to show that the language Di
θ(1)\D(i) is disjunctive, we need to characterize some

catenations of unbordered and θ-unbordered words. The following proposition shows such a

relationship.

Proposition 5.4.1 [31] Let {a, b} ∈ Σ and let x, y ∈ bΣ∗ with x , y. If |x| = |y| or |x| > |y| and

x ∈ yaΣ∗, then for k ≥ |x| ≥ |y|, (akxb)i(akyb) j ∈ D(1) and (akyb) j(akxb)i ∈ D(1) for all i, j ≥ 1.

Similarly, in Proposition 5.4.2 we show the relationship between some catenations of pow-

ers of two θ-unbordered words and the set of all θ-unbordered words.

Proposition 5.4.2 Let θ be a morphic involution on Σ∗ and let a, b ∈ Σ such that a < {θ(a), b}.

Let x, y ∈ θ(b)Σ∗ with x , y. Then for all k > |x| ≥ |y|, i, j ≥ 1, (akxθ(b))i(akyθ(b)) j ∈ Dθ(1) and

(akyθ(b)) j(akxθ(b))i ∈ Dθ(1).

Proof To prove the result, we will use Lemma 11 of [19] which states that θ(Pref(u))∩Suff(v) =

∅ and the set of all words in u+v+ are θ-unbordered are equivalent statements. Hence we need



5.4. Disjunctivity of the set Di
θ(1)\D(i) 105

to show that,

θ(Pref(akyθ(b))) ∩ Suff(akxθ(b)) = ∅ and θ(Pref(akxθ(b))) ∩ Suff(akyθ(b)) = ∅.

First, let |x| = |y|. Then, from Lemma 5.3.7 and since x, y ∈ θ(b)Σ∗, we have that,

(akyθ(b))(akxθ(b)) ∈ Dθ(1) and (akxθ(b))(akyθ(b)) ∈ Dθ(1). Therefore, if |x| = |y|, then

θ(Pref(akxθ(b))) ∩ Suff(akyθ(b)) = ∅ and θ(Pref(akyθ(b))) ∩ Suff(akxθ(b)) = ∅.

Now, let |x| > |y|. We will only prove that θ(Pref(akxθ(b))) ∩ Suff(akyθ(b)) = ∅, since the

other equality can be proved similarly. Let us assume that θ(Pref(akxθ(b))) ∩ Suff(akyθ(b)) ,

∅, i.e., there exists w ∈ Σ+ such that w ∈ θ(Pref(akxθ(b))) ∩ Suff(akyθ(b)), i.e. θ(w) <θd

(akxθ(b))(akyθ(b)). By Lemma 5.3.1, it is enough to consider only the cases when 1 ≤ |w| ≤

k + |x|.

Case 1: |w| < k. Then w = θ(an) = y′′θ(b) for some 1 ≤ n < k and y = y′y′′, for y′ ∈ Σ+ and

y′′ ∈ Σ∗ which implies θ(a) = θ(b), i.e., a = b, a contradiction.

Case 2: k ≤ |w| ≤ k + |x|. Then w = θ(ak)θ(x′) = anyθ(b) for some 1 ≤ n ≤ k and x = x′x′′,

x′, x′′ ∈ Σ∗ which implies θ(a) = a, a contradiction.

Since both the cases lead to a contradiction, we have that

θ(Pref(akxθ(b))) ∩ Suff(akyθ(b)) = ∅

Similarly, we can prove that θ(Pref(akyθ(b))) ∩ Suff(akxθ(b)) = ∅. Hence,

(akyθ(b))i(akxθ(b)) j, (akxθ(b)) j(akyθ(b))i ∈ Dθ(1).

�

We will illustrate Proposition 5.4.2 with the following example.

Example 5.2 Let Σ = {A,C,G,T } and θ be a morphic involution such that θ(A) = T, θ(G) = C

and viceversa. Let k = 3, i = 2, j = 1 and let x = T AG, y = TC. Since x , y, x, y ∈ TΣ∗,
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θ(a) , a for all a ∈ Σ and k > i > j, we have that,

(GGGT AGT )2(GGGTCT ) = GGGT AGTGGGT AGTGGGTCT ∈ Dθ(1) and

(GGGTCT )(GGGT AGT )2 = GGGTCTGGGT AGTGGGT AGT ∈ Dθ(1).

The following lemma is needed for proving the main result of this section.

Lemma 5.4.3 [18] Let θ be a literal (anti)morphism on Σ∗ and let a, b ∈ Σ such that a , θ(b).

Let x , y, x, y ∈ Σm, m > 0. Then:

1. amxθ(b) ∈ D(1).

2. If x = θ(b)x′, x′ ∈ Σ∗ and k > m, then (akyθ(b))(akxθ(b)) ∈ D(1).

Now, we will prove one of the main results of the section which shows that, under certain

conditions, the set Di
θ(1)\D(i) is disjunctive for all i ≥ 2, alphabet Σ, and morphic involutions

θ.

Theorem 5.4.4 Let |Σ| ≥ 3 and θ be a morphic involution on Σ∗ such that θ(a) , a for some

a ∈ Σ. Then Di
θ(1)\D(i) is disjunctive for all i ≥ 2.

Proof Since |Σ| ≥ 3 and θ(a) , a for all a ∈ Σ there exists c , a such that θ(a) = c and

θ(c) = a. Also, since |Σ| ≥ 3, there exists b ∈ Σ such that b , a, b , c = θ(a). Let

x, y ∈ Σn, x , y, m = n + 1, n > 0. Choose u = (amθ(b)xθ(b))i−1amθ(b) and v = θ(b). Since

a , b, by Lemma 5.3.7, amθ(b)xθ(b) ∈ Dθ(1). Also, since a , θ(b), amθ(b)xθ(b) ∈ Q and by

Lemma 5.4.3, amθ(b)xθ(b) ∈ D(1). Hence by Proposition 5.2.2, νd((amθ(b)xθ(b))i) = i. Thus,

uxv = (amθ(b)xθ(b))i ∈ Di
θ(1) ∩ D(i).

On the other hand, by Proposition 5.4.1, since |x| = |y|, (amθ(b)xθ(b))i−1(amθ(b)yθ(b)) ∈ D(1)

and hence

uyv = (amθ(b)xθ(b))i−1(amθ(b)yθ(b)) ∈ Di
θ(1)\D(i) for i ≥ 2.



5.4. Disjunctivity of the set Di
θ(1)\D(i) 107

Thus, x . y(PDi
θ(1)\D(i)) for every x , y, |x| = |y| and i ≥ 2. Hence, by Proposition 5.2.1,

Di
θ(1)\D(i) is disjunctive for all i ≥ 2. �

We know from [30] that D(1)\Σ ⊆ D2(1). Moreover, D(i)\Σi * Di+1(1) for i ≥ 2, see

[31]. However, for a morphic involution θ, we have that Dθ(1)\Σ * D2
θ(1). For example, let

{a, b} ∈ Σ be such that θ(a) = b and θ(b) = a. Then w = abaa ∈ Dθ(1) but there does not

exist any u, v ∈ Dθ(1) such that w = uv and u, v , λ. Theorem 5.4.6 establishes, under certain

conditions, the relationship between Dθ(i) and Dθ(1) for i ≥ 2. The following is a known result,

here with a different proof.

Lemma 5.4.5 [15] Let θ be a morphic involution on Σ∗ and u ∈ Σ+. Then u ∈ Dθ(1) if and

only if θ(u) ∈ Dθ(1).

Proof Let u ∈ Dθ(1). Assume that θ(u) < Dθ(1). Then there exists v, α, β ∈ Σ+ such that

θ(u) = vα = βθ(v) which implies u = θ(v)θ(α) = θ(β)v which further implies u < Dθ(1), a

contradiction. Hence θ(u) ∈ Dθ(1). Similarly, we can prove that if θ(u) ∈ Dθ(1) then u ∈ Dθ(1).

�

Theorem 5.4.6 Let θ be a morphic involution on Σ∗, where Σ is an alphabet with |Σ| > 2 that

contains letters a , b such that a , θ(b) and θ(a) , a for all a ∈ Σ. Then the set D2i
θ (1)\Dθ(i+1)

is disjunctive for all i ≥ 1.

Proof Let x, y ∈ Σn, x , y, m = n + 1, n > 0. Let u = amθ(b),

v = θ(b)(θ(amθ(b)xθ(b))amθ(b)xθ(b))i−1θ(amθ(b)xθ(b)).

Since a , b, by Lemma 5.3.7, we have amθ(b)xθ(b) ∈ Dθ(1). Hence by Lemma 5.4.5,

θ(amθ(b)xθ(b)) ∈ Dθ(1). Thus, by Proposition 5.3.5,

uxv = (amθ(b)xθ(b)θ(amθ(b)xθ(b)))i ∈ Dθ(i + 1) ∩ D2i
θ (1).
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Further by Lemma 5.3.6,

uyv = amθ(b)yθ(b)(θ(amθ(b)xθ(b))amθ(b)xθ(b))i−1θ(amθ(b)xθ(b)) ∈ Dθ(1)

and hence uyv ∈ D2i
θ (1)\Dθ(i + 1) for i ≥ 1. Therefore, x . y(PD2i

θ (1)\Dθ(i+1)) for every x, y ∈ Σ+,

x , y, |x| = |y| and i ≥ 1. By Proposition 5.2.1, D2i
θ (1)\Dθ(i + 1) is disjunctive for i ≥ 1. �

5.5 Disjunctivity of the set (Dθ(2) ∩ D(2))\(Dθ(1) ∩ D(1))k for

k = 1, 2

We have already discussed some relationships between the sets Dθ(i) and D(i). In particular,

the intersection of these two sets is a non-empty set and that, under certain conditions, the sets

Di
θ(1)\D(i) are disjunctive for all i ≥ 2. A natural question that arises in this context is what

are the relationships between the sets Dθ(i) ∩ D(i) for different values of i ≥ 1. In this section,

we will show that under certain conditions the set (Dθ(2)∩D(2))\(Dθ(1)∩D(1))k is disjunctive

for k = 1, 2 (Theorem 5.5.6).

In order to prove the disjunctivity of the set (Dθ(2) ∩ D(2))\(Dθ(1) ∩ D(1))k, k = 1, 2, we

need to characterize a word or set of words that have exactly two borders and two θ-borders.

The following proposition provides such characterization.

Proposition 5.5.1 Let θ be a morphic involution such that θ(a) , a for all a ∈ Σ, let u ∈

Dθ(1) ∩ D(1) and let u′ ∈ Pref(u) ∪ Suff(u) ∪ θ(Suff(u)) with u′ , u. Then w = uθ(u)u′θ(u)u ∈

Dθ(2) ∩ D(2).

Proof Let w = uθ(u)u′θ(u)u. Let us assume that u′ ∈ Pref(u). Clearly, {λ, u} ⊆ Ld(w) and

{λ, uθ(u)} ⊆ Lθd(u). Now, we need to show that Ld(w) ⊆ {λ, u} and Lθd(u) ⊆ {λ, uθ(u)}. Since

a , θ(a) for all a ∈ Σ, uθ(u) < Ld(w) and u < Lθd(u). Let us assume that x ∈ Ld(w) or y ∈ Lθd(w),

i.e. x <d w or y <θd w such that x, y < {λ, u, uθ(u)} and let, |u| = m, |u′| = n where m > n > 0.
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Since x, y < {u, uθ(u)}, the cases |x| = |y| = m and |x| = |y| = 2m are not possible. Thus we have

following 5 cases to consider.

Case 1: If 0 < |x| < m, then x ∈ Pref(u) ∩ Suff(u) which implies u < D(1), a contradiction.

If 0 < |y| < m, then y ∈ Pref(u) ∩ θ(Suff(u)) which implies u < Dθ(1), a contradiction.

Case 2: If m < |x| < 2m, then for u = u1u2 = u′1u′2 and |u1| = |u′2|, we will get x =

uθ(u1) = θ(u′2)u = u′1u′2θ(u1) = θ(u′2)u′1u′2 where u1, u2, u′1, u
′
2 ∈ Σ+ which implies θ(u1) = u′2

which further implies u < Dθ(1), a contradiction.

If m < |y| < 2m, then for u = u3u4 = u′3u′4 and |u3| = |u′4|, we will get y = uθ(u3) = u′4θ(u) =

u′3u′4θ(u3) = u′4θ(u
′
3)θ(u′4) where u3, u4, u′3, u

′
4 ∈ Σ+ which implies θ(u3) = θ(u′4), i.e., u3 = u′4

which further implies u < D(1), a contradiction.

Case 3: If 2m < |x| ≤ 2m + n, then x = uθ(u)u′1 = u′2θ(u)u where u′1 ≤p u′ <p u and u′2 ≤s u′

for u′1, u
′
2 ∈ Σ+. Since, |u′1| ≤ |u

′| < |u|, u′1 <s u which implies u < D(1), a contradiction.

If 2m < |y| ≤ 2m + n, then y = uθ(u)u′3 = θ(u′4)uθ(u) where u′3 ≤p u′ <p u and u′4 ≤s u′

for u′3, u
′
4 ∈ Σ+. Since |u′3| ≤ |u

′| < |u|, u′3 <s θ(u), i.e., θ(u′3) <s u which implies u < Dθ(1), a

contradiction.

Case 4: If 2m + n < |x| ≤ 3m + n. Then x = uθ(u)u′θ(u1) = θ(u2)u′θ(u)u where u1 ≤p u and

u2 ≤s u for u1, u2 ∈ Σ+. Since, |u1| ≤ |u|, θ(u1) ≤s u which implies u < Dθ(1), a contradiction.

If 2m + n < |y| ≤ 3m + n. Then y = uθ(u)u′θ(u3) = u4θ(u′)uθ(u) where u3 ≤p u and

u4 ≤
θ
s u for u3, u4 ∈ Σ+. Since, |u3| ≤ |u|, θ(u3) ≤s θ(u), i.e., u3 ≤s u which implies u < D(1), a

contradiction.

Case 5: If 3m + n < |x| < 4m + n. Then x = uθ(u)u′θ(u)u1 = u2θ(u)u′θ(u)u where u1 <p u,

u2 <s u for u1, u2 ∈ Σ+. Since, |u1| < |u|, u1 <s u, which implies u < D(1), a contradiction.

If 3m + n < |y| < 4m + n. Then y = uθ(u)u′θ(u)u3 = θ(u4)uθ(u′)uθ(u) where u3 <p u,

θ(u4) <s u for u3, u4 ∈ Σ+. Since, |u3| < |u|, u3 <s θ(u), i.e., θ(u3) <s u which implies u < Dθ(1),

a contradiction.

If we assume that u′ ∈ Suff(u) or u′ ∈ θ(Suff(u)), we will reach a similar contradiction.

Since all the cases lead to a contradiction, w ∈ Dθ(2) ∩ D(2). �
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We illustrate Proposition 5.5.1 with the following example.

Example 5.3 Let Σ = {A,C,G,T } and θ be a morphic involution such that θ(A) = T, θ(G) = C

and vice versa. Let u = GT A and u′ = GT. Then for w = uθ(u)u′θ(u)u = GT ACATGTCATGT A,

Lθd(w) = {λ,GT ACAT } and Ld(w) = {λ,GT A}. Hence w ∈ Dθ(2) ∩ D(2).

Similarly, we need to prove that the words of the form mentioned in Proposition 5.5.1

cannot be decomposed as a catenation of less than three words which are unbordered as well

as θ-unbordered.

Proposition 5.5.2 Let θ be a morphic involution such that θ(a) , a for all a ∈ Σ and let

u ∈ Dθ(1) ∩ D(1), u′ ∈ Pref(u) ∪ Suff(u) ∪ θ(Suff(u)) such that u′ , u, then uθ(u)u′θ(u)u <

(Dθ(1) ∩ D(1))n for 1 ≤ n ≤ 2.

Proof Let us assume that w = uθ(u)u′θ(u)u ∈ (Dθ(1) ∩ D(1))n for 1 ≤ n ≤ 2. Let us assume

that u′ ∈ Pref(u). The case n = 1 is not possible since by Proposition 5.5.1, w ∈ Dθ(2) ∩ D(2).

Hence, let n = 2, i.e., uθ(u)u′θ(u)u = v1v2 where v1, v2 ∈ Dθ(1)∩D(1). Then we have following

cases to consider.

Case 1: v1 = u, v2 = θ(u)u′θ(u)u. Then v2 ∈ Dθ(2), a contradiction.

Case 2: v1 = uθ(u), v2 = u′θ(u)u. Then, v1 ∈ Dθ(2), a contradiction.

Case 3: v1 = uθ(u)u′, v2 = θ(u)u. Then v2 ∈ Dθ(2), a contradiction.

Case 4: v1 = uθ(u)u′θ(u), v2 = u. Then v1 ∈ Dθ(2), a contradiction.

Case 5: v1 = u1, v2 = u2θ(u)u′θ(u)u where u = u1u2 and u1, u2 ∈ Σ+. This implies

v2 = u2θ(u)u′θ(u)u1u2 ∈ D(2), a contradiction.

Case 6: v1 = uθ(x1), v2 = θ(x2)u′θ(u)u where u = x1x2 and x1, x2 ∈ Σ+. This implies,

v2 = θ(x2)u′θ(u)x1x2 ∈ Dθ(2), a contradiction.

Case 7: v1 = uθ(u)u′1, v2 = u′2θ(u)u where u′ = u′1u′2 and u′1, u
′
2 ∈ Σ+. Also, since u′ <p u,

u = u′u′3 = u′1u′2u′3 where u′3 ∈ Σ+. This implies, v1 = u′1u′2u′3θ(u)u′1, ∈ D(2), a contradiction.

Case 8: v1 = uθ(u)u′θ(u1), v2 = θ(u2)u where u = u1u2 and u1, u2 ∈ Σ+ which implies,

v1 = u1u2θ(u)u′θ(u1) ∈ Dθ(2), a contradiction.
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Case 9: v1 = uθ(u)u′θ(u)u1, v2 = u2 where u = u1u2 and u1, u2 ∈ Σ+, which implies,

v1 = u1u2θ(u)u′θ(u)u1 ∈ D(2), a contradiction.

If we assume that u′ ∈ Suff(u) or u′ ∈ θ(Suff(u)), we will reach a similar contradiction.

Since all cases led to contradictions, w < (Dθ(1) ∩ D(1))n for 1 ≤ n ≤ 2. �

As a consequence of Proposition 5.5.1 and 5.5.2, we have the following result.

Corollary 5.5.3 Let θ be a morphic involution such that θ(a) , a for all a ∈ Σ and let u ∈

Dθ(1) ∩ D(1), u′ ∈ Pref(u) ∪ Suff(u) ∪ θ(Suff(u)) such that u′ , u. Then uθ(u)u′θ(u)u ∈

(Dθ(2) ∩ D(2))\(Dθ(1) ∩ D(1))n for 1 ≤ n ≤ 2.

The following result is needed for the proof of Lemma 5.5.5.

Lemma 5.5.4 [18] Let θ be a morphic involution on Σ∗, where Σ is an alphabet with |Σ| ≥ 3

that contains letters a , b such that a < {θ(b), θ(a)}. Let x , y, x, y ∈ Σm, m > 0. Then:

1. amxθ(b) ∈ Dθ(1) ∩ D(1).

2. If x = θ(b)x′, x′ ∈ Σ∗ and k ≥ m, then (akyθ(b))(akxθ(b)) ∈ Dθ(1) ∩ D(1).

In the following lemma we prove that, for a morphic involution θ, certain words of the form

uθ(u)u′θ(u)v, where u′ <p u and u , v, are unbordered as well as θ-unbordered.

Lemma 5.5.5 Let |Σ| ≥ 3, θ be a morphic involution with the property that there exists a ∈ Σ

such that a < {θ(a), b, θ(b)}. Then for u, v ∈ Σn such that u , v, n > 0 and m = n + 2,

amθ(b)uθ(b)θ(amθ(b)uθ(b))amθ(amθ(b)uθ(b))amθ(b)vθ(b) ∈ Dθ(1) ∩ D(1).

Proof Let us assume that

w = amθ(b)uθ(b)θ(amθ(b)uθ(b))amθ(amθ(b)uθ(b))amθ(b)vθ(b) < Dθ(1) ∩ D(1),
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i.e., there exists w1,w2 ∈ Σ+ such that w1 <d w or w2 <
θ
d w. By Lemma 5.2.4 and Lemma 5.3.1,

it is enough consider the case |w1| < 5m or |w2| < 5m. Further by Lemma 5.5.4, taking

y = θ(b)u and x = θ(b)v we know that (amθ(b)uθ(b))(amθ(b)vθ(b)) ∈ Dθ(1) ∩ D(1), hence

none of the prefixes of amθ(b)uθ(b) can be a border or a θ-border of w and hence the cases

1 ≤ |w1| ≤ 2m or 1 ≤ |w2| ≤ 2m are not possible. So, we only need to consider the cases when

2m < |w1| < 5m or 2m < |w2| < 5m.

Case 1: 2m < |w1| < 3m or 2m < |w2| < 3m. Then,

w1 = amθ(b)uθ(b)θ(ak) = θ(u2)bamθ(b)vθ(b) or

w2 = amθ(b)uθ(b)θ(ak′) = u′2θ(b)θ(am)bθ(v)b

where 1 ≤ k, k′ < m, u = u1u2 = u′1u′2, u1, u′1 ∈ Σ+ and u2, u′2 ∈ Σ∗ which implies a = b or

a = θ(b), a contradiction.

Case 2: |w1| = 3m or |w2| = 3m. Then,

w1 = amθ(b)uθ(b)θ(am) = bθ(u)bamθ(b)vθ(b) or

w2 = amθ(b)uθ(b)θ(am) = θ(b)uθ(b)θ(am)bθ(v)b

which implies a = b or a = θ(b), a contradiction.

Case 3: |w1| = 3m + 1 or |w2| = 3m + 1. Then,

w1 = amθ(b)uθ(b)θ(am)b = θ(a)bθ(u)bamθ(b)vθ(b) or

w2 = amθ(b)uθ(b)θ(am)b = aθ(b)uθ(b)θ(am)bθ(v)b

which implies a = θ(a) (and a = b) or a = θ(b), a contradiction.
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Case 4: 3m + 1 < |w1| ≤ 4m − 1 or 3m + 1 < |w2| ≤ 4m − 1. Then,

w1 = amθ(b)uθ(b)θ(am)bθ(u1) = θ(ak)bθ(u)bamθ(b)vθ(b) or

w2 = amθ(b)uθ(b)θ(am)bθ(u′1) = ak′θ(b)uθ(b)θ(am)bθ(v)b

where 2 ≤ k, k′ ≤ n + 1, u = u1u2 = u′1u′2, u1, u′1 ∈ Σ+ and u2, u′2 ∈ Σ∗ which implies a = b (and

θ(a) = a) or a = θ(b), a contradiction.

Case 5: |w1| = 4m or |w2| = 4m. Then,

w1 = amθ(b)uθ(b)θ(am)bθ(u)b = θ(am)bθ(u)bamθ(b)vθ(b) or

w2 = amθ(b)uθ(b)θ(am)bθ(u)b = amθ(b)uθ(b)θ(am)bθ(v)b

which implies a = θ(a) or θ(u) = θ(v), i.e., u = v, a contradiction.

Case 6: 4m < |w1| < 5m or 4m < |w2| < 5m. Then,

w1 = amθ(b)uθ(b)θ(am)bθ(u)bak = ak′θ(am)bθ(u)bamθ(b)vθ(b) or

w2 = amθ(b)uθ(b)θ(am)bθ(u)bak1 = θ(ak2)amθ(b)uθ(b)θ(am)bθ(v)b

where 1 < k, k′, k1, k2 < m which implies a = θ(b) (and a = θ(a)) or a = b (and a = θ(a)), a

contradiction.

Since all the cases lead to a contradiction w ∈ Dθ(1) ∩ D(1). �

The following theorem uses Lemma 5.5.5, along with certain conditions on the alphabet Σ,

to show the disjunctivity of the languages (Dθ(2) ∩ D(2))\(Dθ(1) ∩ D(1))k for k = 1, 2.

Theorem 5.5.6 Let |Σ| ≥ 3 and θ be a morphic involution such that θ(a) , a for all a ∈ Σ.

Then (Dθ(2) ∩ D(2))\(Dθ(1) ∩ D(1))k is disjunctive for k = 1, 2.

Proof Let {a, b} ∈ Σ such that a < {b, θ(b)}. Let u, v ∈ Σn for n > 0 be such that u , v. Let
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m = |bub| = n + 2. Now let,

x = amθ(b)uθ(b)θ(amθ(b)uθ(b))amθ(amθ(b)uθ(b))amθ(b)

and y = θ(b). Then

xuy = amθ(b)uθ(b)θ(amθ(b)uθ(b))amθ(amθ(b)uθ(b))amθ(b)uθ(b) and

xvy = amθ(b)uθ(b)θ(amθ(b)uθ(b))amθ(amθ(b)uθ(b))amθ(b)vθ(b).

By Corollary 5.5.3, xuy ∈ (Dθ(2) ∩ D(2))\(Dθ(1) ∩ D(1))k for k = 1, 2. Now, by Lemma 5.5.5,

we know that xvy ∈ Dθ(1) ∩ D(1). Therefore, u . v(PL) for every u, v ∈ Σ+, u , v, |u| = |v| and

L = (Dθ(2) ∩ D(2))\(Dθ(1) ∩ D(1))k for k = 1, 2 is, by Proposition 5.2.1, disjunctive. �

We conclude this section with some observations on the disjunctivity of some other lan-

guages related to Dθ(i), i ≥ 1. Let us recall the definition of a singular language from [26]. For

any language L ⊆ Σ+, [26] defines,

l(L) = {g ∈ L|gx < L for all x ∈ Σ+ and g = yz, z ∈ Σ+, implies y < L}.

Each element of l(L) is called a singular word in L and L is said to be a singular language if

l(L) , ∅.

Theorem 5.5.7 [26] Let L′ be a disjunctive language and let L be a singular language. Then

LL′ is a disjunctive language.

Corollary 5.5.8 If Σ is such that |Σ| > 2 and a , θ(a) for all a ∈ Σ, θ is a morphic involution

on Σ∗, and L is a singular language over Σ, then the following hold:

1. If there exist {a, b} ∈ Σ such that a < {b, θ(b)} then LDθ(i) is disjunctive for all i ≥ 1.

2. If there exist {a, b} ∈ Σ such that a < {b, θ(b)} then L(Dθ(i) ∩ Q2i−2
θ ) is disjunctive for all

i ≥ 2.
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3. The language L(Di
θ(1)\D(i)) is disjunctive for all i ≥ 2.

4. If there exist {a, b} ∈ Σ such that a < {b, θ(b)} then L(D2i
θ (1)\Dθ(i + 1)) is disjunctive for

all i ≥ 1.

5. The language L((Dθ(2) ∩ D(2))\(Dθ(1) ∩ D(1))k) is disjunctive for k = 1, 2.

Proof 1. By Theorems 5.3.8 and 5.5.7, LDθ(i) is disjunctive for i ≥ 1.

2. By Corollary 5.3.9 and Theorem 5.5.7, L(Dθ(i) ∩ Q2i−2
θ ) is disjunctive for all i ≥ 2.

3. By Theorems 5.4.4 and 5.5.7, L(Di
θ\D(i)) is disjunctive for all i ≥ 2.

4. By Theorems 5.4.6 and 5.5.7, L(D2i
θ (1)\Dθ(i + 1)) is disjunctive for all i ≥ 1.

5. By Theorems 5.5.6 and 5.5.7, L((Dθ(2)∩D(2))\(Dθ(1)∩D(1))k) is disjunctive for k = 1, 2.

�

5.6 Further remarks on Dθ(i) and related languages

As seen in Section 4, for a word u ∈ Dθ(1) there might not exist a decomposition u = u1u2 such

that u1, u2 ∈ Dθ(1). If, however, such a decomposition exists for a non-empty word, then that

word is said to be Dθ(1)-concatenate. The word u is said to be completely Dθ(1)-concatenate,

if u = xy for x, y ∈ Σ+, imply that x, y ∈ Dθ(1). These notions generalize concepts related to

D(1)-concatenate words, defined in [14].

Example 5.4 Let Σ = {a, b}, and θ be (anti)morphic involution such that θ(a) = b and vice

versa. Then u = ab is Dθ(1)-concatenate. Also, v = ai, i ≥ 1 is completely Dθ(1)-concatenate,

but w = aba = (aθ(a))(a) is not Dθ(1)-concatenate and hence not completely Dθ(1)-concatenate.

The following proposition shows that the set of all completely Dθ(1)-concatenate words is

regular for an (anti)morphic involution θ.
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Proposition 5.6.1 Let Σ be an alphabet, L be the set of all completely Dθ(1)-concatenate words

over Σ, and let θ be an (anti)morphic involution. Then L is regular.

Proof Let Σ = {a1, a2, . . . , an}. Let u ∈ L be such that u = aiwa j, 1 ≤ i, j ≤ n, w ∈ Σ∗. If w does

not contain θ(ai) and θ(a j), then for w = w′w′′, w′,w′′ ∈ Σ∗, aiw′,w′′a j ∈ Dθ(1). On the other

hand, if w contains θ(ai) or θ(a j), then for some w′,w′′ ∈ Σ∗, w = w′θ(ai)w′′ or w = w′θ(a j)w′′.

Thus we have, u = (aiw′θ(ai))w′′a j or aiw′(θ(a j)w′′a j), which contradicts to the fact that u is

completely Dθ(1)-concatenate. Thus,

L =

n⋃
i=1, j=1

ai(Σ\{θ(ai), θ(a j)})∗a j.

Since ai(Σ\{θ(ai), θ(a j)})∗a j is regular, L is regular. �

The catenation of θ-unbordered words is not necessarily θ-unbordered. Additional condi-

tions, such as the one below, are needed to guarantee that the catenation of θ-unbordered words

is θ-unbordered.

Proposition 5.6.2 [19] Let θ be either a morphic or an antimorphic involution and let u, v ∈ Σ+

be θ-unbordered. Then uv is θ-unbordered iff θ(Pref(u)) ∩ Suff(v)) = ∅.

Based on above proposition and the notion of non-overlapped languages defined in [31], we

now introduce a new class of languages, called θ-non-overlapped languages. θ-non-overlapped

languages are a special class of θ-unbordered words, whose additional properties imply that

the catenation between any two words in the language remains θ-unbordered.

A pair of words u, v ∈ Σ+, u , v, is said to be θ-non-overlapped iff θ(Pref(u)) ∩ Suff(v) = ∅

and θ(Pref(v)) ∩ Suff(u) = ∅. A language L ⊆ Σ+ is said to be θ-non-overlapped if L ⊆ Dθ(1)

and u, v ∈ L, θ(u) , v, implies u and v are θ-non-overlapped.

For a language L, let us denote L(2)
θ = {uθ(u)|u ∈ L}. The following results describe some

properties of θ-non-overlapped languages.
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Lemma 5.6.3 Let θ be morphic involution and L be θ-non-overlapped. Then θ(L) is also θ-

non-overlapped.

The following proposition shows the necessary and sufficient condition for a language to

be θ-non-overlapped.

Proposition 5.6.4 Let L ⊆ Σ+ and θ be a morphic involution. Then L is θ-non-overlapped

language if and only if L ⊆ Dθ(1) and L2\L(2)
θ ⊆ Dθ(1).

Proof Let L ⊆ Σ+. Assume that L is a θ-non-overlapped language. Then L ⊆ Dθ(1). Now,

let, u, v ∈ L such that v , θ(u), i.e. uv ∈ L2\L(2)
θ . Suppose uv < Dθ(1), then there exists

w ∈ Σ+ such that w <θd uv. If |w| > |u|, then there exists w′ ∈ Σ+ such that w = uw′ and

uv = uw′α = βθ(u)θ(w′) for α, β ∈ Σ+. Thus w′ <θd v and L * Dθ(1), a contradiction. We

will reach a similar contradiction if we assume that |w| > |v|. If |w| ≤ |u| and |w| ≤ |v|, then

θ(w) ∈ θ(Pref(u)) ∩ Suff(v), a contradiction. Hence uv ∈ Dθ(1) and L2\L(2)
θ ⊆ Dθ(1).

Conversely, assume that L ⊆ Dθ(1) and L2\L(2)
θ ⊆ Dθ(1). Consider u, v ∈ L such that

v , θ(u). Then, clearly uv ∈ L2\L(2)
θ . Suppose u, v are not θ-non-overlapped, then θ(Pref(u)) ∩

Suff(v) , ∅ or θ(Pref(v)) ∩ Suff(u) , ∅. Let w ∈ θ(Pref(u)) ∩ Suff(v) which implies θ(w) <θd uv.

Thus uv < Dθ(1), which is a contradiction to the assumption that L2\L(2)
θ ⊆ Dθ(1). We will reach

a similar contradiction if we assume that w′ ∈ θ(Pref(v))∩Suff(u). Thus, θ(Pref(u))∩Suff(v) = ∅

and θ(Pref(v)) ∩ Suff(u) = ∅ for every u, v ∈ L, θ(u) , v and L ⊆ Dθ(1), i.e. L is θ-non-

overlapped. �

We will illustrate Proposition 5.6.4 with the following example.

Example 5.5 Let Σ = {A,C,G,T } and θ be a morphic involution such that θ(A) = T, θ(G) = C

and viceversa. Let L = {AG,GACG}, which is a θ-non-overlapped language. Then L ⊆ Dθ(1)

and

L2\L(2)
θ = {AGAG, AGGAGC,GAGCGAGC,GAGCAG} ∈ Dθ(1).
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Proposition 5.6.5 Let L ⊆ Σ+ be a θ-non-overlapped language and let w ∈ Lm for some m ≥ 1.

If there exists u ∈ Σ+ such that u ≤θd w, then u ∈ Li(θ(L)) j for some 1 ≤ i, j,≤ m.

Proof Let w ∈ Lm, i.e., w = w1w2 . . .wm for some w1,w2, . . .wm ∈ L. Let u ∈ Σ+ be such

that u ≤θd w. Then there exist 1 ≤ l ≤ m such that u = w1 . . .wl−1u1, where u1 ∈ Pref(wl).

Thus u1 ≤
θ
d wl . . .wm. Similarly, there exist l ≤ k ≤ m such that θ(u1) = u2wk+1 . . .wm where

u2 ∈ Suff(wk) which implies u1 = θ(u2)θ(wk+1) . . . θ(wm). Now, since θ(u2) ≤p u1 ≤p wl and

u2 ≤s wk, we will get θ(u2) ≤θd wlwk. Since by Proposition 5.6.4, L2\L(2)
θ ⊆ Dθ(1), wk = θ(wl).

Also, since L, θ(L) ⊆ Dθ(1), wk = θ(wl) = u2. Thus,

u = w1 . . .wl−1u1

= w1 . . .wl−1θ(u2)θ(wk+1) . . . θ(wm)

= w1 . . .wl−1wlθ(wk+1) . . . θ(wm) ∈ Ll(θ(L))m−k−1.

�

For a word u ∈ Σ+,

IN(u) = {v ∈ Σ+|u = xvy for some x, y ∈ Σ∗}.

The following result shows the relationship between the length of an infix of a θ-periodic

word and the number of borders as well as θ-borders of such infix, for morphic involutions θ.

Proposition 5.6.6 Let u, v ∈ Σ+ and θ be a morphic involution. If v ∈ Dθ(i1) ∩ D(i2) with

i = i1 + i2 for i1, i2 ≥ 1 and v ∈ IN(u1u2 . . . um) where uk = u if k is odd and uk = θ(u) if k is

even for 1 ≤ k ≤ m and m ≥ i, then |v| ≤ |ui|.

Proof Let us assume that |v| > |ui|. Then there is an integer i ≤ j < m such that |u j| < |v| ≤

|u j+1|. Hence, v is of the form v = (v1v2 . . . v j)v′ where |vl| = |u|, 1 ≤ l ≤ j, and v′ ∈ Σ+, |v′| ≤ |u|.

Since, v is an infix of a word of the form u1u2 . . . um where uk = u if k is odd and uk = θ(u) if



5.6. Further remarks on Dθ(i) and related languages 119

k is even for 1 ≤ k ≤ m, there exists a word w ∈ Σ+, |w| = |u|, such that vl = w if l is odd and

vl = θ(w) if l is even, 1 ≤ l ≤ j. Furthermore, if j is odd, then v′ ≤p θ(w) and if j is even, then

v′ ≤p w. We have the following two cases to consider.

Case 1: j is odd. Then v = (wθ(w)wθ(w) . . .w)θ(w′) for w = w′αwhere w′ ∈ Σ+ and α ∈ Σ∗.

This implies, v = (w′αθ(w′)θ(α) . . .w′α)θ(w′).

Thus, λ,w′, (v1v2)w′, . . . , (v1v2 . . . v j−1)w′ ∈ Lθd(v) which implies νθd(v) =
j+3
2 .

Also, λ, v1θ(w′), (v1v2v3)θ(w′), . . . , (v1v2 . . . v j−2)θ(w′) ∈ Ld(v). This implies νd(v) =
j+1
2 .

Hence, νθd(v) + νd(v) =
j+3
2 +

j+1
2 = j + 2 ≥ i + 2 > i, which is a contradiction.

Case 2: j is even. Then v = (wθ(w)wθ(w) . . . θ(w))w′′ for w = w′′β where w′′ ∈ Σ+ and

β ∈ Σ∗. This implies, v = (w′′βθ(w′′)θ(β) . . . θ(w′′)θ(β))w′′.

Thus, λ,w′′, (v1v2)w′′, . . . , (v1v2 . . . v j−2)w′′ ∈ Ld(v) which implies νd(v) =
j+2
2 .

Also, λ, v1θ(w′′), (v1v2v3)θ(w′′), . . . , (v1v2 . . . v j−1)θ(w′′) ∈ Ldθ(v). This implies νd(v) =
j+2
2 .

Hence, νθd(v) + νd(v) =
j+2
2 +

j+2
2 = j + 2 ≥ i + 2 > i, which is a contradiction.

Since both the cases lead to a contradiction, |v| ≤ |ui|. �

We conclude with a preview of possible generalizations of this research to cases where

θ3 = I over Σ or, more generally, where θn = I over Σ. In [19] it was shown that, for a morphic

involution θ, the set of all θ-bordered words over Σ is not context-free. The following results

shows that this holds also for the case of a morphism θ with the property that θ(a) , a for all

a ∈ Σ and θ3 equals the identity on Σ with |Σ| ≥ 3.

Proposition 5.6.7 If |Σ| ≥ 3, θ is a morphism such that θ3 = I on Σ and θ(a) , a for all a ∈ Σ,

then the set of all θ-bordered words over Σ is not context-free.

Proof Let a ∈ Σ. Now, since a , θ(a) there exists c ∈ Σ such that θ(a) = c. By the same

argument there exists b ∈ Σ such that θ(c) = b. Since, θ3 = I, θ(b) = a.

Assume that L is context-free. Let n be the constant defined by pumping lemma for context-

free languages. Let w1 = cn+1an+1bn+1cn+1 which is clearly a θ-bordered word. By the pumping

lemma, there is a decomposition w1 = αxvyβ such that |xvy| ≤ n, |xy| ≥ 1 and for all i ≥ 0,
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wi = αxivyiβ ∈ L. Since wi begins with c for any i ≥ 0, every θ-border z of wi has the property

z = cu for some u ∈ Σ+.

Case 1: xvy is a subword of cn+1an+1 of w1. In this case, since wi has the suffix cn+1,

θ(z) ∈ bΣ∗cn+1. (θ(z) cannot begin with c or a because in those cases z would begin with a or

b respectively, which is not possible.) Hence, z ∈ cΣ∗an+1. If neither x nor y contains any as

which means xvy is a subword of cn+1 of w1, we get wi = cman+1bn+1cn+1, for i ≥ 2 and m > n+1.

But then, z = cman+1 which further imply that θ(zi) = bmcn+1, which is a contradiction since wi

does not contain m consecutive bs. Hence, either x or y must include at least one letter a. But

this would imply that w0 has at most n letters a which is a contradiction since it has z = cuan+1

for some u ∈ Σ∗ as its θ-border.

Case 2: xvy is a subword of an+1bn+1 of w1. In this case, since wi has the suffix cn+1,

θ(z) ∈ bΣ∗cn+1. Hence, z ∈ cΣ∗an+1. If neither x nor y contains any bs which means xvy is a

subword of an+1 of w1, we get w0 = cn+1akbn+1cn+1 for k ≤ n, which means that w0 has at most

n letters a which contradicts the fact that w0 has z0 = cuan+1 for some u ∈ Σ∗ as its θ-border.

Hence, either x or y must include at least one letter b. But then, w0 = cn+1albkcn+1 < L for

k < n + 1 and l ≤ n + 1 since k < n + 1, cn+1al cannot be a θ-border of w0. Hence we have

reached a contradiction

Case 3: xvy is a subword of bn+1cn+1 of w1. In this case, since wi has prefix cn+1, z ∈ cn+1Σ∗a.

(z cannot end with c or b because in those cases θ(z) would end with b or a which is not

possible.) Hence, θ(z) ∈ bn+1Σ∗c. If neither x nor y contains any cs which means xvy is a

subword of bn+1 of w1, we get w0 = cn+1an+1bk′cn+1 for k′ ≤ n, which means w0 < L which

is a contradiction, because, cn+1an+1 cannot be a θ-border of wi due to the fact that k′ ≤ n.

Hence, either x or y must include at least one letter c. But then, wi = cn+1an+1b jc j′ < L for

j ≥ n + 1, j′ > n + 1 and i ≥ 2 since cn+1an+1 cannot be a θ-border of wi because j′ > n + 1.

Hence, we have reached a contradiction.

Lastly, since |xvy| ≤ n, we have that xvy can also not be a subword of cn+1an+1bn+1 or

an+1bn+1cn+1.
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Since all the cases lead to a contradiction, our assumption was incorrect and hence L is not

context-free. �

In general, the set of all θ-bordered words, Bθ, is not context-free for any morphism θ

such that there exists n ≥ 2 with θn(a) = a for all a ∈ Σ. The idea of the proof, [24], is to

consider such a morphism and a letter a ∈ Σ such that θn(a) = a for n > 1 and θi(a) , a for

all 0 < i < n. Now, consider the set S = Bθ ∩ a+θ(a)+θ2(a)+ . . . θn−1(a)+a+. If w ∈ S , then

w = ai0(θ(a))i1(θ2(a))i2 . . . (θn−1(a))in−1(θn(a))in where im ≥ 1 for 1 ≤ m ≤ n. Let v ∈ Σ+ be such

that v <θd w. Thus,

θ(v) = (θ(a)) j(θ2(a))i2 . . . (θn−1(a))in−1(θn(a))in

for j ≤ i1. Also, v = ai0(θ(a))i1(θ2(a))i2 . . . (θn−1(a))k for k ≤ in−1. This implies

θ(v) = (θ(a))i0(θ2(a))i1 . . . (θn−1(a))in−2(θn(a))k.

Thus, the comparison of expressions for θ(v) yields, i0 = j ≤ i1, i1 = i2 = i3 = . . . = in−2 = in−1

and in = k ≤ in−1. Hence,

S = {ai0(θ(a))l(θ2(a))l . . . (θn−1(a))lain |i0, in ≤ l}

which is clearly not a context-free language. Thus, if we consider any word from the set S , it

will clearly be a θ-bordered word and hence the set Bθ is not context-free.

5.7 Conclusions

This paper continues the exploration of properties of θ-bordered (pseudo-bordered) words and

θ-unbordered words for the case where θ is a morphic involution. We prove, under certain

conditions, the disjunctivity of the language of words with exactly i θ-borders, for all i ≥ 1,

and also that the set Di
θ(1) \ D(i) of the language of words which consist of catenations of
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i θ-unbordered words, but which do not have exactly i borders, is disjunctive for all i ≥ 2.

Further directions of research include generalizations of these and similar results for morphism

or antimorphisms θ with the property that θn equals the identity function on Σ for an arbitrary

n ≥ 3.
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Chapter 6

Conclusion and Discussion

In this thesis, we continue the study initiated in [1] and [5] on the generalization of two fun-

damental notions in combinatorics on words, namely periodicity and borderedness, for various

pseudo-identity functions.

The operation of catenation is known to generate the power (repetition) of a word. However,

the catenation operation cannot generate pseudo-powers (pseudo-repetition) of a word, where

the identity function is replaced by a pseudo-identity function. In Chapter 3, [2], we propose

and investigate the binary word operation of θ-catenation that generates θ-powers (pseudo-

powers) of a word, for morphic or antimorphic involutions θ. We study the connection of

the operation of θ-catenation with the previously defined notions of θ-primitive and θ-periodic

words, and explore closure properties of various language families under the operation of θ-

catenation. In particular, we find the right and left inverses of θ-catenation, characterize, under

certain conditions, some θ-primitive words which result by an application of θ-catenation be-

tween two words, and show that the families of regular, context-free and context-sensitive

languages are closed under the operation of θ-catenation.

In related research project, which attempts to generalize the notion of identity, we extend

the notion of pseudo-bordered words for functions beyond identity and involution (Chapter

4, [3]). In particular, we study properties of θ-bordered (pseudo-bordered) and θ-unbordered
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(pseudo-unbordered) words for functions θ such that either θ is an (anti)morphism with the

property that θn = I, for n ≥ 2, or θ is any literal (anti)morphism. Some of the obtained proper-

ties include necessary and sufficient condition for a word to be θ-bordered, and the transitivity

of the relation <θd for literal (anti)morphisms θ. We also proved that the set of all θ-bordered

words is not context-free for morphisms θ such that θ3 is an identity function on Σ, and with

the property that θ(a) , a for all a ∈ Σ.

The relation between disjunctive and regular languages is that disjunctive languages are not

regular. This and the fact that the set of all words with exactly i borders, D(i), is disjunctive for

all i ≥ 1, motivated the study of disjunctivity of the set of all θ-(un)bordered words and some

other related languages for morphic involutions θ (Chapter 5, [4]). We show that the set of all

words with exactly i θ-borders, Dθ(i), is disjunctive under certain conditions for all i ≥ 1. In an

attempt to establish the relationship between Dθ(i) and D(i), we prove that the set Di
θ(1)\D(i),

is disjunctive, under certain conditions, for all i ≥ 2.

As future work, we are interested primarily in investigating the disjunctivity properties

of the set of all pseudo-bordered words for functions which are further generalizations of in-

volution functions, as well as studying binary word operations which generate other pseudo-

powers. Another notion that can be generalized by considering pseudo-identities is the notion

of Fibonacci words and languages, which is of great mathematical interest. Also, it would be

interesting to model other secondary and complex structures that are formed in DNA as well

as RNA molecules.
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Chapter 7

Addendum

Since this thesis is formated as integrated-article, the content of all the technical chapters should

be exactly the same as those of published article and no change is allowed. Hence, we list all

the modifications according to the comments provided by the thesis examiners in this chapter.

Implementation of the comments

page 44, line 1: “properties in combinatorics on words”→ “properties in the combinatorics

on words”.

page 49, line 7: “left-inclusive .”→ “left-inclusive.”

page 51, line 6: “The following Lemma and its Corollary”→ “The following lemma and

its corollary”.

page 51, line 12: “Firstly”→ “First”, “Secondly”→ “Second”, “Thirdly”→ “Third”.

page 52, line 5: “We will prove this by induction on n.”→ “We prove this by induction on

n.”

page 52, line 16: “in the same way the operation of catenation”→ “in the same was as the

operation of catenation”.

page 52, line 17: “the operation of θ-catenation is the one that generates the θ-powers of a

word.”→ “the operation of θ-catenation generates the θ-powers of a word.”.

page 54, line 15: If ◦ is the operation of catenation then any prefix-free language will be
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◦-free.

page 62, line 20: “its”→ “it’s”.

page 66, line 1: “properties in combinatorics on words and formal language theory” →

“properties in the combinatorics on words and in formal language theory”.

page 67, line 3: “several new notion in combinatorics on words”→ “several notions in the

combinatorics on words”.

page 67, line 6: “modeled”→ “modelled”.

page 74, last line: “leads”→ “lead”.

page 75, line 18: “leads”→ “lead”.

page 79, line 17: “leads”→ “lead”.

page 82, line 8: “leads”→ “lead”.

page 82, line 14: “leads”→ “lead”.

page 83, line 16: “leads”→ “lead”.
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