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Abstract

Recommendation systems have been the most emerging technology in the last decade as one of

the key parts in e-commerce ecosystem. Businesses offer a wide variety of items and contents

through different channels such as Internet, Smart TVs, Digital Screens, etc. The number

of these items sometimes goes over millions for some businesses. Therefore, users can have

trouble finding the products that they are looking for. Recommendation systems address this

problem by providing powerful methods which enable users to filter through large information

and product space based on their preferences. Moreover, users have different preferences.

Thus, businesses can employ recommendation systems to target more audiences by addressing

them with personalized content. Recent studies show a significant improvement of revenue and

conversion rate for recommendation system adopters.

Accuracy, scalability, comprehensibility, and data sparsity are main challenges in recom-

mendation systems. Businesses need practical and scalable recommendation models which

accurately personalize millions of items for millions of users in real-time. They also prefer

comprehensible recommendations to understand how these models target their users. However,

data sparsity and lack of enough data about items, users and their interests prevent personal-

ization models to generate accurate recommendations.

In Chapter 1, we first describe basic definitions in recommendation systems. We then

shortly review our contributions and their importance in this thesis. Then in Chapter 2, we

review the major solutions in this context. Traditional recommendation system methods usually

make a rating matrix based on the observed ratings of users on items. This rating matrix is then

employed in different data mining techniques to predict the unknown rating values based on

the known values.

In a novel solution, in Chapter 3, we capture the mean interest of the cluster of users on the

cluster of items in a cluster-level rating matrix. We first cluster users and items separately based

on the known ratings. In a new matrix, we then present the interest of each user clusters on each

item clusters by averaging the ratings of users inside each user cluster on the items belonging

iii



to each item cluster. Then, we apply the matrix factorization method on this coarse matrix to

predict the future cluster-level interests. Our final rating prediction includes an aggregation of

the traditional user-item rating predictions and our cluster-level rating predictions.

Generating personalized recommendation for cold-start users, or users with only few feed-

back, is a big challenge in recommendation systems. Employing any available information

from these users in other domains is crucial to improve their recommendation accuracy. Thus,

in Chapter 4, we extend our proposed clustering-based recommendation model by including

the auxiliary feedback in other domains. In a new cluster-level rating matrix, we capture the

cluster-level interests between the domains to reduce the sparsity of the known ratings. By

factorizing this cross-domain rating matrix, we effectively utilize data from auxiliary domains

to achieve better recommendations in the target domain, especially for cold-start users.

In Chapter 5, we apply our proposed clustering-based recommendation system to Morphio

platform used in a local digital marketing agency called Arcane inc. Morphio is an smart adap-

tive web platform, which is designed to help Arcane to produce smart contents and target more

audiences. In Morphio, agencies can define multiple versions of content including texts, im-

ages, colors, and so on for their web pages. A personalization module then matches a version of

content to each user using their profiles. Our ongoing real time experiment shows a significant

improvement of user conversion employing our proposed clustering-based personalization.

Finally, in Chapter 6, we present a summary and conclusions for this thesis. Parts of this

thesis were submitted or published in peer-review journal and conferences including ACM

Transactions on Knowledge Discovery from Data and ACM Conferences on Recommender

Systems.

Keywords: Personalization, recommendation systems, collaborative filtering, content mar-
keting, data mining
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Chapter 1

Introduction

In this chapter we review few basic concepts in recommendation systems, and then review our

contributions in this thesis.

1.1 Recommendation Systems

Recommendation systems are key parts of the information and e-commerce ecosystem [11],

where businesses offer an enormous number of items through different channels such as World

Wide Web (WWW), Smart TVs, Digital Screens, etc. Therefore, users can have trouble find-

ing the products that they are looking for. Recommendation systems address this problem by

providing powerful methods which enable users to filter through large information and product

space based on their preferences. Here are few real world examples of employing recommen-

dation systems in e-commerce:

• Google news employs recommendation system to suggest news articles to its users.

• Netflix uses its users’ feedback to recommend them movies that they would like.

In recommendation systems, there are at least two classes of entities; Users and items,

where users have preferences for certain items [41]. The data itself is commonly represented

as a rating matrix or a utility matrix R to show the degree of preference of users on a subset of

items:

1
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R =



i1 i2 . . . im

u1 r11 r12 . . . r1m

u2 r21 r22 . . . r2m

...
...

... . . . ...

un rn1 rn2 . . . rnm


where un represents the nth user, im represents the mth item, n is the number of users, m is

the number of items, and ri j represents the rating of user i on item j.

We assume that the values are from an ordered set. For instance, integers 1 to 5 represent the

number of stars that the user gave as a rating to a movie in Netflix. In an usual recommendation

scenario, matrix R is sparse. That means we only have few known ratings from each users and

the rest of the ratings are unknown. The goal of recommendation systems is to predict these

unknown values and prepare a list of relevant items for each user. Here are main challenges in

recommendations systems:

• Accuracy: Businesses employ recommendations to first help users by finding their re-

lated items, and second, to increase their own revenue. Accuracy of recommendations

plays a major role to achieve both these goals.

• Scalability: Recommendation systems need to handle millions of users and millions of

items in many cases. Thus, scalability is one of the most challenging issues in recom-

mendation systems.

• Cold-start users: They are users with no ratings or only few ratings. Thus, it is hard

to model the interests of these users. Generating good recommendations for cold-start

users is another challenge in recommendation systems.

• Imbalanced dataset: Number of ratings per items also usually has a power law distri-

bution in practice. Thus, we have many ratings for few items but no ratings or very few

ones for most of the items.



1.2. Personalization 3

• Comprehensibility: Businesses are seeking for accurate and scalable recommendations.

Yet, they tend to understand how these models generate these recommendations and

target their users. This is one of the reasons that models based on K-Nearest Neighbor

are popular in practice. For instance, Netflix recommends you new movies based on the

movies that you have watched before.

A recommendation task can be performed in two ways; First, we may ignore the individual

preferences and consider the overall preferences only. For instance, we may find a list of

popular items to recommend to all user. These non-personalized recommendations are easy to

achieve but less accurate considering the diverse preferences of users. Although, they result

in good recommendations for cold-start users. Another approach is to consider the individual

preferences to personalize the recommendations, called personalization.

1.2 Personalization

Personalization has been one the most emerging technology in the last decade [11, 22, 25, 40].

Diverse preferences of audiences forces content providers to widely employ personalization

technologies. Personalization involves accommodating between individuals by finding their

preferences, and employing these found preferences to locate the most relevant contents to

each individual.

Personalisation techniques can be categorized into content filtering, collaborative filtering,

and hybrid solutions which are a combination of the first two techniques. Generally speaking,

content filtering systems focus on item properties and user profiles to determine the similarities

between users and items. On the other hand, collaborative filtering systems focus on the ratings

only. Thus, in collaborative filtering two items are similar if they have been rated by the same

users [41].
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1.3 Content Filtering

Content filtering is mainly based on item properties and user profiles. For instance, in Movie

domain we may have the following profiles for each movie: actors, director, the year in which

the movie is made, etc. Methods based on content filtering employ these profiles to find item-

item and/or user-user similarities. These similarity is then employed for generating the recom-

mendations. In other words, if user u is interested in item i, with a high chance she will like

the items with same contents as item i. In addition, she might be interested in the items that the

users with same profile as her, like.

Employing these profiles to generate the recommendations is useful. However, these pro-

files are usually unavailable or costly to obtain in practice. This is the main reason that methods

based on collaborative filtering are more popular in both academia and industry.

1.4 Collaborative Filtering

The fundamental assumption behind collaborative filtering is if users agree about the relevance

of some items, then they will likely agree about other items. For instance, if a group of users

likes the same things as Mary, then Mary is likely to like the things they like which she has not

seen yet [11].

1.5 Hybrid Techniques

Hybrid recommendation techniques integrate content and collaborative information to achieve

higher recommendation accuracy. This content information contains user profiles, item pro-

files, and context information such as weather condition, location, etc. Several methods have

been proposed for hybrid recommendation. KNN is an obvious choice for including this con-

tent information to improve the similarity function and consequently the recommendation ac-

curacy. Hybrid models are represented in a multi-dimensional matrix R : Users × Items ×
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Content → R. They have been well studied in the last decade. For instance, Rendle et al.

in [44] propose a Tensor Factorization technique to factorize cubic rating matrix users-items-

contents. Wetzker et al. in [53] propose a hybrid solution by employing PLSA on a merged

representation of user-item-tag observations. Adomavicius et al. in [2] employ ratings aggre-

gation to reduce the multi-dimensional (contents-users-items dimensions) rating matrix to the

traditional 2 dimensional rating matrix. Hariri et al. in [16] propose a KNN technique and

employs inferred topics (context) to calculate the item-item similarity.

1.6 Cross-Domain Recommendations

Traditional recommendation systems assume that items belong to a single domain. However,

at the present time, users rate items or provide feedback in different domains such as movies in

Netflix and books in Amazon. They also express their interests in different social networks such

as Facebook and Twitter. Thus, businesses intend to empower their business intelligence by

incorporating cross-domain information to generate better recommendations and consequently

improve their revenue. An obvious way to include the cross-domain information into our

single domain scenario, is to merge domains an treat them as a single domain. This approach is

also called as collective-domain. However, usually there are only few shared users and items

between domains. Data distribution, biases, and sparsity also can be different from a domain

to another. Thus, researchers propose to model each domain individually and then transfer

the knowledge across domains to improve the recommendation accuracy [8]. Domains can be

distinguished for the following reasons [12]:

• They may have different types of items such as movies and books.

• Different types of users can distinguish the domains such as pay-per-view users versus

subscribed users.

• Finally, different context may result in different domains. For instance, user locations
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and culture can separate the domains.

In general, cross-domain recommendations include a target domain and one or several

auxiliary domain(s). The goal of cross-domain recommendations is to employ these auxiliary

domains to:

• Improve the recommendation accuracy in the target domain.

• Address the cold-start problem.

• Improve accuracy of recommendation for all users.

• Increase the novelty of recommendations.

Auxiliary domains can be categorized according to their users and items overlap into full

overlap, users overlap, items overlap, or no overlap [8]. While domains with users overlap has

attracted major studies in cross-domain recommendations.

1.7 Evaluation Metrics

Finding an offline evaluation metric that can evaluate recommendation methods comprehen-

sively has been a subject for debate in the last few years [9, 49]. Several evaluation metrics

have been proposed to address this issue. Root Mean Squared Error (RMSE) is perhaps

the most popular metric that have been used in evaluating accuracy of predicted ratings. For a

given testing set T , the recommendation system generates predicted ratings r̂ui for testing cases

< u, i > where the true ratings rui are known. The RMSE between the predicted and actual

ratings are then computed as follows:

RMSE =

√
1
|T |
.

∑
<u,i>∈T

(rui − r̂ui)2 (1.1)

Mean Absolute Error (MAE) is also an alternative evaluation metric, given by:
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MAE =

√
1
|T |
.

∑
<u,i>∈T

|rui − r̂ui| (1.2)

Compared to MAE, RMSE excessively penalizes large errors [47]. As mentioned earlier,

both RMSE and MAE evaluate rating prediction accuracy. However, in many real world appli-

cation of recommendation system we only want to find the few top recommendations for each

user. In other words, we may do not care how bad our rating prediction is as long as our system

ranks the top 10 or 20 items for each user precisely. Top-N recommendation task is designed

as a ranking based evaluation metric [24]. This evaluation metric is proposed by Koren et al.

in [23]. Assume T as the set of all ratings in the test set with the highest rank (rui = 5 when

rui ∈ [1, 5]). For each test example < u, i > in T , 1000 items are randomly selected from the set

of items. They then predict the preference of user u on those selected items plus item i. They

form a ranked list by ordering all the 1001 items according to their predicted ranking values in

matrix R. Finally, They form a top-N recommendation list by picking the top N ranked items

from the list. If they have item i in the top-N list they have a hit (the test item i is correctly

recommended to the user). Otherwise they have a miss. Chances of a hit obviously increase

with N. They measure the recall based on the number of hits in a list of N recommendations

as follows:

Recall(N) =
#hits
|T |

.

Thus, by increasing the recall we will have more interesting items for each user in her

personalized top-N list.

1.8 Adaptive Web

Content Marketing is one of the fastest growing industries in World Wide Web (WWW). It is

any marketing that involves the creation and presentation of media and publishing content in
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WWW or other digital channels to acquire and attract audiences. Nowadays, businesses switch

from static web to adaptive web, where they can make different versions of content to target

more audiences with diverse preferences. This personalization task is almost different from the

product personalization such as recommendation of movie or books where we have millions of

products. Adaptive web deal with only few versions of contents. Having even few feedback

from users is rare in this scenario as they are mostly new users(cold-start users).

The traditional personalization task in adaptive webs has been commonly done based on

manually segmentation of user based on predefined rules. For instance, users who live in

Canada, users who use Internet Explorer for browsing, etc. They then employ A/B testing

of different contents on different segment of users to find the best matches. A new user then

will be mapped to one of these predefined segments and will be presented by this segment’s

matched version. However, this traditional supervised method is costly and the predefined rules

can only cover few users.

1.9 Contributions of this Thesis

In this thesis, we have several novel contributions to improve the accuracy, scalability, and

comprehensibility of current popular solutions in recommendation systems, and especially in

recommendation systems with high data sparsity. As mentioned in Section 1.1, recommen-

dation systems apply different data mining techniques on the known ratings of users on items

to predict the unknown ratings. As a novel contribution, we turn the direct user-item inter-

ests into a higher level. We first employ the traditional rating matrix to explore the similarity

between the users and items and cluster them separately into multiple user and item clusters.

Then, we capture the averaged interests of users in each user clusters on the items in the item

clusters in a new cluster-level rating matrix. Thus, in this new rating matrix we generalize the

known interests. For instance, the fact that John is interested in a song in the Rock genre can

be generalized into an assumption that John and his similar users are interested in other songs
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in the Rock genre as well. We can now apply every proposed recommendation techniques for

the traditional rating matrix on this new cluster-level rating matrix to compute the unknown

cluster-level ratings. Eventually, we aggregate these two level of rating predictions as our final

ratings. Thus, our cluster-level rating matrix works as an wrapper and can be employed in any

recommendation systems. In Chapter 3, we employ our proposed cluster-level rating matrix to

improve the accuracy of few well-studied recommendation models.

As mentioned earlier, collaborative filtering methods employ known ratings to find users

and items similarities and also model users’ preferences. However, for cold-start users there

are not sufficient known ratings to be employed for the personalization task. Thus, generat-

ing personalized recommendations for cold-start users is a big challenge in recommendation

systems. Employing any available information from these users is crucial to improve their

recommendation accuracy. For instance, available interests of users in a Book domain can

be exploited to generate better recommendations for them in a Movie domain. In Chapter 4,

we extend our cluster-level rating matrix from single-domains into cross-domains. Thus, in

our extended clustering-based recommendation system we generalize the users’ interests in the

auxiliary domains to improve recommendation accuracy in the target domain.

Finally in Chapter 5, we apply our proposed clustering-based recommendation system to

Morphio platform used in a local digital marketing agency, called Arcane inc. Morphio is an

smart adaptive web platform, which is designed to help Arcane to produce smart contents and

target more audiences. In Morphio, web developers can define multiple versions of content

for their web pages. Our proposed clustering-based personalization tool then shows each user

of them a personalized version. We first cluster old users using their profiles and page visits.

We then find the best version for each of these generated clusters employing an A/B testing.

A trained deep learning model then soft assign new users into these clusters, which eventu-

ally results in their matched versions of content. In addition, we also employ our proposed

clustering-based recommendation system to suggest smart contents for current web pages. We

first analyse the impact of each piece of content in these web pages. In a new matrix, we then
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present these generated impact values between pieces of content and pages. Eventually, we

apply our proposed clustering-based recommendation system to predict the unknown values in

this new matrix. Hence, this module allows agencies to improve their produced content using

our data-driven suggestions and insights.



Chapter 2

Literature Review

2.0.1 K-Nearest Neighbor (KNN)

Collaborative filtering based K-Nearest Neighbor also known as user-user collaborative fil-

tering was the first of the automated CF methods [11]. KNN based recommendation models

are popular in practice as they do not need an offline training. They use a similarity function

s : U ×U → R to compute a neighborhood N ⊆ U of similar users to user u, where U is the set

of all users. Once we compute neighborhood N, we can predict preference of user u on item i

as follows:

ru,i = r̄u +

∑
u′∈N s(u, u′)(ru′,i − r̄u′)∑

u′∈N s(u, u′)
(2.1)

where r̄u is the mean rating of user u. Some users tend to give higher ratings than others.

That is the reason we subtract their ratings by their mean rating to eliminate the possible bias.

In Equation 2.1, a question is how many neighbors to select. In some systems, all users are

selected as the neighbors. However, computing all user-user similarities is complex for millions

of users and items. Thus, the large number of neighbors reduces the scalability of KNN.

The same approach can be employed to compute the item-item similarity and a item neigh-

borhood. Thus, by employing similarity function s : I × I → R to compute a neighborhood

11
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N ⊆ I, we can predict predict rating ru,i as follows:

ru,i = r̄i +

∑
i′∈N s(i, i′)(ru,i′ − r̄i′)∑

i′∈N s(i, i′)
(2.2)

where I is set of all items and r̄i is the mean rating of item i. Cosine similarity, Spearman

rank correlation, and Pearson correlation are well-known similarity functions which are widely

used in methods based on KNN [11, 45].

2.0.2 Matrix Factorization

Compared to KNN methods, methods based on factorization results in better recommendation

accuracy with less complexity. However, they need to be trained offline, and need to be re-

trained for new users and items. Matrix Factorization (MF) decomposes the ratings matrix, R,

into two lower dimension matrices Q and P where:

R = P × QT (2.3)

Q and P contain corresponding latent vectors of each user and each item(Figure 3.1.a).

Let’s assume l � m, n is the length of the latent vectors in these two matrices. Thus for each

user u we have the following latent vector pu:

pu = [p1u, p2u, . . . , plu],

and for each item i we have the following latent vector qi:

qi = [q1i, q2i, . . . , qli].

Matrix Factorization is based on the singular value decomposition (SVD) technique for

finding latent vectors in information retrieval [26].

To find proper P and Q, a training algorithm can be started by a random initialization of
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Figure 2.1: Factorizing rating matrix R into lower dimension matrices P, and Q, where R =

P.QT .

these matrices. In every learning step, it then tries to change the initialized variables in a way

that P.QT converges to the known values of R. In the prediction case, the product of learned

matrices will be used to predict the unknown ruis as follows:

rui = qT
i pu (2.4)

MF characterizes every user and item by corresponding them a latent vector. These latent

vectors can be considered as the hidden profiles for users and items. Also, a bias value is

typically corresponded to each user and each item to reflect their mean ratings. Adding these

biases, the above statement will change to:

rui = qT
i pu + bui, (2.5)

where

bui = bu + bi.

This method is called Biased Matrix Factorization (BMF). Let’s define the error as the

actual rating minus the predicted value in each step, eui. In a training task, we should find
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appropriate values for P and Q which minimization the following objective function:

(2.6)min(
∑

(u,i)∈R

(rui − qT
i pu − bui)2 + λ1.(|qi|

2 + |pu|
2) + λ2.(|bu|

2 + |bi|
2))

Regularization values λ1 and λ2 prevent over-fitting on the model and keep the latent values

small. P and Q can be learned using several proposed methods such as the stochastic gradient

descent technique [26]. Simon Funk1 [26] popularized a stochastic gradient descent optimiza-

tion of Equation 2.6 wherein the algorithm loops through all ratings in the training set. For

each given known rating rui, the system predicts r̂ui and computes the associated prediction

error eui as follows:

eui = rui − r̂ui

Then it modifies the parameters step wise in the opposite direction of the gradient in several

iterations(Algorithm 1).

Algorithm 1 The stochastic gradient descent optimization for Objective function 2.6.
for count = 1, ..., #Iterations do

for rui ∈ R do
eui ← rui − r̂ui

qi ← qi + γ(eui.pu − λ1.qi)
pu ← pu + γ(eui.qi − λ1.pu)
bu ← bu + γ(eui − λ2.bu)
bi ← bi + γ(eui − λ2.bi)

end for
end for

This popular approach is easy to implement and fast in running time [26]. In practice,

new users, items, and ratings are regularly added into a recommendation system. Thus, matrix

factorization models need to be trained frequently. Yet, scalability and high accuracy of these

models have made them extremely popular in recommendation systems.

1http://sifter.org/ simon/ journal/20061211.html
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2.0.3 Functional Matrix Factorizations

Zhou et al. in [57] propose a functional matrix factorization to improve the recommendation

accuracy for cold-start users. This functional matrix factorization employs a decision tree

and an initial interview process to produce a profile for the new users and adopt this profile

to generate more accurate recommendations for these users. The decision tree of the initial

interview contains several nodes as interview questions, enabling the recommendation system

to query a user adaptively according to her prior responses. Assume au includes users u answers

to a designed interview. To factorize rating matrix R into latent matrices P and Q, they define a

decision tree function T where pu = T (au). Thus, function T (au) maps users u to an appropriate

latent vector pu. Employing this generated pu, this functional matrix factorization predict the

unknown ratings for new user u.

2.0.4 Neighborhood-Aware Models

As discussed in Section 2.0.1, KNN models employ the neighborhood information to generate

recommendations. While factorization models result in a higher accuracy of recommendations.

Several methods have been proposed in which neighborhood information is employed beside

matrix factorization to improve the recommendation accuracy even further [23,24,26,52]. For

instance, Töscher et al. [52] present a neighbourhood-aware matrix factorization in which they

include neighbourhood information into the traditional matrix factorization. Their proposed

algorithm computes three level of predictions for every user-item pair: a traditional rating

prediction rui based on matrix factorization(similar to Section 2.0.2); a rating prediction ruser
ui

based on user neighbourhoods; and finally a rating prediction ritem
ui , which is based on item

neighbourhoods. A combination of these three rating predictions will generate the final recom-

mendations. The rating prediction ruser
ui is computed as follows:

ruser
ui =

∑
v∈UJ(u) cuser

uv rvi∑
v∈UJ(u) cuser

uv
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where UJ(u) denotes the set of J users with highest correlation to user u. These correlations

are reached by counting the number of co-rating of users. And rvi is the predicted rating of user

v on item i which will be calculated similar to rui. ritem
ui is also calculated as follows:

ritem
ui =

∑
j∈UJ(i) citem

i j ru j∑
j∈UJ(i) citem

i j

where UJ(i) denotes the set of J items with highest correlation to item i. It is mentioned in

[52] that including this neighbourhood information improves MF’s recommendation accuracy.

However, its complexity is still sensitive to the choice of J.

2.0.5 Clustering-Based Recommendations

Applying clustering on the rating matrix R is also another approach for generating the recom-

mendations [3,7,13–15,20,54]. In 1999, O’Connor et al. proposed a very first use of clustering

algorithm in recommendation systems [7]. They apply clustering on rating matrix R to cluster

items. For each cluster, they then compute rating predictions for test set based on KNN. Their

results show a high improvement of scalability for KNN model but they had mixed results of

improvements for recommendation accuracy. George et al. in [14] propose an efficient recom-

mendation model based on co-clustering of users and items. They consider user cluster rating

averages and item cluster rating averages beside user mean ratings and item mean ratings in the

rating prediction function. In other words, to predict rui they employ mean rating of user u and

mean rating of item i beside the averaged ratings of items inside the item cluster that i belongs

to and the averaged ratings of users inside the user cluster that user u belongs to. Obviously,

their proposed model achieve a high scalability but not a higher accuracy comparing to MF

based models.

Gueye et al. in [15] integrate cluster mean ratings into matrix factorization to improve

the traditional matrix factorization models. They first employ clustering to partition items and

users into several clusters. They then use the following rating prediction function to generate
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the recommendations:

rui = pu.qT
i + µCi + bu,Ci + bi

where Ci is the cluster that item i belongs to, bi is the mean rating for item i; bu,Ci is the

mean rating of user u on the items inside cluster Ci and is calculated as follows:

bu,Ci =
1
|Ci|

∑
j∈Ci

(ru j − µCi).

In addition, Xu et al. [54] employ clustering in a different way to improve the accuracy of

recommendation. They cluster items and users into subgroups where each user or item can

belong to more than one cluster. Their main idea is to apply number of collaborative filtering

algorithm in each subgroup and then merge the prediction results together. They consider

clusters reasonably large to possess enough known ratings in each subgroup.

Xue et al. in [56] also propose a KNN method adopting clustering. Methods based on

KNN for collaborative filtering determine the similarity between two users by comparing their

ratings on a set of items. As mentioned earlier, KNN approaches have been shown to suffer

from two fundamental problems: data sparsity and difficulty in scalability. Xue et al. cluster

users from the training data to provide the basis for data smoothing and neighborhood selection.

For each given user u, they first find the most similar clusters to user u and then employ the

users inside the selected cluster to generate the recommendations in a KNN process. As a

result, they provide higher accuracy as well as increased efficiency in recommendations [56].

2.0.6 Implicit vs. Explicit Feedback

Marlin et al. in [31] experimentally show that the ratings data in usual recommendation systems

does not have a balanced distribution and they are missing not in random. Users are free to

choose which items to rate [49]. Thus, unobserved ratings are likely low ratings. In other

words, users watch movies that they think they may like. Hence, the rated movies can be
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Figure 2.2: Users watch movies that they think they may like. Hence, a rated movie can be
considered as an interesting movie for a user.

considered as positive feedback by users no matter what the ratings are. In a new utility matrix

R′ = [r′ui], we may represent rating matrix R as follow:

r′ui =


1 if rui is observed

0 otherwise
. (2.7)

Figure 2.2 illustrates an example scenario for rating matrix R and R′. Employing this im-

plicit feedback has been shown significantly helpful in improving the recommendation accu-

racy [9, 23, 49, 50].

SVD++ [23, 25] is one of the earliest models that includes implicit feedback into matrix

factorization model to improve its accuracy. Let’s assume N(u) contains implicit feedback or

all the items that user u have rated. SVD++ corresponds each item i with two latent vectors

qi, yi ∈ Rl and employs the following rating prediction function:

rui = qT
i .pu + |N(u)|−

1
2

∑
j∈N(u)

qT
i .y j + bui (2.8)

or simply:

rui = qT
i (pu + |N(u)|−

1
2

∑
j∈N(u)

y j) + bui (2.9)
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where user u is modeled with its corresponding latent vector, pu, plus the items that she

has rated, |N(u)|−
1
2
∑

j∈N(u) y j. Including the implicit feedback using this factorization technique

gives a high scalability to this model. SVD++ also has shown a promising improvement of

prediction accuracy in practice [26]. Note that
∑

j∈N(u) qT
i .y j represents the implicit feedback as

there is not any rating information on it. In other words, they assume each rating as a positive

feedback no matter what the rating is. Koren et al. in [23] extend their own SVD++ model by

including the explicit neighborhood information beside the implicit one as follows:

(2.10)rui = qT
i

pu + |N(u)|−
1
2

∑
j∈N(u)

y j + |N(u)|−
1
2

∑
j∈N(u)

(ru j − bu j)x j

 + bui

where latent vector x j represents the explicit neighborhood relation for item j, and |N(u)|−
1
2
∑

j∈N(u)(ru j−

bu j)x j represents explicit neighborhood information of user u. They call this model as Asym-

metric SVD (Asysvd). Asysvd shows a very high quality of rating prediction and even outper-

forms SVD++ in practice [23,24]. Koren employs the stochastic gradient descent technique in

both SVD++ and Asysvd to learn the corresponded parameters [24]. Algorithm 2 shows the

proposed training algorithm for Asysvd model in [24].

There are also several other works those try to factorize the implicit rating matrix R′ di-

rectly. For instance, Cremonesi in [9] employs pure SVD to factorize matrix R′ as follows:

R′ = P.Σ.QT

where P is a n × l orthonormal matrix, Q is a m × l orthonormal matrix, and Σ is a l × l

diagonal matrix containing the first l singular values. Note that rating matrix R is an sparse

matrix so we do not have many observed ratings in the training time and factorization can be

done quickly. However, all the values in matrix R′ are known values (0 or 1), thus, factorizing

a full-filled matrix with millions of rows and column is computationally expensive. To address

this issue, Steck in [49] proposes a new Alternative Least Squares (ALS) based learning

model to include implicit information from matrix R′ more efficiently. He assumes different

weights for observed and unobserved ratings as follows:
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Algorithm 2 A training algorithm for Asysvd model based on stochastic gradient descent tech-
nique.

for count = 1, ..., #Iterations do
for u = 1, ..., n do

%Computes the components independent of i
pu ← pu + |N(u)|−

1
2
∑

j∈N(u) y j + |N(u)|−
1
2
∑

j∈N(u)(ru j − bu j)x j

sum← 0
for i ∈ N(u) do

rui = pu.qT
i + bui

eui = rui − rui

%Accumulate information for gradient steps on xi and yi

sum← sum + eui.qi

% Perform gradient step on qi, bi, bu:
qi ← qi + γ(eui.pu − λ.qi)
bu ← bu + γ(eui − λ.bu)
bi ← bi + γ(eui − λ.bi)

end for
for i ∈ N(u) do

%Perform gradient step on xi, yi

xi ← xi + γ|N(u)|−
1
2 .(rui − bui).sum − λxi

yi ← yi + γ|N(u)|−
1
2 .sum − λyi

end for
end for

end for
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Wui =


wobs if rui is observed

wm otherwise(wm < wobs)
. (2.11)

To factorize rating matrix R = rm + P.QT , he then employs weighting function Wui in the

following objective function:

∑
all u

∑
all i

Wui.

(rui − r̂ui)2 + λ.(
∑
j=1:l

P2
i, j + Q2

u, j)

 , (2.12)

where rui can be an observed or non-observed rating; r̂ui = rm + pu.qT
i is the predicted

rating. Wui, and λ are assumed fixed tuning parameters, which optimized via a validation set

as to maximize recommendation accuracy. ALS is then applied to find a (close to) minimum

solution of Equation 2.12 by employing gradient descent technique. At each step, one of two

matrices P and Q is assumed fixed, which turns the updating process of the other matrix into

a quadratic optimization problem that can be solve exactly through equating the gradient of

Equation 2.12 to zero. This results in the following updating equation for each corresponded

latent vector Qi (P is assumed fixed):

Qi = (Ri − rm)Ŵ (i)P
(
PT Ŵ (i)P + λ.tr(Ŵ (i))I

)−1
, (2.13)

where vector Ri includes all the ratings on item i from rating matrix R; Ŵ (i) ∈ Rn×n is the

diagonal matrix containing the ith row of matrix W; I ∈ Rl×l is the identity matrix.

In the next step, Q will be assumed as a fixed value, which turns the updating equation for

each Pu as follows:

Pu = (Ru − rm)Ŵ (u)Q
(
QT Ŵ (u)Q + λ.tr(Ŵ (u))I

)−1
, (2.14)

where Ŵ (u) ∈ Rm×m is the diagonal matrix containing the uth row of matrix W. Note that for

unobserved ratings we have Ri,u−rm = 0. Thus, updating Equations 2.13 and Equation 2.14 can
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be rewritten simpler and more computationally efficient, which is thoroughly discussed in [49].

Parallelization ability, and simple updating process for new-coming users are two advantages

of this updating mechanism.



Chapter 3

Leveraging Clustering to Improve

Collaborative Filtering

3.1 Introduction

As mentioned in Section 2.0.2, extensive work on Matrix Factorization (MF) has been done

recently as it provides very promising collaborative filtering solutions for recommendation

systems. Additional extensions, such as neighbor-aware models (Section 2.0.4), have been

shown to improve these results further. Recommendation methods based on MF show a good

prediction accuracy and scalability. Yet, employing clustering on the set of users and items has

been a basic and practical solution in recommendation systems (Section 2.0.5). In this chapter,

we integrate the advantages of both disciplines to achieve a higher recommendation accuracy.

We first cluster users and items separately into multiple user clusters and items clusters. Be-

cause of the large number of users and items, we employ MF to generate corresponding latent

vectors for users and items in a lower dimension. We then apply K-Means on these latent vec-

tors to clusters items and users. We then capture the common interests between the cluster of

users and the cluster of items in a cluster-level rating matrix. We make a “coarse” matrix where

each cluster of users(items) is considered as one user(item) entity, and the ratings represent the

23
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averaged ratings of the users inside the user clusters on the items inside the item clusters. By

applying MF or any other collaborative filtering methods on this generated coarse matrix, we

can produce cluster-level rating predictions for unknown ratings. Finally, we aggregate these

two levels of predictions to improve the recommendation accuracy further.

Extensive experimental results show that our new approach, when applied to a variety of

existing collaborative filtering based methods, including Biased Matrix Factorization (BMF)

and Asymmetric SVD (Asysvd) in Sections 2.0.2 and 2.0.6, improves their rating prediction

accuracy. We also evaluate how the quality and quantity of these clusters impact these im-

provements.

As discussed in Section 2.0.5, employing clustering to categorize collaborative information,

and using these clusters to predict the unknown preferences, has been employed before in a

number of works such as [54], [14], [20], and [15]. However, many of these methods mainly

focus on the individual clusters and ignore the shared interest between the clusters. Or, they

proposed expensive probabilistic models which cannot be easily integrated with the-state-of-

the-art collaborative filtering methods. Moreover, our extension approach is easy to implement

and can be applied as a ”wrapper” on any other collaborative filtering methods.

This chapter is structured as follows. Section 3.2 describes our proposed model to extend

current factorized methods in collaborative filtering. In Section 3.3 we describe our empirical

experimental results. In Section 3.5 we review previous works related to factorized collabora-

tive filtering methods and recommendation models based on clustering.

3.2 The Proposed Models

In a general CF problem, we have a set of users U = {u1, u2, . . . , un} and a set of items I =

{i1, i2, . . . , im} that are accompanied by a rating matrix R = [rui]n×m where rui represents the

rating of user u on item i. Collaborative filtering consists of predicting unknown ri js based on

the known ri′ j′ s inside the rating matrix R and similar neighbours.
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Figure 3.1: Factorizing rating matrix R into latent matrices P and Q (a) and clustering these
found latent matrices to produce cluster-level rating matrix RC. (b) Factorizing rating matrix
RC and aggregating these two levels of latent vectors to generate the recommendations.

Employing clustering is a classic approach in recommendation system for dividing the set

of users and items into different categories and making similarity-based recommendations for

each of these categories (Section 2.0.5). However, the traditional methods mainly focus on

the individual clusters and ignore the shared interest between the clusters. Using the shared

preferences of the categories has three advantages opposed to the common neighbourhood

models:

1. It generalizes the preference of users on items regarding the possible categories that they

belong to. For example, user u may belong to the category ‘Adults’ and item i may

belong to the category ‘Cartoons’. Thus, in addition to considering if user u is interested

in item i, it deliberates if the category ‘Adults’ shares any preferences with the category

‘Cartoons’ in general.

2. It considers deeper similarities. Item-item models check if user u is interested in item

i and its similar items. User-user models also check if user u and its similar users are

interested in item i. In our approach, we check to see if user u and its similar users are
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interested in item i and its similar items on average.

3. The clusters can be interpreted using the content information and employed to justify

the recommendation. Thus, using this information, the recommendation model is much

more comprehensible. For instance, knowing that a group of users likes ’Cartoons’ and

not ’Dramas’ and/or ’Classic Movies’ results in a higher comprehensibility.

Alex Beutel et al. in [3] also describe many other advantages of employing clustering

in a recommendation model. To cluster users and items, we first apply the biased matrix

factorization on the known ratings to learn the latent vectors of each user and item (Figure

3.1.a). K-means is then applied to these latent vectors with different selection of K (number

of clusters) to find possible categories of items and users (Figure 3.1.b). Employing latent

vectors to cluster sparse data has been successfully used in the literature, such as [55]. As

mentioned in Section 2.0.6, rating matrices are typically sparse in recommendation systems.

Hence, using latent vectors helps to reduce the complexity of clustering these large and sparse

datasets because 1) there is no sparsity in these latent vectors, 2) they are in a much lower

dimension.

We consider the common preferences between these clusters in a “coarse” matrix RC. In

this new rating matrix, every rCu,Ci represents the mean rating of the users inside the category

Cu on the items inside the category Ci, as follows:

RC =



Ci1 Ci2 . . . Cim′

Cu1 r11 r12 . . . r1m′

Cu2 r21 r22 . . . r2m′

...
...

... . . . ...

Cun′ rn′1 rn′2 . . . rn′m′


where n′ < n and m′ < m are the number of clusters for users and items respectively. However,

because of the small number of known ratings, rCu,Ci is not accurate enough for all pairs of
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Figure 3.2: Clustering latent matrices P and Q to achieve clusters of users and items and
producing the coarse matrix. The coarse matrix generalizes preferences of users into a cluster-
level which leads to less sparsity in Rc.

clusters. To resolve this issue, we consider rCu,Ci as an known rating in matrix RC, only if

we have enough observed ratings between clusters Cu and Ci. We then employ MF or other

collaborative filtering methods on this coarse matrix to predict all unknown rCu,Cis. Figure 3.2

illustrates an example of applying clustering on latent matrices P and Q and generating the

coarse matrix Rc.

3.2.1 Clustering-Based Matrix Factorization

As mentioned in Section 2.0.2, Biased Matrix Factorization (BMF) decomposes the ratings

matrix, R, into two lower dimension matrices Q and P plus biases:

rui = qT
i pu + bui (3.1)

where

bui = bu + bi

As mentioned earlier, we can apply BMF on the coarse matrix RC to predict its unknown
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ratings. By corresponding each cluster a latent vector of length l and a bias value, a cluster-level

rating prediction function for user u and item i, rCu,Ci , will be as follows:

rCu,Ci = qT
Ci

pCu + bCi + bCu (3.2)

Ci and Cu are the clusters that item i and user u belong to, and qCi and pCu are the corre-

sponding latent vectors of these categories. Thus, instead of predicting a rating for pairs of

users and items, Equation 3.2 predicts a rating for the clusters those they belong to. However,

the common preferences between clusters are too general to be employed solely for the predic-

tion purpose. Hence, we use a fusion of the traditional biased matrix factorization model and

the predictor function 3.2 in a final predictor function as follows:

rui = Tα(qi, qCi)
T Tα(pu, pCu) + Tβ(bu, bCu) + Tβ(bi, bCi) (3.3)

where Tα is a trade-off function defined as follows:

Tα(x, y) = (1 − α).x + α.y (3.4)

0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 control the effect of both models in the final predictor function.

We name this fusion form Clustering-Based Matrix Factorization (CBMF) in our experimental

results.

We train BMF and CBMF models in the final model simultaneously. We optimize the

parameters regrading the following objective function:

(3.5)
min(

∑
(u,i)∈R

(rui − Tα(qi, qCi)
T Tα(pu, pCu) + Tβ(bu, bCu) + Tβ(bi, bCi))

2

+ λ3.(|qi|
2 + |pu|

2) + λ2.(|bu|
2 + |bi|

2) + λ2.(|qCi |
2 + |pCu |

2) + λ4.(|bCu |
2 + |bCi |

2))

The parameters are determined by minimizing the associated regularized squared error

function through gradient descent. Algorithm 3 presents the training process of our proposed
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model.

Algorithm 3 Our proposed CBMF’s updating algorithm
% Inputs: Users and items cluster assignments, training data points, and randomly initialized
parameters.
% Outputs: Trained parameters including P,Q, PC, QC, and the corresponded biases values.
repeat

for all rui ∈ R do
q̂i ← Tα(qi, qCi)
p̂u ← Tα(pu, pCu)
b̂ui ← Tβ(bui, bCuCi)
r̂ui ← b̂ui + q̂T

i p̂u

eui ← rui − r̂ui

% Perform gradient step:
qi ← qi + γ1(eui.p̂u − λ1.qi)
pu ← pu + γ1(eui.q̂i − λ1.pu)
qCi ← qCi + γ2(eui.p̂u − λ2.qCi)
pCu ← pCu + γ2(eui.q̂i − λ2.pCu)
bi ← bi + γ3(eui − λ3.bi)
bu ← bu + γ3(eui − λ3.bu)
bCi ← bCi + γ4(eui − λ4.bCi)
bCu ← bCu + γ4(eui − λ4.bCu)

end for
until for limited number of epochs

3.2.2 Employing More Clusters

In Section 3.2.1, we cluster both user-related latent vectors and item-related latent vectors once

and employ those found clusters in our proposed CBMF model. However, clustering items and

users into different sizes of clusters results in a variety of informative clusters. For instance,

clustering movies into 10 clusters may capture more general similarities among items such

as genre. Although, clustering the movies into 500 clusters may distinguish movies based on

slight differences such as the year of production and so on. Thus, in this section we start from

small number of clusters (m′ = n′ = 10 in our experiment) and gradually increase m′ and n′ to

find the clusters in different sizes. Koren et al. in [26] shows that employing more informative

parameters in the prediction model will improve rating prediction accuracy. Thus, we expect
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to improve rating prediction accuracy by employing more clusters in different sizes(as they

provide different level of information).

Assume CΣ
U = {∪σCn′σ

U } and CΣ
I = {∪σCm′σ

I } contain all found clusters for users and items in

different sizes, where Cn′σ
U contains the found n′σ clusters of users and Cm′σ

U contains the found m′σ

clusters of items. To employ all clusters inside CΣ
U and CΣ

I in our CBMF model, we correspond

each cluster a latent vector of length l and a bias value. We define the final latent corresponding

vectors pF
Cu

(qF
Ci

) as the sum of the latent vectors of , and bF
Cu

(bF
Ci

) as the sum of the biases of,

all user (item) clusters that user u (item i) belongs to:

pF
Cu

=
∑

Cu∈CΣ
U

PCu , (3.6)

qF
Ci

=
∑

Ci∈CΣ
I

qCi . (3.7)

The final prediction function for this extended CBMF model is as follows:

rui = Tα(qi, qF
Ci

)T Tα(pu, pF
Cu

) + Tβ(bu, bF
Cu

) + Tβ(bi, bF
Ci

) (3.8)

In Section 3.3.4, we show that adding more number of clusters will improve the prediction

accuracy of this extended CBMF model further. While adding more clusters will increases the

complexity.

3.2.3 Integrating Cluster-Level Preferences With Various Methods

As mentioned in Section 3.1, our extension approach is easy to implement and can be applied

in most collaborative filtering methods. There are two common approaches in neighbourhood

aware matrix factorization models: 1) item-item models, which consider if user u is interested

in item i and its similar items. 2) user-user models that consider if user u and its similar

users are interested in item i. In the literature [52] [24], an integration of both item-item and



3.2. The ProposedModels 31

user-user models sometimes has been applied in the final predictor function to achieve finer

accuracy. However, item-item models are usually preferable as they have less space and time

complexity. This is because of the typically larger number of users in recommendation systems.

As described in Section 2.0.4, neighborhood aware models employ the similarities between

users and items to improve recommendation accuracy. However, they usually need to compute

all pairwise similarities between items or users, and its complexity grows quadratically with

the input size [24]. Koren in [23] [24] solves this limitation by factoring the neighbourhood

model, which scales both item-item and user-user implementations linearly with the size of the

data [24]. Thus, he effectively integrates implicit and explicit neighbourhood information to

extend the Biased MF model.

In the Asymmetric SVD2.0.6, Koren proposes a factorized item-item model as follow:

(3.9)rui = qT
i

pu + |N(u)|−
1
2

∑
j∈N(u)

y j + |R(u)|−
1
2

∑
j∈R(u)

(ru j − bu j)x j

 + bui

To predict the unknown cluster-level ratings in matrix RC and integrate them with the tra-

ditional predictions in rating matrix R, we assign three latent vectors qCi , yCi , xCi ∈ Rl to each

category of items, and a latent vector pCu ∈ Rl to each category of users that reflects their

cluster-level implicit and explicit impact on the ratings. The new predictor function is as fol-

low:

rui = Tα(qi, qCi)
T

Tα(pu, pCu)+ |N(u)|−
1
2

∑
j∈N(u)

Tα(y j, yC j)+ |R(u)|−
1
2

∑
j∈R(u)

(ru j−bu−b j)Tα(x j, xC j)


+ Tβ(bu, bCu) + Tβ(bi, bCi)

(3.10)

We call this model CB-Asysvd. The parameters again are determined by minimizing the

associated regularized squared error function through gradient descent. Algorithm 4 presents

the training algorithm for this recommendation model.
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Algorithm 4 Our proposed CB-Asysvd updating algorithm
% Inputs: Users and items cluster assignments, training data points, Nu, and randomly ini-
tialized parameters.
% Outputs: Trained parameters.
for count = 1, ..., #Iterations do

for u = 1, ..., n do
%Computes the components independent of i
p′u ← Tα(pu, pCu) + |N(u)|−

1
2
∑

j∈N(u) Tα(y j, yC j) + |R(u)|−
1
2
∑

j∈R(u)(ru j − bu − b j)Tα(x j, xC j)
sum← 0
for i ∈ N(u) do

rui = p′u.Tα(qi, qCi)
T + Tβ(bu, bCu) + Tβ(bi, bCi)

eui = rui − rui

%Accumulate information for gradient steps
sum← sum + eui.Tα(qi, qCi)
% Perform gradient steps
qi ← qi + γ(eui.Tα(pu, pCu) − λ.qi)
qCi ← qCi + γ(eui.Tα(pu, pCu) − λ.qCi)
bu ← bu + γ(eui − λ.bu)
bi ← bi + γ(eui − λ.bi)
bCu ← bCu + γ(eui − λ.bCu)
bCi ← bCi + γ(eui − λ.bCi)

end for
for i ∈ N(u) do

%Perform gradient steps
xi ← xi + γ|N(u)|−

1
2 .(rui + Tβ(bu, bCu) + Tβ(bi, bCi)).sum − λxi

xCi ← xCi + γ|N(u)|−
1
2 .(rui − Tβ(bu, bCu) + Tβ(bi, bCi)).sum − λxCi

yi ← yi + γ|N(u)|−
1
2 .sum − λyi

yCi ← yCi + γ|N(u)|−
1
2 .sum − λyCi

end for
end for

end for
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3.3 Experiment Results

We set up our experiment on two well-known recommendation datasets to validate our pro-

posed recommendation models. The MovieLens100k data set was collected by the GroupLens

Research Project at the University of Minnesota. It contains 100,000 ratings from 943 users

on 1,682 movies where each user has rated at least 20 movies [17]. The package includes five

randomly 80%/20% splits of dataset into training and test sets. We employ these training and

test sets provided in the package (u1, u2, .., u5) in our evaluation. The Netflix dataset contains

over 100 million ratings from 480,189 users who have rated 17,770 movies. In both datasets,

ratings are in a range of [1, 5]. Both datasets are very sparse as we know only 1% of ratings

and 99% of ratings are unknown. We run each algorithm five times on these datasets to remove

the impact of random initializations on the experimental results. Thus, our reported results are

the averaged result of these five runs.

In the following subsections, we first describe our clustering process in Section 3.3.1. We

then employ these found clusters in our proposed methods and evaluate their rating prediction

accuracy (Section 3.3.2). In Section 3.3.3, we evaluate the impact of our proposed clustering-

based method in rating prediction accuracy for cold-start users. Finally, in Section 3.3.4, we

present additional experiments that evaluates the impact of the quality and the quantity of

clusters on improving rating prediction accuracy.

3.3.1 Clustering Users And Items

The rating matrix R is very large and sparse. Thus, clustering this matrix would be costly.

Therefore, we first apply matrix factorization on matrix R to reduce the dimension of user

space and item space. Then, we cluster users and items separately in these generated spaces

in a much lower cost. We start by applying biased matrix factorization on both datasets to

find their users’ and items’ latent vectors. These latent vectors (learned on the train sets)

are then used for the clustering purpose. It is expected that items (users) with similar latent



34 Chapter 3. Leveraging Clustering to Improve Collaborative Filtering

Table 3.1: The final selected m′ and n′ that is employed in the evaluation of our extension
methods. These numbers are found employing a validation set from each dataset, and by trying
different selection of m′ and n′.

Dataset n′ m′

MovieLens100k 100 100
Netflix 1000 500

vectors are similar in reality as well. In [26], it is shown that similar latent vectors represent

similar movies in the Netflix datasets. We try four different clustering methods, and as shown

in Section 3.3.4, K-Means results in the best prediction accuracy in both of these datasets.

Expectation maximization achieves almost the same rating prediction accuracy but with much

more complexity.

We vary different selections of possible clusters by changing the number of clusters (m′, n′).

Finally, by trying different sizes of clusters on the proposed models, the number of clusters that

achieves smallest RMSE (higher accuracy) on the validation set will be selected as the best

choice of m′, and n′. The final selected m′s and n′s that are employed in the evaluation of our

extension methods are presented in Table 3.1. Based on our experiment, the clusters should not

be too broad or too small. Figure 3.3 illustrates the distribution of clusters of items and users

with different numbers of members in the Netflix dataset. It seems our final selected number

of clusters (Figures 3.3.e and 3.3.f) achieves a normal-like distribution with fewer too large or

too small clusters.

Table 3.2 shows the movies inside a number of found clusters in the Netflix dataset. As

shown, it seems that movies in the same genre and almost similar years of production tend to

be in the same clusters. For instance, ‘category 295’ includes different versions of ‘Lord of

the Rings’ and ‘Star Wars’ movies accompanied by a number of other movies in ‘Adventure’

and ‘Fantasy’ genres1 such as ‘The Matrix’. ‘category 344’ also contains different versions of

‘X-Men’, ‘Spider Man’ and ‘Harry Potter’ movies. Or, ‘category 420’ includes a number of

documentaries and live concerts. As no information about the users is provided, the clusters

1http://www.imdb.com
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Figure 3.3: Distribution of clusters of items and users in different sizes in the Netflix dataset.
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of users cannot be judged. Let’s remember that the movies’ names (identities) are not used

anywhere in this experiment; these names are only employed for better demonstration of the

clusters. Obviously the clusters are not perfect and there are always items that are wrongly

clustered. Evaluating the clusters is subjective and depends on the view of the evaluator. How-

ever, based on the our point of view at least two thirds of the clustered items seem meaningful.

3.3.2 Comparison Regarding Rating Prediction

In our proposed clustering-based methods, two variables α and β are used to control the balance

between the traditional user-item and the cluster-level rating prediction levels. For α = β = 0.0,

this model does not consider the impact of cluster-level predictions. Thus, the resulting RMSE

is similar to the accuracy of the traditional model as expected. A validation set is used to

determine the best selection of these variables in our experiment. Table 3.3 illustrates the

RMSE result of CBMF model by selecting different combinations of α and β in the MovieLens

dataset. α = 0.5 and β = 0.8 is selected as the final values in our experiment in this dataset.

Figure 3.5 illustrates a comparison between the RMSE results of the biased matrix factor-

ization and our proposed clustering-based matrix factorization for different selections of l. As

shown, CBMF outperforms the biased matrix factorization even when BMF employs higher

l. Additionally, Figure 3.4 shows a comparison between the accuracy of four models: Biased

Matrix Factorization (BMF), Asymmetric SVD (Asysvd) [23], and our clustering-based exten-

sions of them. It shows that CBMF achieves a better RMSE compared with the non-extended

neighbourhood-aware model (Asysvd) when this model does not employ enough large num-

bers of neighbors. Neighbourhood-aware models are usually sensitive to the selection of the

neighbourhood size. By employing larger neighbourhood size, the RMSE result is improved.

However, this practice results in higher complexity and lower comprehensibility of these mod-

els.

We apply a t-test to ensure the significance of our results. We train the extended and non-

extended models several times with different initialized parameters. By employing t-tests on
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Category ID Movie Title (Production Year)
cluster295 Lord of the Rings: The Return of the King: Extended Edition: Bonus Material (2003), Lord

of the Rings: The Two Towers: Extended Edition (2002), Firefly (2002), Raiders of the Lost
Ark (1981), Star Wars: Clone Wars: Vol. 1 (2004), Star Wars: Episode VI: Return of the
Jedi (1983), Lord of the Rings: The Two Towers: Bonus Material (2002), Lost: Season 1
(2004), Aliens: Collector’s Edition: Bonus Material (1986), Batman Begins (2005), Lord
of the Rings: The Two Towers (2002), Lord of the Rings: The Fellowship of the Ring:
Bonus Material (2001), Lord of the Rings: The Return of the King: Bonus Material (2003),
Battlestar Galactica: The Miniseries (2003), Crouching Tiger (2000), Star Wars: Episode
IV: A New Hope (1977), Lord of the Rings: The Fellowship of the Ring (2001), Band of
Brothers (2001), Battlestar Galactica: Season 1 (2004), Star Wars: Episode V: The Empire
Strikes Back (1980), The Matrix (1999), The Indiana Jones Trilogy: Bonus Material (2003),
Lord of the Rings: The Return of the King: Extended Edition (2003), The Lord of the Rings:
The Fellowship of the Ring: Extended Edition (2001), Indiana Jones and the Last Crusade
(1989), Lord of the Rings: The Return of the King (2003), Star Wars Trilogy: Bonus Material
(2004)

cluster344 Pirates of the Caribbean: The Curse of the Black Pearl: Bonus Material (2003), X2: X-Men
United: Bonus Material (2003), X-Men (2000), Harry Potter and the Prisoner of Azkaban
(2004), Harry Potter and the Sorcerer’s Stone (2001), Monsters (2001), Harry Potter and the
Chamber of Secrets (2002), X2: X-Men United (2003), The Incredibles: Bonus Material
(2004), Harry Potter and the Prisoner of Azkaban: Bonus Material (2004), Spider-Man 2
(2004), X-Men: Bonus Material (2000), Beauty and the Beast: Special Edition: Bonus Ma-
terial (1991), Harry Potter and the Chamber of Secrets: Bonus Material (2002), Harry Potter
and the Sorcerer’s Stone: Bonus Material (2001), Farscape: The Peacekeeper Wars: Bonus
Material (2004), Spider-Man (2002), Pirates of the Caribbean: The Curse of the Black Pearl
(2003)

cluster420 ABC Primetime: Mel Gibson’s The Passion of the Christ (2004), Jay Jay the Jet Plane: Good
Friends Forever (2003), Lassie: The 50th TV Anniversary Collector’s Edition (1954), Je-
sus and His Times (2000), Jesus of Nazareth (1977), Wiseguy: Between the Mob and a Hard
Place (1989), Jesus and the Shroud of Turin (1999), The Bible Collection: Moses (1996), Na-
tional Geographic: Inside American Power: The White House (1996), Barney: Come on Over
to Barney’s House (2000), Chicago: AE Live by Request (2003), Love Comes Softly (2003),
The Commish: Season 1 (1991), Oliver Twist (1999), The Ultimate National Geographic
WWII Collection (2004), Twin Towers (2003), The Gospel of John (2003), Hans Brinker
(1962), Lorna Doone (2000), The Miracle Maker: The Story of Jesus (2000), Jeremiah: The
Bible (1998), Thomas and Friends: Calling All Engines (2005), The Bible Collection: Jacob
(1994), New York Firefighters: The Brotherhood of 9/11 (2002), Parineeta (2005), Gene-
sis: The Way We Walk: Live in Concert (2001), Billy Joel: The Essential Video Collection
(2001), National Geographic: Ambassador: Inside the Embassy (2002), Joshua (2002), The
Barkleys of Broadway (1949), Michael W. Smith: Live in Concert: A 20 Year Celebration
(2004), National Geographic: Inside American Power: Air Force One (2001), Bear in the
Big Blue House Live! (2002), Piano Grand: A Smithsonian Celebration (2000), Samantha:
An American Girl Holiday (2004), Chris Botti and Friends: Night Sessions: Live in Con-
cert (2002), Denise Austin: Personal Training System (2004), Walt: The Man Behind the
Myth (2001), The Story of Jesus for Children (1979), Joseph: King of Dreams (2000), In Old
Chicago (1937), Visions of Greece (2002)

Table 3.2: The table shows the movies inside a number of formed clusters in the Netflix dataset.
As shown, it seems that movies in same genre and almost similar years of production tend to be
in same clusters. Careful analysis shows that about 2/3 of the clusters have some meaningful
similarities.
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Figure 3.4: The accuracy of the proposed clustering-based models applying on the two datasets.
It shows that our proposed extensions outperform their non-extended models in the both
datasets (l = 50 is used to achieve these results).

α / β 0 0.2 0.4 0.6 0.8 1
0 0.922 0.921 0.921 0.920 0.919 0.931

0.2 0.914 0.914 0.913 0.912 0.911 0.921
0.4 0.913 0.913 0.912 0.911 0.909 0.920
0.6 0.914 0.914 0.913 0.912 0.911 0.922
0.8 0.918 0.917 0.917 0.916 0.918 0.933
1 0.927 0.927 0.927 0.928 0.931 1.072

Table 3.3: RMSE results from applying CBMF with different values for α and β on a validation
set in the MovieLens dataset.
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n′ / m′ 10 50 100 150 200
10 0.9140 0.9115 0.9106 0.9113 0.9114
50 0.9140 0.9107 0.9105 0.9109 0.9110

100 0.9135 0.9101 0.9097 0.9101 0.9104
150 0.9112 0.9110 0.9109 0.9112 0.9145
200 0.9144 0.9113 0.9115 0.9112 0.9116

Table 3.4: Resulting RMSE by applying CBMF with different values of clusters (m′ and n′) on
a validation set in the MovieLens dataset.
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Figure 3.5: A comparison between Biased Matrix Factorization (BMF) and our proposed
Clustering-based Matrix Factorization (CBMF) for different selection of l (dimension of la-
tent vectors).

the achieved RMSE results, for d f = 30 and with probability of 90%, the mean of our extended

methods’ rating predictions is lower than the mean of their non-extended models’ rating pre-

dictions. Table 3.5 shows these selected values that we employ in the training process of our

proposed CBMF model in our experiment in the datasets (Algorithm 3).

3.3.3 Cold-Start Users

Cold-starts are users who newly enters into a recommendation system and they do not have

any or more than few ratings in the system. Consequently, the system is unable to locate their

preferences adequately. Cold-start users are one of the major challenges in recommendation

systems [26], [22], [42]. Using the neighbourhood information is a common solution to im-
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Parameter Netflix MovieLens
n′ 1000 100
m′ 500 100
α 0.1 0.5
β 0.7 0.8
γ1 0.005 0.005
γ2 0.002 0.005
γ3 0.005 0.005
γ4 0.0005 0.00002
λ1 0.01 0.035
λ2 0.1 0.065
λ3 0.0001 0.0001
λ4 0.055 0.0001

Table 3.5: Employed parameters in Algorithm 3 in the datasets.

prove recommendation accuracy for these users. Our produced coarse matrix RC reduces the

sparsity of rating matrix R. Thus, Rc can generalize any minor feedback from cold-start users

to improve their related recommendation accuracy.

For example, assume that a cold-start user u has rated movie “Lord of The Rings”. Using

neighborhood information we can only find out that user u may like similar movies such as

“Star Wars”. However, many similarities between movies and users will be ignored because

of the sparsity of rating matrix R. On the other hand, our clustering level modeling of movies

considers a higher level of similarities between movies. Thus, our RC can extract more infor-

mation from any minor feedback from cold-start user u. Once these clusters are formed, known

ratings in the clusters can help to predict the unknown ratings for cold-start users.

Cold-start users are examined separately in our experiment to see if our extension models

improve the accuracy of their recommendations. Figure 3.6 illustrates the RMSE results of

our proposed model for cold start users in both datasets. The horizontal axis represents the

increase of the known ratings for users. As shown, our extended models effectively improve

the prediction accuracy for cold-start users. For instance, in the MovieLens dataset, CBMF

model results in an almost 0.97 of RMSE for user with fewer than 25 known ratings, which is

as good as the RMSE result of BMF model for users who have fewer than 50 known ratings.
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Figure 3.6: A comparison over the RMSE of the extended and non-extended models for the
cold-start users.
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3.3.4 Sub-experiments

In this section we explain two sub experiments; We first try four different clustering algorithms

to examine the impact of the clusters’ quality on our proposed model prediction accuracy (Sec-

tion 3.3.4). Using this experiment we also select the clustering algorithm that achieve the best

prediction accuracy as our default clustering method. We then vary the number of clusters

in the selected clustering algorithm to create clusters in different sizes. In Section 3.3.4, we

show that adding more clusters in variety of sizes will improve our proposed model’s predic-

tion accuracy further. Thus, the following experiments evaluate the impact of the quality and

the quantity of clusters on improving rating prediction accuracy in our proposed model.

Different Clustering Methods

In this section, we employ four different clustering methods to examine the impact of cluster-

ing quality on our proposed model’s rating prediction results. We apply following clustering

methods on the generated Ps and Qs in both datasets:

• K-Means: It is based on partitioning data into K clusters that each data point belongs to

the cluster with the nearest mean. This is a well-known clustering method that achieves

a high quality of clusters.

• Expectation Maximization (EM): It is an expensive but high quality clustering algo-

rithm. EM models the data points with a fixed number of Gaussian distributions, those

are initialized randomly and their parameters are iteratively optimized to fit better to the

data points.

• Density-Based K-Means: It is a fast version of K-Means that tries to find the clusters

based on the density of data points in a region.

• Farthest First: It is another fast version of K-Means that in each step places each cluster

center at the point farthest from the existing cluster center. This process results in less
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readjustments and greatly speed up the clustering model. However, it mostly achieves a

lower quality of clustering.

By employing the found clusters from these four clustering methods in our CBMF model,

we examine the impact of clustering quality on CBMF’s resulting RMSE (Figure 3.7). As

expected, Farthest First model achieves lower accuracy as it provides a poor clustering perfor-

mance. Density-Based K-Means also is a fast version of K-Means which provides a slightly

faster but lower quality of clustering. Thus, Density-Based K-Means shows a lower rating pre-

diction accuracy compared to the original K-Means. Also, in both datasets, EM and K-Means

result in almost the same rating prediction accuracy. However, EM has more complexity than

K-Means. Thus, we select K-Means as the default clustering method in our experiment.

In addition, CB-Asysvd model results in a RMSE of 0.90523 for a random assignment

of the clusters (m′ = n′ = 100) in the MovieLens100k dataset, while it achieves 0.89668 by

employing K-Means’s found clusters. Therefore, by increasing the quality of clusters, our

proposed CBMF model achieves a better rating prediction accuracy.

Employing More Clusters

As mentioned in Section 3.2.2, different numbers of clusters capture different levels of similar-

ity between users and item. For instance, by clustering movies into 10 clusters in the Movie-

Lens dataset, we expect to find similar movies based on a general feature such as genre. How-

ever, by increasing the number of clusters to 200, we expect to distinguish between movies

based on more concrete differences such as the production year. Thus, we expect to improve

rating prediction accuracy further by adding these clusters with variety of sizes into the ex-

tended version of our proposed CBMF model (Equation 3.8), because they capture different

levels of informative similarities among items and users. For making these clusters in the

MovieLens dataset, we apply K-Means on users and items latent spaces to find 10 clusters

n′ = m′ = 10, we then gradually increase m′ and n′ until n′ < n/4 and m′ < m/4.

As Figure 3.8 shows by employing more clusters in variety of sizes, rating prediction ac-
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Figure 3.7: Applying different clustering methods in users and items latent spaces in both
datasets and its effect on the CBMF’s result.
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Figure 3.8: Applying clustering multiple times with different number of clusters and employ
those found clusters in CBMF model. By employing more clusters with variety of sizes, rating
prediction (RMSE) improves slightly.

curacy improves in the MovieLens dataset. However, we do not use all these clusters in our

final CBMF model because they add more complexity on the methods and improve the rating

prediction accuracy slightly.

3.4 Complexity

Both CB-MF and CB-ASVD models have the same time and space complexity as their non-

extended models. This is because we employ almost the same training model as those non-

extended models but once for the traditional ratings and another time for the cluster-level rat-

ings. Thus, our extended models have almost twice of training time compare to MF and ASVD

but same complexity. Although to produce the course matrix, a preprocessing complexity will

be added to our proposed models to first factorizing the traditional rating matrix and then clus-

tering the generated latent vectors.
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3.5 Relation to Previous Work

Employing clustering to categorize collaborative information, and using these clusters to pre-

dict the unknown preferences has been employed before in a number of works such as [54],

and [15]. However, the common preferences between the clusters have been less considered.

For instance, Gueye et al. [15] tries to add the effect of clusters in biased matrix factorization

model. However, they limit themselves to use the advantage of clusters’ biases only. The

predictor function that they use is as follows:

r̂ui = pu.qT
i + µCG(i) + bu,CG(i) + bi

where CG(i) is a function, which returns for any item i its group, µCG(i) is the average ratings

in CG(i), and bu,CG(i) is the bias of user u for the group of items CGi . George et al. in [14] use

the same technique to improve the rating prediction accuracy by employing the rating averages

for users, items, user-clusters, and item-clusters. However, as the common interests between

clusters are not considered in these papers, it is expected that our method results in a better

rating prediction accuracy. For instance, running ‘CBMF’ considering the clusters’ biases only

achieves the RMSE of 0.907765 in the MovieLens100k dataset, which is not better than the

RMSE of our ‘CBMF’ method using the same parameters.

Jamali et al. [20] and Beutel et al. [3] propose promising probabilistic models to co-cluster

users and items and then consider their cluster-level preferences to improve the rating predic-

tion accuracy. However, because of the expensive nature of probabilistic modeling they have to

employ heuristics to reduce both the learning time and the consumed memory. However, our

proposed model is much simpler in its nature and like a general wrapper can be applied to all

collaborative filtering methods.

In addition, Xu et al. [54] employ the clusters of users and items in different ways to im-

prove the accuracy of predictions. They cluster items and users into subgroups where each

user or item can belong to more than one cluster. Their main idea is to apply number of col-
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laborative filtering algorithm in each subgroup and then merge the prediction results together.

However, they have to consider clusters reasonably larger to possess enough known ratings

in each subgroup for the learning process. Considering only high-level clusters leads to miss

many dissimilarities between users and items (As discussed in Section 3.2.2). [10] presents

a complete survey on neighbourhood-based recommendation methods that covers many other

extensions on matrix factorization.



Chapter 4

Improving Top-N Recommendation for

Cold-Start Users via Cross-Domain

Information

4.1 Introduction

As discussed in Section 1.3, collaborative filtering based recommendation systems employ ob-

served ratings to generate a list of relevant items for each user. Netflix, Amazon, and YouTube

are examples of large companies that have successfully integrated collaborative filtering in their

recommendation engines. Although these models do not achieve good recommendations for

cold-start users [26, 42, 46].

In the last few years, cross-domain recommendation systems (Section 1.6) have been em-

ployed to include available information from users in other domains to improve recommen-

dation accuracy [8, 28, 29, 51]. However, most of these proposed models focus on improving

rating prediction accuracy, often observed in terms of the root mean square error (RMSE). Al-

though the major role of a recommendation system is to make a short list of relevant items for

each user. Hence, rating prediction for all non-observed ratings is definitely a less important

48
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task than accurately ranking the top relevant items as a short list of recommendations, often

measured by top-N recommendation task. Thus, optimizing the recommendation model re-

garding RMSE is highly criticized [9, 23, 49, 50] as it does not necessarily improve the top-N

recommendation task.

In addition, it is empirically proved that because of unbalanced distribution of observed

ratings, employing unobserved ratings as negative feedback can improve top-N recommen-

dation tasks dramatically (Section 2.0.6). For instance, Steck in [49] shows that employing

unobserved ratings in matrix factorization achieves 64% of recall in the well-known Netflix

dataset. However, both matrix factorization excluding unobserved ratings and the well-known

integrated model proposed in [23] result in 39% and 43% recall respectively. In a this chapter,

we take advantage of unobserved ratings on two levels: the traditional user-item level and our

proposed cluster level of users and items in a latent space [34].

In Chapter 3, we define cluster-level ‘coarse’ matrices for single domains. These coarse

matrices capture the shared interests among the cluster of users and the cluster of items. Thus,

it generalizes the preferences of users on items (into a cluster level rating matrix) to reduce the

sparsity of the original rating matrix. In this chapter, we extend our previous work from single-

domain into cross-domain recommendation systems by employing the partially overlapped

users and items between multiple domains to transfer their cluster-level preferences as the

auxiliary sources of information.

In sum, this new method has several novel contributions:

• We utilize the information of unobserved ratings in cross-domain recommendation sys-

tems via a cluster-level space.

• Cross-domain methods mostly need heavy computations to find a tranferring function

between each pair of domains [8,29,51], while our proposed method simply transfer the

knowledge of several auxiliary domain between each other in one step (Section 4.2.1).

• We practically show that integrating the transferred cluster-level and the traditional trans-
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ferred user-item level knowledge can significantly improve the recommendation quality.

To validate our new method, we set up our experiment on two datasets: the Amazon dataset

and the Epinions dataset. Both datasets include multiple domains such as DVD, Video, Elec-

tronics, etc. Our experiments show that our proposed cross-domain clustering-based matrix

factorization model significantly increases the recall in top-N recommendation for all users,

and cold-start users in particular. For example, our method achieves a recall of 43% on average

for all users compared to 39% using the previous methods in the Amazon dataset. We also

observe 25% improvements of top-N recommendation in the Epinions dataset. For cold-start

users, our method improves recall to 21% on average, whereas previous methods result in only

15% recall by including data from other domains (see Section 4.3 for more details) in the Ama-

zon dataset. We observed almost same improvements in Epinions dataset as well. Note that

it is often difficult to make even a small improvement in recommendations, and for cold-start

users in particular. For instance, the difference between the biased matrix factorization (Sec-

tion 2.0.2) and the well-known Integrated model [23] (Section 2.0.6) was only 3% of recall for

top-N recommendation tasks in the Netflix dataset. Hence, our improved rate of recall is quite

significant.

4.2 The Proposed Method

As mentioned in Chapter 1, in a general collaborative filtering based recommendation system,

we have a set of users U = {u1, u2, . . . , un} and a set of items I = {i1, i2, . . . , im} that are ac-

companied by a rating matrix R = [rui]n×m where rui represents the rating of user u on item

i. A collaborative filtering based recommendation system consists of making a short list of

relevant items to user u based on the ratings inside rating matrix R. However, the quality of this

rating prediction task is sensitive to the number of observed ratings form user u, Nu. Hence,

collaborative filtering based recommendation systems are unable to generate accurate recom-

mendations for users who have made no or very few observed ratings, known as cold-start
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users. Consequently, more information is needed to achieve a better quality of recommenda-

tions for cold-start users.

A major source of extra information is the ratings that these users have made in the other

domains. For example assume an e-store website with different departments including ‘books’,

‘movies’, ‘computers’, etc. User u may have many observed ratings in the ‘books’ domain, but

no ratings in the ‘movies’ domain. Thus, a natural solution is using observed ratings from

the ‘books’ domain to generate a better list of recommendations in the ‘movies’ domain for

user u. As discussed in Section 1.6, this solution is called cross-domain recommendations for

a set of domains D = {d1, d2, . . . , dt}. These auxiliary domains can be categorized according

to their users and items overlap, from full-overlap, users-overlap and items-overlap domains,

to no-overlap domains [8]. Our proposed cross-domain recommendation model is based on a

partial overlap of users and/or items between the target domains and the auxiliary domains.

In Chpater 2, we define cluster-level ‘coarse’ matrices in single domains. These coarse

matrices generalize the relation of users and items into a cluster-level by capturing the mean

rating between the cluster of users and the cluster of items. In Section 4.2.1, we extend our

previous work to cross-domain recommendation systems. In a cross-domain scenario, we find

the relations among these clusters in different domains. Thus, we can predict the preferences

of the users in a target domain by employing their cluster level preferences in the auxiliary

domains.

4.2.1 Making A Cross-Domain Coarse Matrix

As discussed earlier, cross-domain auxiliary information can be employed in the recommen-

dation model to increase the recommendation accuracy further. In this chapter, we build a

cross-domain cluster-level ‘coarse’ matrix Rc, which captures the shared interests among the

cluster of users and the cluster of items between multiple domains. Figure 4.1 illustrates rating

matrix R including ratings from Music and Movies domains. As shown, it is assumed that these

two domains have partially overlapped users (dashed area). Let’s assume that user u is a shared
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user between these domains. User u may rate item i in Music domain and item i′ in Movies

domain. In a classic matrix factorization, only these shared ratings will be transferred between

the two domains. However, all the entries in the top right and lower left (the white areas in Fig

4.1:Left) are missing values, and thus the rating matrix is too sparse.

In our model we propagate these shared ratings into a cluster level (Figure 4.1:Right).

Hence, we reduce the sparsity of rating matrix R by propagating the observed ratings into

unobserved ratings in coarse matrix Rc. In Figure 4.1 for instance, we may propagate the

individual interest of users inside cluster 4 in couple of cartoons into a cluster level interest

from cluster 4 in the cluster of cartoons, as new entities. Note that the white area (missing

values) is much reduced in Figure 4.1 (right side). As overlapped users are separately clustered

in each domain, they belong to more than one cluster in a cross-domain scenario. By factorizing

this new matrix, coarse matrix, we will have cluster-level preference prediction for each cluster

of users.

Here is a formal description of our proposed method. Let’s assume Cd j

U,u as the uth cluster

of users in domain d j, and Cd j

I,i is the ith cluster of items in domain d j. After finding the domain-

specific clusters, we define cross-domain coarse matrix Rc as follows:

Rc =


Rc

d1,d1
Rc
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· · ·
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· · ·
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... . . .

 , (4.1)

where:
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and each r
C

d j
U,uC

d j′
I,i

is defined as follows:
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Figure 4.1: (Left) Cross-Domain rating matrix R including rating matrices of domains Music
and Movies with overlapped users (dashed area). The rating matrix is very sparse as many
entries in the top right and lower left are missing values. (Right) Coarse matrix Rc including
mean ratings between cluster of users and cluster of items. As shown, the coarse matrix reduces
the sparsity of R by propagating the observed ratings into unobserved ratings. Note that the
white area (missing values) is much reduced.

r
C

d j
U,uC

d j′
I,i

=



∑
u′,i′

ru′i′

N(C
d j
U,u,C

d j′
I,i )

N(Cd j

U,u,C
d j′

I,i ) > thr

unobserved N(Cd j

U,u,C
d j′

I,i ) ≤ thr

. (4.3)

i′ ∈ C
d j′

I,i and u′ ∈ Cd j

U,u; N(Cd j

U,u,C
d j′

I,i ) is the number of observed ratings that the users inside

cluster Cd j

U,u have made on the items inside cluster C
d j′

I,i . Let’s remember that each overlapped

user or item belongs to more than one cluster because they are clustered separately inside two or

more different domains. For example, assume that user u belongs to Cd1
U,u in domain d1, and also

belongs to cluster Cd2
U,u in domain d2. In this chapter, we suppose that rCd1

U,uCd
I,i

= rCd2
U,uCd

I,i
(Figure

4.1). As is shown in Figure 4.1, this assumption propagate observed ratings into unobserved

ratings. Thus, cluster-level rating matrix Rc (Figure 4.1:right) reduces the sparsity of R (Figure

4.1:left). However, sometimes there is not enough evidence to support this propagation. Hence,

we employ a fixed threshold value thr to remove low confident relations between the clusters

(we take thr = 5 in our experiment).
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4.2.2 Generating Recommendations

Later in Section 4.2.3, we will show how to factorize matrices R, and Rc to rank the unobserved

ratings. Here, we will describe the way that we make the cluster-level recommendations and

how we aggregate them with traditional user-item level recommendations. Let’s define Nu
C

as the number of clusters (in different domains) that user u belongs to, Ni
C as the number of

clusters (in different domains) that item i belongs to, predicted rating matrix R̂ = [r̂ui], and its

cluster-level predicted rating matrix R̂c = [r̂c
ui], where r̂ui = rm + PuQT

i , and:

r̂c
ui = rm +

∑
d∈D

Pc
Cd

U,u
Qc

Cd
I,i

NC
u .N

C
i

. (4.4)

The cluster-level predicted ratings in R̂c are too general to be used solely. Hence, we inte-

grate these two matrices linearly to achieve our final predictions, as follows:

R∗ = αR̂c + (1 − α)R̂, (4.5)

where α ∈ [0, 1] is a fixed tuning parameter, and optimized via cross-validation. Thus, we

employ matrix R∗ = [r∗ui] to rank relevant items to each user. For evaluating these recommen-

dations, we use the top-N recommendation metric which is proposed by Koren in [23].

4.2.3 Factorizing Matrices Considering Unobserved Ratings

Usual collaborative filtering based recommendation models are based on observed ratings.

However, Steck shows [49] that the distribution of usual datasets in recommendation sys-

tems are unbalanced and any unobserved ratings can be considered as low confidence non-

preference feedback from users. Thus, those observed-ratings based algorithms ignore much

useful feedback from users. Steck also shows that by considering these unobserved ratings

as a low rating value, rm (such as rm = 2 or any other value lower than the mean of observed

ratings), the accuracy of recommendations increases dramatically. For example, he empirically
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shows that highly complex methods such as proposed integrated method [23] achieves a recall

of 42% based on top-N recommendation (N=20) in the well-known Netflix dataset, but his

unobserved-ratings integrated model increases this number to 64%.

However, factorizing a full-filled rating matrix (filled by replacing all unobserved ratings

with rm) with many number of users and items will be computationally expensive. Hence, he

proposed a new Alternative Least Squares (ALS) based learning model to factorize this full-

filled rating matrix into matrices P and Q more efficiently, which is described in more details

in Section 2.0.6.

We extend Steck’s approach by applying this factorizing technique in two levels:

• To factorize cross-domain users-items level rating matrix R.

• To factorize cross-domain cluster level rating matrix Rc (Equation 4.1).

Thus, to incorporate unobserved ratings to our method, we employ similar learning steps

as Equation 2.14 and Equation 2.13 to factorize Rc into matrices Pc ∈ Rn′D×l and Qc ∈ Rm′D×l.

We change Equation 2.12 regarding factorization of Rc as follows:

(4.6)
∑

all Cd
U

∑
all Cd′

I

Wc
Cd

UCd′
I
.

(Rc
Cd

UCd′
I
− R̂c

Cd
UCd′

I
)
2

+ λc.(
∑
j=1:l

Pc
Cd′

I, j

2 + Qc
Cd

U, j

2)

 ,
where m′D and n′D are the total number of clusters for items and users in domain D respec-

tively; Rc
Cd

UCd′
I

includes observed and non-observed ratings using Equation 4.3; R̂c = Rm +PcQcT

is the cluster-level predicted rating; and:

Wc
Cd

UCd′
I

=


wc

obs if Rc
CuCi

is observed by Equation 4.3

wc
m otherwise

. (4.7)

We execute Equations 2.14 and 2.13 step by step for Equation 4.6 to learn latent matrices

Pc and Qc. Note that we use same rm, but different λ and wm in the learning process of Equation

4.6. That is because of the different rate of sparsity, and also much lower dimensionality of Rc.
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Figure 4.2: Number of observed ratings in different domains in the Amazon dataset.

4.3 Experiments

We employ two cross domain datsets in our experiments: the Amazon dataset [27] and the

Epinions dataset [19,32,33]. The Amazon dataset was collected from June, 2001, to May, 2003.

In total, 548,523 products were recommended, where 68% of them belongs to the domain

‘books’. Thus, we ignore this domain to save our computations and also have more balanced

distribution of observed ratings among domains. Figure 4.2 illustrates the number of observed

ratings in the remaining domains. We select the top six domains with the largest numbers

of observed ratings to employ in our cross-domain experiment. These six domains include

‘DVD’, ‘Music’, ‘Video’, ‘Electronic’, ‘Kitchen and Housewares’, and ‘Toys and Games’. We

call ‘Kitchen and Housewares’ as ‘Kitchen’, and ‘Toys and Games’ as ‘Toys’ for simplicity in

the rest of this chapter. Table 4.1 presents the number of users, items, and observed ratings in

each of these selected domains. As shown, the train sets are very sparse and less than 1% of

ratings are observed.
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Table 4.1: Number of users, items, and observed ratings in the six selected domains in the
Amazon dataset.

domains #users #items #ratings
electronics 18,649 3,975 23,009
kitchen 16,114 5,511 19,856
toys 9,924 3,451 13,147
dvd 49,151 14,608 124,438
music 69,409 24,159 174,180
video 11,569 5,223 36,180

Table 4.2: Percentage of user overlaps between different domains in the Amazon dataset.

domains electronicskitchentoys dvd music
kitchen 0.051
toys 0.028 0.041
dvd 0.040 0.037 0.031
music 0.032 0.028 0.020 0.119
video 0.029 0.029 0.028 0.317 0.058

The Epinions datset [33] is extracted from Epinions1 in June 2011. It contains reviews

from users on items, trust values between users, items category, categories hierarchy, etc. This

dataset contains 131,228 users, 317,755 items and 1,127,673 reviews in total. It is a very spars

dataset with a 0.003 % sparsity. We employ the 10 categories with the most observed ratings

of the Epinions dataset in our experiment.

The domains in the Amazon dataset only have user overlaps. Thus, there is no shared

items between these domains. Table 4.2 illustrates the percentage of overlapped users between

each pair of domains. As shown, ‘DVD’ and ‘Music’ domains have the most overlapped users

of 31.7%, while other domains have almost 3-5% of overlaps between their user sets. We

randomly split 75% of each domain for train set and dedicate the rest 25% to the test set.

In the following sections we will compare these four methods:

• Most-Pop: This is our basic baseline [49], [9], which uses the number of times that item i

1http://www.epinions.com
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Figure 4.3: Comparing ‘Single-MF’, ‘Collective-MF’, and ‘Cross-CBMF’ for all users in the
six selected domains in the Amazon dataset. For each domain, information of other five do-
mains are included in the cross-domain methods.
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Figure 4.4: Comparing ‘Single-MF’, ‘Collective-MF’, and ‘Cross-CBMF’ for all users in the
10 selected domains in the Epinions dataset. For each domain, information of other nine do-
mains are included in the cross-domain methods.
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received the highest rating (rui = 5) for making the recommendation list. As personalized

recommendations for cold-start users are inaccurate, recommending most popular items

seems a reasonable option.

• Single-MF: This is a single-domain matrix factorization technique employing informa-

tion of unobserved ratings that is proposed in [49], and is explained briefly in Section

4.2.3. In this method, we only employ the data from each domain’s train set. Thus, com-

paring this single-domain method with our cross-domain methods will show us whether

adding the extra information of auxiliary domains increases recommendation solution.

• Collective-MF: This is our strong baseline, which is the cross-domain extension of

‘Single-MF’. Thus, to test target domain d j we employ the train set of domain d j adding

all the ratings from the auxiliary domains. This is the traditional way of dealing with

cross-domain information [18]. Hence, it does not use cluster-level recommendation.

Comparing our proposed method with ‘Collective-MF’ shows whether our new method

can utilize the data to achieve better recommendations.

• Cross-CBMF: This is our proposed cross-domain model, that aggregates the informa-

tion of unobserved ratings from users-items level and cluster level. As described in

Section 4.2.2, our proposed model employs the same information as ‘Collective-MF’

but utilizes it with cluster level recommendations of coarse matrix Rc to achieve more

accurate recommendations.

We first compare these methods for all users (Section 4.3.1). We then limit the set of users

to ones with no ratings in the train set to compare the performances of these methods for cold-

start users (Section 4.3.2). As discussed earlier, we employ Top-N recommendation tasks as

our evaluation metrics. Recall values are scaled in [0, 1] for demonstrations. As Steck in [49]

proposes, we take wobs = wc
obs = 1, and rm = 2 in our experiment. Additionally, we tune

our fixed parameters including α, wm, wc
m, λ, and λc via a cross-validation. We also iterate

the learning process for 5 epochs to factorize both users-items level and cluster level rating
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matrices. We run each experiment for 5 times with different random initializations. Thus, we

report the mean result of these five runs in the following sections.

As we show in Section 3.3.1, number of clusters should not be selected too large or small.

If the number of clusters is too small, the predictions of the coarse matrix will be too general,

while if the number of clusters is too large, these predictions will be very close to the items-

users level predictions. We use 100 clusters of items and 100 clusters of users for each domain

in our experiment. Because of the large sparsity of the Epinions dataset, Applying clustering

on the set of items has not achieved clusters with a good quality. Thus, we only employ the

clusters of users in our final experiment in Epinions dataset

4.3.1 Performance on All Users

We include the entire six selected domains in this setup. For each domain d j, we employ the

train set of domain d j and all the ratings from other domains to learn our cross-domain models.

We then test the learned models on domain d j’s test set. Figure 4.3 presents this experiment

that compares the results of three methods: ‘Single-MF’, ‘Collective-MF’, and ‘Cross-CBMF’

in Amazon dataset. As shown, ‘Cross-CBMF’ significantly outperforms the other methods in

‘Electronics’, ‘Kitchen’, and ‘Toys’ domains. Figure 4.4 also presents the same comparison in

the Epinions dataset.

In the Amazon dataset for instance, for ‘DVD’ and ‘Music’ domains the improvements are

slight, but the results of ‘Cross-CBMF’ and ‘Collective-MF’ are almost the same for ‘Video’

domain. It seems that employing cluster-level cross-domain information is not helpful in this

specific domain. It is possibly the result of the unbalanced distribution of this domain’s ratings.

Note that the results of ‘Most-Pop’ are removed from some figures, because this model

achieves a very low recall in some setups. In ‘Electronics’ domain from the Amazon dataset

for instance, ‘Most-Pop’ achieves 0.041 recall for N = 20.
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Figure 4.5: Comparing the selected methods on cold start users combining all 6 domains in
Amazon dataset.



4.3. Experiments 63

5 10 15 20

20

40

60

·10−2

Top-N

R
ec

al
l

(a) Videos & DVDs

5 10 15 20

5

10

15

20

·10−2

Top-N

R
ec

al
l

(b) Used Cars

5 10 15 20

20

30

40

50

·10−2

Top-N

R
ec

al
l

(c) Toys

5 10 15 20
0

0.1

0.2

0.3

Top-N

R
ec

al
l

(d) Sport & Outdoor

5 10 15 20

0.1

0.2

0.3

0.4

Top-N

R
ec

al
l

(e) Personal Care

5 10 15 20

0.2

0.4

0.6

Top-N

R
ec

al
l

(f) Online Stores & Services

5 10 15 20
10

15

20

25

·10−2

Top-N

R
ec

al
l

(g) Music

5 10 15 20

20

40

60

·10−2

Top-N

R
ec

al
l

(h) Destinations

5 10 15 20
10

20

30

·10−2

Top-N

R
ec

al
l

(i) Books

5 10 15 20

0.2

0.4

0.6

Top-N

R
ec

al
l

(j) Baby Care

Most-Pop Collective-MF Cross-CBMF

Figure 4.6: Comparing the selected methods on cold start users combining all 10 domains in
the Epinions dataset.
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4.3.2 Performance on Cold-Start Users

As described earlier, collaborative filtering based recommendation systems have a low perfor-

mance for cold-start users. To evaluate the performance of our proposed method for cold-start

users, we define cold-start users as ones who have made no ratings in the train set. Thus,

single-domain methods have no collaborative information about these users. Figures 4.5 and

4.6 illustrate a comparison among selected methods. As shown, ‘Cross-CBMF’ dramatically

increases recall for all domains except ‘Video’ domain (similar to Section 4.3.1) in the Amazon

dataset. In the Epinions dataset, for 5 domains out of 10 selected domains the improvements

are significant but slightly for the other domains.

In our experiment, we observed that the weight of unobserved ratings is much higher in the

learning process of the coarse matrix than the learning process of the users-items rating matrix.

In the Amazon dataset for instance, we use these fixed parameters (found via a cross-validation)

in the setup that all domains are combined: wm = 0.0001 and λ = 0.1 in ‘Collective-MF’ for

all the domains, and wc
m = 0.9, λc = 0.9 in ‘Cross-CBMF’ model for most of the domains. The

higher values are probably due to lower dimensionality and sparsity of the coarse matrices.

Figures 4.7 and 4.8 illustrate the change of recall for ‘Cross-CBMF’ method by employing

different values of α. As defined in Equation 4.5, for α = 0 we do not consider the effect of

cluster level recommendations and the results are similar to ‘Collective-MF’. By increasing α,

cluster level recommendations have more influence in the aggregated result. As shown, other

than the ‘Video’ domain, we see improvement of recall in other domains taking appropriate

values of α. In the ‘Video’ domain of the Amazon dataset, the value is the same for alpha value

between 0 and 0.3.

To conclude, our experiments show that our proposed clustering-based matrix factorization

model significantly increases the recall in top-N recommendation tasks for all users, and cold-

start users in particular. For example for N = 20 in the Amazon dataset, our ‘Cross-CBMF’

method achieves a recall of 43% on average for all users compared to 39% using ‘Collective-

MF’. For cold-start users, our method improves recall to 21% on average, whereas including
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Figure 4.7: Effect of changing α value on aggregated recommendations employing top-N eval-
uation (N=20) in Amazon dataset. Note that for α = 0 the recall result is same as ‘Collective-
MF’ ’s result. The effect of cluster-level recommendations increases as α increases.

data from other domains using Collective-MF’ results in only 15% recall (for N = 20). In

the Epinions dataset, our experiment shows an almost 25% total improvements of recall for

cold-start users using our proposed ‘Cross-CBMF’. Note that it is often difficult to make even

a small improvement of recommendations especially for cold-start users. Hence, our result is

quite significant.
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Figure 4.8: Effect of changing the α value on aggregated recommendations employing top-
N evaluation (N=20) in Epinions dataset. Note that for α = 0 the recall result is same as
‘Collective-MF’ ’s result. The effect of cluster-level recommendations increases as α increases.
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4.4 Complexity

Our proposed Cross-CBMF model has the same time and space complexity as the Alternative

Least Squares (ALS) method as we once employ ALS for the traditional ratings and another

time for the cluster-level ratings. Although to produce the cross-domain course matrix, a pre-

processing complexity will be added to our proposed model to first factorizing the traditional

rating matrix for each domain and then clustering the generated latent vectors.

4.5 Relation To Previous Work

As described earlier, employing unobserved ratings and efficient calculation of relations among

the entire set of domains are two major contributions of the proposed method in this chapter.

These two novelties distinguish our proposed method from current cross-domain recommenda-

tion methods. Employing unobserved ratings is shown to be dramatically effective in increas-

ing recommendation accuracy [9, 38, 43, 49, 50]. Consequently, we expect that our proposed

method will outperform the current cross-domain methods on Top-N recommendation tasks as

they are learned only based on observed ratings and with respect to improving prediction accu-

racy. This is because (as Cremonesi shows in [9]) methods with a good prediction accuracy do

not always results in good recommendations accuracy. Moreover, many well-observed cross-

domain methods such as the proposed models in [8], [51], [29] require a heavy computation to

find possible relations between each two domains. However, as we described in Section 4.2.1,

we find these relations among the entire set of domains in one efficient step.

Li et al. in [29] propose a similar cluster-level integration of ratings in a cross-domain

recommendation system. They adopt the orthogonal non-negative matrix tri-factorization al-

gorithm to construct a cluster-level rating matrix, called ‘Codebook’. Our proposed coarse

matrix (Equation 4.1) is similar to this Codebook with two differences. First, the Codebook

does not capture unobserved rating values among cluster of users and items. Second, these
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Codebooks are domain-specific. Thus, for any two domains they have to apply an expensive

transferring algorithm , called ‘Codebook Transfer’, to find possible relations between pairs

of Codebooks. However, our proposed method employ the extra information of unobserved

ratings in the clusters level and users-items level. Our method also finds the relations among

the coarse matrices in one step. Gao et al. [13] propose an almost similar method based on

Li’s proposed Codebook. They consider similar explicit cluster-level latent space for users

from different domains while the items in each domain may hold their domain-specific latent

vectors. Moreno et al. in [37] also generalize Li’s method to transfer the auxiliary knowledge

from multiple domains into one domain in contrast with Li’s model which is based on trans-

ferring knowledge from one domain to another. However, both methods suffer from the same

limitations as the Li’s method.

Hu et al. in [18] integrates information from unobserved ratings into a cross-domain tri-

adic factorization model. They merge domain-specific items-users rating matrices into a cubic

users-items-domains rating matrix. Their proposed tri-factorization model is then applied to

factorize this cubic rating matrix into users, items, and domains latent space. They show empir-

ically that their method outperforms unobserved-ratings integrated matrix factorization (same

as the model that we call ‘Collective-MF’ in our experiment). However, cold-start users are

ignored in their experiments, where they run their experiment over users with at least 30 ob-

served ratings. Moreover, instead of finding users-items relations among different domains, we

consider relations between the cluster of users and items among different domains. We show

in Section 4.3 that our proposed method make a significant improvement of top-N recommen-

dation task for cold-start users.

Other related papers can be categorized into cross-domain transfer learning for recommen-

dation and cross-domain collaborative filtering. Yin Zhu et al. in [58] propose a Heterogeneous

Transfer Learning for Image Classification. Their proposed method employs Matrix Factoriza-

tion to transfer useful knowledge in texts into image classification model. Although they do

not address the recommendation problem directly, but their interesting model can be com-
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bined with our proposed model to make a context-aware recommendation system. Jiang et al.

in [21] propose a novel Hybrid Random Walk (HRW) to integrate multiple heterogeneous do-

mains such as users’ social networks to improve the recommendation accuracy. Random walk

based models in general provide simple solutions to integrate knowledge of different domains.

However, they are sensitive to the number of steps in their random walk models, and their com-

plexity dramatically increases by growing the number of steps. The authors in [30] propose a

Gaussian Probabilistic Latent Semantic Analysis (GPLSA) model that consider the consistency

between the knowledge in two domains and only transfer the consistence auxiliary information

between cross domains. Their proposed selective transfer learning transfer the knowledge in

user-item level which can be compared with Hu et al.’s proposed model in [18]. However, we

generalize the user-item matrix to reduce the sparsity. We then transfer the knowledge in two

levels: clusters level and users-items level.

In [6], Chen et al. employ the same idea of clustering items and users in latent space

and transferring the clustering level knowledge between domains. However, in their proposed

method they need to learn a transition model between the clustering representation of each two

domains, which is expensive to be generalized for multiple domains. This methods may be

compared to Li’s Codebooks [29]. They also employ the auxiliary information of items’ con-

tents and also users’ social network into their cross domain recommendation model. Again, our

proposed model can easily handle including the auxiliary information from multiple domains

without a need for learning a domain-domain mapping function.

In addition, Shi et al. in [48] and Li in [28] provide a complete survey on cross-domain

recommendation systems. Pan et al. in [39] present a complete survey on Transfer Learning

in general for transferring knowledge between multiple domains in machine learning. Ado-

mavicius in [1] also provides a good survey about state-of-the-art methods in recommendation

system.

Social networks are also important source of knowledge which can be included as auxiliary

domains into cross-domain recommendation models. Jamali et al. in [19] provide a promising
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model to include the social trusts to improve the recommendation accuracy. As mentioned

earlier, Chen et al. in [6] include the social information beside other auxiliary information

for this purpose. Our proposed method may also be applied in social networks to include

cluster-level information from social/trust networks for building a more accurate cross-domain

personalization model.



Chapter 5

Clustering-Based Personalization In

Adaptive Webs

5.1 Introduction

Content Marketing is any marketing that involves the creation and presentation of media and

publishing content in web to acquire and attract users. This content can be presented in a va-

riety of formats, including images, videos, texts, etc. In 2014, 93% of B2B marketers employ

content marketing. Moreover, the conversion rate is nearly 6 times higher for content market-

ing adopters than non-adopters (2.9% vs 0.5%) [40]. That is the reason that WWW rapidly

switches from static web to adaptive web where businesses can make different versions of

content to target more users with diverse preferences. Adaptive web is a rare case of person-

alization with millions of cold-start user and only few versions of contents, where both users

and items are unstable and change frequently. These two challenges beside speed and compre-

hensibility of personalization (Section 5.2) are the main reasons that current personalization

methods are less useful in this scenario.

Moreover, the personalization task in traditional adaptive web relies on manually dividing

users based on their locations and available profiles. Agencies then employ A/B testing of

71
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different contents on different segment of users to find the best matches. A new user then will

be mapped to one of these predefined segments and will be presented by this segment’s fitted

version. However, this rigid rule-based approach is costly and cannot comprehensively include

all users with diverse preferences.

In this chapter, we employ advance clustering techniques beside deep learning to automate

this personalization task. This is part of our smart adaptive web platform, called Morphio,

which is designed to target more users with smart personalized contents. In Morphio, we in-

clude external databases to generate an extended profile of users including locations, income

average, etc. We then employ our proposed clustering technique in [34, 35] to cluster these

users based on their generated profiles and also their sparse set of page visits. Finally, for a

new user, instead of matching her to only one related cluster, we find a distribution of cluster

assignments such as P(clusteri|user j) employing their profile information. We then employ

this distribution of soft assignments beside the successful versions of each cluster to find her

matched version. Users have diverse preferences which cannot be easily captured with rigid

rule-based systems. This soft assignment of users to the generated clusters empowers our per-

sonalization system to cover more users with variety of interests. Clustering users and training

the classifier regarding the clusters and not the versions gives our personalization model extra

scalability and comprehensibility; First, we do not have to train a classifier for each page with

multiple versions. Second, we do not have to re-train our classifiers when we update the ver-

sions. Third, agencies are able to supervise the matched version of content to each cluster of

users. In addition, in Content Analytic Module in Section 5.4, we also employ our proposed

clustering-based recommendation system to suggest smart contents for current web pages. This

module allows agencies to improve their produced content using our data-driven insights. Our

ongoing real time experiment shows a significant improvement of user conversion employing

our proposed clustering-based personalization.
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5.2 Morphio Platform

Morphio is a research and development project in collaboration with Arcane inc.1, an emerging

Canadian digital marketing agency. Arcane’s content marketing system was based on individ-

ual expertise, traditional A/B testing, and several possible tries and errors. Morphio has been

designed as a smart adaptive web platform with two main goals; First, to suggest this agency

goal-driven smart contents. And second, to target more users with personalized contents. Fig-

ure 5.1 illustrates an overview of Morphio’s platform. Morphio mainly works based on IP

targeting and contains the following 4 major modules (in this chapter we focus on our pro-

posed personalization module only):

• Personalization Module: to target users with diverse preferences by different versions of

contents (Section 5.3).

• Content Analysis Module: to analyse the current contents considering their positions in

the webpages and their impact to increase the conversion rate. In addition, to suggest

new contents to content marketing agencies to improve their products.

• Page Analysis Module: to classify weak and strong pages based on their impact in achiev-

ing predefined goals.

• User Analysis Module: to classify clusters of users whom are presented by weak or

strong contents.

A light JavaScript based software lets content marketing agencies to connect their websites

to our Java implemented web servers. We then track user activities based on HTTP requests to

store their page visits and click events. Agencies can define one of multiple conversion goals

for each of their registered websites. As mentioned earlier, adaptive web is a rare scenario in

recommendation systems. The followings are four challenges that our proposed personaliza-

tion module has to address:
1www.arcane.ws



74 Chapter 5. Clustering-Based Personalization In AdaptiveWebs

• More than 90% of users are cold-start users.

• Items and users are both unstable. We identify each user based on her IP and session

ID which both are unstable and can be changed from time to time. Contents are also

frequently replaced by new contents due to different advertising strategies.

• Speed. It is one of the main challenges in this personalization task. Recent study [40]

shows that even 1 second late of page loading will significantly reduce the user conver-

sion rate. Thus, once a new user request a page until we decide which version of content

should be presented to her, it should not take more than split of a second.

• Comprehensibility. Agencies tend to understand which versions of content suit which

group of people better. Thus, personalization models which act as black boxes are not

good candidates in this context.

In the next section we will explain how our proposed method address these challenges.

Figure 5.1: A general view on our designed personalization platform.

5.3 Personalization Module

We propose a scalable personalization model as the core of our Morphio platform. In Morphio,

we identify each user by her IP and session ID. We then employ the available information in the

HTTP request to generate a profile for each user. Each HTTP request contains user’s IP, session

ID, the device that she is using (Mobile or PC), operating system, and the browser that she is

working with. Usual visiting days and hours also can be easily obtained from user activities.

By employing IP, we also can estimate user’s location and consequently her city, province, and

country. We then include auxiliary databases to enrich user profiles by extra knowledge about

these locations that users live in such as income average.
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As mentioned earlier, both users and items are unstable and change frequently. Also, in real

world scenario we do not have users with many page visits. Users usually visits 1-2 pages and

then decide to convert or leave the website. Because of these obstacles we prefer to train our

personalization model based on new users only and do not waste any resources on our old users.

It explains why we need a pure content filtering method to personalize our unstable content in

only split of a second. Thus, K-Nearest Neighbor (KNN) or other traditional machine learning

model such as SVM and deep learning seems good choices for our personalization model.

However, as mentioned in Section 5.2, agencies need a comprehensible model to understand

which version of content works for which group of people. Moreover, contents are unstable

too. Thus, we cannot afford to train the personalization model every time we change a piece of

content. In this chapter we present our clustering-based personalization model which address

these indicated challenges.

We first employ the generated profiles beside the available page visits to cluster users into

several clusters. As there are millions of users with hundreds or maybe thousands of pages we

need a scalable clustering method which can be applied regularly on the set of users. Thus,

we employ our proposed scalable clustering technique in [34, 35] that is based on reducing

the feature space using matrix factorization [26]. We first produce the following users-pages

matrix:

R =



p1 p2 . . . pm

u1 r11 r12 . . . r1m

u2 r21 r22 . . . r2m

...
...

... . . . ...

un rn1 rn2 . . . rnm


where n is the number of users, m is the number of pages, and rnm is 1 if user n has visited

page m and 0 otherwise.

Matrix factorization generalizes user preferences and reduce the sparsity of this users-pages
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matrix R. It is based on factorizing rating matrix R into latent matrices P and Q in a lower space,

where:

R = P.QT

We employ the stochastic gradient descent [26] to learn latent matrices P and Q. Let’s

assume d is the length of the latent vectors in these two matrices. Thus for each user j we have

following latent vector P j:

P j = [p1 j, p2 j, . . . , pd j],

and for page i we have following latent vector Qi:

Qi = [q1i, q2i, . . . , qdi].

We then add user profiles as new columns to the latent vector P and apply K-Means cluster-

ing on this new matrix to produce clusters of users. Let’s assume that C is the set of these found

clusters C = {C1,C2, ..,Cn′}. For each page p that contains more than one version, we first do a

random A/B testing for a predefined period of time to find the most successful version of that

page for each cluster of users based on a defined goal. These clusters gives our personalization

model a good level of comprehensibility. Thus, agencies can easily understand the way that we

use the available contents. In addition, we do not have to re-train our personalization model by

every change in the contents.

We employ user profiles to classify users into the found clusters in C. Thus, for each cluster

Ci we gather the positive and negative instances and employ deep learning to classify new user.

Our multi-classes classifier will be trained on user profiles to predict the clusters that new user

may belong to. Hence, we can predict a distribution over the clusters as the classes such as

P(Ci|u j) for cluster i and user j. Let’s assume new user j visits multi-version page p with

versions v1 and v2. Our final predicted version will be the one which maximize the following
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function:

argmax
s

∑
i

P(Ci|u j).P(vs|Ci)

where P(vs|Ci) is the success chance of version vs for the users in cluster Ci. P(vs|Ci) is

calculated during the A/B testing process. For the rest of this chapter, we call this method as

Clustering-Based Personalization (CBP).

In Section 5.5, we compare our proposed solution with three models. First, we compare

CBP with random version assignment which is simply selecting a random version for each new

user. Second, in the Winner model we present the most popular version to users. Third, we

compare CBP with traditional K-Nearest Neighbor (KNN). In this method we employ users’

profiles and page visits to find the K most similar users to new user u j and then present her the

version, which maximizes the following function:

argmax
s

∑
t

P(vs|ut)

where P(vs|ut) is the success chance of version vs for user u j.

5.4 Content Analytic Module

Morphio’s content analytic module consists of splitting each web page of contents into its

elements and analysing the impact of each of these pieces of contents. Thus, for each web page

of a registered website we extract following elements: texts, keywords, images, background

colors, text colors, font sizes, images main colors, font family, etc. We also think the position

of that element is also an important factor in a page. Thus, we store these elements beside the

frame of the page that they have been presented in. We consider 4 different frames including

left-top, left-down, right-top, and right-down. Hence, each elements will be stored based on

its position in these frames. We call each of these positioned element as an attribute, which
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left-top right-top

left-down right-down

Table 5.1: Each web page will be cut into different splits using these frames.

contains a frame ID and a page element. Table 5.1 illustrates the frames that we use to store

the position of each elements.

Our content analytic module then employs a ranking algorithm beside the page visits to

suggest new content for each page. These suggested contents are meant to improve these

pages’ impact. To achieve such a recommendation model, we employ the users-pages matrix

V , where:

Vup =



5 if user u has visited page p

and has achieved a goal

3 if user u has visited page p

but it has not achieved any goal

1 otherwise.

(5.1)

We also define attributes-pages matrix E as follows:

Eep =


1 if attribute e is observed in page p

0 otherwise.
. (5.2)

We then recalculated matrix E to apply the visits’ feedback on the attributes as follows:

E∗ = (E × VT ) × V

Now, E∗ep represents impact of attribute e in page p on targeting visitors and achieving
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Figure 5.2: The distribution of audiences versus their number of page visits.

more user conversions. Thus, by factorizing E∗ep, we can rank the most effective attributes to be

employed in these pages and increase their impact to increase the user conversion. We apply

our proposed clustering-based matrix factorization in Section 4.2.3 on E∗ep to predict and rank

the unknown values in this new generated matrix. This module allows agencies to improve

their produced content using our data-driven suggestions and insights.

5.5 Experiment

As mentioned earlier, this work is part of our Morphio platform in contribution with Arcane

inc. Our personalization module is still in an early stage. We could connect only 2 websites

from Arcane’s clients to this platform as testbeds. From those two registered websites, we only

had the chance to have 2 versions of landing page from one of these sites to test and evaluate

our proposed personalization method. However, we still had this opportunity to evaluate these

methods in a real time scenario with actual users. These two designed versions were visually

different and each was emphasising on one of this website’s line of product. The goal of A/B

testing has been set to optimize the user conversion which has been defined based on submitting

a contact form to request an appointment.
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We run our designed experiment on these two versions for 3 months, with 86 conversions

and approximately 7000 impressions in total. Figure 5.2 illustrates the distribution of page

visits for users in a 4 months period of time. As shown, over 40% of users are new and 90% of

users has 4 or fewer page visits. These results prove the rare case of our novel personalization

scenario. When an user have visited the under testing landing page, we identify her based on

her IP and session ID. If she was an old user with a conversion we present her the version that

she has been presented before. If she was a new user, we randomly employ one of those 4

designed methods in Section 5.3 to choose her related version of content.

Figure 5.3 illustrates a comparison between these four methods based on their conversion

rate. Note that 1-2% conversion rate may looks small but it is natural in this context. As shown,

our proposed CBP method significantly outperforms all other methods in practice by 1.98%

conversion rate. After CBP, KNN achieves the next best result by 1.53% conversion rate, while

our CBP method is much faster than KNN in the prediction time. All the parameters including

K in KNN and the deep learning’s related parameters have been selected in a separate off-line

experiment.

Random Winner KNN CBP
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Figure 5.3: Comparing our proposed CBP method with three other methods regarding user
conversion optimization.
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5.6 Relation to Previous Work

Mobasher in [36] and Bunt in [5] present a comprehensive introduction on adaptive web and

employing data mining to personalize WWW. The general idea of using user’s location to make

the recommendations is highly related to location-aware recommendations. Location-aware

models beside other context-aware recommendation systems have been well studied in the last

decade. For instance, Rendle et al. in [44] propose a Tensor Factorization technique to factorize

cubic rating matrix users-items-contents. Wetzker et al. in [53] propose a hybrid solution by

employing PLSA on a merged representation of user-item-tag observations. Adomavicius et

al. in [2] employ ratings aggregation to reduce the multi-dimensional (contexts-users-items

dimensions) rating matrix to the traditional 2 dimensional rating matrix. Hariri et al. in [16]

propose a KNN technique and employs inferred topics (context) to calculate the item-item

similarity.



Chapter 6

Summary, and Conclusions

Personalization, or in a more general term recommendation system, is a key part of the infor-

mation and e-commerce ecosystem [11]. Businesses offer millions of items through different

channels to target people around the world. Large number of items is an obstacle for users who

try to find the items that they are looking for. Recommendation systems address this problem

by providing powerful methods which enable users to filter through these large repositories

based on their preferences. Thus, diverse preferences of users beside the emerging growth of

contents force businesses to widely employ personalization technologies. Recent studies show

a significant improvement of revenue and user conversion rate for personalization adopters.

Accuracy, scalability, data sparsity and comprehensibility are main challenges to design prac-

tical recommendation systems.

In this thesis, we employ clustering to include neighborhood information in recommen-

dation systems. We first cluster users and items separately. Then, we present the average

preferences of the users in each user clusters on the items in the item clusters in a new cluster-

level rating matrix. This coarse matrix generalizes the observed interests to reduce the sparsity

of the original rating matrix. By including our proposed cluster-level rating matrix, we try to

improve the recommendation accuracy of the-state-of-the-art recommendation systems, while

preserving their scalability.

82
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In Chapter 3, we employ our proposed cluster-level rating matrix to improve a number of

well-studied recommendation models in single domains. We fist propose an scalable clustering

technique to cluster items and users, and producing the cluster-level rating matrix. A number

of matrix factorization methods are then applied to this coarse matrix to predict the future

cluster-level interests. We then aggregate the traditional user-item rating predictions with our

cluster-level rating predictions to improve the personalization accuracy further. We employ

RMSE evaluation metric in our experiment on two well-known datasets: Netflix and Movie-

lens. Our extensive experimental results show that our new approach, when applied to a variety

of existing matrix factorization methods, improves their rating prediction accuracy.

We also employ four different clustering methods to compare the impact of clustering qual-

ity on our proposed model’s rating prediction accuracy. Our experiment in the both datasets

shows that improving the quality of clusters increases rating prediction accuracy of our pro-

posed clustering-based matrix factorization (CBMF) model. In Section 3.3.4 accuracy is im-

proved even further by employing clusters in variety of sizes in an extension of our CBMF

model.

These extension models have almost the same complexity as the non-extended models.

However, they add a complexity for the preprocess in the clustering step. For instance, the

training time of the extensions are less than twice of the non-extended models in the Movie-

Lens100k dataset. The clustering was also not considerably time consuming because we per-

form the clustering on the low dimension latent vectors. For instance, the clustering of the

Netflix’s users takes less than a hour using the Rapidminer1 software in our PC with 3.30 GHz

CPU. Thus, the extended models keep the scalability of those models.

In Chapter 4, we extend our proposed clustering-based recommendation system by utilizing

data from auxiliary domains to achieve better recommendations, especially for cold-start users.

Traditional recommendation systems assume that items belong to a single domain. However,

at the present time users rate items or provide feedback in different domains. Thus, businesses

1http://www.rapidminer.com
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intend to empower their business intelligence by this cross-domain information to generate

better recommendations and consequently improve their revenue. Most previous works in

cross-domain recommendations ignore a significant part of available information, unobserved

ratings. These methods also mainly focus on improving prediction accuracy, often known in

terms of RMSE, which has been criticized over the last few years. We extend our previous work

on clustering-based matrix factorization in single domains into cross-domains by utilizing re-

cent results on considering unobserved ratings as negative feedback. We define a cross-domain

‘coarse’ matrix, which captures the shared preferences between clusters of users and cluster of

items in same or different domains. Using this coarse matrix, we propagate the observed ratings

into the cluster level unobserved ratings to reduce the sparsity of traditional rating matrices.

Finally, our proposed clustering-based matrix factorization aggregates the recommendations

from these two levels, and it effectively utilizes cross-domain data to improve recommendation

accuracy. Our experiments show that our method improves recommendation accuracy for all

user and cold-start users in particular. For instance, our method achieves a recall of 43% on

average for all users compared to 39% using the previous methods. For cold-start users, our

method improves recall to 21% on average, whereas those previous methods result in 15% re-

call. We also observe almost 25% improvement of recall in the Epinions dataset. It is often

difficult to make even a small improvement in recommendations, and especially for cold-start

users. Thus, our result is quite significant.

Finally, in Chapter 5, we review our contribution in a smart adaptive web platform called

Morphio, which is designed to help content marketing agencies to produce smart contents and

target more audiences. Morphio is a research and development project collaborated with Ar-

cane Inc., an emerging local digital marketing company. Morphio’s personalization module ap-

plies our clustering-based approach on the content information beside collaborative resources

to propose a hybrid personalization system. This solution is based on clustering the old users

and find the best version of content for each of these generated clusters. Our proposed method

then soft assigns new users into these clusters employing their profiles to conclude their fit-
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ted version of content. Our ongoing real time experiment shows a significant improvement

of user conversion employing our proposed clustering-based personalization comparing to the

traditional A/B testing models. Our proposed model improve the conversion rate by almost

32%.

As the future works, our proposed clustering-based matrix factorization model can be ex-

tended to perform both the clustering and the training phase simultaneously. At the present

time, we have two separate steps in our proposed training process. We first clustering users

and items and then employ the found clusters in the training process. However, finding these

clusters and also finding the optimum numbers for the clusters during the training process have

several advantages including a less complexity for our CBMF model.

To extend Morphio project, we are going to employ our proposed CBMF model to generate

an optimized version of content for each cluster of users. In this way we can select pieces

of content from each defined versions and produce an optimized combination of them which

suites a given user’s preferences. Also, we currently produce content suggestions based on a

given page. A useful research path to continue would be suggesting content based on a given

content. Thus, in this way we can get a list of suggested content such as colors based on our

queried content which can be a color or any other pieces of content.
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Appendix A

Basic Concepts

A.1 Clustering

Clustering is the task of grouping a set of objects in a way that objects in the same group, called

a cluster, are more similar to each other than to those in other clusters. Several clustering

methods has been proposed such as Expectation Maximization(EM), hierarchical clustering,

density-based clustering, etc. K-Means is one of the most popular clustering method in the

literature. K-Means clusters objects into k clusters in which each object belongs to the cluster

with the nearest mean. Suppose we have a given data set X consisting of N D-dimensional

observations. K-Means employs a set of D-dimensional vectors µk, where k = 1, 2, ...,K. µk

represents the mean vector of cluster k. The goal of K-Means is then to find an assignment of

data points to clusters, as well as a set of vectors µk, such that the sum of the squares of the

distances of each data point to its closest mean vector is a minimum [4].

Let’s assume data set X = x1, x2, ..., xN with N objects, and binary indicator variables Ink ∈

0, 1 where:

Ink =


1 if xn is assigned to cluster k

0 otherwise
. (A.1)
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We can then define an objective function that represents the sum of the squares of the

distances of each data point to its assigned cluster’s mean vector, µk, as follows:

J =
∑

n∈{1,..,N}

∑
k∈{1,..,K}

Ink.||xn − µk||
2 (A.2)

The optimization goal is to find values for the {Ink} and the {µk} those which minimize

objective function J. This can be done through an iterative procedure in which each iteration

involves two successive steps corresponding to successive optimizations with respect to the

Ink and the µk. First we choose some random initial values for {µk}. Then in the first phase we

minimize J with respect to the {Ink} by keeping the {µk} fixed. In the second phase we minimize

J with respect to the {µk}, keeping {Ink} fixed. This two-stage optimization is then repeated for

several iteration until convergence [4].
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