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Abstract 

The identification of key regulators of breast cancer onset and progression is critical for the 

development of targeted therapies. Connexins and pannexins are characterized by their ability 

to form large-pore channels and are frequently dysregulated in cancer. However, their role in 

breast cancer progression remains poorly understood due to a lack of in vivo models capable 

of assessing the proposed and opposing roles of connexins and pannexins as both tumor 

suppressors and/or facilitators in multiple stages of the disease. Using two previously 

uncharacterized genetically-modified mice, connexin43 (Cx43) and connexin26 (Cx26) were 

evaluated for their role in normal mammary gland development and function prior to using the 

mice to assess their linkage to breast cancer onset and progression. In addition, pannexin1 

(Panx1) was evaluated for the first time in the context of mammary gland development and 

correlated to clinical outcomes in patients with breast cancer using in silico arrays. Using a 

mouse model expressing a loss-of-function Cx43 mutant it was revealed that the severity of 

milk ejection defects associated with Cx43 are linked to its functional status. Using a similar 

mouse model induced to develop primary breast cancer lesions, we identified that low 

functional levels of Cx43 resulted in mainly hyperplasic mammary glands that greatly 

increased the frequency of developing metastases to the lungs. Our assessment of mice with 

conditional knockout of Cx26 during pregnancy revealed that basal levels of Cx26 were 

sufficient for normal alveolar development and proper lactation, but increased the 

susceptibility of mammary tumor onset in a chemically induced mouse model of breast cancer. 

Finally, genetically modified mice with systemic knockout of Panx1 identified a role for Panx1 

in timely alveolar development during early lactation. In addition, PANX1 mRNA expression 

was correlated with worse clinical outcomes in breast cancer. Collectively, our results redefine 

our view of Cx43, Cx26 and Panx1 in mammary gland development; supporting a tumor 

suppressive role for Cx43 and Cx26, and a tumor facilitating role for Panx1 in breast cancer 

progression which may have implications for extending to their use as therapeutic targets.    
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1.1 Gap junctions and connexins 

Gap junctions are formed when six connexins co-oligomerize to form a connexon, or 

hemichannel, which docks with a connexon from an adjacent cell to form a gap junction 

channel [1]. Gap junction channels directly link the cytoplasm of adjacent cells allowing 

for the exchange of molecules less than 1000 Daltons in size that includes ions and second 

messengers (Ca2+, IP3, cAMP) in a process known as gap junctional intercellular 

communication (GJIC) [1]. During development, a genetic program is initiated as the 

zygote prepares itself to develop into a multicellular organism for later preimplantation 

development. In the 1980’s, it was determined that the presence of gap junctions at the 8 

cell stage was critical to maintain the compacted state, highlighting an essential 

requirement for gap junctions in the formation of the blastocyst and an essential role for 

gap junctions in developmental processes [2-4]. At the 8 cell stage, it was later identified 

that these gap junctions were composed of Cx43, and loss-of-function studies using anti-

Cx43 antibodies to disrupt GJIC, led to decompaction and suggested that Cx43 was 

absolutely essential for maintaining the compaction of the blastomeres and the further 

development of the embryo [3,5,6]. Surprisingly, not until the development of a genetically 

modified mouse with systemic ablation of Gja1 was it discovered that loss of Cx43 still 

resulted in the development of the embryo to term [7]. This study highlighted how the use 

of genetically-modified mice altered our view of connexins in development previously 

based solely on in vitro studies.  

We now know that 21 connexins exist in humans, while 20 connexins are found in mouse, 

and multiple connexins are generally expressed within the same cell [1]. In fact, nine 

connexin transcripts are detected at the 2-8 cell stage of murine preimplantation 

development suggesting that other connexins likely compensated for the loss of Cx43 

during preimplantation in the Cx43 null mouse model [8,9]. However, channels formed by 

one connexin cannot always compensate for the loss of channel function from another as 

various connexins possess distinct gating properties and conductance when forming 

homomeric connexons comprised exclusively of one connexin isoform [1,10]. In addition, 

some connexins, such as Cx26, Cx30 and Cx32, are able to intermix and form heteromeric 

connexons, composed of multiple connexin isoforms, which display altered permeability 
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characteristics and gating sensitivities that likely reflect the biological need of the cell type 

in vivo [10,11]. In addition, apart from GJIC-dependent functions, connexins may also 

control cellular function independent of GJIC through the formation of gap junction 

hemichannels linking the intracellular and extracellular environment or through poorly 

understood regulatory protein-protein interactions [12,13]. Importantly, connexins are 

expressed in almost every cell type in the human body, including those of the breast, and 

are dynamically regulated throughout organ and tissue morphogenesis suggesting a key 

role in regulating developmental processes [1,14]. 

1.2 Single membrane pannexin channels 

In 2000, pannexins, a new family of proteins with limited sequence homology to the 

invertebrate gap junction proteins innexins, were discovered [15]. Three members of the 

pannexin family were identified including pannexin1 (Panx1), pannexin2 (Panx2) and 

pannexin3 (Panx3) [15]. Each pannexin is predicted to be composed of four α-helical 

transmembrane domains, two extracellular loops, an intracellular loop and cytoplasmic 

amino and carboxy termini, similar to the vertebrate gap junction proteins connexins [16]. 

Effectively, pannexin channels are not unlike connexin hemichannels as both are capable 

of transferring small ions and metabolites less than 1000 Daltons, which include ATP and 

Ca2+, between the internal and external environment of cells [17]. Initially, the similar 

topology and the fact that pannexin subunits oligomerize to form a protein-lined pore, led 

to the proposal that pannexins share similar functional characteristics to connexins and 

possibly redundant roles within tissues, functioning as a new family of gap junction 

forming proteins (Figure 1.1) [15,16,18]. However, pannexins have only been proposed to 

form gap junction channels in a few select over-expressing in vitro systems but they have 

never been demonstrated to form intercellular channels in vivo [18,19].   

As a result, evidence to date suggests that pannexins do not form gap junctions under 

physiological conditions which is supported by the fact that pannexins are glycosylated, 

which may act to prevent docking of adjacent channels. Moreover, pannexins do not cluster 

into semi-crystalline arrays as is well documented for gap junctions composed of 

connexins, adding further evidence that they are a very different type of channel [22,23]. 
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Figure 1.1. Connexins and pannexins are predicted to share similar membrane 

topology but only channels formed of connexin subunits form functional gap 

junctions in vivo. (A) The prototypical connexin, Cx43, and pannexin, Panx1, share a 

similar predicted topology with four α-helical transmembrane domains, two extracellular 

loops (EL), an intracellular loop (IL) and cytoplasmic amino (AT) and carboxy termini 

(CT). (B) Connexin and pannexin proteins oligomerize to form mainly hexameric channels 

known as connexons or pannexons, respectively (C) Upon arrival at the plasma membrane, 

pannexons remain undocked and function as single membrane channels while (D) 

connexons typically dock with connexons from an adjacent cell to form a gap junction 

channel. Hundreds of gap junction channels typically cluster forming a gap junction 

plaque. Adapted with permission (Appendix 2) from [20,21]. Figure 1.1B, D was reprinted 

from FEBS Letters, 588/8, Laird, Syndromic and non-syndromic disease-linked Cx43 

mutations, 1339-1348, Copyright (2014), with permission from Elsevier. Figure 1.1C was 

reproduced with permission, from Penuela et al., 2014, Biochemical Journal, 461, 371-381. 

© the Biochemical Society.     
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Figure 1.1 
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While these observations do not rule out pannexins channels having the same function as 

connexin hemichannels, the fact that pannexin channels can be opened at normal resting 

membrane potentials due to their insensitivity to physiological levels of extracellular Ca2+ 

suggests distinct cellular roles. Moreover, pannexins typically have longer half-life than 

connexins, further arguing against the notion that they have redundant function [18,24,25]. 

Together, these observations suggest that pannexins have at least some distinct functions 

from connexins within tissues and therefore warrant further investigation. 

Due to its expression in many cell types, Panx1 is the best characterized and has been 

shown to be activated by multiple stimuli, including mechanical stimulation, caspase 

cleavage, extracellular ATP and K+, and membrane depolarization [26-29]. Panx1 has also 

been shown to regulate key cellular responses such as proliferation, differentiation and cell 

death mechanisms that are ultimately necessary for normal tissue development and 

function [27,30,31]. Consequently, it is no surprise that the role of Panx1 is beginning to 

be discovered, particularly with the generation of the Panx1-/- mouse [30,32,33]. However, 

the role of Panx1 in development, differentiation and function in many tissues remains 

unexplored, including that of the breast. While Panx1 has been detected in the mouse 

mammary gland and human breast as noted in NCBI’s gene expression Omnibus database 

(ID 1416379, ID 49755742, [34]), no other studies have examined the role of Panx1 in the 

context of normal mammary gland development and function. Thus, given the lack of 

studies on pannexins in the mammary gland, this literature review will turn its attention to 

the current understanding of connexins in the mouse and human mammary glands.   

1.3 The mouse mammary gland as a model of the 
human breast  

The human breast, similar to that of the mouse mammary gland, functions to provide both 

nutrition and passive immunological protection against pathogens during nursing. Both are 

composed of a bilayered epithelial network consisting of a single luminal layer surrounded 

by a layer of myoepithelial cells separated from the mammary stroma by a basement 

membrane [35,36]. However, while the non-pregnant rodent mammary gland consists 

entirely of a single ductal tree consisting of blunt ended ducts that develop alveolar buds 

in response to the estrous cycle within a mainly adipose rich mammary fat pad, the human 
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mammary gland contains 15-20 independent branching epithelial networks that begin as 

terminal duct lobular units composed of alveoli and ducts surrounded by fibrous connective 

tissue [35,37]. Importantly, both human and mouse mammary glands undergo extensive 

proliferation and secretory differentiation of epithelium as the breast develops into a 

secretory gland during lactation [35,38-40]. This process requires tight regulation of 

hormonal and growth factor cues as well as epithelial-epithelial and epithelial-stromal 

interactions, and direct cell-cell communication through gap junctions [35,38-40]. 

Therefore, it is not surprising that the human and mouse epithelial stem cell hierarchies 

share many parallels (reviewed in [41]). Ultimately, due to these similarities between the 

mouse and human mammary gland, the mouse mammary gland has become a useful model 

to further our understanding of the mechanisms associated with gland development and 

disease, particularly through our ability to genetically manipulate molecular functions by 

mutation or ablation [42,43].  

1.4 Mouse mammary gland development 

The development of the murine mammary gland begins with the development of the milk 

lines at embryonic day 10 [44]. By embryonic day 11.5, the milk lines develop into 5 pairs 

of mammary gland placodes which gives rise to mammary gland buds and ultimately a 

rudimentary ductal structure [40]. Following birth, this rudimentary structure develops 

isometrically with body weight until the onset of puberty [42]. The hormonal secretion of 

estrogen and growth hormone then drives the first main phase of development by 

orchestrating ductal elongation from proliferative structures known as terminal end buds 

that invade the surrounding stroma and bifurcate creating new primary branches. Together 

with secondary lateral side branching, these branches loosely fill the mammary gland fat 

pad [40]. The adult mammary gland continues to undergo additional tertiary branching in 

response to cyclical ovarian estrus cycles, further developing a highly branched epithelial 

network with the development of alveolar-like structures that cyclically regress until the 

onset of pregnancy [37].  

The second phase of mammary gland development occurs following the onset of pregnancy 

and is characterized by massive amounts of cell proliferation and tissue remodeling [38]. 

The gland undergoes extensive alveolar development to acquire a secretory lobuloalveolar 
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phenotype [45]. During early pregnancy, prolactin and progesterone are the main drivers 

of extensive branching of ducts and alveolar bud formation that continues during late 

pregnancy and into lactation [40]. As a result, the volume ratio of epithelial cells to 

adipocytes increases as the epithelial compartment expands and adipocytes undergo 

delipidation [46]. In parallel to the morphogenic changes in the pregnant mammary gland, 

luminal epithelial cells undergo differentiation as many genes involved in milk synthesis 

begin to be expressed during midpregnancy [46]. With the withdrawal of progesterone at 

parturition, the gland undergoes secretory activation as the mammary gland is set up as an 

exocrine gland to perform its main function to produce, secrete and deliver milk [47]. The 

gland functions to produce milk until weaning of the pups where the buildup of milk within 

alveoli acts as a trigger for the mammary gland to undergo involution. This two-step 

process is characterized by extensive cell death and remodeling that returns the mammary 

gland back to the adult gland state [48]. The first phase of involution is characterized by 

extensive cell death triggered by the activation of the LIF/Stat3 pathway while the second 

phase of involution is characterized by remodeling of the extracellular matrix, adipocyte 

differentiation and alveolar collapse [40]. 

1.5        Connexin expression in the rodent mammary gland  

1.5.1 Virgin mammary gland 

Up until about 2004, the majority of studies evaluating connexins in the rodent mammary 

gland focused on characterizing connexin expression, localization and regulation (Figure 

1.2). Gap junctions were first detected joining ductal epithelial cells in 3-9 week old 

mammary glands of mice [49]. These likely represented gap junctions made from Cx43 as 

the vast majority of studies agree that Cx43 is expressed in the basal epithelium and stroma 

and further, represents the major connexin expressed in the non-pregnant rodent mammary 

gland [50-54]. Cx43 is also reported to be transcriptionally upregulated in 5-6 week old 

virgin mice suggesting a role in pubertal mammary gland development [53].  
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Figure 1.2. Connexin expression throughout mouse mammary gland development. (A) 

Schematic rendering of Cx43 (green), Cx26 (red), Cx32 (blue) and Cx30 (yellow) 

expression throughout mammary gland development based on the body of evidence 

discussed in this review. (B) The first main phase of mammary gland development occurs 

through puberty as a rudimentary duct structure extends and branches throughout the fat 

pad. The virgin mammary gland epithelium contains luminal cells (brown) expressing low 

levels of Cx26, Cx30 and Cx32 (not shown) throughout virgin gland development. Luminal 

cells surrounded by myoepithelial cells (peach) connected by gap junctions composed of 

Cx43 (green) that are upregulated during puberty. The epithelium is embedded in the 

stroma that contains mainly adipocytes (clear), as well as fibroblasts (yellow) that express 

Cx43, separated by a basement membrane (dark blue). (C) The second main phase of 

development occurs following the onset of pregnancy as extensive lobuloalveolar 

development prepares the mammary gland to produce and deliver milk during lactation 

before the gland undergoes involution where extensive cell death and remodeling returns 

the gland to a pre-pregnant state. Cx26 and Cx30 are dramatically upregulated in luminal 

alveolar cells during pregnancy while Cx32 is upregulated following parturition during 

early lactation. By mid-lactation, Cx30 expression reverts back to levels expressed in the 

virgin mammary gland while this occurs for Cx32 at the onset of involution. Cx26 remains 

elevated throughout lactation and into the early stages of involution in luminal alveolar 

cells. In some instances, these connexins may selectively intermix to form heteromeric and 

heterotypic gap junction channels. Myoepithelial cells continue to express Cx43 gap 

junctions throughout pregnancy, lactation and involution. Each development stage is paired 

with a representative epithelial architecture of the mouse mammary gland as revealed by 

whole mount analysis using carmine alum staining.  
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Other connexins expressed between luminal cells of the nonpregnant mammary gland are 

Cx26, Cx32 and Cx30 [52,54]. However, these connexins remain poorly characterized 

based on low connexin expression, poor sensitivity of anti-connexin antibodies, variations 

in tissue processing and differences in mouse strains being investigated [51,55-57].  

1.5.2 Mammary gland during pregnancy 

Following the onset of pregnancy, the connexin expression landscape changes as Cx26 and 

Cx30 are upregulated and become the dominant connexins expressed within the mammary 

gland, suggesting a role in regulating mammary gland alveologenesis and differentiation 

[52,55]. In the case of Cx26, the majority of studies in mice support a modest upregulation 

by day 5 of pregnancy [51,55], a dramatic upregulation at day 9-10 of pregnancy 

[51,52,56], before peaking near parturition [50,51,55-57]. Cx30 appears to increase 

between days 10.5-12.5 of pregnancy before peaking in late pregnancy prior to parturition 

[11,52]. When Cx26 and Cx30 are coexpressed in mammary epithelium, they colocalize 

into the same gap junction plaque and form heteromeric channels in vitro [11]. In contrast, 

Cx32 expression remains low throughout pregnancy prior to extensive upregulation 

following the onset of lactation, suggesting a role in regulating the secretory phenotype of 

the gland through GJIC-dependent regulation of signaling molecules as opposed to 

regulating alveologenesis [52,56,57]. In myoepithelial cells, Cx43 protein expression 

undergoes a slight increase during pregnancy associated with a shift to more highly 

phosphorylated forms of Cx43 which are commonly associated with greater GJIC 

[52,58,59]. Changes in Cx43 correlate with the expression of MAP Kinases ERK1/2 and 

JNK in primary rat mammary epithelial cells and may be indicative of more functionally 

active gap junctions although this has not been demonstrated directly in vivo [60].  

1.5.3 Lactating mammary gland 

Following parturition, gap junctions between luminal epithelial cells lining alveoli become 

larger and less numerous than during pregnancy [49] as elevated and intermixed luminal 

Cx26, Cx30 and Cx32 channels continue to be colocalized [11,56,57]. The different 

temporal pattern of Cx26, Cx30 and Cx32 expression as the gland transitions from 

pregnancy through lactation promotes discrete heteromeric and homomeric gap junctions. 



12 

 

These gap junctions have distinct permeabilities of regulatory molecules IP3, cAMP and 

cGMP as well as differences in channel insensitivity to closure by the osmolyte taurine 

present during milk protein synthesis [11,51]. The physiological importance of this remains 

unknown and less studied due largely to a lag in the development of assays to measure 

channel activity in vivo. Following day 7 of lactation, Cx30 levels decrease to a pre-

pregnant state [11,52]. Most studies agree that both Cx26 and Cx32 remain high throughout 

lactation compared to the virgin gland, until the onset of involution [51,52,56,57,61]. In 

contrast, myoepithelial cells continue to readily express Cx43 in surrounding alveoli 

throughout lactation [49,58]. The majority of studies suggest that there is a lack of gap 

junctions between luminal and myoepithelial cells of alveoli [49,58]. However, more 

recent immunofluorescence based evidence suggests that Cx43 may be localized near 

myoepithelial-luminal cell contacts, suggesting possible heterocellular interactions [52]. 

However, as Cx43 has not been described to be expressed in luminal cells of mice it 

remains difficult to interpret which connexin expressed in luminal cells would be able to 

dock with Cx43 in myoepithelial cells. Electron microscopy studies may best answer 

whether gap junctions are present between the luminal and myoepithelial cells of alveoli.   

1.5.4 Involuting mammary gland 

Unlike lactation, our knowledge of the expression of connexins during involution is 

limited. During the first 48 hours of involution, large gap junctions between luminal cells 

of alveoli, similar to those found in lactating mice, are present [49]. These gap junctions 

likely represent Cx26 as Cx32 levels drop dramatically following the onset of involution 

[51]. Cx43 also appears to be expressed and has been described to increase between 6-48 

hours in the involuting mammary gland following weaning of the pups [53]. However, both 

Cx43 and Cx26 return to the prepregnant state of expression following 1 week of gland 

involution [50,52,55].  

1.6 Expression of connexins in the human breast 

Unlike that of the rodent gland, knowledge of connexin expression in the human breast is 

currently restricted to the nonpregnant adult (Figure 1.3) [50,62-66]. Spatial and temporal 

connexin expression in human breast development remains under-studied due to the 
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difficulty in obtaining pubertal, pregnant and lactating human samples. Similar to that of 

the rodent gland, Cx43 is readily detected in the non-pregnant breast localizing mainly with 

the myoepithelial marker keratin14 and forming gap junctions between basal cells of both 

the major ducts and lobules [50,62-66]. In addition, sparse Cx43 gap junction plaques 

between luminal cells have been reported [64,65]. This raises the potential for Cx43 gap 

junctions between myoepithelial and luminal cells although this is likely a rare event based 

on a lack of evidence for luminal/myoepithelial gap junctions at the ultrastructural level 

[64,65]. In addition, Cx26 has been localized between luminal epithelial cells [62,65]. 

Cx26 expression is likely low and its expression may reflect dynamic hormonal variation 

due to monthly cycles or interpatient variability as many studies have failed to detect Cx26 

in ducts or lobules based on immunolabelling and electron microscopy [50,63,65,66].  

1.7 Connexins in mouse mammary gland 
development 

With the development of genetically modified mice expressing either loss-of-function 

connexin mutants or lacking a specific connexin (Table 1.1), the depth and understanding 

of connexins in the mammary gland has increased but remains limited by the relatively few 

in vivo studies that have been reported. The sections below highlight the important stage-

specific roles of connexins in gland development and function. 

1.7.1 Embryonic mammary development 

Embryonic mammary gland development is mediated by mostly local signaling through 

epithelial-stromal interactions suggesting a possible role for gap junctions in this process 

[67]. To date, no study has evaluated connexin expression in prenatal mammary gland 

development which is not surprising given that the majority of gland development occurs 

after birth [68]. However, a limited number of indirect studies suggest that connexins are 
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Figure 1.3. Connexin expression in the non-pregnant human breast. (A) Alveoli (blue) 

are connected to openings at the nipple by multiple converging duct systems (yellow). (B) 

The mammary epithelium consists of luminal cells (brown) connected by gap junctions 

composed of Cx26 (red), surrounded by myoepithelial cells (peach) connected by Cx43 

(green) gap junctions. The epithelium is separated by a basement membrane (dark blue) 

from the connective tissue containing fibroblasts (yellow) linked by Cx43 gap junctions. 
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Table 1.1 Genetically-modified mice used to evaluate the role of connexins in the 

mammary gland. 

Mouse Line Background (DNA;ES 

cell;Blastocyst;Cross) 

Modification Mammary Gland 

Phenotype 

Reference 

Gja1+/-  129 SV; 129 R1; 

C57BL/6 

Loss of one allele 

of Cx43 

No defect reported [7] 

Gja1+/Gja5 129 SV; HM1; 

C57BL/6; C57BL/6 

Cx43 allele 

replaced with 

Cx40 

Normal 

development and 

function 

[78] 

Gja1+/Gjb2 129 SV; HM1; 

C57BL/6; C57BL/6 and 

Flp 

Cx43 allele 

replaced with 

Cx26 

Reduced branching 

of ductuli 

[79] 

Gja1+/Gjb1  129 SV; HM1; 

C57BL/6; C57BL/6 

Mammary transplant 

into cleared fat pads of 

nude mice 

Cx43 allele 

replaced with 

Cx32 

 

Normal gland 

development  

 

[80] 

  Gja1+/Gjb1  129 SV; HM1; 

C57BL/6; C57BL/6 

Cx43 allele 

replaced with 

Cx32 

Milk ejection defect [78] 

Gja1+/G60S  ENU mutagenized 

C3H/HeJ; FVB;C3; 

C57BL/6 

Point mutation in 

the  Gja1 gene 

causes G60S 

substitution in one 

allele 

Virgin – delayed 

ductal and stromal 

development 

Lactation – milk 

stasis and defect in 

milk ejection 

[54,81] 

Gjb1-/-  BALB/c; 129 SV J1; 

C57BL/6; C57BL/6 

Loss of Cx32 Ductal elongation 

and branching 

normal 

[80] 

Gjb6-/-  129 SV; HM1; 

C57BL/6; C57BL/6 

Loss of Cx30 Fertile, lactate; no 

rigorous assessment 

reported 

[82] 

Gjb2fl/fl x 

MMTV-cre  

Gjb2fl/fll mice– BALB/c; 

HM1; C57BL/6; 

C57BL/6 

MMTV-cre mice – Not 

Described 

Conditional 

deletion of Cx26 

prior to birth 

Virgin – normal 

development 

Pregnancy - 

increased apoptosis 

and decreased 

alveologenesis 

[80] 

Gjb2fl/fl x  

WAP-cre  

Gjb2fl/fll mice – BALB/c; 

HM1; C57BL/6; C57BL/6 

WAP-cre mice – Not 

Described 

Conditional 

deletion of Cx26 

~D17 of 

pregnancy 

Normal 

development and 

function 

[80] 
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not critical mediators of this process. The strongest argument for this stems from the fact 

that all Cx43, Cx26, Cx30 and Cx32 genetically-modified mice where the connexin is 

ablated or mutated proceed to develop either some kind of a rudimentary mammary gland, 

or exhibit no gland defects at all (Table 1.1). An obvious explanation for this may be that 

the impairment or loss of one connexin is compensated by another during this stage of 

development. Alternatively, another connexin family member may be expressed that is not 

typically expressed at a similar stage of development. No evidence exists for either of these 

two possibilities. In fact, adult stem/progenitor cells isolated from human mammoplasty 

[69,70] or from the bovine mammary gland [71] were found to lack GJIC, inferring that 

stem/progenitor cells in the mammary gland during embryogenesis may also lack GJIC 

although a more detailed assessment is needed.  

1.7.2 Virgin mammary gland 

Cx43 is the most highly expressed connexin in the virgin mammary gland and is reported 

to be upregulated during puberty [53]. Hormonal control of ductal elongation at puberty is 

driven by estrogen and growth hormone signaling. Estrogen receptor alpha null (ERαKO) 

and growth hormone receptor null (GHRKO) mice both exhibit absent or impaired ductal 

elongation, respectively, without affecting rudimentary gland growth prior to puberty 

[72,73]. Although estrogen, growth hormone, as well as hormone insulin like growth factor 

1 have all been implicated in regulating the expression of Cx43 in other in vitro models, it 

still remains unclear whether these hormones regulate Cx43 in the pubertal mammary 

gland [74-76]. Importantly, genetically modified mice where Cx43 is expressed but not 

fully functional have revealed impaired ductal phenotypes similar to ERαKO or GHRKO 

mice (Table 1.1).  

One mutant mouse line that has proven to be insightful in our understanding of the 

mammary gland is Gja1+/G60S (Cx43G60S/+) mutant mice. These mice mimic the rare, mainly 

autosomal dominant human developmental disease known as oculodentodigital dysplasia 

(ODDD). ODDD is linked with >70 mutations in GJA1 gene that gives rise to mainly loss-

of-function Cx43 mutants that yield pleiotropic phenotypes in humans including ocular 

impairments, craniofacial abnormalities, tooth defects and syndactyly of the digits [21,77]. 

These mice harbor a systemic autosomal dominant mutation in the gene encoding Cx43 



18 

 

that yields a glycine to serine substitution at position 60, decreasing total Cx43 function to 

only <30% of normal levels [83]. Evaluation of 4-10 week virgin mutant mice revealed a 

severe delay in ductal elongation as well as stromal impairment compared to control mice 

in prepubertal, pubertal and adult mice, highlighting a role for Cx43 in regulating epithelial 

morphogenesis and stromal development in the virgin gland [54]. However, much remains 

unanswered concerning Cx43 and virgin ductal development. As Cx43 is expressed in both 

the stromal and epithelial compartment in mice, it remains unknown as to which 

compartment, if not both, must maintain normal expression of Cx43. Moreover, further 

studies are needed to define the level of Cx43 required for normal ductal development and 

if this is dependent on a GJIC. Ultimately, additional in vivo studies are needed to clarify 

the role of Cx43 in virgin ductal development.  

In the case of Cx26 and Cx32 which are normally expressed in mammary luminal cells, it 

is not surprising that mammary gland ablated Gjb2 and global Gjb1 null mice exhibit 

normal virgin gland architecture as their expression is low in the non-pregnant mammary 

gland [80]. Similarly, Cx30 appears dispensable both in the virgin gland and the developing 

gland, as Gjb6 null mice are fertile and able to lactate suggesting that a ductal network is 

formed during adolescence, although a detailed evaluation of the virgin mammary gland in 

Gjb6 null mice has not been performed [82]. Taken together, Cx43 appears to regulate 

ductal elongation and stromal development in the virgin mammary gland. 

1.7.3 Mammary gland during pregnancy  

Following the onset of pregnancy, Cx26 upregulation is likely driven by prolactin signaling 

as transcript profiling of mammary glands from prolactin receptor knockout mice 

(PrlRKO) revealed a downregulation of Cx26 compared to control mice during early 

pregnancy [84]. In support of this, a binding site for Stat5, a downstream mediator of 

prolactin signaling, has been reported in the promoter of GJB2 [85]. As Cx30 is also 

upregulated during pregnancy and colocalizes with Cx26 it is likely that it is also regulated 

by prolactin. Indeed, Talhouk et al. observed that exogenous administration of prolactin 

and the corticosteroid dexamethasone were able to upregulate Cx30 expression in mouse 

mammary epithelial cells in vitro [52].  Thus, both Cx26 and Cx30 appear to be regulated 

by the hormone prolactin.  
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Apart from prolactin signaling, Cx26 has also been shown to be upregulated by the 

administration of exogenous human chorionic gonadotropin (hCG) in rat mammary glands 

and ex vivo organ culture, through downstream activation of Sp transcription factors 

[86,87]. However, as hCG treatment coincided with an increase in both 17β estradiol and 

progesterone, it remains unclear how each hormone individually affects the levels of Cx26 

or how the presence of multiple hormones alters the expression of Cx26 [86]. Importantly, 

both estrogen and progesterone have been reported to regulate Cx26 expression in the 

endometrium, suggesting that ovarian steroidal hormones may also regulate Cx26 in the 

mammary gland [88]. It remains unknown if Cx30 can also be hormonally regulated by 

hCG and ovarian steroids. Further studies are needed to understand hormonal regulation of 

Cx26 and Cx30, particularly in the more physiological context of multiple hormones. 

Cx26 was first identified to be important in alveolar development during pregnancy 

following conditional deletion of Cx26 prior to birth by crossing Gjb2fl/fl mice with mice 

expressing Cre under the mouse mammary tumor virus promoter (MMTV-cre;Gjb2fl/fl) 

[80]. These mice exhibited impaired alveologenesis and reduced ability of the dams to feed 

their pups as a result of increased apoptosis [80]. As such, the working model suggested 

that, in response to prolactin and progesterone driven alveologenesis, Cx26 is upregulated 

to promote epithelial cell survival within the pregnant mammary gland [80]. However, in 

the same study another conditionally ablated Cx26 mouse model was created by crossing 

Gjb2fl/fl mice with mice expressing Cre under the whey acidic acid (WAP) promoter (WAP-

cre;Gjb2fl/fl), yielding Cx26 silencing during late pregnancy. Unexpectedly, these mice 

revealed normal gland development and function, suggesting that Cx26 is important during 

early pregnancy [80]. While these results are intriguing, the fact that a large human 

population with syndromic and non-syndromic deafness express systemic loss of function 

mutations in the GJB2 gene that encodes Cx26 but have no reports of breast feeding 

impairments argues against the translatability of these findings. In addition, MMTV-cre 

mice that have been used to generate the MMTV-cre;Gjb2fl/fl mice have been reported to 

have impaired alveologenesis in the mammary gland, further supporting a need for 

additional in vivo studies to clarify the role of Cx26 in the pregnant mammary gland. 

Similarly, the role of Cx30 is not clearly defined during pregnancy as a detailed evaluation 

of the mammary gland in Gjb6-/- mice is lacking.  
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Apart from extensive lobuloalveolar development that occurs in the mammary gland during 

pregnancy, the gland must also undergo differentiation as it prepares for secretory 

activation. To date, reduced or ablated Cx26, Cx32, Cx43 or Cx30 function suggests that 

loss of one connexin does not impair epithelial differentiation. For example in MMTV-

cre;Gjb2fl/f mutant mice, evaluation of numerous markers of epithelial differentiation 

including β-catenin, keratin 5, smooth muscle actin, E-cadherin and the NaKCl 

cotransporter 1 indicated that the gland differentiated normally, despite reduced 

lobuloalveolar development, suggesting that Cx26 is not required to maintain normal 

epithelial differentiation [80]. Similarly, loss of Cx43 function in Cx43G60S/+ mice was not 

associated with changes in the expression of E-cadherin, P-cadherin, β-catenin, occludin 

or claudin 1, molecules involved in tight and adherens junctions [81]. Milk was produced 

in both of these mouse models as well as in Gjb1-/- and Gjb6-/- mutant mice, suggesting 

normal secretory differentiation of the gland and that no single connexin is essential for the 

production of milk, although a more rigorous assessment has not been performed [80-82]. 

Taken together, it is apparent that the loss of one connexin does not critically impede 

normal epithelial and secretory differentiation of the gland but that the loss of Cx26 does 

impair normal alveogenesis. 

1.7.4 Lactating mammary gland 

Following parturition, Cx32 is dramatically upregulated and appears to be under the control 

of prolactin signaling, as both PrlRKO and Stat5 null mice failed to express Cx32 during 

lactation [89]. Importantly, as both Cx26 and Cx30 are also suggested to be upregulated by 

prolactin but exhibit distinct temporal regulation compared to that of Cx32, additional 

hormonal or local mechanisms likely also influence the expression of Cx32. The expression 

of Cx32 and Cx26 during lactation is believed to function through the diffusion of ionic 

and molecular gradients, allowing for coordinated secretion of adjacent cells [61]. Despite 

this, both Gjb1 null and mammary gland ablated Gjb2 mice show histological evidence of 

milk and lipid droplets in the lumen of alveoli, suggesting normal secretion of the gland 

[80]. However, the reduction of Cx43 function in the lactating gland of Cx43G60S/+ mice 

led to the presence of large cytoplasmic lipid droplets in luminal cells that have previously 

been implicated in delayed secretory activation [46,81]. As a result, only myoepithelial 
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Cx43 and not luminal cell expressed Cx26 and Cx32 have been implicated in regulating 

the luminal secretory phenotype of the mammary gland, albeit only when Cx43 function is 

greatly impaired.  

Apart from the production and secretion of milk, the lactating mammary gland must 

coordinate the contraction of myoepithelial cells to propel milk from the alveoli through 

the converging duct system towards the nipple. Cx43 was first suggested to contribute to 

the coupling of myoepithelial cells during milk ejection based on a shift in the 

phosphorylation state of Cx43 in the myoepithelial cells during lactation [52,58]. However, 

the hormonal control regulating the Cx43 phosphorylation shift and its increased 

expression is unknown.  Likely candidates include estrogen and oxytocin as these have 

been shown to regulate the levels of Cx43 in the uterus and mouse embryonic stem cells, 

respectively [90,91].  

It was not until the assessment of knockin Cx43 mouse models in which one allele of Gja1 

was replaced by Gjb1 (Gja1+/Gjb1), Gjb2 (Gja1+/Gjb2) or Gja5 (Gja1+/Gja5) was evidence 

obtained of a role for Cx43 in milk ejection in vivo.  For example, mammary glands of 

lactating Gja1+/Gjb1and Gja1+/Gjb2 mice were unable to feed their pups despite evidence of 

milk production and secretion [78,79]. Surprisingly Gja1+/- mice have no reported defect 

in mammary gland development or function, thus it may be the additional expression of 

Cx26 and Cx32 in myoepithelial cells, rather than the 50% loss of Cx43 function, that is 

ultimately responsible for the gland defects [7]. Although not directly demonstrated, 

myoepithelial cells engineered to express Cx26 and Cx32 could allow for gap junctions 

between luminal and myoepithelial cells, creating a gap junction channel mediated 

exchange that does not normally exist [92]. Conversely when Cx43 is replaced with Cx40 

in Gja1+/Gja5 mice, there is no luminal/myoepithelial exchange possibility as Cx40 in the 

myoepithelial cells is unable to form heterotypic channels with the Cx26, Cx30 or Cx32 

found in luminal cells and these mice continue to lactate and feed their pups [78].  

The role for Cx43 in milk ejection was established later as the reduction of Cx43 by 70% 

in Cx43G60S/+ mice led to a defect in the ability of the mammary gland to respond to 

oxytocin, despite normal expression of the oxytocin receptor [54]. Thus, it was concluded 
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that Cx43 functions to coordinate synchronous contractions of myoepithelial cells for 

proper milk ejection [54]. This was corroborated by others where Wnt5a overexpression in 

human MCF10A cells led to an increase in Cx43 phosphorylation at serine 368 and a 

decrease in GJIC, suggesting that Wnt5a negatively regulates Cx43 function [93]. Indeed, 

Wnt5a overexpression in the mammary glands of lactating mice resulted in a similar 

inability of these mice to respond to exogenous oxytocin, further supporting a critical role 

of Cx43 in coordinating timely and proper milk ejection [93]. Oxytocin signaling is 

mediated through the oxytocin receptor coupled to Gαq11 and phospholipase C activation 

triggering the release of Ca2+ from intracellular stores [94]. Ca2+ has previously been shown 

to pass through Cx43 gap junctions making it interesting to speculate that Cx43 functions 

via GJIC dependent mechanisms to coordinate synchronous contraction via transfer of Ca2+ 

[10]. However, further in vivo studies are needed better define GJIC-dependent versus 

independent role for Cx43 in lactating mice. In summary, the evidence to date points to a 

critical role for Cx43 in coordinating myoepithelial contraction and milk ejection. 

1.7.5 Involuting mammary gland 

Only Cx26 and Cx43 are described as being expressed during the first 48 hours of 

involution. To date, no evidence exists that would suggest connexins are critical for the 

mammary gland to undergo involution. However, evidence against a role for Cx26 in 

involution exists. Gjb2 ablation did not initiate precocious involution of the gland despite 

an increase in the number of apoptotic cells during pregnancy as Stat3 phosphorylation, a 

marker and critical regulator of involution, did not increase [80].  

1.8 Connexins and pannexins in cancer 

Assessment of gap junctions in the mammary gland using genetically-modified mice has 

established a role for Cx43 in ductal elongation during puberty, a role for Cx26 in 

alveogenesis during pregnancy and a role for Cx43 in milk ejection during lactation. While 

additional in vivo studies are needed to clarify the roles of connexins in mammary gland 

development and function, there is an emerging foundation to advance our understanding 

of connexin dysregulation in breast pathologies, most notably breast cancer. Tumors 

frequently take advantage of proteins or signaling pathways critical in organ 
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morphogenesis during both embryonic and post-natal development, as recapped by the 

many reviews written linking the topics [95-97]. Therefore, it is no surprise that connexins 

are frequently dysregulated in the tumorigenic process of many cancers. This occurs early 

in the tumorigenic cascade in which connexins most frequently yield a tumor suppressive 

role in tumorigenesis as reviewed by many [98-100]. Tumor suppressors function to subdue 

cell proliferation, promote further cell differentiation and/or activate cell death mechanisms 

to prevent neoplastic cell transformation [101]. Ultimately, an increase in the likelihood of 

cancer occurs following the partial or complete inactivation of genes that govern these 

pathways [101].  

While it currently remains unknown if connexins represent true tumor suppressors, four 

lines of evidence argue for this critical role in tumorigenesis as outlined by Naus and Laird 

[99]. First, connexins and/or gap junctions are typically downregulated in tumor cell lines, 

as well as in rodent and human tumors compared to normal healthy tissue/cell controls 

[64,98,102]. Secondly, chemicals and oncogenes that promote tumor onset and progression 

usually affect gap junction channels [103]. Thirdly, ectopic expression of connexins 

frquently suppresses cell and tumor growth and promotes a more differentiated phenotype 

[104,105]. Finally, and perhaps most convincingly, many gene knockout studies in mice 

observe an increase susceptibility to tumor onset mainly with the use of carcinogenic agents 

[106,107]. While these studies provide extensive evidence for connexins as tumor 

suppressors, this role is complicated by reports of connexin upregulation at later stages of 

tumor progression in many cancers, including breast cancer, suggesting a potential role to 

facilitate tumor progression [108-110].  

Similarly, despite the relatively new field, Panx1 has also been described as both a tumor 

suppressor and a tumor facilitator. Panx1 was originally reported as a putative tumor 

suppressor based on reduced expression in C6 glioma cells compared to primary rat 

astrocytes. Furthermore, when overexpressed in C6 glioma cells Panx1 reduced cell 

proliferation, migration and anchorage independent growth while decreasing tumor size in 

vivo in a xenograft tumor model [111,112]. This role may extend to other cancers as Panx1 

was found to be reduced in human basal and squamous carcinomas compared to normal 

skin controls [113]. Alternatively, knockdown of Panx1 in aggressive BL6 melanoma cells 
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led to a decrease in cell migration, conversion to a more melanocytic phenotype and 

reduced tumor size when injected into chick embryos [114]. Most interestingly, a PANX1 

nonsense mutation was recently identified in human metastatic breast cancer cell lines that 

yielded a truncated Panx1 mutant (Panx11-89) at position 90 of the 426 amino acid 

polypeptide [115]. Panx11-89 increased Panx1 channel ATP release when co-expressed with 

wild-type Panx1, which was shown to promote metastatic cell survival during intravascular 

invasion of the lung [115]. This ultimately suggests that Panx1 may act as tumor facilitator 

in breast cancer metastasis, although the role of Panx1 in the primary tumor remains 

unknown. As the mechanisms and tumor stages associated with connexin and pannexin 

tumor suppressive and tumor facilitator function remain poorly understood, additional 

studies, particularly in vivo, are needed to help clarify the role of these large pore channels 

in tumor onset, progression and metastasis. As the role of Panx1 in breast cancer has only 

been investigated in one study, the remaining part of this chapter highlights our current 

understanding of the role of Cx43 and Cx26 in breast cancer.        

1.9 Connexins in breast cancer 

Breast cancer, like other cancers, is a disease characterized by the disruption of cellular 

homeostasis within the normal tissue environment that is caused by genetic mutations 

and/or epigenetic dysregulation [116]. Clinically, breast cancer progression is believed to 

develop from abnormal mammary hyperplasia into a primary tumor, which gains the 

potential to subsequently invade into the surrounding connective tissue before 

disseminating into the vasculature or lymphatics and ultimately developing metastases to 

secondary sites. The exact mechanisms underlying regulation of these processes are very 

complicated and can differ significantly between patients that appear to have near identical 

disease [117]. This heterogeneity suggests that no single pathway or histological subtype 

presents the same in all cases, leading to complications and difficulties in identifying the 

most effect therapeutics [117]. Conventional cancer chemotherapeutics have proven 

incompletely effective in treating the disease, frequently yielding significant side effects 

and highlighting a need for novel agents [118]. As a result, a push towards more targeted 

therapeutics has been made in recent years [116]. Connexins continue to remain on the 

radar as therapeutic targets in potentially new combination therapies. 
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Both Cx26 and Cx43 were originally classified as a tumor suppressors in breast cancer 

following differential mRNA expression in cell lines derived from primary and metastatic 

tumors through subtractive hybridization [102,119]. Connexins are typically considered 

tumor suppressor genes in the context of breast cancer based on their downregulation in 

human breast cancer cell lines, mediated in part by methylation, as opposed to mutation or 

deletion [119,120]. Immunohistochemical analysis of human breast tumor samples 

typically reveals reduced connexin gap junctions, and presumably GJIC, in primary tumors 

compared to matched normal or benign breast lesions [64,66,121,122]. While these results 

do not appear to be specific to a defined histological subtype, loss of Cx26 appears to be 

more frequent in epithelial-derived breast lesions, while mesenchymal, fibroepithelial, 

myoepithelial and tumors of the nipple retain connexin expression more similar to the 

normal breast (Table 1.2).     

However, several key findings challenge the tumor suppressive role of connexins in breast 

cancer. First, increased connexin expression has been reported in higher grade primary 

tumors, which in the case of Cx43 may represent altered Cx43 phosphorylation states 

[63,123]. Secondly, connexin expression has been reported to be increased in lymph node 

metastases compared to matched primary tumors suggesting a role for Cx43 in facilitating 

breast cancer metastasis [124]. Finally, correlation of connexin expression with breast 

cancer patient outcome has been associated with poor survival and an increase in 

recurrence [125,126], although this certainly is not always the case [127]. Therefore, the 

potential dual role of connexins as tumor suppressors and tumor facilitators represents a 

significant roadblock to the design and development of targeted therapeutics against these 

channels. The following sections represent current evidence of the tumor suppressive and 

tumor facilitating roles of connexins in regulating breast cancer as they relate to distinct 

tumor properties or hallmarks of cancer [128].        
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Table 1.2. Connexin expression in human breast cancer primary tumors based on 

histological subtype.   

Primary Tumor 

Histological 

Classification 

Cx26 Tumor Expression 

Intracellular (I) 

Cell Surface (CS) 

Cx43 Tumor Expression 

Intracellular (I) 

Cell Surface (CS) 

Ref. 

Epithelial Tumors    

Ductal Carcinoma In 

Situ 

 

 

3/4 (I) 

N/A 

N/A 

N/A 

 

N/A 

0/4 

1/4 (I) 

4/11 (Mostly I) 

17/17 - Phospho-Cx43 Ab 

(Weak/None;Pan-Cx43 Ab) 

24/93  

[63] 

[64] 

[122] 

[123] 

 

[129] 

Lobular Carcinoma In 

Situ 

0/1 

N/A 

0/1 

5/5 -Phospho-Cx43 Ab 

(Weak/None;Pan-Cx43 Ab) 

[63] 

[123] 

Tubular Carcinoma N/A 0/4 [123] 

Mucinous Carcinoma 0/1 

 

2/4 (I) 

1/1 (CS) 

5/5 -Phospho-Cx43 Ab 

N/A 

[63] 

[123] 

[126] 

Apocrine Carcinoma 0/1 N/A [126] 

Invasive Breast 

Cancer No Special 

Type 

15/27 (Mostly I) 

27/51 (I) 

14/27 (Mostly I) 

42/51 (Mostly I) 

[63] 

[124] 

Invasive Ductal 

Carcinoma 

0/6 

N/A 

N/A 

N/A 

 

70/138 (I) 

N/A 

0/6 

0/21 

26/29 (I) 

21/21 -Phospho-Cx43 Ab 

(Weak/None;Pan-Cx43 Ab) 

N/A 

62/182 

[66] 

[64] 

[122] 

[123] 

 

[126] 

[129] 

Invasive Lobular 

Carcinoma 

0/1 

N/A 

N/A 

 

6/9 (I) 

0/1 

0/7 

5/5 -Phospho-Cx43 Ab 

(Weak/None;Pan-Cx43 Ab) 

N/A 

[66] 

[64] 

[123] 

[126] 

Mesenchymal 

Tumors 

   

Breast Sarcoma N/A 1/1 [123] 

Myoepithelial 

Tumors 

   

Adenomyoepithelioma 1/1 (I) 1/1 (CS) [63] 

Fibroepithelial 

Tumors 

   

Fibroadenoma 0/3 

1/9 (I) 

3/3 (CS) 

9/9 (CS) 

[66] 

[63] 

Phyllodes Tumor  

Benign 

Malignant 

 

1/1 (I) 

N/A 

 

1/1 (CS) 

1/1  

 

[63] 

[123] 

Tumors of the Nipple    

Paget Disease N/A 3/3 –Phospho/Pan-Cx43 Ab [123] 
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1.9.1 Proliferation and cell growth 

Numerous in vitro studies have observed that ectopic Cx26 or Cx43 expression in breast 

cancer cell lines leads to a decrease in 2D and 3D cell growth rate compared to controls 

[130-135]. Knockdown strategies using siRNA and shRNA targeting Cx43 in benign breast 

cancer cell lines led to increased cell population growth compared to untransfected control 

cells, supporting Cx43 as a suppressor of cell proliferation [135,136]. Most convincingly, 

breast cancer cells ectopically expressing Cx43 or Cx26 had reduced mammary tumor 

volume when orthotopically injected into mice [130,131]. This is supported by a significant 

negative correlation between Cx43 and the proliferation marker Ki67 in human tissue 

microarrays, suggesting that connexins regulate proliferation of breast cancer cells in vivo 

[127]. Interestingly, connexin regulation of cell proliferation can be achieved by a GJIC-

independent mechanism, as the overexpression of Cx43 or Cx26 in mainly GJIC-deficient 

breast cancer cell lines suppressed cell growth and proliferation without an increase in 

GJIC [131,135,137,138]. As a potential mechanism for GJIC-independent inhibition of cell 

growth, ectopic Cx43 expression reduced the levels of the growth factor receptor fibroblast 

growth factor receptor 3 (FGFR3), which may in turn reduce the effects of paracrine pro-

tumorigenic growth signals [131]. Importantly, the role of Cx43 in regulating cell 

proliferation may be superseded in the cellular environment by more oncogenic proteins, 

such as the epithelial-mesenchymal transition (EMT) marker Twist, as knockdown of Cx43 

in human mammary epithelial cells over-expressing Twist did not affect proliferation in 

2D culture [125].  

When connexins are assessed for their ability to regulate breast cancer cell proliferation 

without attachment to a solid substrate, via a soft agar anchorage-independent growth 

assay, the role of connexins is not so clear. Ectopic expression of Cx43 or Cx26 in MDA-

MB-231, MCF-7 and/or MDA-MB-435 human breast cancer cells had reduced colony 

forming ability in soft agar compared to control cells [132,133,138], while in a similar 

assay using Cx43 knockdown approach in metastatic 4T1 murine breast cancer cells, no 

difference was observed compared to controls [125]. Although it remains unclear whether 

these opposing effects are cell type specific, the vast majority of studies support a tumor 
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suppressive role for connexins in regulating cell proliferation and anchorage-independent 

cell growth. 

1.9.2 Apoptosis  

While connexins appear to regulate cell proliferation in breast cancer, less is known about 

their role in regulating cell death. Connexins have been suggested to regulate apoptotic 

mechanisms in breast cancer. Intracellular Cx26 or Cx43 expression had a positive 

correlation with the expression of the pro-apoptotic protein Bak in human breast cancer 

biopsies, suggesting that connexins may be associating with apoptotic signaling pathways 

[121]. In support, exogenous Cx43 expression in breast cancer cells had increased caspase3 

activity, a marker of apoptosis, upon retinoic acid treatment compared to controls [134]. 

However, as ectopic expression of connexins in breast cancer cell lines do not typically 

drive apoptosis, it appears that connexins are much more intimately associated with the 

regulation of cell proliferation than apoptosis [135]. 

1.9.3 Angiogenesis 

Intimately associated with tumor growth is the ability of a tumor to feed itself by 

stimulating the growth of new blood vessels. Connexins have also been implicated in 

reducing angiogenesis that in turn may suppress the growth of primary breast tumors.  

Endothelial migration and tubule formation were significantly reduced when endothelial 

cells were grown in conditioned media collected from breast cancer cells ectopically 

expressing Cx26 or Cx43 in 2D and 3D cultures [133]. These results suggest that connexin 

expression in breast cancer cells may suppress either the release of angiogenic factors, such 

as vascular endothelial growth factor (VEGF), or promote the release of anti-angiogenic 

factors, such as  thrombospondin1 (TSP-1). Indeed, this notion is supported by the 

observation that ectopic Cx26 expression in breast cancer cells increased the expression of 

TSP-1, while silencing of Cx43 resulted in decreased expression of the anti-angiogenic 

protein TSP-1 with a concomitant increase in pro-angiogenic VEGF [133,136,137].  
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Figure 1.4. Current model of connexin expression and function in regulating breast 

cancer progression. Connexin expression is differentially regulated throughout breast 

cancer progression to inhibit/acquire tumor suppressive (Green) or facilitating (Red) 

effects of gap junction channels. Following breast cancer onset, connexins are frequently 

downregulated or localized to the cytoplasm as tumors inhibit the proposed tumor 

suppressive role of connexins in proliferation, angiogenesis and differentiation. As breast 

cancer gains the ability to invade the surrounding connective tissue, loss of GJIC and 

connexin expression may be permissive to the acquisition of a more migratory and invasive 

phenotype. However, connexin expression may be upregulated at later stages of breast 

cancer progression facilitating breast cancer extravasation and metastasis. Adapted by 

permission (Appendix 2) from Macmillan Publishers Ltd: Nature Reviews Cancer [99], 

copyright 2010.   
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Mechanistically, Cx26 appears to regulate angiogenesis through both GJIC-dependent and 

-independent mechanisms as both wild-type Cx26 and GFP-Cx26, a GJIC-deficient 

chimeric mutant with GFP fused at the amino terminus, both regulated tumor angiogenesis 

genes as assessed through DNA array [137]. Importantly, these results were extended in 

vivo using a primary xenograft tumor model, revealing significantly reduced 

vascularization in tumors derived from breast cancer cells that ectopically expressed Cx43 

compared to control cells [133]. To date, connexins appear to suppress a pro-angiogenic 

phenotype in breast cancer cell lines both in vitro and in vivo, however the translatability 

of these results to human breast tumors remains unknown.   

1.9.4 Differentiation and epithelial-mesenchymal transition  

Typical of tumor suppressors, ectopic expression of Cx43 and/or Cx26 has been shown in 

numerous studies to induce partial re-differentiation of breast cancer cell lines to resemble 

more spherical duct-like acini in 3D cultures [130,133,135]. This mechanism may not be 

dependent on GJIC as over-expression of connexins in breast cancer cells, without a 

concomitant increase in GJIC, promoted proper organoid polarity as assessed by the 

localization of β1 integrin and collagen IV [133]. As a result, connexins appear to promote 

a more differentiated phenotype, a mechanism likely to protect carcinoma cells against the 

acquisition of a more invasive and migratory mesenchymal phenotype during the 

epithelial-mesenchymal transition (EMT) that often occurs as part of cancer metastasis. 

Indeed, connexin overexpression in breast cancer cell lines has been shown to induce the 

expression of the epithelial marker cytokeratin18 and reduce the expression of the 

mesenchymal markers vimentin and N-cadherin, suggesting that connexins play a role in 

regulating EMT processes by promoting a more epithelial phenotype [133,134]. Therefore, 

evidence to date suggests that connexins act as tumor suppressors to promote 

differentiation of a more epithelial phenotype.  

1.9.5 Migration and invasion 

Following growth in the primary tumor, cancer cells ultimately develop the capacity to 

invade into surrounding tissues. Invasion in part requires tumor cells to tip the balance 

between secreted proteolytic enzymes, such as matrix metalloproteinases (MMPs), and 
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their inhibitors, tissue inhibitors of metalloproteinases (TIMPs), as well as gain the ability 

to migrate [139]. Typically, ectopic expression of Cx26 and Cx43 reduces cell migration 

and invasion of human breast cancer cells through transwell chemotaxis assays 

with/without Matrigel coating [132,133,138]. Similarly, Cx43 knockdown in breast cancer 

cells, either through siRNA or overexpression of the transcription factor Fra-2, leads to 

increased cell migration and invasion compared to control cells [136,140]. Connexin 

regulation of cell migration and invasion is not GJIC-dependent, at least in the context of 

Cx26, as both ectopic expression of a Cx26 GJIC-incompetent variant or a Cx26 mutant 

that remained intracellular reduced cell migration similar to wild-type Cx26 [138]. 

Mechanistically, connexin regulation of invasion may be through control of extracellular 

matrix remodeling, as overexpression of Cx26 in breast cancer cells decreased the 

expression of MMP-9 while increasing the expression of TIMP-1 [133,138]. However, 

unlike in vitro models the role of connexins during invasion of human breast cancer cells 

in patients remains unclear. Cx43 expression was reduced in ductal carcinoma in situ with 

microinvasion compared with biopsies of pure ductal carcinoma in situ, suggesting a role 

for Cx43 in the initial stages of invasion [129]. In addition, since connexin expression has 

also been reported to be upregulated in invasive breast cancer lesions, it is clear that 

additional models are needed to establish whether connexins suppress invasive properties 

of tumor cells in vivo in a similar manner to that observed in vitro (Table 1.2) [63].  

1.9.6 Extravasation 

Following entry into the vasculature, breast cancer cells must bypass blood vessel 

endothelium in order to colonize and form metastases in secondary organ sites. Cx43 is 

likely more involved in this step than Cx26, as Cx43 more readily forms gap junction 

channels with Cx43, Cx40 and Cx37 typically expressed in endothelial cells [141,142]. 

Interestingly, unlike the mainly tumor suppressive roles for connexins in breast cancer cells 

described, ectopic Cx43 expression in HBL100 breast cancer cells increased the number 

of tumor cells undergoing transendothelial migration compared to control in vitro [143]. 

Importantly, this effect was reduced following treatment with GJIC inhibitors or when 

expressing GJIC-deficient GFP-Cx43, with GFP tagged to the amino terminus. Ultimately, 

these experiments suggest that Cx43 acts as a tumor facilitator during extravasation 
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through a GJIC-dependent mechanism [143]. In contrast, MDA-MB-231 cells 

overexpressing fully functional Cx43-GFP had reduced in vitro extravasation through 

endothelial cells grown to confluence on matrigel-coated invasion assays, suggesting cell-

line specific differences [135]. Although further studies are needed to clarify the role of 

Cx43 in extravasation, two lines of evidence provide a potential mechanism for Cx43 as a 

tumor facilitator. First, Cx43 may increase cell adhesion between breast cancer cells and 

endothelial cells. This was observed in a tail vein injection metastasis model in which a 

greater number of breast cancer cell attachments to the pulmonary epithelium were seen in 

Cx43-overexpressing breast cancer cells compared to control cells [110]. Secondly, breast 

cancer cells may alter heterocellular GJIC between endothelial cells to facilitate movement 

through the vasculature. This was observed in vitro, where the co-culturing of breast cancer 

cells with endothelial cells resulted in a transient loss in GJIC between endothelial cells 

[144]. While further in vivo models are needed to more rigorously evaluate connexins in 

extravasation, evidence to date points to a role for Cx43 as a tumor facilitator at this stage 

of disease progression.    

1.9.7 Metastatic potential 

The potential role for connexins during extravasation suggests that Cx43 may help promote 

breast cancer cell metastasis. However, this is certainly not always the case as MDA-MB-

435 human breast cancer cells stably expressing Cx43 exhibited a ~50% reduction in 

metastases to the lungs when injected into nude mice [134]. In support of this finding, a 

significant inverse correlation was observed between the metastatic potential of 

orthotopically injected mammary adenocarcinoma cells to the lungs, and their GJIC 

capacity in vitro [145]. Interestingly, when the breast metastasis suppressor 1 (BRMS1) 

protein was expressed in breast cancer cell lines one of the downstream effects observed 

was the re-establishment of GJIC through upregulation of Cx26, further supporting a tumor 

suppressive role for connexins in metastasis [146]. However, these studies are limited by 

their mostly correlative nature.  

Alternatively, shRNA/siRNA knockdown of Cx43 in metastatic 4T1 murine breast cancer 

cells reduced microtumor formation in the brain when injected into mice, while an increase 

in Cx43 expression mediated through direct or indirect mechanisms following the over-
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expression of the EMT-inducing transcription factor Twist increased the metastatic ability 

of these cells [125].  Collectively, these results suggest that Cx43 facilitates the formation 

of metastases, particularly to the brain [125]. This has been supported by others in which 

matched metastatic tumors from the brain had increased expression of Cx26 and Cx43 at 

the cell surface compared to primary tumors [147]. Interestingly, connexins may contribute 

to a tumor facilitating role in metastases in two ways. First, the tumor suppressive role of 

Cx43 in regulating cell growth in the primary tumor may be co-opted by breast cancer cells 

at later stages to promote tumor cell dormancy until appropriate conditions allow for 

metastatic growth. This is observed in vitro when breast cancer cells are co-cultured with 

bone marrow stroma yielding decreased proliferation that is GJIC-dependent [148].  In 

addition, this also was observed in vivo, where Cx43 knockdown reduced the number of 

breast cancer cells in the brain of an in vivo chicken embryo metastasis model [125]. 

Secondly, connexin expression may drive epithelial re-differentiation of metastatic tumor 

cells from the migratory/invasive mesenchymal phenotype to initiate the formation of 

metastases in secondary tissues [147]. Taken together, the role of connexins in the ability 

to form metastases in secondary sites remains unclear.  

1.10 Mouse models used in this thesis 

In order to further investigate the role of Cx43, Cx26 and Panx1 in mammary gland 

development in vivo in this thesis, we have obtained three previously uncharacterized 

genetically modified mouse models. First, Gja1+/I130T (Cx43I130T/+) mice were generated by 

Dr. Glen Fishman’s laboratory through site-directed mutagenesis on a mixed C57BL/6 and 

CD1 background with systemic heterozygous expression of the I130T mutant similar to 

human patients with ODDD [149]. Importantly, Cx43I130T/+ mice provide a means to 

evaluate the role of Cx43 in the mammary gland as these mice are viable and have reduced 

intercellular coupling of gap junction channels composed of Cx43 in primary 

cardiomyocytes [149] and likely all tissues and cell types that express Cx43. Secondly, Dr. 

Christian Naus’ laboratory developed a novel conditionally ablated Cx26 mouse model on 

a mixed CBA and C57BL/6 background [150,151]. The role of Cx26 during pregnancy 

and lactation can be evaluated by crossing mice expressing the Cre-transgene under the 

mammary gland specific β-lactoglobulin (BLG) promoter with Gjb2fl/fl mice containing 
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flanked loxP sites on exon 2 of Gjb2 to produce BLG-cre;Gjb2fl/fl (BLG-Cre;Cx26fl/fl) mice 

[151]. BLG activity is highly specific to the mammary gland and has been reported to 

become activated by ~D10 of lactation in mice with a Cre-mediated recombination 

efficiency of ~70-80% of lactating epithelial cells [150]. Finally, Panx1-/- mice were 

generated by Dr. Vishva Dixit’s laboratory on a C57BL/6 background by crossing mice in 

which Exon 2 of Panx1 were flanked by loxP sites with the C57BL/6-

Gt(ROSA)26Sortm16(Cre)Arte Cre deleter strain [152]. Ultimately, this cross generated mice 

with Cre-mediated deletion of exon2 of Panx1 yielding a frameshift and premature stop 

codon in the Panx1 transcript [152]. Importantly, systemic deletion of Panx1 is not 

embryonic lethal allowing for evaluation of Panx1 in the context of the mammary gland.   

1.11  Rationale and objectives 

To date, the roles of Cx43 and Cx26 in mammary gland development and function are not 

fully understood while that of Panx1 remains completely unknown. The evaluation of new 

genetically-modified mice including the Cx43I130T/+, conditional BLG-Cre;Cx26fl/fl  and 

Panx1-/- mice provides a means to evaluate all stages of mammary gland development. 

Importantly, as loss-of-function mutations in the GJA1 and GJB2 are associated with 

human diseases, results obtained from these studies may also have implications extending 

to patients with ODDD or hereditary deafness [77,153].  

In addition, despite identification of a role for connexins in breast tumorigenesis over 20 

years ago, it still remains unclear at which stages connexins support a tumor suppressive 

or facilitating role in the progression of breast cancer. In breast cancer, the tumor 

suppressive role of connexins is based mainly on the absence of connexin expression in 

malignant versus normal cell lines and the loss of connexin expression/GJIC observed in 

human breast cancer samples. Critics would argue that these studies do not conclusively 

provide evidence of connexins as tumor suppressors, as down-regulation of connexins may 

be a consequence of the tumorigenic process as opposed to a root cause. In addition, while 

overexpression of connexins reduces many tumor cell properties in vitro, it remains unclear 

if this is due to connexins being expressed at non-physiological levels. Ultimately, ectopic 

expression of connexins may yield growth suppressing effects that are tumor suppressor-

like but not indicative of the true role of Cx43 and Cx26 in breast cancer. Similarly, the 
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role of Panx1 as a putative tumor suppressor or facilitator in cancer remains controversial. 

While Panx1 has been implicated to act as a tumor facilitator by promoting breast cancer 

cell survival during metastasis, the role of Panx1 in the primary tumor remains unknown. 

Taken together, the use of loss-of-function Cx43 mutant mice and conditionally ablated 

Cx26 knockout mice represent powerful tools to evaluate whether connexins act as putative 

tumor suppressors, while Panx1 knockout mice may further our understanding of Panx1 as 

a tumor facilitator. Importantly, these novel mutant mice also allow us to assess connexins 

and pannexins in the context of both the primary tumor and metastatic lesions in a unifying 

model system.  

1.12 Hypothesis 

It is therefore hypothesized that Cx43, Cx26 and Panx1 play critical roles in regulating 

normal mammary gland development and function. In addition, we hypothesize that Cx43 

and Cx26 act as tumor suppressors, while Panx1 acts as a tumor facilitator, in breast cancer 

onset, progression and metastasis. 

1.13 Objectives 

The specific objectives of the project were to:  

1) Determine if Cx43 affects mammary gland development in Cx43I130T/+ mutant mice 

(Chapter 2) and tumorigenesis in Cx43G60S/+ mutant mice (Appendix 1). 

2) Examine if mice with Cx26 conditionally ablated from the mammary gland have altered 

mammary gland differentiation (Chapter 3) or sensitivity to tumorigenesis (Chapter 4). 

3) Identify if Panx1 is involved in mammary gland development, differentiation and 

sensitivity to tumorigenesis using Panx1-/- mice (Chapter 5). 
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Chapter 2 

2 The severity of mammary gland developmental defects is 
linked to the overall functional status of Cx43 as revealed 
by genetically modified mice. 

 

Cx43 has previously been demonstrated to a play a critical role in both mammary gland 

development and normal milk ejection during lactation. The purpose of this study was to 

further characterize the role of Cx43 in postnatal mammary gland development and 

function using a mouse model expressing a loss-of-function Cx43 mutant found in patients 

with ODDD. In addition, this study also aimed to improve our understanding of the 

implications of different loss-of-function Cx43 mutants to subclinical breast defects in 

patients with ODDD.  
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2.1 Introduction 

Oculodentodigital dysplasia (ODDD) is a rare pleiotropic disease characterized by 

developmental symptoms that include craniofacial defects, cornea and lens abnormalities, 

tooth defects and syndactyly of the digits [1]. This disease is linked to mainly autosomal 

dominant mutations in the GJA1 gene that encodes connexin43 (Cx43) [1]. Cx43 is one of 

21 connexins found in humans and is characterized by its ability to form hexameric gap 

junction channels that allow for the passage of molecules less than 1 kDa in size between 

the intracellular environments of adjacent cells [2]. This process, known as gap junctional 

intercellular communication (GJIC), is critical for the maintenance of key cellular 

processes including proliferation, differentiation and apoptosis in almost all cell types 

found in the human body, including the mammary gland [2,3].  

The mammary gland of mice is comparable to that of humans in that it consists of a 

converging, branched epithelial ductal network embedded within a stromal mammary fat 

pad [4]. The epithelium of the mammary gland is very dynamic and undergoes two major 

phases of development, one during puberty and one following the onset of pregnancy [4]. 

At birth, a rudimentary ductal tree exists within the stroma of the mammary gland which 

begins significant branch elongation and amplification following the onset of hormones at 

puberty [5]. By 10 weeks, full extension of ducts throughout the fat pad is achieved and a 

series of branching and regression cycles begin in response to the estrous cycle [6]. At the 

onset of pregnancy, alveologenesis occurs in which secretory alveolar cells develop to 

produce milk for the pups throughout lactation [4]. Following weaning of the pups, the 

mammary gland undergoes extensive gland remodeling to revert back to a virgin gland 

state in a process known as involution [4]. Throughout these developmental changes, the 

gland requires exquisite regulation of proliferation, differentiation and apoptosis to allow 

for the proper growth and development of ducts throughout puberty, differentiation of 

secretory alveolar cells for milk production throughout pregnancy and extensive gland 

remodeling following cessation of lactation [4]. While hormonal regulation of these cell 

processes is well documented, less is known about locally acting factors such as gap 

junction proteins and intercellular communication [5,7]. 
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The human mammary gland is known to express two connexins: Cx26, localized to the 

luminal cells of ducts and alveoli, and Cx43, which is mainly restricted to the surrounding 

contractile myoepithelial cells and stromal fibroblasts [8,9]. This expression is similar in 

mice, with the addition of Cx32 and Cx30 in luminal cells which are able to form 

heteromeric/heterotypic channels with Cx26 for additional luminal cell regulation that is 

not found in humans [10,11]. Cx26, Cx30 and Cx32 have all been detected at low levels at 

all stages of development and importantly are temporally up-regulated during pregnancy, 

lactation and/or involution, suggesting that these Cxs may regulate gland differentiation 

and function during these stages of development [12,13]. In contrast, Cx43 is constitutively 

expressed throughout mammary gland development, suggesting that Cx43 may have an 

important role in the maintenance of myoepithelial differentiation and coordinating 

function [14]. In addition, the importance of myoepithelial cells in the regulation of luminal 

cells through the induction of luminal cell polarity and through paracrine factors during 

branching morphogenesis suggests that dysregulation of myoepithelial cells may affect 

whole gland development and function [15,16].     

Previously, to assess the role of Cx43 in mammary gland development and function, a 

mutant mouse model of ODDD (Gja1Jrt/+mice also called Cx43G60S/+ mice) was evaluated 

as these mice express a dominant-negative mutant of Cx43 that reduces total Cx43 protein 

levels by far greater than 50% [17]. Cx43G60S/+ mice express classical symptoms of ODDD 

including craniofacial abnormalities, loss of tooth enamel and syndactyly of the digits 

[17,18]; despite the fact that the glycine to serine substitution at position 60 of Cx43 has 

never been reported in ODDD patients [19]. Interestingly, severely decreased levels of 

Cx43 in virgin Cx43G60S/+ mice resulted in impaired stromal development of the fat pad, 

smaller mammary glands and a delay in ductal development between 4-10 weeks, 

suggesting an important role of Cx43 in regulating gland maturation in virgin mice [20]. 

In addition, lactating Cx43G60S/+ mice displayed impaired milk secretion and milk 

accumulation in the gland as a result of improper milk ejection [20, 21]. As a result, it was 

suggested that ODDD patients may also present with a defect in their ability to breast feed. 

However, despite over 65 identified mutations in GJA1 resulting in ODDD, there have 

been no reports of lactation defects in humans with this rare disease [19]. Importantly, at 
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least a proportion of females with ODDD are fertile and there have been reports of mothers 

with ODDD in multi-generational families [22].  

Functional characterization of electrical gap junction coupling in model cell systems that 

express only ODDD-linked mutants revealed two distinct populations of mutants that form 

gap junctions: mutants that have residual channel activity (such as the human mutants 

K134E, L90V and I130T), and mutants that are functionally dead (such as the human 

G21R, Y17S, and A40V, and mouse G60S mutants) [23,24]. It is unknown if the severe 

mammary gland phenotype observed in Cx43G60S/+ mice is indicative of patients expressing 

ODDD mutants lacking residual channel function, or if a Cx43 mutant with residual 

channel function would rescue the functional and developmental defects in the mammary 

gland observed in Cx43G60S/+ mice. In this pursuit, we obtained a mouse model of ODDD 

(Cx43I130T/+) expressing an I130T autosomal dominant mutant of Cx43 that is known to be 

expressed within the human population and maintains a junctional conductance of 

approximately 50% when co-expressed with wild-type (WT) Cx43 in the heart [25]. We 

hypothesized that these mutant mice would have fewer mammary gland defects as a result 

of a less severe reduction in Cx43-based levels of GJIC. Consequently, if this hypothesis 

was supported, it may help to explain why female patients with ODDD do not typically 

present with breast feeding problems.   

2.2 Materials and methods 

2.2.1 Constructs  

The construct encoding the Cx43 G60S mutant was previously described [17]. The I130T-

GFP cDNA construct was generated using the QuikChange site-directed mutagenesis kit 

(Stratagene, La Jolla, CA) using the Cx43-GFP construct as a template and the following 

primers: forward 5'-CACTTGAAGCAGACTGAGATAAAGAAG-3' and reverse 5'-

CTTCTTTATCTCAGTCTGCTTCAAGTG-3'. The I130T mutant was verified by 

sequencing.   
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2.2.2 Patch-Clamp electrophysiology 

N2A (neuroblastoma) cells were transfected with GFP-tagged WT and mutant Cx43 

respectively. Twenty four hours later, the isolated cell pairs with green fluorescence were 

selected to assess the intercellular coupling with dual whole-cell patch clamp recordings. 

Both cells were initially held at the same voltage potential (0 mV), an impulse of -20 mV 

was then applied to one cell and the junctional current was recorded from the other cell. 

Gap junctional conductance (Gj) was calculated and presented as mean ± S.E.M. Online 

series resistance compensation at 80% or off-line series resistance compensation were 

applied to improve the accuracy of the measured Gj [26]. 

2.2.3 Animals 

Heterozygote mice expressing the I130T mutant were created as described by Fishman and 

colleagues [25] and were bred on a mixed background of CD1 and C57BL/6 (Gja1tm3GFi) 

mice. All Cx43I130T/+ mice used were at generation 1-4 of backcrossing to C57BL/6 and 

compared to WT littermate controls. Both virgin and pregnant female mice at various ages 

were sacrificed using CO2. Inguinal mammary glands were used for weight measurement, 

whole mounts and paraffin embedding. Thoracic mammary glands were collected for 

western blot analysis and were stored at -80ºC. Lactating mice were collected at day 21 of 

lactation. Pups from dams were weaned on day 21 of lactation and mammary glands from 

dams were collected 48 hours post-weaning which we denote as the involution time point. 

Lactating mice sacrificed for the oxytocin-induced milk ejection assay were used no more 

than 3 days following parturition. Blood was collected via cardiac puncture from pregnancy 

day 9.5 mutant and wild-type mice. In addition, heterozygote Gja1Jrt/+ (Gja1m1Jrt also 

denoted as Cx43G60S/+) mice carrying the G60S mutant on a background of C3H/HeJ and 

C57BL/6J mice were used for experiments using primary myoepithelial and granulosa 

cultures. Cx43G60S/+ mice used in the experiments were compared to littermate and non-

littermate controls. All experiments were approved by the Animal Care Committee at 

Western University and conducted according to the guidelines of the Canadian Council on 

Animal Care (Appendix 3). For all experiments, N=6 unless specified otherwise.   
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2.2.4 Primary cultures 

2.2.4.1 Myoepithelial cells 

Primary myoepithelial cells were isolated from adult Cx43I130T/+ mice, Cx43G60S/+ mice and 

their respective controls, similar to that described in Plante and Laird (2008) [27]. 

Dissected inguinal and thoracic mammary glands were minced and digested in 12 ml of 

collagenase solution (0.2% trypsin, 0.2% collagenase A, 5% fetal calf serum, 5 µg/ml 

gentamycin in DMEM/F12 medium) at 37 ºC for 30 min with gentle shaking (200 rpm). 

Cell suspensions were centrifuged for 10 min at 500 x g and both the supernatant 

(containing undigested tissue in the fat pad) and the pellets were pipetted up and down to 

further separate epithelial organoids from adipocytes and both were re-centrifuged as 

before. Pellets from both the 1st and 2nd centrifugation were combined into 4 ml of serum-

free DMEM/F12 medium and 40 µl of DNase (2 U/ml) was added to the cell suspension. 

Cell suspensions were shaken by hand for 5 min at room temperature prior to the addition 

of 6 ml of serum-free DMEM/F12 medium and centrifugation at 500 x g for 10 min. The 

supernatant was discarded and the pellet was resuspended in 10 ml of serum-free 

DMEM/F12 medium. The cell suspension was briefly centrifuged for 10 sec and the 

supernatant was discarded. The pellet was then resuspended in serum-free DMEM/F12 

medium and this centrifugation process was repeated six times to remove fibroblasts. The 

final cell pellet was resuspended in 150 µl of MEGM and plated directly onto a coverslip. 

All pipettes and tubes used during the procedure were pre-coated with sterile PBS 

containing 5% BSA. Myoepithelial cells were grown for 1 week prior to microinjection. 

N=3.   

2.2.4.2 Granulosa cells 

Ovaries from adult Cx43I130T/+ and Cx43G60S/+ mice and their respective controls were 

digested in a collagenase and DNase solution (2 mg/ml type I collagenase (Sigma), 0.02% 

DNaseI (Sigma) in Waymouth Medium MB 752/1 complete medium (Sigma) at 37°C. 

Follicles were isolated through repeated aspiration and expulsion with a 1 ml pipetter. 

Follicles were washed twice and transferred to another dish in which the oocytes were 

separated from the granulosa cells by treatment with 0.05% trypsin-EDTA for 10 min 
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followed by repeated pipetting and centrifugation at 600 × g for 5 min. The supernatant 

was removed and granulosa cells were washed with Waymouth medium once and a second 

time in M199 medium containing Earle’s salts and glutamine (Life Technologies). 

Granulosa cells were resuspended in M199 medium and cultured on 12-mm glass 

coverslips coated with collagen and incubated at 37°C, 5% CO2, 90% N2 for 24 hours prior 

to microinjection. 

2.2.5 Microinjection 

One cell within patches of confluent myoepithelial or granulosa cells was microinjected 

with 0.5% Lucifer yellow (Molecular Probes) using an Eppendorf Femtojet automated 

pressure microinjector. Images were collected using a Leica DM IRE2 inverted 

epifluorescence microscope and the percentage of cells that passed dye to at least one 

neighbour as well as the number of cells that received the dye after 1 min and the average 

number of cells receiving dye after one minute was recorded. Cells from three independent 

cell cultures from different mouse preparations were each injected 10-15 times for a total 

of ~43-50 injections per mouse model.          

2.2.6 Western Blotting 

Mammary gland tissue were homogenized using a tissue homogenizer in a lysis buffer (1% 

Triton X-100, 150 mM NaCl, 10 mM Tris-HCl, pH 7.4, 1 mM EDTA, 0.5% NP-40 and 

supplemented with protease inhibitor mixture (Roche-Applied Sciences) and phosphatase 

inhibitors (100 mM NaF and 100 mM Na3VO4). Protein lysate concentrations were 

measured using a BCA protein Determination kit (Pierce). Total protein lysates (60 µg) 

were resolved on a 10% or 15% SDS-polyacrylamide gel and transferred onto 

nitrocellulose membranes using the iBlot Dry Blotting system (Invitrogen). Membranes 

were blocked using 3% BSA (Sigma) for 1 hour before being immunolabeled with primary 

antibodies:  rabbit anti-Cx43 (1:5000, Sigma), goat anti-β-casein (1:1000, Santa Cruz) and 

goat anti-WAP (1:1000, Santa Cruz) and mouse anti-β-actin (1:200, Santa Cruz) at 4ºC. 

Primary antibodies were detected using fluorescently-conjugated secondary antibodies: 

anti-mouse IRdye 800 (1:5000, Li-Cor) and anti-rabbit IRdye 680 (1:5000, Li-Cor), 

scanned and quantified using the Odyssey Infrared Imaging System (Li-Cor Biosciences).       
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2.2.7 Immunofluorescence and microscopy 

Paraffin-embedded sections (6 µm) were deparaffinised in xylene, rehydrated in 

descending concentrations of ethanol (100%, 95%, 70% and 50%) and subsequently, 

microwaved for 5 min in antigen retrieval solution (1:50, Vector Labs). After 20 min of 

cool down, slides underwent a second antigen retrieval using 0.01 M Tris-1 mM EDTA 

buffer, pH 9.0 at 90-95ºC for 30 min, followed by another 20 min of cool down. 

Cryosections (6 µm) were fixed in neutral buffered formalin for 15 min prior to blocking. 

Slides were blocked in 3% BSA, 0.1% Triton X-100 in PBS for 60 min. Slides were probed 

with the following primary antibodies: rabbit anti-Cx43 antibody (1:500, Sigma), rabbit 

anti-Cx30 (1:100, Invitrogen), rabbit anti-Cx26 (1:100, Invitrogen), rabbit anti-Cx32 

(1:100, Sigma), mouse anti-keratin14 (1:100, Neomarkers), mouse anti-PCNA Clone PC10 

(1:200, Dako) or rabbit anti-cleaved caspase 3 (1:400, Cell Signaling,) for 1 hour at 37C, 

followed by anti-rabbit Alexa555 (1:400, Molecular Probe), anti-mouse Alexa488 (1:400, 

Molecular Probes) antibodies and nuclei were labelled with Hoechst 33342. Slides were 

mounted using Airvol. Images were captured using a Leica DM IRE2 inverted 

epifluorescence microscope and Openlab 5.5.3 imaging software. For quantification, 8-10 

arbitrary images were taken for each sample and the numbers of positive cells or plaques 

were counted relative to the pixel area of nuclear staining per 0.18 mm2 that was measured 

using ImageJ 1.46r (National Institutes of Health).     

2.2.8 Evaluation of serum prolactin concentration  

Four mutant and WT littermate mice were mated and sacrificed at day 9.5 of pregnancy. 

Blood was collected via cardiac puncture and allowed to clot overnight at 4 ºC. Samples 

were centrifuged at 2000 x g for 5 min and serum was collected and stored at -80 ºC. 

Prolactin concentrations were assessed by a prolactin mouse ELISA Kit (Abcam).  

2.2.9 Whole mounting 

Inguinal mammary glands were excised and processed as previously described in Plante et 

al. (2011) [28]. Briefly, mammary glands were spread on a glass slide and fixed in Carnoy’s 

fixative (100% ethanol, chloroform, glacial acetic acid: 6:3:1) overnight at 4 ºC. Mammary 

glands were washed in 70% ethanol for 15 min and gradually rehydrated in water. Glands 
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were stained overnight in carmine alum (2% carmine and 5% aluminum potassium sulfate 

in water) at room temperature. Mammary glands were then dehydrated in a series of ethanol 

baths and cleared in xylene overnight. Mammary glands were stored in methyl salicylate 

until pictures were taken using a numeric camera (Cybershot, Sony) or a SteREO Lumar 

V12 microscope (Zeiss).   

2.2.10 Evaluation of ductal development 

The distance of ductal migration was evaluated in virgin mice by measuring from the 

bottom of the lymph node to the end of the longest duct on the inguinal mammary gland 

using calipers. Ductal distance was recorded relative to the length of the mammary gland 

from the bottom of the lymph node to the edge of the fat pad in order to compensate for 

any mammary gland size differences between mutant and WT mice.   

2.2.11 Hematoxylin & eosin staining  

Mammary glands from Cx43I130T/+ mice at parturition, lactation and involution were fixed 

in 10% neutral buffered formalin and embedded in paraffin. Paraffin-embedded sections 

(6 µm) were deparaffinised in xylene and rehydrated in descending concentrations of 

ethanol (100%, 95%, 70% and 50%). Rehydrated tissues were stained in 1% Harris’s 

hematoxylin for 4 minutes followed by 1% eosin for 2 min (Lerner Laboratories). Stained 

tissues were then rehydrated in ethanol baths (95% and 100%), followed by xylene baths 

and mounted using Cytoseal (Richard-Allan Scientific). Images were captured using 20X 

objective lens mounted on a Leica DM IRE2 inverted epifluorescence microscope 

equipped with a ProgRes C5 camera (Jenoptik) and ProgRes Mac CapturePro 2.7.6 

imaging software (Jenoptik).   

2.2.12 Oxytocin induced milk ejection assay 

Pups were removed from the dam after feeding on parturition day. After 1 hour, dams were 

sacrificed and mammary glands were exposed to oxytocin as described in Plante et al. 

(2011) [28]. PBS, or 8 pg/ml or 80 µg/ml of oxytocin (Sigma) dissolved in PBS was applied 

directly to the mammary glands for 1 min and then removed. Milk entry into ducts was 

evaluated. Photographs were taken before and after PBS or oxytocin exposure with a 
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numeric camera (Cybershot Sony). Four mutant and WT littermate controls were used for 

this experiment.   

2.2.13 Statistical analysis 

Statistical analysis was done using Student’s unpaired t-test or a one-way ANOVA test in 

which a p<0.05 was considered significant. Values are presented as mean ± S.E.M. All 

statistics were performed using GraphPad Prism version 4.03 for Windows.  

2.3 Results 

2.3.1 The Cx43 I130T mutant has partial junctional conductance in 
gap junction-deficient N2A cells  

To determine if the I130T and G60S Cx43 mutants had similar capacities to form 

functional gap junction channels, gap junctional communication-deficient N2A cells were 

engineered to individually express these mutants. While N2A cells were observed to be 

free of functional gap junctional channels, cells expressing WT Cx43 were coupled. 

Consistent with previous reports, cells expressing the I130T mutant showed a highly 

reduced junctional conductance (Gj) compared to control Cx43-expressing cells, while the 

G60S mutant was found to be functionally dead (Figure 2.1.) [17,23,30]. 

2.3.2 Primary myoepithelial and granulosa cells isolated from 
Cx43I130T/+ mice are comparatively better coupled than cells 
from Cx43G60S/+ mice 

To determine if primary mammary cells from Cx43I130T/+ and Cx43G60S/+ mice were 

differentially coupled in relation to their respective controls, cultured cells were 

microinjected with Lucifer yellow and dye spread was assessed. Based on  
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Figure 2.1. The Cx43 I130T mutant has reduced gap junctional coupling conductance. 

Junctional conductance measurements of gap junctional intercellular communication-

deficient control N2A cells engineered to express Cx43 or the G60S or I130T mutants. The 

I130T mutant had reduced channel conductance (Gj) compared to wild type Cx43, while 

the G60S mutant channels were completely non-functionally. Bars represent mean levels 

of electrical conductance  S.E.M. **p<0.01. ***p<0.001. 
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Figure 2.1 
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immunofluorescent labelling of keratin-14 and Cx43, mammary epithelium cultures were 

deemed highly enriched in myoepithelial cells and assembled gap junctions (Figure 2.2A). 

Similar to what we previously reported, dye transfer between myoepithelial cells isolated 

from Cx43G60S/+ mice was severely reduced to ~39% of their WT control (Figure 2.2B, C) 

[27]. Interestingly, primary myoepithelial cell cultures from Cx43I130T/+ mice showed a 

significant reduction in dye transfer but coupling remained at ~71% of the WT control 

(Figure 2.2B, C).  In addition, the incidence of dye spreading to 2 or more cells was 

significantly reduced to ~22% of control in myoepithelial cells isolated from Cx43G60S/+ 

mice  but  was non-significantly changed in myoepithelial cells isolated from Cx43I130T/+ 

mice compared to its respective control (Figure 2.2D).   

In support of the notion that the G60S mutant was a more potent inhibitor of dye transfer 

than the I130T mutant when normalized to their respective WT controls, granulosa cells of 

immature mouse ovarian follicles that are known to only express Cx43, were isolated from 

mutant mice and assessed for dye transfer [29] (Figure 2.3A, B). Similar to our findings 

from myoepithelial cells, the incidence of dye transfer between granulosa cells of 

Cx43I130T/+ mice was 61% of control while coupling in Cx43G60S/+ mouse granulosa cells 

was reduced to 33% of control. Collectively, the I130T mutant reduced GJIC to a lesser 

extent than the G60S mutant in primary cells known to express only Cx43.   

2.3.3 Highly phosphorylated species of Cx43 are reduced in the 
Cx43I130T/+ mouse mammary gland   

Western blot analysis of mammary glands from Cx43I130T/+ mice at parturition revealed a 

non-significant decrease in total Cx43 compared to WT mice. However, as previously 

demonstrated in cardiac tissue [25], the highly phosphorylated species of Cx43 (P) were 

significantly reduced while the primarily unphosphorylated (P0) species of Cx43 remained 

unchanged in the Cx43I130T/+ mutant mice (Figure 2.4A). Notably, the number of Cx43 gap 

junction plaques of mutant mice was significantly reduced compared to wild-type mice at 

parturition (Figure 2.4B, C). Consistent with previous reports, immunofluorescence 

revealed a similar distribution of Cx26, Cx32 and Cx30 gap junction plaques between 

luminal epithelial cells in Cx43I130T/+ mice compared to controls  
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Figure 2.2. Myoepithelial cells isolated from Cx43I130T/+ and Cx43G60S/+ exhibit 

differential gap junction coupling relative to their respective controls. (A) 

Representative isolation of primary mammary epithelial cells from control mice are highly 

enriched for myoepithelial cells that form gap junctions based on keratin14 (green) and 

Cx43 (red) labeling, respectively. (B) Clusters of myoepithelial cells from Cx43I130T/+ mice, 

Cx43G60S/+ mice, and their respective controls, were microinjected with Lucifer yellow dye 

(asterisks).  Scale bars = 10 m (C) Relative to controls, dye coupling was greater in cells 

expressing the I130T mutant than the G60S mutant. (D) Dye transfer to 2 or more cells 

was significantly reduced in myoepithelial cells from Cx43G60S/+ mice only. Bars represent 

mean percent incidence of dye transfer  S.E.M. N=3; n=number of injections; Letters on 

top of columns in 2.2C and 2.2D represent statistical differences using a one-way ANOVA. 
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Figure 2.3. In comparison to controls, granulosa cells isolated from Cx43I130T/+ mice 

are better coupled than cells from Cx43G60S/+ mice. (A) Isolated granulosa cells were 

microinjected with Lucifer yellow dye (asterisks). Scale bars = 10 m (B) Relative to 

controls, granulosa cells expressing the I130T mutant exhibited a higher incidence of dye 

coupling than those expressing the G60S mutant. Bars represent mean percent incidence 

of dye transfer  S.E.M. N=3; n=number of injections; Letters on top of columns in B 

represent statistical differences. 
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Figure 2.3 
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(Figure 2.4D) [20,21].  Collectively, the I130T mutant reduces the phosphorylation of total 

Cx43 and Cx43-gap junction plaques, with no obvious effect on other co-expressed 

mammary gland connexins.   

2.3.4 Pre-pubertal Cx43I130T/+ mice have smaller mammary glands 
with delayed ductal morphogenesis 

 To assess mammary gland development in virgin mice, both body and mammary gland 

weights were measured and compared between Cx43I130T/+ and Cx43+/+ mice. Body 

weights were similar between virgin Cx43I130T/+ and Cx43+/+ mice at all time points 

assessed (Figure 2.5A), yet mammary glands of 4 week Cx43I130T/+ mice were significantly 

smaller than Cx43+/+ mice (Figure 2.5B). However, no difference was observed in mutant 

mice following the onset of puberty at 7 and 10 weeks (Figure 2.5B). When corrected for 

body weights, relative mammary glands of pre-pubertal mice were significantly smaller 

than control mice but there was no difference in relative gland weights after 7 weeks 

(Figure 2.5C).  

In order to investigate the impact of the I130T Cx43 mutant on mammary gland 

development in virgin mice, mammary gland architecture was evaluated through whole 

mounting. Consistent with normal mammary gland development, virgin Cx43+/+ mice had 

numerous ducts with terminal end buds (TEBs) elongating within the stromal fat pad at 4 

and 7 weeks, developing numerous side branches and filling the mammary fat pads by 10 

weeks (Figure 2.6A-C). At 4 weeks, Cx43I130T/+ mice presented with many ducts having 

TEBs extending towards the lymph node within a well-developed stroma (Figure 2.6A), 

however, ductal length relative to the length of the gland was significantly delayed by 

~45% in mutant mice (Figure 2.6D). Interestingly, both 7 and 10 week old mutant and 

control mice showed similar levels of ductal invasion, ductal lengths and side branches 

throughout the fat pad (Figure 2.6B-D). Together, pre-pubertal Cx43I130T/+ mice exhibit 

smaller mammary glands with delayed ductal development which was not observed 

following the onset of puberty.      
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Figure. 2.4. The highly phosphorylated species of Cx43 were reduced in the mammary 

gland of Cx43I130T/+ mice at parturition while co-expressed mammary gland connexins 

remain unchanged. (A) Western blot analysis of Cx43 revealed significantly reduced 

levels of the highly phosphorylated species (P) of Cx43 while the primarily 

unphosphorylated (P0) species remained similar to that found in littermate control mice. 

Bars represent mean levels of total, P0 and P relative to β-actin  S.E.M. (*p0.05) (N=6).  

(B) Mammary gland sections were immunolabeled for Cx43 (red) and keratin-14 (green), 

while nuclei were stained with Hoechst (blue). (C) Punctate Cx43-gap junction plaques (B, 

arrowheads) present at cell-cell interfaces of keratin-14 positive cells were significantly 

reduced in Cx43I130T/+ mice compared to control mice (bars = 20 m). Bars represent mean 

number of Cx43-gap junction plaques relative to pixel area of nuclei per 0.18 mm2  S.E.M. 

(***p<0.001) (N=5). (D) Paraffin-embedded mammary gland sections double 

immunolabeled for Cx26, Cx32 or Cx30 (red) and keratin-14 (green) revealed a similar 

profile of gap junctions between mutant and control mice. N=6. 
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Figure 2.4 
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Figure 2.5. Pre-pubertal Cx43I130T/+ mice have smaller mammary glands. (A) Body 

weights were recorded from virgin 4, 7 and 10 week old mice revealing similar body 

weights in Cx43I130T/+ mice compared to littermate controls. Bars represent mean body 

weights  S.E.M. (B) Inguinal mammary gland weights recorded in virgin mice revealed 

significantly reduced gland weight in mutant mice at 4 weeks. Bars represent mean 

mammary gland weight  S.E.M. (C) When normalized for body weight; mammary glands 

from 4 week old mutant mice were significantly smaller compared to controls. Bars 

represent mean normalized gland weight  S.E.M. *p0.05. N=6.  
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Figure 2.5 
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Figure 2.6. Pre-pubertal Cx43I130T/+ mice have delayed mammary gland development. 

(A, B, C) Whole mount analysis of 4, 7 and 10 week mutant and control mice revealed 

similar gland architecture with ducts elongating from TEBs through a developed stromal 

mammary fat pad. (D) Duct elongation from 4 week old mutant mice was significantly 

delayed compared to controls. Bars represent the mean ductal extensions from the bottom 

of the lymph node to the furthest migrating duct (Dashed lines in A,B,C) relative to the 

length of the mammary gland from the bottom of the lymph node to the edge of the fat pad 

 S.E.M. *p0.05. N=6.         
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Figure 2.6 
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2.3.5 Cx43I130T/+ mice have smaller mammary glands at parturition 
and involution  

To assess if the I130T mutant affects the development of the mammary gland during 

pregnancy, lactation and involution, body and mammary gland weight were evaluated in 

mutant and Cx43+/+ mice. At parturition and lactation, body weight was similar in 

Cx43I130T/+ mice compared to control mice (Figure 2.7A). However, body weight was 

significantly reduced by ~12% in mutant mice compared to controls at involution (Figure 

2.7A). Cx43I130T/+ mice showed a significant reduction in mammary gland weight at 

parturition and involution and when this was normalized to body weight, glands were ~20% 

smaller at parturition and ~33% smaller at involution compared to Cx43+/+ mice (Figure 

2.7B, C). Normalized mammary glands of mutant mice were similar to controls during 

lactation (Figure 2.7C). To assess if changes in the weight of mutant and wild-type mice 

were the result of differences in prolactin hormone signaling, serum prolactin 

concentrations were assayed and found to be  similar in Cx43I130T/+ and Cx43+/+ mice 

during mid-pregnancy (Figure 2.7D). Taken together, smaller mammary glands at 

parturition and involution suggests gland developmental defects at these time points were 

not a result of reduced prolactin in the blood.  

To identify if the change in weight of mutant mouse mammary glands represented an acute 

indicator of  structural changes within the gland, whole mount analysis  revealed mammary 

glands filled with alveoli and ducts from Cx43I130T/+ mice at parturition and lactation 

consistent with normal mammary gland development in control mice (Figure 2.8A). 

Following the onset of involution, mammary glands from Cx43I130T/+ mice showed a 

reduction in the number of alveoli similar to Cx43+/+ mice, suggesting that the epithelial 

compartment within the gland was in a similar stage of gland remodelling compared to 

control (Figure 2.8A). Similarly, histological analysis revealed numerous alveoli and ducts 

with evidence of milk within the lumen of mutant and control mice at parturition and 

lactation (Figure 2.8B). In addition, mammary glands of both Cx43I130T/+ and Cx43+/+ mice 

had undergone extensive gland remodeling at involution, in which a reduction of alveoli 

was apparent within the stroma (Figure 2.8B).    
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Figure 2.7. Cx43I130T/+ mice have reduced mammary gland weights at parturition and 

involution. (A) Evaluation of body weights during parturition, lactation and involution 

revealed that Cx43I130T/+ mice were significantly smaller compared to control mice at 

involution. Bars represent mean body weights  S.E.M. N=6. (B, C) Mammary gland 

weight and normalized mammary gland weight were significantly reduced in Cx43I130T/+ 

mice at parturition and involution compared to controls. N=6. (D) Serum isolated from 

mutant and wild-type mice at mid-pregnancy contained similar levels of prolactin. N=4. 

Bars represent means  S.E.M. *p0.05, **p0.01. 

 

 

 

 

 

 



77 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 
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Figure 2.8. Lactating and involuting Cx43I130T/+ mice have normal mammary gland 

architecture. (A) Whole mount analysis of mice at parturition, lactation and involution 

revealed similar alveolar and ductal gland structure in mutant mice compared to controls. 

(B) Haematoxylin and eosin staining revealed similar histology in mutant and control mice 

at all time points. Scale bars= 100 m. N=6. 
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Figure 2.8 
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In another assessment of potential changes in the mutant mouse mammary glands at 

parturition, paraffin-embedded mammary glands were immunolabelled with the 

proliferation marker PCNA. These studies revealed a significant decrease in the number of 

epithelial cells undergoing proliferation in Cx43I130T/+ mice (Figure 2.9A). In addition, 

cleaved caspase 3 immunolabelling of mammary glands 48h following weaning of pups 

showed minimal staining of  cells undergoing apoptosis in Cx43I130T/+ mice similar to 

controls (Figure 2.9B). Collectively, dysregulation of proliferation in mammary glands at 

parturition but not apoptotic mechanisms during involution may account for changes in 

mammary gland weight in the Cx43I130T/+ mice.  

2.3.6 Cx43I130T/+ mice show no signs of a lactational or milk 
ejection defect 

In order to assess if the I130T mutant affected lactation in Cx43I130T/+ mice, western blot 

analysis of two commonly produced milk proteins, β-casein and WAP, revealed  similar 

protein levels in mutant and control mice at parturition (Figure 2.10A, B). In addition, to 

assess if Cx43I130T/+ mice exhibited a defect in the contraction of myoepithelial cells, 

mammary glands of lactating mutant mice were assessed for milk entry into ducts 

following exposure to exogenous oxytocin. Similar to Cx43+/+ mice, mutant mice showed 

the presence of low levels of milk within the ducts of the thoracic mammary glands prior 

to the addition of oxytocin (Figure 2.10C). Following treatment with 80 µg/ml or 8 pg/ml 

oxytocin, milk rapidly filled the mammary gland ducts of Cx43I130T/+ and control mice 

causing them to become easily observable (Figure 2.10D). These findings are consistent 

with the fact that Cx43I130T/+ female mice can readily feed their pups. Together, mammary 

glands from mutant mice had no observable functional defects in milk production or 

ejection compared to control mice.       

2.4 Discussion 

The focus of this study was on two aspects: first, to evaluate the role of Cx43 throughout 

all stages of mammary gland development; and second, to determine if a Cx43 ODDD 

mutant with residual channel forming activity would be sufficient to prevent any functional 

or developmental  
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Figure 2.9. Mammary glands from Cx43I130T/+ mice exhibited a reduction in 

proliferation at parturition. (A) Assessment of the proliferation marker PCNA in 

paraffin-embedded mammary glands at parturition revealed a significant decrease in cell 

proliferation in Cx43I130T/+ mice compared to controls (**p0.01). (B) Evaluation of the 

apoptotic marker cleaved caspase3 at involution revealed no change between mutant and 

control mice. Bars represent mean positive cells relative to area of nuclei per 0.18 mm2  

S.E.M. Scale Bars = 50 m (10 m for insets). N=6. 
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Figure 2.9 



83 

 

 

 

 

 

 

 

Figure 2.10. Lactating Cx43I130T/+ mice can produce and eject milk into ducts upon 

oxytocin stimulation. (A, B) Western blot analysis revealed that Cx43I130T/+ mice express 

the common milk proteins, WAP and β-Casein, similar to controls. Bars represent mean 

expression  S.E.M. (C, D). An oxytocin-induced milk ejection assay revealed that 

lactating Cx43I130T/+ mice respond to exogenous oxytocin to deliver milk into ducts 

(arrowheads).  Images in (D) represent the same gland field before and after (separated by 

arrows) the addition of oxytocin. N=4. 
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Figure 2.10 
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defects in the mammary gland. In this pursuit, we obtained a genetically-modified mouse 

model of ODDD that harbors a systemic autosomal dominant I130T mutation. First, we 

determined that the Cx43 I130T mutant has partial channel activity when expressed in the 

absence of other connexins and impairs Lucifer yellow dye transfer less than the G60S 

mutant when co-expressed with Cx43 in primary myoepithelial and granulosa cells. 

Second, we showed that, while they exhibited similar gland architecture, mammary glands 

from virgin pre-pubertal I130T mutant mice were smaller than matched controls and 

exhibited a delay in ductal elongation prior to the onset of puberty. Third, we found that 

mammary glands from Cx43I130T/+ mice were smaller than controls at parturition due in part 

to impaired cell proliferation. Finally, we identified that mammary glands from I130T 

mutant mice exhibited no evidence of a defect in milk production or milk ejection. Thus, 

we clearly demonstrated that Cx43 is necessary for timely mammary gland development. 

In addition, we surmised that two distinct autosomal dominant mutations in the GJA1 gene 

encoding Cx43 (I130T and G60S) can manifest as distinctly different phenotypes during 

gland development that appear to be dependent on the potency of the mutation in inhibiting 

GJIC.    

2.4.1 Differential coupling capacity of ODDD-linked mutants 

ODDD mutants have previously been shown to present with differential abilities to traffic 

to cell-cell appositions and form plaques, to participate in GJIC and to act as dominant-

negatives on the function of co-expressed wild-type Cx43 [23,30]. We evaluated the G60S 

and I130T mutants and found that only the I130T mutant retained partial junctional 

conductance when expressed alone in connexin-deficient N2A cells. This is consistent with 

others that also identified that the I130T mutant retained the ability to form gap junction 

plaques with residual coupling activity, while the G60S mutant was maintained mainly in 

an intracellular profile and functionally dead [17,23,30]. However, in ODDD disease these 

individual mutants are always co-expressed with wild-type Cx43, thus their impact on total 

Cx43 function needed to be assessed in primary cells from mutant mice that express only 

Cx43. To that end, in both primary myoepithelial and granulosa cells we discovered that 

the I130T mutant caused a smaller reduction in dye transfer compared to the G60S mutant 

when normalized to their appropriate control counterparts. Consistently, we and others 
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reported a more severe loss of GJIC in primary cells from G60S mutant mice [17,25], but 

our results presented here are the first to directly compare these two mutants in parallel 

experiments. Thus, we hypothesized that a higher basal level of total Cx43 function in 

I130T mutant mice might retain a more normal mammary gland function than we 

previously documented in the G60S mutant mice where the gland exhibits significant 

developmental delays and failed to eject milk [20].   

Cx43 is known to be expressed in the mammary gland throughout development and 

differentiation and evidence suggests that at parturition Cx43 levels increase and the more 

highly phosphorylated species of Cx43 become more evident [14]. Similar to our findings 

in myoepithelial and granulosa cells, Kalcheva et al. (2007) showed that the highly 

phosphorylated species of Cx43 were less prevalent in cardiomyocytes of I130T mutant 

mice and this was accompanied by a reduction in Cx43 gap junctional plaques [25]. Thus, 

the reduction in GJIC observed in cells isolated from I130T mutant mice was not surprising 

as the highly phosphorylated species of Cx43 have been correlated with the level of Cx43 

assembled into functional gap junction plaques [31]. Not unlike our observations in the 

Cx43G60S/+ mice [20,21], changes in Cx43 expression and phosphorylation had no effects 

on Cx26, Cx30 or Cx32, suggesting no cross-talk between Cx43 changes and other 

mammary gland connexins.  

2.4.2 A full complement of Cx43 is necessary for the regulated 
development of mammary glands in virgin mice 

Prior to puberty, ductal elongation is largely hormone independent and is believed to be 

regulated by locally acting factors between the epithelium and the stroma [6,32]. At 4 

weeks, Cx43G60S/+ mice exhibited a delay in ductal elongation and severely impaired 

stromal development suggesting a role for Cx43 in ductal morphogenesis prior to puberty 

[20]. Although it is unknown if the delay in ductal development is a result of dysregulation 

of Cx43 in the stroma or in the epithelium, extracellular matrix components are able to 

bind and sequester signalling molecules that affect ductal/branching morphogenesis, 

suggesting that improper stromal development may contribute to the delay in ductal 

elongation observed in Cx43G60S/+ mice [33]. Although slightly smaller mammary glands 

were observed in Cx43I130T/+ mice at 4 weeks, these mice displayed a delay in ductal 
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differentiation despite exhibiting relatively normal stromal development suggesting that 

the poorly developed stroma in Cx43G60S/+ mice was not the only contributing factor 

underlying the delay in development. As such, our evidence provides support for a role of 

epithelium-localized Cx43 in regulating ductal growth prior to the onset of puberty.       

At puberty, ductal growth becomes estrogen-dependent which is exemplified by the fact 

that estrogen receptor α knockout mice have limited ductal elongation during puberty [34]. 

In Cx43G60S/+ mice, the onset of hormones at puberty was unable to overcome the delay in 

development observed in pre-pubertal mice, even after 10 weeks. Thus, we suggested that 

GJIC may in part mediate estrogen signaling between the epithelium and stroma [20]. 

Interestingly, ductal length from Cx43I130T/+ mice was similar to WT mice one week 

following the onset of puberty, suggesting three possible roles for Cx43 in pubertal ductal 

morphogenesis. First, that estrogen-driven signaling of ductal morphogenesis may not be 

dependent on GJIC and that the delay in development observed in Cx43G60S/+ following 

puberty was a result of improper stromal development [20]. Second, that the delay in ductal 

morphogenesis following puberty is a result of GJIC-independent mechanisms, which are 

further dependent on the mutant expressed. This concept is supported by the observation 

that Wnt5a overexpressing mice, in which Wnt5a overexpression was shown to decrease 

GJIC in vitro, had similar ductal morphogenesis compared to controls [35]. However, 

whether GJIC is reduced in the virgin mammary gland of Wnt5a overexpressing mice is 

unknown, thus limiting the impact of these results. Thirdly, the higher residual Cx43 

function observed in mammary cells of Cx43I130T/+ mice, nearly double of that seen in 

Cx43G60S/+ mice, is sufficient to mediate estrogen or other hormonal signals during ductal 

morphogenesis. Although further mechanistic details remain to be elucidated, it is clear 

that Cx43 plays a role in regulating the development of the mammary gland in virgin mice. 

2.4.3 Cx43 regulates proliferation in the mammary gland following 
the onset of pregnancy 

Following the onset of pregnancy, the mammary gland enlarges as the epithelial to 

adipocyte ratio increases as a result of extensive proliferation [5]. Similar to what we have 

reported for the Cx43G60S/+ mice, mammary glands of Cx43I130T/+ mice were significantly 

smaller at parturition compared to WT controls but here we extend our understanding of 
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the process by showing that the defect was due to reduced cell proliferation in Cx43I130T/+ 

mice. Cx43 has previously been implicated in pathways that affect regulators of the cell 

cycle such as cyclin D1 [36]. Interestingly, cyclin D1 null mice have poor alveolar 

development during pregnancy as a result of reduced proliferation, suggesting a possible 

regulatory pathway between Cx43 and cyclin D1 [37]. It is also important to note that both 

ODDD mutant mouse models showed similar gland architecture and histology suggesting 

that Cx43’s role in proliferation of the mammary gland is not critical for development of 

the gland during pregnancy.  

After weaning of the pups, the mammary gland undergoes involution which is 

characterized by both apoptotic cell death of epithelial cells and stromal activation [38]. 

Compared to their control counterparts, Cx43I130T/+ mice had significantly smaller 

mammary glands two days post weaning suggesting accelerated involution but this was not 

supported by the gross and histological evaluation of the epithelial ducts which revealed 

no observable difference. In addition, the level of apoptosis within the glands was similar 

to control. Therefore, the decrease in mammary gland weight observed in Cx43I130T/+ mice 

likely reflects changes in the stromal compartment of the gland, which is composed mainly 

of adipocytes. Importantly, the gap junction blocker 18-alpha-glycyrrhetinic acid and 

siRNA knockdown of Cx43 have previously been shown to inhibit adipogenesis in pre-

adipocytes, suggesting a role for Cx43 in regulating adipocyte differentiation [39].  

Given the systemic reduction in Cx43 function in I130T mutant mice and the fact that this 

genetic modification causes a small reduction in the body weight of mutant mice, it is 

possible that hormonal signaling that regulates mammary gland development is altered due 

to the compromised role of Cx43 in endocrine glands such as the ovaries, adrenal gland or 

pituitary gland [40]. In this pursuit, we hypothesized that changes in Cx43 affected 

prolactin regulation which is supported by correlational evidence that an increase in Cx43 

is associated with an increase in prolactin secretion [42]. Furthermore, prolactin receptor 

knockout mice exhibit reduced adipose tissue mass throughout the body including the 

mammary gland as a result of decreased adipocyte cell numbers, suggesting a role of 

prolactin in adipocyte proliferation and differentiation [41]. Our evaluation of serum 

prolactin levels at mid-pregnancy revealed no significant differences between mutant and 
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wild-type mice suggesting that reduced Cx43 function does not affect secretion of prolactin 

into the blood. However, it is unknown if changes in Cx43 alter prolactin signalling 

downstream in the mammary gland at the level of the prolactin receptor or whether this 

reflects changes in other hormones. Thus, we conclude that loss-of-function mutations in 

Cx43 may directly or indirectly affect the stromal component of the mammary gland during 

involution.    

2.4.4 Partial coupling by Cx43 gap junction channels is sufficient 
for normal mammary gland function  

Together with our previous findings using Cx43G60S/+ mutant mice [21], our results here 

strongly support the conclusion that a full complement of Cx43 is not necessary for the 

synthesis of constitutive proteins of milk. Due to Cx43 being mainly restricted to 

myoepithelial cells of mammary gland epithelium, previous studies suggested that Cx43 

plays a role in myoepithelial differentiation, coordinated myoepithelial contraction and 

proper milk ejection [7,14]. However, it was not until our evaluation of Cx43G60S/+ mice at 

parturition that we determined that Cx43 was essential for proper oxytocin-induced milk 

ejection which was later supported following examination of Wnt-5a over-expressing mice 

that presented with a similar ejection defect that the authors linked to severely impaired 

Cx43-mediated GJIC [35]. Surprisingly, Cx43I130T/+ mice exhibited no apparent defect in 

milk ejection upon oxytocin stimulation and females could readily feed pups. Given that 

myoepithelial cells from Cx43I130T/+ mice are approximately twice as well coupled by Cx43 

gap junctions as cells from the Cx43G60S/+ mice, we conclude that there was sufficient 

residual Cx43-based GJIC to rescue the milk ejection defect. The idea that different 

mutants of ODDD result in differential changes in the molecular properties of the Cx43 

gap junctional channel has been suggested to contribute in part to the pleiotropic phenotype 

observed in ODDD patients [19]. However, it is also important to note that differences 

observed in myoepithelial GJIC may be due in part to the different mixed mouse strain 

backgrounds being studied, although both mutant mouse lines have been partially 

backcrossed to BL6. Importantly, the ODDD patient population includes all ethnic groups 

of mixed origin, suggesting that the variations observed in the mutant mice being studied 
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may in fact somewhat reflect the heterogeneity of the disease in the human patient 

population.  

2.5   Conclusions  

In summary, unlike the previously studied Cx43G60S/+ mice with severely compromised 

Cx43 function, we found that Cx43I130T/+ mice with partial Cx43 mutant channel function 

present with limited mammary gland developmental defects. In essence, severe defects in 

mammary gland function appear to require in excess of a 50% reduction in total Cx43 

function which is consistent with the fact that Gja1+/- knockout mice, expressing only a 

50% complement of Cx43, are relatively normal and have no evidence of lactation or milk 

ejection defects [43]. In conclusion, we predict that ODDD patients that harbor mutations 

that maintain total Cx43 function in the breast at 50% or better will not suffer from milk 

production or ejection defects as appears to be the case for the vast majority of documented 

ODDD patients to date. Importantly, our study also highlights the fact that the use of 

multiple genetically-modified mouse models is beneficial for establishing results that 

translate to different populations of ODDD patients. 
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Chapter 3 

3 Mammary gland specific knockout of the physiological 
surge in Cx26 during lactation retains normal mammary 
gland development and function  

 

Cx26 has previously been suggested to be important in maintaining epithelial survival 

during alveogenesis following the onset of pregnancy. The purpose of this study was to 

further characterize the role of Cx26 during pregnancy and lactation in the mammary gland 

using a novel mouse model with mammary gland specific knockout of Cx26 during 

pregnancy. In addition, this study also aimed to address apparent discrepancies between 

the lack of breast feeding defects reported by hearing-loss female patients that harbor loss-

of-function Cx26 mutants, and the severely impaired lactation defects previously described 

using conditionally ablated Cx26 mouse models.   
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A version of this chapter is published: 

Stewart MKG, Plante I, Bechberger JF, Naus CC, Laird DW. Mammary gland specific 

knockdown of the physiological surge in Cx26 during lactation retains normal mammary 

gland development and function. PLoS ONE 9(7): e101546. doi:10.1371/ 

journal.pone.0101546, 2014. 
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3.1 Introduction 

Breast morphogenesis is unique to other organ systems in that the majority of its 

development occurs after birth. The progression towards a terminally differentiated gland 

requires the onset of pregnancy in which alterations in hormones and cell-cell signaling 

results in the growth and increased branching of ducts, along with the differentiation of 

alveolar cells to form the mature milk-secretory organ [1]. Weaning leads to the regression 

and remodeling of the breast to a virgin gland state in a process known as involution. The 

mammary gland of mice is comparable to that of humans and has frequently been used as 

a model to study mammary gland development [2]. Although much is known about the 

hormonal control of mammary gland throughout development, less is known about local 

communication such as the gap junction proteins connexins (Cxs) [3,4]. Importantly, gap 

junctions have been shown to play a role in coordinating cellular tissue responses 

downstream of hormonal/paracrine stimuli, suggesting that dysregulation of Cxs may alter 

hormonally controlled organ development and function [5]. 

Six connexin subunits oligomerize to form a hemichannel (or connexon) capable of 

permitting the exchange of small molecules between the intracellular and extracellular 

environment. More commonly, connexons from one cell dock with connexons from an 

adjacent cell to allow for direct gap junctional intercellular communication (GJIC) [6]. 

Two connexins, Cx26 and Cx43, were shown to be expressed within the breast of humans 

in which Cx26 is the only connexin localized to the luminal epithelial cells [7]. In mice, 

Cx26 is expressed at low levels at all stages of mammary gland development and is 

dramatically upregulated during pregnancy to become the most predominantly expressed 

connexin within the mammary gland [3,8]. As such, Cx26 has previously been suggested 

to play a role in coordinating gland development prior to secretory activation as well as 

having a possible role in maintaining normal tissue homeostasis and differentiation of the 

non-pregnant mammary gland [3]. In addition, luminal cells in the mouse mammary gland 

also express Cx32 and Cx30, which are able to form heteromeric/heterotypic channels with 

Cx26 during pregnancy and lactation. Heteromeric/heterotypic channels alter the 

properties and permeabilities of luminal gap junction channels, although the 



97 

 

transjunctional molecular exchange through these junctional networks remains unclear 

[9,10]. 

Homozygous knockout mice have been unsuccessful in determining the role of Cx26 in 

the mammary gland. Gjb2-/- mice die in utero as a result of placental defects rendering 

examination of the mammary gland impossible [11]. Similarly, the generation of Gjb2+/Gjb1 

mice die embryonically as a result of severe lymphedemas [12]. To overcome this, two 

conditionally ablated mice using the Cre-loxP system were developed to assess the role of 

Cx26 in the mammary gland [13]. Gjb2fl/fl (Cx26fl/fl mice) crossed with mice expressing the 

Cre transgene under a whey acidic protein (WAP) promoter (referred to as Cx26fl/fl;WC) or 

the mouse mammary gland tumor virus (MMTV) promoter (referred to as Cx26fl/fl;MC) 

were generated. The MMTV promoter expresses Cre recombinase in the mammary gland 

epithelium prior to birth while the WAP promoter initiates the expression of Cre in the later 

stages of pregnancy [14]. Interestingly, Cx26fl/fl;MC mice showed reduced lobuloalveolar 

development compared to controls due to an increase in apoptosis while no change was 

observed in Cx26fl/fl;WC mice. As a result, pups from Cx26fl/fl; MC dams were more likely 

to die before being weaned, likely from starvation [13]. It was suggested that Cx26 during 

early pregnancy plays a critical role in epithelial cell survival and that loss of Cx26 may 

result in abnormal lactation [13].  

However, two discrepancies exist that highlight the need for further studies to evaluate the 

function of Cx26 in mammary gland development and function. First, Yuan et al. (2011) 

recently found that control MMTV-Cre mice developed by the Hennighausen laboratory 

(as the founding MMTV-Cre line A) had impaired mammary gland developmental defects, 

cautioning the use of this Cre mouse line in mammary gland development studies [15]. It 

is unknown which MMTV-Cre mouse line was used by Bry et al (2004) and whether such 

a concern existed in their study [13]. However  pregnant MMTV-Cre line A mice were 

found to develop with reduced lobuloalveolar formation at the onset of lactation as a result 

of increased apoptosis, while virgin glands developed normally, results consistent with the 

findings in the Cx26fl/fl;MC mouse line [13,15]. As a result, additional studies are needed 

to further evaluate the role of Cx26 in mammary gland development and function. 

Secondly, a human population of patients exist with systemic dysregulated Cx26 
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expression and loss of Cx26 channel function that have never been reported to have altered 

breast function. Over 90 mutations in the GJB2 gene that encodes Cx26 give rise to both 

syndromic and non-syndromic deafness that accounts for approximately half of congenital 

cases of hearing impairments [16]. Mutations in GJB2 may result in both autosomal 

dominant and  recessive loss of function mutations, of which the most frequent recessive 

mutations may lead to considerable, if not total, ablation of Cx26 channel function [17]. 

Interestingly, despite an incidence rate of this mutation similar to that of cystic fibrosis, 

there are no reports of breast feeding problems in the deaf community, suggesting that 

Cx26 may not be essential for normal gland function [16,18].  

Thus, in order to further evaluate the role of Cx26 in the mammary gland, we developed a 

novel Cx26 conditional knockout mouse model in which β-lactoglobulin (BLG)-Cre mice 

were crossed with Cx26fl/fl mice. The resulting mice were found to have greatly reduced 

Cx26 expression in the mammary gland yet retained normal gland development, 

differentiation and function. These findings were even more remarkable given that cross-

talk mechanisms cause a co-regulated reduction in Cx30. Taken together, these findings 

strongly suggest that mammary gland function can proceed normally in the absence of the 

physiological surge in Cx26 that occurs during pregnancy and in the presence of a 

substantial loss of gap junctional exchange of signalling molecules.  

3.2 Methods 

3.2.1 Animals 

BLG-Cre mice [19] were crossed with Cx26fl/fl mice [20] to produce BLG-Cre;Cx26fl/fl mice 

(Cx26 knockout mice or Cre+ mice). All mice were genotyped for the prescence of the 

Cre transgene. In addition, BLG-Cre mice were crossed with WT mice showing no 

evidence of a lactation defect. Four virgin, pregnant d9.5 and pregnant d12.5, as well as 

eight Cx26 knockout mice at parturition, d4 of lactation and d2 of involution, along with 

Cx26fl/fl control mice (Cre- mice) at identical timepoints, were sacrificed using CO2 and O2. 

Thoracic mammary glands were removed and either stored at -80ºC (right side) or cryo-

embedded (left sided glands), while inguinal mammary glands were either fixed in 10% 
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neutral buffered formalin and then embedded in paraffin (right sided glands) or processed 

for whole mounting (left sided glands). Mice were arbitrarily numbered to allow 

experiments to be performed by a process that was blinded to the investigator. The protocol 

was approved by the Committee on the Ethics of Animal Experiments of the University of 

Western Ontario (2006-101-10) and the University of British Columbia (A11-0170) and 

the Canadian Council of Animal Care (Appendix 3).  

3.2.2 Real-Time PCR 

Total mRNA was isolated from the tissues using TRIzol (Invitrogen, Burlington, ON) and 

purified using RNeasy mini-kit (Quiagen, Mississauga, ON) following the manufacturers' 

instructions. cDNA were generated from isolated mRNA using RevertAid First Strand 

cDNA Synthesis Kits (Fermentas, Burlington, ON) and then subjected to specific 

amplification using SsoFast EvaGreen Supermix (Bio-rad, Mississauga, ON) using Cx26 

(5' TCCGCATCATGATCCTCGTG 3'; 5' CCCAGAGCCGGATGTGA 3'), Cx30 (5' 

GCCGAGTTGTGTTACCTG 3';5' GCATTCTGGCCACTATCTGA 3'), Cx32 (5' 

CTTGCTCAGTGGCGTGAATC 3'; 5' CGGCTGGAGGGTGTTACAG 3'), Cx43 

(5’TATGACAAGTCCTTCCCCAT 3’; 5’ TGATTTCAATCTGCTTCAGG 3’) and β2-

microglobulin (5'CCCACTGAGACTGATACATACGC3';      

5'GGTTCAAATGAATCTTCAGAGCAT3') primers, with a TM at 55ºC (N=4).  

3.2.3 Western blot analysis 

Mammary gland tissues were homogenized in lysis buffer and subjected to western blot 

analysis, as described previously [21], [22]. Membranes were immunoblotted with the 

following primary antibodies: mouse anti-Cx26 (C14523, Lifespan, Seattle, WA, 1µg/ml), 

rabbit anit-Cx30 (71-2200, Invitrogen, Burlington, ON,  0.25 µg/ml), rabbit-anti-Cx32 

(C3470, Sigma-Aldrich, Oakville, ON,  0.1 µg/ml), rabbit anti-Cx43 (C6219, Sigma-

Aldrich, Oakville, ON, 0.1 µg/ml), goat anti-WAP and goat anti-β-casein (sc-14832, sc-

17971, Santa Cruz Biotechnology, Dallas, TX, 0.2 μg/ml), mouse anti-glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) (MAB374, Millipore, Billerica, MA, 2 µg/ml) and 

rabbit anti-GAPDH (14C10, Cell Signaling, Danvers, MA,  1:1000). Bound primary 
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antibody was detected using the following fluorescence-conjugated secondary antibodies; 

Alexa 680-conjugated goat anti-rabbit, Alexa 800-conjugated goat anti-mouse and Alexa 

680-conjugated donkey anti-goat (Molecular Probes, Eugene, OR, 0.2 µg/ml) followed by 

visualization and quantification using the Odyssey Infrared Imaging System (Li-Cor 

Biosciences, Lincoln, NE). Protein levels were determined by normalization to the western 

blot band intensities of GAPDH (N≥6).  

3.2.4 Immunofluorescence 

Paraffin-embedded sections (6 µm) were deparaffinized in xylene and rehydrated in 

descending concentrations of ethanol baths, microwaved for 5 min (80%) in antigen-

retrieval solution (1:50, Vector Labs) and put into 0.01 M Tris/1 mM EDTA buffer (pH 

9.0) at 90–95 ◦C for 30 min, as previously described [22]. Cryo-sections (7 µm) were fixed 

with 10% neutral buffered formalin. Paraffin and/or cryosections were blocked with 0.1% 

Triton X-100 and 3% BSA in PBS for 60 min at room temperature. Sections were then 

incubated with the following primary antibodies: rabbit anti-Cx26 (51-2800, Invitrogen, 

Burlington, ON, 2.5 µg/ml), rabbit anti-Cx30 (71-2200, Invitrogen, Burlington, ON, 2.5 

µg/ml), rabbit-anti-Cx32 (C3470, Sigma-Aldrich, Oakville, ON, 1.0 µg/ml), rabbit anti-

Cx43 (C6219, Sigma-Aldrich, Oakville, ON, 1.0 µg/ml), mouse anti-pan-Cytokeratin 

(ab7753, Abcam, Cambridge, MA, 4 µg/ml),  mouse anti-Proliferating Cell Nuclear 

Antigen (PCNA) (M-0879, Dako, Burlington, ON, 0.5 µg/ml), goat anti-WAP (sc-14832, 

Santa Cruz Biotechnology, Dallas, TX, 2μg/ml) and Wheat Germ Agglutinin-633 (WGA) 

conjugate (W-21404, Invitrogen, Burlington, ON, 1:400). Primary antibody was visualized 

by incubating sections with secondary antibodies: Alexa480-conjugated goat anti-rabbit, 

Alexa480-conjugated goat anti-mouse, Alexa555-conjugated anti-mouse secondary 

antibody, (Invitrogen, Burlington, ON, 0.5 µg/ml) or anti-goat Texas Red (Jackson 

ImmunoResearch Laboratories, Baltimore, PA, 1:100). Hoechst stain was used to visualize 

nuclei prior to mounting. Immunolabeled sections were imaged (5-10 images per sample) 

using a Leica DM IRE2 inverted epifluorescence microscope equipped with Openlab 

5.5.3/Velocity 6.3.0 imaging software or a Zeiss LSM 510 inverted confocal microscope 

(N≥6). For cytokeratin area quantification, green only and blue only fluorescent images at 

20X magnification were converted to binary using ImageJ and the pixel area was measured. 
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Graphs represent the mean ratio of green fluorescent area (cytokeratin) to blue fluorescent 

area (nuclei). For PCNA quantification, the number of PCNA positive cells per 20X field 

was quantified. In addition, the blue only fluorescent images at 20X magnification were 

converted to binary using ImageJ and the pixel area was measured. Graphs represent the 

mean ratio of the number of PCNA positive cells to blue fluorescent pixel area (nuclei).  

3.2.5 Whole mounting 

As previously described [23], the left inguinal mammary glands were excised, spread on 

glass slides and fixed in Carnoy's fixative (100% EtOH, chloroform, glacial acetic acid; 

6:3:1) for 4 h at room temperature. Mammary glands were washed in 70% EtOH for 15 

min, gradually rehydrated in water, and stained in carmine alum (2% carmine and 5% 

aluminum potassium sulfate in water) overnight at room temperature. Tissues were then 

gradually dehydrated through serial ethanol baths and cleared in xylene overnight. 

Mammary glands were kept in methyl salicylate until images were captured with a numeric 

camera (Cybershot, Sony) and a SteREOLumar V12 microscope (Zeiss) (N≥4). 

3.2.6 Histology  

Paraffin-embedded mammary gland sections (6 µm) were deparaffinized in xylene for 10 

min, rehydrated in descending grades of ethanol baths, and stained with 1% Harris's 

haematoxylin and 1% eosin. Sections were dehydrated in ascending grades of ethanol and 

xylene baths and mounted with Cytoseal (Richard-Allan Scientific). Qualitative 

histological analysis was performed by imaging several arbitrary areas per 20× field of 

view using a Leica DM IRE2 inverted epifluorescence microscope equipped with a 

ProgRes C5 camera (Jenoptik) and ProgRes Mac CapturePro 2.7.6 imaging software 

(N=8). 

3.2.7 Evaluation of apoptosis 

Apoptotic cells were stained using a commercial kit for TUNEL assay (Apoptag, Chemicon 

International, Temecula, CA) following the manufacturer's instructions. Slides were treated 

with 0.5% TritonX-100 in PBS. 5-10 random fields per mouse were evaluated in which the 
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ratio of the number of apoptotic cells to the pixel area of nuclei were quantified using 

ImageJ software (National Institutes of Health, Bethesda, MD) for each 20X field (N=5). 

3.2.8 Statistical analysis 

All statistical analyses were performed using GraphPad Prism version 4.03 for Windows.  

A Student's unpaired t-test or a one-way ANOVA test was used in which a p<0.05 was 

considered significant. Values are presented as means ± S.E.M.  

3.3 Results 

3.3.1 Conditionally ablated Gjb2 in the mammary gland 

In the mammary gland, Cx26, as well as other apical Cx30 and Cx32, expression is 

dramatically upregulated at parturition and remains elevated throughout lactation (Figure 

3.1A, [10]). To assess the efficiency of the Cx26 knockout we performed real-time PCR 

analysis of Cx26 which revealed a significant decrease, but not complete ablation, of Cx26 

mRNA at parturition and lactation (Figure 3.1B). Consistent with these results, western 

blot and immunofluorescent analysis revealed a significant ~65-70% decrease in Cx26 

protein levels (Figure 3.1C) that correlated  with a decrease in Cx26 gap junction plaques 

within the mammary epithelium of Cre+ mice at parturition and lactation (Figure 3.1D). 

As expected, since the BLG promoter is not activated before mid-pregnancy (day 10 of 

pregnancy), no differences were observed in other stages (Figure 3.S1). Together, residual 

Cx26 expression suggests that Cre+ mice maintain low basal expression of Cx26 

throughout the pregnancy and lactation phases of mammary gland development while the 

typical physiological surge in Cx26 was eliminated.  
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Figure 3.1. BLG-Cre; Cx26fl/fl mice exhibit a dramatic reduction in Cx26. (A) Real-time 

PCR analysis of wild-type mice revealed that Cx26, Cx32 and Cx30 are upregulated at 

parturition and lactation. (B, C) Real-time PCR and western blot analysis of mammary 

glands from Cre- (open columns) and Cre+ (solid columns) mice revealed a dramatic 

reduction in Cx26 mRNA and protein levels at parturition and lactation. *p<0.05, 

***p<0.001. Values are mean levels ± S.E.M. N≥4. (D) Immunofluorescence for Cx26 

revealed a decrease in Cx26 gap junctions (arrows) at parturition and lactation in Cre+ 

mice compared to control mice.  Hoechst staining denotes the nuclei. N=6. Scale Bar =50 

µm. 
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Figure 3.1 
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To assess the status of other connexins co-expressed within the mammary gland in response 

to a reduction in Cx26, Western blot and immunofluorescent analysis of Cx43, Cx32 and 

Cx30 were evaluated at parturition and lactation. Protein expression and localization of 

Cx43 and Cx32 were similar in the mammary glands of lactating Cre+ mice compared to 

control mice (Figure 3.2A,B). Interestingly, our assays revealed a significant decrease in 

Cx30 expression at parturition to about ~40% of control and a significant reduction in Cx30 

gap junction plaques in lactating Cre+ mice compared to control (Figure 3.2A,B, 3.S2A). 

Qualitative immunofluorescent analysis of Cx30 gap junctions at lactation showed that 

Cx30 gap junctions appeared dramatically smaller in Cre+ mice compared to control mice 

despite a similar number of overall Cx30 gap junction plaques (Figure 3.2B, 3.S2B). 

Therefore, the Cre+ mice lacked the physiological surge in both Cx26 and Cx30 that are 

typically observed in the mammary gland during pregnancy.  

3.3.2 BLG-Cre; Cx26fl/fl mice retain normal mammary gland 
development throughout pregnancy 

To assess whether a reduction in Cx26 gap junction plaques affects the development of the 

mammary gland during the pregnancy cycle, whole mount analysis was assessed in the 

mammary glands of virgin, pregnancy day 9.5, pregnancy day 12.5, at parturition, lactating 

and involuting mice. Adult virgin mammary glands of genetically-modified mice contained 

an expansive epithelial ductal network embedded within a developed mammary fat pad 

similar to control mice (Figure 3.3A). Following the onset of pregnancy, whole mount 

assessment revealed increased ductal branching and lobuloalveolar structures in the glands 

of Cre+ mice similar to control mice, suggesting normal timing of alveolar development. 

In accordance, mammary glands of  
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Figure 3.2. Lactating mammary glands of Cre+ mice exhibited a reduction in Cx30 at 

parturition. (A) Western blot and (B) immunofluorescent analysis of mammary glands 

from control and Cre+ mice at parturition revealed a significant decrease in Cx30 

expression and a reduction in Cx30 gap junction plaques, while no change was observed 

in either Cx43 or Cx32. Arrows denote connexin plaques. *p<0.05. Values are mean levels 

± SEM. N≥6. Hoechst staining denotes the nuclei. Scale Bars = 50 µm. 
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Figure 3.3. Mammary glands from BLG-Cre; Cx26fl/fl mice at all stages of gland 

development have similar gross gland architecture. (A) Whole mount analysis of 

developing and differentiating mammary glands from control and Cre+ mice revealed 

similar ductal and alveolar structure as assessed with carmine alum staining. (B) High 

(25X) magnification of whole mounts revealed developed alveoli in lactating Cx26 

knockout mice and alveolar turnover in involuting mice similar to controls. N≥4. 
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the genetically-modified mice at all stages of development following pregnancy were 

similar to Cx26fl/fl control mice with developed alveoli that fully encompassed the 

mammary gland by early lactation and comparable alveolar turnover during involution 

(Figure 3.3A,B).  

Since whole mount analysis can conceal alveoli changes due to the density of alveoli, 

histological analysis of H&E stained sections were performed on control and genetically-

modified mice. These studies revealed no qualitative differences in the density of alveoli 

and ducts throughout the mammary gland regardless of the stage of development after 

pregnancy (Figure 3.4A). In addition, to quantitatively evaluate whether conditionally 

reduced Cx26 led to defects in alveologenesis, mammary gland sections at parturition, 

lactation and involution were immunolabelled with the epithelial marker pan-cytokeratin. 

Ten arbitrary images were taken of each slide and the area of cytokeratin over the area of 

the nuclei was quantified. Quantification revealed no significant difference in cytokeratin 

labelling between Cre+ mice and Cre- control mice at parturition, lactation and involution 

suggesting normal epithelial turnover throughout lactation and involution (Figure 3.4B).  

Previously, Lee et al. (1992) demonstrated that Cx26 mRNA was upregulated in the late 

G1 and early S phase of normal mammary epithelial cells, suggesting that Cx26 may have 

a role in luminal cell proliferation [24]. To assess whether Cx26 regulates proliferation 

through gland development, Cre+ mice at parturition, lactation and involution were 

immunolabelled with the proliferation marker PCNA and compared to Cre- mice. 

Quantification revealed no significant difference in the number of PCNA positive cells at 

all-time points in Cre+ mice compared to controls suggesting that the physiological surge 

in Cx26 is not critical in regulating proliferative mechanisms of gland development during 

pregnancy (Figure 3.5).  

As Cx26 has previously been implicated in regulating epithelial cell survival during the 

early phase of pregnancy, mammary glands of Cre+ mice were assessed for changes in 

apoptosis using a TUNEL assay [13]. Quantification of TUNEL positive cells showed 

relatively low numbers of apoptotic cells at parturition and lactation and increased  
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Figure 3.4. Mammary glands of BLG-Cre; Cx26fl/fl mice have similar epithelial 

development. (A) Haematoxylin and eosin staining of lactating and involuting mammary 

glands revealed similar histology between genetically-modified and control mice. Scale 

bars=100µm. (B) Labeling for the epithelial marker, cytokeratin, using an anti-pan-

cytokeratin antibody revealed similar levels of labeling in control and genetically-modified 

mice. Values represent the mean positive-staining pixel area (green) relative to the pixel 

area of the nuclei (blue) per 0.18 mm2 ± S.E.M. N=8. Hoechst staining denotes the nuclei. 

Scale Bars = 50 µm.  
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Figure 3.4 
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apoptosis during involution in Cre+ mice similar to Cre- mice (Figure 3.6). These results 

suggest that conditional knockout of Cx26 during early pregnancy does not alter epithelial 

cell survival. Collectively, our results suggest that basal Cx26 expression is sufficient to 

retain normal mammary gland development. 

3.3.3 BLG-Cre; Cx26fl/fl mice have normal lactation   

To determine the functional state of the gland, western blot analysis of 2 common milk 

proteins, WAP and β-casein, were performed. Our data revealed similar expression in 

lactating Cre+ and Cre- mice (Figure 3.7A,B). As the western blot analysis is a measure 

of both secreted and non-secreted milk proteins, immunofluorescence of WAP within the 

ducts (apical epithelium marked with WGA) was used as a measure of milk secretion. 

Evidence of secreted milk within the alveoli of Cre+ and control mice was observed 

(Figure 3.7C). In addition, postnatal day 18 pup weights from both Cre+ and Cre- dams 

did not show any significant differences as well as similar litter sizes suggesting that pups 

survive to weaning age and do not die of starvation. During subsequent 2nd and 3rd 

pregnancies, no differences were seen in the litter weight sizes or health of the pups. Thus, 

a reduction in Cx26 did not affect later pregnancies as well. These findings are consistent 

with the whole mounting, histological and immunolabeling data further supporting the 

premise that the absence of the physiological surge in Cx26 during pregnancy does not 

result in an overt developmental or functional defect in the mammary gland in BLG-Cre; 

Cx26fl/fl mice.  

3.4 Discussion 

In the present study we use a novel, conditional Cx26 knockout mouse model to evaluate 

the biological role of the Cx26 surge seen in the mammary gland as mice enter and proceed 

through pregnancy.  In contrast to previous reports, we demonstrated that the absence in 

the physiological surge in Cx26 resulting in reduced Cx30 upregulation, during pregnancy 

is not necessary for normal mammary gland development. Furthermore, we showed that 

low basal levels of Cx26 in the mammary gland are sufficient for normal mammary gland 

function. 
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Figure 3.5. The mammary gland of BLG-Cre; Cx26fl/fl mice has unaltered cell 

proliferation at parturition, lactation and involution. (A) Assessment of PCNA labeling 

(red) revealed no change between Cre+ mice and control mice. (B) Values represent the 

mean number of positive cells (inserts, red) relative to the pixel area of the nuclei (blue), 

divided by a factor of 1x10-9, per 0.18 mm2 ± S.E.M. N=8. Hoechst staining denotes the 

nuclei. Scale bars= 50 µm. 
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Figure 3.5 
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Figure 3.6. Programmed cell death is unaltered in lactating and involuting mammary 

glands form BLG-Cre; Cx26fl/fl mice. (A) Evaluation of TUNEL positive (red) cells 

revealed no difference between genetically-modified mice and control. (B) Values are 

mean number of positive-cells (inserts) relative to the pixel area of the nuclei, divided by 

a factor of 1x10-9, per 0.18 mm2 ± S.E.M. N=5. Hoechst staining denotes the nuclei. Scale 

bars=50 μm. 
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Figure 3.6 
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Figure 3.7. Similar to control mice, lactating BLG-Cre; Cx26fl/fl mice can produce and 

secrete milk. (A, B) Western blot analysis revealed similar WAP and β-casein expression 

levels at parturition and lactation of control and genetically-modified mice.  Values are 

mean levels ± SEM. N=8. (C) Immunofluorescent analysis revealed secreted WAP (red, 

arrows) within the lumen of ducts and alveoli outlined with wheat germ agglutinin (green). 

N=4. Hoechst staining denotes the nuclei. Scale bars=50 µm.  
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3.4.1 BLG-Cre; Cx26fl/fl mice as a model to study the role of Cx26 

in mammary gland development and function 

Conditionally ablated mice have previously been described to study the role of Cx26 in 

mammary gland development. These mice were engineered to express Cre under the 

MMTV or WAP promoters that become activated at an early embryonic stage or at the end 

stages of pregnancy, respectively [13,14]. However, both of these genetically-modified 

mice ablate Cx26 from birth or after pregnancy begins, but not at the onset of Cx26 

upregulation at D8.5-9.5 of pregnancy [10]. Thus, in order to assess the role of Cx26 during 

pregnancy, we employed a similar Cre-loxP targeting strategy using Cre under the BLG 

promoter as previously described [19]. Cre-mediated recombination following 

upregulation under the BLG promoter has been reported to become activated at 

approximately day 10 of pregnancy causing recombination of the floxed allele in 70-80% 

of the lactating mammary gland [19,25]. In comparison to the MMTV or WAP promoters, 

BLG promoter activation is more restricted to the mammary gland with ≤1% 

recombination reported in other tissues while the MMTV promoter has also been reported 

in the salivary glands, seminal vesicles and lymphoid cells and the WAP promoter is 

expressed within the brain [14,26]. Thus, the BLG promoter driven loss of Cx26 more 

precisely mimics the physiological increase in Cx26 [19]. Here we demonstrated that BLG-

Cre; Cx26fl/fl mice had a reduction in the physiological surge in Cx26 during mammary 

gland development but did not completely ablate Cx26 expression. This reduction in Cx26 

was not unlike the Cx26fl/fl;MC mice reported by Bry et al (2004) where residual Cx26 may 

also have be present [13]. Importantly, the expression of Cx26 gap junctions is localized 

to only select luminal cells in our Cx26 knockout mice, suggesting that the majority of 

luminal cells may have complete ablation of Cx26.  

Downregulation of untargeted connexins in response to specific connexin knockout 

targeting strategies has been observed in a variety of tissues, including the pancreas and 

liver of Gjb1-/- deficient mice in which Cx26 was also reduced [27,28]. In our study, we 

observed a reduction in Cx30 upregulation concordant with a knockout strategy targeting 

Cx26. Similarly, the conditional ablation of Cx26 in the inner ear of mice expressing Cre 

under the Sox2 promoter showed a delay in the expression of Cx30 till postnatal d14, unlike 
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in control mice where Cx30 expression was observed as early as postnatal d6 [29]. Our 

results suggest that cross talk regulation of Cx26 and Cx30 expression is not exclusively 

restricted to the inner ear. Although not tested, we speculate that the reduction in Cx30 

occurs through the regulation of gene transcription similar to that described previously 

[29], although a post-translational role of Cx26 to stabilize Cx30 containing hemichannels 

through oligomerization cannot be ruled-out. Alternatively, Cx30 downregulation is also 

associated with a downregulation in Cx26 as mice generated to express the Cx30T5M mutant 

have a significant downregulation of Cx26 within the adult cochlea, suggesting that Cx26 

and Cx30 share reciprocal cross talk mechanisms [30]. Indeed, this regulation between 

Cx26 and Cx30 was suggested to be mediated through calcium and NF-B signaling, 

although it is unknown if a similar mechanism occurs within the mammary gland [31]. 

Importantly, both calcium and NFB signaling occur during pregnancy and lactation 

within the mammary gland [32,33].   

Although the down regulation of Cx26 or Cx32 has previously been reported to 

reciprocally down-regulate each other [27], this was not observed in the Cre+ mice used 

in this study and may reflect the differential timing and possibly distinct mechanisms of 

Cx26 (upregulated during pregnancy) and Cx32 (upregulated during early lactation) 

expression within the mammary gland [10]. Similarly, Cx43 expression was not altered in 

Cre+ mice compared to control mice which likely reflects their differential localization 

patterns as Cx26 is expressed mainly in luminal cells while Cx43 is found mainly in the 

myoepithelium and stromal fibroblasts [3]. Together, Cx26 knockout mice have acquired 

a phenotype where Cx26 is reduced in lactating mice with a delay in Cx30 upregulation.  

3.4.2 Mammary gland development is maintained in Cx26 

conditional knockout mice 

All exocrine glands have previously been shown to express Cx26 and/or Cx32 gap 

junctions suggesting that these proteins may be critical in regulating gland development 

[34]. To date, systemic loss of Cx32 or Cx26 has yet to reveal impaired development of 

exocrine tissues [35]. However, as in the case of Cx26, this is difficult to assess due to the 

lethality of Gjb2-/- mice at embryonic D10.5 [11]. The question then arises as to why Cx26 
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appeared to play a key role in the exocrine mammary gland lobuloalveolar development 

which led to impaired lactation in MMTV-Cre mice [13]. Three possibilities exist to help 

explain this discrepancy. First, it is plausible that because mammary gland development is 

unique in that most of its development occurs after birth, Cx26 may have a unique role to 

guide its development [3]. Second, as the use of control MMTV-Cre mice in the Bry et al. 

study were not reported to assess whether the insertion of MMTV-Cre affected the 

phenotype of these mice, and given the new finding by Yuan et al (2011) that at least one 

mouse line of MMTV-Cre mice has mammary gland defects, we cannot rule out the 

possibility that conditional targeting strategies using MMTV-Cre mice are less than ideal 

to examine mammary gland development and function [15]. However, in support of the 

validity of the findings from MMTV-Cre driven Cx26 knockout mice, these mice showed 

a clear paucity of alveolar formation by pregnancy D15 compared to control mice, while 

decreased alveoli and ducts were not observed until parturition in MMTV-Cre mice 

suggesting a similar but distinct phenotype [13,15]. Finally, it is possible that Cx26 may 

play an important role in the development of other exocrine glands and that further 

evaluation of these glands using similar conditional targeting strategies is needed. 

Whole mount, histological and immunofluorescent analysis of BLG-Cre driven Cx26 

knockout mice revealed that the physiological surge in Cx26 is not required for mammary 

gland development or for controlling proliferative or apoptotic mechanisms associated with 

pregnancy, lactation and the involution cycle of the mammary gland.  Our results may 

suggest one of two possibilities: first, low levels of Cx26 in the whole mammary gland 

during pregnancy and lactation are sufficient to mediate alveologenesis and gland function. 

This appears to be the case in terms of Cx43 within the mammary gland, in which the 

Cx43I130T/+ mice that maintained GJIC above a certain threshold was able to retain proper 

mammary gland development and function not observed in Cx43G60S/+ mice with low GJIC 

(Chapter 2, [22]). Our study did not evaluate GJIC therefore it is unknown whether a 

similar observation is observed in the BLG-Cre driven Cx26 knockout mice. Second, our 

results may also suggest that Cx26 does not regulate alveologenesis during pregnancy but 

instead is important earlier in development. As the MMTV promoter is activated 

embryonically and Cx26 has been found to be expressed at low levels in the virgin 

mammary gland, it is unknown whether Cx26 plays a role in regulating differentiation of 
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the stem/progenitor cells within the mammary gland prior to pregnancy [14,21]. 

Importantly, Cx26 has been reported to be expressed in stem/progenitor cells postnatal 

hippocampus but it is unknown if Cx26 is expressed in mammary stem/progenitor cells 

[36]. Regardless of which of these two possibilities is correct, the maintenance of basal 

levels of Cx26 during pregnancy does not appear to impair lobuloalveolar development of 

the mammary gland.   

3.4.3 Mammary gland function is maintained in BLG-Cre;Cx26fl/fl 

mice  

Both Cx26 and Cx32 have been suggested to regulate and fine tune the synthesis and 

release of factors in exocrine glands, of which Cx32 is thought to play the dominant role 

[34]. However, Gjb1-/- mice do not present with a lactation defect, suggesting that other 

connexins such as Cx26 or Cx30 channels are equally important in regulating mouse 

mammary gland secretion [3]. Our results suggest that the absence of the physiological 

surge of Cx26 does not appear to impair the secretory function of the gland in that two of 

the most common milk proteins had no change in their expression or release into the lumen 

of acini or ducts. Consistent with this, sufficient milk was produced from lactating dams 

as no difference in pup death was observed in Cx26 knockout mice, which may be the 

result of normal Cx32 expression fulfilling the need for the loss of Cx26 within the 

mammary gland. Importantly, both Cx32 and Cx26 channels are able to pass similar 

molecules through GJIC including ATP and IP3 [37]. In support of this, Cx32 is 

upregulated at the onset of lactation and has previously been shown to be insensitive to 

gating by the osmolyte taurine that is implicated in milk protein synthesis, unlike that of 

Cx26 homomeric and heteromeric Cx26/32 channels [10]. As a result, loss of the 

physiological surge in Cx26 does not have an overt impairment on milk production or 

delivery to pups.  

3.5 Conclusions 

In humans, Cx26 is the only consistently reported connexin to date to be expressed within 

the luminal epithelium, suggesting that Cx26 is the dominant connexin regulating human 
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mammary gland function [3]. As such, loss of this connexin would presumably result in 

breast feeding defects as previously reported in MMTV driven Cx26-ablated mice. 

Interestingly, a population of patients exist with mutations in the GJB2 gene that encodes 

Cx26 representing a large population base with systemic and impaired Cx26 channels that 

result in deafness and skin diseases [17]. Although no study to date has specifically 

evaluated a relationship between loss of function mutations in GJB2 patients and breast 

feeding, it is interesting that in the face of such a high prevalence of people with these 

mutations resulting in deafness, there are no reports of lactation defects within the deaf 

community [18]. Two possibilities arise to explain this discrepancy. First, that breast 

feeding defects occur within hearing impaired mothers expressing Cx26 mutants but are 

not reported. Second, Cx26 is not a critical regulator of epithelial cell survival and that 

maintenance of low levels of Cx26 is sufficient for breast feeding. Our mouse model 

supports the latter and suggests that mothers with GJB2 mutations that maintain Cx26 

levels above 30% will not develop breast feeding defects. 

In summary, our novel mouse model suggests that in the absence of the physiological surge 

in Cx26, mammary gland development and function are retained within the mammary 

gland of mice. Our results suggest that as long as basal levels of Cx26 expression are 

maintained within the human population expressing mutations in the GJB2 gene, mammary 

gland development and function may be unaffected.    
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3.7 Supplementary figures 

 

 

 

 

 

 

Figure 3.S1. BLG-Cre;Cx26fl/fl mice exhibit a dramatic reduction in Cx26 at 

parturition and lactation only. (A) Real-time PCR analysis of mammary glands from 

control (open columns) and Cre+ (solid columns) mice revealed a dramatic reduction in 

Cx26 mRNA levels in lactating mice while no change was observed at other timepoints. 

Values are mean levels ± S.E.M. *p<0.05, ***p<0.001. Western blot analysis of Cx26 

during pregnancy revealed no significant difference in Cx26 expression at D9.5 and d12.5. 

Values are mean levels ± S.E.M. Immunofluorescent analysis of Cx26 (green, arrows) 

revealed a qualitative reduction in Cx26 at D12.5 of pregnancy in Cx26 knockout while no 

change was observed at D9.5 compared to control mice. Hoechst staining denotes the 

nuclei. Scale bars=50 µm. N=4. 
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Figure 3.S1 
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Figure 3.S2. BLG-Cre;Cx26fl/fl mice have significantly reduced number of Cx30 gap 

junctions at parturition. Quantification of 10 arbitrary Cx30-labelled immunofluorescent 

images (Figure 3.2) per nuclear pixel area per sample revealed a significant decrease in 

Cx30 gap junctions compared to control mice at parturition (A) but not at lactation (B). 

Values are mean levels ± SEM. N=8. 
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Figure 3.S2 
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Chapter 4 

4 Cx26 knockout predisposes the mammary gland to 
primary mammary tumors in a DMBA-induced mouse 
model of breast cancer 

 

Similar to Cx43, Cx26 has been described to act as both a tumor suppressor and tumor 

facilitator in the context of breast cancer. The purpose of this study was to further clarify 

the role of Cx26 in breast tumourigenesis using our previously characterized BLG-Cre; 

Cx26fl/fl mice chemically treated to induce breast tumors. Importantly, these studies 

represented the first evaluation of the role of Cx26 in breast cancer using genetically-

modified mice. In addition, this study aimed to indirectly determine if female patients with 

hereditary deafness due to loss-of function mutations in the GJB2 that encodes Cx26 might 

potentially be at greater risk of developing breast cancer.     

 

 

 

 

 

 

________________________________ 

A version of this chapter was submitted to Oncotarget: 

Stewart MKG, Bechberger JF, Welch I, Naus CC, Laird DW. Cx26 knockout predisposes 

the mammary gland to primary mammary tumors in a DMBA-induced mouse model of 

breast cancer (submitted, reviewed and now in revision).   
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4.1 Introduction 

Breast cancer is the most frequently diagnosed cancer-affecting women in the world [1]. 

Early detection remains a key factor in patient survivability as the 5 year survival rate for 

stage 1 breast cancer is over 90% compared to <30% for stage 4 breast cancer [2-4]. 

Therefore, the identification of at risk populations may be important for early detection of 

the disease in order to improve patient survivability [5]. In addition, although much 

progress is being made in unraveling signaling pathways in breast cancer, key regulators 

of breast cancer progression and metastasis remains poorly understood. Due to the 

complexity of the disease, the identification of key proteins is critical for the development 

of new targeted therapies and biomarkers [6]. Indeed, gap junction proteins are interesting 

candidates as down-regulation of gap junctions remains one of the earliest events in tumor 

progression [7].  

Gap junctions are clusters of intercellular channels formed by connexin subunits between 

adjacent cells allowing for metabolic and ionic signaling in a process known as gap 

junctional intercellular communication (GJIC) [8]. GJIC has been linked to critical cellular 

functions; such as proliferation, differentiation and apoptosis, which are frequently 

dysregulated in cancer [9]. In addition to GJIC, gap junction channel independent functions 

involving connexin protein-protein interactions and hemichannel function have been 

shown to be linked to cell growth [10-14]. The connexin family in humans consists of 21 

genes but only Cx26 and Cx43 are typically expressed in the human breast [8,15].  Both 

Cx26 and Cx43 have been classically described as tumor suppressors in the breast based 

on loss of expression in many mammary tumor cell lines and the fact that ectopic re-

expression of these connexins reverts some tumor cells into a more differentiated 

phenotype both in vitro and in vivo [11,12,16,17]. However, adding to the complexity of 

the role of connexins in breast cancer, both Cx43 and Cx26 have also been reported to be 

upregulated in human tumor biopsies at later stages of tumor progression and may even act 

as tumor facilitators [18-20]. These perplexing reports highlight the need for additional 

studies, particularly in vivo, to clarify the role of connexins throughout the progression of 

breast cancer from tumor onset to metastasis. In this pursuit, we recently demonstrated that 

Cx43 had a critical role in suppressing metastasis to the lungs in a genetically-modified 
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mouse model where Cx43 function was greatly reduced (Appendix 1) [21]. However, the 

role of Cx26 in the mammary gland has not been assessed in mice and this may be more 

important than examining Cx43 as mammary neoplasms typically express markers of 

luminal epithelial cells [22]. In addition, loss-of-function mutations in the GJB2 gene that 

encodes Cx26 are common and responsible for over 40% of hereditary deafness and many 

skin diseases [23]. Importantly, the worldwide prevalence of biallelic GJB2 related hearing 

loss accounts for 17.3 % of cases [23,24]. The 35delG mutation is by far the most common 

and results in the premature truncation of Cx26 and complete systemic loss of channel 

function, thereby acting like a knockout in the context of gap junction channel activity [23]. 

Thus, whether this patient cohort is more or less susceptible to breast tumor onset and 

progression could have profound clinical implications [23]. Therefore, using our 

previously described genetically-modified mice with conditional knockout of Cx26 

expression in the mammary gland, we developed a DMBA-induced mouse model of breast 

cancer [25]. We hypothesized that low levels of Cx26 within the mammary gland would 

predispose the mammary gland to the onset of tumors and increase tumor progression and 

incidence of metastases.  

4.2 Methods 

4.2.1 Mice 

All experimental procedures were approved by the Committee on the Ethics of Animal 

Experiments at the University of Western Ontario and the University of British Columbia 

following the guidelines of the Canadian Council on Animal Care (Appendix 3).  To assess 

how loss of Cx26 would affect primary mammary tumor development, we utilized a 

conditional knockout mouse where the Cre transgene was under the control of the β-

lactoglobulin (BLG) promoter [25]. In order to induce activation of the BLG promoter and 

subsequent Cx26 knockout, a pituitary isograft was surgically inserted into the renal 

capsule (Figure 4.S1A) of 6 week old BLG-Cre; Cx26fl/fl (Cre+) similar to that described 

by others [53, 31] in addition to Cx26fl/fl (Cre-) control mice lacking the Cre transgene. 

Prolactin and ovarian hormones derived from the pituitary transplant triggers epithelial 

proliferation and lobuloalveolar differentiation in the mammary gland independent of 
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pregnancy. The presence of milk proteins following pituitary isograft have been reported 

between 21-40 days following surgery, in which we observed the presence of milk in the 

mammary glands approximately 50 days after pituitary implantation [54,31]. This suggests 

that the activation of the BLG promoter occurs between 3-7 weeks in parallel with 

lobuloalveolar development (Figure 4.S1B). As such, in an attempt to induce mammary 

tumors in mice in which Cx26 knockout had occurred, Cre+ and Cre- mice, in which 

pituitaries were implanted 12 weeks prior, were treated once a week with the carcinogen 

7,12-dimethylbenz(α)anthracene (DMBA) or corn oil for 5 weeks (1 mg per 25 g) by 

gavage (Table 4.S1). In addition, a second experiment was performed to act as a control in 

which 6 week old BLG-Cre; Cx26fl/fl and Cx26fl/fl  mice were treated with DMBA or corn 

oil by gavage only 1 week following pituitary transplant in order to induce mammary 

tumors in mice prior to Cx26 knockout (Table 4.S2). All mice were subsequently 

monitored weekly by palpation for evidence of mammary tumor formation. Mice were 

removed from the study if they presented with other health concerns that included 

developing lymphoma and/or stomach tumors that required them to be sacrificed (Table 

4.S1, 2). Mice were sacrificed when the largest tumors reached a final volume of 1cm3. 

Finally, five BLG-Cre; Cx26fl/fl and Cx26fl/fl mice that had undergone at least 2 pregnancies 

were monitored for spontaneous mammary tumor formation for 1.5 years in which tissue 

was collected similar to that described above. All mice were genotyped for the expression 

of the Cre transgene and mammary gland cryosections were immunolabelled at the time of 

sacrifice for the presence of Cx26 revealing Cx26 knockout even after 1 year of the 

experiment (Figure 4.S1C).  

4.2.2 Whole mount 

Whole mounts were performed as previously described [55]. Briefly, mammary glands 

were dissected and flattened onto a glass slide before being placed into Carnoy's fixative 

(100% EtOH, chloroform, glacial acetic acid; 6:3:1) overnight at 4 ºC. Glands were 

immersed in 70% ethanol for 15 min and then transferred to descending concentrations of 

ethanol before being placed in carmine alum stain overnight at room temperature. Glands 

were put through increasing concentrations of ethanol and into xylene overnight. Glands 
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were then placed in methyl salicylate for long term storage. Images were captured using a 

numeric camera (Sony Cybershot).  

4.2.3 Hematoxylin and eosin staining   

Dissected mammary tumors, mammary glands and lungs were fixed in 10% neutral 

buffered formalin and embedded in paraffin wax. Sections (6 µm) were deparaffinized in 

xylene (2x5 min) and rehydrated in descending concentrations of ethanol (2 x 100%, 95%, 

70%; 5 min) before being placed in ddH2O (2 x 3 min). Tissues were then stained in 1% 

Harris’s Hematoxylin for 1 min before being washed in tap water and differentiated in acid 

ethanol. Slides were dipped in 70% ethanol (30 sec) and put into alcoholic Eosin (2 min) 

and finally placed back into 70% ethanol (2 x 30 sec). Slides were then dehydrated and 

mounted using Cytoseal. Images were captured using a Brightfield microscope equipped 

with a ProgRes C5 camera (Jenoptik) and ProgRes Mac CapturePro 2.7.6 imaging 

software. Multiple rounds of sectioning and staining were used to evaluate lung histology 

for evidence of lung metastases. Clusters of nuclei in intimate proximity with bronchioles, 

typical of bronchus associated lymphatic tissue, were not included in the quantification of 

lung tumors. Lung tumor area was evaluated by measuring the length and width of lung 

tumors which were used to determine the area of an ellipse using ImageJ and the area of 

multiple lung tumors per mouse was averaged (National Institutes of Health, Bethesda, 

MD).  

4.2.4 Immunofluorescence microscopy 

Paraffin-embedded sections (6 µm) were deparaffinized in xylene and dehydrated in 

descending concentrations of ethanol before being placed in ddH20. Antigen retrieval was 

performed using either antigen unmasking solution (Vector Labs; microwaved for 5 min at 

80% power) or by immersing slides in sub-boiling 1.8 mM citric acid and 8.2 mM of 

sodium citrate solution for 10 min before placing slides in an additional 0.01M Tris-

0.001M EDTA antigen retrieval solution sub-boiling for 20 min. Cryosections were cut 

with a cryostat (8 µm) and stored at -80 ºC and were fixed for 15 min in 10% neutral 

buffered formalin before use. All tissue sections were rinsed in PBS for 5 min and blocked 
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with 3% BSA in PBS with 0.02% Triton X-100. Sections were immunolabelled with the 

primary antibodies mouse anti-Cx26 (1:100, Invitrogen, 13-8100) or rabbit anti-Cx26 

(Cryosections, 1:100, Invitrogen, 51-2800), rabbit anti-Cx43 (1:400 dilution, Sigma, 

C6219), rabbit anti-keratin8 (1:400, Abcam, ab53280), mouse anti-cytokeratin 14 (1:200, 

Thermo Scientific, Ms-115-P), and rabbit anti-keratin 10 (1:400, Thermo Scientific,  MS 

611-P1), mouse anti-E-cadherin (1:400, BD Transduction Laboratories, 610182), mouse 

anti-β-catenin (1:400, BD Transduction Laboratories, 610154), α-smooth muscle actin 

(1:400, Sigma, A5228) overnight at 4 ºC. Sections were washed in PBS and then probed 

with Alexa Fluor® 555-conjugated anti-rabbit or anti-mouse (1:400 dilution, Molecular 

Probes, A21425 or A21429) and Alexa Fluor® 488-conjugated anti-rabbit or anti-mouse 

(1:400 dilution, Molecular Probes, A11008 or A11017) secondary antibodies for 1 hour at 

room temperature. Hoechst 33342 was used to label the nuclei and slides were mounted 

with Airvol. Images were captured using a Leica DM IRE2 inverted epifluorescence 

microscope and Velocity imaging software. Qualitative assessment of 5-10 images 

throughout mammary tumors was used to determine the percentage of cells expressing 

epithelial markers and connexins.    

4.2.5 Histological subtyping 

Hematoxylin and eosin stained sections were classified according to histological subtype 

similar to that described by Dunn [56]. Mammary glands were classified into 4 groups; 

mammary alveolar carcinoma, mammary adenosquamous carcinoma, carcinosarcoma and 

miscellaneous tumors. Briefly, mammary alveolar carcinomas represented tumors with 

mainly uniform alveolar structure of glandular epithelial origin. Mammary adenosquamous 

carcinomas were characterized by tumors that acquired the capacity for epidermoid 

differentiation. Carcinosarcomas were represented by tumors classified as anaplastic and 

mainly devoid of distinct morphological differentiation or with significant amounts of 

spindle cells. Any tumors that presented outside of the previous three groups was 

considered a miscellaneous tumor. All tumors were evaluated in a blinded fashion.  
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4.2.6 Statistical analysis 

All statistical tests were performed using Graphpad Prism 4 (v. 4.02). For analysis of the 

percent of tumor free mice over time curves (Kaplan-Meier), a logrank test was applied. 

Palpable tumor onset, and average growth rate were evaluated using a two-tailed student’s 

unpaired t-test. A p value less than 0.05 was considered significant.   

4.3 Results 

4.3.1 Conditional Cx26 knockout does not result in spontaneous 

mammary tumors 

To evaluate whether conditional Cx26 knockout mice spontaneously developed primary 

tumors in the mammary gland, five Cre+ and Cre- mice were monitored for 1.5 years 

before being sacrificed and evaluated for evidence of tumor formation (Figure 4.1). All 

mice had at least two pregnancies, which acted to drive Cx26 knockout as we have 

previously described [25]. Whole mount and histological evaluation showed no evidence 

of primary tumors suggesting that a reduction in Cx26 alone is not sufficient to predispose 

mammary glands to tumor formation (Figure 4.1). 

4.3.2 DMBA-treated Cre+ mice have greater primary tumor burden 

compared to control mice but develop mammary tumors with 

similar growth characteristics 

As our Cx26 knockout mice do not develop spontaneous mammary tumors, we used a 

chemically-induced strategy where the carcinogen DMBA was used to treat mice where 

pituitary isografts were used to induce Cx26 knockout. Subsequently, Cre- and Cre+ mice 

were treated with DMBA/oil either before (Group 2) or after Cx26 knockout (Group 1), 

and mice were evaluated for palpable tumor onset and number of tumors. No oil treated 

mice from either group developed mammary gland tumors (Figure 4.2A, C). Interestingly, 

when comparing Cre- and Cre+ mice in which 3 months had  

 



141 

 

 

 

 

 

 

 

 

Figure 4.1. Conditional Cx26 knockout does not result in spontaneous mammary 

tumors. (A, B) Whole mount and hematoxylin and eosin staining revealed normal 

mammary gland architecture in 1.5 year old Cx26 knockout mice compared to control mice 

that have undergone at least 2 pregnancies. Scale bars = 50 µm. (C) Quantification of 

primary tumor incidence revealed no macroscopic or microscopic tumors in Cx26 

knockout mice compared to control mice. N=5.  
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Figure 4.1 
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passed before Cx26 knockout, DMBA-treated Cre+ mice had a significantly lower number 

of mice that remained tumor free compared to Cre- mice (Figure 4.2A). This corresponded 

to 89% of Cre+ mice developing tumors (8/9 Cre+) compared to only 33% of control mice 

(4/12 Cre-). In addition, half (4/8) of Cre+ mice that developed tumors presented with 

multiple tumors while Cre- mice only ever developed one tumor over the course of the 

experiment (Figure 4.2B). Alternatively, when DMBA-treatment occurred 1 week 

following pituitary transplant (and thus no Cx26 knockout) no difference was observed in 

the number of mice that remained tumor free in which all mice of both groups developed 

palpable mammary tumors (Figure 4.2C). In addition, 43% (3/7) of both DMBA-treated 

Cre+ and Cre- mice developed multiple mammary tumors suggesting similar tumor 

multiplicity (Figure 4.2C, D).  Therefore, our results suggest that loss of Cx26 within the 

mammary gland prior to DMBA treatment predisposed the mammary gland for increased 

tumor burden compared to control mice. We next assessed whether the day of palpable 

tumor onset was earlier in Cre+ mice following the end of DMBA treatment. Mammary 

tumors from Cre+ mice treated with DMBA following Cx26 knockout had similar palpable 

tumor onset (75 ± 14 days) compared to Cre- mice (60 ± 10 days) suggesting that despite 

an increased frequency of developing mammary tumors, tumors arose at comparable times 

in Cre+ and Cre- mice (Figure 4.3A). Similarly, palpable tumor onset in mice treated with 

DMBA 1 week following pituitary transplant was non-significantly different in Cre+ (98 

± 23 days) compared to Cre- mice (71 ± 18 days) (Figure 4.3C). Taken together, knockout 

of Cx26 does not appear to increase the day of tumor onset in mice that developed 

chemically induced mammary tumors.  

Once the largest mammary tumors reached ~1 cm3 or ~1 year after DMBA treatment, mice 

were sacrificed and tissue was collected. Tumor volume of the largest tumor divided by 

the number of days since palpable tumor onset was used to calculate the average tumor 

growth rate. Comparing mice treated with DMBA 3 months after pituitary isografts, the 

average tumor growth rate were non-significantly different between Cre- (49 ± 30 

mm3/day) and Cre+ (81 ± 39 mm3/day) mice suggesting that Cx26 knockout prior to 

mammary tumor onset did not predispose the gland to primary tumors with increased 

growth rate (Figure 4.3B). Similarly, both Cre- (96 ± 16 mm3/day) and Cre+ mice (76 ± 

17 mm3/day)  
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Figure 4.2. Cx26 knockout mice developed significantly greater tumor burden. (A) 

Cx26 knockout mice had a significantly lower number of DMBA-treated Cre+ mice that 

remained tumor free and a greater frequency of developing multiple tumors (B), compared 

to control mice. (C) DMBA-treated Cre+ mice in which DMBA treatment occurred prior 

to Cx26 knockout had similar tumor burden and developed multiple tumors (D) compared 

to control mice.  
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Figure 4.2 
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Figure 4.3. Palpable mammary tumor onset and growth rate is similar in DMBA-

treated Cx26 knockout and control mice. Mammary tumors from Cre+ mice, both 

DMBA-treated 3 months (A, B), or 1 week  (C, D) after pituitary transplant, had similar 

primary tumor onset and average growth rate compared to those from Cre- mice. Bars 

represent means ± S.E.M. 
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Figure 4.3 
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treated with DMBA 1 week after pituitary isografts developed tumors with non-

significantly different average tumor growth rates (Figure 4.3D). Therefore, knockout of 

Cx26 does not appear to predispose the mammary gland to tumors with increased growth 

rate when Cx26 knockout occurs either before or after DMBA treatment.    

4.3.3 Cx26 knockout and control mice develop primary mammary 
tumors of multiple histological subtypes expressing markers 
of both luminal and myoepithelial cells  

As differences in the frequency of mammary tumors arose only between Cre- and Cre+ 

mice treated with DMBA after Cx26 knockout, we decided to further characterize samples 

from Group 1 to assess whether Cx26 knockout prior to DMBA treatment predisposed the 

mammary gland to develop into a specific mammary tumor histological subtype. H&E 

stained sections of mammary glands from oil-treated Cre- and Cre+ mice revealed normal 

tissue histology in which typical epithelial ducts were found embedded within an adipose 

rich mammary fat pad (Figure 4.4A). Mammary tumor sections stained with H&E from 

Cre- and Cre+ mice were characterized into either mammary adenocarcinoma, 

adenosquamous carcinoma, carcinosarcoma or miscellaneous subtypes (Figure 4.4A) 

revealing that mammary tumors from Cre+ mice developed into tumors from multiple 

histological subtypes similar to mammary tumors from Cre- mice (Figure 4.4B). Therefore, 

our results suggest that knockout of Cx26 within the mammary gland prior to DMBA-

treatment did not predispose the mammary gland to mammary tumors of a single 

histological subtype.   

In order to further assess primary mammary tumors from mice in which Cx26 knockout 

occurred prior to DMBA treatment, mammary tumors were immunolabelled with a variety 

of connexin, luminal and myoepithelial markers (Figure 4.5A) and the percentage of cells 

expressing the markers were recorded (Figure 4.5B). Immunofluorescent analysis of Cx26 

revealed little to no evidence of Cx26 labelling in tumors from Cre+ mice unlike the 

lactating mammary gland which acted as a positive control (Figure 4.5Ai,iii, B). 

Interestingly, little to no evidence of Cx26 labelling was also observed in tumors from Cre- 

mice suggesting that Cx26 was also down-regulated in mammary tumors that did not 

express the Cre transgene (Figure 4.5Aii, B). In addition, mammary tumors  
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Figure 4.4. Cx26 knockout mice develop tumours of multiple histological subtypes 

similar to control mice. (A) Hematoxylin and eosin stained sections evaluated for 

histological subtypes of breast cancer revealed multiple tumour subtypes for both Cre+ 

and Cre- mice treated with DMBA 12 weeks after pituitary transplant but no evidence of 

mammary tumors in oil-treated mice. Scale bar = 50 μm. (B) Table lists the number of 

mammary tumours per mammary histological subtype for Cre- and Cre+ mice.   
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Figure 4.4 
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Figure 4.5. Mammary tumors from Cx26 knockout mice express similar epithelial 

protein markers as control mice. (A) Representative images of paraffin-embedded 

primary mammary tumor sections immunolabelled with luminal and myoepithelial 

markers that included; Cx26 (i, ii, iii, red), Cx43 (iv, v, vi, red), keratin 14 (vi, viii green), 

keratin 8 (vii, green), keratin 10 (ix, red), α-smooth muscle actin (x, red), E-cadherin (xi, 

green) and β-catenin (xii, red). Hoechst denotes nuclei. Scale bars = 50 µm. (B) Table 

indicates relative number of cells that are positive for the luminal and myoepithelial 

markers based on immunofluorescent labelling. +++50-100%, ++11-49%, +1-10%, -0%. 

For keratin 10. + denotes presence of labelling.     
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Figure 4.5 
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immunolabelled for the expression of Cx43 revealed no overt difference in the level of 

Cx43 in the mammary tumors of both Cre+ and Cre- mice although the expression 

appeared diffuse and intracellular compared to the more punctate pattern seen in the 

lactating mammary gland (Figure 4.5Aiv, v, B). Cx43 was also expressed in carcinoma 

cells that did not always co-localize with the myoepithelial marker keratin14 (Figure 

4.5Avi, B). To assess for the expression of luminal and myoepithelial markers, when 

tumors were immunolabelled for the luminal markers keratin 8, E-cadherin and β-catenin 

and the myoepithelial markers keratin14 and α-smooth muscle actin, no distinguishable 

differences were observed between Cre- and Cre+ mice (Figure 4.5Avii, viii, x, xi, xii, B). 

Finally, only adenosquamous carcinoma tumors from both Cre- and Cre+ mice labelled 

positively for the skin marker keratin 10 typical of the epidermoid differentiation of these 

tumors (Figure 4.5Aix). Taken together, mammary tumors from mice in which Cx26 was 

knocked down prior to DMBA treatment express similar luminal and myoepithelial 

markers to mammary tumors from control mice.   

4.3.4 Cx26 knockout and control mice exhibit similar levels of 

metastasis to the lungs 

Following our evaluation of the primary tumors, we assessed the lung, a common site of 

metastasis in DMBA-induced mammary tumors, for signs of disseminated disease [21]. 

Hematoxylin and eosin stained sections of lung tissue revealed evidence of metastasis to 

the lungs (Figure 4.6A) in which a similar proportion of mice from Cre+ (50%) and Cre- 

mice (63%) developed tumors in the lung (Figure 4.6B). Although only 2 DMBA-treated 

Cre- mice developed lung tumors, the average lung tumor area per mouse was calculated 

revealing a likelihood of larger average lung tumor area in Cre- mice (0.09 mm2) compared 

to Cre+ mice (0.02 ± 0.009 mm2) (Figure 4.6C). To evaluate whether lung tissue of Cre- 

and Cre+ mice had greater evidence of cancer cell proliferation, lung tissue was 

immunolabelled with Ki67 and separated into high (>50%) and low (<50%) groups 

revealing a similar number of mice with high levels of Ki67 staining in Cre- (50%) and 

Cre+ mice (38%) (Figure 4.6D, E). Lung tumors immunolabelled for Cx26 and Cx43 to 

evaluate if connexin expression changes between primary and metastatic tumors revealed 

mostly the absent expression of both Cx26 and Cx43 in Cre- (Cx26: 0/2, Cx43: 0/2) and 
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Cre+ (Cx26: 0/5, Cx43: 1/5) mice suggesting that connexins are not upregulated during 

metastatic progression (Figure 4.6D, E).    

4.4 Discussion 

The aims of this study were two-fold; first, to evaluate whether the organ-specific loss of 

Cx26 predisposed the mammary gland to developing mammary tumors in vivo; and 

secondly, to evaluate if loss of Cx26 in primary mammary tumors led to altered progression 

and aggressiveness of the disease.  In order to evaluate these aims, we developed the first 

chemically-induced conditionally ablated mouse model of breast cancer to assess the role 

of Cx26. We demonstrated that knockout of Cx26 prior to tumor induction by DMBA 

treatment increased the susceptibility of mice to primary mammary tumors but that this 

increase in the frequency of breast tumor onset was not associated with increased 

progression of the disease. 

4.4.1 A model to investigate the role of Cx26 in mammary 

tumorigenesis in vivo   

Evaluating the in vivo role of Cx26 in breast cancer is complicated by the fact that Gjb2-/- 

mice die embryonically due to defects in placenta, rendering them unusable for this kind 

of study [26]. As a result, we used our previously characterized mammary gland specific 

knockout mouse model of Cx26, in which ~70% knockout of Cx26 was observed in the 

mammary gland driven by Cre-mediated deletion under the BLG promoter following the 

onset of lactation [25]. We observed no evidence of spontaneous mammary tumors or 

abnormal histology in 1.5 year old dams that have undergone at least two pregnancies 

which is in agreement with results from a mammary gland specific deletion of Cx26 using 

similar Cre-loxP strategies under the MMTV and WAP promoters [27]. Therefore, it 

appears that the loss of Cx26 is not sufficient for initiating tumor onset, which requires 

additional genetic insults.  

In order to promote additional genetic mutations in Cx26 knockout mice, we used the 

chemical carcinogen DMBA that preferentially promotes the induction of mammary 

tumors and paired this with the use of pituitary isografts to drive BLG promoter activity  
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Figure 4.6. DMBA-treated Cx26 knockout mice exhibit similar incidence of metastases 

to the lungs. (A, B) Hematoxylin and eosin stained lung sections were evaluated for 

evidence of lung tumors revealing a similar proportion of mice that developed lung tumors 

in Cre+ and Cre- mice. (C) Evaluation of average lung tumor area per mouse between 

Cre+ and Cre- mice revealed the likelihood of Cre- mice having larger lung tumor areas 

compared to Cre+ mice. (D,) Representative images of paraffin-embedded lung sections 

immunolabelled for Ki67 (Red), Cx26 (Red) and Cx43 (Red) revealed a similar percentage 

of lung tissue expressing high levels of Ki67 positivity between Cre- and Cre+ mice and 

tumors mostly negative, but not always (insert), for Cx26 and Cx43 expression. Hoechst 

denotes Nuclei. Scale bars = 50 µm. (E) Quantification of Ki67, Cx26 and Cx43 

immunofluorescent analysis. 
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[28]. The combination of pituitary isografts and DMBA has been frequently used to drive 

mammary tumor development through hormonal and chemical carcinogenesis [29,30]. 

This approach was used by Wang et al. where pituitary-driven activation of the BLG 

promoter was used to evaluate deregulated Pak1 activity in murine mammary 

tumorigenesis [31]. Importantly, we observed a clear reduction in the levels of Cx26 when 

paired non-tumorigenic mammary glands from all Cre+ mice were compared to Cre- mice 

at the time of sacrifice, indicating that the pituitary isografts were effectively driving the 

knockout of Cx26, and more notably, that Cx26 knockout persisted throughout the length 

of the experiment. Therefore, using this strategy we evaluated whether the loss of Cx26 

prior to these additional genetic alterations would promote tumor incidence.  

4.4.2 Loss of Cx26 promotes tumor onset in chemically-induced 

mammary tumorigenesis   

Most studies to date suggest a tumor suppressive role for Cx26 early in breast cancer 

progression based on evidence that Cx26 is frequently absent or down-regulated in human 

breast cancer cell lines or human primary tumors [17,19,32]. In agreement, we observed 

an increase in primary tumor incidence and tumor multiplicity when Cx26 was knocked 

out prior to DMBA treatments suggesting that expression of Cx26 acts in the context of a 

tumor suppressor and protects the mammary gland to primary mammary tumor onset. 

Unexpectedly, when DMBA treatment occurred only one week after the pituitary 

transplant, a similar tumor burden was observed in Cre+ and Cre- mice. While the pituitary 

isograft is necessary for Cx26 knockout, it serves a dual purpose as continual hormonal 

secretion of prolactin, which importantly acts on the ovary to induce synthesis and 

secretion of progesterone and estrogen, which together promote a greater frequency of 

chemical carcinogen induced mammary tumors [33]. As a result, the potential tumor 

suppressive effect of Cx26 may be masked by the pro-tumorigenic effects of hormones 

secreted from the surgically placed pituitary. Three lines of evidence support this. First, all 

mice treated with DMBA one week following pituitary transplant developed mammary 

tumors, suggesting hormones secreted or stimulated by pituitary isografts are promoting 

tumor onset. Secondly, we observed an increase in the frequency of tumor incidence in 

Cre- mice when the pituitary isografts occurred only one week before DMBA treatment 
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compared to Cre- mice in which the same procedure occurred 12 weeks prior to DMBA 

treatment. The pituitary-driven increase in chemically-induced mammary tumors is the 

result of increasing the proliferation of epithelial cells of the mammary gland, although this 

appears to be time dependent as the increase in the mitotic index begins to fall after 5 weeks 

as the levels of estrogen and progesterone drop [34]. Ultimately, differences in the 

frequency of mammary tumors between mice treated with DMBA one week or 12 weeks 

after pituitary transplant may be explained by increased ovarian hormonal stimulation by 

pituitaries transplanted closer to the time of DMBA treatment, limiting our assessment of 

Cx26 in mice treated with DMBA one week following pituitary isograft. Finally, a 

precedent exists that hormonal influence may override any tumor suppressive effects of 

Cx26 expression as stably transfected Cx26 expressing MCF7 cells, with strong growth 

suppressing effects in vitro, lacked growth suppressing effects in vivo potentially as a result 

of the pro-tumorigenic effects of 17β estradiol pellets [35]. Taken together, our data 

supports a role for Cx26 in protecting the mammary gland from DMBA-induced mammary 

tumor onset but this protective effect may be masked in hormonally-driven tumorigenesis.  

4.4.3 Cx26 knockout prior to DMBA treatment does not affect 

primary tumor growth or histological subtype 

Cx26 overexpression studies have demonstrated a wide variety of tumor suppressive roles 

in which Cx26 may regulate primary tumor cell growth and proliferation, anchorage-

independent and contact-dependent growth in vitro, as well as reduced tumor sizes in vivo 

when orthotopically injected into nude mice through gap junction dependent and 

independent mechanisms [10-12,17,35,36]. As a result, we hypothesized that knockout of 

Cx26 would contribute to increased tumor size but this was not the case as the average 

tumor growth rates were similar in Cre- and Cre+ DMBA-treated mice both before and 

after Cx26 knockout. However, as Cx26 was absent or down-regulated even in the majority 

of Cre- tumors, it remains likely that Cx26 is down-regulated in tumors early in primary 

tumor progression. This is supported by studies suggesting that Gjb2 may be, at least in 

part, methylated to induce down-regulation [16,37]. Ultimately, as the Cx26 status was 

similar in tumors from Cre- and Cre+ mice, our assessment of the role of Cx26 in primary 

tumor growth is limited. However, Cx26 and tumor growth may not be as critical in the 
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human context as the majority, but not all [20], of studies agree that Cx26 mRNA or protein 

expression does not correlate with tumor size or Ki67 status [38-41].  

DMBA-induced mammary tumors are often associated with multiple gene expression 

profiles giving rise to tumors with varying histological subtypes, particularly squamous 

carcinomas and adenocarcinomas, with many tumors expressing both luminal and basal 

cell markers [28,42,43]. Others have demonstrated a link between human histological 

subtypes correlating with specific genetic alterations, such as the inactivation of the CDH1 

gene that encodes E-cadherin and is frequently found in lobular carcinomas of the breast 

[44]. Importantly, there is some evidence that this correlation exists when modelling 

tumorigenesis in mice, as Derkson et al. showed that mammary specific deletion of E-

cadherin and p53 resulted in mammary tumors similar to lobular carcinomas [45]. We 

aimed to test whether loss of Cx26 would promote a greater propensity of developing 

mammary tumors of a specific histological subtype. Interestingly, in tumors from both 

Cre+ and Cre- mice we observed a wide variety of histological subtypes supported by 

varied expression of luminal and myoepithelial markers. Therefore, this suggests that the 

loss of Cx26 prior to DMBA treatment does not promote the development of mammary 

tumors of specific histological subtype, which is in agreement with a lack of correlation in 

human data of Cx26 expression with any histological subtypes [20]. In addition, a majority 

of studies document a lack of correlation between Cx26 and estrogen receptor, 

progesterone receptor and HER2 status in microarray or immunohistochemical analysis of 

human tumor samples [39,41,46], although a couple of exceptions have been reported in 

the case of progesterone receptor [20] and estrogen receptor status [39].   

4.4.4 Cx26 knockout does not promote metastatic dissemination 

to the lungs 

The role of Cx26 in breast cancer metastasis remains much more controversial than that in 

the primary tumor particularly in studies using human samples. Some reports suggest that 

Cx26 expression does not correlate with lymph node positivity [20] or overall survival 

[39,41] while others have found that higher expression of Cx26 is associated with poor 

overall patient survival [47], particularly if Cx26 expression is elevated after chemotherapy 
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[40]. Still others have found that Cx26 is upregulated in lymph node metastases compared 

to matched primary tumors [19]. While our results are limited by the number of mice that 

developed potential lung metastases, we found no evidence of Cx26 expression in any lung 

tumors similar to the primary tumors. Thus, the knockout of Cx26 prior to DMBA 

treatment did not predispose the mammary gland to an increased frequency of metastases 

suggesting that Cx26 is not acting as a breast cancer metastasis suppressor. In addition, 

Cx43 was also reduced compared to primary tumors suggesting that Cx43 is down-

regulated as tumors progress towards metastasis consistent with Cx43 as a breast cancer 

metastasis suppressor [21]. Of note, the average lung tumor area from Cre- mice appeared 

larger than those from Cre+ mice, although the sample size was too low for a statistical 

assessment. While this finding hints that lung tumors without Cre-mediated deletion of 

Cx26 may grow larger or establish themselves earlier than those from Cre+ mice, we 

observed no evidence that Cre- lung tumors upregulated their Cx26 expression. As a 

consequence, our results do not support either a tumor suppressive or facilitating role for 

Cx26 similar to finding by Chao et al. who found no correlation between upregulated Cx26 

expression from primary tumors and metastasis to the lung in human breast cancer patient 

samples [46]. Taken together, our results support a tumor suppressive role for Cx26 in the 

context of primary tumor onset but this does not coincide with more aggressive tumors or 

more frequent metastases in our chemically-induced model of breast cancer.  

4.5 Implications to human disease 

To date, GJB2 gene mutations give rise most notably to syndromic and non-syndromic 

hearing loss with comparable carrier frequencies to other prevalent genetic diseases such 

as cystic fibrosis and sickle-cell anemia [23]. In addition to hearing loss, many patients will 

present with skin diseases including Bart-Pumphrey syndrome, Hystrix-like icthyosis with 

deafness, Vohwinkel syndrome and Keratitis ichthyosis deafness (KID) [48,49]. Despite 

these skin diseases being relatively rare, patients presenting with Vohwinkel syndrome and 

KID syndrome have also been reported to develop skin tumors [50]. Most intriguing, a 

review of 61 patients with KID reported that ~10% of patients developed squamous cell 

carcinoma suggesting that loss of functional Cx26 in the skin predisposes KID syndrome 

patients to skin cancer [51]. Although it remains unknown whether other tissues or organs 
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that commonly express Cx26 are also susceptible to developing tumors, a single patient 

presenting with KID syndrome also presented with a primary invasive scirrhous ductal 

carcinoma of the breast suggesting that a loss-of-function mutant of Cx26 may also have 

contributed to the onset of a primary breast tumor in humans similar to our conditional 

Cx26 knockout mouse model of breast cancer [52]. However, although our results suggest 

an increased breast cancer risk to patients with loss-of-function GJB2 mutations, it is 

important to note that our mouse model will not fully recapitulate all Cx26 mutants.  Many 

are reported to have gain-of-function effects, particularly those associated with skin 

diseases, with increased Cx26 hemichannel function in addition to loss of gap junction 

channel function [24]. As a result, our findings may extend to only a subpopulation of 

patients with loss-of-function GJB2 gene mutations. Therefore, we recommend a large 

epidemiologic study of breast cancer frequency in patients with loss-of-function GJB2 

mutations compared to familial healthy controls. In that over 1% of the general population 

worldwide is estimated to be carriers of mutant alleles of GJB2 it remains critical to 

determine if this population as a whole, or in part, are at an increased risk of developing 

breast cancer [23]. 
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4.7 Supplementary figures/tables 
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Table 4.S1. List of Mice used in study for mice treated with DMBA or oil by 

gavage 1.5 months following pituitary transplant.  
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Table 4.S2. List of Mice used in study for mice treated with DMBA or oil by 

gavage 1 week following pituitary transplant. 
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Figure 4.S1. Pituitary implantation stimulates BLG that results in Cx26 knockout 

within the mammary gland. (A, B) Pituitaries were implanted in the renal capsule leading 

to the development of alveoli in the mammary gland which began to be seen 3 weeks 

following pituitary transplant but was more evident at 6 weeks. (C) At the time of sacrifice, 

immunofluorescence revealed considerable but not complete (insert) knockout of Cx26 

(green/red, arrows) in the mammary gland of BLG-Cre; Cx26fl/fl mice (Cre+), unlike 

Cx26fl/fl control mice (Cre-) of both mice treated with DMBA 1 and 12 weeks after pituitary 

transplant. Hoechst denotes nuclei. Scale bars = 50 µm. N≥6.  
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Figure 4.S1  
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Chapter 5 

5 Loss of Panx1 impairs mammary gland development at 
lactation: implications for breast tumorigenesis 

 

The role of Panx1 in mammary gland development and function is unknown but some very 

recent data has implicated it in breast cancer. The purpose of this study was to characterize 

the role of Panx1 during pregnancy and lactation using a mouse model with systemic 

knockout of Panx1 with the intent of understanding how this large pore channel may be 

important and dysregulated in breast cancer.       
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A version of this chapter has been drafted for submission: 

Stewart MKG, Plante I, Penuela S, Barr K, Laird DW. Loss of Panx1 impairs mammary 

gland development at lactation: implications in breast.  
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5.1 Introduction 

Mammary gland development is a dynamic process occurring mostly after birth [1]. The 

mouse mammary gland undergoes extensive gland remodeling through two main phases 

of development following the onset of puberty and pregnancy [2]. During puberty, 

epithelial ductal elongation and branching loosely invades the adipocyte-rich mammary 

stroma [3]. The mammary gland undergoes terminal differentiation following the onset of 

pregnancy characterized by extensive proliferation and lobuloalveolar differentiation as 

numerous alveoli fill the mammary gland for secretory function during lactation [2]. 

Following weaning of pups, the mammary gland reverts back to a pre-pregnant state in a 

process known as involution [4]. These processes require extensive control of proliferation, 

differentiation, invasion, and cell death mechanisms mediated by hormonal signaling, local 

epithelial-stromal interactions and direct cell-cell communication mediated by gap 

junctions [1,5].  

While the roles of the mammary gap junction proteins Cx43, Cx26, Cx30 and Cx32 are 

beginning to be defined within the mammary gland, particularly through the use of 

genetically-modified mice, less is known about the related large pore channels proteins 

pannexins in the context of the mammary gland [6]. Pannexins, similar to connexin 

hemichannels, oligomerize to form large protein-lined pores capable of transferring small 

ions and metabolites, such as ATP and Ca2+, between the intracellular and extracellular 

milieu [7,8]. However, unlike connexin hemichannels, pannexin channels are glycosylated, 

insensitive to physiological levels of extracellular Ca2+ and can be opened at normal resting 

membrane potentials [9-11]. This suggests that pannexins have unique functions within 

tissues and warrant further investigation.  

Three members of the pannexin family have been described in the mammalian genome, 

each predicted to have a similar topology to the vertebrate gap junction proteins connexins 

[7,12]. Due to its ubiquitous expression, pannexin1 (Panx1) is the best characterized and 

has been identified in both rodent and human tissue including the brain, muscle, and skin 

[13-16], as well as many other tissues including the mouse mammary gland and human 

breast as noted in NCBI’s gene expression Omnibus database (1416379 ID, ID 49755742, 

[17]). Panx1 can be activated by multiple stimuli, including mechanical stimulation [18], 
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caspase cleavage [19], intracellular Ca2+ [20], and extracellular ATP [20], all of which may 

occur during the stages of mammary gland development that may trigger Panx1 opening 

[4,21-23] .  

Panx1 has also been shown to be dynamically regulated during brain, muscle and skin 

development [14-16]. Panx1 has been associated with changes in migration of primary 

keratinocytes, proliferation of dermal fibroblasts, neural stem cells and neural progenitor 

cells, as well as differentiation of skeletal muscle myoblasts [15,24,25]. Importantly, all of 

these cellular processes are necessary for normal mammary gland development and 

function suggesting a role for Panx1 in the highly regulated mammary gland [1]. In 

addition, Panx1 channels were shown to mediate the release of ATP from apoptotic cells 

which acts to recruit phagocytes for cell clearance following Panx1 C-terminal cleavage 

by caspases [19]. This is intriguing as macrophages have been shown to be important 

during mammary gland involution [26]. With the developmental and physiological roles of 

Panx1 are beginning to be elucidated, it is not surprising that Panx1 has been implicated in 

many pathologies, including tumorigenesis (as reviewed by Penuela et al. [27]).  

Breast cancer is the most severe pathology associated with the breast and is the leading 

cause of cancer mortality in women worldwide [28]. Recently, Panx1 was shown to be 

mutated in metastatic breast cancer cell lines, leading to increased ATP-channel activity 

and promotion of breast cancer cell survival during extravasation [29]. This may suggest 

that Panx1 functions as a tumor facilitator in breast cancer similar to that described in 

melanoma, albeit through different reported mechanisms [29,30]. However, as Panx1 has 

also been suggested to act as a tumor suppressor in gliomas, and squamous and basal cell 

carcinomas, the role of Panx1 may be dependent on the type of cancer or stage of disease 

[31,32]. As tumors frequently exploit signaling pathways critical in organ morphogenesis, 

we set out to evaluate the role of Panx1 in normal mammary gland development to increase 

our understanding of how the role of Panx1 may be dysregulated in tumorigenesis. In 

addition, we explored potential implications of Panx1 as a biomarker in breast cancer.     
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5.2 Methods 

5.2.1 Animals 

All experiments were approved by the Animal Care Committee at Western University and 

conducted according to the guidelines of the Canadian Council on Animal Care (Appendix 

3). Panx1-/- mice were generated as previously described [33]. Panx1-/- mice were 

developed on a homogeneous C57BL/6 background in which Panx1 was systemically 

ablated. C57BL/6N mice (Panx1+/+) acted as control mice for all experiments. Mice were 

collected at 4 weeks, 7 weeks, parturition (L0), early lactation (L2) and involution (Forced 

weaned at L15 and collected I3). Mice were genotyped as previously described [33]. 

Following sacrifice of mice using CO2, body weights were recorded prior to dissection of 

inguinal and thoracic mammary glands. Four mammary glands were dissected for 

subsequent paraffin processing, whole mount analysis, cryosections and for protein lysates. 

Right inguinal mammary gland weights were recorded. For all experiments, at least five 

different animals per group were evaluated. Panx1 pup weights were recorded from 

multiple lactating dams.  

5.2.2 Western blot analysis 

Following dissection, mammary gland tissue was frozen at -80ºC. Mammary gland tissues 

were homogenized on ice in lysis buffer (1% Triton X-100, 150 mM NaCl, 10 mM Tris-

HCl, pH 7.4, 1 mM EDTA, 0.5% NP-40), supplemented with protease inhibitor mixture 

(Roche-Applied Sciences) and phosphatase inhibitors (100 mM NaF and 100 mM 

Na3VO4). Total protein lysates were quantified using the bicinchronic acid assay similar to 

the manufacturer’s instructions (Pierce). Sixty µg of protein was loaded and resolved using 

10% SDS-PAGE and transferred to nitrocellulose membranes using the iBlot Dry Blotting 

system (Invitrogen). Membranes were blocked using 5% bovine serum albumin (BSA) and 

0.05% Tween20 in PBS for 1 hour at room temperature. Membranes were incubated with 

rabbit anti-Panx1 antibodies targeting the C-terminal (0.4 µg/ml, [9]), goat anti-β-casein 

(1:1000, sc-17971, Santa Cruz Biotechnology) and rat anti-Hsc70 (1:5000, SPA-815, 

Stressgen Bioreagents) antibodies diluted in blocking solution at 4ºC overnight. 

Membranes were washed in PBST and subsequently incubated with Alexa 800-conjugated 



178 

 

goat anti-rabbit, Alexa 800-conjugated donkey anti-mouse, Alexa 680-conjugated goat 

anti-rat and Alexa 680-conjugated donkey anti-goat (1:5000, Life Technologies) secondary 

antibodies followed by visualization and quantification using the Odyssey Infrared 

Imaging System (Li-Cor Biosciences). N=3. 

5.2.3 Real-time PCR analysis 

Total RNA was extracted using the Qiagen RNeasy kits (Qiagen) from the mammary gland 

of 7-week-old females Panx1-/- and Panx1+/+ mice. cDNA was generated using the 

RevertAid H minus, first-strand cDNA synthesis kit (Fermentas). Panx1 transcript levels 

were determined using mouse Panx1-specific primers (5' 

ACAGGCTGCCTTTGTGGATTCA3'; 5' GGGCAGGTACAGGAGTATG3') and the iQ 

SYBR green Supermix (Bio-Rad, Mississauga) in a Bio-Rad CFX96 real-time system. 

Results were normalized to β2 microglobulin (5'CCCACTGAGACTGATACATACGC3'; 

5' GGTTCAAATGAATCTTCAGAGCAT 3'). N=3.  

5.2.4 Immunofluorescence microscopy 

Paraffin embedded sections (6 µm) were deparaffinised in xylene and rehydrated in 

descending concentrations of ethanol before being washed in ddH2O. Sections underwent 

antigen retrieval using Vector Antigen Unmasking Solution (Vector Labs) by microwaving 

them for 5 minutes at 80% power. Sections were allowed to cool for 15 minutes prior to 

being rinsed in PBS and placed in a sub-boiling second antigen retrieval solution (10 mM 

Tris Base, 1mM EDTA (pH 9.0) for 30 min  prior to being rinsed in PBS. Crysections were 

sectioned (7 µm), stored in -80 ºC and subsequently fixed in 10% neutral buffered formalin 

and rinsed in PBS. Sections were then blocked (3% BSA and 0.2% Triton X-100 in PBS) 

for 1 hour at room temperature. The following primary antibodies were incubated on 

samples diluted in blocking solution overnight at 4 ºC; rabbit anti-Panx1 (4 µg/ml, or with 

peptide pre-adsoption assays as previously described [9]), mouse anti-cytokeratin 14 

(1:300, Neomarkers, CL002), mouse anti-pan-cytokeratin (1:400, Abcam, ab7753) , rabbit 

anti-periplipin (1:400, Cell Signaling, 9349), rabbit anti-Ki67 (1:400, Abcam, ab66155), 

cleaved caspase 3 (1:400, Cell Signaling, D175), rabbit anti-keratin8 (1:400, Abcam, 

ab53280), E-cadherin (1:400, BD Transduction Laboratories, 610182), β-catenin (1:400, 
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BD Transduction Laboratories, 610154), Cx26 (Cryosections, 1:100, Invitrogen, 51-2800), 

Cx30 (Cryosections, 1:100, Invitrogen, 71-2200), Cx32 (Cryosections, 1:100, Sigma, 

C3470) and β-casein (1:400, Santa Cruz Biotechnology, sc-17971). Primary antibodies 

were visualized by incubating sections with Alexa Fluor® 555-conjugated anti-rabbit or 

anti-mouse or anti-goat (1:400, Molecular Probes, A21425, A21429 or A21431) and Alexa 

Fluor® 488-conjugated anti-rabbit or anti-mouse (1:400 dilution, Molecular Probes, 

A11008 or A11017) secondary antibodies for 1 hour at room temperature.  Hoechst stain 

was used to visualize nuclei before being mounted using Airvol.  Immunolabeled sections 

were imaged (5-10 images per sample) using a Leica DM IRE2 inverted epifluorescence 

microscope equipped with Velocity 6.3.0 imaging software. For cytokeratin area 

quantification, green only fluorescent images were converted to binary using ImageJ and 

the pixel area was measured per 0.3 mm3. For adipocyte quantification, perilipin positive 

cells were counted per 0.3 mm3. For Ki67 and connexin plaque quantification, the number 

of Ki67 positive cells/connexin plaques was quantified per 0.3 mm3. In addition, the blue 

only fluorescent images were converted to binary using ImageJ and the pixel area was 

measured per 0.3 mm3. Graphs represent the mean ratio of the number of Ki67 positive 

cells or connexin plaques to blue fluorescent pixel area (nuclei). N≥5. 

5.2.5 Whole mount analysis 

Whole mount analysis was performed similar to that described in Plante et al. 2011 [34]. 

Briefly, mammary glands were dissected, flattened out on slides, and submersed in 

Carnoy’s fixative for 4 hours at room temperature or overnight at 4ºC. Glands were then 

submersed in 70% ethanol and gradually rehydrated in ddH2O before being stained 

overnight in carmine alum stain at room temperature. Glands were then gradually 

dehydrated (ddH2O, 70%, 95%, 100%, xylene; 5 min) and stored in methyl salicylate. 

Whole mounts were captured using a stereoscopic Sony camera on a light board. Virgin 

ductal elongation was quantified using calipers as previously described [35,36] by 

measuring the ratio of the distance from the bottom of the lymph node to the end of the 

longest duct relative to the distance from the bottom of the lymph node to the edge of the 

fat pad.    
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5.2.6 Histology 

Paraffin blocks were sectioned (6 µm), deparaffinized in xylene (10 min) and gradually 

rehydrated in ethanol (100%, 95%, 70%; 5min) prior to submersion in Harris’ hematoxylin 

for 2 min. Slides were washed, dipped in acid ethanol (4X) and placed in 70% ethanol (1 

min) prior to submersion in eosin (1 ml of acetic acid in 250 ml of eosin; 2 min). Slides 

were gradually dehydrated (70%, 95%, 100%, xylene; 1 min) and mounted using cytoseal 

(Richard-Allan Scientific). Histological analysis was performed by imaging 5-10 arbitrary 

images using a 5X and 40X objective lens and a ProgRes C5 camera (Jenoptik) and 

ProgRes Mac CapturePro 2.7.6 imaging software. The average number of lumens was 

quantified, with the mutant and control mouse mammary glands blinded to the investigator, 

using ImageJ software. In addition, the average lumen area was quantified using ImageJ in 

which the length and width (pixels) of lumens was measured and the average area of the 

lumen was estimated by calculating the elliptical area (A= ((L/2)*(W/2)*π)). N≥5.     

5.2.7 Evaluation of Panx1 mRNA in silico  

Using the publicly available Kaplan-Meier Plotter (http://kmplot.com) described by 

Gyorffy et al. 2010 [37], we compared high and low mRNA expression groups of PANX1 

(Affy id 204715_at) in human breast cancer samples to clinical endpoints using the 

HGU133A and HGU133 Plus 2.0 microarrays as previously described [38]. We set our 

parameters to remove redundant samples, exclude biased arrays, auto-select for best cutoff 

and to use only the JetSet best probe set. PANX1 was evaluated in relation to overall 

survival (OS), relapse-free survival (RFS), distant metastasis free survival (DMFS), as well 

as evaluating Panx1 in relation to OS and RFS in distinct subgroups such as by molecular 

subtype or lymph node positive patient samples. 

5.2.8 Statistical analysis 

All statistical analyses of mouse studies were performed using GraphPad Prism 4.03 

software in which statistical analysis compared means using a two-tailed unpaired student 

t-test. A two-way ANOVA was performed on pup weights. Error bars represented ± SEM. 

For assessment of Panx1 as a biomarker, a log-rank test was performed using the online 
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tool as described [39]. For all experiments, a p value of less than 0.05 was considered 

significant.   

5.3 Results 

5.3.1 Panx1 is expressed in the mammary gland and dynamically 
regulated throughout mammary gland development 

Mammary gland lysates from wild-type virgin, pregnant, lactating and involuting Panx1+/+ 

mice were assessed by western blot for expression of Panx1 revealing expression at all 

stages of development and that Panx1 is upregulated in pregnant and lactating mice 

compared to the virgin gland (Figure 5.1A). As Panx1 appears to peak during early 

lactation, mammary gland sections of Panx1+/+ mice at lactation D2 were immunolabelled 

to reveal the localization of the positive Panx1 expression in the mammary gland which 

was lost following adsorption of anti-Panx1 antibodies with immunizing peptides (Figure 

5.1B). Panx1 expression appeared localized to the luminal epithelial cells, based on the 

absence of co-labelling with the myoepithelial marker keratin14 (Figure 5.1B). Mammary 

glands from Panx1-/- and Panx1+/+ mice at lactation were evaluated for Panx1 protein and 

mRNA expression using western blot and real-time PCR analysis, respectively. Panx1 was 

found to be ablated from the mammary glands of Panx1 null mice (Figure 5.1C, D). 

Therefore, Panx1 is dynamically expressed in the pregnant mammary gland and ablated in 

Panx1-/- mouse mammary glands.   

5.3.2 Virgin Panx1 -/- mice retain normal mammary glands 

Mammary glands from 4 and 7 week old mice were collected, weighed and subjected to 

whole mount and histological analysis. Although body weights were significantly elevated 

in 4 week old Panx1-/- mice (Figure 5.2A), this did not correspond to an increased 

mammary gland weight (Figure 5.2B, C). Body weight and normalized mammary gland 

weight were similar in 7 week old mice compared to controls (Figure 5.2A-C). Whole  
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Figure 5.1. Panx1 is upregulated during pregnancy in luminal epithelial cells and is 

not expressed in Panx1-/- mice. (A) Western blot analysis revealed that Panx1 (red) is 

upregulated following the onset of pregnancy and remains elevated throughout lactation. 

Multiple bands on the western blot represent various Panx1 species due to changes in 

glycosylation (Gly0, Gly1 and Gly2). (B) Punctate staining observed for Panx1 (red) is not 

observed using pre-immune serum or following adsorption of the antibody with cognate 

peptide and does not colocalize with the myoepithelial marker Keratin14 (K14, green). (C, 

D) Western blot and real-time PCR analysis revealed that Panx1 is not expressed in Panx1-

/- mice compared to Panx1+/+ mice. + represents HEK 293T cells overexpressing Panx1. 

Hoescht (blue) denotes nuclei. Scale bar = 50 µm. N=3. 
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Figure 5.1 
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Figure 5.2. Virgin Panx1-/- mice have normal mammary glands. (A) Evaluation of body 

weights at 4 and 7 weeks revealed that pre-pubertal Panx1-/- mice were significantly larger 

compared to control mice. Values are mean body weights ± S.E.M. *p<0.05. (B, C) 

Mammary gland weight and normalized mammary gland weight were not significantly 

different in Panx1-/- mice compared to Panx1+/+ mice. Values are mean weights ± S.E.M. 

(D) Whole mount analysis with carmine alum staining revealed normal epithelial ductal 

architecture embedded in a well-developed stroma. (E) Quantification of ductal elongation 

revealed no significant differences in knockout and control mice. Bars represent the mean 

ductal extensions from the bottom of the lymph node to the furthest migrating duct relative 

to the length of the mammary gland from the bottom of the lymph node to the edge of the 

fat pad  S.E.M. (F) Histological evaluation of hematoxylin and eosin stained glands 

revealed normal tissue architecture in virgin Panx1-/- mice compared with control mice. 

N=9. Scale bar = 50 µm.   
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Figure 5.2 
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mount analysis of 4 week old mice revealed a rudimentary ductal structure in the mammary 

glands of Panx1 knockout mice similar to control mice suggesting that loss of Panx1 does 

not significantly impede embryonic mammary gland development (Figure 5.2D). In 

addition, the relative duct length of 4 and 7 week old whole mounts from Panx1-/- mice 

was similar to control mice suggesting that Panx1 is not critical for ductal outgrowth during 

pubertal growth in virgin mice (Figure 5.2E). Similar to whole mount analysis, Panx1 

knockout mice had comparatively normal histology as epithelial ducts were embedded 

within a well-developed mammary fat pad in Panx1 null and control mice (Figure 5.2F). 

Taken together, virgin mammary glands from Panx1 knockout mice develop similar to 

wild-type mice. 

5.3.3 Panx1-/- mice at parturition have normal mammary glands 

In order to assess the role of Panx1 following pregnancy, mammary glands from Panx1-/- 

mice and wild-type control mice were collected at parturition, weighed, and assessed for 

changes in gland architecture using histological and whole mount approaches. Body 

weights, mammary gland weight and normalized mammary gland weight were similar 

between Panx1-/- and control mice (Figure 5.3A). Whole mount and histological analysis 

revealed similar tissue architecture of Panx1-/- mice compared to control mice (Figure 

5.3C). Quantification of the average number of lumen and area of the lumen between Panx1 

knockout and wild-type H&E stained sections was similar suggesting comparable alveolar 

development at parturition (Figure 5.3C). Similarly, quantification of the pixel area of the 

epithelial marker pan-cytokeratin in mammary gland sections of Panx1-/- and Panx1+/+ 

mice revealed similar epithelial area (Figure 5.3D). Finally, immunofluorescent labelling 

and quantification of the number of adipocytes revealed similar stromal development in 

the glands of Panx1 knockout and wild-type mice (Figure 5.3E).   

5.3.4 During Early Lactation Panx1-/- Mice have Impaired Alveolar 
Development but Relatively Normal Differentiation 

To assess whether differences in gland development occurred following feeding of the 

pups, mammary glands of Panx1-/- were assessed 48 hours after parturition and compared  
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Figure 5.3. Panx1-/- mice have normal mammary glands at parturition. (A) Evaluation 

of body weight, mammary gland weight and normalized mammary gland weight revealed 

that Panx1-/- mice were similar to control mice at parturition. (B) Whole mount analysis 

revealed numerous alveoli filling the mammary fat pad. (C) Histological evaluation of 

haematoxylin and eosin stained glands revealed normal tissue architecture, a similar 

average number of alveoli/ducts (per 2.5 mm2) and a similar average alveolar/ductal lumen 

area (per 0.04 mm2) in Panx1 null mice compared to control mice. (D) Quantification of 

the average epithelial area (pixel) as assessed with immunofluorescent analysis using pan-

cytokeratin (green) per 0.3 mm2 revealed similar epithelial area in the mammary gland of 

Panx1-/- mice compared with control mice. (E) Quantification of the average number of 

adipocytes as assessed with immunofluorescent analysis using perilipin (green) per 0.3 

mm2 revealed a similar number of adipocytes in Panx1-/- mice compared with control mice. 

Hoescht (blue) denotes nuclei. Bars are means ± S.E.M. N=6. Scale bars = 50 µm. 
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Figure 5.3 
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to Panx1+/+ mice.  Similar to mice on the day of parturition, body weights, mammary gland 

weights and normalized mammary gland weights were not significantly different during 

early lactation in Panx1-/- and control mice (Figure 5.4A). Interestingly, whole mount and 

histological analysis of mammary glands revealed a significant decrease in the average 

number of lumens of Panx1 knockout mice with a concomitant significant increase in the 

average lumen area significant compared to wild-type mice suggesting reduced alveolar 

development in early lactation (Figure 5.4B,C). Furthermore, a reduction in the average 

epithelial pixel area, but not in the number of adipocytes glands, of Panx1-/- mice compared 

to Panx1+/+ mice supported a role for reduced alveolar development of early lactating 

Panx1 knockout mice (Figure 5.4D,F).  

Comparison of the number of lumens in mammary glands at parturition and early lactation 

revealed a significant increase in the number of alveoli during the 48 hours following 

parturition in Panx1+/+ mice but not in Panx1-/- mice (Figure 5.5A). To assess whether this 

difference was the result of impaired proliferation or increased apoptosis, mammary glands 

of Panx1 knockout and wild-type mice were immunolabelled with the proliferation marker 

Ki67. This study revealed a significant decrease in the number of Ki67 positive cells during 

early lactation, but not parturition, between Panx1-/- and control mice (Figure 5.5B). 

Qualitative assessment of cleaved caspase-3 immunolabelling revealed relatively few 

apoptotic cells in the lactating glands of Panx1-/- mice compared to wild-type mice 

suggesting that the reduced alveolar development was the result of decreased proliferation 

as opposed to increased cell death  (Figure 5.5D, F).  

In order to assess whether the defect in alveogenesis affects the differentiation of the 

mammary glands, markers of differentiation including the luminal markers keratin8, E-

cadherin and β-catenin as well as the myoepithelial marker keratin14, were assessed by 

immunofluorescent analysis (Figure 5.6). Both Panx1 knockout and control mice had 

similar and well defined expression of all epithelial markers (Figure 5.6A-C). Furthermore, 

evaluation of the expression of luminal connexins revealed a significant decrease in the 

relative number of Cx32 gap junction plaques, but not Cx26 or Cx30, in Panx1-/- mice. 
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Figure 5.4. Panx1-/- mice present with a reduction in the number of alveoli during early 

lactation. (A) Evaluation of body weight, mammary gland weight and normalized 

mammary gland weight revealed that Panx1-/- mice were similar to control mice. (B)  

Whole mount analysis revealed numerous alveoli filling the mammary fat pad. (C) 

Histological evaluation of  hematoxylin and eosin stained glands revealed a reduction in 

the number alveoli in the mammary glands (per 2.5 mm2) of Panx1-/- mice that were 

significantly larger than those from Panx1+/+  mice (per 0.04 mm2). (D) Quantification of 

the average epithelial area (pixel) as assessed with pan-cytokeratin (green) per 0.3 mm2 

revealed a significant decrease in the amount of epithelium in the mammary gland of 

Panx1-/- mice compared with control mice. (E) Quantification of the average number of 

adipocytes, as assessed with perilipin (green) per 0.3 mm2, revealed similar cell numbers 

in the mammary gland of Panx1-/- mice compared with control mice. Hoescht (blue) 

denotes nuclei. *p<0.05. Values are means ± S.E.M. N=6. Scale bars = 50 µm. 
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Figure 5.4 
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Figure 5.5. Panx1-/- mice have reduced proliferation during early lactation. (A) The 

average number of lumens was significantly increased in early lactation compared to 

parturition in Panx1+/+ mice which was not observed in Panx1-/- mice. Values represent the 

mean number of lumen per 2.5mm2 ± S.E.M.  (B) Immunofluorescent analysis of the 

proliferation marker Ki67 (Red; parturition, green; lactation) revealed significantly 

reduced proliferation in mammary glands of Panx1-/- mice compared to controls during 

early lactation but not at parturition. Values represent the mean number of Ki67 positive 

cells relative to the pixel area of the nuclei, multiplied by a factor of 1 x 104, per 0.3 mm2 

± S.E.M.  (C) Immunofluorescent analysis of the apoptotic marker cleaved caspase3 

revealed little apoptosis in the glands of knockout mice, similar to controls. Inserts 

represent positive controls in the involuting mammary gland. Hoescht (blue) denotes 

nuclei. *p<0.05. N=6. Scale bars = 50 µm. 
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Figure 5.5 
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Figure 5.6. Panx1-/- mice have normal mammary gland epithelial differentiation at 

lactation. (A) Immunofluorescent analysis of luminal epithelial marker keratin 8 (green) 

and myoepithelial marker keratin14 (red) revealed a similar staining pattern in Panx1-/- 

mice compared to control mice during lactation. (B, C)  Immunofluorescent analysis of 

mammary differentiation markers E-cadherin (B, red) and β-Catenin (C, red) revealed a 

similar staining profile in Panx1-/- mice and Panx1+/+ mice. Hoescht (blue) denotes nuclei. 

N=6. Scale bars = 50 µm. 
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Figure 5.6 
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As connexins have previously been used as markers of proper terminal differentiation [40], 

these results suggest that following parturition, Panx1-/- mice may not have completed the 

full differentiation of the mammary gland (Figure 5.7). Taken together, Panx1-/- mice have 

impaired mammary gland alveolar development during early lactation but relatively 

normal mammary gland differentiation.       

5.3.5 Lactating Panx1-/- mice have normal mammary gland 
function 

To determine whether the developmental defects associated with the mammary gland 

observed in lactating Panx1-/- dams resulted in impaired feeding of pups, 30-50 pups from 

multiple litters were weighed every other day revealing relatively normal pup weights 

between Panx1-/- dams and Panx1+/+ dams (Figure 5.8A). However, significantly 

decreased pup weights were found at day 6 while significantly increased pup weights were 

recorded at day 18 and day 20 from Panx1 knockout dams compared to Panx1 wild-type 

dams (Figure 5.8A). Importantly, Panx1-/- mice had similar litter size to Panx1+/+ mice in 

which pup death was uncommon (Figure 5.8B). Finally, western blot and 

immunofluorescent analysis of the common milk protein β-casein revealed no-significant 

difference between mammary glands of Panx1 knockout and control mice suggesting milk 

production is unaffected (Figure 5.8C,D). Taken together, loss of Panx1 does not severely 

impair mammary gland function.     

5.3.6  Panx1-/- mice have normal mammary gland involution 

In order to assess the role of Panx1 during involution, pups from Panx1-/- mice and wild-

type dams were force weaned at day 15 of lactation and three days later mammary glands 

were collected. Body weights, mammary gland weight and normalized mammary gland 

weight were similar between Panx1-/- and control mice (Figure 5.9A). Whole mount and 

histological analysis revealed similar tissue architecture of Panx1-/- mice compared to 

control mice (Figure 5.9B, C). Qualitative assessment of immunolabelled mammary gland 

for the apoptotic marker cleaved caspase 3 revealed comparably similar amount of cell  
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Figure 5.7. Lactating Panx1-/- mice have fewer Cx32 gap junctions in the mammary 

gland. (A) Immunofluorescent analysis of mammary gland cryosections during early 

lactation for Cx26, Cx30 and Cx32 (red) and cytokeratin14 (green) revealed no change in 

Cx26 and Cx30 gap junctions in knockout mice, while fewer Cx32 gap junctions were 

observed compared to control mice. Hoescht (blue) denotes nuclei. Scale bar = 50 µm. (B) 

Values represent the mean number of connexin plaques (red) relative to the pixel area of 

the nuclei (blue), multiplied by a factor of 1x102, per 0.3 mm2 ± S.E.M. N=5. 
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Figure 5.7 
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Figure 5.8. Panx1-/- dams lactate and deliver milk to pups. (A) Evaluation of pup body 

weights from 1-20 day old pups revealed significant differences between Panx1-/- mice 

near weaning age (D21) compared to Panx1+/+ mice (N=30-50 pups). ***p≤0.001. (B) 

Litters from 10 Panx1-/- dams were evaluated for litter sizes revealing similar numbers 

compared to control mice. (C, D) Western blot and immunofluorescent analysis of lactating 

mammary glands revealed no significant difference in the milk protein β-casein (red) in 

knockout and control mice. β-casein normalized to β-tubulin. N=6. Hoescht (blue) denotes 

nuclei. Values are means ± S.E.M. Scale bars = 50 µm. 
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Figure 5.8 



201 

 

 

 

 

 

 

Figure 5.9. Involuting Panx1-/- mouse mammary glands have normal gland regression. 

(A) Evaluation of body weight, mammary gland weight and normalized mammary gland 

weight revealed no significant difference between in Panx1-/- mice compared to control 

mice. (B, C)  Whole Mount and histological evaluation with haematoxylin and eosin 

revealed similar regression of glands in Panx1-/- mice and Panx1+/+ mice. (D) 

Immunofluorescent analysis of the apoptotic marker cleaved caspase-3 revealed 

qualitatively similar amounts of apoptosis in Panx1 null mice and wild-type mice. (E) 

Quantification of the average epithelial area (pixel2) and lumen number as assessed with 

pan-cytokeratin (green) per 0.3 mm2 were similar in Panx1-/- mice compared with control 

mice. (F) Quantification of the average number and diameter of adipocytes as assessed with 

perilipin (green) per 0.3 mm2 revealed similar numbers in the mammary gland of Panx1-/- 

mice compared with control mice. Hoescht (blue) denotes nuclei. Values are means ± 

S.E.M. N=5. Scale bars = 50 µm. 
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Figure 5.9 
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death between Panx1-/- mice and control mice (Figure 5.9D). Quantitative assessment of 

the number of lumen and relative epithelial area following labelling with pan-cytokeratin 

antibody also revealed a similar extent of epithelium in Panx1 knockout and wild-type 

involuting mammary glands suggesting comparable gland remodeling (Figure 5.9E). 

Similarly, evaluation of the number of adipocytes and the average diameter of adipocytes 

revealed no significant difference in the mammary glands of Panx1 knockout and control 

mice suggesting similar adipocyte repopulation of gland during involution (Figure 5.9F). 

Taken together, mammary glands of Panx1 null mice have comparable mammary gland 

involution to Panx1 wild-type mice.  

5.3.7 Panx1 expression is correlated with poor overall survival in 
breast cancer 

As Panx1 appeared to be a regulator of cell growth during early lactation, PANX1 was 

evaluated in the context of breast cancer by comparing human tumor samples with high or 

low mRNA expression of PANX1 with clinical outcomes. Interestingly, high expression 

of PANX1 in patient tumors was significantly correlated with worse OS, DMFS and RFS 

compared with those that had low PANX1 expression (Figure 5.10A- C).  Importantly, 

when comparing high PANX1 expression to OS in lymph node positive patients with 

advanced disease, high Panx1 mRNA expression maintained a similar significant negative 

correlation with OS (Figure 5.10A- C).  In addition, high PANX1 expression was compared 

with OS in the context of the Luminal A, Luminal B, Basal and Her2+ molecular subtypes. 

High PANX1 expression was not significantly associated with OS in the luminal A 

subgroup (Figure 5.10E). However, high PANX1 was significantly correlated with worse 

OS in luminal B and HER2+ samples compared to low PANX1 expressing tumours (Figure 

5.10F,H). Interestingly, high PANX1 was associated with significantly better OS in tumors 

of the basal subtype suggesting potentially differential roles of PANX1 that are dependent 

on the molecular subtype (Figure 5.10G). Ultimately, PANX1 appears to be associated 

with worse clinical outcome, although this may be dependent on the molecular subtype of 

the tumor.  
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Figure 5.10. High PANX1 mRNA expression is correlated with poor overall survival, 

particularly in the Luminal B and Her2+ subtypes, as revealed by in silico analysis. 

Breast cancer patient samples expressing high PANX1 mRNA expression were 

significantly correlated with worse overall survival (A), distant metastasis free survival 

(B), relapse free survival (C) and relapse free survival of lymph node positive patients (D) 

compared with low PANX1 expression patients. (E) Tumors of the luminal A subtype had 

a similar correlation to overall survival in high and low PANX1 expressing samples. High 

PANX1 expression in luminal B (F) and Her2+ (H) tumors was associated with 

significantly reduced overall survival compared to low PANX1 expression, unlike  tumors 

of the basal subtype which was associated with improved overall survival. A p-value less 

than 0.05 was considered significant.  

 



205 

 

 

Figure 5.100 
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5.4 Discussion 

The purpose of this study was threefold; first, to assess whether Panx1 was expressed and 

dynamically regulated in the mammary gland; second, to determine whether loss of Panx1 

altered the development of pubertal and lactating mice while establishing if Panx1 affected 

normal mammary gland function; and finally, to assess whether Panx1 in the mammary 

gland may have implications extending to patients with breast cancer.  

5.4.1 Panx1 is expressed in the lactating mammary gland 

Panx1 has an ubiquitous expression profile and has been reported in the mouse mammary 

gland based on expression profiling arrays in NCBI’s gene expression Omnibus database 

(ID 1416379, 78225667 [17]). In the murine mammary gland, Panx1 is expressed and 

upregulated during pregnancy where it remains elevated during lactation. Developmental 

regulation of Panx1 is associated with higher expression at earlier stages of development 

in many organs including the neonatal rat brain and murine newborn skin compared to aged 

counterparts [14,16,24]. Importantly, primary human muscle myoblasts induced to 

differentiate in culture upregulate the expression of Panx1 while ectopic expression of 

Panx1 in these cells induces differentiation in vitro [15]. Collectively, these results suggest 

a critical role for Panx1 in cell differentiation [15]. Unlike other organs, the mammary 

gland develops only a rudimentary ductal structure in prenatal mice and requires the onset 

of pregnancy to induce terminal differentiation of the gland [1]. Therefore, expression of 

Panx1 during pregnancy and lactation builds on the idea that Panx1 is upregulated in organs 

undergoing development and differentiation. As such, it might be expected that Panx1 is 

expressed in the embryonic mammary gland. While we cannot rule this out, loss of Panx1 

does not significantly impair the ability of the gland to develop a rudimentary ductal 

structure and undergo normal ductal development during puberty in the virgin mammary 

gland. As a result, Panx1 may be more important in the pregnant than the embryonic 

mammary gland. This is similar to the gap junction, large-pore channel protein, Cx26, 

which has a critical role after the onset of pregnancy while being less important at earlier 

stages of mammary gland development [41]. Our results suggest that Panx1 is expressed 
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in luminal epithelial cells although many other cell types that can be found within the 

stromal compartment of the mammary gland have been reported to express Panx1 

including fibroblasts [24], adipocytes [42], immune cells [43], erythrocytes [20], and cells 

of the vasculature [44]. While our staining was much more evident in the epithelium than 

in the stromal compartment of the gland, we have not ruled out that Panx1 upregulation 

may also occur in these other cell type residents of the mammary gland. Importantly, the 

Panx1-/- mice used in this study are null for Panx1 in all cell-types of the mammary gland.   

5.4.2 Panx1 is necessary for timely alveolar development and 
differentiation in the lactating mammary gland 

Terminal development of the mammary gland is driven by hormonal signaling that 

regulates proliferation and differentiation in the mammary gland. Panx1-/- mice had 

reduced alveolar development in early lactating mice due to impaired proliferation of the 

mammary gland that was not apparent at parturition. Day 2 and 3 of lactation represents a 

major proliferative time point of epithelial expansion in the mammary gland as indicated 

by increased DNA synthesis measured through recordings of [H3] thymidine incorporation 

[45,46]. Importantly, hormonal regulation driving epithelial cell proliferation during early 

lactation is believed to be due to pituitary prolactin and ovarian estrogen secretion [45]. 

Prolactin and estrogen have previously been shown to be absolutely essential to normal 

lobuloalveolar proliferation and differentiation as evidence by impaired lobuloalveolar 

defect in knockout mouse models of their respective receptors [40,47,48]. Interestingly, 

when mammary tissue from prolactin receptor knockout (PrlR-/-) mice is transplanted into 

wild-type cleared fat pads, due to issues of infertility, mammary gland proliferation and 

differentiation are impaired [48]. Of note, this coincides with complete loss of expression 

of the gap junction protein, Cx32 [48].  

Similarly, estrogen receptor beta knockout (ERβ-/-) mice also develop with impaired 

alveolar development and altered differentiation and have been further assessed to have 

reduced numbers of Cx32 gap junction plaques [40]. Therefore, it is interesting to speculate 

that Panx1 may impair either prolactin or estrogen mediated signaling as Panx1-/- mice also 

present with mammary glands with fewer Cx32 gap junction plaques. It seems more likely 

that Panx1 is implicated in the ERβ pathway, as ERβ-/- mice have reduced alveolar lumen 
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number and present with dilated alveolar lumen similar to Panx1-/- mice [40]. In addition, 

unlike PrlR-/- mammary glands, loss of Panx1 or ERβ-/- mice is not associated with impaired 

milk production [48]. In fact, mammary function is relatively normal in Panx1-/- mice, as 

pup weights of lactating dams were relatively unaffected similar to what has been seen in 

ERβ-/- mice. This suggests that impaired alveolar proliferation during early lactation in 

Panx1-/- mice likely represents only a delay in the onset of proliferation during early 

lactation. However, differences do exist between the ERβ-/- and Panx1-/- mice as mammary 

glands of ERβ-/- mice were associated with dysregulated epithelial markers E-cadherin and 

β-catenin which was not observed in Panx1-/- mice. This suggests suggests Panx1 is 

downstream of ERβ signaling, as ERβ-/- mice have a more severe phenotype. Taken 

together, we propose that Panx1 ablation may impair ERβ rather than PrlR signaling. 

Alternatively, since Panx1 has been reported to be expressed in the pituitary gland and the 

ovary, we cannot fully rule-out that loss of Panx1 in these organs may be mediating alveolar 

defects in the mammary gland [13,49,50]. However, this seems unlikely as Panx1-/- mice 

have a relatively normal phenotype, which might be expected to be more severe if 

hormonal signaling was dramatically impaired.   

While the mechanism of how Panx1 acts in the mammary gland is unknown, most studies 

assessing the role of Panx1 have found that Panx1 channel function involves ATP release 

that acts through purinergic receptors [51]. Interestingly, ATP release has been 

demonstrated to be important in Ca2+ wave propagation in coordination with P2Y and P2X 

receptors [52]. Intriguingly, mechanical stimulation of mammary tumor cell leads to the 

release of nucleotides through an unknown mechanism that induces Ca2+ signaling [53]. It 

remains interesting to speculate that Panx1 plays a role in this process. Importantly, Ca2+ 

signaling is extremely important in the lactating mammary gland and contributes to 

proliferation, secretion, and myoepithelial contraction [54]. However, this remains to be 

verified by future studies.  

5.4.3 Loss of Panx1 does not impair involution  

Recently, Panx1 was implicated as a critical channel during cell apoptosis, in which 

activation of caspases led to truncation of the C-terminal tail of Panx1 and the release of 

nucleotides that act as “find-me” signals for phagocytic cell-mediated clearance [19]. We 
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predicted that loss of Panx1 would impede normal mammary gland involution in which 

extensive apoptosis occurs requiring epithelial cell clearance from the mammary gland. 

However, loss of Panx1 did not affect mammary gland involution based on our assessment 

of epithelial cell area or adipocyte repopulation of the gland 72 hours following force 

weaning of the pups. Interestingly, Monk et al. has shown that apoptotic clearance in the 

mammary gland is mediated almost exclusively by alveolar epithelial cells, as opposed to 

macrophages [55,56]. This suggests that Panx1 is not the channel linked to cell clearance 

by which “find me” signals are released by apoptotic mammary epithelial cells, or that the 

loss of Panx1 channels is compensated by other nucleotide-releasing channels, or there is 

another mechanism involved [57]. Collectively, Panx1 appears dispensable for normal 

murine mammary gland involution at least in the first three days following forced weaning.  

5.4.4 Panx1 in breast cancer 

High Panx1 expression was correlated with worse OS, RFS and DMFS in breast tumors 

from patients suggesting that Panx1 may act as a tumor facilitator in breast cancer. This is 

supported by Furlow et al. who demonstrated that Panx1 channel activity was critical in 

promoting breast cancer lung metastasis by increasing metastatic cell survival during 

extravasation [29]. Interestingly, the effect of Panx1 was similar in breast cancer cells of 

the basal (MDA-MB-468) and claudin-low molecular subtype (MDA-MB-231, BT-549), 

suggesting that this novel role for Panx1 may be seen in multiple breast cancer subtypes 

[29,58,59]. While we did not compare the correlation between Panx1 expression and 

clinical outcomes in the claudin-low subtype, we found that high Panx1 expression was 

correlated with better overall survival in the basal subtype group in contrast to those in 

MDA-MB-468 cells seen by Furlow et al [29]. Though these results do not make for the 

best comparison, these differential findings in the basal subgroup may speak to a dual role 

for Panx1 in tumorigenesis. Indeed, despite relatively few studies assessing the role of 

Panx1 in cancer, Panx1 has already been implicated as both a tumor suppressor and tumor 

facilitator in different types of cancer [30-32]. This suggests that the role of Panx1 in 

tumorigenesis may be complex and dependent on tumor type and stage of the disease. 

Alternatively, these results may also be influenced by the different chemotherapeutic 

treatments used by breast cancer patients of different histological subtypes. It remains to 
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be determined how Panx1 mRNA expression is correlated with clinical outcomes in 

distinct populations of breast cancer patients being treated with different 

chemotherapeutics. Nevertheless, the results to date suggest a tumor facilitating role of 

Panx1 in breast cancer. It remains interesting to speculate that Panx1’s role in regulating 

cell proliferation in normal development may translate into dysregulated growth in the 

context of the primary tumor. Regardless, there is a need for further studies on the role of 

Panx1 in breast cancer.  

In summary, through the use of a global Panx1 knockout mouse, it is clear that Panx1 is 

not critical for the normal function of the gland but is necessary for timely alveolar 

development and proliferation following the transition of the mammary gland from 

pregnancy into early lactation. Importantly, Panx1 expression within the mammary gland 

may have important implications to patients with breast cancer where increased expression 

of Panx1 is generally correlated with a worse clinical outcome.  
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Chapter 6 

6 Overall Discussion  

Genetically-modified mice have provided the tools to more rigorously assess previous 

predictions based on immunohistochemical and in vitro studies. This thesis used three 

genetically-modified mouse models to evaluate the role of Cx43, Cx26 and Panx1 in 

mammary gland development and to determine if these proteins act as tumor suppressor or 

tumor facilitators in breast cancer onset and metastasis in vivo.  In Chapter 2 and Appendix 

1, we demonstrated that milk ejection defects are linked to the functional status of Cx43 

and, that low levels of Cx43 in the mammary gland of mice delayed palpable tumor onset 

and increased the frequency of metastases to the lungs, respectively. In Chapter 3, we 

identified that low levels of Cx26 expression in the mammary glands throughout pregnancy 

and lactation, and not the physiological surge in Cx26, is sufficient for normal gland 

development and function. In addition, despite little effect on normal gland development, 

Chapter 4 revealed that conditional knockout of Cx26 increased the susceptibility of 

mammary tumor onset in a chemically-induced mouse model of breast cancer. Finally, 

Chapter 5 identified a role for Panx1 in alveolar development following the transition from 

pregnancy to lactation, which may have implications extending to patients with breast 

cancer. The purpose of this section is to discuss how these studies may redefine our view 

of connexins and pannexins in the context of the mammary gland, focusing specifically on 

the broader implications and translatability of this work.   

6.1 Implications of connexins to breast feeding 

The ability for mothers to adequately breast feed is underappreciated as many nutritional 

aspects of breast feeding may be substituted by formula. However, substantial evidence 

suggests that breast milk provides protection against bacterial infections, reducing the risk 

of developing obesity and ischemic heart disease, and promoting proper neural 

development [1,2]. Importantly, the mother also receives benefits from breast feeding by 

reducing the risk of developing breast and ovarian cancer [1]. As a result, it may be 

important for clinicians to understand the genetic factors, such as connexin proteins, that 

impair breast function in order to educate affected individuals to the risks associated with  
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not being able to breast feed. Importantly, our studies highlight that understanding the 

functional status of connexins may be critical in determining which patients may be 

affected.  

Previous studies have highlighted the essential role of Cx43 and Cx26 in maintaining 

normal milk ejection and alveogenesis, respectively [3-5]. Surprisingly, both our 

evaluation of Cx43I130T/+ and BLG;Cx26fl/fl mice revealed no impairment in mammary 

gland function with little evidence of impaired mammary gland development (Chapter 2 

and Chapter 3, [6,7]). Ultimately, our results suggest that mammary connexins are made in 

excess and that even a 50% reduction in connexin function can be tolerated. This is 

supported by the relatively normal Gja1+/- and Gjb2+/- mice, in which one allele for Cx43 

or Cx26 has been removed [8,9]. Interestingly, what may seem as excess levels of 

connexins is not restricted to the mammary gland as severely reduced Cx43 gap junctions 

in cardiac myocytes, or Cx36 gap junctions in pancreatic β-cells, is relatively well tolerated 

within the heart and pancreas, respectively [10-12]. These observations highlight the fact 

that many organs can tolerate a reduction in connexin levels and GJIC, at least in some 

unstressed and unchallenged circumstances, while the complete ablation of connexins can 

be catastrophic to the organ.   

In humans, one might expect that impaired Cx43 and Cx26 function in the breast would 

lead to impaired breast feeding based on early studies using genetically-modified mice 

[4,5].  This is of particular interest in the context of Cx43 and Cx26-linked diseases such 

as ODDD or congenital syndromic and non-syndromic hearing loss, respectively [13,14]. 

No breast feeding defects have been reported in patients with hereditary hearing loss due 

to GJB2 mutations despite a high worldwide prevalence of these mutations [15,16]. In 

contrast, the rarity of ODDD makes it difficult to assess if affected mothers have altered 

breast function [17]. However, the lack of reported breast defects despite multiple 

incidences of ODDD-inflicted mothers reported in clinical studies suggests the likelihood 

of normal lactation [18,19]. Two possibilities may help explain the discrepancies between 

mutant mice and humans. First, our mutant mouse models may not fully mimic the human 
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population. This is supported given that the Cx43 G60S mutant is not reported in the human 

population and differs in some phenotypic traits compared to patients with ODDD, such as 

being significantly smaller in size than control mice [5,20]. However, the Cx43 G60S 

mutant shares impaired channel function similar to the P59H mutant, found one residue 

removed from the G60S residue [21]. Therefore, it is more likely that our two mutant 

mouse lines represent distinct subgroups of ODDD patients based on mutant channel 

properties. With regards to Cx26, although our BLG Cx26 knockout model shares a similar 

reported phenotype to the human population [7], many human Cx26 mutants develop gain-

of-function hemichannel activities [22]. This suggests that our knockout approach will not 

mimic all patients with GJB2 related deafness. Consequently, it is likely that our BLG 

Cx26 knockout mouse model may best reflect a distinct subgroup of patients with Cx26-

linked diseases expressing mutants that decrease Cx26 gap junction and hemichannel 

function.  

6.2 Mechanism of connexins in the mammary gland 

For Cx43, our results point to a GJIC-dependent mechanism in regulating normal 

mammary gland development and function as primary myoepithelial, and primary 

granulosa cells, isolated from Cx43I130T/+ mice had significantly greater Lucifer yellow dye 

transfer compared those isolated from Cx43G60S/+ mice [6]. While these experiments do not 

rule out GJIC-independent mechanisms, several lines of evidence argue against a role for 

dysregulated hemichannels and protein-protein interactions in this context. This is 

supported by Lai et al. who found that the Cx43 Y17S, G21R, A40V, F52FF and I130T 

mutants when ectopically expressed in C6 glioma cell all had similar impaired hemichannel 

function while differing greatly in their gap junction coupling capacity [23]. Although the 

effect of the G60S mutant on hemichannel function is unknown, the Y17S, G21R, A40V 

mutants share a similar dominant-negative action when expressed with wild-type Cx43 and 

functionally dead channel properties with expressed alone similar to the G60S mutant 

[23,24]. As a result, alteration in hemichannel function is unlikely. Interestingly, a small 

number of ODDD-linked  mutants have been described as having increased hemichannel 

function in vitro, including the G138R mutant for which a Cx43FloxG138R/+ mouse model of 

ODDD exists whose expression can be driven in a cell and tissue specific manner [25,26]. 
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Therefore, the Cx43FloxG138R/+ mouse may provide a potential model to better evaluate the 

role, if any, of Cx43 hemichannels in the context of the mammary gland [26]. In addition, 

differential effects of ODDD-linked mutants on the Cx43 proteome is an unlikely cause 

for the distinct mammary gland phenotypes observed in Cx43I130T/+ and Cx43G60S/+ mice. 

Transgenic expression of Cx26 in myoepithelial cells in vivo led to a trans-dominant 

negative effect on Cx43, revealing that loss of Cx43 had no effect on the expression of 

myoepithelial differentiation markers or intracellular signaling to myosin light chain [27]. 

In addition, GJA1 mutations linked to ODDD do not typically arise in the protein-protein 

interacting domains within the C-terminal of Cx43, suggesting that these mutants may be 

embryonic lethal, highlighting their importance [28]. Taken together, evidence to date 

points to a GJIC-dependent function for Cx43 in the mammary gland.  

Future studies may focus on the role of Cx43 in myoepithelial cell contraction. Oxytocin 

signaling is mediated through the oxytocin receptor coupled to Gαq11 and phospholipase C 

activation triggering the release of Ca2+ from intracellular stores [29]. Ca2+ and inositol 

triphosphate have previously been shown to pass through Cx43 gap junctions making it 

interesting to speculate that Cx43 functions via GJIC-dependent mechanisms to coordinate 

synchronous contraction via transfer of Ca2+ [30]. Isolation of primary myoepithelial cells 

from Cx43G60S/+ or Cx43I130T/+ mice and the direct Ca2+ wave propagation comparison to 

littermate controls may yield further insight into the mechanism by which Cx43 functions 

in myoepithelial cells during lactation.   

For Cx26, the use of conditionally ablated mice did not help us distinguish whether Cx26 

functions through a GJIC-dependent or independent mechanism. However, as Cx26 

possesses a very short C-terminal tail, it is likely that impaired alveogenesis associated 

with MMTV-Cre;Cx26fl/fl mice were the result of gap junction channel or hemichannel 

related mechanism and not related to the small Cx26 interactome [31-33]. Further 

comparative assessment of mice with mammary gland specific expression of the G45E or 

S17F Cx26 mutants, which differ in their gap junction channel and hemichannel function, 

may provide more clarity on the role of Cx26 hemichannels in mammary gland 

development and function [34,35].  
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Future studies should also focus on the potential role of Cx26 in secretory processes as 

Cx26 is commonly expressed in exocrine glands [36]. Therefore, expanding upon the role 

of Cx26 in the mammary gland and relating it to a GJIC-dependent or independent 

mechanism, quantitative evaluation of milk components following the milking of G45E or 

S17F mutant mice may be useful to reveal subtle changes in milk secretion that are not 

readily apparent using conditional knockout approaches [37]. Importantly, these studies 

must include an assessment of Cx32, due to its co-expression in many exocrine glands, to 

provide further insight into a potential role for connexins that may act in a compensatory 

manner [36]. 

6.3 Potential issues of connexin compensation  

Until recently, only Cx43 and Cx26 were reported in the human mammary gland [38]. As 

these connexins are expressed in unique cell types, the idea of compensation between 

luminal Cx30 and Cx32 in mice would not be expected to translate to humans. However, 

Teleki et al. recently described both Cx32 and Cx30 in human breast luminal epithelial 

cells, similar to that found in the mammary glands of rodents, and Cx30 appeared to co-

localize with Cx26 [39]. Intriguingly, these authors also identified Cx46 between luminal, 

myoepithelial and inflammatory cells despite a lack of expression in the rodent mammary 

gland, suggesting possible species-specific differences between human and rodent 

mammary glands [39,40]. While these results need to be taken with caution as they were 

derived from a low sample number and a lack of co-labelling with cell-type specific 

markers, the Teleki et al. study argues that a more rigorous re-evaluation of connexin 

expression at all stages of human breast development is needed. Importantly, these findings 

also suggest that connexin expression in the human breast may parallel more closely to that 

found in the mammary glands of rodents than previously thought.  

Ultimately, questions concerning compensation in connexin mutant mouse models are 

difficult to entirely rule out. Our study demonstrated that conditional silencing of Cx26 

also delayed the up-regulation of Cx30 during pregnancy suggesting Cx30 may not be 

compensating for the loss of Cx26 during this stage of development [7]. However, the idea 

of one connexin compensating for another will not be fully resolved without the 

development of double or triple mammary gland-specific connexin knockout mice. 
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Perhaps most importantly, a cross-breeding strategy where Gjb6 and Gjb1-knockout mice 

are crossed with Dox-inducible mice for conditional knockout of Cx26 would be extremely 

beneficial to the field to establish a clear role for luminal connexins in the mammary gland 

during pregnancy [41]. However, these knockout approaches are limited in elucidating 

mechanistic insight. Therefore, similar strategies using connexin mutant mice may provide 

additional insight into the GJIC-dependent and independent roles of mammary connexins 

in vivo.  

6.4 Connexins as tumor suppressors 

A particularly powerful approach to validate candidate tumor suppressor genes in vivo 

involves the induction of cancer in genetically-modified mouse models in which the 

candidate gene has been mutated or lost. Through this approach, we provided the first in 

vivo support for a Cx26 and Cx43 tumor suppressive role in breast cancer using genetically-

modified mice, bypassing the limitations of in vitro manipulation in previously evaluated 

xenograft models (Chapter 4 and Appendix 1, [42,43]). Interestingly, our results suggest 

that Cx26 has a tumor suppressive role in primary tumor onset, while Cx43 acts as a tumor 

suppressor during the later stages of the disease [44]. Therefore, Cx43 may best be 

described as a metastasis suppressor although these proteins are typically defined as having 

limited role in primary tumor onset or progression [45]. Cx43 does not totally fit this 

paradigm as the loss of functional Cx43 led to highly hyperplastic mammary glands 

suggesting a possible role in regulating growth in the primary tumor [44]. Ultimately, our 

evaluation of Cx26 and Cx43 using genetically-modified mice adds to a growing body of 

evidence that connexins are tumor suppressors [42,43,46,47].  

In regards to Cx26, patients with GJB2 mutations giving rise to keratitis-ichthyosis-

deafness syndrome appear to be at an increased risk of developing squamous cell 

carcinomas, suggesting that Cx26 also plays a role as a tumor suppressor in the skin [48]. 

However, assessment of liver tumor incidence (as Cx26 is highly expressed in the liver) 

between chemically induced conditional Cx26 knockout mice and controls revealed no 

significant increase in overall tumor incidence [49]. Therefore, despite high expression of 

Cx26 in the mammary gland, skin and liver, the likelihood of increased susceptibility to 

neoplastic transformation appears to be organ-dependent and likely dependent on the 
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expression status of other connexins and/or the proteomic environment. In regards to Cx43, 

the use of genetically modified mice has only been previously used to evaluate the role of 

Cx43 in lung neoplasms. Gja1+/- mice had greater frequency and larger lung adenomas 

compared to wild-type mice treated with urethane or 4-(methylnitrosamino)-1-(3-pyridyl)-

1-butanone, supporting a tumor suppressive role for Cx43 in cancer [50,51]). Other than 

Cx26 and Cx43, Cx32 has also been described as a tumor suppressor in hepatocellular 

carcinoma. Here, Gjb1-/- mice had increased susceptibility to chemically and radiation 

induced hepatocarcinogenesis [52,53]. These results were supported in mice expressing a 

liver specific dominant negative V139M mutant of Cx32, which impairs but does not fully 

ablate Cx32 function. Here again mutant mice had an increased susceptibility to chemically 

induced liver tumors but not spontaneous tumors [54]. A unifying theme of connexin-

related susceptibility to carcinogenesis is the requirement of an additional use of a tumor 

initiating agent [55]. Therefore, it remains intriguing to determine whether connexins act 

as tumor suppressors in the context of different tumor initiators by crossing genetically-

modified mice of connexins with mice that spontaneously develop mammary tumors 

including ErbB2 or the MMTV-PyVmt mouse models [56,57]. In this regard, we used 

DMBA, ErbB2, or a combination to drive the formation of mammary tumors, providing 

evidence that the role of Cx43 in suppressing metastasis to the lungs may be a common 

feature of multiple tumor types [44]. As a result, these approaches may provide insight into 

how the role of connexins differs in tumors driven by different oncogenic signaling 

pathways.  

Other studies have begun to assess how Cx43 expression differs in the molecular subtypes 

of breast cancer relative to traditional histological subtyping [58]. To overcome issues 

associated with poor clinical predictability of histological subtypes of breast cancer,  breast 

cancer is now being characterized into six distinct molecular subtypes known as Luminal 

A (ER+/PgR+/HER2-), Luminal B (ER+/PgR+/HER2+/Ki67+), HER2 (ER-/PgR-

/HER2+), Basal (ER-PgR-Her2-), Normal Breast-like (Adipose and fibroblast gene 

signature) and Claudin low (ER-/PgR-/HER2-/Claudinlow) [59-61]. These molecular 

subtypes may better predict clinical prognosis but it remains unknown how connexin 

expression relates to this new framework or whether connexins have similar tumor 

suppressor or facilitating functions in relation to each molecular classification. Park et al. 
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revealed that invasive ductal carcinomas or pure ductal carcinomas in situ were more likely 

to be Cx43 positive in the luminal A subtype than those of the luminal B or Her2+ subtypes 

[58]. As luminal A tumors are correlated with the best predicted outcome, high Cx43 levels 

in these tumors fits with the tumor suppressor paradigm for Cx43 [60]. Unexpectedly, 

tumors histologically subtyped as invasive ductal carcinoma with evidence of ductal 

carcinoma in situ had high Cx43 levels in the basal subtype, known to have worse clinical 

prognosis, highlighting the complexity of understanding the role of connexins in breast 

cancer [58,60]. Taken together, our mouse models generally support a tumor suppressive 

role for Cx43 and Cx26 in breast cancer progression but further studies are needed to define 

the relationship between connexins and molecular subtypes. Ultimately, this may improve 

our understanding of the reported dual tumor suppressive and facilitating roles attributed 

to Cx43 and Cx26 in early and late stage disease.   

6.5 Panx1 in the breast: pathological implications   

Recently, a human developmental disease has been linked to a recessive germline loss-of-

function mutation in PANX1 in which the patient developed cognitive, hearing, skeletal 

and reproductive defects (Shao et al. 2015, submitted). While the ability to assess 

mammary gland function is hindered by primary ovarian failure of the patient, since pups 

from litters of Panx1-/- dams survive till weaning, we would predict that these patients 

would retain a relatively normal capacity to lactate (Shao et al. 2015, submitted). In mice 

lacking Panx1, we have observed relatively minor developmental and func tional, defects 

in the mammary gland which may be due to compensation. Panx3 remains the most likely 

compensatory candidate as it has been reported to be expressed in the mammary gland [62]. 

However, unpublished evidence from our laboratories assessing colonies of Panx3-/- mice 

and double Panx1-/-Panx3-/- mice suggests that this is not likely the case. Both Panx3-/- 

mice and double Panx1-/-Panx3-/- mice have the capacity to reproduce and premature pup 

litter death is not readily apparent suggesting that Panx3 is not compensating for loss of 

Panx1 (unpublished personal observation). Importantly, a more detailed examination of 

these mice is necessary to confirm these observational findings as more subtle 

developmental defects may exist in these mice.  



228 

 

The documented defects in Panx1-/- mice suggests that Panx1 may regulate cell growth 

within the mammary gland consistent with a potential role in breast cancer. Indeed, Panx1 

mRNA is detected in breast cancer cell lines [63]. Recently, Panx1 was shown to play a 

role in cell survival during metastatic progression by preventing mechanically-induced cell 

death following dissemination through the lung vasculature [64]. Our assessment of in 

silico databases is in line with this novel role for Panx1 in metastatic breast cancer as high 

Panx1 mRNA expression was correlated with worse predicted outcome. Taken together, 

this suggests that Panx1 may act as a tumor facilitator in breast cancer similar to the role 

of Panx1 in melanoma [64,65]. Future studies to assess the role of Panx1 in breast cancer 

using Panx1-/- mice through a chemical or oncogene induced approach may be useful in 

further establishing the role of Panx1 in primary tumor onset and progression. In addition, 

future studies correlating Panx1 protein levels with clinical outcome are needed to further 

investigate the role of Panx1 as a biomarker. Our data suggests that Panx1 may represent 

a potential biomarker to be used in conjunction with previously established markers, 

particularly with regards to Luminal B or Her2+ tumors. 

6.6 Connexins and pannexins as therapeutic targets  

Breast cancer remains the leading cause of cancer related death in women aged 20-59 and 

the second leading cause of cancer related death after age 60 [66]. Importantly, death rates 

for female breast cancer are falling as a result of early detection through screening and the 

development of targeted therapies [67]. Both our Cx43 and Cx26 mouse models support a 

tumor suppressive role in breast cancer. As a result, targeted strategies to either induce 

connexin expression or promote GJIC may be effective in suppressing the tumorigenic 

properties in the treatment of breast cancer [55]. Importantly, increased GJIC may also 

augment the effects of common therapeutics by mediating the transfer of cytotoxic 

molecules between cancer cells known as the bystander effect [68,69]. While in theory this 

seems a reasonable idea, the development of therapeutics targeted towards connexins is 

limited due in no small measure to the fact that it remains much easier to develop a drug to 

downregulate or inhibit an oncogenic protein than to upregulate a tumor suppressor.  

One potential therapy involves a non-specific approach to target connexin in breast cancer. 

Demethylating drugs, such as 5-Azacytidine approved by the U.S. Food and Drug 
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Administration, can be used to alter the epigenetic profile of cancer cells, leading to the 

demethylation of tumor suppressed genes [70,71]. Cx26 and Cx43 are frequently 

downregulated in breast cancer, which is suggested to be, at least in the case of Cx26, due 

to methylation [46,72]. Early results appeared dependent on the breast cancer subtype as 

the related compound, 5-Aza-2′-deoxycytidine, showed variable benefits in different breast 

cancer cell lines [72,73]. Ultimately, this therapeutic strategy isn’t well explored but 

warrants further investigation. 

A second much more targeted approach uses first and second generation substituted 

quinoline compounds (PQ) that represent a group of GJIC enhancers currently being 

evaluated in breast cancer cells [56,74-77]. PQ1 and PQ7 were predicted through computer 

modelling to have high binding affinity to the structure of a gap junction hemichannel. 

Interestingly, PQs were shown to increase GJIC and even upregulate Cx43 protein 

expression in T47D breast cancer cells [74,78]. Importantly, PQ treated breast cancer cells 

had increased cell death and decreased cell proliferation in vitro, while tumor growth was 

significantly reduced in T47D xenografts and in MMTV-PyVT mice in vivo [56,74]. 

Intriguingly, combination therapy of PQ with tamoxifen or cisplatin generally had greater 

anti-proliferative and pro-apoptotic effects than either chemotherapeutic alone suggesting 

that PQs increase the effectiveness of common breast cancer chemotherapeutics through 

the bystander effect [75,79]. However, the anti-tumor effects of PQs have not conclusively 

been shown to be directly related to gap junction enhancement as there may be off-target 

effects that also contribute to anti-growth effect of tumor cells [78].  

In a third example, the use of peptides to target Cx43 may be effective in breast cancer 

therapy. The ACT-1 peptide that mimics a carboxyl terminal domain of Cx43 (ACT1) was 

found to increase GJIC by stabilising the activity of gap junctions at the plasma membrane 

[80]. ACT-1 was effective in decreasing proliferation in MCF-7 and MDA-MB-231 cells 

when treated alone but more importantly improved the cytotoxicity of tamoxifen in ER+ 

MCF7 cells or lapatinib in HER2+ BT474 cells when used in combination [80]. 

Interestingly, ACT-1 peptides are currently being investigated in wound healing and have 

completed Phase2 clinical trials with positive outcomes in healing chronic venous leg 

ulcers [81]. Taken together, both PQ1/PQ7 and the ACT-1 peptide represent candidate 
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drugs that promote GJIC, which can be used in combination with existing 

chemotherapeutics to target breast cancer cells. 

Drugs also exist to target Panx1, although the use of these in regards to breast cancer is 

relatively unexplored. Probenecid is approved by the U.S. Food and Drug Administration 

and has been shown to inhibit Panx1 channel function [82]. Interestingly, probenicid has 

been implicated as a chemosensitizer in T47D breast cancer cells as combination therapy 

of probenecid with cisplatin or paclitaxel increased cell cytotoxicity compared to either 

chemotherapy alone [83]. Ultimately, additional studies are needed to evaluate Panx1 as a 

viable therapeutic target in breast cancer.   

6.7 Conclusions 

In conclusion, further evaluation of genetically-modified mice targeting connexin or 

pannexin proteins are still needed to assess the roles of Cx43, Cx26 and Panx1 in the 

mammary gland. In particular, the future studies described above may provide further 

insight into the mechanism of action, issues of compensation and implications to patients 

with connexin-linked diseases. Importantly, new models of breast cancer are needed to 

evaluate connexins and pannexins, as well as potential therapies that target these large pore 

channels. We look forward to new discoveries that will further elucidate the mechanisms 

by which connexins act as tumor suppressors and/or facilitators in breast cancer as there 

remains considerable optimism that they will be of value in the clinic.   
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Appendix1  

Cx43 suppresses mammary tumor metastasis to the lung in 
a Cx43 mutant mouse model of human disease 

 

The role of Cx43 in breast cancer remains controversial due to conflicting reports of Cx43 

acting as both a tumor suppressor and tumor facilitator particularly in the later stages of 

the disease. To further evaluate the role of Cx43 in breast tumorigenesis, mice expressing 

the Cx43 G60S mutant were crossed with mice overexpressing the oncogene ErbB2 in 

order to evaluate spontaneous and DMBA-induced breast tumor development compared to 

controls. Dr. Isabelle Plante was the lead author on this study. My contributions were 

mainly to investigate if mice expressing the G60S mutant had altered mammary gland 

histology (Appendix 1.2) and to assess whether the increase in lung tumours observed in 

G60S mice originated from the mammary gland (Appendix 1.5).  As I contributed to under 

50% of this work, I have attached the manuscript as Appendix 1. 
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Introduction 

Metastatic breast cancer remains essentially incurable, highlighting the critical need for 

new therapeutic targets and treatment paradigms. For many years, several different 

experimental in vivo procedures have been used to investigate breast cancer progression. 

In many mouse models, tumorigenesis is initiated by exposing wild-type or genetically 

modified mice to a carcinogen. 7,12-Dimethylbenz[α]anthracene (DMBA) is one of the 

most common carcinogens used, and this treatment often causes cell transformation in the 

mammary gland that progresses to metastatic disease in distant tissues such as lung 

(Medina, 2007). In other mouse models of tumor onset and progression, genetically 

modified mice are engineered to overexpress an oncogene or to harbor a loss-of-function 

mutation in a key tumor suppressor gene, leading to increased incidence of tumorigenesis. 

For example, mice overexpressing a mouse mammary tumor virus (MMTV)-driven 

ratneu (ErbB2) gene (an oncogene overexpressed in ~30% of breast cancer patients) have 

been used extensively to mimic a subset of human breast cancers (Guy et al., 1992). ErbB2 

overexpressing mice have been shown to develop spontaneous mammary gland tumors 

within ~30 weeks and these tumors readily metastasize to the lungs (Guy et al., 1992). To 

further increase their versatility, ErbB2 overexpressing mice can be cross-bred with other 

genetically modified mice to examine molecular mechanisms that may enhance or inhibit 

tumorigenesis (Hewittet al., 2002; Jacquemart et al., 2009). 

The mammary gland epithelium is composed of two layers of cells, an inner layer of 

luminal epithelial cells and an outer layer of myoepithelial cells, surrounded by a basement 

membrane. The epithelium develops during puberty, under the influence of hormones, a 

process thought to require extensive interactions between myoepithelial and luminal cells, 

but also between the epithelium and the surrounding stroma (Pitelka et al., 1973; Sternlicht, 

2006). Myoepithelial cells are necessary for the development and function of the luminal 

cell layer, as paracrine regulation and junctional attachments allow for cross-talk within 

the epithelium (Pitelka et al., 1973; Adriance et al., 2005). As breast cancer typically arises 

from the luminal layer, with the rare exception of myoepithelioma (Foschini and Eusebi, 

1998), the role of myoepithelial cells in tumorigenesis has not been acutely studied. 

Recently, myoepithelial cells have received more attention as they have been suggested as 
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a ‘natural tumor suppressor’ (Sternlicht and Barsky, 1997; Sternlichtet al., 

1997; Gudjonsson et al., 2005). Indeed, through their strategic localization between the 

luminal cells and the surrounding stroma, it has been suggested that myoepithelial cells 

facilitate the polarity of the epithelium and function as a physical barrier against loss of 

growth control, tumor cell invasion and angiogenesis (Barsky and Karlin, 2005). 

Gap junctions are intercellular channels assembled from a family of transmembrane protein 

called connexins (Cxs). They allow the bidirectional passage of ions, metabolites and 

secondary messengers in a process known as gap junctional intercellular communication 

(GJIC) (Mese et al., 2007). GJIC has been implicated in the regulation of homeostasis and 

a diverse array of cellular functions related to cell specialization, growth and differentiation 

(Herve et al., 2007). In the mouse, gap junctions composed of Cx26, Cx30 or Cx32 have 

been identified between mammary luminal cells, whereas Cx43 gap junctions were found 

to be more restricted to myoepithelial cells and stromal fibroblasts (El-Sabban et al., 2003). 

Similarly, in human breast epithelium, Cx26 has been localized to luminal cells, whereas 

Cx43 is mainly present between myoepithelial cells, but has been reported to be expressed 

in luminal cells as well (Monaghan et al., 1996; Laird et al., 1999). Although connexins 

were first proposed as tumor suppressors more than two decades ago (Lee et al., 

1991, 1992), their role in breast cancer is still poorly understood and somewhat 

controversial. Several studies examining primary breast tumor biopsy samples from 

patients have reported either a downregulation of Cx26 and Cx43 or mis-localization of 

these connexins to intracellular compartments (Leeet al., 1991, 1992; Laird et al., 

1999; Kanczuga-Koda et al., 2006). Consistently, it has been shown that re-expression of 

connexins in breast tumor cell lines can result in a partial cell re-differentiation to a more 

normal phenotype (Hirschi et al., 1996; Kalra et al., 2006; McLachlan et al., 2007), 

whereas downregulation of connexins in breast cell lines render them more migratory and 

invasive (Shao et al., 2005). However, a few studies have also reported an upregulation of 

connexins in breast cancer (Jamieson et al., 1998; Kanczuga-Koda et al., 2006; Naoi et al., 

2007). Finally, it has been suggested that the role of connexins may differ depending of the 

type of tumor or its stage of progression, even favouring metastasis (McLachlan et al., 

2007; Naus and Laird, 2010). Together, these studies reflect the need for an appropriate 

mouse model to study the role of connexins at all stages of mammary gland tumorigenesis. 
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In 2005, a mouse model of oculodentodigital dysplasia, a human disease linked to over 62 

mutations in the Cx43 gene, was generated through an N-ethyl-N-nitrosourea screening for 

dominant mutations (Flenniken et al., 2005; Paznekas et al., 2009). These mice, designated 

as Gja1Jrt/+ or G60S mice, are autosomal dominant with the G60S mutant encoded on one 

allele. The mutant harboring mice were found to have a Cx43 trafficking defect and a 

substantial reduction in Cx43 protein levels in many tissues, including the mammary gland. 

These defects result in a decreased number of gap junction plaques and GJIC (Flenniken et 

al., 2005;Manias et al., 2008; Plante and Laird, 2008). When expressed in a variety of cell 

types, a population of the G60S mutant can reach the plasma membrane but assembles into 

gap junction-like structures with greatly impaired function (Flenniken et al., 

2005; McLachlan et al., 2005). In essence, the Cx43 G60S mutant is functionally dead and 

furthermore has a dominant-negative effect on coexpressed wild-type Cx43 found in the 

G60S mice (Flenniken et al., 2005). We previously showed that reduced Cx43 protein 

levels in G60S female mice are linked to delayed mammary gland development during 

puberty, as well as decreased milk secretion and ejection (Plante and Laird, 2008; Plante et 

al., 2010). However, the consequences of mice harboring a functionally impaired form of 

Cx43 on breast cancer onset, progression and metastasis are still unknown. 

This study aimed to determine whether the G60S mutant would render mice more 

susceptible to mammary gland tumor formation and whether tumors would be more 

aggressive. To this end, G60S mice were cross-bred with ErbB2 overexpressing mice to 

promote mammary gland-specific tumor formation, and both spontaneous and DMBA-

induced mammary gland tumorigenesis and metastasis were assessed. 

Methods 

Animal treatment and tissue collection 

Heterozygote Gja1Jrt/+ mutant mice, carrying a G60S mutation in the Gja1 gene encoding 

Cx43, have a mixed genetic background of C3 and C57BL/6J (Flenniken et al., 

2005). Gja1Jrt/+ male mice were cross-bred with female FVB and female FVB/N-

Tg(MMTVneu)202Mul/J, purchased from Jackson Laboratories (Bar Harbor, ME, USA). 

Mice were randomly assigned to the different experimental groups and tumor onset was 
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evaluated every week by palpation. Mice were killed when the biggest tumor reached 

~1 cm3 or when mice showed signs of critical illness. For 7,12-dimethylbenz[α]anthracene 

(DMBA) studies, mice were exposed to DMBA or cotton oil by gavage. A total of 5 weekly 

doses (1 mg per 25 g of body weight) were administrated starting at 7 weeks of age. Female 

mice were killed using CO2 and O2 and collected tissues were stored at −80 °C or fixed in 

10% neutral buffered formalin and then embedded in paraffin. All experimental procedures 

were approved by the Animal Care Committee at the University of Western Ontario 

following the guidelines of the Canadian Council on Animal Care. 

Histology 

To perform a general histological analysis, paraffin-embedded sections (7 μm thick) were 

stained with haematoxylin and eosin and mounted with Cytoseal (Richard-Allan Scientific, 

Kalamazoo, MI, USA). General histological analysis was performed by imaging several 

areas with 16 × , 10 × and 5 × objective lenses mounted on a Zeiss (Thornwood, NY, USA) 

Axioscope microscope workstation equipped with a Sony (Tokyo, Japan) PowerHAD 

camera and Axiovision LE imaging software (Carl Zeiss Vision). At least five different 

animals per experimental group were evaluated. 

Evaluation of lung lesions 

Once mice were killed, lungs were inflated and fixed by injecting 10% buffered formalin 

through the trachea. Inflated lungs were kept at 4 °C in buffered formalin for at least 48 h, 

and visible lesions present on the lung surface were counted. Lungs were then embedded 

in paraffin and processed for haematoxylin and eosin staining. For each mouse, 10 random 

pictures were taken with a 16 × objective (for a total of ~6 mm2 of tissue area per mouse) 

and the area covered by lesions evaluated blindly using ImageJ software (National 

Institutes of Health, Bethesda, MD, USA). Graphs represent the average lesion surface area 

(lesion area/total area evaluated), per group. A minimum of six different animals per 

experimental group were evaluated. 
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Immunocytochemistry and confocal microscopy 

Paraffin-embedded sections (7 μm thick) were subjected to rehydration with descending 

grades of ethanol baths followed by microwave antigen retrieval using Antigen Unmasking 

Solution (Vector Laboratories, Burlingame, CA, USA) for 5 min. After a 20 min of cool 

down, sections were subjected to a second antigen retrieval step, using 10 mM Tris Base, 

1 mM EDTA solution (pH 9.0) at 95 °C for 30 min, followed by 20 min of cool down. 

Tissues were rinsed with water and blocked with 0.1% Triton X-100 and 0.15% goat serum 

in phosphate-buffered saline for 60 min at room temperature. Sections were then incubated 

with anti-mammaglobin (Abcam, Cambridge, MA, USA; 1.0 μg/ml, cat. # ab82203). 

Primary antibody was visualized by incubating sections with Alexa555-conjugated donkey 

anti-rabbit secondary antibody (Invitrogen, Burlington, ON, Canada; 0.5 μg/ml). Hoechst 

stain was used to visualize nuclei before mounting. Immunolabeled paraffin-embedded 

sections were imaged on a Zeiss LSM 510 inverted confocal microscope as previously 

described (Thomas et al., 2005). At least five different animals per experimental group 

were evaluated. 

Statistical analysis and n-values 

Values are presented as the mean±s.e.m. Statistics were analyzed using Student'st-test or 

ANOVA analysis followed by a Tukey's multiple comparison test (comparing all pairs) 

where P<0.05 was considered significant. Statistical analyses were performed using 

GraphPad Prism version 4.02 for Windows (GraphPad Software, San Diego, CA, USA). 

 

Results 

Mice harboring the G60S mutant have a delayed onset of palpable 
tumors in the mammary gland 

To study the effects of a Cx43 mutant on mammary gland tumorigenesis, we cross-bred 

male Gja1Jrt/+ mice, harboring a G60S mutation within the Cx43 gene, with female ErbB2 

mice, overexpressing a rat ErbB2 (Neu) gene under an MMTV promoter (FVB/N-

Tg(MMTVneu)202Mul/J), or with FVB control females. The resulting phenotypes were 
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designated WT-FVB (wild-type Cx43 and no ErbB2 overexpression), WT-ErbB2 (wild-

type Cx43 and heterozygous for ErbB2 overexpression), G60S-FVB (harboring the G60S 

mutant and no ErbB2 overexpression) and G60S-ErbB2 (harboring the G60S mutant and 

heterozygous for ErbB2 overexpression). Surprisingly, a significant number of the 

resulting offspring, especially mice expressing both the mutant Cx43 and ErbB2, died 

before the end of the experiment. Although DMBA exposure didn’t seem to affect the 

health of the mice based on body weight assessments during the treatment time, the 

percentage of mouse deaths was even higher when mice were exposed to DMBA. Mice 

killed or found dead before week 42 because of mammary gland cancer-unrelated diseases 

were removed from the experiment and data analysis. The remaining mice were assessed 

for mammary gland tumor formation and were killed either when the biggest tumors 

reached ~1 cm3 or when they showed signs of critical illness. 

To assess whether mice harboring the G60S mutant were more or less susceptible to tumor 

formation, two protocols were used. First, spontaneous tumor development was assessed 

in the two groups of mice overexpressing ErbB2 (designated as ‘spontaneous’; WT-ErbB2 

and G60S-ErbB2) by palpation. Second, mice (WT-FVB, WT-ErbB2, G60S-FVB and 

G60S-ErbB2) were treated with either oil or DMBA and then assessed for palpable tumors 

weekly. Tumors were first detected at ~40 weeks in spontaneous WT-ErbB2 mice, with 

50% of the mice exhibiting palpable tumors by ~72 weeks (Appendix 1.1a). Surprisingly, 

only one G60S-ErbB2 mouse ever developed a palpable spontaneous tumor (Appendix 

1.1a). In the DMBA-treated groups, the onset of palpable tumors in WT-ErbB2 and WT-

FVB mice was ~20-weeks earlier with 50% of the mice exhibiting tumors at 32 and 36 

weeks of age, respectively (Appendix 1.1b). In G60S mice exposed to DMBA, tumor 

formation was delayed compared with DMBA-treated WT groups, with the first tumors 

being detected between weeks 30 and 35 (Appendix 1.1b). However, G60S mice typically 

had to be killed before week 42 because of labored breathing, independent of the presence 

of a mammary gland tumor. Collectively, only one oil-treated WT-ErbB2 mouse formed a 

palpable tumor. Together, these results suggest that exposure to DMBA reduces tumor 

latency in all strains and that mice harboring the G60S mutant have delayed palpable 

mammary gland tumor onset. 
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WT mice have multiple and larger tumors compared with G60S mice 

At the time of killing, all mouse mammary gland tumors were counted and measured. 

Approximately 70% of spontaneous WT-ErbB2 mice developed at least one tumor by the 

age of 87 weeks (Appendix 1.1c). Surprisingly, only one G60S-ErbB2 mouse ever formed 

a spontaneous tumor. In DMBA-treated animals, over 80% of WT-FVB and WT-ErbB2 

mice formed at least one tumor, compared with ~45% of the G60S-FVB and ~60% of the 

G60S-ErbB2 mice (Appendix 1.1f). Although between ~30–53% of both spontaneous WT-

ErbB2 mice and DMBA-treated WT mice had multiple tumors, only one DMBA-treated 

G60S-ErbB2 mouse developed three tumors (Figures A1c and f), indicating that not only 

the incidence of tumor formation is lower in Cx43 mutant mice, but also that these mice 

rarely have multiple tumors. 

In keeping with our approved animal protocol, mice were killed when the largest tumor 

reached ~1 cm3 or when they showed signs of critical illness. In all cases, both spontaneous 

and DMBA-treated WT mice could reach the maximum tumor burden (Appendix 1.1d and 

g). However, G60S mutant mice bearing a palpable tumor rapidly exhibited discomfort 

and/or labored breathing and thus had to be killed before reaching the maximum tumor 

burden, resulting in an average tumor size of <0.5 cm3 (Appendix 1.1d and g). In all cases, 

the tumor growth rate was calculated by dividing the size of the tumors at death by the 

number of days since the tumors were first palpated. For WT mice,  
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Appendix 1.1. Onset of palpable mammary gland tumors is delayed in Cx43 mutant 

mice. (a) Spontaneous mammary gland tumor onset and growth were evaluated by 

palpation in WT-ErbB2 and G60S-ErbB2 mice. (b) 7-week-old mice were exposed weekly 

to DMBA (1 mg per 25 mg of body weight) for 5 weeks and tumor onset and growth was 

evaluated by palpation. Dotted lines in panels a and b represent the time when 50% of mice 

had a least one palpable tumor (T50). (c, f) Graph represents the percentage of mice that 

develop 1, 2 or greater than or equal to3 spontaneous mammary gland tumors (c) or upon 

DMBA exposure (f). (d, e, g, h) Size and growth rate were evaluated from all groups. In 

all, 22 tumors in the spontaneous WT-ErbB2 mice group, but only 1 tumor in the G60S-

ErbB2 mice group, were palpated and evaluated. For DMBA, N=15 for WT-FVB; N=9 for 

G60S-FVB; N=17 for WT-ErbB2; N=10 for G60S-ErbB2. (d, g) Graphs represent the 

average size of the biggest tumor at the time of killing mice (mean±s.e.m.). *P<0.05; 

***P<0.001. (e, h) Graphs represent the average growth rate of the biggest tumors 

(mean±s.e.m.). Growth rates were obtained by dividing the size of the biggest tumor at the 

time of killing by the number of days since the tumor was first palpated. *P<0.05. 
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the average growth rate was similar for both spontaneous and DMBA-induced tumors, 

ranging from 38 to 60 mm3 per day (Appendix 1.1e and h). Although the growth rate did 

not differ between G60S-FVB and G60S-ErbB2 mice exposed to DMBA, it was 

significantly lower in G60S-ErbB2 mice compared with WT-ErbB2 mice (Appendix 1.1h). 

Only one G60S-ErbB2 mouse developed a spontaneous palpable tumor (Appendix 1.1c–

e), and both the size and the growth rate of that tumor was similar to those from DMBA-

exposed G60S mice (Appendix 1.d, e, g and h). Together, these results suggest that Cx43 

mutant mice are rapidly affected by the presence of tumors, and had to be killed before the 

tumors reached the maximum size threshold. 

G60S mice have hyperplasic mammary glands 

To assess the architecture and tumor status in the mammary gland, we performed 

histological analyses. In the spontaneous groups, most of the mammary glands were 

composed of adipocytes with sparse ducts (Appendix 1.2a and c). However, in all WT-

ErbB2 mice analyzed, some areas of the glands showed either hyperplasia or solid tumor 

(Appendix 1.2b). Surprisingly, approximately 75% of G60S-ErbB2 mice also showed 

hyperplasic areas (Appendix 1.2d). Similarly, in oil-treated mice, histological analysis 

revealed primarily normal tissue (Appendix 1.2e–h); however, between 29–44% of WT-

ErbB2, G60S-FVB and G60S-ErbB2 mice had hyperplasic tissue, as well as occasional 

solid tumors (Appendix 1.2f–h, inserts). Upon DMBA treatment, ≥63% of the mice in each 

group exhibited abnormal areas of tissue (Appendix 1.2i–l). Interestingly, although WT 

mice contained both hyperplasic and solid tumors (Appendix 1.2i and k, inserts), G60S 

mice contained almost exclusively hyperplasic mammary glands (Appendix 1.2j and l). 

These results suggest that mammary glands from Cx43 mutant mice become hyperplastic, 

independent of the overexpression of ErbB2 or exposure to DMBA. 

Levels of Cx43 are reduced in the mammary gland of G60S mice 
compared with WT mice, and remain unchanged upon DMBA 
exposure 

As the parental Gja1Jrt/+mice are on a mixed genetic background of C3 and C57BL/6J and 

ErbB2 mice are on a FVB background, western blot analyses was conducted on mammary 

glands to determine the effect of the G60S mutant on Cx43 levels upon cross- 
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Apendix 1.2. Mammary glands from Cx43 mutant mice typically become hyperplasic. 

Haematoxylin and eosin staining revealed that most of the mammary gland tissue from 

both spontaneous WT-ErbB2 (a) and G60S-ErbB2 mice (c) seem normal, with occasional 

areas revealing solid tumors and hyperplasia in WT-ErbB2 mice (b) or mainly hyperplasia 

in G60S-ErbB2 mice (d). Similar results were observed for oil-treated animals (e–h). In 

DMBA-treated mice, hyperplasia and solid tumors were observed in WT mice (i, k), 

whereas the mammary glands from G60S mice were mainly hyperplasic (j, l). Bars, 

100 μm. For all groups, N≥5. 
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breeding. Typically, Cx43 resolves as multiple bands with the slower migrating bands 

representing highly phosphorylated species of Cx43 (P), and the faster migrating band, 

representing un-phosphorylated or a poorly phosphorylated species of Cx43 (P0) (as 

reviewed by Solan and Lampe, 2005 and by Solan and Lampe, 2007). Although we 

observed that Cx43 mRNA levels were the same in WT and mutant mice, total Cx43 

protein levels were reduced by ~80% in G60S-ErbB2 mice compared with WT-ErbB2 

mice, with the Cx43-P species being the most affected. Similar results were obtained when 

comparing oil-treated WT-ErbB2 and G60S-ErbB2 mice, or when comparing G60S-FVB 

with WT-FVB mice, confirming that the presence of the G60S mutant reduces the Cx43 

content in all mice harboring this mutant. It has been reported that DMBA treatment can 

increase Cx43 levels in a normal human breast cell line (De Flora et al., 2006), raising 

concerns that DMBA may compensate for the reduction in total Cx43 found in G60S 

mutant mice. In our studies, western blot analysis revealed that DMBA alone did not 

significantly change the levels of Cx43. 

G60S mice are more susceptible to lung tumors than WT mice 

As the lungs are one of the primary organs for mammary gland metastasis and G60S mice 

typically exhibited labored breathing in later stages of the study, we examined the lungs 

for visible evidence of tumors upon intra-tracheal fixation. Lung tumors were infrequent 

in spontaneous groups, but ~20% of WT-ErbB2 and G60S-ErbB2 mice had between 1 and 

10 visible tumors (Appendix 1.3a and b). Similarly, few tumors were observed in oil-

treated mice, with less than 15% of mice having one or more tumors (Appendix 1.3c and 

d). In all DMBA-treated groups, lung tumors were common as ~75% of WT mice exhibited 

1–10 tumors (Appendix 1.3c), resulting in an average of nearly 7 tumors per mouse 

(Appendix 1.3d). In G60S mutant mice, not only were 100% of the mice found to exhibit 

visible lungs tumors, but most mice had >15 visible lesions, (Appendix 1.3c) with an 

average of 18 tumors per mouse (Appendix 1.3d). These results indicate that DMBA-

treated Cx43 mutant mice are more susceptible to form lung tumors than WT mice. 
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Appendix 1.3. Cx43 mutant mice are more susceptible to lung tumors than WT mice. 

Visible lung tumors were counted for each spontaneous (a), oil-treated or DMBA-induced 

(c) mouse cohorts. (a, c) Graphs represent the percentage of mice having 1–10, 11–15 or 

>15 tumors. ***P<0.001. (b, d) Graphs represent the mean number of lung tumors per 

group±s.e.m. ***P<0.001. For all groups, N≥7. 
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As G60S mutant mice are typically 50% smaller than WT mice (Plante and Laird, 2008), 

and microscopic tumors were not included in the initial assessment, we used histological 

evaluation to determine the lung tumor burden (percentage of lung tissue area occupied by 

tumor). In mice from spontaneous groups, a considerable area of the lung was normal for 

both WT-ErbB2 and G60S-ErbB2 mice (Appendix 1.4a). However, 57% of the WT-ErbB2 

mice had sporadic lung tumors with approximately half of these tumors occupying >20% of 

the lung section area (Appendix 1.4b). In contrast, 100% of G60S-ErbB2 mice had lung 

tumors with ~60% of the mice having tumors occupying <20% of the lung and the 

remaining mice having tumors that occupied 20–50% of the lung section area (Appendix 

1.4b). In comparing the spontaneous groups, the lungs from G60S-ErbB2 mutant mice had 

a similar tumor burden (that is, mean area of the lung occupied by tumor) as those taken 

from WT-ErbB2 mice (Appendix 1.4c), but mutant mice had increased incidences of lung 

metastases (number of mice in each group that developed lung tumors) compared with WT 

mice. 

In oil-treated mice, over 80% of the lung tissues analyzed were tumor-free for the vast 

majority of genetically engineered mice (Appendix 1.4d and e), resulting in less than 

6% lung tumor burden (Appendix 1.4f). Upon exposure to DMBA, more than 80% of the 

area of the lung tissue analyzed was still tumor-free for WT mice (Appendix 1.4d,e), 

resulting in less than 6% lung tumor burden (Appendix 1.4f). However, in G60S-mice, 

100% of mice had at least 5% lung tumor burden, with more than half of them having 

greater than 20% lung burden (Appendix 1.4e). This resulted in an average of 30–40% lung 

tumor burden for both groups (Appendix 1.4f). Together, these results suggest that Cx43 

G60S mutant mice have more numerous macroscopic and microscopic lung tumors than 

their control counterparts. 

Cx43 mutant mice have increased metastasis to the lung 

To confirm that the lung tumors observed were truly metastases from the mammary gland, 

lung paraffin-embedded sections were immunolabeled with mammaglobin, a glycoprotein 

which is expressed in cells derived from the mammary gland (Yang and Nonaka, 2010). 

As expected, no mammaglobin was detected in normal lung tissues  
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Appendix 1.4. Cx43 mutant mice have considerable lung tumor burden, which is 

further increased by DMBA treatment. Haematoxylin and eosin staining revealed that 

lung tissue from WT-ErbB2 and G60S-ErbB2 mice was generally normal (a), with 

occasional areas harboring solid tumors (a, inserts). Similarly, lung tissue from oil-treated 

mouse cohorts was typically normal (d). In DMBA-treated mice, solid tumors were 

observed for all mouse groups, but were more frequently found in G60S mutant mice (d). 

Bars=150 μm. For all mice, 10 random histological fields were imaged and the area of 

abnormal tissue versus normal tissue was blindly evaluated using ImageJ software. (b, e) 

Graphs represent the percentage of mice with <5%, 5–20%, 20–50% or 50% of the total 

lung area occupied by abnormal tissue. (c, f) Graphs represent the percent mean tumor 

burden per total tissue area for each group±s.e.m. **P<0.01; ***P<0.001. For each 

group, N≥6. 
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(Appendix 1.5a and c). In both spontaneous WT-ErbB2 and G60S-ErbB2 mice, over 

62% of lung tumors stained positively for mammaglobin, confirming that they were from 

mammary gland origin (Appendix 1.5b). In oil- or DMBA-treated mice, 67–88% of all 

tumors were stained positively for mammaglobin in all groups, except oil-treated WT-FVB 

(no tumors found) and G60S-ErbB2 (no positive staining in six tumors analyzed) 

(Appendix 1.5c and d). Together, these results suggest that G60S mice are more prone to 

mammary gland tumor metastases to the lung. 

Discussion 

The connexin family of gap junction proteins is essential for cell proliferation, 

differentiation and tissue homeostasis (Herve et al., 2007). Recent evidence has challenged 

the paradigm that connexins are tumor suppressors, and further suggests that connexins 

may even facilitate late stage disease progression and metastasis (Naus and Laird, 2010). 

Thus, connexins may in fact best be considered as conditional tumor suppressors (Naus 

and Laird, 2010). Although connexins seem to be linked to tumorigenesis in the breast 

(Lee et al., 1991, 1992; Laird et al., 1999; Kanczuga-Koda et al., 2006; McLachlan et al., 

2007), the current understanding of how these molecules are linked to cancer is relatively 

limited, as few studies have systematically examined the role of connexins in both early 

and late stages of disease progression in a unified model. We chose to assess the importance 

of Cx43 in breast cancer onset and progression using a mouse model that harbors an 

autosomal-dominant mutation in the gene encoding Cx43. As this loss-of-function 

mutation in a conditional tumor suppressor may not in itself be sufficient to initiate 

tumorigenesis and because Cx43 is also found in more than 35 cell types (Laird, 2006), we 

chose to focus our analysis on the mammary gland by using the ErbB2 oncogene 

overexpressing mice under a mammary gland specific promoter. Not only did this new 

model circumvent limitations associated with in vitro and mouse xenograft models for 

studying the molecular mechanisms of breast cancer onset and progression, but it also 

allowed us to examine the ‘natural tumor suppressor’ role of Cx43-rich myoepithelial cells 

(Sternlicht and Barsky, 1997;Gudjonsson et al., 2005). An added advantage of this model 

was the fact that both ErbB2 overexpression and DMBA  
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Appendix 1.5. Cx43 mutant mice have more mammary gland metastases to the lung. 

Paraffin-embedded normal and tumor-harboring lung tissue was immunolabeled with 

mammaglobin (red), a marker for cells of mammary gland origin in spontaneous (a) and 

oil/DMBA-treated mice (c). The number of mammaglobin-positive and negative lung 

tumors was counted for every mouse group (for all groups,N 5 mice except oil-treated 

WT-ErbB2 and WT-FVB mice where N=4) (b, d). Tables denote the percent of 

mammaglobin-positive lung tumors and the total number of lung tumors evaluated per 

spontaneous (b) and oil/DMBA-treated group (d). Nuclei were stained with Hoechst (blue). 

Bars, 100 μm. 
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disease progression and metastasis. Finally, this animal model was designed to examine 

the potential cross-talk mechanisms between the Cx43-rich myoepithelium and the ErbB2-

positive luminal cell microenvironments as related to tumorigenesis. 

Our study produced two major and somewhat unexpected key findings. First, low levels of 

Cx43 in the mammary gland resulted in a decreased frequency of palpable mammary gland 

tumors, as mice harboring the G60S mutant typically exhibited a hyperplasic mammary 

gland. Second, G60S mutant mice were far more prone to forming lung metastases. 

Together, our results suggest that a reduced complement of functional Cx43 renders mice 

more susceptible to hyperplasic mammary glands and that functional Cx43 is protective 

against lung metastases. 

Low levels of Cx43 result in delayed onset of palpable tumors 

In mice overexpressing ErbB2 under the control of an MMTV promoter (Guy et al., 1992), 

50% of the mice developed spontaneous mammary gland tumors at ~30 weeks, and 

~70% of tumor-bearing mice that live over 8 months exhibit lung metastasis (Guy et al., 

1992). In our hands, 50% of WT-ErbB2 mice developed spontaneous palpable mammary 

gland tumors by ~72 weeks of age, twice the time of the parental strain. A possible 

explanation for this delay in tumor onset may come from the fact that the parental strain is 

homozygous, having two copies of theNeuI rat gene, whereas our mice were heterozygous 

for ErbB2. However, a comparable cross-breeding approach between the same ErbB2-

expressing mice and MMTV/Rassf3 transgenic mice resulted in similar tumor onset latency 

as that found in the homozygous ErbB2 mice, suggesting that this is not a sufficient 

explanation (Jacquemart et al., 2009). Another possibility is that this disparity may result 

from differences in mouse strains used. Although both FVB/N-Tg(MMTVneu)202Mul/J 

and MMTV/Rassf3 transgenic mice were on the same FVB background, G60S mice are on 

a mixed background of C3 and the more tumor resistant strain, C57BL/6J (Rowse et al., 

1998; Flenniken et al., 2005). Consistently, a cross-breeding study between ErbB2 mice 

on the FVB mouse background and ERαKO mice on the C57BL/6 strain resulted in a 

considerably longer latency in tumor onset (Hewitt et al., 2002), similar to the findings in 

this study. 
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To our surprise, compared with appropriated controls, the onset of palpable mammary 

gland tumors was delayed in Cx43 mutant mice in both spontaneous and DMBA-treated 

experimental sets. However, histological analysis demonstrated that the mammary glands 

from mutant mice were subject to hyperplasia. Hyperplasia is one of the first steps in 

tumorigenesis, as further disease progression to solid tumors usually occurs within a few 

weeks (Boggio et al., 1998; Hewitt et al., 2002;Tsubura et al., 2007; Allred and Medina, 

2008). At least two possibilities could explain these results; either mutant Cx43 delays the 

onset of tumorigenesis, or mutant Cx43 inhibits hyperplasic cells from proceeding to solid 

tumors while resident in the mammary gland. The fact that 33% of oil-treated G60S-FVB 

mutant mice (compared with 0% of WT-FVB) exhibit hyperplasia by week 42 suggests 

that Cx43 mutant mice may actually be more prone to breast tumor initiation. However, 

the answer was not as clear when we compared G60S-ErbB2 and WT-ErbB2 mice, as 44 

and 29% of these mice, (respectively), exhibited hyperplasia in the oil-treated group at 42 

weeks, and 75% of mice harboring G60S-ErbB2 spontaneously became hyperplasic at 

week 50. Together, this suggests that Cx43 may only have a minimal effect on inhibiting 

the initial stages of tumorigenesis. Instead, it is more likely that mutant Cx43 is linked to 

inhibiting cells from forming solid tumors while resident in the mammary gland. Similar 

to human breast cancer, mouse mammary gland tumorigenesis is a multistep process 

involving epithelial hyperproliferation (hyperplasia), progression into in situ carcinoma, 

invasion and metastasis (Boggioet al., 1998; Tsubura et al., 2007; Allred and Medina, 

2008). The major criteria to discriminate between in situ and invasive carcinoma is the 

presence of an intact myoepithelial layer and basement membrane, suggesting that 

myoepithelial cells can have a ‘fence’ role to inhibit invasiveness. 

Myoepithelial cell tumor-suppressive properties 

Recently we showed that reduced GJIC in myoepithelial cells of Gja1Jrt/+ (G60S) mice 

results in a delay in mammary gland ductal development during puberty, suggesting a 

regulatory role of Cx43 (Plante and Laird, 2008). Similarly, it has been shown that 

interactions between myoepithelial and luminal cells are required for proper differentiation 

of luminal cells in vitro, and that this process is dependent on gap junctions (Talhouk et 

al., 2008). Lately, myoepithelial cells have received more attention as they have been 
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suggested to be a ‘natural tumor suppressor’ by inhibiting various neoplastic events, 

including cell growth, invasion and angiogenesis (Sternlicht and Barsky, 1997; Sternlicht et 

al., 1997; Barsky and Karlin, 2005; Gudjonsson et al., 2005). In keeping with this concept, 

our results suggest that a full complement of Cx43 may be necessary to protect against 

tumor or hyperplasic cells from entering the stroma and eventually into the vasculature. 

Cx43 could be necessary for the proper differentiation of the myoepithelial layer. Less-

differentiated myoepithelial cells would be expected to have altered expression of tumor 

suppressive molecules, such as maspin and TIMP-1, thereby facilitating luminal cell 

migration (Sternlicht and Barsky, 1997; Barsky and Karlin, 2005). Alternatively, Cx43 

may be necessary to physically strengthen the epithelium barrier as we already know that 

Cx43 is critical to synchronous myoepithelial cell contraction (Plante and Laird, 2008). It 

is also possible that decreased levels of Cx43 in the myoepithelium interfere with other 

adhesion mechanisms or complexes present at the plasma membrane (Laird, 2006). 

However, our previous study suggests that a low level of Cx43 is sufficient to maintain the 

proper localization of protein constituents of tight and adherens junctions (Plante et al., 

2010). Finally, this study does not allow us to conclude whether the effects observed are 

due to deceased levels of Cx43, or to a decrease in GJIC, as the G60S mutant is functionally 

dead and also has a dominant-negative effect on coexpressed wild-type Cx43 (Flenniken et 

al., 2005). Additional studies would be necessary to further dissect the full contribution of 

Cx43 to the myoepithelial cell layer. 

Cx43 suppresses mammary gland metastasis to lung 

An intriguing finding from our study using this unifying model of breast tumor onset and 

disease progression was the fact that Cx43 protects against mammary tumor cell metastases 

to the lung. Confirmation that we were indeed assessing lung metastases and not 

serendipitous primary lung tumor formation was provided by positive identification of the 

tumors as being of mammary origin via the expression of mammaglobin. Given that it is 

known that not all mammary cell-derived tumors express mammaglobin (Yang and 

Nonaka, 2010), it is likely that we are even underestimating the number of tumors of 

mammary origin. Furthermore, it has previously been demonstrated that ErbB2-expressing 
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mice are known to be prone to mammary gland tumor metastases to the lung (Guy et al., 

1992). 

As Cx43 mutant mice exhibit hyperplasic glands without much evidence for the presence 

of solid tumors in the mammary gland, we were somewhat surprised to observe a greater 

prevalence of metastatic lesions in the lungs. Moreover, the fact that only one G60S-ErbB2 

mouse in the spontaneous experiment and less than 40% of the mutant mice in the DMBA 

experiment developed a palpable tumor but all mice showed metastatic lung tumors, 

suggests that lung seeding happened before a palpable tumor could be detected. Although 

not particularly common in the clinical setting, it has been reported that metastases can be 

found in the absence of a detectable primary tumor, or even 5–7 years before the detection 

of a primary tumor (Engel et al., 2003; van de Wouw et al., 2003). In a recent mouse 

mammary tumor study, tumor cells were found in both the lungs and bone marrow from 

two different mouse models before invasive tumor cells were ever detected in the 

mammary gland (Husemann et al., 2008). Interestingly, the authors observed that the 

basement membrane underlying hyperplasic cells within the mammary gland seemed 

disrupted suggesting that the myoepithelium and basement membrane may have in fact 

been functioning as a natural tumor suppressor, as suggested by the current study. 

However, we cannot rule out the possibility that undetected invasive tumor cells were 

present in the mammary gland of Cx43 mutant mice and it is these cells that are 

metastasizing to the lungs. Furthermore, it is important to note that the ‘soil’ where lung 

tumor metastases flourish is a Cx43-enriched environment (Nagata et al., 2009) and it is 

possible that the metastases thrive better in an environment where Cx43 function is 

reduced. Although it is hard to model a mechanism to support this conjecture, we can also 

not fully eliminate this possibility. 

Although connexins do not necessarily fulfill the definition of a metastasis suppressor, it 

is interesting to see that in our mouse model, Cx43 seems to share several characteristics 

with members of the metastasis suppressor family. Metastasis suppressor genes are defined 

as molecules that can inhibit metastasis while having little or no effect on primary tumor 

growth (Bodenstine and Welch, 2008). Since the discovery of Nm23 (non-metastatic clone 

23) in the late 1980s (Steeg et al., 1988), over 23 members of this new class of cancer-
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related genes have been identified to have a role at various steps of the metastasis process. 

Among them, expression of the breast cancer metastasis suppressor 1 (BRMS1) not only 

inhibits metastasis of MDA-MB-435 cells to the lungs and lymph nodes when injected in 

the tail vein of athymic mice, but it can also restore GJIC and increase Cx43 expression in 

vitro (Saunders et al., 2001), suggesting a link between those two molecules in preventing 

metastasis. 

In summary, this novel unifying model investigating the role of Cx43 in mammary gland 

tumorigenesis suggests that Cx43 in the myoepithelium minimally inhibits the initial stage 

of disease leading to mammary cell hyperplasia. However, Cx43 was found to be more 

potent at inhibiting the progression of tumorigenesis as defined by metastasis to the lung. 

Given that Cx43 is expressed extensively in the myoepithelial layer of the mammary gland, 

these results allow us to propose a working model where a full complement of Cx43 in the 

myoepithelium may serve to enhance the ‘barrier’ function of this cell layer inhibiting 

transformed luminal cells from invading the stroma during breast cancer progression. We 

propose that if the integrity of the myoepithelium is compromised by reduced levels of 

functional Cx43, tumor cells can more readily escape the confines of the primary site and 

metastasize to the lung. Although we cannot determine the transformation state of the cells 

that are metastasizing to the lungs, we suspect that within the heterogeneity of the 

hyperplasic tissue in the mammary gland some cells are fully transformed and are 

aggressive at metastasizing to the lung. However, this working model will need further 

consideration as we attempt to fully understand the role of Cx43 and myoepithelial cells in 

breast cancer progression. 

Taken together, the findings of our study suggest that a molecular mechanism encrypted 

into the myoepithelium is protective against breast cancer progression. As most breast 

cancer related deaths are linked to metastasis, understanding the mechanisms of how Cx43 

contributes to this process is critical in order to determine whether connexins are potential 

targets for therapeutic intervention. 

http://www.nature.com/onc/journal/v30/n14/full/onc2010551a.html#bib39
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