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Abstract 

The expression of insulin receptor (IR) in β-cells suggests an autocrine role for insulin 

signalling in β-cell function and regulation. Studies have demonstrated that β-cell Ir 

knockout (βIrKO) mice develop age-dependent glucose intolerance. We investigated the 

temporal role of β-cell IR signaling in pre- and postnatal islet development and function, 

and under high-fat diet stress, using a tamoxifen-inducible Cre-recombinase Ir knockout 

mouse model. 

Prenatal βIrKO mice exhibited increased mean islet area, β-cell area, and islet area 

percentage. Additionally, there was upregulation of insulin-like growth factor-2 levels, 

increased Akt activity, and increased proliferation in islets. Postnatally-induced βIrKO 

mice did not exhibit impaired glucose tolerance at 4, 8, and 20 weeks post-tamoxifen. 

Similarly, no differences were observed between groups on high-fat diet. Results suggest 

that while loss of fetal β-cell IR causes an islet growth response through alternate 

pathways, postnatal β-cell IR may not play a pivotal role for adult β-cell function. 
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Chapter 1 - Introduction 

1.1 Significance of study2 

Pancreatic development is a complex process that requires temporal regulation of 

both transcription factor expression and intricate signalling pathways to generate 

physiologically functional mature adult islets. The β-cell insulin receptor (IR) has been 

previously shown to influence islet survival and function through autocrine insulin 

signalling in postnatal life. However, the temporal importance of β-cell insulin receptor 

signalling on the islet morphology, expression of transcription factors, and metabolic 

proteins necessary for β-cell maturation, proliferation, and survival has yet to be 

sufficiently investigated. In addition, the knowledge of the physiological function of 

insulin signalling during fetal β-cell embryogenesis is crucial for understanding abnormal 

islet development and maturation in utero. This thesis demonstrates that the intracellular 

mechanisms of insulin receptor-mediated signalling that regulate β-cell development, 

survival, and function vary during different stages of life and during diabetes progression. 

These results will contribute to improving long-term success of current cell-based 

therapies for diabetes. 

1.2 The pancreas and islet of Langerhans3 

 The pancreas is an organ that contributes to digestion and glucose regulation, and 

consists of both exocrine and endocrine compartments. In the exocrine tissue (~98% of 

the pancreas), acinar cells secrete digestive enzymes through specialized duct cells into 

the duodenum. The endocrine compartment (~2% of the pancreas) is composed of 

functional clusters of cells known as the islets of Langerhans, which contain multiple cell 

types that secrete distinct hormones. Murine islets are comprised of predominantly 

insulin-secreting β-cells (~80%) that form the central core and are surrounded by 

glucagon-secreting α-cells (~10%), while the remaining endocrine cell types are 

pancreatic polypeptide secreting γ-cells, somatostatin-secreting δ-cells, and ghrelin-

secreting ε-cells. Out of these endocrine cells, α- and β-cells have important opposing 



 

2 

 

physiological effects on blood glucose homeostasis. In response to sensing 

hypoglycemia, α-cells secrete glucagon that then promotes the liver to facilitate 

glycogenolysis and gluconeogenesis, leading to an increase in blood glucose 

concentrations. In contrast, high blood glucose levels stimulate β-cells to produce and 

release insulin, which stimulates glucose uptake from the bloodstream into skeletal 

muscle, liver, and adipose tissues for energy storage. Therefore, proper development of 

the pancreas, specifically the β-cells, is critical in meeting the dynamic metabolic demand 

under both physiological and pathological conditions (Montanya et al. 2000). 

1.3 Pancreas development & β-cell formation4 

 The murine pancreas undergoes three different transition stages of pancreatic 

development, where the pancreas starts to form from the endoderm at embryonic day 8.5 

(e8.5, where e0.5 is defined as the day of observing vaginal plug in the pregnant female). 

During the primary transition (e9.5-e12.5), regions of endodermal gut tube express the 

required transcription factors needed for pancreatic development, pancreatic duodenal 

homeobox 1 (Pdx-1) and pancreas transcription factor 1a (Ptf1a), and form the ventral 

and dorsal buds of the pancreas (Offield et al. 1996, Kawaguchi et al. 2002, Gittes 2008). 

During this time, the first wave of endocrine differentiation begins and is critically 

dependent on the expression of the transcription factor neurogenin 3 (Ngn3), which is 

activated after Notch activity is downregulated, and the subsequent activation of NK 

homeobox 6.1 (Nkx6.1). However, the insulin-positive β-cells that emerge early in the 

development within endocrine clusters do not contribute to the postnatal mature islets 

(Pan et al. 2011, Gunasekaran et al. 2012). Throughout the secondary transition (e12.5-

e18), the primitive ventral and dorsal pancreatic buds rotate and fuse to form a single 

organ, and the cellular architecture changes dramatically in the pancreas. The pancreatic 

progenitor cells adopt either 'tip' or 'trunk' identity. The cells in the 'tip' region are fated to 

become acinar cells while the 'trunk' region can differentiate into either ducts or 

endocrine cells. There is rapid differentiation and branching of acinar and duct cells to 

form a complex network. Similarly, there is extensive neogenesis and expansion of 

endocrine cells, especially the β-cells, accompanied by the expressions of their essential 
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transcription factors. These expanding islet cells form from or adjacent to pancreatic 

ducts, suggesting that precursor cells migrate out of the ductal region to form islet 

clusters (Nielsen et al. 1999, Al-Hasani et al. 2013). Unlike primitive endocrine cells 

from primary transition, β-cells from secondary transition form mature, functional islets 

and serve as the primary source for β-cell replication during late gestation and in adult 

mice (Gunasekaran et al. 2012). Lastly, the third transition spans from e18 to 3 weeks 

after birth, where the endocrine cells undergo high levels of neogenesis, replication, and 

apoptosis, indicating islet expansion, remodelling, and organization in the developing 

endocrine pancreas (Kaung 1994, Scaglia et al. 1997). By the end of the third transition, 

β-cell neogenesis is rapidly diminished and replaced by β-cell replication, the primary 

mechanism responsible for postnatal β-cell formation (Dor et al. 2004). In order to 

maintain glucose homeostasis in adult mice, the β-cell mass dynamically changes through 

a balance of β-cell replication and apoptosis (Montanya et al. 2000). However, impaired 

prenatal development and maturation of islets may lead to the formation of β-cells that 

are inadequate for managing metabolic stress in adult life. 

1.4 Islet vascularization5 

 Although the endocrine compartment only comprises ~2% of the mature pancreas 

volume, it receives ~10% of the total pancreatic blood flow from the celiac and superior 

mesenteric arteries. The islets are highly vascularized, with a dense network of capillaries 

that are more fenestrated than the exocrine tissue (Jansson et al. 1983, Henderson et al. 

1985, Jansson et al. 2002). This allows for the rapid and efficient exchange of nutrients 

and hormones between endocrine cells and the bloodstream. Pancreatic β-cells express 

high levels of vascular endothelial growth factor-a (Vegf-a), which stimulates the 

recruitment of endothelial cells, promotes the formation of blood vessels during 

embryonic pancreas development, and maintains islet vasculature and integrity in 

postnatal life (Christofori et al. 1995, Brissova et al. 2006, Reinert et al. 2013). 

Furthermore, vascular growth is closely associated with β-cell proliferation (Johansson et 

al. 2006) as seen in mice with short-term (~2 weeks) β-cell-specific Vegf-a 

overexpression that resulted in islet hypervascularization simultaneous with increased β-
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cell proliferation (De Leu et al. 2014). In contrast, long-term (~2 month) overexpression 

of Vegf-a in β-cells resulted in disorganized islets with hypervascularization, increased 

inflammation, impaired insulin secretion, and decreased β-cell mass with age (Agudo et 

al. 2012). These studies suggest that Vegf-a signalling plays an important role in islet 

vasculature, β-cell survival, and function in a time-dependent manner. 

1.5 Overview of diabetes mellitus6 

 Glucose homeostasis relies on the fine balance between production by the liver 

and utilization by insulin-dependent tissues such as fat and muscle, as well as insulin-

independent tissues. Diabetes mellitus is a chronic metabolic disease characterized by a 

disruption in glucose homeostasis that can arise due to multiple dysfunctions in the 

insulin production and secretion pathway. The resulting hyperglycemia leads to a high 

insulin secretory demand, which further exacerbates β-cell function and accelerates β-cell 

death. While type 1 diabetes mellitus is characterized by a near absolute deficiency of β-

cells, the onset of type 2 diabetes mellitus is due to insufficient insulin production, islet 

hypervascularization, and progressive β-cell mass reduction. In both cases, β-cell 

dysfunction and failure are perceived as the main cause. 

Type 1 diabetics (~10% of the total diabetic population) suffer from persistent 

autoimmune destruction of the β-cells, and the pathological indicators typically begin to 

develop in children and young adults. Due to a loss of up to ~90% of β-cells, patients rely 

on perpetual exogenous injections of insulin to regulate their blood glucose levels. 

Alternatively, the Edmonton protocol is a standard cell-based therapy that involves 

isolation of islets from several cadaveric donors and transplantation into the hepatic 

portal vein of immunosuppressed patients, restoring endogenous insulin secretion and 

allowing these patients to become independent from exogenous insulin for as long as 5 

years (Shapiro 2012). However, islet transplantation is heavily limited by the availability 

of cadaveric donors and the therapeutic effectiveness of the current transplantation 

protocol. 
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Type 2 diabetes (~90% of the total diabetic population) is characterized by several 

pathological defects and typically manifests itself later in adult life. Genetic composition 

and environmental factors, especially obesity, have been closely linked to type 2 diabetes 

progression. Typically, insulin resistance in insulin-responsive peripheral tissue occurs, 

reducing the clearance of glucose from circulation and leading to multiple health 

problems that develop from hyperglycemia. The β-cell mass initially expands to 

compensate for this insulin resistance but the compensatory mechanism eventually fails, 

resulting in decreased β-cell mass and relative deterioration of insulin production and 

secretion (Kahn 1994). Furthermore, the chronic islet hypervascularization seen in type 2 

diabetics can result in islet fibrosis, inflammation, and ultimately contributes to β-cell 

death (Agudo et al. 2012). Type 2 diabetes can be managed by lifestyle improvements, 

insulin sensitizers, and if necessary, exogenous insulin. Although symptoms are well-

characterized, the causes for type 2 diabetes is multifactorial and complex, and some 

form of insulin resistance may involve the alteration in the insulin receptor itself, 

including decreased receptor levels and activation in the periphery tissues as well as in β-

cells (Taylor et al. 1990, Pessin et al. 2000, Folli et al. 2011). 

1.6 Insulin receptors7 

 The insulin receptor is a receptor tyrosine kinase that contains two extracellular 

regulatory α-subunits and two transmembrane catalytic β-subunits that are linked by 

disulfide bonds (Kahn 1993, Lee et al. 1994). IR exists as two isoforms, IR-A and IR-B, 

by alternative splicing of the exon 11 in the α-subunit. These isoforms show tissue-

specific expression - IR-A (exon 11-) is primarily expressed in fetal cells, with lower 

expression in metabolically active adult tissues, such as muscle, liver, and adipose 

(Frasca et al. 1999), whereas IR-B (exon 11+) is mainly expressed in liver and muscle 

tissues (Frasca et al. 1999, Nakae et al. 2001). Ligand binding to one of the IR α-subunits 

induces a conformational change that promotes β-subunits to bind ATP and 

autophosphorylate multiple tyrosine residues, leading to the phosphorylation of the 

insulin receptor substrate (IRS) proteins and activation of downstream signalling 

pathways. Consequently, any loss of tyrosine kinase activity is accompanied by a loss in 
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the ability of the receptor to signal (Kahn 1993). Interestingly, IR and insulin-like growth 

factor 1 receptor (IGF1R) have a high degree of structural homology and share similar 

downstream substrates, and compensatory upregulation of IGF1R in the absence of IR 

has been previously reported (Van Schravendijk et al. 1987, Assmann et al. 2009). 

1.7 Insulin receptor ligands8 

 In low concentrations, insulin binds to IR while insulin-like growth factor-1 

(IGF1) activates IGF1R; however, due to the homology between IR and IGF1R 

structures, insulin and IGF1 are able to bind to both receptors under higher ligand 

concentrations. In addition, insulin-like growth factor-2 (IGF2), which activates its 

corresponding receptor (IGF2R), has the ability to bind to both receptors with relatively 

high affinities (Figure 1.1)(Louvi et al. 1997, Nakae et al. 2001, Assmann et al. 2009). In 

rodents, IGF2 levels rapidly diminishes after birth, indicating its importance in prenatal 

development but not in postnatal life (Murphy et al. 1987). 
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Figure 1.1. Ligand signalling through the Insulin/IGF1 receptor family  

While insulin and IGF1 ligand bind to their own receptors with high affinity (solid arrows), they 

are able to signal through the cognate receptor with lower affinity (dashed arrows) under high 

concentrations. Alternatively, IGF2 has the ability to bind to both receptors with relatively high 

affinities. Insulin and IGF1 receptor share similar downstream signalling pathways that 

contribute to cell proliferation, survival, and glucose metabolism. 
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1.8 Insulin production and secretion9 

 The production of functional insulin involves multiple post-translational cleaving 

steps from preproinsulin (the precursor form) to mature insulin and its storage in 

secretory granules. The precise control of β-cell insulin secretion is essential to ensure 

regulated glucose homeostasis. Normally, an increase in blood glucose concentration 

stimulates insulin secretion by allowing the transport of free calcium into β-cells. This 

results in a biphasic insulin secretion response. The first phase (~10 min) corresponds to 

the exocytosis of prepared insulin-containing granules triggered by the initial Ca
2+

 influx. 

The second phase involves the prolonged slow release of insulin from granules mobilized 

from the reserve pool until euglycemia is achieved, as well as replenishment of insulin-

containing granules (Rosman et al. 2000). 

It is well established that insulin has a positive autocrine feedback on insulin production 

through IR activity (Leibiger et al. 1998, Leibiger et al. 2001). Interestingly, IR-A and 

IR-B isoforms show functionally different selective insulin signalling in pancreatic β-

cells. Insulin binding and activation of IR-A promotes insulin gene transcription, while 

the activation of IR-B leads to upregulation of the glucokinase expression in an autocrine 

feedback loop (Leibiger et al. 2001, Leibiger et al. 2008). However, the autocrine 

regulation of exogenous insulin on insulin secretion in β-cells is controversial. Using 5-

hydoxytryptamine (5-HT) secretion as a marker of exocytosis in β-cells, amperometric 

measurements of exocytosis from single, isolated human and mouse islets demonstrated 

increased insulin secretion in response to exogenous insulin treatment (Aspinwall et al. 

1999). In contrast, when C-peptide release rates were measured as an indicator of insulin 

secretion, exogenous insulin application had no stimulatory effect on endogenous insulin 

secretion in isolated perfused rat islets (Zawalich et al. 2002). Transcription factor levels 

in β-cells are also responsible for regulating insulin secretion. A reduction in Pdx-1 and 

Islet-1 has been linked to impaired glucose-stimulated insulin secretion in β-cells 

(Brissova et al. 2002, Gauthier et al. 2009, Ediger et al. 2014), while overexpression of 

MafA in neonatal rat islets enhanced insulin synthesis and secretion in response to 

glucose stimulation (Aguayo-Mazzucato et al. 2011).  
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1.9 Insulin receptor signalling pathways10 

 Upon insulin binding to IR, the two major signalling pathways that are activated 

are the phosphoinositide 3-kinase (PI3K)/Akt pathway and the Ras/Raf-1/mitogen-

activated protein kinase (MAPK) cascade. Insulin receptor signalling plays a mitotic and 

metabolic role in a wide variety of tissues. In most metabolically active tissues (muscle, 

liver, adipose), the primary function of insulin signalling is to activate PI3K, Akt, and 

P70S6K to stimulate protein synthesis, glycogen synthesis, and GLUT-4 translocation to 

the cell membrane for facilitating glucose clearance. However, IR signalling in these 

tissues contributes to mitogenesis to a lesser degree (Shymko et al. 1997). On the other 

hand, in addition to increasing metabolic activities such as insulin synthesis, IR signalling 

also plays an essential role in β-cell proliferation and survival (Johnson et al. 2006, 

Johnson et al. 2008, Alejandro et al. 2010). Mice lacking IR in β-cells, but not IGF1R, 

have increased apoptosis, decreased proliferation, and reduced β-cell mass, demonstrating 

the necessity of IR in β-cell survival (Johnson et al. 2008, Wang et al. 2013). In fact, 

overexpression of IR in in vitro β-cell cell lines led to enhanced β-cell proliferation and 

increased metabolic activities such as insulin production (Xu et al. 1998, Kim et al. 

2013). 

When examining downstream substrates, studies of in vitro insulinoma cells and 

transgenic mouse models overexpressing Akt have suggested that IR signalling promotes 

β-cell survival through the Akt pathway (Bernal-Mitzrachi et al. 2001). However, adult 

mice lacking β-cell Akt activity did not exhibit increased β-cell apoptosis and retained 

normal β-cell mass despite the presence of glucose intolerance due to defective insulin 

secretion (Bernal-Mizrachi et al. 2004). This result indicates the involvement of Akt-

independent signalling pathways on β-cell survival. Alternatively, the anti-apoptotic and 

pro-mitogenic effects of Raf-1/MAPK activities have been strongly implicated in β-cells. 

For instance, subjecting mouse islets to exogenous insulin rapidly activated Raf-1 

pathway and enhanced β-cell survival, while treatments with Raf-1 inhibitor resulted in 

increased β-cell death (Alejandro et al. 2010, Johnson et al. 2008). These studies 

emphasize on the essential roles of Akt and Raf-1 signalling pathways on β-cell 
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regulation, but a full understanding of how these pathways control β-cell function is not 

yet clear. 

1.10 Insulin receptor in different tissues11 

 IR is expressed in a wide range of tissues and its activation by insulin typically 

promotes the uptake of glucose from the blood into skeletal muscle, liver, and adipose 

tissues. Global heterozygous deletion of Ir in mice displayed normal phenotype and 

physiological glucose homeostasis at 2 months of age, demonstrating that expression of 

one Ir allele is sufficient for maintaining euglycemia. Ubiquitous Ir knockout mice, 

however, displayed increasing postnatal growth retardation, hyperglycemia, 

hyperinsulinemia, and died within one week after birth due to diabetic ketoacidosis (Joshi 

et al. 1996, Folli et al. 2011). Similarly, insulin knockout mice also died shortly after 

birth due to severe diabetic ketoacidosis and exhibited slight growth retardation (Duvillie 

1997). Surprisingly, null Ir mice were indistinguishable at birth from littermates, 

suggesting that IR is not required for normal embryonic development (Joshi et al. 1996, 

Wicksteed et al. 2010). Igf1, Igf2, and Igf1r were also investigated in a global knockout 

manner and were determined to be necessary for proper embryonic development in mice 

(DeChiara et al. 1990, Liu et al. 1993).  

Since the disruption of insulin signalling in different tissues contributes to type 2 diabetes 

pathogenesis, several site-specific Ir knockout models have been examined in mice 

(Kitamura et al. 2003). Skeletal muscle is the primary site of insulin-dependent glucose 

clearance from blood, and insulin resistance in skeletal muscle is an essential part of the 

disease progression in type 2 diabetes (Cline et al. 1999). Notably, skeletal muscle-

specific Ir knockout mice led to impaired insulin signaling without systemic insulin 

resistance, indicating the presence of compensatory mechanisms through the IGF1R and 

increased uptake of glucose by other tissues (Shefi-Friedman et al. 2001). Similarly, 

adipose-specific Ir knockout produced selective insulin resistance in adipose tissue that 

did not affect whole body glucose metabolism (Guerra et al. 2001, Blueher et al. 2002). 

The liver plays a vital role in physiological glucose homeostasis as it is subjected to 

intricate regulation by insulin, glucagon, and many other hormones. Consequently, liver-
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specific Ir knockout mice exhibited hyperinsulinemia, severe insulin resistance, and 

glucose intolerance, suggesting the importance of liver IR on glucose homeostasis and 

facilitation of insulin clearance (Michael et al. 2000).  

1.11 Insulin receptor and β-cells12 

 Type 2 diabetes disease progression is closely associated with β-cell failure, 

particularly the impairment of glucose-stimulated insulin secretion. To elucidate the role 

of insulin signalling in mature β-cells, several β-cell-specific Ir knockout studies using 

the rat insulin promoter have been conducted in mice. These mice displayed progressive 

age-dependent glucose impairment starting as early as 5 weeks of age concomitant with 

islet mass reduction, suggesting its importance in maintaining β-cell survival and 

function (Kulkarni et al. 1999, Ueki et al. 2006, Okada et al. 2007). Alternatively, mice 

with β-cell-specific deletion of the Igf1r exhibited glucose intolerance likely due to the 

defective glucose stimulated insulin secretion but their β-cell mass, islet size, and 

pancreatic insulin content was unaltered (Xuan et al. 2002, Kulkarni et al. 2002). Taken 

together, it seems like β-cell IR, but not IGF1R, is required for postnatal islet survival. 

Importantly, both β-cell-specific Ir and Igf1r knockout mice are phenotypically normal at 

birth and show no alterations to prenatal pancreatic development (Kulkarni et al. 1999, 

Kulkarni et al. 2002, Okada et al. 2007). Therefore, it appears that β-cell IR and IGF1R 

play a minor role in pancreatic organogenesis, but are necessary for adaptive islet 

function in response to increasing metabolic stress during postnatal life (Smith et al. 

1991). Due to the importance of IR in β-cell health and functionality along with the 

possibility of compensatory response from IGF1R, IGF1 and IGF2, an in-depth analysis 

of β-cell IR functionality during islet development at the molecular morphological level 

needs to be implemented. 

1.12 High-fat diet, β-cell insulin resistance and dysfunction13 

 Genetic factors and obesity are often associated with the progression of type 2 

diabetes. In various strains of diabetic mouse models, an increase in dietary fat content 

has been shown to generate obese mice that develop diabetes. The C57BL/6J mouse (also 
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known as B6) is a widely used type 2 diabetes model as it spontaneously develops 

obesity, peripheral insulin resistance, hyperinsulinemia, and hyperglycemia when 

restricted to high-fat diet, and often remain physically lean and maintain normal 

phenotypes under low-fat chow. Generally, B6 mice develop diabetic symptoms as early 

as 1 month after the introduction of high-fat diet (Surwit et al. 1988, Collins et al. 2004, 

Okada et al. 2007). At the morphological level, increased β-cell proliferation causes islet 

compensatory growth after 14 weeks on high-fat diet. However, these mice exhibited 

impaired in vivo glucose tolerance and glucose-stimulated insulin secretion, indicating 

that islets are replicating in an attempt to compensate for increased metabolic demand 

and insulin resistance, but are insufficient or functionally defective and unable to 

maintain normal glucose tolerance (Roat et al. 2014). 

Few studies have investigated the role of β-cell insulin signalling in high-fat diet fed pre-

diabetic B6 mice. After 20 weeks of high-fat diet (with 55% fat content), wild-type, β-

cell-specific Ir knockout, and β-cell-specific Igf1r knockout mice all displayed obesity, 

hyperinsulinemia, and hyperglycemia. Out of all the experimental groups, β-cell-specific 

Ir knockout mice demonstrated the most severe hyperglycemia and glucose intolerance, 

and 30% died after 16 weeks on high-fat diet (Okada et al. 2007). In terms of pancreatic 

morphology, these mice failed to develop the islet compensatory growth response 

normally seen in wild-type and β-cell-specific Igf1r knockout groups on high-fat diet, 

indicating the importance of IR signalling in β-cell growth and survival in response to 

metabolic stress during postnatal life. In addition, nuclear Pdx-1 levels were reduced in 

these mice, suggesting impaired β-cell growth and function as well as defects in insulin 

production (Okada et al. 2007). Consistent with these findings, heterozygous insulin 

knockout B6 mice did not develop islet compensatory growth, hyperinsulinemia, or 

obesity under high-fat diet (with 58% fat content)(Mehran et al. 2012). Taken together, 

these studies highlight the necessity of insulin signalling in modulating islet proliferation 

responses in B6 mice on a high-fat diet, and suggest that differing degrees of insulin 

signalling affect the progression of diabetes.  
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1.13 Rationale, objectives, and hypothesis14 

 Appropriate pancreatic embryogenesis and remodeling is crucial for the 

development of dynamic β-cells that can adapt to changing metabolic demands. Despite 

its importance in β-cell function and survival, the molecular mechanisms involved in the 

IR signalling pathway, which affects transcription factor expression and proliferation, 

during different developmental periods have yet to be studied. We propose investigate the 

temporal role of the β-cell IR autocrine/paracrine signalling in fetal and postnatal islet 

maturation and function, as well as postnatal mice under high-fat diet conditions, by 

utilizing tamoxifen-inducible Cre recombinase under control of the mouse insulin 

promoter (MIP) to drive β-cell-specific Ir knockout (Wicksteed et al. 2010, Hayashi et al. 

2002, Liu et al. 2010, Tamarina et al. 2014). In contrast to previous studies, we chose to 

use MIP instead of RIP because MIP mice appear to lack the ectopic expression seen in 

the hypothalamus of RIP mice (Wicksteed et al. 2010, Tamarina et al. 2014). Previous 

studies suggested normal pancreatic development at birth despite a lack of β-cell IR from 

conception, indicating the presence of network adaptation from other signalling pathways 

(Kulkarni et al. 1999, Okada et al. 2007, Ueki et al. 2006). This project investigates the 

in-depth characterization of islet morphology during fetal pancreatic development after a 

temporal β-cell Ir knockout induced at the secondary transition of pancreas development 

(endocrine differentiation and proliferation), and explores the consequential adaptive 

signalling from the homologous receptor IGF1R and its ligands, IGF1 and IGF2, that 

may contribute to proper pancreatic embryogenesis. In addition, previous β-cell-specific 

Ir knockout studies utilized a mouse model with β-cell-specific Ir knockout at 

conception, and as a result, these mice lack β-cell IR throughout pancreas embryogenesis. 

In contrast, this thesis focuses on the role of β-cell IR in the postnatal life by inducing β-

cell-specific Ir knockout 4 weeks after birth, allowing undisturbed pancreatic maturation 

and remodelling in third transition (Figure 1.2). Lastly, this thesis will utilize the 

postnally induced β-cell-specific Ir knockout mice subjected to high-fat diet to 

investigate the gene-dose dependent effect of Ir (wild-type, heterozygous, null) on islet 

proliferation and function during diabetes progression. 
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Objective 

To investigate the temporal role of the β-cell IR autocrine/paracrine signalling in fetal 

and postnatal islet formation and function, as well as during high-fat diet induced 

diabetes pathogenesis. 

Hypothesis 

1. The β-cell IR is required for normal islet formation and remodelling in prenatal life 

2. β-cell autocrine/paracrine insulin signalling is necessary for the maintenance of β-cell 

function and survival in postnatal life  

Specific Questions 

1. Does β-cell-specific Ir knockout affect islet formation during secondary transition? 

2. Could the β-cell-specific Ir knockout promote activity of homologous signalling 

pathways? 

3. Is the level of islet vascularization associated with islet growth during prenatal life? 

4. Do postnatally induced β-cell-specific knockout mice exhibit age-dependent glucose 

intolerance? 

5. Do postnatally induced β-cell-specific knockout mice exhibit glucose intolerance after 

high-fat diet stress? 
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Figure 1.2. A schematic of experimental β-cell Ir knockout time points with 

reference to important islet development events in rodents. 

In rodents, pancreatic development can be separated into 3 transitional phases starting 

around embryonic day 9.5 (e9.5). Generally, prenatal β-cell neogenesis persists 

throughout prenatal pancreatic formation and maturation, but diminishes after birth and is 

replaced by β-cell replication, which becomes the primary mechanism contributing to 

postnatal β-cell growth. For our fetal βIrKO studies, tamoxifen was administered (via 

intraperitoneal) into pregnant females at e13, and pups were subsequently dissected for 

pancreata collection at e19. For our postnatal βIrKO studies, β-cell Ir was knocked out 3-

4 weeks after birth. 
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Chapter 2 - Materials and Methods15 

2.1 Generation of β-cell-specific Ir knockout mice16 

B6.129S4(FVB)-Insr
tm1Khn

/J mice (IR
fl/fl

) with loxP sites flanking exon 4 of the Ir 

gene were obtained from The Jackson Laboratories (Bar Harbor, MA, USA; stock 

number: 006955). Transgenic Tg(Ins1-Cre/ERT)
1Lphi

 (MIPCreERT) mice with tamoxifen 

inducible Cre-recombinase expression under the control of the mouse insulin 1 promoter 

were obtained from Dr. Louis Philipson’s laboratory (University of Chicago, Chicago, IL 

, USA). To verify the mouse insulin 1 promoter-driven Cre recombinase expression in 

pancreatic islets, MIPCreERT mice were crossed with a B6.Cg-Gt(ROSA)26Sor
tm9(CAG-

tdTomato)Hze
/J reporter strain (stock number: 007909; The Jackson Laboratories). The 

transgenic mouse lines MIPCreERT and IR
fl/fl

 were crossed at our research facility 

(Victoria Research Laboratories, Victoria Hospital, London, ON, CA) to generate 

MIPCreERT
+/–

;IR
fl/+

 mice, which were subsequently mated with each other to generate 

experimental groups consisting of MIPCreERT
+
;IR

+/+
(control), MIPCreERT

–
;IR

fl/fl 

(control), MIPCreERT
+
;IR

fl/+
(heterozygous), and MIPCreERT

+
;IR

fl/fl 
(βIrKO) groups 

(Figure 2.1A). These genotypes were identified through the polymerase chain reaction 

(PCR) procedure described below. 

All mice were provided ad libitum access to both food and water. All animal use 

protocols were approved by the Animal Use Subcommittee at Western University in 

accordance with the Canadian Council of Animal Care. 
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Figure 2.1. Generation of experimental mouse groups 

(A) The breeding schematic to generate experimental groups. By intercrossing 

MIPCreERT
+/–

:IR
fl/+

 mice, we produced experimental animals with the βIrKO genotype 

(MIPCreERT
+
:IR

fl/fl
, red) alongside control mice (MIPCreERT

+
:IR

+/+
 and MIPCreERT

–

:IR
fl/fl

, blue). (B) Genotypes of fetal mice were determined PCR of the Ir and 

MIPCreERT genes, followed by gel electrophoresis. Representative images are shown. 
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2.2 Mouse genotyping17 

DNA was extracted from fetal (obtained at e19) or adult (obtained at p21) tail 

snips using 50 μL of base solution (25 mM NaOH; 0.2 mM EDTA) and placed on a heat 

block set at 95 ⁰C for 30 min followed by 1 hour cool down at room temperature. 

Subsequently, 50 μL of 40 mM Tris HCI (pH 5.5) was added to each sample for 

neutralization and centrifuged at 15616 x g for 1 min. Samples were subjected to PCR to 

determine the genotype for each mouse. Primers used for PCR of the IR
fl/fl

 mutation were 

oIMR6765 (5’-GATGTGCACCCCATGTCTG-3’) and oIMR6766 (5’-

CTGAATAGCTGAGACCACAG-3’). Alternatively, primers for MIP (5’-

CCTGGCGATCCCTGAACATGTCCT-3’) and CreERT (5’-

TGGACTATAAAGCTGGTGGGCAT-3’) detection were used. PCR products were 

separated by an ethidium bromide-containing 2% agarose gel for ~90 min at 80 V. Gels 

were imaged under UV light with Gene Genius Bio Imaging System (SynGene; 

Frederick, MD, USA) and GeneSnap 7.12 software (SynGene; Cambridge, England). For 

Ir PCR products, three genotype groups were determined based on the following 

fragment sizes: 313bp (IR
fl/fl

), 279bp (IR
+/+

), or 313bp and 279bp (IR
fl/+

). In addition, the 

presence of a 268bp fragment in MIPCreERT PCR products marked the presence of 

MIPCreERT in mice (Figure 2.1B). 

2.3 Tamoxifen preparation and administration18 

Tamoxifen (Sigma-Aldrich, St. Louis, MO, USA) was prepared by dissolving in 

100% ethanol at 300 mg/mL, and preparation of injectable tamoxifen was done by 

heating the 300 mg/mL solution to 60 ⁰C and diluting to 30 mg/mL in corn oil (Sigma-

Aldrich, St. Louis, MO, USA). 

For fetal studies, a single dose of tamoxifen at 6 mg per 40g of body weight (Hayashi et 

al. 2002) was administered by intraperitoneal (i.p.) injection to pregnant female mice at 

e13 (Figure 1.3). On e19, pregnant mice were euthanized by CO2 inhalation. Each fetus 

was immediately dissected to obtain tail tissue for genotyping, whereas pancreatic tissue 

was processed for protein extraction and morphological analyses.  
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For postnatal studies, the β-cell-specific Ir knockout was induced in 3-4 week old mice 

via 3 consecutive days of i.p. tamoxifen injection at 4 mg per 20g of body weight (Figure 

1.3). The same dosage of tamoxifen was injected into age-matched control littermates. 

Post injection, mice were fed normal chow containing 10% kcal fat up to 24 weeks of 

age. 

For the high-fat diet study, βIrKO, heterozygous, and control mice at 6 weeks of age (2 

weeks after i.p. tamoxifen injection) were fed with high-fat diet containing 60% kcal fat 

(D12492, Research Diets, New Brunswick, NJ, USA) for 6 weeks. 

2.4 Postnatal glucose metabolic studies19 

 Since our preliminary results demonstrated that all postnatal female groups 

exhibited near identical phenotype and glucose metabolism, females were excluded from 

further adult studies. Body weight, fasting blood glucose, and intraperitoneal glucose 

tolerance tests (IPGTT) were performed at 4, 8, and 20 weeks post-tamoxifen injection 

(at 8, 12, 24 weeks of age, respectively) in βIrKO, heterozygous, and control mice on 

normal chow diet. In addition, glucose-stimulated insulin secretion (GSIS) was 

performed at 8 weeks post-tamoxifen injection, and intraperitoneal insulin tolerance test 

(IPITT) was performed at 20 weeks post-tamoxifen injection. All metabolic experiments 

were also completed in experimental groups treated with 6 weeks of high-fat diet at 8 

weeks post-tamoxifen injection, a time-point matched to the normal chow diet groups. 

For the IPGTT, following a 16 hour fast, glucose [D-(+)-glucose; dextrose; Sigma-

Aldrich Canada Co., Oakville, ON, CA] was administered through i.p. at a dosage of 2 

mg/g of body weight, and blood glucose levels were examined at 0, 15, 30, 60, 90 and 

120 minutes after injection. Area under the curve (AUC) was used to quantify glucose 

responsiveness and data are expressed as units of ([mmol/l] x min) (Allison et al. 1995, 

Krishnamurthy et al. 2007). 

For the IPITT, following a 4 hour fast, human insulin (Humalin, Eli Lilly, Toronto, 

Ontario, Canada) at 1 U/kg of body weight was injected intraperitoneally, and blood 
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glucose levels were measured at 0, 15, 30, 60 and 120 minutes (Krishnamurthy et al. 

2007, Feng et al. 2013). 

For the GSIS, following a 16 hour fast, blood samples (~50l) were collected before (0 

minutes) and after glucose loading at 5 and 35 minutes via the tail vein. Each sample was 

centrifuged and supernatant was stored in -20 
o
C. Insulin secretion levels were assessed 

by an ultrasensitive enzyme-linked immunosorbent assay (ELISA) (Krishnamurthy et al. 

2007, Feng et al. 2013). 

2.5 Pancreatic islet isolation20 

 Islet isolation was performed at 20 weeks post-tamoxifen injection (24 weeks of 

age) under normal chow diet groups and at 8 weeks post-tamoxifen injection (12 weeks 

of age) under high-fat diet groups. In brief, the bile duct was sutured closed to prevent 

injecting into the duodenum, and the pancreas was infused with 3 mL of collagenase V (1 

mg/mL, Sigma) through the common bile duct. The inflated pancreas was excised and 

placed into a 15 mL BD Falcon tube with 3 mL of cold dissociation buffer (Hank's 

balanced salt solution with HEPES, 0.6% g/mL), then incubated in a 37 
o
C water bath for 

30 minutes. Dissociated pancreatic fragments were washed with HBSS washing buffer to 

stop enzyme activity. The islet purification was completed using a Ficoll gradient with 

purity at ~80%, as described previously (Wang et al. 2004), and processed for protein 

extraction. 

2.6 Insulin enzyme-linked immunosorbent assay (ELISA)21 

 Islet insulin content was measured using a mouse ultrasensitive insulin ELISA 

kit (ALPCO, Salem, NH, USA) with a sensitivity of 0.15 ng/mL, according to the 

manufacturer’s instructions. Insulin release was expressed as ng/mL. Insulin content at 

each time point was measured using a Multiskan Spectrum microplate 

spectrophotometer (Thermo Electron Corp., Waltham, MA, USA). 
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2.7 Tissue processing, immunohistology, and TUNEL22 

Dissected fetal or adult pancreata were fixed in 4% paraformaldehyde (PFA) 

(Fisher Scientific Company; Ottawa, ON, Canada) at 4 °C overnight. Tissues were then 

washed with 1x PBS and processed through a series of increasing ethanol concentrations, 

toluene, and wax using an automatic tissue embedding machine (Shandon CitadelTM 

Tissue Processor, Citadel 1000, Thermo Electron Corporation; Waltham, MA, USA). 

Subsequently, embedded pancreatic tissue blocks were cut into 2-4 µm thick sections 

with microtome (Leica RM2245, Leica Biosystems). 

After overnight incubation at 37 °C, tissue sections were rehydrated through a series of 

xylene washes followed by decreasing ethanol concentrations (100% to 70%). For the 

staining of nuclear transcription factors, sections were pretreated with citrate antigen 

retrieval solution (pH 6.0) and heated in microwave for 20 min. Blocking solution with 

10% normal goat serum (Invitrogen; Frederick, MD, USA) was applied for 30 min at 

room temperature to block non-specific antibody binding. Immunofluorescence staining 

was performed with appropriately diluted primary antibodies (Table 1) incubated 

overnight at 4 °C. Afterwards, diluted (1:50) fluorescently-labelled secondary antibodies 

conjugated with either fluorescein isothiocyanate (FITC) or tetramethyl rhodamine 

isothiocyanate (TRITC)(Jackson Immunoresearch Laboratories; West Grove, PA, USA) 

that was reactive to the selected primary antibody were applied (Table 1). Cell nuclei 

were briefly counterstained with diluted (1:1000) 4'-6'-diamidino-2-phenylindole (DAPI) 

(Sigma-Aldrich, St. Louis, MO, USA). Cover slips were secured to slides and stored at -

20 °C in the dark. Either primary or secondary antibody was excluded from staining for 

negative controls.  

To examine islet IGF1, IGF2, and MafA levels, immunohistochemical staining was used 

with the streptavidin-biotin horseradish peroxidase complex and developed with 

aminoethyl carbazole substrate kit (Invitrogen, Burlington, ON, Canada). 

Immunohistochemical sections were counterstained with hematoxylin. 
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Apoptotic β-cells were identified using the terminal deoxynucleotidyl transferase dUTP 

nick end-labeling (TUNEL) assay. Pancreatic sections were pretreated in 20 μg/mL 

proteinase K for 10 min at room temperature. TUNEL staining was carried out with 1:10 

dilution of enzyme solution in label solution of the In Situ Cell Death Detection Kit 

(Roche Applied Science, Quebec City, QC, Canada). 
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Table 1: List of Antibodies used for Immunostaining and Western-Blot Analyses 

Primary Antibodies  Dilution Company 

Anti-Akt Rabbit polyclonal 1:3000
*
 Cell Signaling (Temecula, CA, USA) 

Anti-Calnexin Mouse monoclonal 1:1500
*
 BD Biosciences (Missasauga, ON, 

CA) 

Anti-Caspase 3 Rabbit polyclonal 1:1000
*
 Cell Signaling (Temecula, CA, USA) 

Anti-cleaved Caspase-3 

(Asp175) 

Rabbit polyclonal 1:200 / 

1:1000
*
 

Cell Signaling (Temecula, CA, USA) 

Anti-GAPDH Rabbit polyclonal 1:2000
*
 Santa Cruz Biotechnology (Santa 

Cruz, CA, USA) 

Anti-Glucagon Rabbit polyclonal 1:50 Santa Cruz Biotechnology (Santa 

Cruz, CA, USA) 

Anti-Glut-2 Rabbit Polyclonal 1:100 Chemicon (Temecula, CA, USA) 

Anti-IGF1 Rabbit polyclonal 1:200 Abcam (Cambridge, MA, USA) 

Anti-IGF2 Rabbit polyclonal 1:200 / 

1:1000
*
 

Abcam (Cambridge, MA, USA) 

Anti-Insulin Guinea pig 

polyclonal 

1:50 / 

1:1000
*
 

Zymed (San Francisco, CA, USA) 

Anti-Insulin Receptor Mouse monoclonal 1:200 / 

1:1000
*
 

Millipore (Temecula, CA, USA) 

Anti-Islet-1 Mouse monoclonal 1:100 DSHB (University of Iowa, Iowa 

City, IA, USA) 

Anti-Ki67 Rabbit polyclonal 1:100 Abcam (Cambridge, MA, USA) 

Anti-MafA Rabbit polyclonal 1:100 Bethyl Laboratory (Montgomery, 

TX, USA) 

Anti-Nkx6.1 Mouse monoclonal 1:100 DSHB (University of Iowa, Iowa 

City, IA, USA) 

Anti-p53 Mouse monoclonal 1:2000
*
 Cell Signaling (Temecula, CA, USA) 

Anti-pan-Cytokeratin Mouse monoclonal 1:50 Santa Cruz Biotechnology (Santa 

Cruz, CA, USA) 
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Anti-Pdx-1 

 

Rabbit polyclonal 

 

1:800 

 

Dr. Wright (University of 

Vanderbilt, Nashville, TN, USA) 

Anti-PECAM-1 Rabbit polyclonal 1:50 Santa Cruz Biotechnology (Santa 

Cruz, CA, USA) 

Anti-phospho-Akt 

(Ser473) 

Mouse monoclonal 1:2000
*
 Cell Signaling (Temecula, CA, USA) 

Anti-phospho-p53 

(Ser15) 

Rabbit polyclonal 1:1000
*
 Cell Signaling (Temecula, CA, USA) 

Anti-Vegf-a Rabbit polyclonal 1:100 / 

1:1000
*
 

Abcam (Cambridge, MA, USA) 

Anti-β-actin Mouse monoclonal 1:5000
*
 Sigma-Aldrich (St. Louis, MO, 

USA) 

Secondary Antibodies    

Horseradish peroxidase-

linked secondary 

antibodies 

Broad Spectrum 1:1 (no 

dilution) 

Invitrogen (Burlington, ON, CA) 

Anti-mouse secondary 

antibody 

Goat Polyclonal 1:50 JRL (West Grove, PA, USA) 

Anti-rabbit secondary 

antibody 

Goat Polyclonal 1:50 JRL (West Grove, PA, USA) 

    

 

*
 dilution factor applied to western blot analysis. DSHB, Developmental Studies 

Hybridoma Bank; JRL, Jaskcon Immunoresearch Laboratories. 
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2.8 Morphometric analysis23 

Images of stained tissue sections were obtained and islet morphologies were 

blindly analyzed with Image-Pro Plus software (MediaCybernetics; Rockville, MD, 

USA). An islet was defined as a dense cell cluster containing at least 3 insulin
+
 cells. Islet 

number (density) was calculated by total number of islets divided by the total area of the 

pancreas section. For islet size distribution, every individual islet size was measured and 

grouped into different size classes, and expressed as a percentage of the total number of 

islet per section. To quantify total islet, α- (glucagon
+
) and β-cell (insulin

+
) area, every 

islet in sections from all groups were all manually traced and measured with a minimum 

of four pancreata per age group per experimental group, then α- and β-cell masses were 

calculated using previously described methods (Wang et al. 1994). In brief, β-cell mass 

(mg) = (β-cell area * pancreas mass)/pancreas area.  

The levels of transcription factors (Pdx-1, Nkx6.1, Islet-1, MafA) localized in β-cells 

were determined by double immunofluorescence staining and quantified using the 

manual cell counter function in the Image-Pro Plus software. Insulin
+
 cells positively 

stained for transcription factors are normalized to the total number of insulin
+ 

cells per 

islet and expressed as a percentage. The percentage of Ki67 localized in β-cell nuclei was 

determined from at least 12 random islets per pancreatic section, where a minimum of 

five pancreata per experimental group was analysed. 

Islet capillary area was imaged with anti-mouse platelet endothelial cell adhesion 

molecule (PECAM-1) staining, then manually traced for every islet per section. Islet 

capillary density, capillary area per islet, and average islet capillary size was measured to 

determine the proportion of vessels present in the islet area. Islet capillary density was 

calculated by total number of capillary divided by total islet area. Capillary area per islet 

is expressed as a ratio of the total islet capillary area to the islet area. Average islet 

capillary size was determined by dividing the sum of individual islet capillary area by the 

total number of islet capillaries present in each section. A minimum of five pancreata per 

experimental group was analysed. 
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Pan-cytokeratin (pan-CK) staining was performed to demonstrate the presence of 

epithelial ducts cells within or adjacent to pancreatic islet clusters. The number of pan-

CK
+
 cells co-localized with Pdx-1 were expressed as a percentage of total number of pan-

CK
+
 cells per section area. A minimum of five pancreata per experimental group was 

analysed. 

2.9 Protein extraction and western blot analyses24 

 Fetal pancreata and isolated islets from postnatal groups were sonicated in 

Nonidet-P40 lysis buffer (Sigma-Aldrich; St Louis, MO, USA) and placed on ice for 30 

min. Samples were centrifuged at 15871 x g for 20 min at 4 °C, and supernatant was 

subsequently collected and stored in -80 °C freezer for protein assay and western blot 

analysis. Protein concentrations were measured with the Bradford dye protein assay (Bio-

Rad Laboratories; Missisauga, ON, Canada). The protein assay standards were prepared 

from bovine serum albumin (BSA) at increasing concentrations of 0, 0.05, 0.1, 0.2, 0.3, 

0.4, and 0.5 mg/mL. 10 μL of each standard and 1 μL of sample protein solution was 

loaded into micro titer plate in duplicate and mixed with colorimetric dye. Following 20 

min incubation in room temperature on a shaker, assay reading was performed at 595 nm 

with Multiskan spectrum spectrophotometer (Thermo Scientific). 

Equal amounts of protein lysate were prepared (10-20 μg) for each western blot, and 

separated by either 5, 7.5, or 10% sodium dodecyl sulphate–polyacrylamide gel 

electrophoresis (SDS-PAGE). A constant voltage of 40V initially separated samples until 

migration through the stacking gel was complete, then was increased to 80V until the dye 

flowed through the bottom. Protein samples were then wet transferred to a nitrocellulose 

membrane (Bio-Rad Laboratories; Mississauga, ON, Canada) with transfer buffer 

containing glycine (192 mM), Tris (25 mM), and methanol (20 % v/v), and transferred at 

a constant current of 250 mA for 2 hours in an ice bucket. Membranes were briefly 

stained with Ponceau S stain to confirm proper protein transfer. After washing in Tris 

buffered-saline containing 0.1 % Tween-20 (TBST), membranes were incubated in 5% 

non-fat dry milk with TBST at room temperature for 1-2 hours. Membranes were then 

incubated with appropriately diluted primary antibodies overnight at 4 °C or 1 hour at 
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room temperature (Table 1), washed with TBST, and incubated in secondary antibody at 

room temperature for 1 hour. Membranes were washed in TBST after secondary antibody 

and proteins were visualized with ECL
TM

-Plus Western Blot detecting reagents 

(PerkinElmer; Waltham, MA, USA), and imaged with a Versadoc Imaging System (Bio-

Rad Laboratories; Mississauga, ON, Canada) using Quantity One software (Bio-Rad 

Laboratories; Missisauga, ON, Canada). Densitometric analyses of images were 

completed with Image Lab 3.0 software (Bio-Rad Laboratories; Missisauga, ON, 

Canada) and data were normalized to appropriate loading controls.  

2.10 Statistical analysis25 

Data is presented as means ± SEM. Statistical analyses were performed using 

either one-way ANOVA and Bonferroni’s multiple comparison post hoc tests or 

Student’s unpaired t-test with GraphPad Prism 6 (GraphPad Software; La Jolla, CA, 

USA). Differences in results were considered statistically significant when p < 0.05.  
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Chapter 3 - Results26 

3.1 Verification of β-cell-specific Ir knockout in fetal βIrKO 

mice27 

 We first tested the β-cell tissue specificity of the MIP expression by crossing 

MIPCre mice with the B6.Cg-Gt(ROSA)26Sor
tm9(CAG-tdTomato)Hze

/J reporter strain, which 

expresses the red fluorescence protein (dTomato) after breeding with MIPCre mice. The 

Cre recombinase expression in tissue-specific MIPCre mice will excise the LoxP-stop-

LoxP signal, which is present 5' to the dTomato, leading to activation and expression of 

the dTomato reporter as red fluorescence observed under a fluorescence microscope. In 

contrast to MIPCre
–
 control mice, MIPCre

+
 mouse pancreatic islets expressed red 

fluorescence in freshly isolated islets (Figure 3.1A). 

To verify the β-cell Ir knockout in the fetal pancreas, western blot analysis was 

performed on fetal pancreata collected at e19. A significant knockdown of IR protein 

levels in βIrKO pancreata was observed in comparison to control groups (Figure 3.1B). 
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Figure 3.1. Confirmation of β-cell specific Ir knockout 

(A) dTomato (red) reporter gene is expressed only when Cre recombinase (MIPCre
+
) 

excises the stop codon upstream of the reporter gene. While no fluorescence was detected 

in brain or other tissues, the presence of red fluorescence in β-cells confirms the 

specificity of MIP-driven Cre recombinase expression in pancreatic β-cells. (B) Western 

blot analysis demonstrated a significant reduction of IR protein levels in fetal βIrKO 

pancreata relative to controls (n = 3-4). Representative blotting image is shown. White 

bar, control group; black bar, βIrKO group. Data are expressed as means ± SEM. *p < 

0.05.  
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3.2 Fetal βIrKO mice exhibit a hyperplastic islet growth 

response28 

   When fetal pups were dissected at e19, no significant differences in body weight 

and blood glucose levels were observed between βIrKO and control groups. In order to 

unravel the role of β-cell IR activity during fetal pancreatic development, we performed 

immunofluorescence staining to characterize β-cells and overall islet morphology 

(Figure 3.2A). Although not statistically significant, morphometric analyses suggest an 

increased islet density (islet number/mm
2
) in fetal βIrKO pancreata (Figure 3.2B). In 

βIrKO mice, the percent of islet area (percentage of total islet/ total pancreas area; Figure 

3.2C), mean islet area (μm
2
) (Figure 3.2D), and percent β-cell area (percentage of total 

insulin
+
/ total pancreas area; Figure 3.2E) were significantly increased. Alternatively, α-

cell area (percentage of total glucagon
+
/ total pancreas area) showed no change in βIrKO 

compared to control pancreata (Figure 3.2F). 

To further characterize fetal islet morphology, we evaluated various size distributions of 

islets in control and βIrKO pancreata. We observed that βIrKO
 

pancreata had a 

significantly decreased number of small islets (< 1000 μm
2
) and a significantly increased 

number of large islets (> 10000 μm
2
) compared to controls (Figure 3.2G), indicating 

relative hyperplastic growth of the islets in βIrKO pancreata. Thus, it appears that 

reduction of β-cell-specific IR promotes islet growth through expansion of the β-cells. 

 

 

 



 

32 

 

 



 

33 

 

 

 

 

 

 

 

 

Figure 3.2. Islet growth in fetal βIrKO pancreata  

(A) Representative immunofluorescence image depicting the expansion of β-cells within 

fetal βIrKO pancreata compared to controls. Scale bar: 200 μm. Morphometric analysis 

of (B) number of islets per mm
2
, (C) percent islet area, (D) mean islet area, (E) percent β-

cell area, and (F) percent α-cell area relative to whole pancreas area. (G) Quantification 

of different islet sizes shows that βIrKO pancreata had a significantly greater percentage 

of large islets (islets > 10 000 μm
2
) and significantly reduced percentage of small islets 

(islets < 1 000 μm
2
). White bars, control group; black bars, βIrKO group. Data are 

expressed as means ± SEM (n = 5-6). *p < 0.05, **p < 0.01.  
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3.3 Increased β-cell proliferation in βIrKO mice29 

 To investigate the molecular mechanisms contributing to islet growth response in 

βIrKO mice, we first assessed β-cell proliferation using double immunofluorescence 

staining for insulin and Ki67 proliferation marker (Figure 3.3A). We quantified the 

percentage of insulin
+ 

cells with nuclear localization of Ki67. βIrKO pancreata had 

significantly greater number of proliferating insulin
+ 

cells compared to controls (p < 

0.001; Figure 3.3B). In addition, we sought to determine if the increased β-cell 

proliferation in βIrKO pancreata was due to increased islet neogenesis. During islet 

development, islet neogenesis initiates from the pancreatic ductal epithelium and are 

always Pdx-1 positive, which is a marker for early β-cell differentiation. Therefore, we 

assessed the percentage of pan-CK
+
 epithelial ducts cells (within or adjacent to pancreatic 

islet clusters) positively stained for the Pdx-1 transcription factor, as an indicator for islet 

neogenesis. There was no significant difference in the percentage of pan-CK
+
/Pdx-1

+ 

cells between βIrKO (~6.5%) and control (~8.3%) pancreata (Figure 3.4). Taken 

together, these results suggest that the islet hyperplastic growth seen in βIrKO mice is 

likely attributed to the increased replication of pre-existing β-cells, rather than ductal-to-

islet neogenesis. 

Next, we determined if decreased apoptosis of developing islet cells also contributes to 

the islet growth response seen in βIrKO
 
mice. TUNEL staining did not show a difference 

in the percentage of insulin
+ 

cells with nuclear TUNEL positivity in βIrKO pancreata 

relative to control mice (Figure 3.5). Similarly, western blot analyses were unable to 

detect a difference in cleaved caspase-3 levels between βIrKO and control pancreata 

(Figure 3.6C). Therefore, apoptosis does not appear to play an important role in islet 

hyperplasia observed in fetal βIrKO pancreata.  
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Figure 3.3. Enhanced β-cell proliferation in fetal βIrKO pancreata  

(A) Representative double immunofluorescence images demonstrating a significantly 

increased percentage of insulin
+
 cells with nuclear Ki67 staining in βIrKO islets 

compared to control. White arrows indicate cells positive for Ki67. Scale bar: 50 μm. (B) 

Quantification of immunofluorescence images by cell counting show a significant 

increase of Ki67 positive β-cells in βIrKO islets relative to controls. White bar, control 

group; black bar, βIrKO group. Data are expressed as means ± SEM (n = 5). ***p < 

0.001. 
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Figure 3.4. Similar levels of islet neogenesis from epithelial ducts in fetal βIrKO and 

control pancreata  

(A) Representative double immunofluorescence images of fetal islets with adjacent 

epithelial duct cells, marked by pan-CK staining (green), and Pdx-1 (red). Pdx-1
+
 duct 

cells indicate potential islet neogenesis. White arrows indicate Pdx-1 nuclear localization 

in duct cells. Scale bar: 50 μm. (B) Quantification of the percentage of epithelial duct 

cells (adjacent to islets) positive for Pdx-1. White bar, control group; black bar, βIrKO 

group. Data are expressed as means ± SEM (n = 5). 
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Figure 3.5. No change in cell apoptosis in fetal βIrKO pancreata  

(A) Double immunofluorescence images demonstrating similar levels of insulin
+
 cells 

with nuclear TUNEL staining in βIrKO islets compared to control. White arrows indicate 

nuclear localization. Scale bar: 50 μm. (B) Quantification of the percentage of insulin
+
 

cells with nuclear TUNEL staining. Data are normalized to control and expressed as 

means ± SEM (n = 4-5). 
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Figure 3.6. Downstream IR signalling pathway analysis  

Western blot analyses demonstrated that βIrKO had significantly upregulated levels of 

(A) phospho-S473 Akt (n = 4), and significantly downregulated levels of (B) phospho-

S15 p53 (n = 3-4). (C) However, the apoptotic activity, marked by cleaved caspase-3, 

was not different between fetal βIrKO and controls. Representative blotting images are 

shown. White bars, control group; black bars, βIrKO group. Data are normalized to 

control and expressed as means ± SEM. *p < 0.05.  
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3.4 Fetal βIrKO islet cells present enhanced replication and pro-

survival signalling pathway activity30 

To account for increased islet replication and growth, we investigated signalling 

pathways involved in cell survival. Akt is part of the IR downstream signalling cascade 

and has an influential role in the regulation of β-cell replication. Fetal βIrKO exhibited a 

robust increase in phospho-Akt (S473) levels compared to control pancreata (p < 0.05; 

Figure 3.6A). Previous studies have shown that activated Akt can prevent apoptosis by 

indirectly inhibiting downstream p53 activity (Mayo et al. 2001, Wrede et al. 2002). In 

agreement with increased phosphorylation of Akt in βIrKO mice, phospho-p53 (S15), a 

marker for apoptosis, was significantly reduced in βIrKO pancreata relative to control (p 

< 0.05; Figure 3.6B). These results suggest that reduced β-cell IR levels may elicit an 

adaptive signalling mechanism through the homologous IGF1R signalling pathway. To 

explore this further, we investigated the levels of the IGF1 and IGF2 ligands. In 

particular, IGF2 has been demonstrated to be highly localized to islets during fetal 

development, and it has a relatively high affinity for both IGF1R and IR. Furthermore, 

studies suggest a close relationship between IGF2 levels and β-cell expansion. 

Immunohistochemical staining showed localization of IGF2 in fetal pancreatic islets with 

a relatively high density of staining observed in the βIrKO islets (Figure 3.7A). On the 

other hand, IGF1 levels were low in fetal islets (Figure 3.7B). Further western blot 

analyses revealed a significantly increased IGF2 levels in fetal βIrKO pancreata 

compared to fetal control pancreata (p < 0.005; Figure 3.7C). These data imply that fetal 

βIrKO elicits a signalling pathway network adaptation that involves enhanced IGF2 

production and activity through homologous receptors, with corresponding increases and 

decreases in Akt and p53 activity, respectively. Overall, this signalling cascade likely 

promotes β-cell proliferation.  
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Figure 3.7. Strong localization and increased levels of IGF2 in fetal βIrKO 

pancreata  

(A) Representative immunohistochemical staining showing strong IGF2 localization 

(brown) in pancreatic islets. (B) IGF1 levels were very low in fetal pancreata. Nuclei 

were counterstained with hematoxylin. Scale bar: 50 μm. (C) Western blot analyses 

showed that fetal βIrKO pancreata had significantly upregulated IGF2 protein levels 

relative to control (n=5-13). Representative blotting image is shown. White bar, control 

group; black bar, βIrKO group. Data are normalized to control and expressed as means ± 

SEM. *p < 0.01.  
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3.5 Increased vascularization in fetal βIrKO pancreatic islets31 

A previous study has demonstrated a correlation between fetal islet compensatory 

growth response and increased islet vascularization in insulin-null mice (Duvillie et al. 

2002). We also assessed the possibility that increased vascularization could be another 

contributing factor to the hyperplastic islets observed in fetal βIrKO mice. Islet 

vasculature was assessed by quantifying the percentage of islet PECAM-1 area over total 

islet area, mean vessel area, and mean islet vessel density in pancreatic sections (Figure 

3.8A). Immunofluorescence staining demonstrated a significant increase in the percent of 

PECAM-1 area/total islet area (Figure 3.8B) and islet vessel density in βIrKO
 
mice 

relative to controls (Figure 3.8C). However, the average islet capillary size was similar 

amongst all experimental groups, indicating increased islet angiogenesis, as opposed to 

enlargement of pre-existing capillaries (Figure 3.8D). In accordance with these findings, 

fetal βIrKO pancreata had significantly elevated Vegf-a levels, as demonstrated by 

immunofluorescence (Figure 3.9A) and western blot (Figure 3.9B). These results 

supported our finding of enhanced IGF2 levels in βIrKO pancreata since IGF2 could 

promote islet vascularization via upregulation of Vegf-a levels. 
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Figure 3.8. Fetal βIrKO display increased vascularization  

(A) Representative double immunofluorescence images show increased vascularization 

(green) in pancreatic islets in βIrKO mice. Scale bar: 50 μm. Quantification of 

immunofluorescence images demonstrates that (B) the percent of PECAM-1 area/islet 

area (n = 4-5) and (C) islet vessel density (n = 4-5) were significantly increased in βIrKO 

pancreata compared to control. (D) Average islet capillary size was similar between the 

groups. White bars, control group; black bars, βIrKO group. Data are expressed as means 

± SEM. *p < 0.05, **p < 0.01. 
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Figure 3.9. Increased Vegf-a levels in fetal βIrKO pancreata  

(A) Representative double immunofluorescence images demonstrating increased Vegf-a 

(green) levels in insulin
+
 cells (red) of pancreatic islets in βIrKO animals. Scale bar: 50 

μm. (B) Western blotting shows that corresponding protein levels of Vegf-a was 

significantly upregulated in βIrKO pancreata relative to controls (n = 3-5). Representative 

blotting images are shown. White bar, control group; black bar, βIrKO group. Data are 

normalized to control and expressed as means ± SEM. **p < 0.01. 
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3.6 β-cell-specific Ir knockout at the second transition of 

pancreatic development does not affect β-cell identity32 

 To determine the role of β-cell IR activity in β-cell differentiation and identity 

during fetal pancreatic development, immunofluorescence and immunohistochemistry 

staining was performed on fetal pancreatic tissue sections. These morphological analyses 

characterize the potential for altered transcription factor levels, where normal expression 

is critical for the maintenance and development of β-cell differentiation and function. 

Qualitative observations revealed that approximately all β-cells (identified by insulin 

positivity) had nuclear Pdx-1 (Figure 3.10A), Nkx6.1 (Figure 3.10B), Islet-1 (Figure 

3.10C), and MafA (Figure 3.10D) in both βIrKO
 
and control

 
mice. Previously, glucose 

transporter 2 (Glut-2) has been associated with glucose-dependent insulin secretion and 

β-cell development, and thus, we examined the levels of Glut-2 in the fetal islets of all 

groups. Although βIrKO islets were generally larger in size, they possessed similar 

intensity and membrane-localization of Glut-2 in the insulin
+
 cells compared to control 

pancreata (Figure 3.10E). Therefore, it appears that β-cell-specific Ir knockout during 

fetal pancreatic development does not alter β-cell identity or function. 
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Figure 3.10. Fetal βIrKO islets expressed TFs necessary for β-cell identity and 

function 

Representative double immunofluorescence images showing that insulin
+ 

cells (red) of 

both βIrKO and control pancreata display nuclear localization of transcription markers 

(all represented as green) critical for β-cell identity and function (A) Pdx-1, (B) Nkx6.1, 

(C) Islet-1. (D) Immunohistochemical staining demonstrates similar levels of MafA in 

both experimental groups. (E) Glut-2 immunofluorescence staining demonstrating similar 

levels in both βIrKO and control pancreata. Scale bar: 50 μm.  
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3.7 Postnatal βIrKO confirmation33 

 Since the exocrine compartment of the pancreas also expresses insulin receptors 

on acinar cell membranes, we carefully isolated the pancreatic islets from the whole 

pancreas to verify the β-cell-specific Ir knockout in the adult mice experimental groups. 

Using western blot analysis, we observed a ~50% knockdown of IR protein levels in 

βIrKO pancreata in comparison to control groups (Figure 3.11). However, the 

heterozygous group displayed highly varying levels of IR protein. 
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Figure 3.11. Western blot analysis of β-cell Ir knockout efficiency  

Western blot analysis of isolated islets from postnatally induced βIrKO male mice 

demonstrated a significant reduction in IR protein levels in βIrKO pancreata relative to 

controls (n = 6). Representative blotting image is shown. White bar, control group; black 

bar, βIrKO group. Data are normalized to control and expressed as means ± SEM. *p < 

0.05.  
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3.8 Phenotypical analysis of postnatally induced β-cell specific Ir 

knockout mice34 

 Postnatal breeding produced experimental βIrKO mice with MIPCreERT
+
;IR

fl/fl
, 

heterozygous βIrKO mice with MIPCreERT
+
;IR

fl/+
, and control mice that consisted of 

genotypes MIPCreERT
–
;IR

fl/fl
 and MIPCreERT

+
;IR

+/+
. Based on previous reports, and 

due to lack of differences in our preliminary in vivo metabolic studies between 

heterozygous βIrKO and control groups, the heterozygous βIrKO group was omitted at 8 

and 20 weeks post-tamoxifen time points. The body weights of male βIrKO mice did not 

significantly differ at 4, 8, and 20 weeks post-tamoxifen when compared to the control 

and heterozygous groups, indicating that β-cell IR does not affect the gross phenotypes of 

these mice (Figure 3.12A). Similarly, 16 hour overnight fasting blood glucose levels 

were not different between the experimental groups at all ages analyzed (Figure 3.12B). 
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Figure 3.12. Phenotypic analysis of postnatal tamoxifen-induced βIrKO mice 

(A) Fasting body weights at 0, 4, 8, and 20 weeks post-tamoxifen injection in male mice 

(n = 5-10). (B) Overnight (16hrs) fasted blood glucose levels at 4, 8, 20 weeks post-

tamoxifen injection in male mice (n = 5-10). DOI stands for “date of tamoxifen 

injection”. White bar, control group; black bar, βIrKO group. Data are expressed as 

means ± SEM. 
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3.9 Metabolic studies of postnatally induced βIrKO mice35 

 Glucose tolerance (GTT), insulin tolerance (ITT), and glucose-stimulated insulin 

secretion (GSIS) tests were performed at various ages to determine the effects of β-cell-

specific Ir knockout on glucose metabolism. No significant changes in IPGTT were 

observed in male βIrKO when compared to control and heterozygous groups at 4 weeks 

post-tamoxifen (Figure 3.13A). At 8 weeks post-tamoxifen, βIrKO mice showed no 

statistically significant differences in AUC in comparison with experimental groups, 

despite the relatively higher peak at 60 and 90 minutes after i.p. injection of glucose 

(Figure 3.13B). In addition, in vivo GSIS at 8 weeks post-tamoxifen injection 

demonstrated similar insulin secretion responses between βIrKO and control groups 

(Figure 3.13C). When these mice were aged to 20 weeks post-tamoxifen, both βIrKO 

and control mice exhibited higher glucose levels at 60, 90, and 120 minutes following 

glucose injection when compared to experimental mice at 4 and 8 weeks post-tamoxifen 

injection. However, IPGTT of βIrKO did not significantly differ from the control mice 

(Figure 3.14A), suggesting that these β-cells are still functional when Ir knockout is 

induced after birth. This age-dependent increase in glucose intolerance is most likely due 

to the increased body weight and genetic composition of the B6 mice (Almind et al. 

2004).  

To determine whether insulin resistance plays a role in these mice, IPITT was performed 

at 20 weeks post-tamoxifen injection. Both βIrKO and control mice exhibited normal 

metabolic response to a dose of insulin, demonstrating that these mice did not develop 

insulin resistance (Figure 3.14B). 
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Figure 3.13. Adult βIrKO mice demonstrate normal glucose metabolism at 4 and 8 

weeks after Ir knockout 

Overnight (16hrs) fasted IPGTT at (A) 4 weeks and (B) 8 weeks post-tamoxifen in βIrKO 

and control groups. Glucose responsiveness of the corresponding experimental groups is 

shown as a measurement of AUC of the IPGTT graphs (n = 6-7). (C) Overnight fasted 

(16hrs) in vivo glucose-stimulated insulin secretion at 8 weeks post-tamoxifen injection 

shows a lack of difference between the experimental groups (n = 6-7). White bars, control 

group; black bars, βIrKO group. Data are expressed as means ± SEM. *p < 0.05.  
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Figure 3.14. Aged experimental groups appear to exhibit similar levels of glucose 

intolerance  

At 20 weeks post-tamoxifen injection, (A) overnight (16hrs) fasted IPGTT and (B) 4 

hours fasted IPITT were completed (n = 6-7). Glucose or insulin responsiveness of the 

corresponding experimental groups is shown as a measurement of AUC of the IPGTT 

and IPITT graphs. White bars, control group; black bars, βIrKO group. Data are 

expressed as means ± SEM.  
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3.10 Pancreas morphology at 20 weeks post-tamoxifen injection36 

 Since βIrKO and control groups both exhibited glucose intolerance compared to 

earlier age groups, morphometric analyses of the pancreas were performed after 20 weeks 

post-tamoxifen to further examine the effects of β-cell-specific IR deficiency under 

metabolic stress. At 20 weeks post-tamoxifen injection, mice were euthanized and 

pancreas weights were measured, but no significant difference was observed between 

βIrKO and control groups (Figure 3.15A). There was no difference in islet number per 

mm
2 

(Figure 3.15E) and islet size distribution (Figure 3.15B) between βIrKO and 

control groups. Quantitative analysis of β-cell mass (Figure 3.15C) and α-cell mass 

(Figure 3.15D) further showed no changes between the experimental groups. 
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Figure 3.15. No differences in pancreatic morphology were observed between βIrKO 

and control mice 

Representative pancreatic islets are shown, with glucagon
+
 α-cells (green) and insulin

+
 β-

cells (red). Male mice were dissected at 20 weeks post-tamoxifen injection. Pancreatic 

morphological analysis of (A) pancreas weight, (B) islet size distribution, (C) β-cell 

mass, (D) α-cell mass, and (E) islet number/mm
2
 show similar islet morphology between 

experimental groups (n = 4). White bars, control group; black bars, βIrKO group. Data 

are expressed as means ± SEM.  
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3.11 Under high-fat diet, postnatally induced βIrKO mice display 

comparable glucose metabolism to control mice37 

 Previous studies have suggested the importance of β-cell IR on postnatal islet 

compensatory growth in response to high-fat diet (Okada et al. 2007). We further 

investigated the effect of high-fat stress on postnatally induced β-cell-specific Ir 

knockout mice. Interestingly, after 6 weeks on high-fat diet, all study groups (βIrKO, 

heterozygous, and control) were similar in terms of body weight and fasting blood 

glucose, and they were not significantly different from mice on normal chow (Figure 

3.16). Next, we sought to determine whether high-fat diet stress could accelerate β-cell 

dysfunction in βIrKO mice. When compared to same aged mice under chow diet (Figure 

3.13B), all experimental groups demonstrated higher IPGTT levels, indicating an early 

onset of high-fat diet induced diabetes (Figure 3.17A). However, IPGTT results for 

βIrKO, heterozygous, and control mice were not significantly different from each other, 

further questioning the necessity of postnatal IR in β-cell maintenance and function. In 

addition, IPITT revealed normal insulin sensitivity in all study groups under high-fat diet 

(Figure 3.17B). 
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Figure 3.16. Phenotypes of experimental male mice after 6 weeks of high-fat diet  

(A) Weekly body weights monitored for 6 weeks on high-fat diet. (B) Body weight and 

(C) overnight (16hrs) fasted blood glucose levels at the end of high-fat diet in βIrKO, 

heterozygous, and control groups (n = 6-9). Data are expressed as means ± SEM.  
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Figure 3.17. Metabolic studies at 8 weeks post-tamoxifen in male mice after 6 weeks 

on a high-fat diet 

 (A) Overnight (16hrs) fasted IPGTT (n = 6-8), and (B) 4 hours fasted IPITT (n = 3-6) 

were performed on all experimental groups. Glucose or insulin responsiveness of the 

corresponding experimental groups is shown as a measurement of AUC of the IPGTT 

and IPITT graphs. Data are expressed as means ± SEM.  
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Chapter 4 - Discussion38 

 This project examined the in vivo role of β-cell-specific insulin receptor during 

different developmental stages using a novel conditional and temporal Ir knockout 

model. In contrast to many previous βIrKO that utilized the Cre/loxP system to facilitate 

congenital β-cell Ir knockout, our tamoxifen-inducible βIrKO mouse model allowed Ir 

knockout at various developmental ages. We demonstrated that β-cell-specific Ir 

knockout during the secondary transition of pancreatic development leads to an adaptive 

islet growth. The robust increase of β-cell proliferation was associated with significantly 

increased IGF2 levels, phospho-Akt activity, and enhanced islet vascularization. 

Interestingly, βIrKO after postnatal pancreatic remodelling in 3 week old adult mice 

failed to develop age-dependent glucose intolerance phenotype seen in previous studies. 

In addition, adult βIrKO, control, and heterozygous groups after 6 weeks of high-fat-diet 

stress developed impaired glucose tolerance, but they were indistinguishable from each 

other. Taken together, the results from this thesis suggest that the loss of β-cell-specific 

IR promotes β-cell replication during embryonic islet development, but IR may not be 

required for postnatal β-cell mass maintenance and function. 

4.1 Does β-cell-specific Ir knockout affect islet formation during 

secondary transition?39 

 We first confirmed the specificity of the MIPCreERT expression to pancreatic β-

cells by crossing the MIPCreERT mice with B6.Cg-Gt(ROSA)26Sor
tm9(CAG-tdTomato)Hze

/J 

reporter mice. In addition, western blot analysis of fetal pancreata demonstrated that β-

cell IR levels were significantly reduced (~75%) in fetal βIrKO mice. Our recombination 

efficiency supports previous research demonstrating that 50 to 70% of Cre-recombination 

is achieved depending on the tamoxifen dosage (Hayashi et al. 2002). 

Similar to previous βIrKO studies, the body weight of newborn pups did not differ 

between littermates, indicating overall normal embryonic development (Kulkarni et al. 

1999, Okada et al. 2007). Although these studies did not conduct in-depth quantitative 

analyses of islet morphology during prenatal stages, they suggested that β-cell IR does 
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not play an essential role in fetal islet development and maturation (Kulkarni et al. 1999, 

Okada et al. 2007). Contrary to this statement, our results demonstrated a significant 

increase in β-cell area, mean and overall islet area when β-cell Ir was knocked out during 

the secondary transition. An explanation for this is that we are the first group to induce β-

cell-specific Ir knockout at embryonic day 13 (e13) instead of congenital β-cell Ir 

knockouts seen in previous studies. Since the secondary transition is a period of rapid β-

cell differentiation, expansion, and maturation, the loss of existing β-cell IR could lead to 

an immediate cell adaptation response seen in our βIrKO mice (Habener et al. 2005, 

Gunasekaran et al. 2012), implicating that in vivo β-cell-specific Ir knockout phenotypes 

are time-dependent. The current study demonstrated that the abrupt loss of IR signalling 

in β-cells during islet development, specifically during secondary transition, led to an 

islet hyperplastic growth response. Islet hyperplasia seen in fetal βIrKO is consistent with 

the congenital insulin knockout mouse model, where the loss of insulin led to increased 

islet size, proliferation, and vascularization at e19 (Duvillie et al. 2002). Together, these 

findings indicate that the loss of IR signalling has an adaptive stimulatory effect on 

prenatal β-cell growth. 

To characterize whether islet hyperplasia in fetal βIrKO pancreas is due to either β-cell 

proliferation from pre-existing β-cell or neogenesis from progenitors, we examined β-cell 

proliferation using immunofluorescent Ki67 staining versus β-cell apoptosis by TUNEL 

staining. While TUNEL staining showed relatively similar levels of apoptosis, the 

proliferation of β-cells in fetal βIrKO mouse islets were significantly higher than that of 

littermate controls. This result indicates that β-cell replication from pre-existing β-cells 

likely contributed to islet hyperplasia in fetal βIrKO mice. This data is in agreement with 

previous studies that demonstrated β-cell replication starting around e16.5 is responsible 

for maintaining β-cell survival throughout postnatal development (Montanya et al. 2000, 

Dor et al. 2004). Generally, murine β-cell neogenesis from ductal cells begins at e9 and 

remains active for the first few weeks after birth until weaning. In order to determine 

whether β-cell neogenesis also contributed to islet hyperplasia, Pdx-1 localization in 

ductal cells in both fetal βIrKO and control pancreata were examined. We observed 

similar levels of Pdx-1
+
 ductal cells between the groups, suggesting that fetal β-cell Ir 
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knockout may not have affected islet neogenesis. Consistent with our results, Duvillie et 

al. (2002) showed enlarged fetal islets in insulin knockout mice without an increase in 

islet neogenesis. Therefore, we believe that the islet growth response in fetal βIrKO mice 

is likely due to the enhanced β-cell replication, rather than increased levels of islet 

neogenesis. 

To examine whether fetal βIrKO altered proper β-cell maturation, we investigated 

transcription factors that are required for β-cell maturation. It is well documented that 

Pdx-1 in β-cells is necessary for insulin synthesis, glucose metabolism, and β-cell 

survival (Brissova et al. 2002, Gittes 2008). Similarly, Nkx6.1, MafA, and Islet-1 are 

necessary for β-cell differentiation and postnatal function. (Sander et al. 2000, Aguayo-

Mazzucato et al. 2011, Ediger et al. 2014). There were similar levels of β-cell nuclear 

localization for both fetal βIrKO and control pancreata with Pdx-1, Nkx6.1, MafA, and 

Islet-1. In addition, we showed that the levels of Glut-2, a marker for β-cell glucose 

sensitivity, did not differ between βIrKO and control pancreas, further suggesting that 

these β-cells properly developed and are functional despite the early loss of β-cell IR. 

4.2 Could the β-cell-specific Ir knockout promote activity of 

homologous signalling pathways?40 

 We sought to determine the signalling pathways that may contribute to increased 

replication of functional β-cells observed in fetal β-cell-specific Ir knockout mice. 

Western blot analysis revealed increased phosphorylation of Akt, an important regulator 

of β-cell proliferation and anti-apoptotic signalling, in fetal βIrKO pancreata. Similar to 

our results, overexpression of Akt in pancreatic β-cells has been associated with increased 

β-cell size and total islet mass (Tuttle et al. 2001). In addition, we detected decreased 

phosphorylation of the tumor suppressor p53 in βIrKO pancreata relative to control mice. 

Congruent with our findings of increased Akt and reduced p53 activity, numerous studies 

have suggested that active Akt downregulates p53 in the INS-1 rat insulinoma cell line 

and isolated pancreatic islets (Wrede et al. 2002, Feng et al. 2013. Ogawara et al. 2002). 

Since p53 plays a key role in the induction of apoptosis and cell cycle arrest, we 
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speculate that impaired regulation of cell cycle arrest could also contribute to the 

increased β-cell proliferation seen in βIrKO pancreata.  

To account for the enhanced Akt activity seen in fetal βIrKO pancreata, we investigated 

IGF1 and IGF2 because they have the ability to stimulate both IR and IGF1R (Louvi et 

al. 1997, Nakae et al. 2001). During fetal development, IGF2 is strongly localized to 

pancreatic islets and is more abundant than IGF1 (Hill et al, 1999). Consistent with this 

finding, we showed that IGF1 levels were very low in the fetal pancreas and we conclude 

that Akt activity is likely induced by the elevated IGF2 protein levels localized to fetal 

βIrKO islets. In agreement with our results, IGF2 overexpressing transgenic mice 

exhibited robust islet cell hyperplasia and apoptotic inhibition (Petrik et al. 1999). 

Similarly, another group utilized the Goto-Kakizaki diabetic rat model to examine 

defective fetal IGF2 production, which led to a reduction in β-cell mass (Calderari et al. 

2007). Our results suggest that the loss of fetal β-cell IR leads to an upregulation of IGF2 

protein levels in the islets, which signals through the IGF1R to promote Akt-mediated β-

cell proliferation during fetal development (Figure 4.1). Since our western blot analysis 

showed that β-cell-specific Ir was not entirely knocked out, it is also possible that IGF2 

exerted its proliferative effects through remaining IR on the β-cells. However, IGF2 

levels rapidly diminishes from birth to postnatal day 28 in rats (Hill et al, 1999), so it is of 

interest for further experiments to examine whether the increased islet growth seen in 

fetal βIrKO pancreas can be sustained neonatally. Interestingly, a recent study 

demonstrated that β-cell-specific Igf2 overexpressing adult mice have disrupted islet 

structure, islet hyperplasia, and develop glucose intolerance, indicating β-cell dysfunction 

(Casellas et al, 2015). Therefore, further experiments are necessary to determine the 

consequences of increased prenatal IGF2 levels on neonatal β-cell function. 
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Figure 4.1. Proposed adaptive signalling mechanisms in fetal βIrKO mice 

We demonstrated that the tamoxifen-induced loss of β-cell IR during fetal pancreatic 

development results in enhanced levels of IGF2. We propose that the IGF2 released from 

βIrKO β-cells exerts autocrine/paracrine activation of IGF1 receptors, causing an increase 

in Akt phosphorylation/activation and stimulation of downstream signalling pathways. 

Resulting upregulated Vegf-a production and secretion contribute to increased 
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vascularization. Consequently, enhanced Akt activity combined with increased islet 

vascularization promotes β-cell replication, inducing the islet growth response seen in 

βIrKO mice.  

4.3 Is the level of islet vascularization associated with islet 

growth during prenatal life?41 

Previous studies have proposed that increased vascularization can promote β-cell 

differentiation and replication because the endothelium and its associated blood supply 

are essential for the β-cell differentiation and maintenance of β-cell function (Lammert et 

al. 2001, Nikolova et al. 2006, Brissova et al. 2006). In our study, βIrKO pancreata 

exhibited significantly increased islet capillary area (percent of PECAM-1
+
 area/islet 

area), islet vessel density, and Vegf-a protein levels. Pancreatic β-cells produce Vegf-a to 

attract endothelial cells, which form capillaries throughout the islets. Similar to our 

results, insulin knockout mice also resulted in a simultaneous increase of β-cell mass and 

islet vascularization during fetal development (Duvillie et al. 2002). Therefore, our 

results further support the notion that increased islet vascularization promotes islet 

growth seen in fetal βIrKO mice. In addition, Duvillie et al. (2002) speculated the 

contribution of IGF2 to the islet hyperplasia but did not observe an increase in Igf2 

mRNA levels. In contrast, we demonstrated that IGF2 protein levels is increased, 

implying that there may be an altered posttranscriptional regulation that stimulates IGF2 

protein production. IGF2 can further promote embryonic vasculogenesis by upregulating 

Vegf levels (Piecewicz et al. 2012). In many tumours, tumour-derived IGF2 has been 

shown to bind to IGF1R, leading to increased Vegf production and subsequent 

angiogenesis (Bid et al. 2012, Bid et al. 2013). Taken together, our fetal βIrKO study 

suggests that βIrKO knockout in the developing mouse pancreas causes an adaptive 

upregulation of IGF2 levels in the islets, which contributes to the observed Akt elevation, 

increased Vegf-a protein levels, and subsequent islet vascularization. Together, Akt and 

increased islet vascularization stimulate β-cell replication (Figure 4.1). 
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4.4 Do postnatally induced β-cell-specific knockout mice exhibit 

age-dependent glucose intolerance?42 

4.4.1  Recombination efficiency of inducible postnatal β-cell-specific Ir 

knockout?43 

 To better understand the role of β-cell IR exclusively during postnatal life, we 

induced β-cell-specific Ir knockout after postnatal pancreatic islet remodelling at 3-4 

weeks of age in adult mice. Western blot analysis confirmed a significant reduction of the 

β-cell IR protein levels in isolated islets of βIrKO mice compared to controls, but was 

only found to be only ~50% reduced. The observed recombination efficiency is mainly 

attributed to the tamoxifen dosage that we utilized. The efficiency of the inducible Cre-

loxP recombination in adult mice has been extensively evaluated with various reporter 

strains. Previous studies have used various dosages of tamoxifen injection, ranging from 

3 consecutive days of 1 mg up to 5 days of 9 mg tamoxifen injection, resulting in a 

varying recombination efficiency of up to ~90% (Hayashi et al. 2002, Wicksteed et al. 

2010, Reinert et al. 2012, Tamarina et al. 2014). These findings suggest that the 

recombination efficiency is tamoxifen dose-dependent, and multiple injections of even 

the highest dosage did not lead to any major changes in animal behaviour or 

physiological side effects (Hayashi et al. 2002). However, Reinert et al. (2012) observed 

incomplete absorption of corn oil vehicle as well as scrotal enlargement in tamoxifen 

treated mice, and the consequences of these side effects are unknown. Therefore, we 

utilized a lower dosage of 3 consecutive days of 4 mg / 20g of body weight tamoxifen 

injection for the postnatally induced βIrKO mice in an attempt to achieve an optimal level 

of recombination while avoiding potential side effects. Thus, the insufficient β-cell Ir 

knockout could have contributed to the insignificant changes for the phenotypes of βIrKO 

mice. 

4.4.2 Does postnatal β-cell-specific Ir knockout affect glucose metabolism?44 

 The overnight fasting blood glucose levels and body weight measured at 4, 8, and 

20 weeks post-tamoxifen injection showed no difference between control and βIrKO 
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mice. Previous studies utilizing congenital βIrKO mouse models have found similar 

fasting blood glucose results at 2 and 6 months of age (Kulkarni et al. 1991, Ueki et al. 

2006). However, unlike our adult βIrKO mice, studies have observed glucose intolerance 

in congenital βIrKO mice, suggesting the importance of β-cell IR for glucose metabolism 

in adult life. Similar other reports have demonstrated impaired glucose homeostasis in 

βIrKO mice as early as 4-5 weeks of age (Ueki et al. 2006, Okada et al. 2007), or 

progressive age-dependent glucose intolerance from 2-6 months of age (Kulkarni et al. 

1991). Furthermore, previous studies also demonstrated a loss of acute first-phase but 

normal second-phase insulin secretion in βIrKO mice at 1 month (Okada et al. 2007) and 

3 months of age (Kulkarni et al. 1991). This functional change in insulin secretion was 

not observed in our postnatally induced βIrKO mice, which displayed similar glucose-

stimulated insulin secretion during both 1
st 

and 2
nd

 phases. 

The discrepancy between previous studies and our results may be attributed to the 

utilization of different promoters to drive β-cell-specific Ir knockout. Former in vivo 

βIrKO studies utilized the RIP, which is also actively expressed in the hypothalamus, 

leading to ectopic expression of Cre recombinase (Wicksteed et al. 2010). Subsequently, 

altered levels of IR in the brain could adversely affect glucose homeostasis. Another 

reason for this conflicting finding is the insufficient deletion of β-cell Ir. As we 

mentioned above, we only achieved an Ir knockout of ~50% in pancreatic islets, 

suggesting that the remaining β-cell IR are able to maintain normal glucose homeostasis. 

This is supported by one study that found that global heterozygous Ir knockout mice 

retained normal phenotypes and displayed similar levels of glucose tolerance as controls, 

whereas null Ir mice quickly died after birth due to severe ketoacidosis (Joshi et al. 1996, 

Acili et al. 1996). Taken together, we suggest that β-cells have a plethora of IR, and that a 

reduced amount of β-cell IR (~50%) is sufficient for proper β-cell maintenance and 

function in postnatal life. Additionally, previous studies have shown that double β-cell Ir 

and Igf1r knockout mice exhibit the most severe glucose intolerance and die from severe 

ketoacidosis starting at 6 weeks, suggesting that these receptors are able to compensate 

for each other to a certain extent (Ueki et al. 2006, Xuan et al. 2010).  
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All the previous studies utilized the same congenital RIP-driven β-cell-specific Ir 

knockout model, while we used an inducible MIP-driven β-cell-specific Ir knockout 

model where β-cell Ir was knocked out 4 weeks after birth (Ueki et al. 2006, Okada et al. 

2007, Kulkarni et al. 1991). By inducing the β-cell Ir knockout around 4 weeks of age, 

we allowed proper fetal pancreatic formation, including the undisturbed completion of 

the third transition in pancreatic development, which spans from embryonic day 18 to 

postnatal day 21. The third transition, also defined as the pancreatic remodelling period, 

is an important stage of β-cell proliferation, apoptosis, and maturation (Kaung 1994, 

Scaglia et al. 1997). Previous congenital βIrKO mice lacked β-cell IR throughout 

essential prenatal pancreatic development and postnatal remodelling, causing these mice 

to exhibit early age-dependent β-cell dysfunction. In contrast, we induced β-cell Ir 

knockout in adult mice after postnatal remodelling, and demonstrated that these βIrKO 

mice were able to maintain euglycemic levels similar to control mice. This could be 

because our βIrKO mice underwent normal pancreatic formation and remodelling with 

the presence of β-cell IR, allowing proper β-cell maturation and prolonging β-cell 

function. These results suggest that β-cell IR could be crucial for β-cell remodelling 

during the first 21 days of postnatal life. The importance of fetal β-cell IR is further 

supported by our prenatal βIrKO results, where the loss of fetal β-cell IR elicited an islet 

growth response, indicating the importance of prenatal β-cell IR. Therefore, our postnatal 

inducible βIrKO study demonstrates that the protein levels of β-cell IR and β-cell IR loss 

at the examined age of interest could exert a key influence in β-cell function and β-cell 

mass maintenance. 

Surprisingly, both control and βIrKO mice manifested impaired glucose tolerance at 20 

weeks post-tamoxifen when compared to younger mice. This could be attributed to the 

genetic composition of the B6 mice. It has been reported that glucose tolerance tests 

performed on B6 mice after 18 weeks on either low- or high-fat diet revealed impaired 

glucose tolerance on both diets. Furthermore, the mixed genetic background of B6 and 

129 manifested a larger degree of heterogeneity when it comes to dietary intake and 

spontaneous obesity (Almind et al. 2004). This may explain the observed variability in 

glucose tolerance tests at 20 weeks post-tamoxifen. Coinciding with these metabolic 
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studies, islet morphological analyses at 20 weeks post-tamoxifen did not show any 

differences in islet size or β-cell mass. Therefore, our statistically insignificant results are 

likely due to the genetic background and variable levels of Ir knock out in mice. 

4.5 Do postnatally induced β-cell-specific knockout mice exhibit 

glucose intolerance after high-fat diet stress?45 

 Previously, it has been shown that when congenital βIrKO mice were fed a high-

fat diet for 20 weeks, a percentage of mice died prior to the end of the study while others 

manifested obesity and hyperglycemia (Okada et al. 2007). Morphologically, these 

βIrKO mice failed to develop the islet compensatory growth responses seen in control 

mice, suggesting the necessity of β-cell IR for growth response (Okada et al. 2007). In 

addition, Mehran et al. (2012) demonstrated that heterozygous insulin knockout B6 mice 

do not develop islet compensatory growth, hyperinsulinemia, or obesity under high-fat 

diet while control mice developed diabetic phenotypes, further suggesting that β-cell 

insulin signalling is required for β-cell compensatory response to high-fat diet. In an 

attempt to better understand the role of β-cell insulin signalling during metabolic stress, 

we fed postnatally induced βIrKO mice a 6-week of high-fat diet starting at 2 weeks after 

tamoxifen injection. We proposed to determine whether varying levels of β-cell IR could 

potentially prevent diet-induced obesity similar to the findings from the heterozygous 

insulin knockout mouse model (Mehran et al. 2012). Interestingly, all experimental 

groups (control, heterozygous, and βIrKO), displayed similar levels of impaired glucose 

tolerance compared to mice on chow-diet, but are equally sensitive to insulin after 6 

weeks of high-fat diet. In addition, at the end of the high-fat diet period, the body weight 

and fasting blood glucose of these groups did not significantly differ from mice on chow-

diet. This could be because these mice were subjected to high-fat diet for only 6 weeks, 

and β-cell compensatory proliferation may not be obvious until after 14 weeks on high-

fat diet (Roat et al. 2014). Therefore, we need to implement a longer term high-fat diet 

study to determine the effect of postnatally induced βIrKO. 
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4.6 Limitations46 

 The present study is performed on transgenic mouse models. Despite the 

similarity in genetic composition and conservation of the insulin receptor gene between 

humans and mice, significant differences exist. For instance, the organization of 

pancreatic islets is different, and IR appears to play different roles during embryonic 

development. Similar to mice, humans lacking IR expression during embryonic 

development are viable at birth. However, mutations of IR in humans lead to postnatal 

heterogeneous phenotypes ranging from mild insulin resistance to leprechaunism (Nakae 

et al. 2001). These similarities and differences should be considered when translating 

these studies to humans. 

In addition, we utilized the MIP to drive Cre recombinase expression specifically limited 

to pancreatic β-cells (Tamarina et al. 2014). However, one study has demonstrated 

ectopic expression of MIP in neurons of the hypothalamus (Wang et al. 2014). Therefore, 

we may face similar limitations to previous studies that used the RIP, which also has 

ectopic expression in the hypothalamus. Ectopic activity of Cre recombinase, and the 

subsequent knockdown of Ir, in the hypothalamus during embryonic development could 

adversely affect energy homeostasis and metabolism in postnatal life (Wicksteed et al. 

2010). 

Another limitation is the incomplete knockout of β-cell IR protein levels in βIrKO mice. 

As mentioned above, we only observed around ~75% and ~50% β-cell Ir knockdown in 

fetal and adult βIrKO mice, respectively. Since remaining IR on β-cells are likely 

functional, we only investigated the effect of a partial β-cell Ir knockdown, but cannot 

determine the consequences of a complete β-cell Ir knockout. Furthermore, since we are 

unable to isolate islets from fetal pancreata due to technical difficulties, all fetal western 

blot data are representative of the whole pancreas, comprised of both the exocrine 

compartment and endocrine islets. 

Lastly, because we observed an islet growth response in the fetal βIrKO study, we have 

attempted to generate neonatal mice in order to examine the consequences of diminishing 
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IGF2 levels after birth on the neonatal (p21) islet morphology. However, tamoxifen 

injected pregnant mothers have consistently killed newborn litters. Although it is not well 

documented, it is possible that the tamoxifen injection adversely affects the health of the 

pregnant mother or newborns and as a result, they are neglected by the mother. We are 

currently working to obtain neonatal samples by fostering with pregnant CD-1 mice. 

4.7 Conclusion and Future directions47 

This thesis demonstrated that the β-cell IR plays an important role in fetal islet 

development, while the varying levels of β-cell IR did not affect postnatal glucose 

homeostasis. By understanding the temporal role of β-cell IR during different 

developmental stages, we can potentially promote the survival and function of clinically 

isolated islets by administering exogenous ligands, such as insulin and IGF2, to stimulate 

downstream insulin receptor signalling pathways in β-cells. This may improve the long-

term success of current cell-based therapies for diabetes by altering the β-cell IR activity 

on donor islets prior to islet transplantation. 

To further investigate the results from the fetal βIrKO study, we will continue to examine 

islet morphology during the neonatal period, up until p21. We concluded that the 

increased islet growth observed in fetal βIrKO mice is likely due to increased IGF2, but 

IGF2 levels rapidly diminishes after birth in rodents (Hill et al. 1999). Therefore, we 

should investigate the consequences of diminishing IGF2 on the pancreatic islet mass, 

and better understand the consequential adaptation between different signalling networks. 

For the postnatally induced βIrKO studies, we should subject these experimental groups 

to high-fat diet for a longer period of time since we did not observe clear insulin 

resistance after 6 weeks of high-fat diet. Currently, we have in vivo metabolic data and 

islet morphology analyses at 24 weeks of age (20 weeks post-tamoxifen) for experimental 

mice on chow diet. Corresponding to this age group, we propose to subject animals on 

high-fat diet for 18 weeks starting at 6 weeks of age (2 weeks post-tamoxifen). We expect 

to observe decreased peripheral insulin sensitivity and diabetic phenotypes at the end of 
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the high-fat diet treatment, and will then examine the islet morphology and metabolic 

differences between βIrKO, heterozygous, and control mice. 
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