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Abstract

The purpose of this work is to enhance the understanding regular algebraic semigroups

by considering the structural influence of Green’s relations. There will be three chief topics of

discussion.

◦ Green’s relations and the Adherence order on reductive monoids

◦ Renner’s conjecture on regular irreducible semigroups with zero

◦ a Green’s relation inspired construction of regular algebraic semigroups

Primarily, we will explore the combinatorial and geometric nature of reductive monoids

with zero. Such monoids have a decomposition in terms of a Borel subgroup, called the Bruhat

decomposition, which produces a finite monoid, R, the Renner monoid. We will explore the

structure of R by way of Green’s relations. In particular, we will be exploring the nature of the

Adherence order poset, (R,≤) when restricted to J -, R-, L -, and H -classes.

From reductive monoids we broaden the impact of Green’s relations and explore regular

algebraic semigroups. Specifically, we resolve Renner’s conjecture and show that the supports,

X` = J /R and Xr = J /L are projective varieties. Spurred on by the result, we use in-

variant theory to generalise the Rees matrix construction for algebraic semigroups to construct

irreducible regular semigroups with 0. Our construction will start with specified maximal

classes, Re, Le, and He and reconstruct an entire semigroup. In a lengthy example, we will use

some of our previous combinatorial results to apply the construction to a natural generalisation

of determinantal varieties.

Highlights include the unique “vanilla form” decomposition for elements of the Renner

monoid (Definition 5.36), a proof of Renner’s conjecture on the projectiveness of supports for

irreducible regular semigroups with zero (Theorem 8.40), and the construction of irreducible

regular semigroups from prespecified maximal R- and L -classes (Definition 9.6).

Keywords: Algebraic semigroups, reductive monoids, Green’s relations, Adherence order,

Renner monoid, semigroup supports, irreducible regular algebraic semigroups with zero
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1 Introduction

The systematic investigation of linear algebraic semigroups and reductive algebraic monoids

was pioneered around 1980 by Mohan Putcha and my supervisor, Lex Renner. Since then, the

discipline has blossomed into a coherent branch of algebra involving embedding theory, repre-

sentation theory and algebraic combinatorics. One of the most important features of a reductive

monoid is the existence of the Bruhat Decomposition. More precisely, the Bruhat decomposi-

tion, which is much studied for groups, extends to a perfect analogue for reductive monoids.

This monoid Bruhat decomposition allows us to express the monoid as a disjoint union

of double cosets (for a given Borel subgroup) indexed by a finite structure called the Renner

monoid (the monoid analogue of the Weyl group). The importance of this decomposition is

that it allows many questions about the nature and structure of the monoid to become simpler

questions about the Renner monoid.

Unlike groups, semigroups and monoids bring an additional structure in the form of Greens

relations, which characterise the elements of the semigroup in terms of the ideals they generate.

So important are Greens relations that Scottish semigroup theorist, John Mackintosh Howie,

once said, “on encountering a new semigroup, almost the first question one asks is ‘What are

the Green relations like?’ ”. In reductive monoids, we denote these relations by J , L , R

and H . A natural question is how do these relations interact with the Bruhat decomposition?

What additional information can they tell us?

Of particular focus is the H relation, which has many interesting and desirable proper-

ties. H -classes most closely resemble groups (indeed the H -class of an idempotent element

forms a group), and so their structure is the one most likely to form a bridge between the Ren-

ner monoid and the information we know from the better understood Weyl groups. One way

we can investigate this structure is by decomposing our monoid, not in terms of the Bruhat

decomposition, which is indexed by elements of the Renner monoid, but in terms of a disjoint

union of double cosets of the H -classes of the Renner monoid. These are the so-called fat

H -classes.

In the following section of this paper, we will recall some the basic results about regular

algebraic semigroups and the Bruhat decomposition, so that readers may proceed with the
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appropriate amount of background information. We will also take a look at the nature of

Green’s relations on regular semigroups and Renner monoids, as these structures are the basis

of the paper and we require readers to be familiar with their properties.

In Section 3, we will recall some of the results presented by Renner in [28], the paper

that first introduced the notion of fat H -class. In [28], Renner presents a decomposition for

elements in the Renner monoid, R, which he has dubbed “the trichotomy”. We will introduce

our own decomposition (Theorem 3.21) that is incredibly similar, but which is more in line

with Green’s relations and affords us easier analysis later on. Our new trichotomy in particular

allows us to better describe the Adherence order on H -, R- and L -classes (Theorem 3.30)

which will become an underlying goal in the majority of the paper.

After a number of results with our new trichotomy decomposition, we will move into Sec-

tion 4, wherein we will deal with the fat H -classes head on. In addition, we will also con-

sider the analogous fat J -classes, fat L -classes and fat R-classes. These structures have

been studied at one time or another under different names (for example in the works, [20] and

[29]). In this way we will get a more robust picture of the fat H -classes and truly under-

stand where some of the results come from. Our trichotomy will feature prominently in our

analogous Bruhat decomposition in terms of fat H -classes, fat R-classes, fat L -classes and

fat J -classes. In particular, we will characterize the natural analogue of the Bruhat order,

BTrB ⊆ BTsB for T = J (Corollaries 4.11 and 4.20), = L ,R (Theorem 4.17), and = H

(Theorem 4.25).

In the fifth section we will extend the monumental work of Pennell, Putcha and Renner

in [17], where they were able to determine the Adherence order relation between any two

elements of the Renner monoid, provided they are in “standard form” (Definition 5.29 and

Theorem 5.31). Specifically, we will use our trichotomy decomposition to devise a whole new

form (Definition 5.36) for elements of the Renner monoid. This form will allow one to more

easily determine the J -, R-, L - and H -classes of the element (Proposition 5.43). We will

then show how to use this new form to determine the Adherence order relation (Theorem 5.41),

and to glean new information on the structure of the posets given by individual equivalence

classes and the Adherence order (Theorem 5.44).

We then triumphantly progress to Section 6, where we put our new structure information to
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use, and determine maximal and minimal elements in every single J -, R-. L - and H -class

(Theorems 6.17 and 6.13). In a remarkable twist of fate, these elements will belong to well-

known, well-behaved sets. The decomposition of elements of the Renner monoid allows us to

explore some of the structure of the (R,≤) poset (Theorem 6.40).

For Section 7, we will generalise many of our previous combinatorial results in terms of

new equivalence relations which are based on the standard parabolic subgroups of the Weyl

group, W (Definition 7.1). These new equivalence relations will allow us to bridge the gap

between the Bruhat decomposition that we are used to (in terms of double cosets of single

elements) and the Bruhat decompositions of Section 4 (which are in terms of fat classes). Our

newfound relations will also allow us to generalise the Adherence order in the only logical way,

by considering containment relations on double cosets involving parabolic subgroups, not just

a specified Borel subgroup (Corollary 7.19).

Sections 8 and 9 explore the geometric impact of Green’s relations. Section 8 concerns the

supports of regular irreducible algebraic semigroups from [24]. In particular, using geometric

invariant theory along with Putcha’s determinant (Definition 8.20) and the so-named Renner

maps (Proposition 8.28), we will show that if such semigroups have a 0, then their supports are

projective varieties (Conjecture 8.7 and Theorem 8.40), a strengthening of the quasiprojective-

ness shown in [24].

In the final section, Section 9, we will introduce an exciting new way to construct algebraic

semigroups by specifying certain Green’s equivalence classes ahead of time (Definition 9.6).

We will show that certain normal irreducible regular algebraic semigroups with 0 are invariant

under this construction (Theorem 9.23). As an example, we will use some of our fat T -class

results to show how this construction can recreate a natural generalisation of determinantal

varieties (Theorem 9.41 and Corollary 9.43).
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2 Background

Readers interested in the results presented in this paper should be familiar with the funda-

mental results concerning Green’s relations, regular semigroups and reductive monoids. This

introductory section will refresh the memories of the reader and phrase well-known results in

the language presented in this paper.

The results presented here will be assumed background material and will not be explicitly

referenced later. There are a few ancillary results to be found in the Appendix. For the most

part they will be results basic to semigroup theory or algebraic geometry, but not results that

one may typically come across. Proofs of those results are given there.

As they are the primary object of study, we will take the time now to define algebraic

semigroups.

Definition 2.1. We say an affine variety, S , is a linear algebraic semigroup if it has an asso-

ciated morphism µ : S × S → S so that (S , µ) forms a semigroup (that is, µ is associative). A

linear algebraic semigroup is called a linear algebraic monoid if it also contains an element,

1 ∈ S so that 1 acts as a two-sided identity element for µ.

We say that an algebraic semigroup (algebraic monoid) is irreducible if it is irreducible as

a variety.

Example 2.2. The natural example of an algebraic monoid is the n × n matrices, Mn(K) with

the morphism µ(A, B) := AB, the usual matrix multiplication, and usual identity element, In.

Any finite semigroup (resp. monoid) is an algebraic semigroups (resp. algebraic monoid).

For any algebraically closed field, K, the set {(a, b, c) ∈ K3 | a2c3 = b7} is an algebraic

monoid with coordinate-wise multiplication and identity element (1, 1, 1).

Being groups (and hence monoids and semigroups), any algebraic group is an algebraic

monoid and an algebraic semigroup.

Both books [20] and [7] have excellent introductory sections concerning the basic proper-

ties of algebraic semigroups.

We must note that some of our sources use the term connected to refer to an irreducible

semigroup (monoid). This is a holdover from algebraic group theory which we will not be
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continuing in this paper. As such, some of the wording of statements may appear to change

between this paper and its references. This is purely cosmetic.

One of the most basic structure theorems about algebraic semigroups is the following result.

Theorem 2.3. Let S be a linear algebraic semigroup (monoid), then S is isomorphic to a

Zariski closed subsemigroup (submonoid) of Mn(K), the set of n×n matrices over algebraically

closed field K, for some n and some K.

Proof. This is the remarkable Theorem 3.15 and Corollary 3.16 contained in [20]. �

Example 2.4. With our monoid, {(a, b, c) ∈ K3 | a2c3 = b7} from before, we can write it as the

closed subset of the 3 × 3 matrices, {


a 0 0

0 b 0

0 0 c

∈ M3(K) | a2c3 − b7 = 0} and one can observe that

the coordinate multiplication we mentioned in Example 2.2 turns into multiplication of 3 × 3

matrices.

This is exactly in line with what one would expect as it is well-known that algebraic groups

are all closed subgroups of some GLn(K). Indeed, many of the basic algebraic semigroup

theory results have algebraic group counterparts.

One of the main things that separates semigroups and monoids from groups is the potential

presence for nonidentity idempotents.

Definition 2.5. For a semigroup S , the set of idempotents is E(S ) := {s ∈ S | ss = s}.

Indeed, algebraic semigroups are known to always have at least one idempotent.

Proposition 2.6. Let S be an algebraic semigroup. Then E(S ) , ∅.

Proof. This can be found as Proposition 1 in Michel Brion’s On Algebraic Semigroups and

Monoids paper, [6]. �

2.1 Green’s Relations

The underlying connecting theme of this paper is the equivalence relations known as Green’s

relations. These were relations on semigroups (sets with an associative binary operation) intro-

duced in 1951 by James Alexander Green. Before defining the relations, we start with a simple

semigroup-theoretic definition.
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Definition 2.7. For a semigroup, S , define the semigroup, S 1, to be S if S has already an

identity element, and the semigroup S ∪ {1} with multiplication, a · b =


a · b if a, b ∈ S

a if b = 1

b otherwise

for

all a, b ∈ S ∪ {1}.

The advantage of S 1 is that unlike an ideal such as, aS , we can guarantee that a ∈ aS 1. This

is nice, because one would expect the ideal generated by an element to contain that element.

Green’s relations on semigroups are defined in terms of ideals using S 1.

Definition 2.8. Let S be an arbitrary given semigroup. We define the Green’s relations on S ,

J , R, L , D , and H , as follows. For any two elements, a, b ∈ S ,

aJ b if and only if S 1aS 1 = S 1bS 1

aRb if and only if aS 1 = bS 1

aL b if and only if S 1a = S 1b

aDb if and only if there exists c ∈ S so aRc and cL b

aH b if and only if aRb and aL b

Each of Green’s relations is an equivalence relation on the elements of S . On a group, the

Green’s relations become trivial, as there is only one equivalence class.

Proposition 2.9. For an algebraic semigroup, S , J = D . That is, for any a, b ∈ S , aJ b if

and only if aDb.

Proof. This is a combination of Theorem 1.4 in [20] which states that J = D is S is an

sπr-semigroup, and Theorem 3.18 in the same reference which shows that all algebraic semi-

groups are sπr-semigroups. �

This leaves us with just four equivalence relations to investigate.

Example 2.10. For n× n matrices over an algebraically closed field, K, the J -classes have a

definition based off a well-known property. For a given matrix, A ∈ Mn(K), if JA if the J -class

of A then we can write JA = {B ∈ Mn(K) | rk(B) = rk(A)}, where rk denotes the familiar rank

function from linear algebra.
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It would follow from our example that Mn(K) has exactly n + 1 J -classes, one for each

possible matrix rank, rk(A) = 0, 1, 2, · · · , n.

Definition 2.11. Let a, b ∈ S , and let Ja and Jb be the respective J -classes. We can define a

partial order on the J -classes as follows, Ja ≤ Jb if and only if S 1aS 1 ⊆ S 1bS 1.

Example 2.12. For n × n matrices the partial order on J -classes is identical to the order of

the rank. So for matrices A, B ∈ Mn(K), JA ≤ JB if and only if rk(A) ≤ rk(B).

In addition to the partial order on J -classes, we can also define a partial order on the idem-

potents of our semigroups. When we introduce the Adherence order on the Renner monoid we

will have a third partial order to contend with. It is extremely fortunate that the work in papers

like [17] have demonstrated that these are all compatible with one another. It is something we

will touch on again in Section 4.

Definition 2.13. Let e, f ∈ E(S ) be idempotents. We can define a partial order on the idempo-

tents of S as follows, e ≤ f if and only if e f = e = f e.

Proposition 2.14. For idempotents, e, f ∈ E(S ), f ≤ e implies J f ≤ Je.

Proof. Since e f = f = f e and f ∈ S 1 we can see that f = e f ∈ S 1eS 1. Thus it follows,

S 1 f S 1 ⊆ S 1eS 1. �

The J relation generalises the notion of rank from n × n matrices. The classes of the H

relation in some sense provides an analogue of algebraic subgroups. In an amazing theorem,

Green showed that for an H -class, H, either H ∩ H2 = ∅ or H is a group. Indeed, if one takes

a look at an idempotent e ∈ S , then He, the H -class of e is a group with e as the identity

element. As we often wish to relate algebraic semigroups and algebraic monoids back to the

much studied algebraic groups, H -classes are a source of particular interest.

As our notation has already hinted at, we will use the script letter (J , R, L , H ) to

denote the relation itself, and the common letter (J, R, L, H) to refer to the classes (L -class

for example). For the class of a particular element, say s ∈ S we will use the common letter

and a subscript to denote the element (Ls for example).
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Many of our results can be applied to each of the four Green’s relations. If we wish to make

a statement for all of the relations, we will use a stand-in symbol, T . We will often say ‘let T

be one of J , R, L , or H .’ The T -class of an element s ∈ S will be denoted Ts.

Frequently in this paper we will use the symbol T to denote a generic Green’s relation. We

will employ this notation to save space when a result covers each of J , R, L , and H , though

the proofs for each case may vary. For instance, we will later talk about how fat T -classes (sets

of the form BTrB for some r ∈ R) have their own sort of Bruhat decomposition, but we are

getting ahead of ourselves.

One thing we can say concerning Green’s relations on linear algebraic semigroups is the

following result, showing that they are quasiaffine varieties.

Proposition 2.15. Let S be a linear algebraic semigroup and let e ∈ E(S ). Then Je, Re, Le,

and He are relatively open subsets of S eS , eS , S e, and eS e respectively (here, as in the rest of

the paper, signifies the closure). In particular, Je, Re, and Le are quasiaffine varieties and

He is a linear algebraic group, the group of units of the algebraic monoid, eS e.

Proof. This proposition comes from remarks made in the second section of [24], most notably

Theorem 2.2. �

This next result allows us to relate the structure of a J -class for an idempotent to that

idempotent’s H -, L -, and R-classes.

Lemma 2.16. Take an algebraic semigroup, S and pick e ∈ E(S ). Fix representatives, Γ = {`i}

of Le/He and ∆ = {r j} of Re/He. Then, Je =
⊔

`i∈Γ,r j∈∆
`iHer j

Proof. The set Je ∪ {0} forms a completely simple semigroup by the multiplication of two

elements a, b ∈ J defined as a ◦ b =

 ab if ab ∈ J

0 otherwise
. As Putcha remarks in [24], J ∪ {0} is a

Rees matrix semigroup with sandwich map, P : ∆ × Γ → He ∪ {0}. It is from here and Rees’

paper, [26] which gives the result. �

2.2 Normality and Regularity

While some of the algebraic geometry and semigroup theory background we will use in

this paper is contained in the Appendix, there are two notions we will need in Sections 8 and 9
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which enhance the narrative we have laid out in the abstract and introduction. As such they bare

explaining early on, and in a prominent position. These concepts are normality and regularity.

Normality is a geometric property coming from the underlying variety of an algebraic semi-

group.

Definition 2.17. A point x ∈ X in a variety is normal if the local ring OX,x is an integral

domain which is integrally closed in its field of fractions.

A variety, X, is called normal if every point of X is normal.

Example 2.18. Every linear algebraic group is normal. See §AG.17, §AG.18 and the first

Proposition in Chapter I of [3].

The algebraic semigroup, Mn(K), is normal as a variety. Indeed, Mn(K) � Kn2
, and affine

space for any dimension is normal (see [35]’s Example 17.1.6).

Not every variety is a normal one, however to any variety we can associate a unique normal

variety.

Definition 2.19. For any irreducible algebraic variety, X, the normalisation of X consists of

the unique irreducible normal variety, X̃, with finite birational morphism η : X̃ → X.

For affine algebraic varieties, X, at the level of coordinate algebras, if X̃ is the normalisation

of X then O(X̃) is the integral closure of O(X). When combined with the additional multipli-

cation structure of algebraic semigroups and algebraic monoids, we get an interesting result

with the normalisation. Namely the normalisation of an algebraic semigroup is (usually) also

an algebraic semigroup.

Proposition 2.20. If the multiplication morphism µ : S × S → S is dominant, then the nor-

malisation, S̃ , of S has a unique algebraic semigroup law µ̃ such that η is a homomorphism.

Proof. This result can be found in Section 2.5 of Brion’s [6]. �

For algebraic monoids, µ is always dominant, so the normalisation of the monoid turns out

to also be a monoid (Proposition 3.15, [30]). However, for algebraic semigroups the result does

not always apply (consider the trivial semigroup operation, a · b = c for some constant c, for

all a, b which is not a dominant morphism).
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Theorem 2.21. If X and Y are two irreducible normal varieties then X × Y is also a normal

variety.

Proof. Proposition 17.3.2 from [35]. �

The second property, which will inform our later study is the semigroup theoretic regularity

property.

Definition 2.22. Let S be a semigroup, and let a ∈ S . We say a is regular if there exists x ∈ S

so that axa = a. For T = J , R, L , or H we say a T -class, T ⊆ S , is regular if all its

elements are regular. S is called regular if all its elements are regular.

For a given a ∈ S , the element x ∈ S in the definition is referred to as a pseudoinverse.

If additionally, xax = x we say x is an inverse of a. If x is just a pseudoinverse of a then

xax is an inverse of a. We use the indefinite article as there can potentially be more than

one pseudoinverse (inverse). A regular semigroup with unique inverses is known as an inverse

semigroup. The condition of being an inverse semigroup is equivalent to the set of idempotents

E(S ) being commutative.

Example 2.23. The monoid of Mn(K) matrices is regular. In fact, if A is any matrix in Mn(K),

then A+, the Moore-Penrose pseudoinverse, is a well-known matrix which is a semigroup theo-

retic inverse of A.

Every group is also regular. Indeed, they are inverse semigroups!

Every semigroup we study in this paper will be regular, unless explicitly stated otherwise.

The structure of regular semigroups is highly susceptible to analysis with Green’s relations.

Definition 2.24. U(S ) is the set of all regular J -classes of S . For our choice of S in this

paper, this will just be all J -classes of S . We obtain a partial order on U(S ) by defining

J′ ≤ J if J′ ⊆ S 1JS 1.

It is a result of Putcha (5.10 in [20]) that for irreducible S ,U(S ) is a finite lattice.

Proposition 2.25. If S is a regular semigroup then for all x ∈ S , S 1xS 1 = S xS .
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Proof. It is clear that S xS ⊆ S 1xS 1. Suppose that y ∈ S 1xS 1\S xS . Then y ∈ S x, xS or {x}.

Since x is regular we can find z ∈ S so xzx = x. If y = sx then y = sxzx ∈ S xS . If y = xs, then

y = xzxs ∈ S xS . If y = x then y = xzx = xzxzx ∈ S xS . By contradiction, S 1xS 1 = S xS . �

As a result of this proposition, our partial order onU(S ) simplifies to J′ ≤ J if and only if

J′ ⊆ S JS . As we head into reductive monoids, we shall see some more equivalent definitions

of the partial order on J -classes.

Although regularity is primarily a semigroup-theoretic concept, our last result in this sec-

tion gives us an important geometric intuition for regular semigroups.

Proposition 2.26. For any regular algebraic semigroup, S , and any x ∈ S , the set S xS is

closed in S .

Proof. By Corollary 2.4 in [22], every ideal of S is closed. Since S 1S xS S 1 ⊆ S xS we see that

S xS is an ideal and hence closed. �

2.3 Reductive Monoids

A particular class of algebraic monoids which has received an enormous amount of atten-

tion over the years is the reductive monoid, which is a linear algebraic monoid whose group

of units is reductive. For interested readers, Solomon’s An Introduction to Reductive Monoids

([34]) is a superb resource for reductive monoids.

Proposition 2.27. Let M be an irreducible algebraic monoid.

(1) If M is reductive then M is regular.

(2) If M has a zero and is regular then M is reductive.

Proof. (1) is a consequence of Theorem 4.4 in [30]. (2) comes from Theorem 4.2 in the same

source. �

Through the first several sections of this paper, we shall fix an irreducible reductive alge-

braic monoid and denote it by the usual letter, M.

Let G denote the group of units of M, an irreducible reductive algebraic group. Recall

that M being reductive means exactly that G is reductive (that is, the unipotent radical of G is
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trivial). Within G, fix a Borel subgroup, B (a maximal closed connected solvable group) and,

within B, fix a maximal torus T . By the work of Renner in [27] we know that we can write

M =
⊔

r∈NG(T )/T BrB (recall from algebraic group theory that NG(T ) denotes the normalizer in

G of T ). This is the Bruhat decomposition for reductive algebraic monoids.

Theorem 2.28. If M is a reductive algebraic monoid and B is a Borel subgroup of its group of

units. Let T be a maximal torus of B. Then,

(1) R := NG(T )/T is a finite inverse monoid

(2) E(R) = E(T )

(3) the group of units of R is W := NG(T )/T

(4) M =
⊔

r∈R BrB

(5) G =
⊔

w∈W BwB

Proof. This result is stated in many locations, but a good reference would be Chapter 8 of

[30]. �

The quotient NG(T )/T is known as the Renner monoid which we denote throughout this

paper by R. We will often distinguish elements of R by representatives in M of the cosets of

T . We might write x ∈ M to mean the element associated to the coset xT = T x ∈ NG(T )/T .

Fixing our choice of B and T to define R and give the Bruhat decomposition also grants us

other fixed structures. The most immediately relatable to the Bruhat decomposition of algebraic

groups is the Weyl group, W, NG(T )/T . The Weyl group is a finite Coxeter group and has been

very well studied (one book we will use for the Weyl group is [2]).

Our distinguished Borel subgroup, B, allows us to give the elements of W a notion of length,

`(w) := dim(BwB)−dim(B). This length definition has been extended to R (see Definition 3.4).

Using this length function, we can define the set of simple reflections S = {s ∈ W | `(s) = 1}.

S generates W and for each w ∈ W. As it turns out, ` not only has the geometric dimension

information from its definition but also coincides with a combinatorial property. `(w) is the

length of every minimal word (of simple reflections) for w ∈ W.

It is well-known that (W, S ) is a Coxeter group, and so has a partial order on it called the

Bruhat order. We can define this property geometrically with B and thereby extend it to the

whole monoid.
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Definition 2.29. For any two elements, r, s ∈ R we say that r ≤ s if and only if BrB ⊆ BsB.

It does not take too long to determine that this relation makes (R,≤) a partial order, which

we call the Adherence order.

We have already encountered one partial order, but it was on a semigroup’s J -classes. It

turns out to be related to the idempotents of M and also the Adherence order. Putcha notes the

following definition in [20].

Definition 2.30. A set, Ψ ⊆ E(T ) is called a cross sectional lattice if

(i) |J ∩ Ψ| = 1 for all J ∈ U(S )

(ii) e, f ∈ Ψ, Je ≤ J f implies e ≤ f

With respect to a fixed Borel subgroup, B, we have two natural cross sectional lattices. The

sets Λ := {e ∈ E(R) | Be ⊆ eB} and Λ− := { f ∈ E(R) | f B ⊆ B f } are cross sectional lattices.

Theorem 2.31. The partial order, (R,≤) extends the partial orders (W,≤), (Λ,≤) and (Λ−,≤).

Proof. Although we will investigate these properties and the Adherence order in depth in Sec-

tion 5, it should be noted early on that this result is a consequence of Theorem 1.4 and Corollary

1.5 of [17] and the symmetrical work presented in Appendix A.2. �

As a consequence, if e, f ∈ Λ then e ≤ f in the Adherence order if and only if e ≤ f in the

usual idempotent partial ordering if and only if J f ≤ Je.

While on the subject of J -classes, we can note that our definitions of Green’s relations

can be somewhat simplified and written in terms of the group of units of our two monoids M

and R.

Proposition 2.32. For any a, b ∈ M,

(1) aH b if and only if we can find e, f ∈ E(M) and g, h ∈ G so that a = eg = g f

and b = eh = h f

(2) aL b if and only if Ga = Gb

(3) aRb if and only if aG = bG

(4) aJ b if and only if GaG = GbG

For any a, b ∈ R,
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(5) aH b if and only if we can find e, f ∈ E(R) and g, h ∈ W so that a = eg = g f

and b = eh = h f

(6) aL b if and only if Wa = Wb

(7) aRb if and only if aW = bW

(8) aJ b if and only if WaW = WbW

Proof. This is a consequence of both M and R being unit regular monoids (monoids such

that for any m ∈ M there is a unit g ∈ G so that mgm = m). As a consequence of being

unit regular we can write these monoids in terms of their idempotents and group of units:

M = E(M)G = GE(M) and R = E(R)W = WE(R) from which the result follows. �

As it turns out, sinceΛ provides a cross sectional lattice forR, we can writeR =
⊔

e∈ΛWeW.

The group of units certainly simplifies Green’s relations, but the Weyl group in R affords us

more structure. In particular, being a finite Coxeter group there is a longest element w0 ∈ W.

This element is maximum in the Bruhat order and thus is maximum in the Adherence order.

(W, S ) is a Coxeter system, and considering subsets I ⊆ S of the generating set allows us to

generate subgroups of W. These subgroups, owing to their special nature, are given a specific

name, standard parabolic subgroups. Being finite, each of them also has a longest element

as well. For a set of generators, I, we denote the generated subgroup by WI . Returning back

to M, PI = BWI B is a standard parabolic subgroup of M in the sense that it is a parabolic

subgroup of M containing B. There is a one to one correspondence between the WI and the

subgroups P ⊆ G such that B ⊆ P.

At the level of the Borel subgroup, we have a unique opposite Borel subgroup, which we

denote B−, such that B ∩ B− = T . If w0 ∈ W is a longest element of our Weyl group, then

B− = w0Bw0.

As Renner notes in [27], there exists an antiinvolution, τ : M → M with the following

properties,

(1) τ2(x) = x for all x ∈ M

(2) τ(xy) = τ(y)τ(x) for all x, y ∈ M

(3) τ |T= id

(4) τ(B) = B−
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(5) τ induces a map τ : R → R so that τ(x) = x∗ for all x ∈ R (where ∗ is the

pseudoinverse on R)

Using τ we achieve the last of our background results.

Proposition 2.33.

(1) Λ = {e ∈ E(R) | eB− ⊆ B−e}

(2) Λ− = { f ∈ E(R) | B− f ⊆ f B−}

(3) Λ = w0Λ
−w0

Proof. Using τ, eB− = τ(e)τ(B)τ(Be) ⊆ τ(eB) = τ(B)τ(e) = B−e. The Λ− result follows

similarly. For (3), observe e ∈ Λ if and only if Be ⊆ eB if and only if w0Bew0 ⊆ w0eBw0

(because int(w0) is an automorphism) if and only if w0Bw0w0ew0 ⊆ w0ew0w0Bw0 if and only if

B−w0ew0 ⊆ w0ew0B− if and only if w0ew0 ∈ Λ
−. �

2.4 Example

The standard example for a reductive algebraic monoid is the matrix monoid, Mn(K), where

n is a positive integer and K is an algebraically closed field. The monoid consists of all n × n

matrices over K. The group of units of this monoid is none other than GLn(K), the invertible

n × n matrices over K. Being reductive it is also an excellent example of a regular algebraic

semigroup and one we will use for examples later on.

For an example towards the Bruhat decomposition, one usually takes T to be the invertible

diagonal matrices and B to be the invertible upper triangular matrices. It follows that the

opposite Borel subgroup, B−, is the set of invertible lower triangular matrices. The normalizer

NG(T ) can then be worked out to be the set of monomial matrices (those that have exactly one

nonzero entry in each row and column). Then NG(T ) can be seen to be the set of matrices

having at most one nonzero entry in each row and column.

Our Weyl group is just W = NG(T )/T which one can consider as the permutation matrices

(and in this way we see W � S n). The simple reflections of W are exactly the n − 1 pairwise

transpositions of S n. As matrices they are, (k k + 1) =



Ik−1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 In−k−1


for each 1 ≤ k ≤ n − 1.

The Renner monoid, as one would expect, is the set of matrices with only 0s and 1s for entries
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(called 0-1 matrices) with the added condition that there is at most one nonzero entry in each

row and column. For example, in M2(K) we get the following Renner monoid,

R =
{  1 0

0 1

 ,
 0 1

1 0

 ,
 1 0

0 0

 ,
 0 0

0 1

 ,
 0 1

0 0

 ,
 0 0

1 0

 ,
 0 0

0 0

}
Notice also that the first 2 elements form our Weyl group. The cross sectional lattices consist

of the elements,

Λ =
{  1 0

0 1

 ,
 1 0

0 0

 ,
 0 0

0 0

} Λ− =
{  1 0

0 1

 ,
 0 0

0 1

 ,
 0 0

0 0

}
and in general, e ∈ Λ means e =

 Im 0

0 0

 and e ∈ Λ− means e =
 0 0

0 Im

.
When it comes to determining Green’s relations on Mn(K), there are not any quick ways to

determine the relations, but as was mentioned before, two elements are in the same J -class if

they have the same rank. This means that in Mn(K) there are n + 1 different J -classes. The

Green’s relations of the Renner monoid of Mn(K) are a tad easier to determine, as the matrices

are 0-1 matrices and hence easier to process at a glance.

For two elements r, s ∈ R, we have the following shortcuts. To start, rJ s if and only if r

and s have the same rank, which is the same as the number of 1s in their expression. So rJ s

if and only if r and s have the same number of 1s. rL s if and only if their nonzero columns are

in the same position. Below, the pair of matrices on the left are in the same L -class, whereas

the pair on the right are not, since the first column in the first matrix is nonzero, but the first

column in the second matrix is zero.

0 0 0 1

0 1 0 0

0 0 0 0

0 0 0 0





0 0 0 0

0 0 0 1

0 1 0 0

0 0 0 0





0 0 0 0

0 0 0 0

0 0 1 0

1 0 0 0





0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 0


Likewise rRs if and only if their nonzero rows are in the same position. Below, the left

pair of matrices are R equivalent, but once again the pair on the right are not. This can be seen

since the third row is zero in the first matrix, but is nonzero in the second matrix.

0 0 0 0

1 0 0 0

0 0 0 0

0 1 0 0





0 0 0 0

0 0 0 1

0 0 0 0

0 0 1 0





0 0 0 1

0 1 0 0

0 0 0 0

0 0 0 0





0 0 0 0

0 0 0 1

0 1 0 0

0 0 0 0


Combining these last two results, we see that rH s if and only if the nonzero columns are

in the same positions and the nonzero rows are in the same positions. Another way of phrasing
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this is to say that the unique invertible minors of r and s that have size rank(r) and rank(s) are

formed by considering the same set of entries. For example, the pair of matrices on the left

are in the same H -class, whereas the pair on the right are not. The pair on the right are in the

same R-class, but are not in the same L -class.

0 0 0 0

1 0 0 0

0 0 0 1

0 1 0 0





0 0 0 0

0 1 0 0

1 0 0 0

0 0 0 1





1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1





0 0 1 0

0 0 0 1

0 0 0 0

0 1 0 0


The Adherence order on Mn(K) can be calculated using one of two methods.

For a given matrix, r, take the first k columns from the left, arrange them in the staircase

pattern, with 0 columns on the left. Replace the other columns with all zeros. This defines

matrix rk. Similarly we can construct sk. If the staircase pattern for sk lies consistently lower

than the staircase pattern for rk we say rk ≤ sk. If rk ≤ sk for all the choices of k = 1, · · · , n

then we say r ≤ s.

For example, let us consider the matrices r =



0 0 0 0 1 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0


and s =



0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

1 0 0 0 0 0


from M6(K).

Following the procedure, we get the following pairs of matrices,

r1 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0


s1 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0


r2 =



0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0


s2 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0



r3 =



0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0


s3 =



1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


r4 =



0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0


s4 =



1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0



r5 =



0 1 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


s5 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


r6 =



0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


s6 =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


Since r1 ≤ s1, r2 ≤ s2, r3 ≤ s3, r4 ≤ s4, r5 ≤ s5, and r6 ≤ s6, we can see that r ≤ s in the

Adherence order.

The other way to determine ≤ on Mn(K) is to use the same procedure but order the first

k rows from the bottom rather than the first k columns from the left. Our comparison also

changes. ri ≤ si if and only if the staircase pattern for si is consistently further left than the

staircase of ri. Further details of the Adherence order on Mn(K) can be found in the following

paper, [8].
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With some concrete examples and base information in hand, we may now proceed to our

first topic, investigating Green’s relations on reductive monoids.
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3 A New Trichotomy

The purpose of this section is to introduce a decomposition for elements of the Renner

monoid, R, into a product of elements that allow us to easily describe Green’s relations for

the original element. A similar decomposition was provided by Renner in [28], and is the

inspiration for our work, and indeed for our investigation of fat H -classes in Section 4.

3.1 Previous Results

We will begin by recalling some important results from [28] and adding in our own results

and notation. To start we note this classic result.

Proposition 3.1. For all e ∈ Λ, there is a unique element, ν ∈ WeW such that Bν = νB. In

particular, ν = eσ = σ f , where f ∈ Λ− and σ is the element of minimal length such that

σ−1eσ = f .

Proof. See [28], Proposition 1.2. �

Definition 3.2. N = {r ∈ R | rB = Br}

Phrasing Proposition 3.1 in the language of J -classes gives us the following remark.

Corollary 3.3. N � R/J . That is to say, if r, s ∈ R, rJ s and r, s ∈ N , then r = s, and for

all r ∈ R, there is s ∈ N with rJ s.

Proof. This comes straight from Proposition 3.1 and the fact that the sets WeW for e ∈ Λ are

exactly the J -classes of the Renner monoid. �

The fact that for each r ∈ R there is a unique ν ∈ N so that rJ ν gives rise to the following

definition for the length of an element of the Renner monoid. This definition extends the usual

notion of length on the Weyl group.

Definition 3.4. Define the length function on the Renner monoid, ` : R → N to be,

`(r) = dim(BrB) − dim(BνB), for each r ∈ R, where ν ∈ N is unique so that rJ ν.

A weakening of the condition rB = Br has been investigated by Renner in his papers [27]

and [29] when he explored the analogue of the Gauss-Jordan matrices.
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Definition 3.5. GJ = {r ∈ R | Br ⊆ rB}

Definition 3.6. JG = {r ∈ R | rB ⊆ Br}

The sets can be viewed as an analogue of sorts of Λ and Λ−. From the definition, the

following two results are clear.

Proposition 3.7. N = GJ ∩ JG.

Proof. r ∈ N if and only if Br = rB if and only if Br ⊆ rB and rB ⊆ Br if and only if r ∈ GJ

and r ∈ JG if and only if r ∈ GJ ∩ JG. �

Proposition 3.8. For r ∈ R,

(1) r ∈ GJ if and only if BrB = rB

(2) r ∈ JG if and only if Br = BrB

Proof. (1) Suppose that s ∈ rB, then we can find b ∈ B so that s = rb. Since 1 ∈ B it follows

that s = 1s = 1rb ∈ BrB. So rB ⊆ BrB. So it suffices to show that r ∈ GJ if and only if

BrB ⊆ rB. Suppose that BrB ⊆ rB. Take an arbitrary s ∈ Br. Then we can find b ∈ B so

that s = br. Since 1 ∈ B it follows that s = s1 = br1 ∈ BrB. So Br ⊆ BrB ⊆ rB, or simply,

Br ⊆ rB.

Conversely, suppose that r ∈ GJ . If s ∈ BrB then we can find b1, b2 ∈ B so that s = b1rb2.

Notice that r ∈ GJ means that Br ⊆ rB, so we can find b3 ∈ B so that b1r = rb3. Then

s = b1rb2 = rb3b2 ∈ rB as B is closed under multiplication. Thus BrB ⊆ rB.

(2) is demonstrated similarly. �

These sets of matricesGJ , for the Gauss-Jordan elements, andJG, which are the analogue

of the anti-column reduced matrices, will play a great deal of importance in this paper. This

is largely due to the following result, which shows that GJ is a set of representatives of the

L -classes of R, and JG is a set of representatives of the R-classes of R.

Theorem 3.9.

(1) GJ � R/L . That is to say, if r, s ∈ R, rL s and r, s ∈ GJ , then r = s, and for

all r ∈ R, there is s ∈ GJ with rL s.

(2) JG � R/R. That is to say, if r, s ∈ R, rRs and r, s ∈ JG, then r = s, and for

all r ∈ R, there is s ∈ JG with rRs.
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Proof. The proof of (1) can be given from Corollary 9.4 in [27]. The proof of (2) is done

similarly. �

Now we come to the last set that we will need for our trichotomy. This is the set of order

preserving elements, O, which was first described in [28].

Definition 3.10. O = {r ∈ R | rBr∗ ⊆ Brr∗}

One might guess that, as Green’s relations are factoring heavily into our motivation, and

we have sets corresponding to J , L and R, that O will correspond to the H relation. This

is indeed correct as the next result tells us.

Theorem 3.11. O � R/H . That is to say, if r, s ∈ R, rH s and r, s ∈ O, then r = s, and for all

r ∈ R, there is s ∈ O with rH s.

Proof. This is a combination of Lemma 2.6 and Theorem 2.8 in [28]. �

Definition 3.10 is not the only way to describe O as we see in the next proposition.

Proposition 3.12. r ∈ O if and only if rBr∗ ⊆ rr∗B if and only if rBr∗ ⊆ rr∗Brr∗.

Proof. The result can be found by applying Corollary 2.3 in [28], by Renner. �

Proposition 3.13. O = w0Ow0, O = O∗

Proof. The first result is from Proposition 2.4 in [28]. The second result is Proposition 2.5 in

the same paper. �

Corollary 3.14. r ∈ O if and only if r∗Br ⊆ Br∗r if and only if r∗Br ⊆ r∗rB if and only if

r∗Br ⊆ r∗rBr∗r.

Proof. By Proposition 3.13, we can just replace r by r∗ (and vice versa) in the original defini-

tion, Definition 3.10, and Proposition 3.12. �

From the definitions of GJ , JG and O we get the following result.

Proposition 3.15. JG,GJ ⊆ O.
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Proof. If r ∈ JG then by definition, rB ⊆ Br, multiplying on both sides does not change the

containment relation, so multiply by r∗. Then we see rBr∗ ⊆ Brr∗, meaning r ∈ O. For r ∈ GJ ,

we know that Br ⊆ rB. Thus, r∗Br ⊆ r∗rB, and it follows that r ∈ O. �

Proposition 3.16. E(R) ⊆ O

Proof. See [28], Lemma 2.2. The proof given by Renner amounts to using Proposition A.2

and the fact that e∗ = e for all idempotents. �

Proposition 3.17. Let r = eσ = σ f ∈ R for e, f ∈ E(R) and σ ∈ W. The following are

equivalent,

(1) r ∈ O

(2) Br ∩ rB = eBr

(3) Br ∩ rB = rB f

(4) eBr = rB f

Proof. See Proposition 2.9 in [28]. �

Proposition 3.18. Suppose that r ∈ R with r = eσ = σ f for e, f ∈ E(R) and σ ∈ W. Then,

(1) r ∈ JG if and only if f ∈ Λ− and r ∈ O

(2) r ∈ GJ if and only if e ∈ Λ and r ∈ O

Proof. We will prove the JG case, as the other is similar. By Proposition 3.15 it is clear that

r ∈ JG implies r ∈ O. If r ∈ JG then rB ⊆ Br, which we can rewrite as σ f B ⊆ Bσ f . It

follows that f B ⊆ σ−1Bσ f ⊂ G f . So if f b ∈ f B then f b = g f for some g ∈ G. Hence

f b = g f = (g f ) f = f b f . Then f B ⊆ f B f . But since f is an idempotent, Proposition A.2 tell

us that f B f ⊆ B f . Thus f B ⊆ B f and so f ∈ Λ−.

For the other direction, suppose that f ∈ Λ−, that is, f B ⊆ B f . This is equivalent to

f B f = f B. Then, rB = σ f B = σ f B f = rB f . Since r ∈ O we know rB = rB f = Br ∩ rB, by

Proposition 3.17, thus rB ⊆ rB. �

Corollary 3.19.

(1) Suppose that r, s ∈ JG, then rJ s if and only if rL s

(2) Suppose that r, s ∈ GJ , then rJ s if and only if rRs
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Proof. (1) Take r, s ∈ JG. If rL s then clearly rJ s, so we will focus on the only if condition.

Suppose that rJ s. Then there is a unique element f ∈ Λ− so that rJ f J s. But by Proposi-

tion 3.18 we see that r, s ∈ JG means that we can find σ, τ ∈ W so that r = σ f and s = τ f .

Thus rL s.

(2) is done similarly. �

The following result tells us something wonderful. The sets we have introduced in this

section have got some structure to them. Namely, they are all monoids.

Proposition 3.20. The sets, O, GJ , JG and N are all monoids.

Proof. Take r, s ∈ N . Then rB = Br and sB = Bs. We see that rsB = rBs = Brs, so rs ∈ N .

Suppose r, s ∈ GJ . Then Br ⊆ rB and Bs ⊆ sB. We see that rsB ⊆ rBs ⊆ Brs, so rs ∈ GJ .

Let r, s ∈ JG. Then rB ⊆ Br and sB ⊆ Bs. We see that Brs ⊆ rBs ⊆ rsB, so rs ∈ JG. Finally,

the case for O comes from Lemma 2.2 in [28]. �

In particular, this last result along with Proposition 3.13 show us that O is an inverse

monoid.

3.2 The Trichotomy

We have now gathered enough information about our sets O, JG, GJ and N to describe

our trichotomy. The following trichotomy is similar to the one presented by Renner in [28] but

with a twist to allow for our later work with fat H -classes. Our first theorem will state the

trichotomy, and its proof will be quite similar to the proof of Renner’s trichotomy, as indeed

we can derive our trichotomy from his (and vice versa). The proof is included as it makes some

use of the results we have just displayed.

Theorem 3.21. Let r ∈ R. Then there exist unique elements r−, r0, r+ ∈ R such that,

(1) r = r−r0r+

(2) r0H ν∗, where νJ r and ν ∈ N

(3) rRr− and rL r+

(4) r− ∈ JG and r+ ∈ GJ
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Proof. We begin by showing existence. Take an arbitrary r ∈ R. By Proposition 3.9 we can

find elements s ∈ JG and t ∈ GJ so that rRs and rL t. That means that we can find u,w ∈ W

so that su = r = wt. Now, by Proposition 3.18 we can write s = v f , for v ∈ W and f ∈ Λ− and

t = ed, for d ∈ W and e ∈ Λ. Consider z := v−1rd−1 = f ud−1 = v−1we.

Let ν ∈ N be the unique element from that set so that νJ r. Then ν = eσ = σ f , for some

σ ∈ W. It follows that ν∗ = fσ−1 = σ−1e. It is then clear that ν∗R f RzL eL ν∗, so then zH ν∗.

Define r0 = z. Let r− = s and r+ = t. One can see from our above work that r−, r0, r+ satisfy

properties (2), (3) and (4). Now we just note,

r = su = v f u = v f f ud−1d = r− f ud−1d = r−v−1wed = r−v−1weed = r−r0r+,

and so (1) is also satisfied.

For the uniqueness, suppose that we had two decompositions, r = r−r0r+ = r′−r
′
0r′+. It is

clear that by property (3), r−RrRr′− and r+L rL r′+. But since (4) tells us that r−, r′− ∈ JG and

r+, r′+ ∈ GJ , it follows by Proposition 3.9 that r− = r′− and r+ = r′+.

So, r = r−r0r+ = r−r′0r+. We can write r− = σ−e−, r0 = e−σ0 = e−σ0e+ = σ0e+ and

r+ = e+σ+ for idempotents, e+ ∈ Λ, e− ∈ Λ− and elements σ−, σ0, σ+ ∈ W. Thus, r∗− = e−σ−1
−

and r∗+ = σ
−1
+ e+. It follows that,

r∗−rr∗+ = e−σ−1
− σ−e−e−σ0e+e+σ+σ−1

+ e+ = e−σ0e+ = r0.

But also, since r′0H ν∗, we can also find a τ ∈ W so that r′0 = e−τ = e−τe+ = τe+. Then we

see that r∗−rr∗+ = e−σ−1
− σ−e−e−τe+e+σ+σ−1

+ e+ = e−τe+ = r′0. We conclude that r0 = r∗−rr∗+ = r′0,

and so the decompositions are identical. �

The first use of our trichotomy is that it allows us to compute the length of r in terms of r−,

r0 and r+. This is what we will establish soon, but first we need a few minor results.

Lemma 3.22. For r ∈ R, suppose that we can write r = f u = ve for some u, v ∈ W and some

e, f ∈ E(R). Then, Br ∩ rB = f Br ∩ rBe.

Proof. A proof is given by Renner, as Proposition 1.6 in [28]. �

Proposition 3.23. Take r ∈ R. Decompose it according to our trichotomy, r = r−r0r+. Then we

can find some σ, τ ∈ W, so that, Br ∩ rB = σ(Br0 ∩ r0B)τ.
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Proof. Write r0 = f−w = we+ for some w ∈ W and idempotents f−, e+. Then, by Proposition

A.1 we can write, r− = fσ = σ f− and r+ = τe = e+τ for some σ, τ ∈ W and e, f ∈ E(R). Then

since rL r+ and rRr− we can write r = f u = ve for some u, v ∈ W. So by Lemma 3.22,

Br ∩ rB = f Br ∩ rBe = f Br−r0r+ ∩ r−r0r+Be

⊆ r−Br0r+ ∩ r−r0Br+ by Proposition 3.17, since r−, r+ ∈ O

= σ f−Br0e+τ ∩ σ f−r0Be+τ

= σ( f−Br0e+ ∩ f−r0Be+)τ

= σ( f−Br0 ∩ r0Be+)τ

= σ(Br0 ∩ r0B)τ by Lemma 3.22, applied to r0. �

We are now in position to demonstrate the length of an element in terms of our new tri-

chotomy.

Proposition 3.24. Let r ∈ R, then `(r) = `(r−)− `(e−)+ `(r0)− `(e+)+ `(r+), where rJ e+ ∈ Λ,

rJ e− ∈ Λ−.

Proof. Due to this result’s similarity with Theorem 3.4 in [28], the following proof is under-

standably similar.

`(r) = dim(BrB) − dim(BνB) = dim(Br) + dim(rB) − dim(Br ∩ rB) − dim(BνB)

Since r−Rr, we can find σ− ∈ W so that r = r−σ−. Likewise, we can find σ+ ∈ W so that

r = σ+r+. Now, because dimension is preserved by automorphism,

= dim(Br−) + dim(r+B) − dim(Br0 ∩ r0B) − dim(BνB)

On the other hand,

`(r−) = dim(Br−B) − dim(BνB) = dim(Br−) − dim(BνB)

`(e−) = dim(Be−B) − dim(BνB) = dim(Be−) − dim(BνB)

`(e+) = dim(Be+B) − dim(BνB) = dim(e+B) − dim(BνB)

`(r+) = dim(Br+B) − dim(BνB) = dim(r+B) − dim(BνB)

by Proposition 3.8. Since r0H ν∗ we can find elements, τ−, τ+ ∈ W, such that e−τ− = r0 = τ+e+.

Thus,

`(e−) = dim(Br0) − dim(BνB)

`(e+) = dim(r0B) − dim(BνB)

We then notice,
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`(r−) − `(e−) + `(r0) − `(e+) + `(r+) = (dim(Br−) − dim(BνB)) − (dim(Br0) − dim(BνB))

+ (dim(Br0) + dim(r0B) − dim(Br0 ∩ r0B) − dim(BνB))

− (dim(r0B) − dim(BνB)) + (dim(r+B) − dim(BνB))

= dim(Br−) + dim(r+B) − dim(Br0 ∩ r0B) − dim(BνB)

as desired. �

There is a nice characterisation of the elements of O when we look at the trichotomy of a

given element.

Proposition 3.25. For r ∈ R, r ∈ O if and only if r0 ∈ N
∗.

Proof. Suppose that r0 = ν
∗. It is clear that ν ∈ O, so by Proposition 3.13 then ν∗ ∈ O. Since O

is a monoid, then r = r−ν∗r+ ∈ O. On the reverse side, suppose r ∈ O. Then r0 = r∗−rr∗+ ∈ O.

But r0H ν∗. Thus by Theorem 3.11, r0 = ν
∗. �

Now that we have a condition for O in terms of our decomposition, we can get conditions

for our sets JG and GJ .

Corollary 3.26.

(1) For r ∈ R, r ∈ JG if and only if r0 ∈ N
∗ and r+ ∈ N . Indeed, for r ∈ JG,

r = rν∗ν is our trichotomy.

(2) For r ∈ R, r ∈ GJ if and only if r0 ∈ N
∗ and r− ∈ N . Indeed, for r ∈ GJ ,

r = νν∗r is our trichotomy.

Proof. (1) Suppose that r ∈ JG, then since JG ⊆ O, we see that r0 ∈ N
∗. By checking our

trichotomy, we see that r− ∈ JG, and rRr−, so it follows that r = r−. We also know that

r+ ∈ GJ and r+L r. Let ν ∈ N be the unique element so that rJ ν. Since r0J r, it follows

that r0 = ν
∗.

We can find e ∈ Λ, f ∈ Λ− and σ, τ ∈ W so that r = r− = τ f , ν∗ = fσ−1 = σ−1e and

ν = eσ = σ f . Observe that rν∗ν = (τ f )( fσ−1)(σ f ) = τ f f f = τ f = r. By uniqueness of

trichotomy, this means that r = rν∗ν, and thus, r+ ∈ N .

Suppose that r0 ∈ N
∗ and r+ ∈ N . Since r0J rJ r+, it is clear that r0 = ν

∗ and r+ = ν,

for the unique ν ∈ N ∩ Jr. Since r− ∈ JG, we can find e ∈ Λ, f ∈ Λ− and σ, τ ∈ W so that
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r− = τ f , ν∗ = fσ−1 = σ−1e. Then, r = r−r0r+ = (τ f )( fσ−1)(σ f ) = τ f f f = τ f = r = r−. Thus,

r ∈ JG.

(2) is done similarly. �

Remark 3.27. It is clear to see that for ν ∈ N , that we have the trichotomy decomposition,

ν = νν∗ν. That is, r ∈ N if and only if r0 ∈ N
∗ and r−, r+ ∈ N .

While we are on the subject of JG and GJ , we can also obtain the following two corollar-

ies.

Corollary 3.28. For r ∈ O, we can find s ∈ JG∗ and t ∈ GJ∗ so that r = r−s = tr+

Proof. By Proposition 3.25 we can write r = r−ν∗r+, where r+B ⊆ Br+. Let s = ν∗r+. We need

to show that s∗B ⊆ Bs∗. s∗ = r∗+ν. Let ν = eσ and r∗+ = τe for idempotent e, and σ, τ ∈ W.

Then r∗+νB = r∗+Bν = r∗+Beν ⊆ Br∗+ν by Proposition 3.17. Thus s ∈ JG∗.

A similar proof gives the GJ∗ result. �

Corollary 3.29.

(1) O is the smallest inverse monoid containing GJ

(2) O is the smallest inverse monoid containing JG

Proof. We will just prove (1), as (2) is done similarly. We know from Proposition 3.15 that

GJ ⊆ O. We know that O∗ = O, from Proposition 3.13, and O is a monoid, by Proposition

3.20. Thus O is an inverse monoid containing GJ . Suppose that M is an inverse monoid

containing GJ . Then GJ∗ ⊆ M∗ = M. Take any r ∈ O. By Corollary 3.28 for r ∈ O we

can find s ∈ GJ∗ so that r = sr+. But by definition, r+ ∈ GJ , so it follows that r ∈ M. Thus

O ⊆ M, and we conclude that O is the smallest inverse monoid containing GJ . �

The following theorem is the culmination of our trichotomy, as it allows us to describe

the Adherence order of the Renner monoid in terms of our trichotomy, when we restrict to

particular classes.

Theorem 3.30. Take elements, r, s ∈ R.

(1) If rH s, then r ≤ s iff r0 ≤ s0

(2) If rRs, then r ≤ s iff r0r+ ≤ s0s+

(3) If rL s, then r ≤ s iff r−r0 ≤ s−s0
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Proof. (1) It is clear that r ≤ s is equivalent to r−r0r+ ∈ Bs−s0s+B. Since rH s we see that

r− = s− and r+ = s+. So we see r ≤ s gives r∗−r−r0r+r∗+ ∈ r∗−Br−s0r+Br∗+. But by continuity of

multiplication, r∗−Br−s0r+Br∗+ ⊆ r∗−Br−s0r+Br∗+ ⊆ Br∗−r−s0r+r∗+B = Bs0B. Thus r ≤ s implies

r0 ≤ s0. Suppose that r0 ≤ s0, then r0 ∈ Bs0B, which gives us, r ∈ r−Bs0Br+ ⊆ r−Bs0Br+ ⊆ BsB

since r− ∈ JG and r+ ∈ GJ . Thus, r0 ≤ s0 implies r ≤ s.

(2) and (3) are proven similarly. �

It has been seen throughout this section that our sets O, JG, GJ and N are related to

Green’s relations. This last result, as with other before it, and even the definitions of these sets,

also hints that B is also involved in their study. In the next section we will explore these two

topics combined in the so called “fat T -classes”. We will end this section with the following

useful remark, that allows us to name a generic H -class. It will be immensely important,

particularly later on in Section 5.

Remark 3.31. For any e ∈ Λ, f ∈ Λ−, with eJ f , we know that w0e = f w0. So for any

m ∈ JG and p ∈ GJ with mJ p, we see that mw0 p ∈ Rm ∩ Lp (an H -class). This is useful

for distinguishing an element of an H -class that we describe by r− and r+ without knowing

the element r.

3.3 Example

We have introduced a lot of sets in this section which will play a major role in this paper, so

it would be a good idea to get some concrete examples into our minds. Below, we have plainly

listed out our sets R, O, GJ , JG and N coming from the monoid, M3(K).

R =
{ 1 0 0

0 1 0

0 0 1

 ,


0 0 0

0 1 0

0 0 1

 ,


1 0 0

0 0 0

0 0 1

 ,


0 0 0

0 0 0

0 0 1

 ,


1 0 0

0 1 0

0 0 0

 ,


0 0 0

0 1 0

0 0 0

 ,


1 0 0

0 0 0

0 0 0

 ,


0 0 0

0 0 0

0 0 0

 ,


1 0 0

0 0 1

0 1 0

 ,


0 0 0

0 0 1

0 1 0

 ,
1 0 0

0 0 0

0 1 0

 ,


0 0 0

0 0 0

0 1 0

 ,


1 0 0

0 0 1

0 0 0

 ,


0 0 0

0 0 1

0 0 0

 ,


0 1 0

1 0 0

0 0 1

 ,


0 0 0

1 0 0

0 0 1

 ,


0 1 0

0 0 0

0 0 1

 ,


0 1 0

1 0 0

0 0 0

 ,


0 0 0

1 0 0

0 0 0

 ,


0 1 0

0 0 0

0 0 0

 ,
0 1 0

0 0 1

1 0 0

 ,


0 0 0

0 0 1

1 0 0

 ,


0 1 0

0 0 0

1 0 0

 ,


0 0 0

0 0 0

1 0 0

 ,


0 1 0

0 0 1

0 0 0

 ,


0 0 1

1 0 0

0 1 0

 ,


0 0 0

1 0 0

0 1 0

 ,


0 0 1

0 0 0

0 1 0

 ,


0 0 1

1 0 0

0 0 0

 ,


0 0 1

0 0 0

0 0 0

 ,
0 0 1

0 1 0

1 0 0

 ,


0 0 0

0 1 0

1 0 0

 ,


0 0 1

0 0 0

1 0 0

 ,


0 0 1

0 1 0

0 0 0


}
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O =
{ 1 0 0

0 1 0

0 0 1

 ,


0 0 0

0 1 0

0 0 1

 ,


1 0 0

0 0 0

0 0 1

 ,


0 0 0

0 0 0

0 0 1

 ,


1 0 0

0 1 0

0 0 0

 ,


0 0 0

0 1 0

0 0 0

 ,


1 0 0

0 0 0

0 0 0

 ,


0 0 0

0 0 0

0 0 0

 ,


1 0 0

0 0 0

0 1 0

 ,


0 0 0

0 0 0

0 1 0

 ,
1 0 0

0 0 1

0 0 0

 ,


0 0 0

0 0 1

0 0 0

 ,


0 0 0

1 0 0

0 0 1

 ,


0 1 0

0 0 0

0 0 1

 ,


0 0 0

1 0 0

0 0 0

 ,


0 1 0

0 0 0

0 0 0

 ,


0 0 0

0 0 0

1 0 0

 ,


0 1 0

0 0 1

0 0 0

 ,


0 0 0

1 0 0

0 1 0

 ,


0 0 1

0 0 0

0 0 0


}

GJ =
{ 1 0 0

0 1 0

0 0 1

 ,


1 0 0

0 1 0

0 0 0

 ,


1 0 0

0 0 0

0 0 0

 ,


0 0 0

0 0 0

0 0 0

 ,


1 0 0

0 0 1

0 0 0

 ,


0 1 0

0 0 0

0 0 0

 ,


0 1 0

0 0 1

0 0 0

 ,


0 0 1

0 0 0

0 0 0


}

JG =
{ 1 0 0

0 1 0

0 0 1

 ,


0 0 0

0 1 0

0 0 1

 ,


0 0 0

0 0 0

0 0 1

 ,


0 0 0

0 0 0

0 0 0

 ,


0 0 0

0 0 1

0 0 0

 ,


0 1 0

0 0 0

0 0 1

 ,


0 1 0

0 0 1

0 0 0

 ,


0 0 1

0 0 0

0 0 0


}

N =
{ 1 0 0

0 1 0

0 0 1

 ,


0 0 0

0 0 0

0 0 0

 ,


0 1 0

0 0 1

0 0 0

 ,


0 0 1

0 0 0

0 0 0


}

GJ (for Gauss-Jordan) is the analog of the row reduced matrices. For JG a small matter

needs to be cleared up. They have been stated by Renner in [29] to be the analogue of column

reduced matrices (that is a matrix whose transpose is row reduced), but upon closer inspection

this is false. In fact they represent the anti-column reduced matrices, which is to say, they are

matrices whose anti-transpose is row reduced (anti-transpose being the transpose taken with

respect to the anti-diagonal). In fact it is GJ∗ that gives us the column reduced matrices, and

JG
∗ is the set of so-called anti-row reduced matrices.

The following examples come from M4(K),



1 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0


∈ GJ



0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 1


∈ JG



1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0


∈ GJ

∗



0 0 0 0

0 0 0 0

0 1 0 0

0 0 1 0


∈ JG

∗

As was mentioned in [17], O consists of all matrices where, for nonzero entries, the column

value is an increasing function of the row value. This is what gives them their name of “order

preserving” matrices.

O provides us an analogue of the monotonic path matrices. The original monotonic path

matrices are found in the Mn(K) and have the familiar “staircase” pattern to them, but now

all the possible “staircases” from the upper left to the bottom right are fair game. Below we

illustrate two such matrices, which belong to O for M6(K). Notice that the one on the right has

nonzero values on either side of the diagonal, in a departure from GJ and JG.
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

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 1





0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0



When we restrict ourselves to discussing our trichotomy in Mn(K), we get a nice way of

deriving the elements r−, r0, and r+.

We will go through the method with the matrix, r =



0 0 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 0 0

1 0 0 0 0



To compute r+ we read the matrix’s columns from left to right.

Whenever we come across a nonzero column, we put a 1 in the

column of r+, on the next row from the top. That is, if the jth

column of r is the ith nonzero column that we have encountered,

we place a 1 in the i, j position of r+.

In this way, r+ can be thought of as indicating the nonzero columns

of r.

r =



0 0 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 0 0

1 0 0 0 0



r+ =



1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0



r r−

= =

0 0 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 0 0

1 0 0 0 0





0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1



Computing r− is done similarly. To compute r− we read the matrix’s

rows from bottom to top. Whenever we come across a nonzero row,

we put a 1 in the row of r−, on the next column from the right. That

is, if the ith row of r is the jth nonzero row that we have found, we

place a 1 in the i,(n + 1 − j) position of r−.

In this way, r− can be thought of as indicating the nonzero rows of

r.

Lastly, there is r0 which describes how the rows and columns that we have indicated in r−

and r+ act together to produce our element, r. To find r0, write down the unique minor of r that

has rank(r). Then, place this minor in the bottom left corner of r0, filling the rest of the matrix

with 0s.
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r =



0 0 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 0 0

1 0 0 0 0




0 1 0

0 0 1

1 0 0





0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0


= r0

Thus, we have our decomposition:



0 0 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 0 0

1 0 0 0 0


=



0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1


·



0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0


·



1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0


Let us use this decomposition to demonstrate Proposition 3.24. To compute the length of

an element in the Renner monoid of Mn(K) we can use the method described by [8]. For a

0-1 matrix in the Renner monoid of Mn(K), A, the length of A can be found by the following

computation,

`(A) = Σn
i=1Σ

n
j=1(ai j)(n + i − j) − |coinv(A)| − rk(A)(rk(A)+1)

2

where coinv(A) = {(ai j, akl) | ai j = akl = 1 and i < k, j < l} and rk(A) indicates the rank, or

number of nonzero entries. This allows us to compute the lengths of our trichotomy and the

associated idempotents,

`



0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1


= (5 + 2 − 3) + (5 + 3 − 4) + (5 + 5 − 5) − 3 − 3(3+1)

2 = 4 + 4 + 5 − 3 − 6 = 4

`



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0


= (5 + 1 − 1) + (5 + 2 − 2) + (5 + 3 − 3) − 3 − 3(3+1)

2 = 5 + 5 + 5 − 3 − 6 = 6

`



0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0


= (5 + 3 − 2) + (5 + 4 − 3) + (5 + 5 − 1) − 1 − 3(3+1)

2 = 6 + 6 + 9 − 1 − 6 = 14

`



0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


= (5 + 3 − 3) + (5 + 4 − 4) + (5 + 5 − 5) − 3 − 3(3+1)

2 = 5 + 5 + 5 − 3 − 6 = 6

`



1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0


= (5 + 1 − 1) + (5 + 2 − 3) + (5 + 3 − 5) − 3 − 3(3+1)

2 = 5 + 4 + 3 − 3 − 6 = 3

Now Proposition 3.24 tells us that,

`(r) = `(r−) − `(e−) + `(r0) − `(e+) + `(r+) = 4 − 6 + 14 − 6 + 3 = 9.

Applying this method to the actual element, r, we can verify that,
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`



0 0 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 0 0

1 0 0 0 0


= (5 + 2 − 3) + (5 + 3 − 5) + (5 + 5 − 1) − 1 − 3(3+1)

2 = 4 + 3 + 9 − 1 − 6 = 9

One might ask whether this is a useful method for computing length. We can see that

our elements in GJ and JG are written in a way that makes their length computation more

apparent, all pairs of nonzero entries are skewed towards the top right corner of the matrix.

Additionally, the nonzero entries of r0 will always be in the bottom left corner, making them

easy to read as well. One can reasonably expect that for different reductive monoids, M, that

the individual elements of our trichotomy have lengths that are easier to compute in general.
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4 Fat Green’s Relations

In Section 3 we explored the Renner monoid of our reductive monoid, M, and were able to

describe a decomposition for its elements. This decomposition was heavily influenced by the

Green’s relations on R, and involved elements from GJ � R/L and JG � R/R. What we

would like to do is now explore how the Green’s relations on R relate back to M.

We recall that when we wish to discuss a generic Green’s relation, we will often denote it

by T . In the following section, as with the rest of our paper, unless specified, T =J , L , R

or H .

Definition 4.1. For an equivalence relation, T = J , L , R or H , and an element r ∈ R,

define the fat T -class of r to be the set BTrB =
⊔

s∈R,sT r BsB.

Notationally, depending on our choice of T , we have fat J -classes, BJrB, fat L -classes,

BLrB, fat R-classes, BRrB or fat H -classes, BHrB.

The fat T -classes give us a natural generalisation of our Bruhat cells, BrB for r ∈ R.

Considering = as an equivalence relation, our Bruhat cells are just BTrB where T = “=”. Ad-

mittedly, =r only has one element, namely r, but this still shows how considering our Green’s

relations in the form of fat T -classes can be interesting and is a valid way to seek new infor-

mation about R.

This section is devoted to answering the following questions which will give us results

analogous to the Bruhat decomposition for reductive monoids, established by Renner in [27].

◦ Do we have a Bruhat-eqsue decomposition, M =
⊔

[r]∈R/T BTrB, and can we

describe the set R/T in a nice way?

◦ Is it true that, BTrB ⊆ M is an irreducible subvariety for all r ∈ R?

◦ Can we describe the partial ordering, r, s ∈ R then BTrB ⊆ BTsB in terms of

[r], [s] ∈ R/T ?

◦ Can we show the finite union, BTrB =
⊔k

i=1 BTri B, and describe the ri?

In order to address these questions, we will first demonstrate equivalent formulations for

our fat T -classes that are more susceptible to manipulation.
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4.1 Equivalent Definitions

Definition 4.2. For T =J , L , R or H , and r ∈ R, we define,

Tr = {s ∈ R | sT r} T ′r = {s ∈ M | sT ṙ where ṙ is a preimage of r in M}

This gives us two different notions of what the T -class of an element of R looks like. One

may be concerned about the definition of T ′r , that it might vary based on the choice of preimage.

The following proposition shows that this is not the case.

Proposition 4.3. T ′r is well-defined, regardless of our choice of preimage of r in the definition.

Proof. Unfortunately, there is no general way to prove this, and the result is merely a coinci-

dence based on the definitions of our various Green’s relations.

If T = J , take two preimages of r ∈ R, say p, q ∈ M. Then we know pT = qT , so we

can find t ∈ T such that p = qt. Then, since J′r = GpG = GqtG = GqG, as t ∈ T ⊆ G.

If T = L , take two preimages of r ∈ R, say p, q ∈ M. Then we know T p = Tq, so we can

find t ∈ T such that p = tq. Then, since L′r = Gp = Gtq = Gq, as t ∈ T ⊆ G.

If T = R, take two preimages of r ∈ R, say p, q ∈ M. Then we know pT = qT , so we can

find t ∈ T such that p = qt. Then, since R′r = pG = qtG = qG, as t ∈ T ⊆ G.

If T =H , our previous work tells us that L′r and R′r are well-defined. Since H = L ∩R,

we see that H′r = L′r ∩ R′r is well-defined. �

With our new notion, we see that our fat T -class, BTrB =
⊔

s∈Tr
BsB is not only the given

definition, but also makes sense as a symbol. An interesting question is, what would happen if

we “fattened” the T -class of r in M. That is, what does BT ′r B look like? For T =J , L , R

and H we will see that BTrB = BT ′r B, and this is very useful for our analysis of fat T -classes.

First notice that for any T , Tr ⊆ T ′r by definition, so it is immediately clear that BTrB ⊆ BT ′r B.

To approach the fat J -classes, we will follow along with a suggestion coming from Sec-

tion 6 in [27] by Renner. To show the independence of definition in this case, we will first need

a result coming from that paper. This result presents an analogue to reductive monoids of Tits’

axiom.

Proposition 4.4. Let S be the set of simple reflections of the Weyl group, W. Then if r ∈ R, we

have the following results,
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sBr ⊆ BrB ∪ BsrB rBs ⊆ BrB ∪ BrsB

Proof. This is Proposition 5.3 and Remark 5.4 in [27]. �

Proposition 4.5. For r ∈ R, BJrB = BJ′rB = J′r.

Proof. As has already been mentioned, it is clear that BJrB ⊆ BJ′rB, so it suffices to show

the reverse inclusion. Observe that BJ′rB = BGrGB = GrG = J′r (taking care of the second

equality) and r ∈ BJrB =
⊔

t∈Jr
BtB. So the result will be shown if we can demonstrate that

BJrB is closed under multiplication on the right by G and closed under multiplication on the

left by G. We will just show that GBJrB ⊆ BJrB.

The Bruhat decomposition for our reductive group, G, tells us that G =
⊔

w∈W BwB. So it

suffices to show that (BwB)(BJrB) ⊆ BJrB for all w ∈ W. Write w = vs for s ∈ S and v ∈ W

such that `(w) = `(v) + 1. Now,

(BwB)(BJrB) = BwB(
⊔

t∈Jr
BtB) = BvBsB(

⊔
t∈Jr

BtB)

= BvB(
⊔

t∈Jr
sBtB) ⊆ BvB(

⊔
t∈Jr

(BtB ∪ BstB)B)

= BvB(
⊔

t∈Jr
BtB ∪ BstB) ⊆ BvB(BJrB) since t ∈ Jr =⇒ st ∈ Jr.

⊆ BJrB by induction on the length of w.

Our proof is completed upon the statement of our base case, `(w) = 0 =⇒ w = 1, and we

can clearly see that, B(BJrB) = BJrB. �

Already we can see why the equivalence of BJrB = BJ′rB is useful. Just looking at BJrB

there does not seem to be a nice way to describe it, but BJ′rB = GrG, which is an orbit of the

action of G ×G on M. Orbits of algebraic group actions are well studied and we will make use

of them as we go on.

Both fat L -classes and fat R-classes can be handled in a similar manner.

Proposition 4.6. For r ∈ R, BLrB = BL′rB and BRrB = BR′rB.

Proof. We will show this result for fat R-classes, as the proof is similar for fat L -classes.

It is clear that BRrB ⊆ BR′rB, so we just need to show the reverse inclusion. Observe that

BR′rB = BrGB = BrG and r ∈ BRrB =
⊔

t∈Rr
BtB. So the result will be shown if we can

demonstrate that BRrB is closed under multiplication on the right by G.
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As was remarked in Proposition 4.5, it suffices to show that (BRrB)(BwB) ⊆ BRrB for all

w ∈ W. Write w = sv for s ∈ S and v ∈ W such that `(w) = `(v) + 1. Now,

(BRrB)(BwB) = (
⊔

t∈Rr
BtB)BwB = (

⊔
t∈Rr

BtB)BsBvB

= (
⊔

t∈Rr
BtBs)BvB ⊆ (

⊔
t∈Rr

B(BtB ∪ BtsB))BvB

= (
⊔

t∈Rr
BtB ∪ BtsB)BvB ⊆ (BRrB)BvB since t ∈ Rr =⇒ st ∈ Rr.

⊆ BRrB by induction on the length of w.

Our proof is completed upon the statement of our base case, `(w) = 0 =⇒ w = 1, and we

can clearly see that, (BRrB)B = BRrB. �

The problem with H -classes is that they are not defined by a coset or double coset relation

(ie rL s if and only if Gr = Gs). So our previous work would not apply to dealing with the fat

H -classes. Instead we must take into account the definition of H , namely H = R ∩L . It

is from here, and with our previous results, that we can address fat H -classes.

Proposition 4.7. For r ∈ R, BL′rB ∩ BR′rB = BHrB = BH′rB.

Proof. We will achieve the result by proving the following containments,

BL′rB ∩ BR′rB ⊆ BHrB ⊆ BH′rB ⊆ BL′rB ∩ BR′rB

The last two containments are clear, as Hr ⊆ H′r, H′r ⊆ L′r and H′r ⊆ R′r. By Proposition 4.6 we

know that BL′rB ∩ BR′rB = BLrB ∩ BRrB. Suppose that m ∈ BLrB ∩ BRrB. Then we can find

s, t ∈ R with sL r and tRr so that m ∈ BsB and m ∈ BtB. But then BsB ∩ BtB , ∅. Thus

BsB = BtB and so s = t. It follows that sH r and m ∈ BsB ⊆ BHrB. �

Now that we have a well-defined notion of fat T -classes, we can begin to tackle the four

problems listed above.

4.2 Fat J -classes

Fat J -classes have already been studied in detail, under the more familiar expression,

BJrB = GrG = J′r. Though little in this section is new, we include it for the sake of a complete

look at these fat Green’s relations, and to acknowledge the work that came before us.

Proposition 4.8. M =
⊔

r∈Λ BJrB =
⊔

r∈N BJrB =
⊔

r∈N∗ BJrB =
⊔

r∈Λ− BJrB
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Proof. The case for Λ can be found in [21] in Theorem 3.3. Here we will give a general

proof, covering all the cases at once. Let A ∈ {Λ,N ,N∗,Λ−}. We know from our standard

Bruhat decomposition that M =
⊔

r∈R BrB. We also know that A � R/J , that is, for each

J -class in R there is one and only one element in A that is also in that J -class. It follows

that, M =
⊔

r∈A
⊔

sJ r BsB (since J -classes are disjoint). Then we just regroup our result to

conclude, M =
⊔

r∈A BJrB. �

Proposition 4.9. BJrB ⊆ M is an irreducible subvariety for all r ∈ R.

Proof. As we have made note before, BJrB = GrG. So our fat J -class is easily seen to be an

orbit of the action of (G×G)×M → M, given by ((g1, g2),m) 7→ g1mg−1
2 on M. By Proposition

A.4, the orbit GrG is an irreducible subvariety of our variety, M, as desired. �

Proposition 4.10. For r, s ∈ R, if r ≤ s then BJrB ⊆ BJsB.

Proof. r ≤ s means that BrB ⊆ BsB. Then, GrG = GBrBG ⊆ GBsBG ⊆ GBsBG = GsG by

continuity of multiplication. Thus, BJrB ⊆ BJsB. �

This is the first we have encountered this partial ordering, BJrB ⊆ BJsB, which is something

we would like to investigate. Rather than a partial order on the elements of R, it can be seen

as a partial order on the J -classes of R. The following results will show that it is actually the

same partial order on J -classes we know from semigroup theory.

Corollary 4.11. For r, s ∈ R, we can find idempotents e, e′ ∈ Λ and f , f ′ ∈ Λ− so that

r ∈ WeW = W f W and s ∈ We′W = W f ′W. Then BJrB ⊆ BJsB if and only if e′e = e if and

only if f ′ f = f .

Proof. As we remarked in our background material, e′e = e if and only if e ≤ e′ in the

Adherence order. So by Proposition 4.10, BJeB ⊆ BJe′B. Conversely, if BJrB ⊆ BJsB then

GeG ⊆ Ge′G. By continuity, MeM ⊆ MGe′GM = Me′M. Now, by Proposition 2.26, since M

is reductive (and hence regular), MeM ⊆ Me′M = Me′M. Thus Je ≤ Je′ and hence e ≤ e′ by

definition of cross sectional lattices. �

Theorem 4.12. Fix a set A ∈ {Λ,N ,N∗,Λ−}. For any r ∈ R, we can find a finite list of

r1, r2, · · · rs ∈ A so that, BJrB =
⊔s

i=1 BJri B.
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It follows that J′r =
⊔s

i=1 J′ri
, so the closure of a J -class in M is a disjoint union of

J -classes.

Proof. The following proof will rely purely on the fact that each A satisfies A � R/J . Since

R is finite we can see, BJrB =
⋃

sJ r BsB =
⋃

sJ r
⋃

t≤s BtB. Recall BJxB =
⋃

yJ x ByB. So if

BJxB ∩ BJrB , ∅ we can find yJ x and sJ r with y ≤ s. It follows, by Proposition 4.10, that

BJxB = BJyB ⊆ BJsB = BJrB.

Thus the closure of each fat J -class must be a union of fat J -classes, and this union is

disjoint since fat J -classes are disjoint (Proposition 4.8). The union itself must be finite, as

each J -class can be indexed by a unique element of A ⊆ R, a finite set (Proposition 4.8). �

4.3 Fat L -Classes and Fat R-Classes

Fat L - and R-classes have been studied before, but as with the fat J -classes, it was under

a different guise (namely GrB and BrG). Most of the work about them can be found in [29].

As we will find out, fat L - and R-classes are closely related to our sets GJ and JG, which

were first studied by Renner in [27].

Proposition 4.13. M =
⊔

r∈GJ BLrB =
⊔

r∈JG BRrB

Proof. We know from our standard Bruhat decomposition that M =
⊔

r∈R BrB. From Theorem

3.9 it follows that, M =
⊔

r∈GJ
⊔

sL r BsB (since L -classes are disjoint). Then we just regroup

our result to conclude, M =
⊔

r∈GJ BLrB.

The case for JG is done similarly. �

Theorem 4.14. BLrB, BRrB ⊆ M are irreducible subvarieties for all r ∈ R

Proof. Notice that BLrB = GrB. So our fat L -class is an orbit of the group action on M, of

(G × B) × M → M, given by ((g, b),m) 7→ gmb−1. By Proposition A.4, the orbit GrB is an

irreducible subvariety of our variety, M, as desired.

Likewise BRrB is the orbit of r with the action of B ×G. �

Proposition 4.15.

(1) If r, s ∈ GJ then GrB ⊆ GsB if and only if rB ⊆ sB

(2) If r, s ∈ JG then BrG ⊆ BsG if and only if Br ⊆ Bs
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Proof. This result can be found as Proposition 2.8 in [29] for the JG case. The GJ , as usual,

is similar. �

Proposition 4.16. For r, s ∈ R, if r ≤ s then BLrB ⊆ BLsB and BRrB ⊆ BRsB.

Proof. r ≤ s means that BrB ⊆ BsB. Then, BrBG ⊆ BsBG ⊆ BsBG = BsG by continuity of

multiplication. Thus, BRrB ⊆ BRsB. As usual, the proof for fat L -classes is similar. �

Theorem 4.17.

(1) If r, s ∈ R then BLrB ⊆ BLsB if and only if r+B ⊆ s+B

(2) If r, s ∈ R then BRrB ⊆ BRsB if and only if Br− ⊆ Bs−

Proof. As usual, we will prove the first result, as the second is handled by symmetry. We know

already that Lx = Lx+ and x+ ∈ GJ . So we just need to show BLr+B ⊆ BLs+B if and only if

r+B ⊆ s+B. But recall that BLxB = GxB, and when we substitute this in, we get BLr+B ⊆ BLs+B

if and only if Gr+B ⊆ Gs+B. The result is concluded with Proposition 4.15. �

The following result is reminiscent of Proposition 3.11 from [28], but with a broader range.

It will be useful later on, as we explore the Bruhat order on our different T -classes.

Corollary 4.18. For r, s ∈ R, r ≤ s implies that r− ≤ s− and r+ ≤ s+.

Proof. By Proposition 4.16, r ≤ s means that BRrB ⊆ BRsB and BLrB ⊆ BLsB. By Theorem

4.17, Br− ⊆ Bs− and r+B ⊆ s+B. By Proposition 3.8, Br−B = Br− ⊆ Bs− = Bs−B and

Br+B = r+B ⊆ s+B = Bs+B, or rather r− ≤ s− and r+ ≤ s+. �

The following example shows that any attempt at a similar result involving r0 and s0 is

doomed to fail. It is not true, in general, that r ≤ s implies r0 ≤ s0.

Example 4.19. Let us take a look at the elements, r =



0 1 0 0

0 0 0 1

1 0 0 0

0 0 0 0


and s =



0 1 0 0

0 0 0 0

1 0 0 0

0 0 1 0


. Using our tech-

niques from the last section, we can decompose these two elements based on our trichotomy.

0 1 0 0

0 0 0 1

1 0 0 0

0 0 0 0


=



0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


·



0 0 0 0

0 1 0 0

0 0 1 0

1 0 0 0


·



1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 0


and



0 1 0 0

0 0 0 0

1 0 0 0

0 0 1 0


=



0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1


·



0 0 0 0

0 1 0 0

1 0 0 0

0 0 1 0


·



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


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Knowing that r ≤ s, we can check out Corollary 4.18 and see



0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


≤



0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1


and that



1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 0


≤



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


. However, when we go to compare r0 and s0, we actually find that they are

in the opposite relationship with respect to order,



0 0 0 0

0 1 0 0

1 0 0 0

0 0 1 0


≤



0 0 0 0

0 1 0 0

0 0 1 0

1 0 0 0


.

We can now characterise our partial order on the fat J -classes in terms of our representa-

tives coming from N . Since N = JG ∩ GJ , it is very similar to Theorem 4.17’s result.

Corollary 4.20. If r, s ∈ R then BJrB ⊆ BJsB if and only if Bµ = µB ⊆ νB = Bν, where µ is

the unique element in N ∩ Jr and ν is the unique element in N ∩ Js

Proof. The equals signs in the statement Bµ = µB ⊆ νB = Bν are clear from our definition of

N , so we will just prove that BJrB ⊆ BJsB if and only if Bµ ⊆ Bν. Observe that if Bµ ⊆ Bν,

then by the properties of N we see that BµB = Bµ ⊆ Bν = BνB. Thus, µ ≤ ν and so by

Proposition 4.10, BJrB = BJµB ⊆ BJµB = BJsB.

Conversely, suppose that BJrB ⊆ BJsB, then we can find some x, y and z ∈ R so that xJ r,

y ≤ z and zJ s with BxB∩ByB , ∅. Thus, x = y, and so we have x ≤ z. Corollary 4.18 tells us

that x+ ≤ z+. But then Corollary 4.18 applied again tells us, (x+)− ≤ (z+)−. But by analysing our

J -classes and applying Corollary 3.26 this shows us µ ≤ ν, or rather Bµ = BµB ⊆ BνB = Bν,

as desired. �

Theorem 4.21.

(1) For any r ∈ R, we can find a finite set of r1, r2, · · · rs ∈ GJ so, BLrB =
⊔s

i=1 BLri B

(2) For any r ∈ R, we can find a finite set of r1, r2, · · · rs ∈ JG so, BRrB =
⊔s

i=1 BRri B

Proof. We will just prove (1). Since R is finite, BLrB =
⋃

sL r BsB =
⋃

sL r
⋃

t≤s BtB. Recall

that BLxB =
⋃

yL x ByB. So if BLxB ∩ BLrB , ∅ then we can find yL x and sL r with y ≤ s.

But then by Proposition 4.16 we see BLxB = BLyB ⊆ BLsB = BLrB.

Thus the closure of each fat L -class must be a union of fat L -classes, and this union is

disjoint since fat L -classes are disjoint (Proposition 4.13). The union itself must be finite,

as each L -class can be indexed by a unique element of GJ , a finite monoid. In fact, by
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our previous work we can characterize these elements, BLrB =
⊔s

i=1 BLri B, where ri ∈ GJ ,

riB ⊆ r+B. �

4.4 Fat H -Classes

Of particular interest are the fat H -classes. One of the reasons is that in monoid theory,

we often wish to imitate the results we see in group theory. So we want to get results on our

Renner monoid, R, that are similar to those on the Weyl group, W. When Green’s relations

get involved, the H -class provides us with an intriguing analogue to groups. Indeed, it is a

well-known result of Green that for an H -class, H, H is a group if and only if H ∩ H2 , ∅. In

particular, this shows that for any idempotent, e ∈ R, He is a group (H1 = W).

So H -classes, and thus fat H -classes are a keen point of interest.

Proposition 4.22. M =
⊔

r∈O BHrB

Proof. We know from our standard Bruhat decomposition that M =
⊔

r∈R BrB. From Theorem

3.11 it follows that, M =
⊔

r∈O
⊔

sH r BsB (since H -classes are disjoint). Then we just regroup

our result to conclude, M =
⊔

r∈O BHrB. �

The latter half of the following result is interesting, as we cannot use our theory of orbits of

algebraic group actions to show irreducibility. In fact, there is no reason why one should expect

BHrB to be irreducible from our previous work, as we have shown BHrB = BLrB ∩ BRrB and

the intersection of two irreducible sets is not alwas irreducible.

Theorem 4.23. BHrB ⊆ M is an irreducible subvariety for all r ∈ R

Proof. First, let us recall that BLrB and BRrB are subvarieties, by Theorem 4.14. So we see

that the fat L -class and fat R-class associated to r are locally closed. The intersection of two

locally closed sets is locally closed, and so, by Proposition 4.7, BHrB = BLrB∩ BRrB must be

locally closed. Thus BHrB is a subvariety.

To show irreducibility, first note that we can find an idempotents e, f ∈ E(R) and σ ∈ W

so that r = eσ = σ f . So then f = σ−1eσ. We know that H′e is an irreducible variety, as

it is the group of units of eMe, an irreducible variety. We can recover H′r, by noting that
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H′r = H′eσ ⊆ eMeσ = eM f . So, since H′r is the image of H′e under an automorphism, we see

that H′r is also irreducible.

Recall that B is an irreducible subvariety of M. Consider the map ϕ : B × H′r × B → M,

defined by ϕ(b1, h, b2) = b1hb2. We see that B × H′r × B must also be irreducible, and since

BHrB is the image of ϕ(B × H′r × B), by Proposition 4.7, we conclude that BHrB must also be

irreducible. �

Proposition 4.24. For r, s ∈ R, r ≤ s implies that BHrB ⊆ BHsB.

Proof. Proposition 4.16 told us r ≤ s implies BLrB ⊆ BLsB and BRrB ⊆ BRsB. But then

we see that BLrB ∩ BRrB ⊆ BLsB ∩ BRsB. Proposition 4.7 then shows us our desired result,

BHrB = BLrB ∩ BRrB ⊆ BLsB ∩ BRsB = BLsB ∩ BRsB = BHsB. �

We can now combine the two results in Theorem 4.17 to get a similar property for fat

H -classes.

Theorem 4.25. For r, s ∈ R, BHrB ⊆ BHsB if and only if Br− ⊆ Bs− and r+B ⊆ s+B

Proof. For the ’if’ direction, by Theorem 4.17, we know Br− ⊆ Bs− and r+B ⊆ s+B implies

BRrB ⊆ BRsB and BLrB ⊆ BLsB. Thus BLrB ∩ BRrB ⊆ BLsB ∩ BRsB = BLsB ∩ BRsB. By

Proposition 4.7 we see, BHrB ⊆ BHsB.

For the ’only if’ direction, suppose that BHrB ⊆ BHsB. Then observe the following con-

tainment,
⊔

xH r BxB = BHrB ⊆ BHsB =
⊔

yH s ByB =
⋃

yH s ByB =
⋃

yH s
⋃

z≤y BzB (as R is

finite). So we can find r′H r and t ≤ s′H s so that Br′B = Bt′B. Thus r′ ≤ s′. It follows from

Proposition 4.16 and Theorem 4.17 that Br′− ⊆ Bs′− and r′+B ⊆ s′+B.

Now, by our trichotomy, r′−Rr′H rRr−, so r′−Rr−. Likewise, r′+L r+, s′−Rs− and s′+L s+.

And, by the properties of our trichotomy, and Theorem 3.9, we can see that in fact, r′− = r−,

r′+ = r+, s′− = s− and s′+ = s+. Thus, we have shown that Br− ⊆ Bs− and r+B ⊆ s+B. �

This is quite a different result from Theorem 4.17 and Corollary 4.20. Those results gave

us a way of determining BTrB ⊆ BTsB from our familiar sets N , GJ and JG. Each of those

sets is of the form R/T . So what we would like is for this result to be in terms of O � R/H

as a single containment relation. We do not yet have the tools to describe the result, so we will
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have to be content with what we have now, and take comfort in the fact that GJ ,JG ⊆ O. The

“correct” form of Theorem 4.25 can be uncovered by reading Section 6.

Theorem 4.26. For any r ∈ R, we can find a finite collection of r1, r2, · · · rs ∈ O so that,

BHrB =
⊔s

i=1 BHri B

Proof. Since R is finite, BHrB =
⋃

sH r BsB =
⋃

sH r
⋃

t≤s BtB. Recall BHxB =
⋃

yH x ByB. So

if BHxB ∩ BHrB , ∅ then we can find yH x and sH r with y ≤ s. But then by Proposition

4.24 we see BHxB = BHyB ⊆ BHsB = BHrB.

Thus the closure of each fat H -class must be a union of fat H -classes, and this union

is disjoint since fat H -classes are disjoint. The union itself must be finite, as each H -class

can be indexed by a unique element of O, a finite monoid. In fact, by our previous work

we can characterize these elements, BHrB =
⊔s

i=1 BHri B, where ri ∈ O, ri+B ⊆ r+B and

Bri− ⊆ Br−. �

Again, we would like a condition that involves the elements ri ∈ O, without resorting to our

trichotomy. The way we have it now is more taking advantage of Proposition 4.7, rather than

using the properties of O in any meaningful way. Just as before, we direct curious readers to

Section 6 where this is tackled in an interesting manner.

4.5 Example

Let us compute some of these fat T -classes, so that we can get a sense of what we are

talking about, and to inform our examples later on. For starters, let us compute BJrB, BLrB,

BRrB and BHrB for the element, r =


0 1 0

0 0 0

1 0 0

. First we compute each of the equivalence classes

for each J , R, L , and H .

Jr = {


0 1 0

1 0 0

0 0 0

,


0 0 1

1 0 0

0 0 0

,


0 0 1

0 1 0

0 0 0

,


0 1 0

0 0 0

1 0 0

,


0 0 1

0 0 0

1 0 0

,


0 0 1

0 0 0

0 1 0

,


1 0 0

0 1 0

0 0 0

,
1 0 0

0 0 1

0 0 0

,


0 1 0

0 0 1

0 0 0

,


1 0 0

0 0 0

0 1 0

,


1 0 0

0 0 0

0 0 1

,


0 1 0

0 0 0

0 0 1

,


0 0 0

0 1 0

1 0 0

,


0 0 0

0 0 1

1 0 0

,
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
0 0 0

0 0 1

0 1 0

,


0 0 0

1 0 0

0 1 0

,


0 0 0

1 0 0

0 0 1

,


0 0 0

0 1 0

0 0 1

}

Lr = {


0 1 0

1 0 0

0 0 0

,


0 1 0

0 0 0

1 0 0

,


1 0 0

0 1 0

0 0 0

,


1 0 0

0 0 0

0 1 0

,


0 0 0

0 1 0

1 0 0

,


0 0 0

1 0 0

0 1 0

}

Rr = {


0 1 0

0 0 0

1 0 0

,


0 0 1

0 0 0

1 0 0

,


0 0 1

0 0 0

0 1 0

,


1 0 0

0 0 0

0 1 0

,


1 0 0

0 0 0

0 0 1

,


0 1 0

0 0 0

0 0 1

}

Hr = {


0 1 0

0 0 0

1 0 0

,


1 0 0

0 0 0

0 1 0

}

Now, our fat classes are disjoint unions, so we can specify BTrB by writing the general form

of BsB for each s ∈ Tr. Using the general form of B =


a b c

0 d e

0 0 f

=


g h i

0 j k

0 0 l

 with a, d, f , g, j, l ∈ K∗

and b, c, e, h, i, k ∈ K we can write out our classes.

BJrB = {


bg bh + a j bi + ak

dg dh di

0 0 0

,


bg bh bi + al

dg dh di

0 0 0

,


0 b j bk + al

0 d j dk

0 0 0

,


cg ch + a j ci + ak

eg eh ei

f g f h f i

,
cg ch ci + al

eg eh ei

f g f h f i

,


0 c j ck + al

0 e j ek

0 f j f k

,


ag ah + b j ai + bk

0 d j dk

0 0 0

,


ag ah ai + bl

0 0 dl

0 0 0

,
0 a j ak + bl

0 0 dl

0 0 0

,


ag ah + c j ai + ck

0 e j ek

0 f j f k

,


ag ah ai + cl

0 0 el

0 0 f l

,


0 a j ak + cl

0 0 el

0 0 f l

,
cg ch + b j ci + bk

eg eh + d j ei + dk

f g f h f i

,


cg ch ci + bl

eg eh ei + dl

f g f h f i

,


0 c j ck + bl

0 e j ek + dl

0 f j f k

,


bg bh + c j bi + ck

dg dh + e j di + ek

0 f j f k

,
bg bh bi + cl

dg dh di + el

0 0 f l

,


0 b j bk + cl

0 d j dk + el

0 0 f l

 | a, d, f , g, j, l ∈ K∗, b, c, e, h, i, k ∈ K}

We know that J -classes generalise the notion of rank from n× n matrices, so another way

we could write BJrB is BJrB = GrG = {m ∈ M3(K) | m has rank = 2}, since r has rank 2.

Sadly, for the remaining fat classes there does not seem to be such a simple way of stating

them.
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BLrB = {


bg bh + a j bi + ak

dg dh di

0 0 0

,


cg ch + a j ci + ak

eg eh ei

f g f h f i

,


ag ah + b j ai + bk

0 d j dk

0 0 0

,


ag ah + c j ai + ck

0 e j ek

0 f j f k

,
cg ch + b j ci + bk

eg eh + d j ei + dk

f g f h f i

,


bg bh + c j bi + ck

dg dh + e j di + ek

0 f j f k

 | a, d, f , g, j, l ∈ K∗, b, c, e, h, i, k ∈ K}

BRrB = {


cg ch + a j ci + ak

eg eh ei

f g f h f i

,


cg ch ci + al

eg eh ei

f g f h f i

,


0 c j ck + al

0 e j ek

0 f j f k

,


ag ah + c j ai + ck

0 e j ek

0 f j f k

,
ag ah ai + cl

0 0 el

0 0 f l

,


0 a j ak + cl

0 0 el

0 0 f l

 | a, d, f , g, j, l ∈ K∗, b, c, e, h, i, k ∈ K}

BHrB = {


cg ch + a j ci + ak

eg eh ei

f g f h f i

,


ag ah + c j ai + ck

0 e j ek

0 f j f k

 | a, d, f , g, j, l ∈ K∗, b, c, e, h, i, k ∈ K}

Suppose we wanted to compare BRrB and BRsB in terms of the Bruhat order, where

s =


0 0 0

1 0 0

0 0 1

. In the Bruhat order, r and s are incomparable, so we have two options. Ei-

ther we compute Rs and try to find some x ∈ Rr and y ∈ Rs so that we can compare them (if no

such x and y then BRrB and BRsB are incomparable), or we use Theorem 4.17.

Using Section 3 we can see that r− =


0 1 0

0 0 0

0 0 1

 and s− =


0 0 0

0 1 0

0 0 1

. As elements ofJG, these

are much easier to compare and we see that r− < s−. Thus BRrB ⊆ BRsB.



46 Section 5. Vanilla Form

5 Vanilla Form

In [17], Pennell, Putcha and Renner introduced standard form for an element of R, which

is r = xey−1, where e ∈ Λ, x ∈ D∗(e), y ∈ D(e) (notation to be reviewed in a bit). This form

allows one to describe the Adherence order in terms of the Bruhat order on W and the order on

the cross sectional lattice. While the advantage of this unique expression is clear, it has a little

to be desired when one wants to talk about Green’s relations.

From standard form, we can easily determine if two elements are in the same J -class,

or even the same L -class, but that is about it. If we wish to talk about R-classes we are at

a loss, until we introduce the “opposite standard form”, which easily follows from the same

work in [17]. However, neither form is very good at describing the H -class of the element, r.

To this end, in this section we will introduce a new unique expression for the elements of R,

and investigate how it may also be used to describe the Adherence order.

5.1 Coset Posets

Recall that when we examine a Bruhat decomposition, we first must fix several subgroups,

in particular, our Borel subgroup, B and maximal torus, T . From T , we derive the Weyl group,

W = NG(T )/T , and ultimately the Renner monoid, R = NG(T )/T . The Borel group allows

us to identify a set of “simple reflections” within W, by (among other methods) defining the

length function, ` : W → N, by `(w) = dim(BwB)− dim(B). The simple reflections are exactly

those elements with `(w) = 1.

Throughout this section, let S denote the set of simple reflections for our Coxeter group,

W, based on our already fixed B and T .

Definition 5.1. A subgroup X ⊆ W is called a standard parabolic subgroup if X = 〈I〉 for

some I ⊆ S . We will often denote the subgroup associated to I ⊆ S by WI .

As the name would suggest, these standard parabolic subgroups are exactly the subgroups

of W corresponding to the parabolic subgroups of G which contain our given B.

Proposition 5.2. Recall that w0 is the unique maximum element in W. For any element w ∈ W,

`(w) = `(w0ww0).



5.1. Coset Posets 47

Proof. This is from Corollary 2.3.3 in [2]. �

Each of our standard parabolic subgroups is a finite Coxeter group. So each has a longest

element, prompting the following notation.

Definition 5.3. Let I ⊆ S . We denote the longest element of the Coxeter group, WI by w0(I).

So, w0 = w0(S ).

Proposition 5.4. For a given, I ⊆ S , and any two u, v ∈ WI , the following are equivalent.

(1) u ≤ v

(2) w0(I)u ≤ w0(I)v

(3) uw0(I) ≤ vw0(I)

(4) w0(I)uw0(I) ≤ w0(I)vw0(I)

Proof. Proposition 2.3.4 from [2]. �

The following collection of results comes largely from [2] and [4]. For brevity, when

possible we will be writing our results in terms of double cosets WIwWJ. Note that our results

will also apply for left and right cosets, by taking I = ∅ or J = ∅. Our first result comes to us

from [4] and [14].

Proposition 5.5. For all w ∈ W and any I, J ⊆ S , the double coset WIwWJ has a unique

minimal element with respect to the Bruhat order (and hence has minimal length), and WIwWJ

has a unique maximal element with respect to the Bruhat order (and hence has maximal length).

Proof. A proof is given in [14], as Proposition 23. �

As they will be of great use to us later, we take the time now to distinguish these sets of

minimal elements.

Definition 5.6. For w ∈ W and I, J ⊆ S we denote the minimal element of WIwWJ by IwJ.

Further, we will denote this collection of minimal length elements by IW J.

We may often denote IW∅ by IW and likewise denote ∅W J by W J. This is just notational

convenience.
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Lemma 5.7. w ∈IW J and x ∈ WIwWJ, then there is a decomposition x = uwv where u ∈ WI ,

v ∈ WJ and `(x) = `(u) + `(w) + `(v). Furthermore, if I = ∅ or J = ∅ then this decomposition

is unique.

Proof. This is noted as Proposition 1.3 in [10] and Proposition 2.4.4 of [2] �

Lemma 5.8. Let w ∈ W and s ∈ S . Then sw < w if and only if some reduced word for w starts

with s. Likewise, ws < w if and only if some reduced word for w ends with s.

Proof. This is a restatement of Corollary 1.4.6 from [2]. �

Proposition 5.9. Suppose that u, v ∈ W with u ≤ v and s ∈ S .

(1) If u < su then u ≤ sv.

(2) If u < us then u ≤ vs.

Proof. This comes from Proposition 11 in [14], which draws upon Proposition 2.2.7 in [2]. �

Much of the proof of this next result is inspired by [14].

Proposition 5.10. For I, J ⊆ S , w ∈IW J if and only if no reduced word for w starts with an

element of I or ends in with an element of J.

Proof. Suppose that w ∈ IW J. Then for all s ∈ I and t ∈ J we see that w < sw and w < wt

(since w is minimal in WIwWJ). Thus no reduced word for w starts with an element of I or

ends in with an element of J, by Lemma 5.8.

Now, suppose that w ∈ W is such that no reduced word for w starts with an element of I or

ends in with an element of J. Then by Lemma 5.8 for all s ∈ I and t ∈ J we see that w < sw

and w < wt. We claim that w is the minimal element in WIwWJ. We know that there exists

such an element, call it x. By our previous work, we also know that s ∈ I and t ∈ J we see that

x < sx and x < xt.

We know that we can write x = s1s2 · · · skwt1t2 · · · t`, where each si ∈ I and each t j ∈ J,

since x ∈ WIwWJ. But by applying Proposition 5.9 exactly (k + `) times, we can then see that

w ≤ s1s2 · · · skwt1t2 · · · t` = x. Since x is minimum, it follows that w = x, and so w ∈ IW J. �

Proposition 5.11. For I, J ⊆ S , IW J = IW∅ ∩ ∅W J.
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Proof. By using the preceding proposition we see that w ∈IW∅ if and only if no reduced word

for w starts with an element of I. Likewise, w ∈∅W J if and only if no reduced word for w ends

with an element of J. So we conclude that w ∈ IW∅ ∩ ∅W J if and only no reduced word for

w starts with an element of I or ends in with an element of J. But by Proposition 5.10 this is

equivalent to w ∈ IW J. �

Corollary 5.12. w ∈IW J if and only if w =Iu for some u ∈ W J if and only if w = vJ for some

v ∈IW.

Proof. The forward implication is clear by taking u = v = w. Now suppose w =Iu for some

u ∈ W J. By the preceding proposition it suffices to show that w ∈ W J. Suppose not, then we

can find s ∈ J and a reduced word expression for w that ends in s. But since w =Iu we can

see from Lemma 5.7 that there is a ∈ WI such that aw = u and `(u) = `(a) + `(w). This tells

us that any concatenation of reduced words for a and w forms a reduced word for u. Thus we

have found a reduced word for u ending in s ∈ J, a contradiction.

The situation with v is shown similarly. �

Proposition 5.13. For I, J ⊆ S and any u, v ∈ W, if u ≤ v then IuJ ≤ IvJ.

The proof we give here is basically a copy of Proposition 2.5.1 in [2].

Proof. We will prove the result by induction. First observe IuJ ≤ u ≤ v. If v =IvJ then we are

done. If not, by Proposition 5.10 and Lemma 5.8 we can find a s ∈ I so that sv < v or t ∈ J

so that vt < v. Either way, applying Proposition 5.9, we see IuJ ≤ sv < v or IuJ ≤ vt < v

respectively. By induction, IuJ ≤ I(sv)J =IvJ or IuJ ≤ I(vt)J =IvJ respectively. �

Corollary 5.14. Recall w0 ∈ W, the unique element of maximal length. Then for any I, J ⊆ S ,
Iw0

J is the unique maximal element in IW J and 1 = I1J is the unique minimal element in IW J.

Proof. Since 1 is the minimum element of W it is clear that 1 = I1J is the unique minimum

element of IW J. Additionally, w0 is the unique maximum element of W. So by Proposition

5.13 we see that for any w ∈ W, w ≤ w0 implies IwJ ≤ Iw0
J. Thus, Iw0

J is the unique maximal

element in IW J. �
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We can actually get a stronger result, in that IuJ is less than or equal to the whole double

coset WIvWJ.

Proposition 5.15. Take I, J ⊆ S , and let u, v ∈ W. If u =IuJ, then u ≤ v if and only if u ≤ w for

all w ∈ WIvWJ

Proof. Since v ∈ WIvWJ we can see that the “if” direction is clear. Suppose that u ≤ v. Then

u =IuJ ≤IvJ. It follows that for any w ∈ WIvWJ, by definition IvJ ≤ w, and we conclude that

u ≤ w. �

The last result we will showcase before moving on has connections with Putcha’s work in

[18]. As we will see later on, this result tells us that D∗(e) = D(e)W∗(e) for e ∈ Λ.

Proposition 5.16. For K ⊆ I ⊆ S , suppose that WI = WK ×WI\K = WI\K ×WK . Then,

(1) KW =WI\K
IW

(2) WK =W IWI\K

Proof. Both arguments are similar, so we will just prove (1). Suppose that w ∈KW. Choose

simple reflection, s1 ∈ I\K so that sw < w, if such an s1 exists. Continue choosing si ∈ I\K

so that sisi−1 · · · s1w < si−1 · · · s1w, as long as such si exist. This process will terminate after at

most `(w) steps. If it ends after k steps, let v = sk · · · s1w. Then we see that for all s ∈ I\K,

sv > v. So it follows that v ∈IW. Thus w = (s1 · · · sk)v ∈ WI\K
IW. So then KW ⊆WI\K

IW

Conversely, consider the sizes of these sets (recall that W is finite). We know |KW | = |W |
|WK |

and |IW | = |W |
|WI |

. But since WI = WK × WI\K , we see |WI | = |WK ||WI\K |. From there it follows

that |KW | = |W |
|WK |
=
|W ||WI\K |

|WI |
= |IW ||WI\K |. Now, |WI\K

IW | ≤ |IW ||WI\K | and thus our containment

must be an equality. KW =WI\K
IW. �

We have now gathered enough results from Coxeter groups in order to say something mean-

ingful about our Renner monoid and its associated Adherence order.

5.2 Standard Forms

In order to make use of the preceding results, we need to have some standard parabolic

subgroups. To that end, we define the following sets of simple reflections and the parabolic
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subgroups associated to them. Notice that these sets are all defined by properties relating to a

given idempotent. This is how we will use Coxeter group theory to understand our monoid.

Definition 5.17. For an idempotent e ∈ Λ ∪ Λ−, we define the following sets of simple reflec-

tions:

λ(e) := {s ∈ S
∣∣∣se = es} λ∗(e) := {s ∈ S

∣∣∣se = es = e} λ∗(e) := {s ∈ S
∣∣∣se = es , e}

Using these sets we can also define standard parabolic subgroups associated to our idempotent,

and the corresponding collections of minimal elements of the Weyl group, W, with respect to

these subgroups, both on the left and the right:

W(e) := Wλ(e) D(e) := Wλ(e) V(e) := λ(e)W

W∗(e) := Wλ∗(e) D∗(e) := Wλ∗(e) V∗(e) := λ∗(e)W

W∗(e) := Wλ∗(e) D∗(e) := Wλ∗(e) V∗(e) := λ∗(e)W

Our first result allows us to relate the simple reflections associated to an element of Λ− to

the simple reflections of its counterpart in Λ. The reason we explore this relationship is that the

elements of Λ and the simple reflections that interact with them have been studied by Putcha

in his book, but there is no corresponding treatment for Λ−.

Lemma 5.18. Let e ∈ Λ. Define the idempotent f := w0ew0 ∈ Λ
−. Then λ( f ) = w0λ(e)w0,

λ∗( f ) = w0λ∗(e)w0 and λ∗( f ) = w0λ
∗(e)w0.

Proof. Suppose that s ∈ λ(e). Then se = es. Now consider w0sw0. One can observe the

calculation, w0sw0 f = w0sw0w0ew0 = w0sew0 = w0esw0 = w0ew0w0sw0 = f w0sw0. Observe

that `(w0sw0) = `(s) = 1 by Proposition 5.2, so w0sw0 is a simple reflection, and hence

w0sw0 ∈ λ( f ). Thus, w0λ(e)w0 ⊆ λ( f ).

For s ∈ λ( f ), w0sw0e = w0sw0w0 f w0 = w0s f w0 = w0 f sw0 = w0 f w0w0sw0 = ew0sw0.

Thus, w0sw0 ∈ λ(e), and s = w0(w0sw0)w0. So, λ( f ) ⊆ w0λ(e)w0. We conclude from here that

λ( f ) = w0λ(e)w0.

Similar proofs can be given for λ∗( f ) = w0λ∗(e)w0 and λ∗( f ) = w0λ
∗(e)w0. �

Corollary 5.19. Let e ∈ Λ and f = w0ew0. Then w0(λ( f )) = w0w0(λ(e))w0

Proof. Take any v ∈ Wλ( f ). Then we can find u ∈ W(e) so that v = w0uw0. Since the longest

element of a Coxeter group is also maximal in the Bruhat order, u ≤ w0(λ(e)). But then by

Proposition 5.4, v = w0uw0 ≤ w0w0(λ(e))w0. Since v was arbitrary our result is concluded. �
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Proposition 5.20. If e ∈ Λ∪Λ− then W∗(e) =
⋂

f≤e W( f ) and W∗(e) =
⋂

e≤ f W( f ), where these

f come from the same cross sectional lattice as e.

Proof. First suppose that e ∈ Λ. For the statement, readers are directed to Lemma 7.15 in

[30]. The core of the result can be found (with great notation change) in Chapter 10 of [20],

specifically Proposition 10.9.

Now, consider the case when we take idempotent, e ∈ Λ−. One can check that for any

idempotent, g ∈ Λ−, W∗(g) = Wλ∗(g) = w0Ww0λ∗(g)w0w0 = w0W∗(w0gw0)w0. Similarly, we

can see that W∗(g) = w0W∗(w0gw0)w0 and W(g) = w0W(w0gw0)w0. It follows from here

that we have W∗(e) = w0(
⋂

f≤w0ew0
W( f ))w0 =

⋂
f≤w0ew0

W(w0 f w0) =
⋂

f≤e W( f ). Likewise,

W∗(e) =
⋂

e≤ f W( f ). �

Proposition 5.21. Suppose that e, f are idempotents such that either e, f ∈ Λ or e, f ∈ Λ−.

Then e ≤ f implies W∗( f ) ⊆ W∗(e) and W∗(e) ⊆ W∗( f ).

Proof. These results are a quick application of the preceding proposition. For example, if

e, f ∈ Λ−, then W∗( f ) =
⋂

g≤ f W(g) ⊆
⋂

g≤e W(g) = W∗(e). �

Proposition 5.22. For idempotents, e ∈ Λ ∪ Λ−, we have the following equivalent expressions

for our standard parabolic subgroups,

W(e) = {w ∈ W | we = ew} W∗(e) = {w ∈ W | we = e = ew}

Proof. If e ∈ Λ, applying Lemma 10.15 in [20] we show W(e) = {w ∈ W | we = ew}, and

Lemma 10.16 in the same book, we get W∗(e) = {w ∈ W | we = e = ew}.

On the flip side, if e ∈ Λ− observe that f := w0ew0 ∈ Λ. So then,

W(e) = w0W( f )w0 = w0{w ∈ W | w f = f w}w0 = {w ∈ W | w0ww0 f = f w0ww0}

= {w ∈ W | w0ww0w0ew0 = w0ew0w0ww0} = {w ∈ W | w0wew0 = w0eww0}

= {w ∈ W | we = ew}

A similar proof holds for W∗(e) = {w ∈ W | we = e = ew}. �

Proposition 5.23. Let e ∈ Λ ∪ Λ−. Then, W(e) = W∗(e) ×W∗(e) = W∗(e) ×W∗(e)

Proof. As with prior results, the case for e ∈ Λ is given in Putcha’s book. Specifically this

result is part of Proposition 10.9 in [20]. For the second, e ∈ Λ−, situation, let us notice
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that W(e) = w0W(w0ew0)w0 = w0W∗(w0ew0)w0 × w0W∗(w0ew0)w0, as w0ew0 ∈ Λ. Thus,

W(e) = W∗(e) ×W∗(e), and likewise W(e) = W∗(e) ×W∗(e). �

As a useful side note, these new sets allow us to revisit Proposition 3.1 and talk about the

class, Hν∗ from Theorem 3.21.

Proposition 5.24. For ν ∈ N , we know that ν∗L e, ν∗R f for some e ∈ Λ and f ∈ Λ−. We can

write, Hν∗ = {r ∈ R | r = fσ = σe, σ ∈ W( f )w0W(e)}.

Proof. r ∈ Hν∗ if and only if r = fσ = σe for some σ ∈ W. To prove this result, it suffices

to show fσ = σe if and only if σ ∈ W( f )w0W(e). If σ ∈ W( f )w0W(e) then σ = aw0b with

a ∈ W( f ) and b ∈ W(e). So, fσ = f aw0b = a f w0b = aw0eb = aw0be = σe.

For the “only if” direction, notice that f w0 = w0e. Thus w0 f w0 = e = σ−1 fσ, and then

σw0 f = fσw0, so σw0 ∈ W( f ). So we can find b ∈ W( f ) so σ = bw0 ∈ W( f )w0W(e). �

One major result with these new sets is to describe some familiar sets from Section 3.

Lemma 5.25. Let I ⊆ S , and let LI = PI ∩ P−I be the associated Levi factor of PI = BWI B.

Take w ∈ W

(1) w ∈ W I if and only if w−1(LI ∩ B)w ⊆ B

(2) w ∈ IW if and only if w(LI ∩ B)w−1 ⊆ B

Proof. (1) is stated in [17], and the reference given there is Proposition 2.3.3 in [9] by Carter.

(2) quickly follows from (1) when we realize that x ∈ W I if and only if x−1 ∈ IW. �

The Levi factor mentioned in the above lemma might appear to be cause for alert, as this

is the first mention in this paper. However, any fear is easily assuage when we consider the

specific parabolic subgroups of G that we are considering. For e ∈ Λ ∩ Λ−, the Levi factor of

Pλ(e) is just CG(e).

Proposition 5.26. For r ∈ R,

(1) r ∈ GJ if and only if r = ey−1 for some e ∈ Λ and y ∈ D(e).

(2) r ∈ JG if and only if r = b−1 f for some f ∈ Λ− and b ∈ V( f ).

One can note that Putcha has already demonstrated (1) in his Parabolic Monoids paper

([23]), but as it has such importance to the remainder of the paper, we offer a written proof.
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Proof. (1) First, we show y ∈ D(e) ⇒ ey−1 ∈ GJ . e ∈ Λ means Be = CB(e) = CG(e) ∩ B.

Thus, Bey−1 = eBey−1 = ey−1yBey−1 = ey−1y(Lλ(e) ∩ B)y−1 ⊆ ey−1B, by Lemma 5.25. Thus,

ey−1 ∈ GJ .

Now, suppose that r ∈ GJ . By Proposition 3.18, if we write r = eσ for e ∈ E(R) and

σ ∈ W, then we know that e ∈ Λ. Since σ ∈ W, we can find y ∈ D(e) and v ∈ W(e) so

that σvy−1. Then r = evy−1 = vey−1. So rL ey−1 ∈ GJ by our previous work. But then, by

Proposition 3.9, r = ey−1, as desired.

(2) is done similarly. �

Lemma 5.27. Suppose that m ∈ JG and p ∈ GJ . Then for r, s ∈ R, r ≤ s implies mrp ≤ msp.

Proof. Note that, Bm = BmB and pB = BpB since m ∈ JG and p ∈ GJ .

Then BmrpB = BmBrBpB ⊆ BmBsBpB ⊆ BmBsBpB = BmspB. �

Lemma 5.28.

(1) If e ∈ Λ, y ∈ D(e) and x ∈ W with x ≤ y, then xey−1 ∈ B

(2) If e ∈ Λ−, y ∈ V(e) and x ∈ W with x ≤ y, then y−1ex ∈ B

Proof. It suffices to prove (1), as (2) is similar by symmetry. Since y ∈ D(e) the last proposition

tells us that p := ey−1 ∈ GJ . Then we see, by the preceding lemma, that x ≤ y implies xp ≤ yp

(just take m = 1). But then xey−1 = xp ∈ BypB = Byey−1B. Now, yey−1 is an idempotent and

thus, yey−1 ∈ T ⊆ B, and so we may conclude that xey−1 ∈ BBB = B. �

This decomposition of elements in GJ and JG segues nicely into the phenomenal de-

composition result presented in [17], called the standard form. This form was instrumental in

getting the first real handle at the Adherence order for R.

Definition 5.29. Let σ ∈ R. We say that σ = xey−1 is in standard form if e ∈ Λ, x ∈ D∗(e)

and y ∈ D(e). We say that σ = b−1 f a is in opposite standard form if f ∈ Λ−, a ∈ V∗( f ) and

b ∈ V( f ).

An immediate consequence to these definitions from Proposition 5.26 is that we can tell the

L -class of r = xey−1 by realising that ey−1 ∈ GJ and rL ey−1. Likewise, opposite standard

form readily gives us the R-class of r.
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Example 5.30. For a given element, r ∈ R, there is a simple procedure to find the standard form

and opposite standard form. For example, we will show this procedure for opposite standard

form. First, determine the unique element f ∈ Λ− so that r ∈ W f W.

Then we can find u, v ∈ W so that r = u f v. Let b = λ( f )(u−1). So then b ∈ V( f ), and we can

find w ∈ W( f ) so that b = wu−1, and thus r = (w−1b)−1 f v = b−1w f v. Since w ∈ W( f ) we can

rewrite as r = b−1 f wv. Consider the element wv. Let a = λ∗( f )(wv). Then we can find x ∈ W∗( f )

so that xa = wv, and then r = b−1 f wv = b−1 f xa = b−1 f a, which is in opposite standard form.

Similar arguments allow us to see easily that the standard and opposite standard forms are

unique for a given element. A similar proof for our new form will be given explicitly, from

which more details can be gleaned.

The following result comes from [17] and allow us to showcase the importance of our work

with the IW J, as we can now describe the Adherence order. This work by Pennell, Putcha and

Renner was the first complete description of the Adherence order in the setting of a general

reductive monoid.

Theorem 5.31. Let σ = xey−1 and τ = s f t−1 with x, s ∈ W, y ∈ D(e) and t ∈ D(e). Then the

following are equivalent,

(1) σ ≤ τ

(2) e f = e, and there exists w ∈ W( f )W∗(e) and z ∈ W∗(e) such that x ≤ swz

and tw ≤ y

Proof. This result comes to us from [17], as Theorem 1.4. �

The following corollary is similar to Corollary 1.5 in [17], but with a minor change to a

condition.

Corollary 5.32. Let σ = xey−1 and τ = s f t−1 be in standard form. Then the following are

equivalent,

(1) σ ≤ τ

(2) e f = e, and there exists w ∈ W∗( f )W∗(e) such that x ≤ sw and tw ≤ y

Proof. By Theorem 5.31 (1) is equivalent to e f = e, and the existence of w ∈ W( f )W∗(e) and

z ∈ W∗(e) such that x ≤ swz and tw ≤ y. Now, z ∈ W∗(e) implies by Proposition 5.15 that
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x = xλ∗(e) ≤ swzz−1, since xey−1 is in standard form. Thus, (1) is equivalent to e f = e, and there

exists w ∈ W( f )W∗(e) such that x ≤ sw and tw ≤ y. But, by Proposition 5.23 we can rewrite

this with w ∈ W∗( f )W∗( f )W∗(e), and by Proposition 5.21, this is the same as w ∈ W∗( f )W∗(e),

as desired. �

In the same vein, we can use our standard parabolic groups associated to the opposite cross

sectional lattice, Λ−, and perform similar work to get a characterisation of the Adherence order

in terms of elements written in opposite standard form.

Theorem 5.33. Let σ = b−1 f a and τ = k−1g j with a, j ∈ W, b ∈ V( f ) and k ∈ V(g). Then the

following are equivalent,

(1) σ ≤ τ

(2) f g = f , and there exists w ∈ W∗( f )W(g) and z ∈ W∗( f ) such that a ≤ zw j

and wk ≤ b

Proof. The work behind this result is just a reflection of the work presented by Pennell, Putcha

and Renner in [17] for the two results above. Though it is distinct, there is nothing to gain by

explicitly writing it here, so it is in the Appendix as Theorem A.9. �

Corollary 5.34. Letσ = b−1 f a and τ = k−1g j be in opposite standard form. Then the following

are equivalent,

(1) σ ≤ τ

(2) f g = f , and there exists w ∈ W∗( f )W∗(g) such that a ≤ w j and wk ≤ b

Proof. By Theorem 5.33 (1) is equivalent to f g = f , and the existence of w ∈ W∗( f )W(g)

and z ∈ W∗( f ) such that a ≤ zw j and wk ≤ b. Now, z ∈ W∗( f ) implies by Proposition 5.15

that x = λ∗( f )a ≤ z−1zw j, since b−1 f a is in opposite standard form. Thus, (1) is equivalent to

f g = f , and there exists w ∈ W∗( f )W(g) such that a ≤ zw j and wk ≤ b. But, by Proposition

5.23 we can rewrite this with w ∈ W∗( f )W∗(g)W∗(g), and by Proposition 5.21, this is the same

as w ∈ W∗( f )W∗(g), as desired. �

Proposition 5.35. If r = xey−1 is in standard form and r = b−1 f a is in opposite standard form,

then `(r) = `(x) + `(e) − `(y) = −`(b) + `( f ) + `(a)
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Proof. For standard form, this comes from Section 4 of [17]. Comparing the proofs of Theorem

1.4 in [17] and our work to prove Theorem A.9 in the appendix, one can convince themselves

that the same sort of (mindless) symmetry work will show the same length results for opposite

standard form. �

Our next work deals with creating a similar decomposition that allows us to tackle things

from an H -class perspective.

5.3 Vanilla Form

Having covered the standard form of Pennell, Putcha, and Renner as well as considered its

“dual” or “opposite” form, we now combine these two forms to create a new unique decom-

position for elements of R. Due to the author’s opinion that the terms ‘standard’, ‘normal’ and

‘canonical’ are over used in mathematics, we will now introduce a decomposition for elements

of R which we shall dub ‘vanilla’.

It will turn out that this vanilla form will allow us to determine, at a glance, the Green’s

relations of the given element and also allows us to compute the Adherence order, just as the

other two forms did above.

Definition 5.36. Let r ∈ R. We say that r = σ−1
− e−σ0e+σ−1

+ is in vanilla form if e+ ∈ Λ,

e− ∈ Λ−, e−J rJ e+, σ− ∈ V(e−), σ+ ∈ D(e+), and σ0 ∈ V∗(e−) ∩W(e−)w0W(e+) ∩ D∗(e+).

Proposition 5.37. For any r ∈ R, the vanilla form for r exists and is unique.

Proof. By Theorem 3.21, we can decompose r uniquely as r = r−r0r+. r0H ν∗ for ν ∈ N ,

νJ r. Now, by Proposition 5.24, r0 = fσ = σe with e ∈ Λ, f ∈ Λ− and r0 = fσ = σe for

some σ ∈ W( f )w0W(e). We will let e+ = e, e− = f and σ0 =
λ∗( f )σλ∗(e).

It is clear, e−J rJ e+. Notice that σ0 ∈W(e−)w0W(e+), as λ∗( f )σλ∗(e) ∈ W∗( f )σW∗(e), and

W∗( f ) ⊆ W( f ), W∗(e) ⊆ W(e). So we can find element, a ∈ W∗( f ) and c ∈ W∗(e) such that

σ0 = aσc. Thus, r0 = e−σ = σe+ tells us, e−σ0 = e−aσc = e−σc = σe+c = σe+ = r0. Not

only that, but σ0 =
λ∗( f )σλ∗(e) implies that σ0 ∈

λ∗( f )Wλ∗(e). By Proposition 5.11 and Definition

5.17 this means σ0 ∈ V∗(e−) ∩ D∗(e+). So, σ0 ∈ V∗(e−) ∩W(e−)w0W(e+) ∩ D∗(e+), as desired.
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We know from Proposition 5.26 that r− ∈ JG means we can find f ′ ∈ Λ− and b ∈ V( f ′) so

that r− = b−1 f ′. Likewise we can find e′ ∈ Λ and b ∈ D(e′) so that r+ = e′y−1. Since r−J rJ r+

and r = r−r0r+, Proposition A.1 tells us, f ′ = f and e′ = e. And so if we let, σ− = b, σ+ = y,

then σ− ∈ V(e−) and σ+ ∈ D(e+) and r = r−r0r+ = (σ−1
− e−)(e−σ0)(e+σ−1

+ ) = σ−1
− e−σ0e+σ−1

+ .

This shows that we can decompose an element into vanilla form. It remains to show this

decomposition is unique. Suppose that r = τ−1
− f−τ0 f+τ−1

+ is another vanilla decomposition to

the one we just determined. By definition, e−J rJ f− and e−, f− ∈ Λ−, so we can conclude that

e− = f− and likewise e+J rJ f+, so e+ = f+. So, r = τ−1
− e−τ0e+τ−1

+ = (τ−1
− e−)(e−τ0)(e+τ−1

+ ).

Since τ0 ∈ W(e−)w0W(e+) it can be shown that e−τ0 = τ0e+, and hence e−τ0H ν∗. Observe

that, r = τ−1
− e−τ0e+τ−1

+ = τ−1
− e−e−τ0τ

−1
+ = τ−1

− e−τ0τ
−1
+ and r = τ−1

− τ0e+τ−1
+ . This tells us that

rR(τ−1
− e−) and rL (e+τ−1

+ ). Finally, by applying Proposition 5.26 we see that τ−1
− e− ∈ JG and

e+τ−1
+ ∈ GJ . So we may conclude that r− = τ−1

− e−, r0 = e−τ0 and r+ = e+τ−1
+ by uniqueness of

our trichotomy.

Thus, e+σ−1
+ = r+ = e+τ−1

+ . So it follows that σ−1
+ τ+ ∈ W∗(e+), hence σ+ ∈ τ+W(e+). But

since σ+, τ+ ∈ D(e+) it follows that σ+ = τ+ as the elements of minimal length in a given coset

are unique. Likewise, σ− = τ−. Similarly, e−σ0 = r0 = e−τ0, so σ0 ∈ W∗(e−)τ0. But since

σ0, τ0 ∈ V∗(e−) we may conclude that σ0 = τ0. �

Just as with standard form and opposite standard form, we can compute the length of an

element from its vanilla form.

Proposition 5.38. For r ∈ R, if r = σ−1
− e−σ0e+σ−1

+ is in vanilla form, then we can compute the

length, `(r) = −`(σ−) + `(e−) + `(σ0) − `(σ+) = −`(σ−) + `(σ0) + `(e+) − `(σ+)

Proof. We will prove the first equality as the second is done similarly. By Proposition 3.24 we

know that `(r) = `(r−) + `(r0) + `(r+) − `(e+) − `(e−). We know that r− = σ−1
− e− and r0 = e−σ0

are in opposite standard form and r+ = e+σ−1
+ is in standard form. So we may use Proposition

5.35 to substitute,

`(r) = `(e−) − `(σ−) + `(e−) + `(σ0) + `(e+) − `(σ+) − `(e+) − `(e−)

= −`(σ−) + `(e−) + `(σ0) − `(σ+)

as desired. �
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Proposition 5.39. For any, r ∈ R, if r = σ−1
− e−σ0e+σ−1

+ is in vanilla form, then σ−1
− σ0 ∈ D∗(e+)

and σ0σ
−1
+ ∈ V∗(e−)

Proof. Once again, we will just prove the first of the two statements. r = σ−1
− σ0e+σ−1

+ and let

r = xe+σ−1
+ be the standard form for r. Then x ∈ D∗(e+) and by using Propositions 5.35 and

5.38 we see that `(x) = `(σ0) − `(σ−).

Now consider σ−r = σ0e+σ−1
+ = σ−xe+σ−1

+ . We see σ0e+σ−1
+ is in standard form, which

tells us that σ−x ∈ σ0We+ and in particular `(σ0) ≤ `(σ−x). By subadditivity of length,

`(σ−x) ≤ `(σ−) + `(x) = `(σ0). Thus σ0 = σ−x, or rather, σ−1
− σ0 = x ∈ D∗(e+). �

The most immediate result from this proposition is that we can easily read off standard

form and opposite standard form from our vanilla form.

Corollary 5.40. For r ∈ R, if r = σ−1
− e−σ0e+σ−1

+ is in vanilla form, then r = σ−1
− σ0e+σ−1

+

is in standard form and r = σ−1
− e−σ0σ

−1
+ is in opposite standard form. As well, r− = σ−1

− e−,

r0 = e−σ0e+ and r+ = e+σ−1
+ .

Proof. There is little to prove here, as e−σ0 = σ0e+, since σ0 ∈
λ∗(e−)W(e−)w0W(e+)λ∗(e+). Thus

r = σ−1
− (e−σ0)e+σ−1

+ = σ−1
− (σ0e+)e+σ−1

+ = (σ−1
− σ0)e+σ−1

+ . By Proposition 5.39 this is in

standard form, and by uniqueness of standard form we are done.

A proof for opposite standard form is done similarly. The result for our trichotomy elements

comes from the proof of existence and uniqueness of vanilla form (Proposition 5.37), where

we derived the vanilla form from our trichotomy decomposition. �

And now we move on to describe the Adherence order in general. One can easily see the

influence that standard form and opposite standard form have over our vanilla form.

Theorem 5.41. For r, s ∈ R, if r = σ−1
− e−σ0e+σ−1

+ and s = τ−1
− f−τ0 f+τ−1

+ are in vanilla form

then the following are equivalent,

(1) r ≤ s

(2) e−, e+ ≤ f−, f+ and ∃w− ∈ W∗(e−)W∗( f−) and ∃w+ ∈ W∗( f+)W∗(e+) such that w−τ− ≤ σ−,

σ0 ≤ w−τ0w+ and τ+w+ ≤ σ+
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Proof. Assume that (2) holds. We see by Lemma 5.28 that τ+w+e+σ−1
+ , σ

−1
− e−w−τ− ∈ B, and

hence r−w−s0w+r+ = σ−1
− e−w−τ−τ−1

− f−τ0 f+τ−1
+ τ+w+e+σ

−1
+ ∈ Bτ−1

− f−τ0 f+τ−1
+ B ⊆ BsB. We may

conclude then that r−w−s0w+r+ ≤ s.

We know that w− = w′′−w′− and w+ = w′+w
′′
+ , where w′′− ∈ W∗(e−), w′− ∈ W∗( f−), w′+ ∈ W∗( f+)

and w′′+ ∈ W∗(e+). So then,

r−w−s0w+r+ = σ−1
− e−w′′−w′− f−τ0 f+w′+w

′′
+e+σ−1

+ = σ
−1
− e−w′− f−τ0 f+w′+e+σ

−1
+

= σ−1
− e− f−w′−τ0w′+ f+e+σ−1

+ = σ
−1
− e−w′−τ0w′+e+σ

−1
+ = r−w−τ0w+r+

By Lemma 5.27, since σ0 ≤ w−τ0w+, we see that r−σ0r+ ≤ r−w−τ0w+r+. So now we may

conclude that, r ≤ r−w−τ0w+r+ = r−w−s0w+r+ ≤ s as desired.

Now, for the reverse direction, assume that (1) holds. It is clear that e+ ≤ f+ and e− ≤ f−.

Rewrite, r = (σ−1
− σ0)e+σ−1

+ and s = (τ−1
− τ0) f+τ−1

+ . By Corollary 5.40 r and s are in standard

form. Applying Corollary 5.32 to r ≤ s tells us there exists w+ ∈ W∗( f+)W∗(e+) so that

τ+w+ ≤ σ+ and σ−1
− σ0 ≤ τ−1

− τ0w+. By Proposition 5.39 we know that σ−1
− σ0 ∈ D∗(e+), so

σ−1
− σ0 ≤ τ−1

− τ0w+ if and only if σ−1
− σ0 ≤ τ−1

− τ0w′+, where w+ = w′+w
′′
+ , w′+ ∈ W∗( f+) and

w′′+ ∈ W∗(e+) (by Proposition 5.15).

Since e+ ≤ f+ and σ−1
− σ0 ≤ τ−1

− τ0w′+, by Theorem 5.31, σ−1
− σ0e+ ≤ τ−1

− τ0w′+ f+ (just take

w = z = 1). So, σ−1
− e−σ0 = σ−1

− σ0e+ ≤ τ−1
− τ0w′+ f+ = τ−1

− τ0 f+w′+ = τ−1
− f−τ0w′+. So now, by

applying Theorem 5.33 we know there is w− ∈ W∗(e−)W∗( f−) and z− ∈ W∗(e−) so w−τ− ≤ σ−

and σ0 ≤ z−w−τ0w′+. Since σ0 ∈ V∗(e−) we see that σ0 ≤ z−w−τ0w′+ if and only if σ0 ≤ w−τ0w+

(using Proposition 5.15 again). �

We get a slightly stronger condition if r and s belong to the same J -class. Indeed, rJ s

allows us to strengthen Corollaries 5.32 and 5.34 as well.

Corollary 5.42. For r, s ∈ R, if r = σ−1
− e−σ0e+σ−1

+ and s = τ−1
− e−τ0e+τ−1

+ are in vanilla form

then the following are equivalent,

(1) r ≤ s

(2) ∃w− ∈ W∗(e−) so that w−τ− ≤ σ−, σ0σ
−1
+ ≤ w−τ0τ

−1
+

(3) ∃w+ ∈ W∗(e+) so that σ−1
− σ0 ≤ τ

−1
− τ0w+ and τ+w+ ≤ σ+

(4) ∃w− ∈ W∗(e−) and ∃w+ ∈ W∗(e+) so that w−τ− ≤ σ−, σ0 ≤ w−τ0w+ and τ+w+ ≤ σ+
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Proof. From Theorem 5.41, (1) is equivalent to e−, e+ ≤ e−, e+ and ∃w− ∈ W∗(e−)W∗(e−) and

∃w+ ∈ W∗(e+)W∗(e+) such that w−τ− ≤ σ−, σ0 ≤ w−τ0w+ and τ+w+ ≤ σ+. The first condition in

our statement, e−, e+ ≤ e−, e+, is now a tautology, so we can discard it. Thus, (1) is equivalent

to ∃w− ∈ W∗(e−)W∗(e−) and ∃w+ ∈ W∗(e+)W∗(e+) such that w−τ− ≤ σ−, σ0 ≤ w−τ0w+ and

τ+w+ ≤ σ+.

Let us decompose both w+ = w′+w
′′
+ and w− = w′′−w′−, with, w′+ ∈ W∗(e+), w′′+ ∈ W∗(e+),

w′− ∈ W∗(e−) and w′′− ∈ W∗(e−). By Proposition 5.15,

σ0 =
λ∗(e−)σ0

λ∗(e+) ≤ (w′′−)−1w′′−w′−τ0w′+w
′′
+(w′′+)−1 = w′−τ0w′+.

Additionally, since τ− ∈ V(e−) it follows that w′−τ− ∈ V∗(e−) by applying Proposition

5.16. Likewise, we get τ+w′+ ∈ D(e+)W∗(e+) = D∗(e+). So by Proposition 5.15 we see that

w′−τ− ≤ w′′−w′−τ− = w−τ− ≤ σ− and τ+w′+ ≤ τ+w
′
+w
′′
+ = τ+w+ ≤ σ+.

By relabelling, we see that (1) is equivalent to ∃w− ∈ W∗(e−) and ∃w+ ∈ W∗(e+) such that

w−τ− ≤ σ−, σ0 ≤ w−τ0w+ and τ+w+ ≤ σ+, which is the statement of (4).

Proving (1) is equivalent to (2) and (3) is done similarly. �

Proposition 5.43. For r, s ∈ R, if r = σ−1
− e−σ0e+σ−1

+ and s = τ−1
− f−τ0 f+τ−1

+ are in vanilla form

then,

(1) rJ s if and only if e−, e+ = f−, f+

(2) rRs if and only if σ− = τ− and e− = f−

(3) rL s if and only if e+ = f+ and σ+ = τ+

(4) rH s if and only if σ− = τ− and e− = f− and e+ = f+ and σ+ = τ+

Proof. (1) Comes right from the definition, as e−J rJ e+.

(2) We know that rRs if and only if r− = s−. But, since we have our vanilla forms on hand,

rRs if and only if σ−1
− e− = τ−1

− f−. Since rRs implies rJ s, we can that rRs if and only if

rJ s and rRs, if and only if e−, e+ = f−, f+ (by (1)) and σ−1
− e− = τ−1

− f−. Thus, rRs if and only

if e− = f− and σ−1
− e− = τ−1

− f−.

We can rearrange this last equation to get, σ−1
− e− = τ−1

− f− if and only if τ−σ−1
− e− = e−. So

we can say, τ−σ−1
− ∈ W∗(e−). But then τ− ∈ W∗(e−)σ− ⊆ W(e−)σ−. Since τ−, σ− ∈ V(e−) we

can conclude that σ− = τ−. Thus, rRs if and only if e− = f− and σ− = τ−.

(3) is done the same way as (2).
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(4) By definition, rH s if and only rRs and rL s. So this follows quickly from (2) and

(3). �

Now the following results illustrate the power of vanilla form, as when we restrict to an

H -, R- or L -class we can determine the Adherence order in terms of the Bruhat order. This

is something of an extension to Theorem 3.30 from earlier.

Theorem 5.44. For r, s ∈ R, if r = σ−1
− e−σ0e+σ−1

+ and s = τ−1
− e−τ0e+τ−1

+ are in vanilla form

then,

(1) If rH s, then r ≤ s iff σ0 ≤ τ0

(2) If rRs, then r ≤ s iff σ0σ
−1
+ ≤ τ0τ

−1
+

(3) If rL s, then r ≤ s iff σ−1
− σ0 ≤ τ

−1
− τ0

Proof. (1) By Theorem 3.30 we know that rH s implies that r ≤ s if and only if r0 ≤ s0. Since

σ0, τ0 ∈ D∗(e+) we can see that r0 = σ0e+ and s0 = τ0e+ are in standard form. Then Corollary

5.32, r0 ≤ s0 if and only if there exists w ∈ W∗(e+)W∗(e+) so that σ0 ≤ τ0w and w ≤ 1. But

since 1 is the minimum element of W, hence w = 1 if it exists, we can conclude that r0 ≤ s0 if

and only if σ0 ≤ τ0.

(2) By Theorem 3.30 we know that rRs implies that r ≤ s if and only if r0r+ ≤ s0s+.

Observe that r0r+ = e−σ0σ
−1
+ and e−τ0τ

−1
+ are in opposite standard form, by Proposition 5.39.

Then by Corollary 5.34, r0r+ ≤ s0s+ if and only if there exists w ∈ W∗(e−)W∗(e−) so that

σ0σ
−1
+ ≤ wτ0τ

−1
+ and w ≤ 1. But since 1 is the minimum element of W, hence w = 1 if it exists,

we can conclude that r0r+ ≤ s0s+ if and only if σ0σ
−1
+ ≤ τ0τ

−1
+ .

(3) is done in the same manner. �

Corollary 5.45. For r ∈ R, let e− ∈ Λ−, e+ ∈ Λ with e−J rJ e+ and define the collection of

minimum elements, Z(e−, e+) = {λ∗(e−)wλ∗(e+) | w ∈ W(e−)w0W(e+)}. Then,

(1) (Z(e−, e+),≤) � (Hr,≤) via the isomorphism, u 7→ r−ur+

(2) (V∗(e−),≤) � (Rr,≤) via the isomorphism, v 7→ r−v

(3) (D∗(e+),≤) � (Lr,≤) via the isomorphism, d 7→ dr+

Proof. Let r = σ−1
− e−σ0e+σ−1

+ be the vanilla form decomposition for r.
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(1) First we will show this is an isomorphism of sets. Suppose that u1, u2 ∈ Z(e−, e+), then

r−u1r+ = σ−1
− e−u1e+σ−1

+ and r−u2r+ = σ−1
− e−u2e+σ−1

+ are our images under the given map. By

Proposition 5.11,

Z(e−, e+) =λ∗(e−)Wλ∗(e+) ∩W(e−)w0W(e+) = V∗(e−) ∩ D∗(e+) ∩W(e−)w0W(e+),

so the images are in vanilla form. Uniqueness tells us this map is injective. Suppose s ∈ Hr,

with vanilla form, σ−1
− e−τe+σ−1

+ for τ ∈ V∗(e−) ∩ D∗(e+) ∩ W(e−)w0W(e+) = Z(e−, e+). We

observe that τ maps to s, and so our map is surjective, hence an isomorphism.

Now we will show that this map preserves the ordering. Suppose that u1, u2 ∈ Z(e−, e+). By

Theorem 5.44 it follows that r−u1r+ ≤ r−u2r+ if and only if u1 ≤ u2. Thus, the map u 7→ r−ur+

is indeed an isomorphism of posets.

(2) First we will show this is an isomorphism of sets. Suppose that v1, v2 ∈ V∗(e−), then

r−v1 = σ
−1
− e−v1 and r−v2 = σ

−1
− e−v2 can be seen to be in opposite standard form. The unique-

ness of opposite standard form then tells us that the map, v 7→ r−v is injective. Suppose that

s ∈ Rr, with opposite standard form, σ−1
− e−τ for τ ∈ V∗(e−). We observe that τ maps to s, and

so our map is surjective, hence an isomorphism.

It remains to show that this map preserves the order. Suppose that v1, v2 ∈ D∗(e−). By

Proposition 5.39 and Theorem 5.44 it follows that r−v1 ≤ r−v2 if and only if v1 ≤ v2.

(3) is similar to (2). �

Although we did not state it explicitly in the statement of the corollary, the inverses of the

maps above are given by taking the vanilla, standard, or opposite standard form decompositions

(respectively) and only considering the element that is not already given by our H -, R- or

L -class setting.

5.4 Example

The most important results of this section are those involving the vanilla form decomposi-

tion, so it would be prudent to show an example of its computation. Let us take an element in

the Renner monoid of M6(K), say r =



0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0


.
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Procedurally, to compute the vanilla form, it helps to compute the trichotomy first. The

idea behind this step comes from our proof of the existence and uniqueness of vanilla order,

which relied heavily on our trichotomy work. The steps, and simple tricks, for figuring out the

trichotomy decomposition were covered in Section 3, and we will say little more about them.

When we perform the decomposition on r we get,

r =



0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


·



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0


·



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0



The idempotents, e−, e+ are easy to determine in Mn(K). e− =
 0 0

0 Irk(r)

 and e+ =
 Irk(r) 0

0 0

,
where rk(r) is the rank of r. In this case,

e− =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


e+ =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0


Now we turn our attention to σ−, σ0 and σ+. For σ− and σ+ it is much easier to compute

σ−1
− and σ−1

+ first. Consider all the elements w ∈ W so that we− = r−. That is, w ∈ σ−1
− W∗(e−).

Since σ−1
− ∈ V(e−)−1 ⊆ V∗(e−)−1, we just need to minimize the length of any potential w.

No matter which w ∈ W so that we− = r− we are looking at, we must inherit the nonzero

entries from r−. The nonzero elements of r− along with the zeros that are in their columns and

rows, form a minor of r− of size rk(r). This is the unique minor of rk(r) in r−. Complementary

to this minor, we have a minor of all zeroes of n− rk(r). In order to get a matrix in W, we must

replace this complementary minor with a permutation matrix with rank n − rk(r). Now we just

need to choose the right permutation matrix in order to minimize the overall length.

Recall from Section 3 that we learned we can compute the length of an arbitrary n × n

matrix, A, by `(A) = Σn
i=1Σ

n
j=1(ai j)(n + i − j) − |coinv(A)| − rk(A)(rk(A)+1)

2 , from [8]. But we are

considering elements in W, which are permutation matrices. Thus the rank is constant, and so

is the expression involving the summation notation. Thus the length depends on |coinv(A)|. To

minimize the length of the matrix, we must maximize the number of pairs (ai j, akl) with i < k

and j < l, ai j = akl = 1.

Since we must inherit the maximal minor of r−, and since the remaining 1’s must be placed



5.4. Example 65

in the complementary minor, the number of coinvariant pairs (see [8]) is maximized exactly

when we maximize them in the complementary minor. That is, the complementary minor

should be taken to be In−rk(r).

We illustrate this below, the maximal minor of r− consists of the gray elements. The dark

gray zeroes denote the complementary minor that must be filled in to create an element of W.

The rightmost matrix shows this minor swapped with the matrix In−rk(r).


0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


This computesσ−1

− , and to computeσ−, we take the inverse, which for permutation matrices

is just the transpose. It just so happens that in this case, σ− = σ−1
− .

σ− =



1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


Likewise, to compute σ−1

+ we want to find the minimal length element among those w ∈ W

so that e+w = r+. The same technique works, replacing the complementary minor of r+ by the

matrix In−rk(r). This minor will always be in the bottom n − rk(r) rows. So we get,

σ−1
+ =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 0 0 0 0 1


hence, σ+ =



0 0 0 0 1 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1



To compute σ0, we wish to minimize the length of the possible elements w ∈ W such that

e−w = r0 = we+. So we will once again fill the complementary minor with In−rk(r). This will be

a little easier to deal with, as we noted in Section 3 the maximal minor of r0 is in the bottom

left corner, so we will simply put In−rk(r) in the top right corner.

σ0 =



0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0



This gives us the following vanilla form decomposition.
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r =



1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



-1

·



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


·



0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0


·



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0


·



0 0 0 0 1 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1



-1

Thanks to Corollary 5.40, from here we can perform two simple matrix multiplications and

get the standard form of r (on the left) and the opposite standard form (on the right).

r =



0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1

0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0


·



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0


·



0 0 0 0 1 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1



-1

r =



1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



-1

·



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


·



1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0


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6 Maximum and Minimum Elements

Corollary 5.45 in conjunction with Proposition 5.5 and Corollary 5.14 paint an interesting

picture of the Adherence order on our H -, L - and R-classes. In particular they suggest to

us that each class is “pointy”, in the sense that they have a maximum element and a minimum

element with respect to our order. While we will characterise these elements using the afore-

mentioned results, for the moment, they serve to motivate the following section and its results

concerning these maximum and minimum elements.

Comments made toward the end of [17] motivate our investigation of what we will call

“relative maximum elements”, and a paper by Putcha about shellability, [18], motivates our

investigation of “relative minimum elements” (and his paper even provides the existence of

and expression for the relative minimum element of a J -class). These are elements that are

not necessarily maximums and minimums with respect to the whole T -class they are in, but

are maximum or minimum with respect to an added condition. For example, if r ≤ s, is there

a unique element t ∈ Rs so that t ∈ Rs and r ≤ t if and only if t ≤ t?

For the following section, as we have done before, we will let T and T represent a Green’s

relation. That is, T = H, L, R or J, and T =H ,L ,R, or J .

6.1 Maximum and Minimum Elements

We will begin our discussion by tackling the maximum elements. However, we will find

that when it comes to describing them, a straightforward proof is not exactly evident. This

will lead to our discussion of minimum elements, which are easier to describe, even if their

existence is not immediately apparent.

Proposition 6.1. For all r ∈ R, there exists an element s ∈ Tr such that BsB is dense and open

in BTrB.

Proof. We know that BTrB =
⊔

s∈Tr
BsB. Each BsB is a subvariety, and since Tr is finite, this

is a finite disjoint union of subvarieties. By an appropriate choice of Proposition 4.9, Theorem

4.14, or Theorem 4.23 from Section 4, we also know that BTrB is an irreducible variety. So,

by Theorem A.3, there exists an unique s ∈ Tr so that BsB is open and dense in BTrB. �
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Definition 6.2. For all r ∈ R, we denote the unique s ∈ Tr such that BsB is dense in BTrB by

dr
T

e . We say it is the maximum element of the T -class.

Corollary 6.3. For all r ∈ R, dim(Bdr
T

e B) = dim(BTrB).

Proof. By the preceding proposition (6.1), Bdr
T

e B is a dense subvariety of BTrB. But by Propo-

sition 14.1.6(iii) of [35] this implies that dim(Bdr
T

e B) = dim(BTrB). �

While we have designated them maximum elements, and shown that they are dense in

their respective fat T -classes, it turns out these elements are aptly named with regards to the

Adherence order.

Proposition 6.4. For all r ∈ R, and all s ∈ Tr, s ≤ dr
T

e

Proof. Since s ∈ Tr, then BsB ⊆ BTrB. By definition, Bdr
T

e B is the dense orbit in BTrB, and

so Bdr
T

e B = BTrB. So we see, BsB ⊆ BTrB ⊆ BTrB = Bdr
T

e B. Thus, BsB ⊆ Bdr
T

e B, or rather

s ≤ dr
T

e . �

Proposition 6.5. For any r, s ∈ R, r ≤ ds
T

e if and only if dr
T

e ≤ ds
T

e .

Proof. Let r ≤ ds
T

e . So, BTrB ⊆ BTsB and Bdr
T

e B ⊆ Bdr
T

e B = BTrB ⊆ BTsB = Bds
T

e B. So

we can see that dr
T

e ≤ ds
T

e . Conversely, if dr
T

e ≤ ds
T

e , then by Proposition 6.4, r ≤ dr
T

e , so it is

clear that r ≤ ds
T

e . �

Proposition 6.6. For any r, s ∈ R, the following are equivalent,

(1) there exists a ∈ Tr and b ∈ Ts so that a ≤ b

(2) BTrB ⊆ BTsB

(3) dr
T

e ≤ ds
T

e

Proof. (1) =⇒ (2) If we can find such a and b, then BaB ∩ BbB , ∅. But since, BaB ⊆ BTrB

and BbB ⊆ BTsB , ∅, we see BTrB ∩ BTsB. By an appropriate result from Section 4 we can

write BTsB =
⊔n

i=1 BTsi B for some si’s. Thus we can find index i so that BTrB ∩ BTsi B , ∅.

Since fat T -classes are disjoint, we see then that Tr = Tsi , and conclude that BTrB ⊆ BTsB.

(2) =⇒ (3) Since dr
T

e ∈ Tr, we see that Bdr
T

e B ⊆ BTrB. By definition, Bds
T

e B is dense in

BTsB. Thus, Bds
T

e B = BTsB, and we see, Bdr
T

e B ⊆ BTrB ⊆ BTsB = Bds
T

e B This tells us,

dr
T

e ≤ ds
T

e .
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(3) =⇒ (1) Notice, dr
T

e ∈ Tr and ds
T

e ∈ Ts by definition. Since dr
T

e ≤ ds
T

e , we have found an

a and b. �

In order to describe the maximum elements, it turns out it is easier to first describe the all

the minimum elements of the T -classes, and then desribe the maximum elements in terms of

the minimum elements.

Definition 6.7. For all r ∈ R, if t ∈ Tr is such that for all s ∈ Tr, t ≤ s, then we say that t is the

minimum element of the T -class. We denote it by writing, t = br
T

c .

We can see that any such br
T

c is unique by definition. It is not hard to see that, geometrically

such elements correspond to closed orbits of B × B in the irreducible variety, BTrB. As such,

the uniqueness of br
T

c shows that each BTrB has a unique closed orbit.

To show the existence of these minimum elements, we will proceed as we did and find

certain dense orbits. The problem is, that with respect to our Adherence order, minimum

elements will not generate dense orbits. So we will have to skew our fat T -classes, and look

at a different ordering. The aim is to emulate the well-known property of the Bruhat order on

Weyl groups,

r ≤ s ⇐⇒ w0s ≤ w0r ⇐⇒ sw0 ≤ rw0 ⇐⇒ w0rw0 ≤ w0sw0

Unfortunately, such a property can easily be seen to not transfer over to the Renner monoids

(just consider 0 ≤ 1). But we do have the following results, which will turn out to be enough.

Proposition 6.8. Let r, s ∈ R, and suppose that r ≤ s,

(1) if rL s, then w0s ≤ w0r

(2) if rRs, then sw0 ≤ rw0

(3) if rH s, then w0rw0 ≤ w0sw0

Proof. (3) clearly follows from applying (1) and (2). (2) is proven similarly to (1), so we

will just prove (1). Write r and s in standard form, r = xey−1 and s = zey−1. By applying

Corollary 5.45, we can see that r ≤ s if and only if x ≤ z. But this last ordering relation is

between elements of W, so we know that x ≤ z if and only if w0z ≤ w0x. Then we can see that

w0s = (w0z)ey−1 ≤ (w0x)ey−1 = w0r by Theorem 5.31. �
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These results are really the best we could ask for, as the following example shows, so it is

fortunate that they are just enough to set us on our way to find the minimal elements.

Example 6.9. One might hope to extend the results of Proposition 6.8 to more of R, perhaps

to a whole J -class. The following two examples show this is not the case. Here we have two

elements in the Renner monoid for M3(K). In the first case, the two elements are in the same

L -class, but we see that r ≤ s does not imply sw0 ≤ rw0. The second case shows a similar

counterexample for R.

(1)


0 1 0

0 0 0

0 0 1

 L


0 0 0

0 1 0

0 0 1

, with


0 1 0

0 0 0

0 0 1

 ≤


0 0 0

0 1 0

0 0 1

, but


0 0 0

0 1 0

0 0 1

·


0 0 1

0 1 0

1 0 0

 �≤


0 1 0

0 0 0

0 0 1

·


0 0 1

0 1 0

1 0 0



(2)


0 0 0

0 1 0

0 0 1

 R


0 0 0

1 0 0

0 0 1

, with


0 0 0

0 1 0

0 0 1

 ≤


0 0 0

1 0 0

0 0 1

, but


0 0 1

0 1 0

1 0 0

·


0 0 0

1 0 0

0 0 1

 �≤


0 0 1

0 1 0

1 0 0

·


0 0 0

0 1 0

0 0 1


The following corollary relates our work in Proposition 6.8 to the geometry of the Weyl

group property we wish to emulate.

Corollary 6.10. Let r, s ∈ R,

(1) if rL s then r ≤ s if and only if B−sB ⊆ B−rB

(2) if rRs then r ≤ s if and only if BsB− ⊆ BrB−

(3) if rH s then r ≤ s if and only if B−rB− ⊆ B−sB−

Proof. The technique for all three is the same, so we will just show (3). By Proposition 6.8,

r ≤ s if and only if w0rw0 ≤ w0sw0. But by the definition of the Adherence order, this is

equivalent to Bw0rw0B ⊆ Bw0sw0B. This containment relation is unchanged by multiplying

on either side by w0. So then r ≤ s if and only if

B−rB− = w0Bw0rw0Bw0 ⊆ w0Bw0sw0Bw0 = w0Bw0sw0Bw0 = B−sB−. �

This tells us that if we restrict to an H -class, we get the analogue of a property of the Weyl

group Bruhat order,

r ≤ s ⇐⇒ BrB ⊆ BsB ⇐⇒ B−sB ⊆ B−rB ⇐⇒ BsB− ⊆ BrB− ⇐⇒ B−rB− ⊆ B−sB−,

for r, s ∈ R such that rH s. If we restrict to an L - or R-class, we get a restricted version

of the property, but we will see it is still enough.

Proposition 6.11. For any sets C,D ∈ {B, B−}, and T = H , L , or R, then for any r ∈ R,

CTrD = CT ′r D, and is an irreducible subvariety of M. (Recall T ′r is the T -class of r as an

element of M rather than R.)
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Proof. Notice that the case C = D = B has been covered before in Section 4. We will just

demonstrate this result for one of the three remaining choices of C and D, say C = B− and

D = B.

B−R′rB = B−rGB = B−rG = B−w0w0rG = B−w0(w0r)−G = w0Bw0w0(w0r)−G

= w0B(w0r)−G = w0B(w0r)−BN(T )B = w0B(w0r)−N(T )B = w0Bw0rN(T )B

= B−RrB

B−L′rB = B−GrB = GrB = Gr+B = B−N(T )Br+B = B−N(T )r+B = B−LrB

This establishes the results, B−L′rB = B−LrB and B−R′rB = B−RrB, and as we did in Section 4,

we will now show that B−HrB = B−H′rB = B−L′rB ∩ B−R′rB.

Clearly, Hr ⊆ H′r, so B−HrB ⊆ B−H′rB. Also, H′r ⊆ L′r ∩ R′r, so B−H′rB ⊆ B−L′rB ∩ B−R′rB.

Now, suppose that m ∈ B−LrB∩ B−RrB. Then we can find sL r and tRr so that m ∈ B−sB and

m ∈ B−tB. Thus, B−sB ∩ B−tB , ∅, and it follows that s = t. Thus sRr, and we see that sH r.

So m ∈ B−sB ⊆ B−HrB.

Thus,

B−LrB ∩ B−RrB ⊆ B−HrB ⊆ B−H′rB ⊆ B−L′rB ∩ B−R′rB

and by our earlier work in this proof, B−LrB ∩ B−RrB = B−L′rB ∩ B−R′rB, which squeezes out

the remaining result, B−HrB = B−H′rB.

We see that B−RrB = B−rG and B−LrB = GrB, and so are orbits of the appropriate group

actions from B− ×G, G × B on M. Thus B−RrB and B−LrB are irreducible subvarieties. Since

B−HrB = B−RrB ∩ B−LrB it follows that B−HrB is also a subvariety.

Lastly, B− × H′r × B is irreducible, as each of the factors of the Cartesian product is ir-

reducible. Its image under our multiplication map (c, h, d) 7→ chd in M, must therefore be

irreducible. The image is B−HrB, which concludes the result. �

This allows us to now establish existence for br
H

c , br
R

c and br
L

c .

Proposition 6.12. For any r ∈ R, the elements br
H

c , br
R

c and br
L

c exist.

Proof. All three results are done similarly, so we will just prove that br
H

c exists. By Proposition

6.11, B−HrB is an irreducible subvariety of M. We can decompose B−HrB =
⊔

s∈Hr
B−sB, and

so it follows that there exists a unique s ∈ Hr so that B−sB is open and dense in B−HrB. We

claim that s = br
H

c .
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Take any t ∈ Hr. Since B−sB is dense, we see B−tB ⊆ B−HrB ⊆ B−HrB = B−sB. By

Corollary 6.10 this is equivalent to s ≤ t for all t ∈ Hr, which is the definition of br
H

c . �

Now that we have existence for all but br
J

c we are in position to describe the minimum

elements, which will bring us back to the maximum elements we started with. The following

theorem uses our Corollary 5.45 to determine expressions for the minimum elements. As it

turns out, the minimum elements all belong to well behaved sets.

Theorem 6.13. For r ∈ R we get the following,

(1) r = br
H

c iff r ∈ O

(2) r = br
R

c iff r ∈ JG

(3) r = br
L

c iff r ∈ GJ

(4) r = br
J

c iff r ∈ N

While the phrasing of (4) might seem to require existence, it really shows existence, as

N � R/J , so there will be exactly one such element in each J -class.

Proof. (1) Let e− ∈ Λ−, e+ ∈ Λwith e−J rJ e+ and let µ ∈ W be minimal such that e−µ = µe+.

Then, by using Corollary 5.45, (Z(e−, e+),≤) � (Hr,≤) by way of the isomorphism, u 7→ r−ur+,

where Z(e−, e+) = V∗(e−) ∩ W(e−)w0W(e+) ∩ D∗(e+). Notice that both λ(e−)w0
λ(e+) ∈ Z(e−, e+)

and λ(e−)w0
λ(e+) ≤ w for all w ∈ W(e−)w0W(e+). So Z(e−, e+) certainly has a minimum element.

It is then clear that taking u as the minimum in Z(e−, e+) will give us br
H

c . So u =λ(e−)w0
λ(e+).

Thus, r = br
H

c if and only if r = r−λ(e−)w0
λ(e+)r+ = r−e−λ(e−)w0

λ(e+)e+r+. But now recall

that Proposition 3.1 tells us, e−λ(e−)w0
λ(e+)e+ ∈ N∗. So we conclude, by Proposition 3.25 that

r = br
H

c if and only if r ∈ O.

(2) Let e− ∈ Λ−, with e−J r. Then, by Corollary 5.45, (V∗(e−),≤) � (Rr,≤) via the

isomorphism, v 7→ r−v. So taking v minimal in V∗(e−) will give us br
R

c . It is clear that 1 is the

minimal element of V∗(e−), as it is the minimum element of W. Thus, r = br
R

c if and only if

r = r−1. That is, r = br
R

c if and only if r ∈ JG.

(3) is done similarly to (2).

(4) Observe that for r ∈ R, Lr,Rr ⊆ Jr. It is clear that if r = br
J

c then r = br
R

c and r = br
L

c .

But then by (2) and (3) this tells us r ∈ JG∩GJ = N . Thus r = br
J

c implies r ∈ N . The fact

that N � R/J completes the result. �
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With existence established we can now demonstrate the following result, which allows us

to answer a question about the fat H -classes from Section 4.

Proposition 6.14. For any r, s ∈ R, the following are equivalent,

(1) there exists a ∈ Tr and b ∈ Ts so that a ≤ b

(2) BTrB ⊆ BTsB

(3) br
T

c ≤ bs
T

c

Proof. (1) ⇐⇒ (2) was established in Proposition 6.6.

(2) ⇐⇒ (3) For T = L ,R or J we observe that the results have already been proven in

Theorem 4.17 and Corollary 4.20 (one needs to consider Theorem 6.13 as well). So it remains

to tackle the T =H case.

For T = H , we will show (1) ⇐⇒ (3) instead. If br
H

c ≤ bs
H

c then since br
H

c ∈ Hr

and bs
H

c ∈ Hs we see that (3) implies (1). Conversely, if a ∈ Hr and b ∈ Hs then by definition

br
H

c ≤ a ≤ b. By applying Corollary 5.5 from [17] we see that br
H

c ≤ b implies br
H

c ≤ bs
H

c , as

desired. �

Corollary 6.15. For r, s ∈ R, BHrB ⊆ BHsB if and only if a ≤ b, where a and b are the unique

elements in O ∩ Hr and O ∩ Hs respectively.

Proof. This is just (2) and (3) of the above proposition when applied to T =H . �

Proposition 6.16. If r, s ∈ R, then br
L

c ≤ bs
L

c and br
R

c ≤ bs
R

c if and only if br
H

c ≤ bs
H

c .

Proof. It is clear that t− = bt
R

c and t+ = bt
L

c by Theorem 6.13. Now, since r−, s− ∈ JG and

r+, s+ ∈ GJ , we see that r− ≤ s− and r+ ≤ s+ if and only if Br− ⊆ Bs− and r+B ⊆ s+B.

Theorem 4.25 tells us this is equivalent to BHrB ⊆ BHsB. But Corollary 6.15 says this in turn

is equivalent to a ≤ b, where a and b are the unique elements in O∩Hr and O∩Hs respectively.

Applying Theorem 6.13 again allows us to conclude that br
L

c ≤ bs
L

c and br
R

c ≤ bs
R

c if and only

if br
H

c ≤ bs
H

c . �

Now that we have described the minimum elements, we can turn the tables again, using our

result, Proposition 6.8, to talk about the maximum elements again. The maximum elements

belong to well behaved sets, like the minimum elements.
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Theorem 6.17. For r ∈ R we get the following,

(1) r = dr
H

e iff r ∈ w0O = Ow0

(2) r = dr
R

e iff r ∈ JGw0

(3) r = dr
L

e iff r ∈ w0GJ

(4) r = dr
J

e iff r ∈ w0Λ = Λ
−w0

Proof. (1) r = dr
H

e if and only if for all s ∈ Hr we have s ≤ r. But then, by Proposition 6.8 this

is equivalent to w0r ≤ w0s for all s ∈ Hr. By observing that w0Hr = Hw0r we see that r = dr
H

e

if and only if w0r ≤ t for all t ∈ Hw0r, or rather w0r = bw0r
H

c . Thus, r = dr
H

e if and only if

w0r ∈ O if and only if r ∈ w0O.

(2) r = dr
R

e if and only if for all s ∈ Rr we have s ≤ r. But then, by Proposition 6.8 this

is equivalent to rw0 ≤ sw0 for all s ∈ Rr. By observing that Rrw0 = Rrw0 we see that r = dr
R

e

if and only if rw0 ≤ t for all t ∈ Rrw0 , or rather rw0 = brw0

R

c . Thus, r = dr
R

e if and only if

rw0 ∈ JG if and only if r ∈ JGw0.

(3) is done similarly to (2).

(4) Observe that for r ∈ R, Lr,Rr ⊆ Jr. It is clear that if r = dr
J

e then r = dr
R

e and r = dr
L

e .

But by (2) and (3) this tells us r ∈ JGw0 ∩ w0GJ . We claim JGw0 ∩ w0GJ = w0Λ = Λ
−w0.

It is clear, since Λ ⊆ GJ and Λ− ⊆ JG, that Λ−w0 ⊆ JGw0 ∩ w0GJ . Suppose that

a ∈ JGw0 ∩ w0GJ . By Proposition 5.26 we can write a = b−1 f w0 = w0ey−1 for e ∈ Λ,

f ∈ Λ−, y ∈ D(e) and b ∈ V( f ). Since eJ f we can tell that, w0e = f w0. So then we see,

w0a = w0b−1 f w0 = w0b−1w0e. Thus, w0aL e. But notice that a ∈ w0GJ means that w0a ∈ GJ .

Theorem 3.9 then tells us that w0a = e, or rather a ∈ w0Λ.

Thus r = dr
J

e implies r ∈ Λw0 = w0Λ
−. The fact that Λw0 � Λ � R/J completes the

result. �

It is interesting to note that this is directly in line with Renner’s description of the “big cell”

in each J -class, in Section 6 of [27]. Indeed, we can now say that each fat T -class has a “big

cell” if we define the concept analogously, and that cell is exactly the orbit Bdr
T

e B for the fat

T -class, BTrB.

Corollary 6.18. Let e ∈ Λ and f ∈ Λ−. Then be
R

c = be
J

c , de
L

e = de
J

e , d f
R

e = d f
J

e , and

b f
L

c = b f
J

c .
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Proof. Observe, eReλ(e)w0
λ(w0ew0) ∈ N . So ν = be

J

c ≤ be
R

c = bν
R

c ≤ ν. Thus be
J

c = be
R

c . By

Theorem 6.17, de
J

e ∈ w0Λ, so we can see that de
J

e = w0eL e. By similar reasoning to the last

case, we can conclude that de
L

e = de
J

e . The cases for f ∈ Λ− are similar. �

This corollary gives us some useful information about the positions of the elements of Λ

Λ− within their J -classes. Namely, Λ lies in the minimum R-class and maximum L -class,

and Λ− lies in the maximum R-class and minimum L -class.

6.2 Relative Maxima

Having seen the structure of T -classes though the lens of absolute maxima and minima

(specifically showing that they exist) we turn to extend these notions to coincide with elements

shown to exist in Section 5 of [17]. These elements are unique maximal elements in a T -class,

subject to the additional condition that they are less than a given element of R.

Definition 6.19. For r, s ∈ R and r ≤ s, we define the relative maximum of Tr with respect to

s, as

maxsTr =

 t if t ∈ Tr, t ≤ s and ∀t′ ∈ Tr t′ ≤ s =⇒ t′ ≤ t

undefined otherwise

Remark 6.20. We can recover our previous work with (absolute) maximums by noting that, R

has a unique maximal element, w0, so it can be seen that dr
T

e = maxw0Tr.

Proposition 6.21. For r, s, t ∈ R with r ≤ t ≤ s, then (if they exist), maxtTr ≤ maxsTr.

Proof. By definition we know, maxtTr ∈ Tr and maxtTr ≤ t. But since, t ≤ s it follows that

maxtTr ≤ s, and so by definition of the relative maximum, maxtTr ≤ maxsTr. �

The next two results will be very helpful in proving the existence of these relative maximum

elements. This first one is a kind of strengthening of the condition for two elements to be in

the same J -class. It is well-known that rJ s if and only if we can find t ∈ R so that rL tRs.

the following lemma shows us that if r ≤ s then we can choose t so that r ≤ t ≤ s.

Lemma 6.22. Suppose that r, s ∈ R with r ≤ s and rJ s. Then we can find a ∈ Hr−w0 s+ and

b ∈ Hs−w0r+ so that r ≤ a ≤ s and r ≤ b ≤ s.
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Proof. Let r = σ−1
− e−σ0e+σ−1

+ and s = τ−1
− e−τ0e+τ−1

+ be in vanilla form. By Corollary 5.42

since r ≤ s, then ∃w− ∈ W∗(e−) and ∃w+ ∈ W∗(e+) such that w−τ− ≤ σ−, σ0σ
−1
+ ≤ w−τ0τ

−1
+ and

τ+w+ ≤ σ+, σ−1
− σ0 ≤ τ

−1
− τ0w+. Let a = σ−1

− e−w−τ0τ
−1
+ and b = τ−1

− τ0w+e+σ−1
+ .

By Proposition 5.39 we can see that τ0τ
−1
− ∈ V∗(e−) and τ−1

+ τ0 ∈ D∗(e+). So by Propositions

5.16 and 5.23, w−τ0τ
−1
+ ∈ V∗(e−) and τ−1

+ τ0w+ ∈ D∗(e+), so we can see that a is in opposite

standard form and b is in standard form.

By comparing their forms, one can easily tell that rRa and rL b. Observe that since

w− ∈ W∗(e−), we can see that a = σ−1
− e−w−τ0τ

−1
+ = σ

−1
− w−e−τ0τ

−1
+ = σ

−1
− w−τ0e+τ−1

+ , so sL a,

and likewise sRb. So it is clear from here that a ∈ Hr−w0 s+ and b ∈ Hs−w0r+ . It remains for us to

show that r ≤ a ≤ s and r ≤ b ≤ s.

Observe that 1 ∈ W∗(e−)W∗(e−), σ− ≤ σ− and σ0σ
−1
+ ≤ w−τ0τ

−1
+ . So by Corollary 5.34

r ≤ a. In a similar fashion, w− ∈ W∗(e−)W∗(e−), w−τ− ≤ σ− and w−τ0τ
−1
+ ≤ w−τ0τ

−1
+ . So by

Corollary 5.34 we can see that a ≤ s.

r ≤ b ≤ s is shown similarly. �

Lemma 6.23. Take r ∈ R and let e, f ∈ E(R) be such that eRr and f L r. Then,

(1) H′r is open and dense in eM f

(2) L′r is open and dense in M f

(3) R′r is open and dense in eM

Proof. (1) We know that H′e = eCG(e)e ⊆ eMe is open and dense, as it is the group of units

of eMe. Since eRrL f we see that eJ f . So we can find u ∈ G so that u−1 f u = e. Then

observe that H′r = H′eu
−1. One can see this, as s ∈ H′r if and only if s = ew = w f for

some w ∈ G if and only if su = ewu = w f u = wuu−1 f u = wue if and only if su ∈ H′e

if and only if s ∈ H′eu
−1. Now, since H′e is open and dense in eMe, we can conclude that

H′r = H′eu
−1 ⊆ eMeu−1 = eMueu−1 = eM f is open and dense.

(2) Observe that L′r = Gr = G f ⊆ M f . Since it is the orbit of an element, it is a subvariety

of M f by Proposition A.4. Since it is a subvariety, it is locally closed, and so openness of G f

will follow from density. By continuity of multiplication, G f ⊆ M f = G f ⊆ G f ⊆ M f = M f ,

since Mf is closed. Thus, G f = M f , and thus L′r is dense in M f .

(3) is done similarly to (2). �
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And now we are in position to show the existence of maxsHr, maxsRr and maxsLr. The

result comes as a generalisation of work from Section 5 of [17], specifically Corollary 5.5.

Theorem 6.24. For any r, s ∈ R, with r ≤ s, then maxsHr,maxsLr and maxsRr exist.

Proof. The results are similar, so we will just prove this for maxsRr. First, pick, e ∈ E(R), with

eRr. Observe that r ∈ R′r. Also note that r = er ∈ eBrB ⊆ eBsB ⊆ eBsB. So we see that

r ∈ eBsB ∩ R′r, hence eBsB ∩ R′r , ∅.

Since eBsB ∩ R′r , ∅, we know that it is open and dense in eBsB (as eBsB ⊆ eM and

R′r is open and dense in eM, by Lemma 6.23). We know, R′r ⊆ BRrB by Proposition 4.6, so

eBsB ∩ R′r ⊆ eBsB ∩ BRrB ⊆ eBsB, and hence eBsB ∩ BRrB is a dense subvariety of eBsB.

BsB is the orbit of s under the group action of B × B, and so is irreducible. Then, eBsB is

also irreducible, as it is the image of BsB under multiplication by e on the left. It follows that

eBsB is also irreducible, as the closure of an irreducible is irreducible. Since eBsB ∩ BRrB is

a dense subvariety of eBsB, it must be an irreducible variety too.

Now, we see that eBsBe∩ BRrB =
⊔

tRr eBsB∩ BtB, a finite disjoint union of subvarieties.

So by Theorem A.3 we can find a unique tRr so that eBsB∩BtB is dense in eBsB∩BRrB (thus

dense in eBsB). Then, eBsB ⊆ BtB, so for any t ∈ Rr, if BtB ∩ eBsB , ∅, then BtB ∩ BtB , ∅,

and we conclude that BtB ⊆ BtB, or rather t ≤ t.

Suppose that tRr. If t ≤ s, then t ∈ BsB, so t = et ∈ eBsB ⊆ eBsB, by continuity of

multiplication. So, t ≤ s implies eBsB ∩ BtB , ∅, hence t ≤ t.

To conclude that t = maxsRr, it remains to show that t ≤ s. By our choice of t it is clear

that eBsB ∩ BtB , ∅. Now, since e ∈ T , and T BsB ⊆ BsB, we see that eBsB ⊆ BsB. So then

BsB ∩ BtB , ∅, and hence BtB ⊆ BsB. We conclude that t ≤ s. �

Applying Lemma 6.22 allows us to describe maxsRr and maxsLr in terms of an element

that is maximum relative to an H -class.

Proposition 6.25. For any, r, s ∈ R, with rJ s and r ≤ s, then maxsLr = maxsHs−w0r+ and

maxsRr = maxsHr−w0 s+

Proof. We will just prove this result for maxsRr = maxsHr−w0 s+ . Notice that by definition, for

all t ∈ Rr, t ≤ s if and only if t ≤ maxsRr. It is clear that Hr−w0 s+ ⊆ Rr, so then for all t ∈ Hr−w0 s+ ,
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t ≤ s implies t ≤ maxsRr. We can conclude then that maxsHr−w0 s+ ≤ maxsRr. Now, for any

t ∈ Rr such that t ≤ s, by Lemma 6.22 we can find a ∈ Hr−w0 s+ so that t ≤ a ≤ s. Thus,

t ≤ maxsHr−w0 s+ , and so we can conclude that maxsRr ≤ maxsHr−w0 s+ . �

This is useful, as we now only need to find an expression for maxsHr’s to describe all of

our relative maximum elements. Unlike H , R and L , we cannot guarantee that J -classes

always have a unique maximal relative element, as the following example shows us.

Example 6.26. Consider r =
 0 1

0 0

 and s =
 1 0

0 1

. One can check that
 1 0

0 0

 <
 1 0

0 1

 and 0 0

0 1

 <
 1 0

0 1

, are both maximal in the J -class of rank one matrices, but that neither is

greater than the other. So we have no maximum element. Thus, maxsJr does not exist.

All is not lost, however, as the following proposition allows us to describe all the elements

that are relatively maximal (if not relatively maximum).

Proposition 6.27. For r, s, t ∈ R, if r ≤ s, then there does not exist any element t ∈ Jr such that

r < t ≤ s if and only if r = maxsLr and r = maxsRr.

Proof. If there does not exist any element t ∈ Jr such that r < t ≤ s, then since Lr,Rr ⊆ Jr

we easily conclude that r = maxsLr and r = maxsRr. For the reverse direction, suppose that

r = maxsLr and r = maxsRr. Suppose that t ∈ Jr so that r ≤ t ≤ s. Then, by Lemma 6.22 we

can find an element a ∈ Jr so that rRaL t and r ≤ a ≤ t ≤ s. But since r = maxsRr it follows

that r = a, and hence rL t. Then, since r = maxsLr, we conclude that t = r. Thus, no such t

can exist with r < t. �

Corollary 6.28. If maxsJr exists, then r = maxsJr if and only if r = maxsLr and r = maxsRr.

Proof. If maxsJr exists, then it is the unique element in Jr such that there does not exist any

element t ∈ Jr such that r < t ≤ s. So just apply the preceding proposition. �

As it turns out, we can write maxsJr (when it exists) in terms of a relative maximum of an

H -class.

Theorem 6.29. Suppose that r, s ∈ R, with r ≤ s. Define z = (maxsLbrJ

c
)−w0(maxsRbrJ

c
)+. Then

maxsJr exists if and only if bz
H

c ≤ s, in which case maxsJr = maxsHz
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Just to make it explicit, note that the element z is always defined by our previous work with

absolute minimums and relative maximums for L -classes and R-classes.

Proof. Suppose that maxsJr exists. By definition, bz
H

c ≤ s if and only if bz
H

c ≤ maxsJr. We

know that L
br

J

c
,R
br

J

c
⊆ Jr, so then maxsLbrJ

c
≤ maxsJr and maxsRbrJ

c
≤ maxsJr. Furthermore, we

can see that (maxsLbrJ

c
)− ≤ (maxsJr)− and (maxsRbrJ

c
)+ ≤ (maxsJr)+. It follows by considering

Proposition 6.16, that bz
H

c ≤ bmaxsJr

H

c ≤ maxsJr.

Conversely, suppose that bz
H

c ≤ s. It suffices to show that maxsHz (which we know exists)

fits the definition of maxsJr. Suppose that t ∈ Jr is such that t ≤ s. By Corollary 3.26 we can

see that t−L ν = br
J

c and t+Rν = br
J

c . Thus t− ≤ maxsLbrJ

c
and t+ ≤ maxsRbrJ

c
, and it follows

that t− ≤ (maxsLbrJ

c
)− = z− and t+ ≤ (maxsRbrJ

c
)+ = z+. Then we see that bz

H

c ≤ s implies

t− ≤ z− ≤ s and t+ ≤ z+ ≤ s. So, from Proposition 6.16, bt
H

c ≤ bz
H

c .

Now, Lemma 6.22 tells us there is a ∈ Jr so that bt
H

c ≤ a ≤ bz
H

c ≤ s. and a+ = z+, a− = t−.

Then, a ∈ Rt, and so a ≤ maxsRt. It follows that z+ = a+ ≤ (maxsRt)+ ≤ (maxsRbrJ

c
)+ = z+, or

rather, (maxsRt)+ = z+. So m := maxsRtL z. Consider maxsLm = maxsLz. Since bz
H

c ≤ s we

can see that z− ≤ (maxsLm)−. But once again, we can see that (maxsLm)− ≤ (maxsLbrJ

c
)− = z−.

Thus, maxsLm ∈ Hz. And so we have found that, such that t ≤ m ≤ maxsLm ≤ maxsHz. Thus,

maxsJr exists and is equal to maxsHz as desired. �

So why do we not always have a relative maximum for a J -class? This last theorem

gives us a hint. We know that maxsJr exists if and only if bz
H

c ≤ s. Looking at the level of

vanilla forms (z = σ−1
− e−σ0e+σ−1

+ , s = τ−1
− f−τ0 f+τ−1

+ ), we see that bz
H

c = σ−1
− e−µe+σ−1

+ , where

µ ∈ W is minimal so that e−µ = µe+. Thus, by Theorem 5.41, r ≤ s if and only if we can find

w− ∈ W∗(e−)W∗( f−) and w+ ∈ W∗( f+)W∗(e+) so that w−τ− ≤ σ−, τ+w+ ≤ σ+ and µ ≤ w−τ0w+.

But since µ is the minimum element in W(e−)w0W(e+) it follows that this is true if and only

if we can find elements w− ∈ W∗(e−)W∗( f−) and w+ ∈ W∗( f+)W∗(e+) so that w−τ− ≤ σ−,

τ+w+ ≤ σ+ and w−τ0w+ ∈ W(e−)w0W(e+).

So it seems that with regards to the particular elementsσ+ ∈ D(e+), τ+ ∈ D( f+), σ− ∈ V(e−),

τ− ∈ V( f−) and τ0 ∈ V∗( f−) ∩W( f−)w0W( f+) ∩ D∗( f+), once the set,

A =
{
σ0 ∈ V∗(e−) ∩W(e−)w0W(e+) ∩ D∗(e+)

∣∣∣∣ ∃w− ∈ W∗(e−)W∗( f−),∃w+ ∈ W∗( f+)W∗(e+)

w−τ− ≤ σ−, σ0 ≤ w−τ0w+, τ+w+ ≤ σ+

}
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is nonempty, it has a maximum.

One wonders if there is a purely Coxeter group theoretic reason for these results. Something

along the lines of the following statement, which would provide an analogue of the existence

of maxsHr.

Question 6.30. Let K− ⊆ I− ⊆ S , K+ ⊆ I+ ⊆ S , L− ⊆ J− ⊆ S , L+ ⊆ J+ ⊆ S be sets

of simple reflections of the Weyl group such that WI∗ = WK∗ × WI∗\K∗ = WI∗\K∗ × WK∗ and

WJ∗ = WL∗ × WJ∗\L∗ = WJ∗\L∗ × WL∗ for all sets ∗ = + or −. Suppose also that L∗ ⊆ K∗ and

I∗\K∗ ⊆ J∗\L∗ for all ∗ = + or − and that w0WH+w0 = WH− for all H = I, J,K, L, I\K and J\L.

For elements, σ− ∈ I−W, τ− ∈ J−W, σ+ ∈ W I+ , τ+ ∈ W J+ , and τ0 ∈
L−W ∩ WJ−w0WJ+∩WL+ ,

define the set,

A =
{
σ0 ∈

K−W ∩ (WI−w0WI+)∩WK+
∣∣∣∣ ∃w− ∈ WK−WJ−\L− ,∃w+ ∈ WJ+\L+WK+ so that

w−τ− ≤ σ−, σ0 ≤ w−τ0w+ and τ+w+ ≤ σ+

}
Is it true that if A , ∅, then A is a directed set (a preorder where every pair of elements has

an upper bound) with regards to the Bruhat order, ≤?

We pose it as a directed set (which in finite cases is equivalent to saying there exists a

maximum) so that one may ponder the result for all Coxeter groups, not just finite ones. We

will leave this question for readers to consider, and move on to the relative minimal elements,

which are equally abundant, but require more work to show existence.

6.3 Relative Minima

It would be nice if we could reproduce our relative maximal element results for relative

minimal elements, and for the most part we can, but it requires a more subtle approach. The

ease with which we proved the existence of relative maximal elements maxsHr, maxsLr and

maxsRr relied on the existence of a dense open subvariety that looked like BtB. Unfortunately

for minimal elements there are not a lot of algebraic geometry results that talk about minimum

orbits. This poses a problem.

What we can do is use results like Proposition 6.8 and Lemma 6.22 to slowly build up our

results. First we will show that if rL s or rRs then minrHs exists. From there we will see that

if rJ s then minrLs and minrRs exist. And so on.
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Definition 6.31. For r, s ∈ R and r ≤ s, we define the relative minimum of Ts with respect to

r, as

minrTs =

 t if t ∈ Ts, r ≤ t and ∀t′ ∈ Ts r ≤ t′ =⇒ t ≤ t′

undefined otherwise

Remark 6.32. We can recover our work with (absolute) minimums, if it happens that R has a

unique minimal element. For instance, if 0 ∈ R then br
T

c = min0Tr.

Proposition 6.33. For r, s, t ∈ R with r ≤ t ≤ s, then (if they exist), minrTs ≤ mintTs.

Proof. By definition we know, mintTs ∈ Ts and t ≤ mintTs. But since, r ≤ t it follows that

r ≤ mintTs, and so by definition of the relative minimum, minrTs ≤ mintTs. �

We now begin to show that these minrTs exist.

Theorem 6.34. Suppose that r, s ∈ R with r ≤ s and either rL s or rRs. Then minrHs exists.

Proof. Our proof depends on which condition, rL s or rRs, is satisfied. We will prove the

result assuming that rL s and, as usual, the case for rRs is proven similarly. First, let us

distinguish idempotents, e, f ∈ E(R), with eRsL f . Observe that s ∈ H′s. Also note that rL s,

so r ≤ s if and only if B−sB ⊆ B−rB. Thus, s = es f ∈ eB−sB f ⊆ eB−rB f ⊆ eB−rB f . So we

see that s ∈ eB−rB f ∩ H′s, hence eB−rB f ∩ H′s , ∅.

Since eB−rB f ∩ H′s , ∅, we know that it is open and dense in eB−rB f (because H′s is

open and dense in eM f , by Lemma 6.23). H′s ⊆ B−HsB by Proposition 6.11, so it follows that

eB−rB f ∩H′s ⊆ eB−rB f ∩B−HsB ⊆ eB−rB f , and hence eB−rB f ∩B−HsB is a dense subvariety

of eB−rB f .

B−rB is the orbit of r under the group action of B−×B, and so is irreducible. Then, eB−rB f

is also irreducible, as it is the image of B−rB under multiplication by e on the left and f on the

right. It follows that eB−rB f is also irreducible, as the closure of an irreducible is irreducible.

Since eB−rB f ∩ B−HsB is a dense subvariety of eB−rB f , it must be an irreducible variety too.

Now, eB−rB f ∩ B−HsB =
⊔

tH s eB−rB f ∩ B−tB, a finite disjoint union of subvarieties.

So by applying Theorem A.3 we can find a unique tH s so that eB−rB f ∩ B−tB is dense in

eB−rB f ∩ B−HsB (thus dense in eB−rB f ). Then, eB−rB f ⊆ B−tB, so for any t ∈ Hs, if

B−tB∩ eB−rB f , ∅, then B−tB∩ B−tB , ∅, and we conclude that B−tB ⊆ B−tB, or rather t ≤ t

(by Corollary 6.10).
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Suppose that tH s, then since tL r, r ≤ t is equivalent to B−tB ⊆ B−rB, by Corollary 6.10.

If r ≤ t, then t ∈ B−rB, so t = et f ∈ eB−rB f ⊆ eB−rB f , by continutity of multiplication. So,

r ≤ t implies eB−rB f ∩ B−tB , ∅, hence t ≤ t.

To conclude that t = minrHs, it remains to show that r ≤ t. By our choice of t it is clear that

eB−rB f ∩ B−tB , ∅. Now, since e, f ∈ T , and T B−rBT ⊆ B−rB, we see that eB−rB f ⊆ B−rB.

So then B−rB∩B−tB , ∅, and hence B−tB ⊆ B−rB. But since rL t, we conclude that r ≤ t. �

Proposition 6.35. Suppose that r, s ∈ R with r ≤ s and either rJ s. Then minrLs and minrRs

exists, and we can express them as, minrLs = minrHr−w0 s+ and minrRs = minrHs−w0r+ .

Proof. We will just demonstrate this for minrRs. Since we know that minrHs−w0r+ exists (by

Theorem 6.34), it suffices just to prove that minrRs = minrHs−w0r+ . It is clear that Hs−w0r+ ⊆ Rs,

so minrHs−w0r+ ∈ Rs. Now, for any t ∈ Rs such that r ≤ t, by Lemma 6.22 we can find a ∈ Hs−w0r+

so that r ≤ a ≤ t. Thus, minrHs−w0r+ ≤ t. So it follows that minrRs = minrHs−w0r+ . �

Proposition 6.36. Suppose that r, s ∈ R with r ≤ s and rJ s. Then minrHs exists.

Proof. Since rJ s, by Proposition 6.35, minrLs exists. We claim minrHs = minminrLs Hs. We

need only prove the equality, as the right hand side exists by Theorem 6.34. Hs ⊆ Ls, so by

definition, if t ∈ Hs, then r ≤ t if and only if minrLs ≤ t. �

Our next result comes to us from [18] by Mohan Putcha. In his paper he describes an order

preserving projection map from WeW to W f W for each pair e ≤ f ∈ Λ. This map turns out to

exactly fit the definition of relative minimum for a J -class.

Theorem 6.37. For any r, s ∈ R, if r ≤ s then minr Js exists.

Proof. This phenomenal result can be found in [18] by Putcha. For informational purposes,

we will state here the method to determine minr Js from r and s. First put r and s into standard

form, r = xey−1 and s = u f v−1. Let z represent the maximum element of W∗(e) (which exists,

as it is a Coxeter group). Then zy−1 ∈ W =
⊔

b∈D( f ) W( f )b−1 so we can find a ∈ W( f ) and some

b ∈ D( f ) so that zy−1 = ab−1. Then minr Js = (xc) f b−1 where c ∈ W is chosen such that c ≤ a

and xc is minimal. �
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One can expect that a similar method using opposite standard form exists. Now that we

have minr Js, we can finally show the existence of the other relative minima.

Proposition 6.38. For any r, s ∈ R and any T = H , L , or R, if r ≤ s then minrTs exists,

and we can express it as, minrTs = minminr JsTs

Proof. First, note that by definition, r ≤ s tells us that minr Js ≤ s. So then the expression

minminr JsTs makes sense. Second, observe that to prove existence, we need only prove the

expression minrTs = minminr JsTs, as our previous work tells us that the right hand side exists.

Ts ⊆ Js, so by definition, if t ∈ Ts, then r ≤ t if and only if minr Js ≤ t. This concludes the

result. �

The following corollary will be of more use when one looks at a specific monoid, like we

will in the Rook monoid momentarily.

Corollary 6.39. For any r, s ∈ R, if r ≤ s then minr Js = minrLminrRs = minrRminrLs

Proof. We will just prove the first equality, as the second is done similarly. It is clear that the

elements, minr Js and minrLminrRs exist, so we need only establish that they are equal.

It is clear that r ≤ minrRs ≤ s and so r ≤ minrLminrRs ≤ minrRs ≤ s. It is also true that

minrLminrRsL minrRsRs, so minrLminrRsJ s. By definition minr Js ≤ minrLminrRs .

By Lemma 6.22 we know that there exists minr Js ≤ z ≤ s with zRs and zL minr Js. Then

minrRs ≤ z ≤ s. Thus, (minrRs)+ ≤ z+. Now, zL minr Js so minrLz = minr Js ≤ minrLminrRs .

Thus, z+ = (minrLz)+ ≤ (minrLminrRs)+ = (minrRs)+. It follows, as desired, that zL minrRs and

furthermore, minr Js = minrLz = minrLminrRs . �

One can make a similar statement about maxsJr = maxsLmaxsRr = maxsRmaxsLsr provided

that it exists. A proof would proceed like the one above for Corollary 6.39.

Before moving on to the examples of this section, we will conclude with a useful theorem

revealing some of the structure of the Adherence order which is achieved with our absolute and

relative maxima and minima.

Theorem 6.40. Let T =H ,R,L ,J

(1) If r0 < r1 < · · · < rk−1 < rk is a chain of elements in R, and r0T rk, then for all indices,
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0 ≤ i ≤ k we have r0T ri.

(2) Suppose r0 < r1 < · · · < rk−1 < rk is a chain of maximum length between r0, rk ∈ R.

For all 1 ≤ i ≤ k, if riT\ ri−1 then ri = minri−1Tri and if T ,J , ri−1 = maxriTri−1 .

Proof. (1) By Proposition 6.14, we can see that our given chain, r0 < r1 < · · · < rk−1 < rk,

implies that br0

T

c ≤ br1

T

c ≤ · · · brk−1

T

c ≤ brk

T

c . But r0T rk means that br0

T

c = brk

T

c and hence

for any i, br0

T

c = bri

T

c , thus r0T ri.

(2) We shall just show the minimum condition, as the maximum condition follows similarly.

Suppose not. Then we see that ri−1 < minri−1Tri < ri, which contradicts the maximality of the

length of the chain. �

6.4 Example

Although we covered the maximum and minimum elements of T -classes first, Remarks

6.20 and 6.32 suggests that we should take a look at the relative maximums and minimums

first, as computing them covers the computation of our absolute extremes. Let us take a look

at finding a minrRs. We know from our example in Section 1 that r < s for r =



0 0 0 0 1 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0



and s =



0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

1 0 0 0 0 0


. Now let us find minrRs. The elements of Rs are obtained by permuting the

columns of s.

To compute minrRs we begin by looking at each column of r, starting from the left column

and moving right, and analysing them in turn. For a specific column of r, pick the column of s

that most closely resembles it. If there is not an exact match, we choose the column of s whose

nonzero element is as close to the nonzero entry of the column of r from the bottom.

For our specific example, we first look at


0

0

0

0

0

1


, the leftmost column of r. One of the columns

of s matches this column perfectly, so it becomes the leftmost column of minrRs. Then, we

move right and look at the


0

0

1

0

0

0


column of r. There is no column of s that exactly matches this,

so we will have to get as close as we can. Ultimately we chose the


0

0

0

1

0

0


column of s as it is the
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closest without having its nonzero entry closer to the top than the given column of r. Next we

move onto the third column of r,


0

0

0

0

0

0


. The zero column of s matches this perfectly, and becomes

the third column of minrRs. We proceed on in this way until we finish up with the rightmost

column of r. This gives us minrRs written below.


0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0


As a note, when we have a zero column of r, but no zero columns of s left to match, we

choose the column of s that has its nonzero entry as close to the top as possible.

For the relative minimum element of an L -class, we proceed in a similar manner, but

instead look at each row of r in turn, starting from the bottom and moving up. We try to match

that row of r with a row of s whose nonzero entry is as closefrom the left side without going

over. Following these instructions we would get minrLs as written below.


0 0 0 0 1 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0


As one might suspect, we can derive similar rules for finding maxsRr and maxsLr. For

maxsRr, we look at the columns of s, starting with the leftmost, but this time try to match the

column with a column of r as closely as possible, with our nonzero entry being a close from

the top as we can. maxsLr is found by looking at the rows of s, starting from the bottom, and

approximating each row’s nonzero entry as close as possible from the right without going over.

To compute minr Js, we perform the operation to find minrRs and then perform minrLminrRs .

By Corollary 6.39 this works out to minr Js.

We can summarize these methods in the illustrated manner below. This also lends some

insight as to why minr Js exists, but not maxsJr. The rules for computing minrRs and minrLs

are “compatible” in the sense that they both work together to move the nonzero entries into the

top right corner. The rules for maxsRr and maxsLr contradict (illustrated as creating a spiral)

resulting in conflicting goals and no overall pattern. It matters in what order the approximations

of the rows and columns occurs.



86 Section 6. Maximum andMinimum Elements

minrRs ◦ → ↑ 1 maxsRr ◦ → ↓ 1

minrLs ◦ ↑ → 1 maxsLr ◦ ↑ ← 1

Here ◦ → means begin at the left and move right while looking at the columns, ↑ 1 means

that in each column try to match the nonzero entry from below.

While this gives us a vague idea of why maxsJr might not always exist in Mn(K) it does

not give us a general reason that can be applied to all reductive monoids. Let us finish our

discussion of relative minima by computing minrHs.

Computing minrHs is the same as computing minrLs and then computing minminrLsRs (by

Proposition 6.36). Performing either method will give us minrHs,

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0


From relative minima for an H -class, we now shift to calculating an absolute maxima. We

have calculated r− and r+ in Section 3, so we will just calculate dr
H

e . To do this, isolate the

unique largest invertible submatrix (just as we did for computing r0). In the case of r we get an

element of the Weyl group on M4(K). Replace this submatrix with the longest element of that

same Weyl group (the element whose entries lie wholly on the anti-diagonal). The resulting

6 × 6 matrix will be the maximum in Hr, 

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0


Relating back to Section 4, since Bdr

H

e B is dense in BHrB we can do things like use our

length function to compute the dimension of BHrB.



87

7 Parabolic Green’s Relations

Owing to the use of Coxeter groups and the properties of our simple reflections, S , in

Section 5, we elect to further investigate the impact of the simple reflections on the Renner

monoid. This section is devoted to exploring a new set of equivalence relations on R. These

relations will be based on Green’s relations, but will use WI , rather than W, in their definitions.

Using these new equivalence relations we will extend many of our results from the last

four sections, as well as extend a well-known result about the Weyl group (Theorem 7.53). In

particular we will show a generalisation of the trichotomy.

7.1 A Series Of Equivalence Relations

We define the parabolic Green’s relations similar to Green’s relations on the Renner monoid.

Instead of W, we will use the standard parabolic subgroups, WI , in the definitions.

Definition 7.1. For I, J ⊆ S , we define the following equivalence relations on R, J I,J, R J,

L I and H I,J by the following conditions. For r, s ∈ R,

(1) rL I s if and only if there exists w ∈ WI so that s = wr

(2) rR J s if and only if there exists w ∈ WJ so that s = rw

(3) rJ I,J s if and only if there exists t ∈ R so that rL It and tR J s

(4) rH I,J s if and only if rL I s and rR J s

One should note that we can recover our familiar Green’s relations by taking I = J = S .

The reason we wish to investigate these new relations is that they allow us to bridge the gap

between the fat T -classes, BTrB, we have encountered before, and the usual Bruhat cells, BrB

for r ∈ R. We can see this by noting that “ =′′=J ∅,∅ = L ∅ = R∅ = H ∅,∅. We can also note

the familiar implication relationship,

J I,J

� �

L I R J

� �

H I,J
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Our first few results will give us properties that we are familiar to using with Green’s

relations, as well as some immediate and somewhat obvious results.

Proposition 7.2. For r, s ∈ R, rJ I,J s if and only if there exists u ∈ WI and v ∈ WJ so that

s = urv.

Proof. By definition, if rJ I,J s there is an element, t ∈ R so that rL It and tR J s. Then there

exists u ∈ WI so that ur = t and v ∈ WJ so that tv = s. Combining these, we get s = urv. For

the converse, if s = urv then rL Iur and urR J s. �

Corollary 7.3. rJ I,J s if and only if there exists t ∈ R so that rR Jt and tL I s.

Proof. rJ I,J s if and only if we can find u ∈ WI and v ∈ WJ so that s = urv. Then rR Jrv and

rvL J s. For the converse, if there is t ∈ R so that rR Jt and tL I s then we can find v ∈ WJ so

that t = rv and u ∈ WI so s = ut. Combining them gives us s = urv. �

Proposition 7.4. For I ⊆ K ⊆ S and J ⊆ L ⊆ S , then for any r, s ∈ R, rJ I,J s =⇒ rJ K,Ls.

Proof. If rL I s then we can find w ∈ WI so that s = we. But I ⊆ J implies WI ⊆ WJ so w ∈ WJ.

Thus we conclude that rL J s. A similar proof gives the other part of this proposition. �

Remark 7.5. Notice that L I = J I,∅ and R J = J ∅,J. So all our structural questions about

Green’s relations become questions about the J I,Js and their intersections. We will leave it to

other mathematicians to investigate the general
⋂n

i=1 J Ii,Ji , and just focus on H I,J.

The preceding remark gives us insight to many of the similarities we have seen between

J -, L -, and R-classes. With this remark in hand, we get the following corollary.

Corollary 7.6. If I ⊆ K ⊆ S , then for any r, s ∈ R, rL I s =⇒ rL K s and rR I s =⇒ rRK s.

Proof. Taking J = L = ∅, Proposition 7.4 and Remark 7.5 tell us that,

rL I s⇔ rJ I,J s⇒ rJ K,Ls⇔ rL K s.

The R situation is done similarly. �

Our remark also allows us to quickly prove the following result analogous to our descrip-

tions of fat L -, R-, and J -classes.
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Proposition 7.7. For r ∈ R and I, J ⊆ S , BJI,J
r B = PIrPJ.

Proof. Expanding Proposition 7.2, we see BJI,J
r B = BWIrWJ B ⊆ BWI BrBWJ B = PIrPJ. So it

remains to show the other inclusion.

The result will be shown if we can demonstrate that BJI,J
r B is closed under multiplication

on the right by PJ and closed under multiplication on the left by PI . We will just show that

PI BJI,J
r B ⊆ BJI,J

r B.

The Bruhat decomposition for our parabolic subgroups of G tells us PI =
⊔

w∈WI
BwB. So

it suffices to show that (BwB)(BJI,J
r B) ⊆ BJI,J

r B for all w ∈ WI . Write w = vs for s ∈ I and

v ∈ WI such that `(w) = `(v) + 1. Now,

(BwB)(BJI,J
r B) = BwB(

⊔
t∈JI,J

r
BtB) ⊆ BvBsB(

⊔
t∈JI,J

r
BtB)

= BvB(
⊔

t∈JI,J
r

sBtB) ⊆ BvB(
⊔

t∈JI,J
r

(BtB ∪ BstB)B) since sBt ⊆ BtB ∪ BstB

= BvB(
⊔

t∈JI,J
r

BtB ∪ BstB) ⊆ BvB(BJI,J
r B) since t ∈ JI,J

r =⇒ st ∈ JI,J
r .

⊆ BJI,J
r B by induction on `(w).

Our proof is completed upon the statement of our base case, `(w) = 0 =⇒ w = 1, and we

can clearly see that, B(BJI,J
r B) = BJI,J

r B. �

Corollary 7.8. For r ∈ R and I, J ⊆ S , BJI,J
r B is an irreducible subvariety of M.

Proof. By Proposition 7.7, BJI,J
r B = PIrPJ, which is the orbit of r by the action of PI × PJ on

M given by ((p, q),m) 7→ pmq−1. Thus it is an irreducible subvariety of M, since PI , PJ are

irreducible algebraic groups. �

Corollary 7.9. For r ∈ R and I, J ⊆ S , there exists a unique element s ∈ JI,J
r so that BsB is

open and dense in BJI,J
r B.

Proof. Since BJI,J
r B is an irreducible variety which is closed under the action of B×B, Theorem

A.3 tells us that exactly one of the disjoint orbits, BsB, s ∈ JI,J
r is open and dense in BJI,J

r B. �

This foreshadows our work with absolute maxima for the parabolic Green’s relations. But

before we can discuss them, we will need to introduce the analogues of our familiar N , GJ ,

and JG.

Definition 7.10. Take any I, J ⊆ S and define the following sets,
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(1) GJ I =
⊔

e∈Λ

(
IWλ∗(e)

)
· e ·
(
λ(e)W

)
(2) JGJ =

⊔
e∈Λ−
(
Wλ(e)

)
· e ·
(
λ∗(e)W J

)
(3) N I,J = GJ I

∩ JG
J

Remark 7.11. Notice that for (1), if I = ∅ hen GJ∅ is just the union of all element in standard

form. Hence GJ∅ = R. Likewise JG∅ = R. It then follows that N I,∅ = GJ I and N∅,J = JGJ

as one would desire considering Remark 7.5.

We have begun our definitions with these GJ I and JGJ because they allow us to quickly

conclude the following analogue to Theorem 3.9.

Theorem 7.12. For any I ⊆ S ,

(1) GJ I � R/L I . That is to say, if r, s ∈ R, rL I s and r, s ∈ GJ I , then r = s, and for

all r ∈ R, there is s ∈ GJ I with rL I s.

(2) JGI � R/R I . That is to say, if r, s ∈ R, rR I s and r, s ∈ JGI , then r = s, and for

all r ∈ R, there is s ∈ JGI with rR I s.

Proof. Due to similarity, we will just prove (1). Suppose that r = ueσ−1, s = v f τ−1 are

elements of GJ I and are in standard form. If rL I s then rL s and so e = f , σ = τ. It is clear

from the definition of GJ I that u, v ∈IW. But since rL I s there exists w ∈ WI so that s = wr, or

rather veσ−1 = wueσ−1. Thus, v−1wu ∈ W∗(e), and wu ∈ vW∗(e). Thus WIuW∗(e) = WIvW∗(e).

But since u and v are both minimal in their double cosets it follows that u = v.

Now, let r ∈ R with standard form xey−1. Let u =I x. Consider s = uey−1. It is clear

that rL I s. And since u =I x it follows from a reduced word argument that u ∈ D∗(e). By

Proposition 5.11 we can conclude that u ∈IWλ∗(e). So s ∈ GJ I . �

Definition 7.13. The unique dense element of Corollary 7.9 will be denote by dr
J I,J

e and refer

to it as the absolute maximum of JI,J
r . In a similar fashion, we denote by br

J I,J

c the unique

minimal element of JI,J
r if it exists. Such an element is called an absolute minimum.

In the special cases where I = ∅ or J = ∅, we may also choose to use R J and L I respec-

tively.

Theorem 7.14. Let I, J ⊆ S . For any r ∈ R,
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(1) r = br
L I

c if and only if r ∈ GJ I .

(2) r = br
R J

c if and only if r ∈ JGJ.

Proof. (1) Since GJ I � R/L I it suffices to show that r ∈ GJ I implies r = br
L I

c . Indeed,

let r = xey−1 ∈ GJ
I in standard form. Consider ur = uxey−1 with u ∈ WI . Then urL Ir and

(ux)ey−1 is in standard form. Thus r ≤ ur if and only if x ≤ ux. But by definition of GJ I ,

x ∈IW and so x ≤ ux, and the result follows.

(2) is done similarly to (1). �

Proposition 7.15. For any r, s ∈ R, I ⊆ S ,

(1) r ≤ s implies br
L I

c ≤ bs
L I

c

(2) r ≤ s implies br
R I

c ≤ bs
R I

c

Proof. Per the norm, we will just show (1). Let r = xe+σ−1
+ be the standard form of r, and

s = y f+τ−1
+ the standard form of s. We know that r ≤ s if and only if there is w+ ∈ W∗( f+)W∗(e+)

so that x ≤ yw+ and τ+w+ ≤ σ+. But then I x ≤ yw+. We can write y = uIy for some u ∈ WI . It

follows, since I x ∈IW, that I x ≤Iyw+ and hence br
L I

c = (I x)e+σ−1
+ ≤ (Iy) f+τ−1

+ = bs
L I

c . �

Corollary 7.16. Let I, J ⊆ S .

(1) For any r ∈ R, r = br
J I,J

c if and only if r ∈ N I,J.

(2) N I,J � R/J I,J. That is to say, if r, s ∈ R, rJ IJ s and r, s ∈ N I,J, then r = s, and

for all r ∈ R, there is s ∈ N I,J with rJ I.J s.

Proof. We shall prove both results together. Suppose r = br
J I,J

c . Then r = br
L I

c = br
R J

c , since

L I ,R J ⇒ J I,J. By Theorem 7.14, r ∈ GJ I
∩ JG

J = N I,J. Thus, if br
J I,J

c exists, it is an

element of N I,J. Take any r ∈ R. Let s = bbr
L I

c
R J

c ∈ JG
J. Consider any t ∈ JI,J

r . Then we

know we can find u ∈ R so that br
L I

c L IuR Jt. It follows by Theorem 7.14 that br
L I

c ≤ u and

thus s ≤ u. But then s = bs
R J

c ≤ bu
R J

c = bt
R J

c ≤ t. Thus s = br
J I,J

c and is a member of JGJ. A

similar argument shows that s ∈ GJ I as well, hence s ∈ N I,J

So we have shown the minimum elements exist for each J I,J-class, and they must belong

to N I,J. It suffices to show for r, s ∈ N I,J, if rJ I,J s then r = s. Suppose the conditions

are satisfied. Then, r = br
L I

c = bbr
L I

c
R J

c = br
J I,J

c = bs
J I,J

c = bbs
L I

c
R J

c = bs
L I

c = s, since

N I,J ⊆ GJ
I
∩ JG

J. �



92 Section 7. Parabolic Green’s Relations

Knowing that N I,J consists of exactly the minimum elements of J I,J-classes with respect

to the Adherence order, we see that this is exactly the analogue of the more familiar set IW J.

One might even choose the alternate notation, IRJ! As in the preceding section, the nature of

the minimum elements leads us to describing the maximum elements.

Proposition 7.17. Let I, J ⊆ S , r, s ∈ R, and suppose that r ≤ s,

(1) if rL I s, then w0(I)s ≤ w0(I)r

(2) if rR J s, then sw0(J) ≤ rw0(J)

(3) if rH I,J s, then w0(I)rw0(J) ≤ w0(I)sw0(J)

Proof. (3) clearly follows from applying (1) and (2). (2) is proven similarly to (1), so we will

just prove (1). Write r and s in standard form, r = xey−1 and s = zey−1. By applying Corollary

5.45, we can see that r ≤ s if and only if x ≤ z. Now, since rL I s then we can write x = x′y,

z = z′y where x′, z′ ∈ WI and y ∈ IW. Then x ≤ z if and only if x′ ≤ z′ (by a simple subword

argument).

Since w0(I) is the defined as the longest element of WI , x′ ≤ z′ implies w0(I)z′ ≤ w0(I)x′ and

thus w0(I)z = w0(I)z′y ≤ w0(I)x′y = w0(I)x and w0(I)s = (w0(I)z)ey−1 ≤ (w0(I)x)ey−1 = w0(I)r

by Theorem 5.31. �

Theorem 7.18. Let I, J ⊆ S . For any r ∈ R,

(1) r = dr
L I

e if and only if r ∈ w0(I)GJ I .

(2) r = dr
R J

e if and only if r ∈ JGJw0(J).

(3) r = dr
J I,J

e if and only if r ∈ w0(I)GJ I
∩ JG

Jw0(J).

Proof. (1) Suppose r = dr
L I

e . Then for all s ∈ LI
r, s ≤ r. We know from Proposition 7.17

that w0(I)r ≤ w0(I)s. There is a bijection LI
r → LI

w0(I)r by multiplying by w0(I) on the left. By

Theorem 7.14 it follows that w0(I)r ∈ GJ I . So then r ∈ w0(I)GJ I .

Conversely, if r ∈ w0(I)GJ I then for all s ∈ LI
w0(I)r, w0(I)r ≤ s. But then w0s ≤ r. By our

bijection, LI
r → LI

w0(I)r, we can conclude that for all t ∈ LI
r, t ≤ r. Thus r = dr

L I

e .

(2) is done similarly to (1).

(3) Suppose that r = dr
J I,J

e . Then r = dr
L I

e = dr
R J

e , since L I ,R J ⇒ J I,J. And thus,

r ∈ w0(I)GJ I
∩JG

Jw0(J) by (1) and (2). For the converse, take any r ∈ w0(I)GJ I
∩JG

Jw0(J).
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Then r = dr
L I

e = dr
R J

e . Pick any s ∈ JI,J
r . Then we can find t ∈ R so that rL tRs. It follows

that t ≤ r by definition of absolute maximum.

Since t ≤ r we can see that BtB ⊆ BrB. Multiplying both sides by PJ on the right we can

see that BRJ
t B ⊆ BRJ

r B. Thus, BsB ⊆ BsB ⊆ BRJ
s B = BRJ

t B ⊆ BRJ
r B = Bdr

R J

e B. This shows us

that, s ≤ dr
R J

e = r. So r = dr
J I,J

e . �

Corollary 7.19. Suppose that r, s ∈ R. Then for all I, J ⊆ S , the following are equivalent

(1) BJI,J
r B ⊆ BJI,J

s B

(2) dr
J I,J

e ≤ ds
J I,J

e

(3) br
J I,J

c ≤ bs
J I,J

c

(4) there exist a ∈ JI,J
r and b ∈ JI,J

s with a ≤ b

Proof. (1) ⇒ (2), being dense elements, Bdr
J I,J

e B = BJI,J
r B and Bds

J I,J

e B = BJI,J
s B. Thus,

Bdr
J I,J

e B ⊆ Bdr
J I,J

e B = BJI,J
r B ⊆ BJI,J

s B = Bds
J I,J

e B, so dr
J I,J

e ≤ ds
J I,J

e .

(2) ⇒ (3), by Proposition 7.15, dr
J I,J

e ≤ ds
J I,J

e implies bdr
J I,J

e
L I

c ≤ bds
J I,J

e
L I

c . Applying

again we see that br
J I,J

c = bbdr
J I,J

e
L I

c
R J

c ≤ bbds
J I,J

e
L I

c
R J

c = bs
J I,J

c .

(3)⇒ (4), let a = br
J I,J

c and b = bs
J I,J

c .

(4)⇒ (1), suppose we can find such a and b. Then, BaB ⊆ BbB. Multiplying on the left by

PI and right by PJ we see BJI,J
r B = PI BaBPJ ⊆ PI BbBPJ ⊆ PI BbBPJ = BJI,J

s B, giving us the

result. �

Before moving on we see the general answer to the fourth question from Section 4.

Theorem 7.20. For I, J ⊆ S and any T = J I,J, L I , or R J, and any r ∈ R, we can find

r1, r2, · · · , rs ∈ R so that, BTrB =
⊔s

i=1 BTri B

Proof. Since R is finite, BTrB =
⋃

sT r BsB =
⋃

sT r
⋃

t≤s BtB. Recall BTxB =
⋃

yT x ByB.

So if BTxB ∩ BTrB then we can find yT x and sT r with y ≤ s. But then we quickly see

BTxB = BTyB ⊆ BTsB = BTrB.

Thus the closure of each fat T -class must be a union of fat T -classes, and this union is

disjoint since fat T -classes are disjoint. The union itself is finite, as each T -class can be
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indexed by a unique element, say the absolute minimum. So then, BTrB =
⊔s

i=1 BTri B, where

ri = br
T

c , ri ≤ r. �

7.2 Generalized Trichotomy

We have seen much of L I , R J, and J I,J but we have not had any meaningful discussion

of the other parabolic Green’s relation, H I,J. Although a more enigmatic relation, we can still

begin an investigation of H I,J and a generalisation of O. To this end, in this section we shall

introduce a new trichotomy, one that takes into account a choice of I and J.

The following lemma is inspired by our proof of Corollary 7.16. It tells us that all elements

of GJ I
∩ JI,J

r , for any r ∈ R, lie within the same R J-class.

Lemma 7.21. Fix I, J ⊆ S . Suppose r ∈ R and ν ∈ N I,J ∩ JI,J
r .

(1) If r ∈ GJ I then rR Jν.

(2) If r ∈ JGI then rL Iν.

Proof. For (1), we know already from the proof of Corollary 7.16 that ν = bbr
L I

c
R J

c . But since

r ∈ GJ I , Theorem 7.14 says r = br
L I

c . Thus ν = br
R J

c and so rR Jν. (2) can be proven likewise.

One needs similar reasoning to Corollary 7.16 to show that ν = bbr
R J

c
L I

c . �

Lemma 7.22. For any r, s ∈ R and any I, J ⊆ S ,

(1) rL I s if and only if r∗R I s∗

(2) rR J s if and only if r∗L J s∗

(3) rH I,J s if and only if r∗H J,I s∗

Proof. (1) rL I s if and only if w ∈ WI so that rw = s, if and only if w−1r∗ = (rw)∗ = s∗ if and

only if r∗R I s. (2) is done similarly, and (3) follows by applying both (1) and (2) together. �

Theorem 7.23. For any I, J ⊆ S , and r ∈ R. Then there exist unique rI,J
− , r

I,J
0 , rI,J

+ ∈ R such

that,

(1) r = rI,J
− rI,J

0 rI,J
+

(2) rI,J
0 H J,Iν∗, where νJ I,Jr and ν ∈ N I,J

(3) rR JrI,J
− and rL IrI,J

+

(4) rI,J
− ∈ JG

J and rI,J
+ ∈ GJ

I
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For simplicity, when I, J are clear from context, we may use to our usual trichotomy symbols,

r−, r0 and r+.

Proof. Let r = σ−1
− e−σ0e+σ−1

+ be the vanilla decomposition. Let us write σ0σ
−1
+ = uJuJ where

uJ = (σ0σ
−1
+ )I and uJ = (uJ)−1σ0σ

−1
+ ∈ WJ. Likewise let σ−1

− σ0 = vI
Iv where vI ∈ WI and

Iv ∈IW. Now, let r− = σ−1
− e−uJ, r0 = (uJ)−1e−σ0e+(Iv)−1, and r+ =Ive+σ−1

+ .

Clearly r− and r+ satisfy conditions (3) and (4), and by construction of these elements we

see r−r0r+ = σ−1
− e−uJ(uJ)−1e−σ0e+(Iv)−1Ive+σ−1

+ = r, satisfying (1). It remains to show r0

satisfies (2). By Lemma 7.22, it suffices to show Ive+σ−1
0 e−uJ = r∗0H

I,Jν := br
J I,J

c . Notice that

r∗0uJ =
Ive+σ−1

0 e−uJuJ =
Ive+σ−1

0 σ0σ
−1
+ =

Ive+σ+ = r+. Likewise we can show vIr∗0 = r−. By

Lemma 7.21, since r∗0R
Jr+ ∈ GJ I and r∗0L

Ir− ∈ JGJ we see that r∗0H
I,Jν. This concludes

the existence part of the proof.

To show uniqueness, suppose that r = r−r0r+ = s−s0s+ are both decompositions satisfying

(1) - (4). Just as with our original trichotomy, we can quickly use (3) and (4) along with

Theorem 7.12 that r− = s− and r+ = s+. Consider r∗−rr∗+ = r∗−r−r0r+r∗+. Since r0H J,Iν∗ it is not

difficult to see that r∗0R
JνR Jr+ and so r0L Jr∗+. That is, we can find u ∈ WJ so that r0 = ur∗+.

Likewise we find v ∈ WI so r0 = r∗−v. Thus, r∗−r−r0r+r∗+ = r∗−r−ur∗+r+r
∗
+ = r∗−r−r0 = r∗−r−r

∗
−v = r0.

We show the same result for s0, allowing us to conclude r0 = r∗−rr∗+ = s0. �

For I = J = S we recover our original trichotomy. At the other end of the spectrum, we see

that I = J = ∅ gives the decomposition of r = rr∗r.

Among other things, the trichotomy shows us that within a J I,J-class, the H I,J-classes

“look the same”. Speaking of H I,J-classes, we have given analogues of GJ , JG, and N , but

have not yet given a general form of O. We rectify this with the following definition.

Definition 7.24. For I, J ⊆ S , define OI,J to be the set of all r ∈ R so that (rI,J
0 )∗ ∈ N I,J.

Notice that in Section 3 we defined O (3.10) and Theorem 3.25 was an eventual conse-

quence, whereas we have now taken the analogue of Theorem 3.25 as the definition of OI,J.

Example 7.25. We can, however, exhibit a different definition for OI,J when we restrict our-

selves to the n × n matrices, Mn(K). For any I ⊆ S we can define the equivalence relation ∼I

on {1, 2, · · · , n} as the closure of the relation defined by x ∼I x + 1 if (x x + 1) ∈ I.
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It is known that R can be viewed as the set of partial injective functions on n elements,

{ f : {1, 2, · · · , n} → {1, 2, · · · , n} | f is partial and injective} (a natural generalisation of S n).

With this view of the Renner monoid, Renner remarks in [28] that we can consider O as the

submonoid, O = { f ∈ R | f (x) < f (y) for all x, y ∈ dom( f ) with x < y} which illustrates why O

is often called the monoid of order-preserving elements. OI,J generalises this further. Where,

OI,J = { f ∈ R | f (x) < f (y) for all x, y ∈ dom( f ) with x < y, x ∼J y, and f (x) ∼I f (y)} is

the set of functions who are order-preserving among ∼I classes which are in the image of ∼J

classes.

At the level of matrices, we can identify the elements of OI,J by looking at each of the

individual submatrices whose rows are a ∼I class related and whose columns form a ∼J class.

If each of them has the staircase pattern then the given matrix is an element of OI,J. In the

example below, we use gray to distinguish the equivalence classes of ∼I , and light gray for the

equivalence classes of ∼J.

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 1 0 0 0 0





0 0 0 0 0 1

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0


The matrix on the left is an element of OI,J because the submatrix given by each small

rectangle contains the staircase pattern. The right matrix is not an element of OI,J because the

highlighted submatrix does not exhibit the staircase pattern. It is only this submatrix which

fails.

One of the interesting things is that, although GJ I , JGJ, and N I,J are monoid gener-

alisations of the minimal elements of the double cosets WIw, wWJ, and WIwWJ in Coxeter

groups (Chapter 2, [2]), there does not appear to be any literature discussing coset intersections

WIw ∩ wWJ, which are exactly the H I,J-classes. Which means that OI,J and H I,J are entirely

new concepts!

When we created our generalisations of GJ , JG, and N , we did it by constructing them

from standard forms. What we would like is a definition akin to rB ⊆ Br. We have already

seen the type of structure we need in Lemma 5.25. It is regrettable that it remains at this point
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a conjecture, though one which can be confidently assumed to fall within the reaches of a

discussion of root subgroups.

Conjecture 7.26. Let I, J ⊆ S and r ∈ R.

(1) r ∈ GJ I if and only if (B ∩ LI)r ⊆ rB if and only if (B ∩ LI)rB = rB

(2) r ∈ JGJ if and only if r(B ∩ LJ) ⊆ Br if and only if Br(B ∩ LJ) = Br

(3) r ∈ N I,J if and only if (B ∩ LI)r(B ∩ LJ) ⊆ Br ∩ rB

Unfortunately, if there is a similar intuition to OI,J it is currently evasive. So rather than a

conjecture, H I,J-classes leave us with the following question.

Question 7.27. For a given I, J ⊆ S , can we find a definition for OI,J that is similar to that

given by Definition 3.10 in Section 3?

Our definition based on the trichotomy still allows us to demonstrate that OI,J is a set of

representatives for H I,J-classes.

Proposition 7.28. For, I, J ⊆ S , OI,J � R/H I,J. That is to say, if r, s ∈ R, rH IJ s and

r, s ∈ OI,J, then r = s, and for all r ∈ R, there is s ∈ OI,J with rH I.J s.

Proof. Suppose that r, s ∈ OI,J and rH I,J s. Then rL I s and rR J s. Thus r− = s− and r+ = s+

in our generalised trichotomy. rJ I,J s, so ν := br
J I,J

c = bs
J I,J

c . Thus r = r−ν∗r+ = s−ν∗s+ = s

as desired. For the second result, let r ∈ R be arbitrary. By Theorem 7.23 we can decompose

r = r−r0r+. Consider s := r−ν∗r+ where ν = br
J I,J

c . It suffices to show that this is the trichotomy

decomposition for s.

If we take s− = r−, s0 = ν
∗ and s+ = r+ we see that by definition, s = s−s0s+ satisfies (1)

from Theorem 7.23. Now, by Lemma 7.21, there exists w ∈ WJ so that r+ = νw and u ∈ WI so

that r− = uν. Thus s = r−ν∗r+ = r−ν∗νw = r−r∗−u
−1ur−w = r−w and we see sR Jr−. Similarly,

sL Ir+. Thus sH I,Jr and sJ I,Jν, meaning that (2)-(4) are also satisfied. �

Proposition 7.29. For any r ∈ R and any I, J ⊆ S ,

(1) r ∈ GJ I if and only if r− = r∗0 = ν ∈ N
I,J

(2) r ∈ JGJ if and only if r+ = r∗0 = ν ∈ N
I,J
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Proof. By Lemma 7.21 we know that rR Jν. Thus we can find w ∈ WJ so that r = νw. Observe

that r = νw = νν∗νw = νν∗r. It is not hard to see that r = νν∗r is the trichotomy decomposition

with respect to I, J. Thus r− = ν and r∗0 = (ν∗)∗ = ν. �

Corollary 7.30. N I,J ⊆ GJ
I
⊆ OI,J and N I,J ⊆ JG

J
⊆ OI,J.

Proof. ThatN I,J ⊆ GJ
I comes from the definition ofN I,J. Since r ∈ GJ I implies r0 = ν

∗ (by

the preceding proposition) we can conclude by definition of OI,J that GJ I
⊆ OI,J. �

At this time, whether OI,J characterizes the absolute minimal elements of H I,J-classes

proves elusive. As it has been verified by computer calculations for Mn(K) from 2 to 6 we

include it as a conjecture, rather than a question.

Conjecture 7.31. For any r ∈ R and any I, J ⊆ S ,

(1) r = br
H I,J

c if and only if r ∈ OI,J.

(2) r = dr
H I,J

e if and only if r ∈ w0(I)OI,J = OI,Jw0(J).

We can make several remarks however. The first being that (2) will follow from (1) and an

application of Proposition 7.17. Upon completion of the conjecture the following corollaries

would become apparent.

Corollary 7.32. w0(I)OI,Jw0(J) = OI,J

Proof. Since r ∈ OI,J if and only if r = br
H I,J

c , take any t ∈ HI,J
r . It suffices to show that if r ≤ t

then w0(I)rw0(J) ≤ w0(I)tw0(J). This is the content of (3) in Proposition 7.17, so the result

follows. �

Corollary 7.33. (OI,J)∗ = OJ,I

Proof. We need to recall the involution τ from Section 2. r ∈ OI,J then for all sH I,Jr, r ≤ s, or

rather r ∈ BsB. Then r∗ = τ(r) ∈ τ(BsB) = τ(BsB) = B−τ(s)B− = B−s∗B−. Now, since rH I,J s

we can find u ∈ WI and v ∈ WJ so that ur = s = rv. Then r∗u−1 = s∗ = v−1r∗. Thus r∗H J,I s∗.

Since r∗H J,I s∗ we see that r∗H s∗ and so by Corollary 6.10, r∗ ∈ B−s∗B− if and only if

r∗ ≤ s∗. Since τ is an automorphism, it follows that r∗ is minimal in HJ,I
r∗ and thus, r∗ ∈ OJ,I . �

By taking I = J we would get that (OI,I)∗ = OI,I . One might hope that, like O before, OI,I

is an inverse monoid. This is not case as the following example indicates.
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Example 7.34. Consider the scenario in M3(K) with I = (1 2). Let r =


0 0 1

0 1 0

0 0 0

 and s =


0 0 0

1 0 0

0 1 0

.

It is not hard to check that r, s ∈ OI,I , but rs =


0 1 0

1 0 0

0 0 0

 which is not in OI,I .

Without a definition similar to Definition 3.10 it is very difficult to say when OI,J is monoid.

We can say for certain that OS ,S = O is, and OI,∅ = O∅,J = R as well. Both Corollaries 7.32 and

7.33 give us a little insight into what an answer to what an alternate definition of OI,J might be,

but sadly do not allow us to answer the whole question.

One might worry that, since we were unable to demonstrate Conjecture 7.31, we may not

have absolute minima or maxima with respect to H I,J-classes. This will be resolved in the

following section, as we can observe, br
H I,J

c = min
br

J I,J

c

HI,J
r and dr

H I,J

e = max
dr

J I,J

e

HI,J
r which

we will show do exist.

7.3 Relative Maxima and Minima

To wrap up our discussion of parabolic Green’s relations, it makes sense to ask the question

of relative maxima and minima, just as we investigated in Section 6. As it happens, the already

established existence of minrLs and minrRs will make this process very easy. We will only need

a few extra results concerning properties of the Weyl group.

Proposition 7.35. For any I ⊆ S , w0WI = Ww0Iw0w0.

Proof. Let s1s2 · · · sk ∈ WI . Since w2
0 = 1, then s1s2 · · · sk = s1w0w0s2w0 · · ·w0sk. So then,

w0s1s2 · · · sk = w0s1w0w0s2w0 · · ·w0sk = (w0s1w0)(w0s2w0) · · · (w0skw0)w0 ∈ Ww0Iw0w0. So

w0WI ⊆ Ww0Iw0w0, and it is clear from our work that the reverse inclusion also holds. �

Proposition 7.36. Suppose that s1s2 · · · sk and s′1s′2 · · · s
′
k are two reduced word expressions for

the same element, w ∈ W. Then the set of generators appearing in s1s2 · · · sk is the same as the

set of generators appearing in s′1s′2 · · · s
′
k.

Proof. Corollary 1.4.8 in [2]. �

Corollary 7.37. For any w ∈ W, there are only finitely many reduced words for w.
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Proof. By the preceding proposition, let X be the set of generators which appear in any reduced

word expression for w. Then every reduced word for w must be among the collection of words,

{x1x2 · · · x`(w) | xi ∈ X}. But this set is at most |X|`(w) ≤ `(w)`(w) which is finite. �

Proposition 7.38. Let u, v ∈ W. Then the following are equivalent.

(1) u ≤ v

(2) every reduced word expression for v has a subword that is a reduced word

expression for u

(3) some reduced word expression for v has a subword that is a reduced word

expression for u

Proof. [2], Corollary 2.2.3. �

Lemma 7.39. Fix I ⊆ S . Let s1, s2, · · · sN be any sequence of generators in S (repeats allowed).

Let W(I; s1, s2, · · · sN) denote the elements of WI which can be written as a product sn1 sn2 · · · snk

with 1 ≤ n1 < n2 < · · · nk ≤ N. Then, with respect to the Bruhat order, W(I; s1, s2, · · · sN) has a

unique maximal element. We shall denote this element as w(I; s1, s2, · · · sN).

Proof. This result comes to us by way of Lemma 2.1 in [1]. �

Theorem 7.40. Let u, v ∈ W with u ≤ v, and let I ⊆ S .

(1) There exists unique maximal w ∈ WIu so that w ≤ v.

(2) There exists unique maximal w ∈ uWI so that w ≤ v.

Proof. (1) Let x = bu
L I

c , the minimum element in WIu. Since u ≤ v it follows that x ≤ v.

Since there are only finitely many reduced words for v we can pick one v = s1s2 · · · s`(v) with

the property that index 1 ≤ i ≤ `(v) so that x ≤ si+1 · · · sn is maximal (among all reduced word

expressions for v).

Recall the element, w(I; s1, s2, · · · si) ∈ WI , which we will denote as y. We claim that w = yx

is what we are looking for.

Consider any zx ≤ v with z ∈ WI . By minimality of x, `(zx) = `(z) + `(x), so any reduced

word of zx is just two reduced words, one for z and one for x, concatenated together. It follows

that s1s2 · · · s`(v) contains a reduced word expression for zx. And by maximality of i, it is clear

that s1, s2, · · · si contains a reduced subword for z. But by Lemma 7.39, z ≤ y and so zx ≤ yx.
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Finally, since `(w) = `(y) + `(x) we can see that s1s2 · · · s`(v) also contains a reduced word

expression for w, so it follows that w ≤ v, and we have shown that w = yx is the desired

element.

(2) is done similarly. �

We are now in position to begin to show the existence of relative maxima and minima with

our new equivalence relations. Although the definition logically extends, we will repeat it for

the sake of completeness.

Definition 7.41. For r, s ∈ R, r ≤ s, and any equivalence relation T , we define the relative

maximum of Tr with respect to s, as

maxsTr =

 t if t ∈ Tr, t ≤ s and ∀t′ ∈ Tr t′ ≤ s =⇒ t′ ≤ t

undefined otherwise

We define the relative minimum of Ts with respect to r, as

minrTs =

 t if t ∈ Ts, r ≤ t and ∀t′ ∈ Ts r ≤ t′ =⇒ t ≤ t′

undefined otherwise

Corollary 7.42. For any r, s ∈ R and any I ⊆ S ,

(1) if rL s then maxsLI
r exists

(2) if rRs then maxsRI
r exists

Proof. (1) Write r = σ−1
− e−σ0e+σ−1

+ and s = τ−1
− e−τ0e+σ−1

+ in vanilla form. By Theorem 5.44

r ≤ s if and only if u := σ−1
− σ0 ≤ τ−1

− τ0. Define v = τ−1
− τ0w0(λ∗(e+)). Then u ≤ v. Let be

w ∈ WIu be the unique maximal element also satisfying w ≤ v, shown to exist in Theorem

7.40.

Let t = we+σ−1
+ . We claim t fits the definition of maxsLI

r. Since u ≤ w ≤ v and 1 ∈ JG,

e+σ−1
+ ∈ GJ, Lemma 5.27 tells us that ue+σ−1

+ ≤ we+σ−1
+ ≤ ve+σ−1

+ , or rather r ≤ t ≤ s.

Observe also that since uL Iw, then rL It.

Suppose t′L Ir and t′ ≤ s. We can find z ∈ WI so t′ = zr = zσ−1
− σ0e+σ−1

+ = zue+σ−1
+ . But

since zue+σ−1
+ = t′ ≤ s = τ−1

− τ0e+σ−1
+ a quick application of Theorem 5.31 shows us that there

exists y ∈ W∗(e+) so that zu ≤ τ−1
− τ0y ≤ τ−1

− τ0w0(λ∗(e+)), since τ−1
− τ0 ∈ D∗(e+) by Proposition

5.39. Thus zu ≤ v. Then zu ≤ w and Lemma 5.27 again shows us that t′ ≤ t.

(2) is demonstrated similarly. �
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Corollary 7.43. For any r, s ∈ R and any I ⊆ S ,

(1) if rL s then minrLI
s exists

(2) if rRs then minrRI
s exists

Proof. (1) We claim that minrLI
s = w0maxw0rL

w0Iw0
w0 s . Let m = maxw0rL

w0Iw0
w0 s . First observe

that since r ≤ s and rL s, then w0rL w0s and w0s ≤ w0r, so m exists. Now, m ≤ w0r by

definition, and since they belong to the same L -class, it follows that r = w0w0r ≤ w0m.

Further, mL w0Iw0w0s, so there exists w ∈ Ww0Iw0 so that wm = w0s. But then w0wm = s. By

Proposition 7.35 there exists v ∈ WI so that w0wm = vw0m. Thus w0mL I s.

Now, let tL I s be arbitrary and suppose that r ≤ t. Then again by Proposition 7.35

w0tL w0Iw0w0s and rL t implies w0t ≤ w0r. By definition of m we see that w0t ≤ m. But

then w0m ≤ t. So w0m satisfies the definition of minrLI
s as claimed.

(2) is demonstrated similarly. �

Theorem 7.44. Let I ⊆ S and take r, s ∈ R with r ≤ s. Then minrLI
s, minrRI

s, minsLI
r, minsRI

r

all exist.

Proof. We claim that minrLI
s = minminrLs L

I
s. Let m = minminrLs L

I
s. First observe that since r ≤ s,

minrLs exists. And since minrLsL s and minrLs ≤ s Corollary 7.43 tells us minminrLs L
I
s exists.

Now, let tL I s be arbitrary and suppose that r ≤ t. Then tL I s implies tL s and so minrLs ≤ t

and minrLsL t. So by definition, m ≤ t as desired. The others are shown similarly. �

We can now conclude this discussion with a result about the relative maxima and minima

for our HI,J relation.

Corollary 7.45. For any r, s ∈ R, with r ≤ s, if I, J ⊆ S , then minrHI,J
s and maxsHI,J

r exist.

Proof. We will just prove minrHI,J
s as maxsHI,J

r is similar. We claim minrHI,J
s = minminrRJ

s
LI

s.

By Theorem 7.44, minrRJ
s exists, and r ≤ s implies that minrRJ

s ≤ s. Then Theorem 7.44 again

shows us that minminrRJ
s
LI

s exists and minminrRJ
s
LI

sL
I s. By definition, minrRJ

s ≤ minminrRJ
s
LI

s ≤ s.

Now bs
R J

c = bminrRJ
s

R J

c ≤ bminminrRJ
s
LI

s

R J

c ≤ bs
R J

c , so we can conclude that minminrRJ
s
LI

sR
J s as

well, hence minminrRJ
s
LI

sH
I,J s. Let t ∈ HI,J

s with r ≤ t. Then tR J s and thus minrRJ
s ≤ t. It the

follows that minminrRJ
s
LI

s ≤ t as desired. �
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Remark 7.46. The preceding proof can be generalised for any equivalence classes, T and

U . If both minrTs and minrUs exist for all r ≤ s ∈ R, then the relative minimum minr(T ∩ U)s

exists and we can show minr(T ∩ U)s = minminrTsUs = minminrUsTs.

Likewise, if maxsTr, maxsUr exist for all r ≤ s ∈ R, then maxs(T ∩ U)r exists for all

r ≤ s ∈ R and maxs(T ∩ U)r = maxmaxsTr Ur = maxmaxsUr Tr.

Corollary 7.47. Suppose rJ I,J s and r ≤ s, then there exist t, u ∈ R so that r ≤ t, u ≤ s and

rL ItR J s, rR JuL I s.

Proof. We shall focus on the existence of t and u will follow by a symmetrical argument. Let

t = minrRJ
s , we claim this suffices. It is clear that tR J s so we just need to show tL Ir.

Since tR J s it follows that tJ I,Jr so we can find v ∈ R so that rL IvR Jt. It is clear that

r = minrLI
v and t = minrRJ

v . Then it follows that t = minminrLI
v
RJ

v . But by the proof of our

previous corollary we see t = minrHI,J
v . So, tH I,Jv and thus tL Iv. We conclude tL Ir. �

Proposition 7.48. Suppose r ≤ s ≤ t, I, J ⊆ S , and T = J I,J, L I , R J, or H I,J. Then,

assuming they exist,

(1) minrTt ≤ minsTt

(2) maxtTr ≤ maxsTr

Proof. These proofs will be identical to Propositions 6.21 and 6.33. (1) We know minsTt ∈ Tt

and r ≤ s ≤ minsTt. By definition, minrTt ≤ minsTt. (2) is shown similarly. �

We have investigated the relative maxima and minima for L I , R J, and H I,J. As in the

previous section, the only thing left to do is consider J I,J. Unfortunately this is where things

become more vague.

Example 7.49. By computer work on the Rook monoids M2(K), M3(K), M4(K), M5(K), and

M6(K), one can see that minr JI,J
s exists if and only if there exists some e ∈ Λ and f ∈ Λ− so that

I = λ∗(e) and J = λ∗( f ). For those same monoids one can also observe that maxsJI,J
r exists if

and only if at least one of I, J is equal to ∅.

Given the general expression of these relative minima and maxima one might be inclined to

think that this could be a general theorem or at least a conjecture. However, for any reductive

group the Renner monoid is also a Weyl group and we get a slightly different story. We can
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quickly verify that minr JI,S
s , minr JS ,I

s , maxsJI,S
r , and maxsJS ,I

r exist regardless of the choice of I

which does not line up with our Mn(K) work.

If one considers GLn(K), then at least for GL2(K), GL3(K), GL4(K), GL5(K), and GL6(K),

the idempotents of Mn(K) seem to enter the picture again. minr JI,J
s exists if and only if there

exists some e ∈ Λ and f ∈ Λ− so that either I = λ∗(e) and J = λ∗( f ), or J = λ∗(e) and

I = λ∗( f ), or one of I = ∅, J = ∅, I = S , J = S holds. Similarly, maxsJI,J
r exists if and only if

either there exists some e, f ∈ Λ so that I = λ∗(e) and J = λ∗( f ), or there exists some e, f ∈ Λ−

so that J = λ∗(e) and I = λ∗( f ), or one of I = ∅, J = ∅, I = S , J = S holds.

Although we can not currently approach the general existence problem for maxima and

minima, we can describe these relative minima and maxima even when they exist individually.

Proposition 7.50. Suppose that r ≤ s and let I, J ⊆ S be arbitrary.

(1) If minr JI,J
s exists then minr JI,J

s = minrRJ
minrLI

s
= minrLI

minrRJ
s
.

(2) If maxsJI,J
r exists then maxsJI,J

r = maxsRJ
maxsLI

r
= maxsLI

maxsRJ
r
.

Proof. It is clear that r ≤ minrRJ
s ≤ s and so r ≤ minrLI

minrRJ
s
≤ minrRJ

s ≤ s. It is also true that

minrLI
minrRJ

s
L IminrRJ

sR
J s, so minrLI

minrRJ
s
J I,J s. By definition minr JI,J

s ≤ minrLI
minrRJ

s
.

By Corollary 7.47 we know there exists minr JI,J
s ≤ z ≤ s with zR J s and zL Iminr JI,J

s .

Then minrRJ
s ≤ z ≤ s. Thus, (minrRJ

s )I,J
+ ≤ zI,J

+ (Proposition 7.15). Now, zL Iminr JI,J
s so,

minrLI
z = minr JI,J

s ≤ minrLI
minrRJ

s
. Thus, zI,J

+ = (minrLI
z)

I,J
+ ≤ (minrLI

minrRJ
s
)I,J
+ = (minrRJ

s )I,J
+ . It

follows, as desired, that zL IminrRJ
s and furthermore, minr JI,J

s = minrLI
z = minrLI

minrRJ
s
.

The other statements are proven similarly. �

With our new absolute and relative extrema, we can find an analogue to Theorem 6.40.

Theorem 7.51. Let T =H I,J,R J,L I ,J I,J

(1) If T ,H I,J and r0 < r1 < · · · < rk−1 < rk is a chain in R with r0T rk, then for all indices

0 ≤ i ≤ k we have r0T ri

(2) If T ,J I,J and r0 < r1 < · · · < rk−1 < rk is a chain of maximum length between r0, rk ∈ R.

For all 1 ≤ i ≤ k, if riT\ ri−1 then ri = minri−1Tri and ri−1 = maxriTri−1 .

Although we stated (1) with T ,H I,J it is strongly suspected that it remains true.
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Proof. (1) By Corollary 7.19, we can see that our given chain, r0 < r1 < · · · < rk−1 < rk,

implies that br0

T

c ≤ br1

T

c ≤ · · · brk−1

T

c ≤ brk

T

c . But r0T rk means that br0

T

c = brk

T

c and hence

for any i, br0

T

c = bri

T

c , thus r0T ri.

(2) We shall just show the minimum condition, as the maximum condition follows similarly.

Suppose not. Then we see that ri−1 < minri−1Tri < ri, which contradicts the maximality of the

length of the chain. �

Our last result will tie in both the relative maxima and absolute minima we have been study-

ing to generalise the following Coxeter group property to Renner monoids. It will generalise

the following Weyl group property.

Proposition 7.52. Let {Iα}α∈A be a nonempty family of subsets of S . Define I =
⋂

α∈A Iα.

(1) Let r ∈ IW and s ∈ W. Then, r ≤ s if and only if Iαr ≤Iα s for all α ∈ A.

(2) Let r ∈ W I and s ∈ W. Then, r ≤ s if and only if rIα ≤sIα for all α ∈ A.

Proof. (2) follows from Theorem 2.6.1 in [2], (1) is done with similar reasoning. �

Theorem 7.53. Let {Iα}α∈A be a nonempty family of subsets of S . Define I =
⋂

α∈A Iα.

(1) Let r ∈ GJ I and s ∈ R. Then, r ≤ s if and only if rIα,∅
+ ≤ sIα,∅

+ for all α ∈ A.

(2) Let r ∈ JGI and s ∈ R. Then, r ≤ s if and only if r∅,Iα− ≤ s∅,Iα− for all α ∈ A.

Proof. We will just demonstrate the (1) property, as the other follows by mirroring the argu-

ment. For the (⇒) direction, this follows directly from Proposition 7.19.

The (⇐) side is done by recalling our work with relative maxima in the preceding section.

Since A is nonempty, pick a ∈ A. rIa,∅
+ ≤ sIa,∅

+ implies that rIa,∅
+ ≤ s and so m = maxsLrIa ,∅

+
exists.

By Proposition 7.4 for each α ∈ A, rIα,∅
+ L Iαr implies rIα,∅

+ L r, so m = maxsLr and rIα,∅
+ ≤ m.

We can write our rIα,∅
+ in standard form, rIα,∅

+ = xαeσ−1, where xα ∈ IαWλ∗(e). In fact, if we

write r in standard form, xeσ−1, then xα = Iα x. Writing m = yeσ−1 in standard form now allows

us to better understand rIα,∅
+ ≤ m.

By Corollary 5.40 and Theorem 5.44, rIα,∅
+ ≤ m if and only if xα ≤ y, which as we have

noted is Iα x ≤ y. Iα x ≤ y implies Iα x ≤ Iαy by Proposition 5.13, and so we can see by Proposition

7.52 that x ≤ y, as x ∈ IWλ∗(e) ⊆ IW, since r ∈ GJ I . Thus, xeσ−1 ≤ yeσ−1, or rather r ≤ m.

And by definition, r ≤ m if and only if r ≤ s, which was what we wanted. �
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Corollary 7.54. For t ∈ S , let It := S \{t}. Then, for r, s ∈ R,

(1) r ≤ s if and only if br
L It

c ≤ bs
L It

c for all t ∈ S

(2) r ≤ s if and only if br
R It

c ≤ bs
R It

c for all t ∈ S

Proof. First, observe
⋂

t∈S It = ∅. Then we see r ∈ R = GJ∅ = GJ
⋂

t∈S It . So by Theorem 7.53,

r ≤ s if and only if br
L It

c ≤ bs
L It

c for all t ∈ S if and only if br
R It

c ≤ bs
R It

c for all t ∈ S . �

Corollary 7.55. For r, s ∈ R,

(1) r ≤ s if and only if br
L λ(e)

c ≤ bs
L λ(e)

c for all e ∈ Λ

(2) r ≤ s if and only if br
Rλ(e)

c ≤ bs
Rλ(e)

c for all e ∈ Λ

Proof. Just like in the previous corollary it suffices to show that ∩e∈Λλ(e) = ∅. For any chain

Γ ⊆ Λ, Cr
G(Γ) = {g ∈ G | ge = ege for all e ∈ Γ} = PCS (Γ) = P∩e∈Γλ(e). Since Λ is a maximal

chain it follows that Cr
G(Λ) = B = P∅ ([20]). Thus

⋂
e∈Λ λ(e) = CS (Λ) = ∅ as desired. �

One can note the similarity of this last application to both the theoretical basis for Young’s

tableaux (Section 2.6 in [2]) and Problem 3.2 articulated by Renner and Putcha in [25].

7.4 Example

When we restrict ourselves to discussing our trichotomy in Mn(K), we get a nice way of

deriving the elements r−, r0, and r+. We will go through the computation method with the

matrix, r =



1 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0


and I = {(1 2), (2 3), (5 6)}, J = {(2 3), (3 4), (4 5)}.

To begin, first we determine the equivalence classes on {1, 2, · · · , n} coming from I and J.

This notion was touched on briefly in Example 7.25, and we compute it as follows. We define

∼I to be the smallest equivalence relation on {1, 2, 3, · · · , n} that has the following character-

istic. For each simple reflection, (i i + 1) ∈ I, i ∼I i + 1. The relation ∼I roughly represents

belonging to the same connected component of I.

For example, if n = 10 and I = {(2 3), (3 4), (5 6), (8 9), (9 10)} then we would get the

equivalence relation ∼I with equivalence classes, {1}, {2, 3, 4}, {5, 6}, {7}, and {8, 9, 10}. In

our trichotomy construction, the equivalence classes of I and J will be the rows and columns

respectively of the matrix that are allowed to be swapped among themselves.
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r =



1 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0




0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0




0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



r− =



1 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0



To find r− first split the matrix up based on the classes

of ∼J. {(2 3), (3 4), (4 5)} translates to {1}, {2, 3, 4, 5},

and {6}. We group the columns based on these equiv-

alence classes. Any equivalence class of size one will

not be affected (as J has no element which can interact

with that column, that is, no columns can be swapped in

that class). For the submatrices associated to equivalence

classes with more than two elements we distinguish them

and perform the following column swaps.

For each submatrix, we use column swapping to arrange

the columns so that the nonzero columns are on the right

and are arranged so the leading ones form our usual stair-

case pattern. This is exactly what we did for the original

trichotomy, we are just confined to submatrices.

After all the columns in each of the relevant submatrices

have been arranged we put the submatrices back in their

positions and the resulting matrix is r− for J.

To compute r+ first split the matrix up based on the

classes of ∼I . {(1 2), (2 3), (5 6)} translates to {1, 2, 3},

{4}, and {5, 6} and means we look at the matrix formed

by the first three rows, the matrix formed by the fourth

row, and the matrix formed by the last two rows. The

fourth row, associated to an equivalence class of only one

element will not change, so we will ignore it. We distin-

guish the other two submatrices as light gray and dark

gray respectively.

r =



1 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0




1 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0


 0 0 0 1 0 0

0 0 1 0 0 0




1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1


 0 0 1 0 0 0

0 0 0 1 0 0



r+ =



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0


For each of the submatrices, we use row swapping operations to arrange the rows so that the
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nonzero rows are on the top and are arranged so the leading ones create the staircase pattern.

Once the matrices are rearranged, they are then put back in the original r matrix, taking the

place of the submatrices we removed.

Notice that the computation of r+ only used I. This shows us that regardless of choice of

J, once we know what I is, the r+ element of our trichotomy is given. Likewise for r− and our

choice of J.

Once r− and r+ have been obtained, a simple computation r∗−rr∗+ yields r0.

r0 = r∗−rr∗+ =



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 1 0 0 0 0


·



1 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0


·



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0


=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 1 0 0 0


There is potentially a way to calculate r0 for n×n matrices by pure observation (without first

calculating r− and r+) as we did in Section 3, however at this time such a method proves elusive.

In any case, the ease of computing r− and r+ would likely ensure that our r∗−rr∗+ calculation is

faster.

For M3(K), we get the simple reflections S = {(1 2), (2 3)} =
{  0 1 0

1 0 0

0 0 1

,


1 0 0

0 0 1

0 1 0


}
. Below is a

table showing the relative decompositions, r = rI,J
− rI,J

0 rI,J
+ for each of the 16 pairs of subsets of

S and for the element, r =


0 0 1

0 0 0

1 0 0

.

I \ J ∅ {(1 2)} {(2 3)}
{(1 2), (2 3)}

∅


0 0 1

0 0 0

1 0 0

·


0 0 1

0 0 0

1 0 0

·


0 0 1

0 0 0

1 0 0




0 0 1

0 0 0

0 1 0

·


0 0 0

0 0 1

1 0 0

·


0 0 1

0 0 0

1 0 0




0 0 1

0 0 0

1 0 0

·


0 0 1

0 0 0

1 0 0

·


0 0 1

0 0 0

1 0 0




0 1 0

0 0 0

0 0 1

·


0 0 0

1 0 0

0 0 1

·


0 0 1

0 0 0

1 0 0



{(1 2)}


0 0 1

0 0 0

1 0 0

·


0 0 1

0 0 0

1 0 0

·


0 0 1

0 0 0

1 0 0




0 0 1

0 0 0

0 1 0

·


0 0 0

0 0 1

1 0 0

·


0 0 1

0 0 0

1 0 0




0 0 1

0 0 0

1 0 0

·


0 0 1

0 0 0

1 0 0

·


0 0 1

0 0 0

1 0 0




0 1 0

0 0 0

0 0 1

·


0 0 0

1 0 0

0 0 1

·


0 0 1

0 0 0

1 0 0



{(2 3)}


0 0 1

0 0 0

1 0 0

·


0 1 0

0 0 0

1 0 0

·


0 0 1

1 0 0

0 0 0




0 0 1

0 0 0

0 1 0

·


0 0 0

0 1 0

1 0 0

·


0 0 1

1 0 0

0 0 0




0 0 1

0 0 0

1 0 0

·


0 1 0

0 0 0

1 0 0

·


0 0 1

1 0 0

0 0 0




0 1 0

0 0 0

0 0 1

·


0 0 0

1 0 0

0 1 0

·


0 0 1

1 0 0

0 0 0



{(1 2), (2 3)}


0 0 1

0 0 0

1 0 0

·


1 0 0

0 0 0

0 1 0

·


1 0 0

0 0 1

0 0 0




0 0 1

0 0 0

0 1 0

·


0 0 0

1 0 0

0 1 0

·


1 0 0

0 0 1

0 0 0




0 0 1

0 0 0

1 0 0

·


1 0 0

0 0 0

0 1 0

·


1 0 0

0 0 1

0 0 0




0 1 0

0 0 0

0 0 1

·


0 0 0

0 1 0

1 0 0

·


1 0 0

0 0 1

0 0 0


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Interested readers can consult the final section in the Appendix for graphs displaying the

J I,J-classes in relation to the Bruhat order for M3(K) and all 16 pairs of I, J ⊆ S . As well,

readers are encouraged to consider the generalisation of the Mn(K) constructions of the relative

minima and maxima from Section 6.
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8 Projective Supports

At this point, we are going to shift gears and change from our predominantly combinato-

rial discussion of reductive monoids and instead investigate some geometric properties of the

more general, regular semigroups. In this section we will tackle Renner’s conjecture on the

projectiveness of supports for irreducible regular algebraic semigroups with zero.

8.1 Rees Theorem And Quotients In Linear Algebraic Semigroups

Rees Theorem And Quotients In Linear Algebraic Semigroups ([24]) is a paper by Mohan

Putcha about Rees’ theorem on linear algebraic semigroups. Published in 2013, it reexamines

the notion of support and studies varieties related to the Rees theorem. To get started, we will

need a few results from Putcha’s paper. The results we will need will concern a particular kind

of semigroup: irreducible regular linear algebraic semigroups with zero.

Proposition 8.1. Let S be an irreducible regular linear algebraic semigroup. Then S has a

unique maximal J -class.

Proof. This comes from Theorem 5.10 in [20] combined with the fact that finite lattices have

a unique maximal element. �

Proposition 8.2. Let S be an irreducible regular linear algebraic semigroup with zero, and

e ∈ E(S ). Then eS e is a reductive linear algebraic monoid.

Proof. We can see that eS e is an irreducible monoid with zero (irreducibility coming from

being the image of S under the morphism, s 7→ ese). It also easily is seen that eS e is regular.

Thus, by Theorem 4.2 in [30], eS e is reductive. �

The following definition of supports for a regular semigroup with zero is the true starting

point of this section. It is the question of whether supports are projective which will be our

overall goal in this section.

Definition 8.3. Let S be an irreducible regular linear algebraic semigroup with zero. Let J be

the unique maximal J -class of S . We define the support of S to be X = J/H . Further, we

define the right (left) support of S as Xr = J/L (X` = J/R).
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Theorem 8.4. Let S be an irreducible regular linear algebraic semigroup with zero. Let J be

the unique maximal J -class of S . Fix e ∈ E(J), and let R, L, H be the respective R, L and

H -classes of e. One can quickly see that H acts on R on the left and L on the right.

(i) Xr � R/H (as a left action quotient).

(ii) X` � L/H (as a right action quotient).

(iii) X � Xr × X`.

Proof. This result comes from [24] as Theorem 2.4. �

Putcha notes in his paper that our supports, X, Xr and X` each have the structure of a

quasi-projective variety (Lemma 2.3 of [24]) by showing that both Xr and X` can be considered

as lying inside a suitable Grassmanian space and from there finding an open affine covering.

He remarks that if the supports are projective varieties that they have some nice properties. It

is that work that motivates this paper.

One may think that singling out idempotents of a maximal J -class may be a bit specific,

but as the following proposition demonstrates we can construct this situation at will.

Proposition 8.5. Let S be an irreducible regular algebraic semigroup. For any idempotent,

e ∈ E(S ), the set S eS is an irreducible regular algebraic semigroup with Je as its maximal

J -class.

Proof. By Proposition 2.26 we know that S eS = S eS , so we instead think in terms of S eS . It

is clear that S eS is a subsemigroup and irreducible, since S is irreducible. For any s ∈ S eS ⊆ S

there is an element s ∈ S so that sss = s. Thus, sss ∈ S eS and s(sss)s = s, so S eS is also

regular.

It is clear that for any x, y ∈ S eS , xJ y in S eS implies xJ y in S . Suppose instead that

xJ y in S . Then we can find a, b, c, d ∈ S so that axb = y and cyd = x. Since S is regular

we can find x, y ∈ S so that xxx = x and yyy = y. Thus (yya)x(byy) = yyyyy = y and

(xxc)y(dxx) = x. Since x, y ∈ S eS it is clear that (yya), (byy), (xxc), (dxx) ∈ S eS so xJ y in

S eS . This means we can talk about Jx without having to distinguish between the setting of

S eS or S .

For any x ∈ S eS it follows that S xS ⊆ S eS and so Jx ≤ Je. It is also apparent that

Je ⊆ S eS . Thus Je is maximal among J -classes of S eS . Indeed, S eS =
⊔

J∈U(S ),J≤Je
J. �
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Putcha goes on to prove a result about the structure of S with respect to these R- and

L -classes. It was stated in [24] as Renner’s conjecture.

Theorem 8.6. Let S be an irreducible regular linear algebraic semigroup with zero. Let J

is the maximal J -class of S and pick e ∈ E(J). Let R, L be the R, L -classes of e. Then

eS = eS e · R, S e = L · eS e and S = L · eS e · R.

Proof. This is Theorem 3.2 in [24]. �

In fact, as Renner had pointed out in private communication, his conjecture was that pro-

jectivity of the supports would likely follow from Theorem 3.2 of [24]. This will henceforth be

called Renner’s Conjecture and will be the focus of the first part of this paper.

Conjecture 8.7 (Renner’s Conjecture). Let S be an irreducible regular linear algebraic semi-

group with zero. X, Xr and X` are projective varieties.

In this section we will pull together all the necessary results to prove Renner’s conjecture

about the projectiveness of supports, Xr and X`. Throughout this section, let S be an irreducible

regular linear algebraic semigroup with zero and with maximum J -class, J. Fix e ∈ E(J) and

let H, R, L denote the respective H -, R-, L -classes of e. Then eS e is an irreducible reductive

algebraic monoid with unit group H.

8.2 Geometric Invariant Theory

Quotients, like those that define the supports, Xr and X`, are difficult to deal with in an

algebraic geometry sense. So before we move on to deal with the conjecture proper, we will

need to cover some basic results in geometric invariant theory. This is the language that is best

for handling this problem.

Much of geometric invariant theory concerns itself with actions by reductive algebraic

groups. It is fortunate that H is a reductive group (since eS e is a reductive monoid).

Theorem 8.8. Let A be a finitely generated K-algebra. If G is a reductive group acting on A

then AG is also a finitely generated K-algebra.

Proof. Theorem 3.4 in [16]. �
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From geometric invariant theory we inherit two notions of quotient when a variety is acted

upon by a reductive group. We will need to utilize both in order to tackle the question of

projectivity of the left and right supports of S .

Definition 8.9. Let G be a reductive group acting on variety X. Consider a variety, Y and

an affine morphism φ : X → Y. If (Y, φ) satisfies the following properties it is called a good

quotient of X by G.

(i) φ is G-invariant

(ii) φ is surjective

(iii) if U ⊆ Y is open, then φ∗ : O(U)→ O(φ−1(U)) is an isomorphism of O(U)

onto O(φ−1(U))G

(iv) if W ⊆ X is closed and G-invariant then φ(W) is closed

(v) if W1,W2 ⊆ X are disjoint, closed, and G-invariant, then φ(W1) and φ(W2)

are disjoint

If (Y, φ) is also an orbit space, it is called a geometric quotient of X by G.

Theorem 8.10. Let G be a reductive algebraic group and X an affine variety. Then there is an

affine variety, Y, and affine morphism, φ : X → Y, so that (Y, φ) is a good quotient of X by G.

Proof. This is the content of the proof of Theorem 3.5 in [16]. �

Proposition 8.11.

(1) Let (Y, φ) be a good (geometric) quotient of projective variety, X, by reductive group,

G. If U is open in Y, then (U, φ) is a good (geometric) quotient of φ−1(U) by G.

(2) If φ : X → Y is a morphism and {Ui}i∈I is an open covering of Y such that (Ui, φ) is a

good (geometric) quotient of φ−1(Ui) by G for all i ∈ I, then (Y, φ) is a good (geometric)

quotient of X by G.

Proof. This is just Proposition 3.10 in [16]. �

Proposition 8.12. Let (Y, φ) be a good quotient of X by G. If the action of G on X is closed,

then (Y, φ) is a geometric quotient.

Proof. This is just Proposition 3.11(iii) in [16]. �
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For this section of introductory material, we will limit our geometric invariant theory results

to those that will explicitly apply to our proof of Renner’s conjecture. Although this will

require some technical proofs that are basically reproductions of the work in [16], it saves

us a discussion of linearisations and ample line bundles. To this end, consider the following

scenario:

Let A be an affine variety over K and let K∗ act on A. Suppose that A contains a cone point

a0. That is, a0 ∈ K∗y for all y ∈ A. On the level of our coordinate algebra, this turns O(A) into

a nonnegatively graded algebra. A function f ∈ O(A) is called homogeneous of degree n, for

some n ∈ N, if for all k ∈ K∗, y ∈ A, f (ky) = kn f (y). If we denote O(A)n to be the homogeneous

functions of degree n, then O(A) = ⊕n∈NO(A)n.

We let P be the projective variety, (A\{a0})/K∗, with projection map, π : A\{a0} → P.

Suppose that we have a reductive group, G, that acts on A by action σ which commutes with

the action of K∗. Then the action of G on P is compatible with our projection map (it follows

that ga0 = a0 for all g ∈ G). Our scenario can be summed up by the following commutative

diagram.

G × A\{a0} A\{a0}

G × P P

id × π

σ

π

σ

Our goal is to consider the supports as geometric quotients arising from exactly this situa-

tion involving A and P. So to get there, we now introduce the notions of stable and semi-stable

elements in P.

Definition 8.13. For the situation of varieties A and P which we have defined, we say that a

point x ∈ P is called,

(i) semi-stable if and only if there is a homogeneous function f ∈ O(A)G of degree ≥ 1 such

that f (x) , 0. By Pss we shall mean the set of all semi-stable elements in P.

(ii) stable if and only if x there is a homogeneous function f ∈ O(A)G of degree ≥ 1 such

that f (x) , 0 and the action of G on P f is closed (P f = {x ∈ P | f (x) , 0}). By Ps we shall

mean the set of all stable elements in P.
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(iii) unstable if and only if it is not semi-stable.

Notice that the conditions of semi-stability and stability rely in part on homogeneous poly-

nomials. So we can choose to show that for some x̂ ∈ A in the fibre associated to x ∈ P satisfies

f (x̂) , 0 when convenient. These sets of semi-stable and stable elements give us the following

theorem, which establishes the existence of good and geometric quotients.

Theorem 8.14. There exists a good quotient, (Y, φ) of Pss by G, and Y is projective. Addition-

ally, there exists an open subset, Y s ⊆ Y such that φ−1(Y s) = Ps and (Y s, φ) is a geometric

quotient.

This proof is essentially a reproduction of Newstead’s proof of Theorem 3.14 (see [16]),

but is specialized to our particular conditions.

Proof. Since we assumed the action of G commutes with the action of K∗ we can see that the

action of G onO(A), given by g · f (x) = f (g ·x) preserves the degree of homogeneous functions.

Indeed, (g · f )(k · x) = f (g · k · x) = f (k · g · x) = kn f (g · x) = kn(g · f )(x). Thus, O(A)G is a

homogeneous subalgebra of O(A) = ⊕n∈NO(A)n.

For homogeneous f ∈ O(A)G with deg( f ) ≥ 1, define P f = {x ∈ P | f (x) , 0}. Notice

that Pss :=
⋃

f∈O(A)G ,deg( f )≥1 P f . Each P f is an open affine subset of P (being the compliment of

the zero set of f ). Since G is reductive we know that there exists a good quotient of P f by G.

(Theorem 8.10), (Y f , φ f ).

We can glue together all of these good quotients, (Y f , φ f ), to form a projective variety, Y ,

and also get a map φ :
⋃

f∈O(A)G ,deg( f )≥1 P f = Pss → Y . Our gluing maps should look like,

h f f ′ : φ f (P f f ′) → φ f ′(P f f ′). As Brion notes in [5], this is achieved in a similar way that Pn is

obtained from its open subsets Pn
f . In this way we see that φ |P f= φ f .

Observe that each (Y f , φ f ) is a good quotient of P f = φ
−1(Y f ). We also note by our gluing

that {Y f } f∈O(A)G ,deg( f )≥1 is an open cover of Y (see 12.6 in [35]). Thus, by Proposition 8.11 it

follows that (Y, φ) is a good quotient of Pss.

For the second part of our result, let Y s := φ(Ps) and let Y0 be the union of those Y f for

which the action of G on P f is closed. It is clear that Ps ⊆ φ−1(Y0) and thus, Y s ⊆ Y0. By

Proposition 8.11, (Y0, φ) is a good quotient of P0 := φ−1(Y0). Applying Proposition 8.12 then
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tells us that (Y0, φ) is a geometric quotient of P0 := φ−1(Y0). It follows that Ps = φ−1(Y s) and

Y0\Y s = φ(P0\Ps).

Thus, Y0\Y s is closed in Y0 by (iv) in our definition of a good quotient. So Y s is open in Y0.

Applying Proposition 8.11 again, we conclude that (Y s, φ) is a geometric quotient of Ps. �

Now that semistable and stable points give us quotients (as we will see, the quotients we

will need to prove the conjecture) we devote the rest of this section to converting our definitions

of semistable and stable into more useful forms. These forms are the ones used by C. S.

Seshadri in [33] and are equivalent to Newstead’s and Mumford’s. First we need a lemma.

Lemma 8.15. Let G be a reductive group acting on affine variety, X. Let X1, X2 be two disjoint,

closed, G-invariant subsets of X. Then there is a function f ∈ O(X)G so that f (X1) = 0 and

f (X2) = 1.

Proof. This is Lemma 3.3 in [16]. �

Here is our new definition for semistability.

Proposition 8.16. Let x ∈ P be an arbitrary element. Then x ∈ Pss if and only if a0 < Gx̂ (here

x̂ represents a preimage of x under π).

Proof. Let f ∈ O(A) be a G-invariant homogeneous function of degree ≥ 1 such that f (x) , 0.

Observe that since deg( f ) ≥ 1, then f (ky) = kdeg( f ) f (y) for all y ∈ A and k ∈ K∗, and by taking

the closure, we can conclude that 0 = f (a0). Then it is clear that f (x̂) , 0, and by G-invariance

f (y) is equal to a non-zero constant for all y ∈ Gx̂. Hence a0 < Gx̂.

Conversely, if a0 < Gx̂, then there exists by Lemma 8.15 a G-invariant function, f , such that

f (a0) = 0, f
(
Gx̂
)
= 1. Then f has a constant term of 0, and it follows that some homogeneous

part of f of degree ≥ 1 must be nonzero at x̂, so x is semi-stable. �

In the same vein, we can find an equivalent condition for stability.

Lemma 8.17. An element x ∈ P is stable if and only if there exists a homogeneous function

f ∈ O(A)G that has degree ≥ 1 such that f (x) , 0 and the morphism τ f : G → P f given by

τ f (g) = gx is proper.
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Proof. This is Remark 3.16 (and Lemma 3.15) of [16]. �

Lemma 8.18. Let G be a linear group acting on variety, X. Then for x ∈ X, the morphism

τ : G → X, given by τ(g) = gx, is proper if and only if Gx is closed in X and Gx is finite.

Proof. This is Lemma 3.17 in [16]. �

Proposition 8.19. Let x ∈ P be an arbitrary element. Then x ∈ Ps if and only if |G x̂| < ∞ and

Gx̂ is closed in A.

Proof. By Lemma 8.17 x ∈ P is stable if and only if there exists a homogeneous function

f ∈ O(A)G of degree ≥ 1 such that f (x) , 0 and the morphism τ f : G → P f given by

τ f (g) = gx is proper.

Fix an element, x̂ ∈ A over x. Let c = f (x̂) , 0, and define C = {y ∈ A | f (y) = c}, clearly

a closed subvariety of A. Consider the morphism τ f : G → C given by τ f (g) = gx. It can be

seen that τ f = π ◦ τ f . Letting i be the inclusion map of C into A we get,

τ f is proper ⇐⇒ π ◦ τ f is proper (by equality)

⇐⇒ τ f is proper (⇐ follows from π being proper)

⇐⇒ i ◦ τ f : G → A is proper (since C is closed in A)

⇐⇒ τ is proper (by equality)

So it follows that x ∈ P is stable if and only if there is a homogeneous function f ∈ O(A)G

that has degree ≥ 1 such that f (x) , 0 and the morphism τ : G → A given by τ(g) = gx is

proper. By Proposition 8.16 this is equivalent to a0 < Gx̂ and τ being proper. Then, thanks to

Lemma 8.18, we can see that this is equivalent to the conditions that a0 < Gx̂, |G x̂| < ∞ and Gx̂

is closed in A.

Now, if Gx̂ is closed in A, it follows that a0 < Gx̂ = Gx̂, since G{a0} = {a0}. So then τ being

proper implies a0 < Gx̂. Thus, x ∈ P is stable if and only if |G x̂| < ∞ and Gx̂ is closed in A. �

Geometric invariant theory will come in to play in our proof as our goal is to show that our

right are left supports can be represented as Ps/G, and thus is the orbit space we want, but is

also projective.
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8.3 Putcha’s Determinant

By Corollary 3.15 in Putcha’s book [20], we can consider S to be a closed subsemigroup of

Mn(K) for some n. The following definition from Putcha’s book relies on this predetermined

embedding of S .

Definition 8.20. We define the determinant with respect to e as the map, dete : S → K given

by dete(s) := det(ese + 1 − e).

We have defined our determinant by using the ambient Mn(K). It is entirely conceivable

that the map would change based on our embedding of S , but that will not affect our proof of

Renner’s conjecture. Although we defined the determinant on all of S , it only gains the familiar

multiplicative property when we restrict to eS e.

Proposition 8.21. When restricted to eS e, dete is a multiplicative morphism.

Proof. It is clear that the map is already a morphism in the algebraic geometry sense, just

from its definition. It remains to show that it is multiplicative, hence a true algebraic monoid

morphism. Let a, b ∈ eS e. Then,

dete(a)dete(b) = det(a + 1 − e)det(b + 1 − e)

= det(ab + a − ae + b + 1 − e − eb − e + e) = det(ab + 1 − e) = dete(ab) �

In light of the previous result and its desired property, we will only consider dete as re-

stricted to eS e.

Proposition 8.22. H = {m ∈ eS e | dete(m) , 0}

Proof. This comes from Remark 3.23 in [20]. �

The relative determinant is how Putcha shows in his book that H is an algebraic group. The

group, H provides the GLn(K) to eS e’s Mn(K). In the same vein we take the opportunity now

to define a useful analogue of the special linear group.

Definition 8.23. H1 := {m ∈ eS e | dete(m) = 1}
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While Putcha shows in his paper ([19]) that H = det−1
e (K∗) is independent of the particular

embedding in Mn(K), our definition of H1 is quite dependent on it. However, regardless of

which of the possible H1 we have, the following results show that any such H1 = det−1
e (1) has

the properties we will need to prove Renner’s conjecture.

Theorem 8.24. H1 is a closed, reductive algebraic group in eS e.

Proof. That H1 is a closed algebraic variety comes from its definition as the preimage, det−1
e (1).

It is a normal connected subgroup of H, by Proposition 8.22 and the multiplicativity of dete in

Proposition 8.21 and the fact that it is the kernel of dete. Since H1 is a connected closed normal

subgroup of the reductive group H it follows that H1 is reductive by 14.2 of [3]. �

Proposition 8.25. Let u ∈ H be a unipotent element. Then u ∈ H1. That is, dete(u) = 1.

Proof. dete : H → K∗ is a morphism of algebraic groups. So then for any element, h ∈ H,

dete(huhs) = dete(hu)dete(hs) preserves the Jordan decomposition. Hence, dete takes unipotent

elements to unipotent elements. But 1 ∈ K∗ is the unique unipotent element of K∗. So for any

unipotent u ∈ H, dete(u) = 1 as desired. �

We will use H1 a great deal to reach our end result. First, however, we will move on and

introduce Renner’s maps and the action of K∗ that they provide. We fix a maximal torus of

eS e, call it T . The majority of what follows comes from Exercise 5 in Section 4.6 of [30].

Definition 8.26. Define the set of idempotents of corank 1, to be the set of all idempotents

which lies just below e in the Adherence order. E1(T ) = { f ∈ E(T ) | e covers f }.

For the above definition, remember that e is the identity element of eS e.

Lemma 8.27. For any f0 ∈ E(T ), Π f∈E1(T ), f0≤ f f = f0

This is a useful way of creating a product of 0 out of our idempotents in E1(T ).

Proof. This comes from Proposition 3.22 b) in [30], although we wish to acknowledge the typo

in the book, as the definition of the set “E1( f )” should contain a “ f ≤ e”. �

Proposition 8.28. For each f ∈ E1(T ) there is a unique injective morphism α f : K → T such

that α f (0) = f , α f (K∗) = {t ∈ T | t f = f t = f }0.
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Proof. Exercise 5 b), since T is a D-monoid with zero. �

These maps are what we meant when we referred to Renner’s maps. Taken together

they provide the action of K∗ that we will be using to prove Renner’s conjecture. This action

interacts nicely with Putcha’s relative determinant.

Definition 8.29. For k ∈ K and m ∈ S we define the product k · m =
(
Π f∈E1(T )α f (k)

)
m.

The following proposition shows that our product exhibits the properties of a group action

when restricted to K∗. It also behaves like scalar multiplication in the sense that 0 · m = 0.

Proposition 8.30. For m,m′ ∈ S , and k, k′ ∈ K the following are true,

(1) k · (k′ · m) = (kk′) · m

(2) k · (mm′) = (k · m)m′

(3) 1 · m = m

(4) 0 · m = 0

Proof. (1) k · (k′ · m) = k ·
((
Π f∈E1(T )α f (k′)

)
m
)
=
(
Π f∈E1(T )α f (k)

) ((
Π f∈E1(T )α f (k′)

)
m
)

But by associativity of our monoid multiplication, we get,

=
(
Π f∈E1(T )α f (k)α f (k′)

)
m

And since each of our α f is a morphism, and the images of our field elements are in T , which

is commutative

=
(
Π f∈E1(T )α f (kk′)

)
m = (kk′) · m

(2) This is just an application of the associative law.

(3) For each f ∈ E1(T ), α f (1) = 1, the identity of our monoid. So then,

1 · m =
(
Π f∈E1(T )α f (1)

)
m =
(
Π f∈E1(T )1

)
m = m

(4) By definition, for each f ∈ E1(T ), α f (0) = f . By Lemma 8.27, we can conclude,

0 · m =
(
Π f∈E1(T )α f (0)

)
m =
(
Π f∈E1(T ) f

)
m = (0)m = 0 �

We would like to show that dete is a homogenous morphism. That is, there exists some q so

that dete(ka) = kqdete(a). This is a well-known property of the original determinant function.

Proposition 8.31. For each f ∈ E1(T ), there exists some positive integer, q f , so that for every

k ∈ K, dete(α f (k)) = kq f .
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Proof. As it is a composition of a series of morphisms, we can see that p : x 7→ dete(α f (x)) is

a polynomial, p(x). See that p(x) is nonzero and multiplicative,

p(xy) = dete(α f (xy)) = dete(α f (x)α f (y)) = dete(α f (x))dete(α f (y)) = p(x)p(y).

It follows that, p(x) = xq for some q ∈ N (by Lemma A.5). And since f < H, we know

dete( f ) = dete(α f (0)) = 0. But if q f = 0 then dete( f ) = 1 a contradiction. Thus, 1 ≤ q f . �

Corollary 8.32. There exists some positive integer, q, so that for m ∈ eS e and k ∈ K,

dete(km) = kqdete(m). In fact, q = Σ f∈E1(T )q f .

Proof. Since dete is multiplicative, we see that,

dete(km) = dete

(
(Π f∈E1(T )α f (k))m

)
=
(
Π f∈E1(T )dete(α f (k))

)
dete(m)

= Π f∈E1(T )k
q f dete(m) = kqdete(m),

where q is defined as in the statement above. �

Thus, dete is homogeneous of degree ≥ 1. Our final result before attempting the conjecture

shows us that our reductive group and our action of K∗ commute.

Proposition 8.33. For any k ∈ K, h ∈ H1, and s ∈ S , h(k · s) = k · hs.

Proof. This comes from the fact that Π f∈E1(T )α f (k) ∈ T ⊆ Z(eS e) and H1 ⊆ eS e. �

Now we have everything we need to discuss Renner’s conjecture properly. The group

H1 provides exactly the reductive group we need to show the closed conditions associated

to semi-stability and stability. Renner’s maps will allow us to make a Bruhat decomposition

argument to show the nature of the semi-stable elements.

8.4 The Conjecture

To start things off, let us define our scenario so that we may apply geometric invariant

theory to create a good quotient. Let A = eS and let K∗ act upon it by our action from the

last section. We see that 0 is the cone point of A. Then P is the projective variety defined by

P =
{
K∗s
∣∣∣∣ s ∈ eS \{0}

}
. By taking G = H1 we get a reductive group acting on A and P as we

desired from our Geometric Invariant Theory work.
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Proposition 8.34. Let X, Y be affine varieties over K. Suppose that K∗ acts on X and Y as

a group action. Suppose also that we have a morphism, φ : X → Y such that for all x ∈ X,

k ∈ K∗ then φ(kx) = kφ(y). Let x0 ∈ X and y0 ∈ Y be such that for all x ∈ X, x0 ∈ K∗x and all

y ∈ Y, y0 ∈ K∗y.

If φ−1(y0) = {x0}, then φ is a finite morphism.

Proof. This comes from Remark 2.25(d) in [30]. �

The following lemma will be used for both our discussion of the semi-stable elements of

eS and the stable elements of eS .

Lemma 8.35. For all r ∈ R, H1r is closed.

Proof. Since r ∈ R, we can find x, y ∈ S 1 so that e = rx and r = ey. Define the new element

z = ye ∈ S . Consider the map, φ : eS e → eS given by φ(s) = sr. This map φ is one-to-one by

observing that if φ(s1) = φ(s2) then s1 = s1e = s1rz = s2rz = s2e = s2. Thus 0 = φ−1(0).

Observe that for any k ∈ K, φ(k · s) = (k · s)r = k · (sr) = k · φ(s). Thus, by Proposition

8.34, φ is a finite morphism and hence closed. So then the image of H1 is closed in eS , and we

may conclude that H1r is closed. �

We are now in a position to describe the semi-stable elements of P = eS \{0}/K∗. Putcha’s

prior work to show that eS = eS e · R comes into play here, along with the familiar Bruhat

decomposition.

Proposition 8.36. (P)ss = {K∗r | r ∈ R}

Proof. Suppose that s ∈ R. By the preceding lemma, H1s = H1s ⊆ R ⊆ eS \{0}. By our criteria

for semi-stability, we can conclude that {K∗r | r ∈ R} ⊆ (P)ss.

Now, suppose that s < R. By Theorem 8.6, we can write s = m · r where m ∈ eS e and r ∈ R.

First observe the refinement that m ∈ eS e\H, as otherwise, m ∈ H · R = R.

Since eS e is reductive, we can pick a Borel subgroup, B, containing our T , and perform the

Bruhat decomposition. That is, we can find b, b′ ∈ B and σ ∈ R = NH(T )/T so that, m = bσb′.

Additionally, B = UT , where U is the unipotent subgroup of H. So we can find u ∈ U, t ∈ T

so b = ut and write m = utσb′ = uσtb′. However, as pointed out in 8.1 of [30], regularity
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of R means that we can write σ = e0w, where e0 ∈ E(T ) and w ∈ W = NH(T )/T . Partition

E1(T ) = F
⊔

E, where F = { f ∈ E1(T ) | e0 ≤ f } and E = E1(T )\F. As m < H, e0 , 1, so F is

nonempty.

If E is empty, then F = E1(T ) and Lemma 8.27 tells us e0 = 0 and hence m = 0. Thus,

0 ∈ H1s = {0}. Suppose that E is nonempty, and distinguish an element, f0 ∈ F.

For each k ∈ K∗, consider the tuple,
(
a f

)
f∈E1(T )

, defined by, a f = 1 for all f ∈ F\{ f0}, a f = k

for f ∈ E, and a f0 is a solution to the polynomial xq f0 −k−Σ f∈Eq f = 0 (recall our constants q f from

Proposition 8.31). Observe that Π f∈E1(T )a
q f

f = 1, so then define hk :=
(
Π f∈E1(T )α f (a f )

)
u−1 ∈ H1.

We have a map φ : K∗ → eS e given by φ(k) = hkm = hkue0σtb′ = (Π f∈Eα f (k))e0σtb′.

We see φ(K∗)m ⊆ H1m, and so, 0 = (Π f∈E f )e0 =
(
Π f∈Eα f (0))e0

)
σtb′ ∈ φ(K∗)m ⊆ φ(K∗)m

means that 0 ∈ φ(K∗)m ⊆ H1m. Thus, 0 ∈ H1s, and we conclude that s is not semi-stable. Thus

(P)ss
⊆ {K∗r | r ∈ R}.

So we may conclude that R lies above Pss as desired. �

With semistability dealt with, we move on to tackle stability.

Lemma 8.37. For s ∈ R, |{h ∈ H1 | hs = s}| < ∞.

Proof. Since s ∈ R, then there exists x, y ∈ S 1 so that e = sx and s = ey. Let h ∈ H1 be

such that hs = s. Then, h−1 = h−1e = h−1sx = h−1hsx = sx = e, and we see that h = e. So,

|{h ∈ H1 | hs = h}| = 1 < ∞. �

Proposition 8.38. (P)s = {K∗r | r ∈ R}

Proof. s ∈ eS is stable if and only if it is semi-stable, |{h ∈ H1
e | hs = h}| < ∞ and H1s

is closed. By Proposition 8.36, we know that s is semistable if and only if s ∈ R. Thus,

(P)s
⊆ {K∗r | r ∈ R}.

If s ∈ R, Lemmas 8.35, 8.37 tell us, in addition to being semistable, s is stable. Thus,

{K∗r | r ∈ R} ⊆ (P)s. So we conclude that R lies above Ps as desired. �

The preceding proofs allow us to equate the good quotient Pss/H1, which is projective, with

the geometric quotient Ps/H1. The next lemma will allow us to conclude that it is indeed the

support Xr = R/H we are describing.
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Lemma 8.39. Define the map, ψ : H1 × K∗ → H, by ψ(h, k) = hk. Then ψ is finite-to-one and

surjective.

Proof. We know that dete(hk) = kqdete(h) = kq , 0 by commutativity of Π f∈E1(T )α f (k) and

Corollary 8.32. Now, take an arbitrary element g ∈ H, having dete(g) , 0. We observe that

ψ−1(g) = {(b, b−1g) | b ∈ K∗, bq = dete(g)} is finite. �

That was the final piece that we needed, and we conclude with the answer to Renner’s

conjecture on the projectiveness of the supports.

Theorem 8.40. Any irreducible regular linear algebraic semigroup with zero has projective

supports.

Proof. Ps = R/K∗ = Pss by Propositions 8.36 and 8.38. By Theorem 8.14 there exists a good

quotient of Pss by H1 which is projective and a geometric quotient of Ps by H1. By uniqueness

of categorical quotients these two must coincide. By applying Lemma 8.39 to our geometric

quotient, (R/K∗) /H1 =
{
H1{kr | k ∈ K∗}

∣∣∣∣ r ∈ R
}
=
{
{hkr | h ∈ H1, k ∈ K∗}

∣∣∣∣ r ∈ R
}
= R/H.

This allows us to conclude that R/H is indeed projective.

A similar proof involving results analogous to the ones created in this section allows us to

prove the projectiveness of X`. Lastly we conclude that X = Xr × X` is projective. �

The following is a direct corollary coming from work by Putcha.

Corollary 8.41. Let S be an irreducible regular linear algebraic semigroup with zero. If e is

an idempotent in the maximal J -class of S then S eS = S eS = S

Proof. [24]’s Theorem 2.10 tells us that if X is projective, then S eS = S eS = L · eS e · R. As

we have just proven in Theorem 8.40, X is projective. The result follows by combining this

with Proposition 8.6 which told us that S = L · eS e · R as well. �

Corollary 8.42. Let S be an irreducible regular linear algebraic semigroup with zero. If e is

an idempotent in the maximal J -class of S . Then Je is open in S .

Proof. By Proposition 2.15, we know that Je is open in S eS . The preceding corollary tells us

that S eS = S , so Je is open in S . �
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8.5 Examples

Consider S = {a ∈ M4(K) | rk(a) ≤ 2} Since rk(ab) ≤ rk(a), rk(b) it follows that this is

indeed a semigroup with zero. In fact, as we will prove later in the following section, S is an

irreducible regular algebraic semigroup with zero, exactly the kind we are interested in. As an

idempotent with rank 2, e =



1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


is an idempotent in the maximal J -class of S . Having

chosen e we can identify the following sets,

eS = {



a11 a12 a13 a14

0 0 0 0

a31 a32 a33 a34

0 0 0 0


| ai j ∈ K} � M2×4(K)

S e = {



a11 0 a13 0

a21 0 a23 0

a31 0 a33 0

a41 0 a43 0


| ai j ∈ K} � M4×2(K)

eS e = {



a11 0 a13 0

0 0 0 0

a31 0 a33 0

0 0 0 0


| ai j ∈ K} � M2(K)

R = {



a11 a12 a13 a14

0 0 0 0

a31 a32 a33 a34

0 0 0 0


| rk(

 a11 a12 a13 a14

a31 a32 a33 a34

) = 2} � the 2 × 4 matrices with rank 2

L = {



a11 0 a13 0

a21 0 a23 0

a31 0 a33 0

a41 0 a43 0


| rk(



a11 a13

a11 a13

a31 a33

a41 a43


) = 2} � the 4 × 2 matrices with rank 2

H = {



a11 0 a13 0

0 0 0 0

a31 0 a33 0

0 0 0 0


| rk(

 a11 a13

a31 a33

) = 2} � GL2(K)

One can even take time to notice these also nicely illustrate Proposition 2.15.

It is not difficult to figure out the morphism, dete, as we have the natural embedding of

S ⊆ M4(K). So we see that dete(



a11 0 a13 0

0 0 0 0

a31 0 a33 0

0 0 0 0


) = a11a33 − a13a31. This allows us to write out the

set H1 = {



a11 0 a13 0

0 0 0 0

a31 0 a33 0

0 0 0 0


| a11a33 − a13a31 = 1} � S L2(K).

If we choose the torus T = {



a11 0 0 0

0 0 0 0

0 0 a33 0

0 0 0 0


| ai j ∈ K∗} ⊆ eS e then we can see that our corank 1

idempotents are E1(T ) = {



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


}. This leads us to the following two Renner maps:
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α

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



(k) =



k 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


and α

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0



(k) =



1 0 0 0

0 0 0 0

0 0 k 0

0 0 0 0


Finally we can see that our supports are both isomorphic to the Grassmanian variety G(2, 4),

the set of 2-dimensional subspaces of a 4-dimensional vector space which is a well-known

projective variety. With both Xr = X` = G(2, 4) we see that the support, X = G(2, 4) ×G(2, 4)

which is also projective.
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9 A New Way To Construct Regular Semigroups

The interaction between Green’s relations and regular algebraic semigroups showcased in

the previous section leads us to thinking, “are there ways to construct semigroups which imitate

the behaviour of regular semigroups when it comes to Green’s relations?” A more specific

question is, “can we create a general construction of regular semigroups, S that allow us to

specify the quasiaffine varieties Le and Re beforehand?”

9.1 Affinized Quotients

Rather than start with L -classes and R-classes we choose to start with irreducible quasi-

affine varieties, L and R, and respective algebraic group actions, L × P→ L and Q × R→ R. L

and R will stand in for Le and Re (recall Proposition 2.15) and P and Q will replace the usual

action of He. We also suppose the existence of M, an irreducible reductive monoid with zero,

which will stand in for eS e. Together we have the ingredients for a result like Theorem 8.6.

If we are trying to construct algebraic semigroups it might be prudent to consider another

well-known construction. The Rees construction for algebraic semigroups gives us a nice

subclass of the Rees matrix semigroups.

Definition 9.1. Let X and Y be varieties, and S an algebraic semigroup. Suppose there exists

a morphism φ : Y × X → S . Then we can define the Rees construction where X × S × Y is a

semigroup under the morphism (x, s, y)(x′, s′, y′) = (x, sφ(y, x′)s′, y′).

In the case where X and Y are affine, then X×S ×Y becomes a linear algebraic semigroup.

The morphism, φ acts as a matrix with rows indexed by X and columns indexed by Y .

From now on, we will suppose there is a morphism from φ : R × L → M. Using the Rees

construction, we can create a semigroup L × M × R, but unless R and L are affine, we do not

have a linear semigroup yet. This leads us to the following definition.

Definition 9.2. Let X be a variety with an algebraic group G acting on it in such a way that

O(X)G is finitely generated. We define the affinised quotient of X by G to be the affine variety,

X/a f f G = S pec
(
O(X)G

)
.
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Proposition 9.3. The affinised quotient we just introduced has the following universal property.

If Z is an affine variety and f : X → Z is a morphism which is constant on the G-orbits, then

there exists a unique morphism, f̃ : X/a f f G → Z so that the following diagram commutes

X Z

X/a f f G

f

f̃
π

Proof. The morphism f induces a map, f ∗ : O(Z) → O(X). Since f is G-invariant, it follows

that f ∗(O(Z)) ⊆ O(X)G. So we have a map, f ∗ : O(Z) → O(X)G = O(X/a f f G). By Proposition

3.5 of [11], there exists a morphism f̃ : X/a f f G → Z so that f (x) = f̃ (π(x)) for all x ∈ X. �

Proposition 9.4. Suppose that algebraic groups G and H act respectively on varieties X and

Y so that O(X)G and O(Y)H are finitely generated. Then (X × Y)/a f f (G × H) exists and is

isomorphic to (X/a f f G) × (Y/a f f H).

Proof. Observe that, O(X × Y)G×H � (O(X) ⊗ O(Y))G×H � O(X)G ⊗ O(Y)H the latter of which

is finitely generated. Thus (X × Y)/a f f (G × H) exists.

Then, O((X × Y)/a f f (G × H)) = O(X × Y)G×H = O(X)G ⊗ O(Y)H

= O(X/a f f G) ⊗ O(Y/a f f H) = O((X/a f f G) × (Y/a f f H)).

Being both affine varieties, it follows that they must be isomorphic. �

Remark 9.5. Our map π is not necessarily surjective. As is noted in [32], if we take X to be a

semisimple algebraic group and G to be its maximal unipotent subgroup then π(X) is a proper

open subset of X/a f f G.

Definition 9.6. Let L be an irreducible quasiaffine variety with algebraic group P acting on

the right. Let R be an irreducible quasiaffine variety with algebraic group Q acting on the left.

Let M be an irreducible reductive monoid with group of units H.

Suppose there exist algebraic group morphisms, γ : P → H, and δ : Q → H and that the

action P × Q on L × M × R given by (p, q) · (`,m, r) = (`p−1, γ(p)mδ(q−1), qr) makes it so that

O(L × M × R)P×Q is finitely generated. Then we define
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S(L, P,M,Q,R) = S pec
(
O(L × M × R)P×Q

)
= (L × M × R)/a f f (P × Q)

When it is understood what L, M, R, P, Q are we may reduce our notation to just S.

How does our Rees sandwich map enter into the picture? Like before, φ will let us create a

semigroup.

Proposition 9.7. Suppose there is a map φ : R× L→ M so that φ(qr, `p) = δ(q)φ(r, `)γ(p) for

all ` ∈ L, r ∈ R, p ∈ P, and q ∈ Q, and that the natural map π : L × M × R → S is surjective.

Then S is an irreducible algebraic semigroup.

Proof. That S is irreducible comes from it being the image of the irreducible variety, L×M×R.

Now, since P×Q acts on L×M×R so that S exists, Proposition 9.4 tells us S×S is the affinised

quotient of variety, (L × M × R) × (L × M × R) by algebraic group, (P × Q) × (P × Q). We

already have a notion of semigroup on L × M × R, thanks to the sandwich map, given by the

morphism µ((`1,m1, r1), (`2,m2, r2)) = (`1,m1φ(r1, `2)m2, r2).

Observe that for any `1, `2 ∈ L, m1,m2 ∈ M, r1, r2 ∈ R, p1, p2 ∈ P, and q1, q2 ∈ Q,

π ◦ µ((`1 p−1
1 , γ(p1)m1δ(q−1

1 ), q1r1), (`2 p−1
2 , γ(p2)m2δ(q−1

2 ), q2r2))

= π(`1 p−1
1 , γ(p1)m1δ(q−1

1 )φ(q1r1, `2 p−1
2 )γ(p2)m2δ(q−1

2 ), q2r2)

= π(`1 p−1
1 , γ(p1)m1δ(q−1

1 )δ(q1)φ(r1, `2)γ(p−1
2 )γ(p2)m2δ(q−1

2 ), q2r2)

= π(`1 p−1
1 , γ(p1)m1φ(r1, `2)m2δ(q−1

2 ), q2r2)

= π(`1,m1φ(r1, `2)m2, r2)

= π ◦ µ((`1,m1, r1), (`2,m2, r2)).

So it follows that π ◦ µ is (P × Q) × (P × Q) invariant, and (by Proposition 9.3) there exists

a unique morphism π̃ ◦ µ making the following diagram commute.

(L × M × R) × (L × M × R) L × M × R

S × S S

µ

π̃ ◦ µ

π × π π

By surjectivity of π this is indeed a map on all of S × S. It remains to show our morphism

is associative.
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Take elements, a, b, c ∈ S. Since π is surjective we find `a, `b, `c ∈ L, ma,mb,mc ∈ M, and

ra, rb, rc ∈ R so that π(`a,ma, ra) = a, π(`b,mb, rb) = b, and π(`c,mc, rc) = c. Then,

a(bc) = π((`a,ma, ra) ((`b,mb, rb)(`c,mc, rc)))

= π(((`a,ma, ra)(`b,mb, rb)) (`c,mc, rc)) = (ab)c

since µ is associative. �

As our goal is to discuss S as a semigroup, we will from now on assume that π is surjective

and that a morphism φ as in the statement of the proposition exists.

9.2 Constructing Semigroups With Green’s Relations

Our other goal is to see how closely we need R and L to imitate Re and Le in order to get a

result like Theorem 8.6 where Le · eS e · Re = S . In essence, our construction is an attempt at

fusion between the Rees construction and Putcha’s fantastic result, Le · eS e · Re = S .

In a further effort to emulate Theorem 8.6 we will also assume that there exists a pair

(B, A) ∈ R × L so that φ(B, A) = 1. Our φ map acts as a stand in for, (r, `) 7→ r` ∈ eS e, the

multiplication coming from L = Le, M = eS e, and R = Re. In the case we are generalising,

L = Le, M = eS e, and R = Re, such a pair is already seen to exist, by letting A = B = e.

Remark 9.8. If we know γ(P)δ(Q) = H then this is equivalent to the existence of a pair

(B, A) ∈ R × L so that φ(B, A) ∈ H.

With our pair (B, A) ∈ R × L observe that (A, 1, B) is an idempotent in L × M × R and by

extension, e := π(A, 1, B) is an idempotent in S.

Lemma 9.9. θ : M → S given by θ(m) = π(A,m, B) is a morphism of algebraic monoids and

θ(M) = eSe with θ(H) = He.

Proof. Let m,m′ ∈ M. As we have defined θ(m) = π(A,m, B) we can quickly calculate,

θ(m)θ(m′) = π(A,m, B)π(A,m′, B) = π(A,mφ(B, A)m′, B) = π(A,mm′, B) = θ(mm′). So this is

a monoid morphism. Now observe if, a ∈ eSe then there exists a tuple, (`,m, r) ∈ L × M × R

so a = π(A, 1, B)π(`,m, r)π(A, 1, B) = π(A, φ(B, `)mφ(r, A), B). We see θ(φ(B, `)mφ(r, B)) = a.

Thus, θ(M) = eSe.
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As the group of units, we know H = M. So, by continuity and the fact that θ(H) ≤ He, we

see θ(H) ⊆ He ⊆ θ(H) = θ(M) = eSe ⊆ θ(H). But then it is clear that θ(H) is a dense subgroup

of He. This implies θ(H) = He as the image of an algebraic group is a closed subgroup of the

algebraic group codomain. �

Theorem 9.10. eSe � M

Proof. Consider the morphism, ψ : L×M×R→ M given by ψ(`,m, r) = φ(B, `)mφ(r, A). This

morphism is P × Q invariant. Indeed, for p ∈ P, q ∈ Q,

ψ(`p−1, γ(p)mδ(q−1), qr) = φ(B, `p−1)γ(p)mδ(q−1)φ(qr, A)

= φ(B, `)γ(p)−1γ(p)mδ(q)−1δ(q)φ(r, A) = φ(B, `)mφ(r, A).

Then there is a unique morphism ψ̃ : S → M.

L × M × R M

S

ψ

ψ̃
π

Since ψ is surjective (ψ(A,m, B) = m) it follows that ψ̃ is also surjective. Consider the map

θ : M → S given by θ(m) = π(A,m, B). We claim θ and ψ̃ are inverses.

Consider an element, m ∈ M. Then ψ̃(θ(m)) = ψ̃(π(A,m, B)) = ψ(A,m, B) = m. Addi-

tionally, for any element s ∈ eSe we know that there exists m ∈ M so that π(A,m, B). Then

θ(ψ̃(s)) = θ(ψ̃(π(A,m, B))) = θ(ψ(A,m, B)) = θ(m) = π(A,m, B) = s.

It remains to check that these are monoid morphisms. θ is by our previous lemma, so

consider s, s′ ∈ eSe. Then there exist m,m′ so that θ(m) = s and θ(m′) = s′. And so we see

that,

ψ̃(s)ψ̃(s′) = ψ(A,m, B)ψ(A,m′, B) = φ(B, A)mφ(B, A)φ(B, A)m′φ(B, A) = φ(B, A)mm′φ(B, A)

since φ(B, A) = 1. So, φ(B, A)mm′φ(B, A) = ψ(A,mm′, B) = ψ̃(π(A,mm′, B)) = ψ̃(ss′). �

Corollary 9.11. He � H.

Proof. This is just a combination of Lemma 9.9 and Theorem 9.10. �

With our ability to identify M and eSe along with H and He, the natural question to ask is

what other identifications can we make?
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Proposition 9.12. Define the morphisms, θL : L × M → S by θL(a,m) = π(a,m, B) and

θR : M × R→ S by θR(m, b) = π(A,m, b). Then,

(1) θL(L × M) = Se

(2) θR(M × R) = eS

Proof. (1) Take any π(`,m, r) ∈ S. π(`,m, r)π(A, 1, B) = π(`,mφ(r, A), B). So θL is onto Se.

If ` ∈ L, m ∈ M, then θL(`,m) = π(`,m, B) = π(`,m, B)π(A, 1, B) ∈ Se. Thus θL’s image is

contained in Se, hence θL(L × M) = Se. (2) is done similarly. �

So this settles what Se and eS look like, but what about Le and Re? Sadly, L and R are

beginning to stray away from our original goal. That is, L and R are acting more like S e and

eS than like Le and Re.

Proposition 9.13. The following are equivalent for any ` ∈ L

(1) π(`, h, B) ∈ Le for all h ∈ H

(2) π(`, h, B) ∈ Le for some h ∈ H

(3) φ(y, `) ∈ H for some y ∈ R.

The following are equivalent for any r ∈ R

(4) π(A, h, r) ∈ Re for all h ∈ H

(5) π(A, h, r) ∈ Re for some h ∈ H

(6) φ(r, x) ∈ H for some x ∈ L.

Proof. (1)⇒ (2) is clear. Suppose that π(`, h, B) ∈ Le. Then there exists an element, π(a,m, b),

so π(a,m, b)π(`, h, B) = e. e = ee = π(A, 1, B)π(a,m, b)π(`, h, B) = π(A, φ(B, a)mφ(b, `)h, B).

By Corollary 9.11 it is clear that φ(B, a)mφ(b, `)h = 1 and it follows that φ(b, `) ∈ H.

Now let y ∈ R be such that φ(y, `) ∈ H. Consider π(`, h, B) for arbitrary fixed h ∈ H. Then

we can see the following multiplication is correct, π(A, h−1φ(y, `)−1, y)π(`, h, B) = e It is clear

that this suffices to show π(`, h, B) ∈ Le.

(4)⇒ (5)⇒ (6)⇒ (4) is proven similarly. �

Definition 9.14. We define the quasiclasses with respect to φ to be the sets,

L′ = {` ∈ L | ∃r ∈ R so that φ(r, `) ∈ H} and R′ = {r ∈ R | ∃` ∈ L so that φ(r, `) ∈ H}
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The following proposition gives a number of facts about these quasiclasses, showing how

closely they approximate the L -classes and R-classes we are trying to imitate.

Proposition 9.15.

(1) ` ∈ L′ if and only if there exists r ∈ R′ with φ(r, `) ∈ H.

(2) r ∈ R′ if and only if there exists ` ∈ L′ with φ(r, `) ∈ H.

(3) L′ × H = θ−1
L (Le) where θL is defined as in Proposition 9.12.

(4) H × R′ = θ−1
R (Re) where θR is defined as in Proposition 9.12.

(5) L′ is open in L, hence a quasiaffine variety.

(6) R′ is open in R, hence a quasiaffine variety.

(7) The action of P restricts to L′.

(8) The action of Q restricts to R′.

(9) If γ is surjective, π(L′, 1, B) = Le.

(10) If δ is surjective, π(A, 1,R′) = Re.

Proof. We will only prove the odd numbered results.

(1) This comes from considering the definition of both L′ and R′.

(3) Suppose that π(`,m, B) ∈ Le for ` ∈ L and m ∈ M. Then there exists π(a, n, b) so

π(a, n, b)π(`,m, B) = e. e = ee = π(A, 1, B)π(a, n, b)π(`,m, B) = π(A, φ(B, a)nφ(b, `)m, B). By

Corollary 9.11 it is clear that φ(B, a)nφ(b, `)m = 1 and it follows that φ(b, `) ∈ H and m ∈ H.

Thus ` ∈ L′ and m ∈ H as desired.

Conversely, suppose that ` ∈ L′ and h ∈ H. So there exists y ∈ R such that φ(y, `) ∈ H.

Then π(A, h−1φ(y, `)−1, y)π(`, h, B) = e shows that θL(L′ × H) = Le.

(5) Le is open in Se by Proposition 2.15. So then by (3) and Proposition 9.12 we see that

L′ ×H is open in L ×M. Since projection is an open map we can then conclude that L′ is open

in L. Quasiaffineness of L′ follows, as an open set of a quasiaffine variety is also quasiaffine.

(7) Suppose ` ∈ L′ and fix p ∈ P. Then there exists r ∈ R′ so that φ(r, `) ∈ H. Observe that

φ(r, `p) = φ(r, `)γ(p) ∈ H.

(9) Consider π(`,m, r) ∈ Le. As we showed in (3) we may assume r = B, m ∈ H, and

` ∈ L′. Since γ is a surjective morphism we know that there exists p ∈ P so γ(p) = m. Then

π(`,m, B) = π(`p, γ(p)−1m, B) = π(`p, 1, B). By (7), `p ∈ L′, concluding the result. �
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Our quasiclasses are now closer to Le and Re than L and R are, but they still are not quite

there. We would like something closer to Theorem 9.10, with a single isomorphism. However,

this is still a noteworthy result and leads us to a discussion of when S is regular.

Proposition 9.16. L′ × H × R′ = π−1(Je) and Je is the unique maximal J -class of S.

Proof. Suppose π(`,m, r) = j ∈ Je. Then it follows that there exist elements s, s′ ∈ S1 sat-

isfying, s js′ = e. Now, since e = eee = es js′e we may assume that s = π(A, n, y) and

s′ = π(x, n′, B). Then e = π(A, 1, B) = π(A, nφ(y, `)mφ(r, x)n′, B) = s js′. By Corollary 9.11 it

follows that φ(y, `),m, φ(r, x) ∈ H and hence ` ∈ L′, r ∈ R′. Thus, π−1(Je) ⊆ L′ × H × R′.

For the reverse, take any ` ∈ L′, h ∈ H, and r ∈ R′. There is x ∈ L′, y ∈ R′ so

φ(y, `), φ(r, x) ∈ H. e = π(A, h−1φ(y, `)−1, y)π(`, h, r)π(x, φ(r, x)−1, B) ∈ S1π(`, h, r)S1 and

π(`, h, r) = π(`, h, B)π(A, 1, B)π(A, 1, r) ∈ S1eS1. So it follows that L′ × H × R′ = π−1(Je).

It remains to show that Je is the unique maximal J -class of S. Let J ⊆ S be any other

J -class. It suffices to show that for any s ∈ J, s ∈ S 1eS 1. Let s = π(`,m, r). Then by now it

is quick to check that, π(`,m, B)π(A, 1, B)π(A, 1, r) = π(`,m, r). �

This gives us a remarkable similarity to regular semigroups, as we know they have a unique

maximal J -class. In fact, as the next theorem indicates, if we were to perform our construc-

tion with L′ and R′ in place of L and R, we would get a regular semigroup for S.

Theorem 9.17. If S(L′, P,M,Q,R′) exists, then it is regular.

Proof. Consider (a,m, b) ∈ L′ × M × R′. Let x ∈ L′ and y ∈ R′ be so that φ(b, x), φ(y, a) ∈ H.

Let n ∈ M be such that mnm = m (which exists as M is regular). Then,

(a,m, b)(x, φ(b, x)−1nφ(y, a)−1, y)(a,m, b) = (a,mφ(b, x)φ(b, x)−1nφ(y, a)−1φ(y, a)m, b),

which reduces to (a,m, b). So then L′ × M × R′ is regular. And since we are assuming that π is

surjective then S, as the image of a regular semigroup, is also regular. �

With this theorem we now see that our idempotent, e = π(A, 1, B) is shown to be an idem-

potent of the maximal J -class of our regular semigroup, which is further imitation of the

setup in [24]. This is what we have been shooting for since the start of our section. So when

does S(L′, P,M,Q,R′) exist?
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The trivial answer is: when O(L′ × M × R′)P×Q is finitely generated. Obviously we would

like a more substantial answer and one that perhaps relates to our original choice of varieties L

and R. So when does S(L, P,M,Q,R) exist?

Another naive answer would be when L and R are affine and P × Q is reductive (recall

Theorem 8.10). Suppose that L and R are affine and P×Q is reductive. When can we show that

S(L′, P,M,Q,R′) exists? And let us not forget, we will also need π to be surjective, as many of

our previous results have employed this assumption. The following section gives us a possible

direction to pursue.

9.3 Normality

Lemma 9.18. Suppose that X and Y are affine varieties, with X normal. Suppose also that X

has an open subset U, so that the subvariety X\U has codimension at least 2 in X. Then any

morphism U → Y can be uniquely extended to a morphism X → Y

Proof. Lemma 2.2 in [31]. �

Corollary 9.19. Let X be a normal affine variety with an open subset U ⊆ X, such that

codimX(X\U) ≥ 2. Then O(U) � O(X).

Proof. This is another application of Proposition 3.5 from [11]. �

Proposition 9.20. Suppose that X is a normal affine variety. Let U be an open subset with

codimX(X\U) ≥ 2 and an algebraic group G acting on it. Then,

(1) the action of G on U extends uniquely to an action on X

(2) if X/a f f G exists then so does U/a f f G and U/a f f G = X/a f f G.

Proof. (1) Algebraic groups are known to be normal and by applying Theorem 2.21, G × X

is also seen to be normal. Now, since we have assumed that codimX(X\U) ≥ 2 it follows

that codimG×X(G × X\G × U) = codimG×X(G × (X\U)) = codimX(X\U) ≥ 2. Our action of

σ : G × U → U → X can then be extended uniquely to a morphism σ : G × X → X.

It remains to show that G × X → X is a group action. Consider the morphism x 7→ σ(1, x).

Restricted to U we see that this map must be the inclusion map U → X. By normality of X and



136 Section 9. A NewWay To Construct Regular Semigroups

codimension of X\U this extends uniquely to a map X → X, namely idX. But by uniqueness,

since x 7→ σ(1, x) also extends the inclusion map we see that σ(1, x) = x.

Take any two elements g, h ∈ G. Then g : X → X and h : X → X are given by x 7→ σ(g, x)

and x 7→ σ(h, x) respectively. Consider as well, the map gh : X → X given by x 7→ σ(gh, x)

Another uniqueness of the extension argument shows us that indeed σ(g, σ(h, x)) = σ(gh, x).

(2) By Corollary 9.19, U/a f f G = S pec
(
O(U)G

)
� S pec

(
O(X)G

)
= X/a f f G. �

Proposition 9.21. Suppose we assume that L and R are affine and also that L × M × R is a

normal variety. As well, suppose codimL(L\L′), codimR(R\R′) ≥ 2. Then if S(L, P,M,Q,R)

exists, S(L′, P,M,Q,R′) will also exist and S(L′, P,M,Q,R′) � S(L, P,M,Q,R).

Proof. We already know, from Proposition 9.15, that L′×M×R′ is open in L×M×R. It is not

difficult to conclude from our conditions that codimL×M×R(L × M × R\L′ × M × R′) ≥ 2. Then

X = L × M × R, U = L′ × M × R′, and G = P × Q satisfies the conditions of Proposition 9.20.

So S(L, P,M,Q,R) = X/a f f G � U/a f f G = S(L′, P,M,Q,R′) as desired. �

Our hope is that if we start with a regular semigroup S and choose the L - and R-classes of

e, an idempotent in the maximal J -class, then S(Le,He, eS e,He,Re) � S . Let us investigate

this now.

Lemma 9.22. Let ψ : X → Y be a surjective birational morphism of irreducible affine varieties

and suppose that Y is normal. Then ψ is in fact an isomorphism.

Proof. This result is exactly Lemma 2.1 in [15]. �

The following theorem shows us that when we begin with the case described in [24] (a

normal irreducible semigroup with zero) and apply this process we get the same semigroup as

our output.

Theorem 9.23. Suppose that S is an irreducible, regular, normal, affine semigroup with zero.

Let e ∈ E(S ) be an idempotent in the unique maximal J -class of S .

Then S = S(S e,He, eS e,He, eS ).

Proof. Since S is affine it follows that S e, eS e, and eS are, and thus so is S e × eS e × eS .

Since S is regular and has a zero, eS e is regular and has a zero. Thus, eS e is a reductive
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monoid, and it follows that He is a reductive group, as is He × He. So we may conclude

that S e × eS e × eS/a f f He × He is a good quotient, and so it follows that the natural map,

π : S e × eS e × eS → S e × eS e × eS/a f f He × He is surjective.

Consider the morphism f : S e×eS e×eS → S given by f (`, h, r) = `hr. A consequence of

Theorem 8.6 is that f is surjective. By the universal property of affinised quotients there exists

a unique morphism f̃ making the following diagram commute.

S e × eS e × eS S

S

f

f̃
π

The morphism f̃ is surjective since f is. Now, by applying Theorem 2.16 we can see that

Je = f (Le,He,Re) = f̃ ◦ π(Le,He,Re). Consider x ∈ f̃ −1(Je). Then since π is surjective there

exists (`, h, r) ∈ S e × eS e × eS so that π(`, h, r) = x. But then `hr = f̃ (x) ∈ Je and since Je is

maximum this implies h ∈ He, ` ∈ Le, and r ∈ Re. Thus, f̃ −1(Je) = π(Le × He × Re).

Now, suppose that f̃ (π(`, h, r)) = f̃ (π(`′, h′, r′)). Then `hr = `′h′r′ ∈ Je. So by using

Theorem 2.16 we conclude they are in the same He×He orbit, and hence π(`, h, r) = π(`′, h′, r′).

Thus f̃ restricted to π(Le × He × Re) is injective.

So we see that f̃ is an isomorphism from π(Le ×He ×Re) to Je. Since Je is open in S (recall

Corollary 8.42) we see that f̃ −1(Je) = π(Le × He × Re) must also be open. So f̃ is a surjective

morphism which is an isomorphism between two open sets. In other words it is a birational

morphism. By Lemma 9.22, since S is normal, it follows that f̃ is an isomorphism. �

Corollary 9.24. Let S be a normal irreducible regular algebraic semigroup with zero. Let

e ∈ E(S ) be an idempotent in the unique maximal J -class of S . If S e, eS e, and eS are

normal varieties, codimS e(S e\Le) ≥ 2 and codimeS (eS \Re) ≥ 2, then S(Le,He, eS e,He,Re)

exists and is isomorphic to S .

Proof. By Theorem 9.23 above we know that S(S e,He, eS e,He, eS ) exists and also satisfies,

S(S e,He, eS e,He, eS ) � S . So it suffices to show that the conditions of Proposition 9.21 are

satisfied. By our assumptions in the statement of this corollary it remains only to show that for

φ : eS × S e→ eS e given by φ(r, `) = r`, Le = (S e)′ and Re = (eS )′.
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Suppose ` ∈ Le. Then there exists y ∈ S so that y` = e. But then e = ee = ey` = (ey)`, so

we may assume that y ∈ eS . Thus ` ∈ (S e)′. Suppose that ` ∈ (S e)′. Since ` ∈ S e we can see

that there exists x ∈ S so that xe = ` (namely, x = `). By definition of (S e)′ there exists y ∈ eS

so that y` = e. So it follows that ` ∈ Le. Thus Le = (S e)′.

Re = (eS )′ is shown similarly, completing the proof. �

So we have almost shown S � S(Le,He, eS e,He,Re). Unfortunately, we had to make some

normality and dimension assumptions, which leads us to the following question, which we will

not pursue in the remainder of this paper.

Question 9.25. Is S � S(Le,He, eS e,He,Re) for all irreducible regular algebraic semigroups

with zero, S ?

One can also wonder whether the normality conditions can be simplified. It seems that, as

retracts of S , the normality of eS , S e, and eS e should follow. However, such a result (if true) is

currently elusive. As such, we are left to ponder the necessity of all the normality assumptions

of Corollary 9.24.

We will showcase two examples here, with the first one leading into our next discussion.

Example 9.26. Our first example is very similar to the example which came at the very end of

Section 8. Consider the determinantal variety, S = {the matrices of rank ≤ 2 in M3(K)}, and

let e =


1 0 0

0 1 0

0 0 0

. Let us observe that S e = {


a11 a12 0

a21 a22 0

a31 a32 0

 | ai j ∈ K} and eS = {


a11 a12 a13

a21 a22 a23

0 0 0

 | ai j ∈ K}, so

S e � eS � K6. Likewise eS e = {


a11 a12 0

a21 a22 0

0 0 0

 | ai j ∈ K} � K4, so S e, eS e, and eS are all normal.

S is also normal (since determinantal rings are Cohen-Macaulay, [12], and hence normal)

so by Corollary 9.24 it remains to show Re, Le satisfy the codimension 2 condition. We can

see that, Re = {A ∈ eS | rk(A) = 2}. So it follows that eS \Re is the set of all matrices in eS

which rank 0 or 1. We see eS \Re = {


ka kb kc

a b c

0 0 0

 | a, b, c, k ∈ K} ∪ {


a b c

ka kb kc

0 0 0

 | a, b, c, k ∈ K} which

has dimension 4. Hence, codimeS (eS \Re) = 2, likewise for the codimension of Le in S e. Thus

S(Le,He, eS e,He,Re) exists and is isomorphic to the matrices of rank 2 or less.

Example 9.27. The second example shows that we need not take P = Q = H. Consider the

same S and e as the last example. Let P = C`
GL3(K)(e), Q = Cr

GL3(K)(e). We can quickly see that
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maps γ : P→ He given by x 7→ ex and δ : Q→ He given by x 7→ xe are surjective. Along with

φ : eS × S e→ eS e given by (r, `) 7→ r` they satisfy all the conditions for Definition 9.6.

Now, for f ∈ O(S e× eS e× eS )P×Q we see that for any (`,m, r) ∈ S e× eS e× eS and p ∈ P,

q ∈ Q, f (`,m, r) = f (`p−1, epmq−1e, qr) = f (`ep−1, epmq−1e, qer) = f (`g−1, gmh−1, hr) for

g = ep, h = qe ∈ He. So f ∈ O(S e × eS e × eS )He×He since γ, δ are surjective. Likewise we can

show the reverse containment, O(S e × eS e × eS )He×He ⊆ O(S e × eS e × eS )P×Q. It follows that

O(S e × eS e × eS )P×Q = O(S e × eS e × eS )He×He the latter of which is finitely generated since

He is reductive. So it follows that S(S e,C`
G(e), eS e,Cr

G(e), eS ) exists.

In fact, we can generalise the former example. Let us take a look at a broader example of

Corollary 9.24 in action, as we apply it to normal determinantal varieties.

9.4 Determinantal Varieties

In algebraic geometry, determinantal varieties are spaces of matrices which have an upper

bound on their ranks. Their significance comes from the fact that many examples in algebraic

geometry are of this form, such as the Segre embedding of a product of two projective spaces.

For our purposes, the usual notion of determinantal variety takes the form,

Dn,r = {A ∈ Mn(K) | rank(A) ≤ r}

However, they can also be written in a different manner,

Dn,r = GLn(K)
 Ir 0

0 0

GLn(K)

Of course,
 Ir 0

0 0

 can be replaced by any rank r matrix, but it is the fact that
 Ir 0

0 0

 is an

idempotent which draws our attention and allows us to make a generalisation.

Definition 9.28. A (generalised) determinantal variety is an algebraic variety of the form

DM,e = GeG for some e ∈ E(M), where M is an irreducible reductive algebraic monoid with

zero and G is its group of units.

Proposition 9.29. Fix a cross sectional lattice, Λ, containing e then, DM,e =
⊔

f≤e, f∈ΛG fG

Proof. This is an immediate consequence of Corollary 4.11. �

Proposition 9.30. DM,e is an irreducible regular algebraic semigroups with zero.
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Proof. Since M has a zero and 0 ≤ e, 0 ∈ G0G ⊆ GeG. Since G is irreducible it follows that

GeG is irreducible and so GeG is irreducible.

For any elements, x, y ∈ DM,e, Jxy ≤ Jx, Jy (J -classes in M). By Proposition 9.29, DM,e is

a union of all J -classes in M below Je = GeG. x ∈ DM,e implies Jx ⊆ DM,e. Since Jxy ≤ Jx

we then see Jxy ⊆ DM,e. Hence xy ∈ DM,e, making it a semigroup.

For any x ∈ DM,e ⊆ M we can find y ∈ M so that xyx = x. Then x(yxy)x = x and

yxy ∈ Jyxy ≤ Jxy ≤ Jx ≤ Je, since x ∈ DM,e. This shows us that DM,e is also regular. �

One of the advantages of determinantal varieties is that no matter our choice of idempotent,

e, the T -class of e in DM,e is the same as the T -class of e in M. This is the content of the

following proposition.

Proposition 9.31. For any irreducible reductive monoid with zero, M, a given idempotent,

e ∈ E(M) and any idempotent, f ≤ e,

(1) The J -class of f in DM,e is G fG

(2) The L -class of f in DM,e is G f

(3) The R-class of f in DM,e is fG

(4) The H -class of f in DM,e is G f ∩ fG

Proof. (1) As a consequence of Proposition 9.29 G fG ⊆ DM,e. For any g f h ∈ G fG we can

see that g f 1, 1 f h, 1 f g−1, h−1 f 1 ∈ G fG ⊆ DM,e. So then, g f h = g f f f h = g f 1 f 1 f h and

f = f f f = 1 f g−1g f hh−1 f 1. So f J g f h. Thus, G fG ⊆ J f . Since DM,e is a submonoid of M

we can see that J f ⊆ G fG, which completes the result.

(2) The proof is similar for R f , so we will just show L f . Since G f is the L -class of f in

M, and G f ⊆ G fG ⊆ GeG = DM,e it follows that L f ⊆ G f . Suppose that x ∈ G f . Then we

can find g ∈ G so x = g f . Observe that f g−1 ∈ fG ⊆ DM,e, so f = ( f g−1)x and x = x f . Thus,

x ∈ L f and our result is concluded.

(4) follows from the L and R cases. �

Corollary 9.32. GeG is the maximal J -class of DM,e.

Proof. By Proposition 9.31 (1) we see GeG is a J -class of DM,e. Since DM,e =
⋃

f≤e G fG is

is clear that every other J -class of DM,e is of the form G fG for some idempotent f ≤ e. But

then G fG ⊆ GeG, hence GeG is maximal. �
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This next proposition gives an alternate definition for determinantal varieties and also de-

scribes some of the subsemigroups of DM,e.

Proposition 9.33. For any irreducible reductive monoid with zero, M, a given idempotent,

e ∈ E(M) and any idempotent, f ≤ e,

(1) DM,e = MeM

(2) DM,e f = M f

(3) fDM,e = f M

Proof. (1) Since M is a monoid, MeM consists of exactly the J -classes, J′ with J′ ≤ Je. But,

by the definition of the cross-sectional lattice, there exists f ∈ Λ so that J′ = J f , and J f ≤ Je

implies f ≤ e. Thus MeM ⊆
⊔

f≤e, f∈Λ J f But for any idempotent f ≤ e, we know e f = f , and

so J f = G fG ⊆ M f M = Me( f M) ⊆ MeM and so by Proposition 9.29, MeM ⊇
⊔

f≤e, f∈Λ J f .

Thus MeM = GeG = DM,e.

(2) Since f ≤ e if and only if f e = f = e f the general statement will follow from showing

DM,ee = Me. By (1) we know that DM,ee = MeMe. But Me is a subsemigroup of M, so it

follows that DM,ee = MeMe = Me.

(3) can be shown similarly to (2). �

To showcase determinantal varieties as an example of our semigroup construction, we will

need to show that codimeM(eM\eG), codimMe(Me\Ge) ≥ 2. To do this we will need some

combinatorial facts coming from the Bruhat decomposition for reductive monoids.

We would like to know if S(Le,He, eDM,ee,He,Re) exists, so we will rely on Corollary 9.24.

The codimension 2 condition is unlike anything we have seen before in this paper, so can be

difficult to get a handle on. Fortunately, Putcha’s paper, [24], already contains a structure that

will let us tackle this condition.

Definition 9.34. Let S be a regular irreducible algebraic semigroup. For any e′, e′′ ∈ E(S )

and J -class J′ ∈ U(S ) define e′ ? J′ to be e′S ∩ J′, J′ ? e′′ to be S e′′ ∩ J′, and e′ ? J′ ? e′′

to be e′S e′′ ∩ J′.

Lemma 9.35. Let S be a regular irreducible algebraic semigroup. Let e be an idempotent in

its maximal J -classes, J. Let R, L, and H be the respective classes associated to e. For an

idempotent e′ ∈ E(S ) and J -class J′ ∈ U(S ), with e′ ∈ E(J′) and e′ ≤ e,
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(1) e ? J′ = He′R

(2) J′ ? e = Le′H

Proof. We will just prove (1) as (2) is achieved similarly. This whole result is an application

of Lemma 3.1 from [24]. By (i) of Lemma 3.1, e ? J′ = (He′)(e′ ? J′). (iv) tells us that

e′ ? J′ = e′R. By combining these two results, we conclude,

e ? J′ = (He′)(e′ ? J′) = (He′)(e′R) = He′R. �

In fact, Lemma 3.1 of [24] gives us a couple of formulas to compute the dimension of

e′ ? J′′, which we will not need in this paper, but which can be of great use to anyone who

wants to show the codimension 2 condition for situations other than determinantal varieties.

Proposition 9.36. Suppose that e′ ≤ e ∈ Λ. Then e ? Je′ = Pλ(e)e′G.

Proof. By Lemma 9.35, e ? Je′ = He′R, where H = He and R = Re. By recalling Section 4.2

of [30], we note that Pλ(e) = {x ∈ G | xe = exe} and it quickly follows that, H = Pλ(e)e and

Proposition 9.31 tells us, R = eG. Combining these results we see, He′R = Pλ(e)ee′eG. Since

e′ ≤ e we can see that ee′e = e′. Thus e ? Je′ = Pλ(e)e′G. �

A similar statement can be made about Je′ ? e, but it will involve the standard parabolic

subgroups relative to B−, rather than B. In what follows, similar statements can be made about

Je′ ? e, but one will need to make them involving the Bruhat order, the parabolic subgroups,

and cross sectional lattices, with respect to B− rather than B. Notice that this will end up being

acceptable as B−,T produce the same Renner monoid, only the Bruhat order really changes.

Corollary 9.37. e ? Je′ is an irreducible variety.

Proof. This comes to us by way of Corollary 7.8, since Proposition 9.36 now tells us that e?Je′

is a fat J λ(e),S -class �

Corollary 9.38. dim(eS \Re) = max{dim(e ? J′) | J′ ∈ U(S ), J′ < Je}

Proof. Notice that eS = S ∩ eS = (
⊔

J′∈U(S ) J′) ∩ eS =
⊔

J′∈U(S )(J′ ∩ eS ) =
⊔

J′∈U(S )(e ? J′).

We can see eS \Re = S e\e ? Je (by Lemma 9.35), so it follows, eS \Re =
⊔

J′∈U(S )\{Je}
e ? J′.

Since Je is the maximum element of the lattice,U(S ), we see eS \Re =
⊔

J′<Je
(e ? J′).
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Thus we see eS \Re is a finite disjoint union of irreducible subvarieties, so from the defini-

tion of dimension (as the maximum dimension of the irreducible components of the variety),

dim(eS \Re) = max{dim(e ? J′) | J′ ∈ U(S ), J′ < Je} as desired. �

Corollary 9.39. Bw0(λ(e))e′B = e ? Je′

Proof. By Proposition 9.36, e? Je′ = Pλ(e)e′G. So it follows that Bde′
J λ(e),S

e B is dense in e? Je′ .

To finish the proof, it remains to show that de′
J λ(e),S

e = w0(λ(e))e′.

It is clear that w0(λ(e))e′L λ(e)e′, and hence w0(λ(e))e′ ∈ Jλ(e),S
e′ . We can see that w0(λ(e))e′ ∈

w0(λ(e))Λ ⊆ w0(λ(e))GJ ⊆ w0(λ(e))GJλ(e). Multiplying by w0, w0(λ(e))e′w0 = w0(λ(e))w0 f ′

where f ′ = w0e′w0 ∈ Λ
−. By Corollary 5.19 we have w0(λ(e))w0 f ′ = w0w0(λ( f )) f ′. And so

from there it follows that w0w0(λ( f )) f ′ = wλ( f )
0 w0(λ( f ))w0(λ( f )) f ′ = wλ( f )

0 f ′ = wλ( f )∪λ∗( f ′)
0 f ′.

Now, we can see, λ( f ′) = λ∗( f ′) ∪ λ∗( f ′) which is a subset of λ∗( f ) ∪ λ∗( f ′), since f ′ ≤ f .

Thus, λ( f ′) ⊆ λ( f ) ∪ λ∗( f ′) and it follows that w0(λ(e))e′w0 ∈ JG. Thus, w0(λ(e))e′ ∈ JGw0.

By Theorem 7.18 it follows that de′
J λ(e),S

e = w0(λ(e))e′. �

With the dense B× B orbit of e? Je′ identified we are in position to tackle the codimension

2 condition. We just need the following lemma which follows from work in [2].

Lemma 9.40. Suppose that I ( J ⊆ S . Then,

(1) Jw0 <
Iw0

(2) wJ
0 < wI

0

Proof. By Proposition 5.10, Jw0 ∈
JW ⊆IW . Since Iw0 is the maximum of IW it suffices to

show Jw0 ,
Iw0. By Proposition 2.4.4 in [2], `(Iw0) + `(w0(I)) = `(w0) = `(Jw0) + `(w0(J)).

By Corollary 1.4.8(ii) in [2], I , J implies w0(J) , w0(I). But since I ( J, w0(I) ≤ w0(J).

From here we conclude that `(w0(I)) < `(w0(J)). Hence, `(Iw0) > `(Jw0) and from there we

conclude (1). (2) is done similarly. �

Theorem 9.41. Let M be an irreducible reductive algebraic monoid with zero, with group of

units, G, and let e ∈ Λ (a cross sectional lattice). Suppose that for all e′ ∈ Λ covered by e, we

have λ∗(e) ( λ∗(e′). Then codimeDM,e(eDM,e\Re) ≥ 2.
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Proof. By Corollary 9.38, codimeDM,e(eDM,e\Re) = max{dim(e ? Je′) | e′ < e, e′ ∈ Λ}. For any

variety, X, dimX = dimX. So it follows by applying Proposition 9.36 and Corollary 9.39,

codimeDM,e(eDM,e\Re) = max{dim(Pλ(e)e′G) | e′ < e, e′ ∈ Λ}

= max{dim(Pλ(e)e′G) | e′ < e, e′ ∈ Λ}

= max{dim(Bw0(λ(e))e′B) | e′ < e, e′ ∈ Λ}

Observe that Bw0(λ(e))eB = Pλ(e)eG = eG = eM = eDM,e. Suppose there exists, r ∈ R, so

that w0(λ(e))e′ < r < w0(λ(e))e. Then, Bw0(λ(e))e′B ( BrB ( Bw0(λ(e))eB = eDM,e. Thus, at

the level of dimensions, dimBw0(λ(e))e′B < dimBrB < dimBw0(λ(e))eB = dimeDM,e. Then it

follows that, dim(e ? Je′) ≤ dim(eDM,e) − 2. So to show codimeDM,e(eDM,e\Re) ≥ 2 it suffices to

show for each e′ ∈ Λ, e′ < e, there exists r ∈ R so that w0(λ(e))e′ < r < w0(λ(e))e.

First notice that if e does not cover e′ then we can find e′′ ∈ Λ so that e′ < e′′ < e and hence

de′
J λ(e),S

e < de′′
J λ(e),S

e < de
J λ(e),S

e . We need only show that such an r exists for e′ covered by e.

Written in standard form, de
J λ(e),S

e = w0(λ(e))λ∗(e)e and de′
J λ(e),S

e = w0(λ(e))λ∗(e
′)e′. Consider

r = minw0(λ(e))λ∗(e′)e′ Jw0(λ(e))λ∗(e)e. Recalling Theorem 6.37, we know can write r in standard form,

r = xey−1 with y ∈ D(e) such that there exists element, z ∈ W(e), with zy−1 = w0(λ∗(e′)) and

x = min{w0(λ(e))λ∗(e
′)c | c ∈ W, c ≤ z}.

Now, regardless of z, 1 ≤ z, and so x ≤ w0(λ(e))λ∗(e
′)1 = w0(λ(e))λ∗(e

′). By assumption,

λ∗(e) ( λ∗(e′), so by Lemma 9.40, x ≤ w0(λ(e))λ∗(e
′) < w0(λ(e))λ∗(e). Since both r = xey−1 and

w0(λ(e))λ∗(e)e are in standard form, yet different we can conclude that r , de
J λ(e),S

e and hence

w0(λ(e))e′ < r < w0(λ(e))e as desired. �

Recall that although our last few results have been strictly stated in terms of the the right

side (i.e. involving Re, Pλ(e)rG, eM) there are analogues to each statement on the left side, but

involving dense orbits of B− × B− and the corresponding ‘opposite’ Bruhat order on R. So

by analogy, we have also proven the statement, Let M be an irreducible reductive algebraic

monoid with zero, with group of units, G, and let e ∈ Λ (a cross sectional lattice). Suppose that

for all e′ ∈ Λ covered by e, we have λ∗(e) ( λ∗(e′). Then codimDM,ee(DM,ee\Le) ≥ 2.

Before we see the fruits of the theorem, let us note this condition does not always hold.

Example 9.42. Consider the n × n matrices, Mn(K). If we let e = 1 then DMn(K),1 = Mn(K).

Take the idempotent, e′ =
 In−1 0

0 0

. Then with respect to the simple reflections, S , obtained with
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the usual Borel subgroup of invertible upper triangular matrices, λ∗(1) = λ∗(e′) = ∅. As a

result, our theorem cannot be directly applied to this situation.

Corollary 9.43. If DM,e, DM,ee, DM,ee, and eDM,ee are normal and for all e′ ∈ Λ covered by e,

we have λ∗(e) ( λ∗(e′), then GeG = S(Ge,He, eMe,He, eG).

Proof. By Proposition 9.30 we know that DM,e is an irreducible regular algebraic semigroup

with zero. We have also shown that e is belongs to the maximal J -class of DM,e (Corollary

9.32). Furthermore, we have by assumption that DM,e, DM,ee, DM,ee, and eDM,ee are normal.

By Corollary 9.24 it suffices to show that the conditions codimeDM,e(eDM,e\Re) ≥ 2 and

codimDM,ee(DM,ee\Le) ≥ 2 are satisfied. But these are satisfied by Theorem 9.41 and its analo-

gous statement for Le which we have already remarked on. From here the result follows. �

Example 9.44. Let n > 2 and consider M = Mn(K) with the usual Borel subgroup of invertible

upper triangular matrices. If we fix a nontrivial idempotent of the cross sectional lattice given

to us by B, 0 < e < 1, e ∈ Λ, we can say that e =
 Ir 0

0 0

 for some 0 < r < n. Since n > 2 and

0 < r < n we compute λ∗(
 Ir 0

0 0

) = {(r r + 1), (r + 1 r + 2), · · · , (n − 1 n)}.

Suppose e′ ∈ Λ is covered by e. Then e′ =
 Ir−1 0

0 0

, and just as above it is not hard to compute

that λ∗(
 Ir−1 0

0 0

) = {(r − 1 r), (r r + 1), · · · , (n − 1 n)}. It is clear (r − 1 r) ∈ λ∗(
 Ir−1 0

0 0

)\λ∗(
 Ir 0

0 0

).
Now observe that,

DM,ee = Mn(K)
 Ir−1 0

0 0

= all n × n matrices with the right n − r rows all zero � Knr

eDM,e =
 Ir−1 0

0 0

Mn(K)= all n × n matrices with the bottom n − r rows all zero � Knr

eDM,ee =
 Ir−1 0

0 0

Mn(K)
 Ir−1 0

0 0

� Mr(K) � Kr2

are all normal varieties as they are each isomorphic to affine space. Lastly, recall from our

motivation that, DM,e = {all matrices of rank ≤ r} which is known to be a normal variety [12].

Since the requirements of Corollary 9.43 are satisfied we may conclude that,

DM,e � S(GLn(K)e,GLr(K),Mr(K),GLr(K), eGLn(K)).

It is entirely possible that all determinantal varieties (as defined in Definition 9.28) are

normal (perhaps even Cohen-Macaulay) in which case this result would hold in a much broader

sense.
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10 Concluding Remarks

It was quite unexpected that the absolute maxima elements of our parabolic Green’s rela-

tions (which was constructed as a purely combinatorial generalisation of Green’s relations in

R) was able to answer a deep geometric problem (the codimension 2 condition of Theorem

9.41).

There is the sense that the surface has not even been scratched on the possible use of

maximal and minimal elements. Indeed, the entire theory presented here still has some gaps.

We take the time to reiterate these unanswered questions and conjectures of this paper.

The first open question was born from the general nonexistence of relative maxima of

J -classes. This problem was also encountered with our parabolic relations, with the added

wrinkle that now minr JI,J
s and maxsJI,J

r were both nonexistent.

Question. Let K− ⊆ I− ⊆ S , K+ ⊆ I+ ⊆ S , L− ⊆ J− ⊆ S , L+ ⊆ J+ ⊆ S be sets of simple

reflections such that WI∗ = WK∗ ×WI∗\K∗ = WI∗\K∗ ×WK∗ and WJ∗ = WL∗ ×WJ∗\L∗ = WJ∗\L∗ ×WL∗

for all sets ∗ = + or −. Suppose also that L∗ ⊆ K∗ and I∗\K∗ ⊆ J∗\L∗ for all ∗ = + or − and

that w0WH+w0 = WH− for all H = I, J,K, L, I\K and J\L. For elements, σ− ∈ I−W, τ− ∈ J−W,

σ+ ∈ W I+ , τ+ ∈ W J+ , and τ0 ∈
L−W ∩WJ−w0WJ+∩WL+ , define the set,

A =
{
σ0 ∈

K−W ∩ (WI−w0WI+)∩WK+
∣∣∣∣ ∃w− ∈ WK−WJ−\L− ,∃w+ ∈ WJ+\L+WK+ so that

w−τ− ≤ σ−, σ0 ≤ w−τ0w+ and τ+w+ ≤ σ+

}
Is it true that if A , ∅, then A is a directed set (a preorder where every pair of elements has

an upper bound) with regards to the Bruhat order, ≤?

The following conjecture and question concern geometric (Borel subgroup-centric) defini-

tions for our generalised sets, OI,J, GJ I , JGJ, and N I,J.

Conjecture. Let I, J ⊆ S and r ∈ R.

(1) r ∈ GJ I if and only if (B ∩ LI)r ⊆ rB if and only if (B ∩ LI)rB = rB

(2) r ∈ JGJ if and only if r(B ∩ LJ) ⊆ Br if and only if Br(B ∩ LJ) = Br

(3) r ∈ N I,J if and only if (B ∩ LI)r(B ∩ LJ) ⊆ Br ∩ rB

Question. For a given I, J ⊆ S , can we find a definition for OI,J that is similar to that given by

Definition 3.10 in Section 3?
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Although our later theory of relative maxima and minima allowed us to answer the ex-

istence of the absolute maxima and minima for any H I,J-class, it remains to describe these

elements in a meaningful way. As we noted, the set OI,J is the most likely candidate, however

a proof proves elusive for now.

Conjecture. For any r ∈ R and any I, J ⊆ S ,

(1) r = br
H I,J

c if and only if r ∈ OI,J.

(2) r = dr
H I,J

e if and only if r ∈ w0(I)OI,J = OI,Jw0(J).

Our final open question’s positive answer would add a lot of meaning to our exciting new

construction of irreducible regular algebraic semigroups with zero. At the moment our stum-

bling block is that the only affirmative answers rely on conditions of normality which are not

presently bypassable.

Question. Is S � S(Le,He, eS e,He,Re) for all irreducible regular algebraic semigroups with

zero, S ?

As we can see, the bulk of the outstanding results and questions come from our new

parabolic Green’s relations. As a new concept this is understandable, and hopefully sufficient

use of these concepts has been demonstrated in this paper to warrant their further study. In-

deed, for both the combinatorial investigations of the Renner monoid and the Green’s building

constructions there appear to be many possibilities for subsequent investigation.
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Appendix

A.1 Results From Other Sources

Proposition A.1. Let S be a regular semigroup. Suppose that a ∈ S and a = a1a2 · · · ak. Then

aJ ai for all i if and only if we can find e1, e2, · · · ek−1 ∈ E(S ) so that aiL eiRai+1 for all

1 ≤ i ≤ k − 1.

Proof. The case for k = 2 follows from [20] Theorem 1.4(vi). Now suppose k ≥ 3. Suppose

that aJ ai. For any i, S aS ⊆ S aiai+1S ⊆ S aiS = S ai+1S = S aS so aiai+1J aiJ ai+1. By the

k = 2 case we than see that there must also exist ei so that aiL eiRai+1.

For the reverse direction, suppose that such e1, e2, · · · ek−1 ∈ E(S ) exist. Then we can see

that S a1a2 = S e1a2 = S a2 = S e2, so a1a2L e2Ra3 and so by induction, aJ a1a2, aJ ai for

all i ≥ 3. We conclude by noting that a1a2J a1J a2 (by the existance of e1), which shows that

aJ a1a2J a1J a2. �

Proposition A.2. For any idempotent e ∈ E(R), we get the following, eBe ⊆ eB and eBe ⊆ Be.

Proof. Putcha notes in Corollary 7.2(ii) of his book ([20]), for any e ∈ E(B), eBe = eCB(e),

where CB(e) is the centralizer, {g ∈ B | eg = ge}. From there we see eBe = eCB(e) ⊆ eB. Since

this subgroup commutes with e we also have, eBe = CB(e)e and may conclude eBe ⊆ Be. �

Theorem A.3. Suppose that X is an irreducible variety. Then, if we can decompose X into a

finite disjoint union of subvarieties X = X1 t X2 t · · · t Xm, then there exists a unique i with

1 ≤ i ≤ m so that Xi is open and dense in X.

Proof. We can see that X = X =
⊔m

i=1 Xi =
⋃m

i=1 Xi since it is a finite union. Suppose that none

of the Xi = X, then X = X1 ∪
⊔m

i=2 Xi, both closed sets, which gives us a contradiction to the

irreducibility of X. Thus there exists an i so that Xi = X. It follows that dim(Xi) = dim(X). By

Proposition 14.1.6(iv) of [35], since X is irreducible Xi must be open.

To see that i is unique, suppose there is another, X j. It must also be open, so being dense

sets, Xi ∩ X j , ∅, contradicting our assumption of disjointness. �

Proposition A.4. Suppose that an irreducible algebraic group, G, acts on a variety, X. Then

for any element x ∈ X, the orbit Gx is an irreducible subvariety of X.
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Proof. Since G is irreducible and {x} is a singleton set (hence irreducible) we can see that

G × {x} is an irreducible variety. So its image under the morphism of our group action must be

irreducible. But this image is exactly Gx ⊆ X. Thus Gx is an irreducible subvariety of X. �

Lemma A.5. The nonzero multiplicative single-variable polynomials are monic monomials.

Proof. Let p(x) = anxn+an−1xn−1+ · · ·+a1x+a0 with coefficients in K, and particularly, an , 0.

Suppose that p is multiplicative. Then p(x)p(y) = p(xy). Expanding we see that,

a2
nxnyn + anan−1xnyn−1 + an−1anxn−1yn + a2

n−1xn−1yn−1 + · · · + a1a0x + a0a1y + a2
0

= anxnyn + · · · + a1xy + a0

Comparing coefficients we can derive the following conditions on the coefficients, anan−1 = 0,

anan−2 = 0, anan−3 = 0, · · · , ana0 = 0. By assumption, an , 0, so an−1 = an−2 = · · · = a0 = 0.

This simplifies the equation to,

a2
nxnyn = anxnyn

Thus, a2
n = an and we can conclude that an = 1, yielding p(x) = xn, a monic monomial. �

A.2 Opposite Standard Form

In this part of the appendix, we will lay out a number of results that are similar to those

given at the start of [17]. Ultimately, these will culminate in our proof of Theorem 5.33, as

Theorem A.9.

Lemma A.6.

(1) If e, f ∈ Λ and e ≤ f then W(e) = W∗(e) (W(e) ∩W( f )).

(2) If e, f ∈ Λ− and e ≤ f then W(e) = (W(e) ∩W( f )) W∗(e).

Proof. (1) is noted in [17] and is included for a sense of completeness. Now, to prove (2)

recall that, by Proposition 5.21, W∗(e) ⊆ W∗( f ), since e ≤ f . Proposition 5.23 tells us that

W(e) = W∗(e)W∗(e). Since W∗(e) ⊆ W(e) and W∗(e) ⊆ W∗( f ) ⊆ W( f ), we can see that

W(e) ⊆ (W(e) ∩W( f )) W∗(e). Conversely, W(e) ∩ W( f ) ⊆ W(e) and W∗(e) ⊆ W(e), so then

(W(e) ∩W( f )) W∗(e) ⊆ W(e). �

Lemma A.7. Let x, y ∈ W. The following are equivalent.

(1) x ≤ y
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(2) xBy−1 ∩ B−B , ∅

(3) yBx−1 ∩ BB− , ∅

Proof. The equivalent of (1) and (2) is established in [17] by Lemma 1.2. Recall that in W,

x ≤ y if and only if w0y ≤ w0x. Then our equivalence between (1) and (2) tells us that

w0yB(w0x)−1 ∩ B−B , ∅. Recall that w−1
0 = w0 and w0Bw0 = B−. So, by multiplying both sides

by w0 does not change the emptiness of a set, and we can see,

yBx−1 ∩ BB− = w0(w0y)B(w0x)−1w0 ∩ w0B−Bw0 , ∅

if and only if (w0y)B(w0x)−1 ∩ B−B , ∅ if and only if (1). �

Lemma A.8. For all w ∈ W

(1) B−xB ⊆ B−Bx ∩ xB−B

(2) BxB− ⊆ BB−x ∩ xBB−

Proof. The proof of (1) is given in [17] as Lemma 1.3. To prove (2), consider the element

w0xw0. Then by (1), B−w0xw0B ⊆ B−Bw0xw0 ∩ w0xw0B−B. The containment is unchanged if

we multiply on the left and right by w0. So we have,

w0B−w0xw0Bw0 ⊆ w0(B−Bw0xw0 ∩ w0xw0B−B)w0.

Recall that B− = w0Bw0, so then, w0B−w0xw0Bw0 = BxB− and,

w0(B−Bw0xw0 ∩ w0xw0B−B)w0 = BB−x ∩ xBB−,

yielding the result. �

Theorem A.9. Let e, f ∈ Λ−, x, s ∈ W, y ∈ V(e) and t ∈ V( f ). Then the following are

equivalent,

(1) y−1ex ≤ t−1 f s

(2) e f = e and there exist w ∈ W∗(e)W( f ), z ∈ W∗(e) so that wt ≤ y and x ≤ zws in W

Proof. Assume that (2) holds. By Lemma 5.28 we can see that y−1ewt ∈ B. It follows that

y−1ew f s = yewtt−1 f s ∈ Bt−1 f s ⊆ Bt−1 f sB. By assumption, w = w1w2 with w1 ∈ W∗(e) and

w2 ∈ W( f ). Thus, y−1ew f s = y−1ew1w2 f s = y−1ew2 f s = y−1ew2s = y−1ews. But, by Lemma

5.27 y−1ex ≤ y−1ezws = y−1ews = y−1ew f s ≤ t−1 f s.

Conversely, suppose y−1ex ≤ t−1 f s. Then clearly, e ≤ f , and y−1ex ∈ Bt−1 f sB. Hence,

e ∈ yBt−1 f sBx−1. Now, for w ∈ W let,
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Aw = sBx−1 ∩ BwB−

It is clear that sBx−1 =
⊔

w∈W Aw, since sBx−1 ⊆ G =
⊔

w∈W BwB−. Since this is a finite

disjoint union of subvarieties, Theorem A.3 tells us we can find a unique element, w ∈ W, so

that Aw is open and dense in sBx−1.

It follows that , e ∈ eyBt−1 f Awe ⊆ eyBt−1 f Awe ⊆ eyBt−1 f BwB−e = eyBt−1 f B f weB−e,

since f B = f B f and B−e = eB−e, as e, f ∈ Λ−. Hence, f weJ e. So e ≤ w−1 f w. But e ≤ f ,

and thus there exists v ∈ CW(e) such that v−1 f v = w−1 f w. But then, v ∈ W( f ) ∩ W(e) , ∅,

so we quickly see that we can write w = cv, with c ∈ W( f ). It then follows, by Lemma A.6,

w = cv ∈ W( f )W(e) ⊆ W( f ) (W( f ) ∩W(e)) W∗(e) ⊆ W( f )W∗(e). We conclude w = w1w2 for

some w1 ∈ W( f ) and w2 ∈ W∗(e).

Since Aw , ∅ we see by Lemma A.8 that ∅ , sBx−1 ∩ BwB− ⊆ sBx−1 ∩ wBB−. Thus, we

see w−1sBx−1 ∩ BB− , ∅. So by Lemma A.7, x ≤ w−1s = w−1
2 w−1

1 s.

Then we see, e ∈ yBt−1 f Aw ⊆ yBt−1 f Bw1w2B− = yBt−1 f w1w2B− = yBt−1w1 f w2B−, since

w1 ∈ W( f ) and t−1 f ∈ JG. For u ∈ W let,

Cu = yBt−1w1 ∩ BuB−

As before, we see that yBt−1w1 =
⊔

u∈W Cu, and there exists a unique u so Cu ⊆ yBt−1w1

is open and dense. Thus, e ∈ Cu f w2B−. It follows from there that we get a short chain of

inclusions, e ∈ eCu f w2B−e ⊆ eCu f w2B−e ⊆ eBuB− f w2eB−e. And from there we see that

e ∈ eBuB− f eB−e = eBuB−eB−e = eBuB−e = eBeueB−e, since e ∈ Λ−.

Thus, eueJ e, and hence u ∈ W(e). So in eCG(e), we see e ∈ eBeueB−e. But eCG(e) is a

reductive algebraic group, with a Borel subgroup, eBe that has opposite, (eBe)− = eB−e. Thus

e ∈ (eBe)eu(eBe)− means that eu ≤ e in W(eCG(e)). But e is the identity of eCG(e), so it is the

minimum element of the Weyl group, and we can see eu = e. So u ∈ W∗(e).

Since Cu , ∅, we see ∅ , yBt−1w1 ∩ BuB− ⊆ yBt−1w1 ∩ BB−u. So yBt−1w1u−1 ∩ BB− , ∅.

Thus, uw−1
1 t ≤ y by Lemma A.7. Let w = uw−1

1 ∈ W∗(e)W( f ), z = w−1
2 u−1 ∈ W∗(e). We may

then conclude that,

x ≤ w−1
2 w−1

1 s = w−1
2 u−1uw−1

1 s = zws wt = uw−1
1 t ≤ y

as desired. �
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A.3 Pointed Parabolic J -classes on M3(K)

Recall the simple reflections for the Weyl group M3(K) with B, the group of upper triangular

matrices. S = {(1 2), (2 3)} = {


0 1 0

1 0 0

0 0 1

,


1 0 0

0 0 1

0 1 0

}. The next 16 pages show the equivalence

classes defined in Section 7 in relation to the Bruhat order. Specifically, for each of the pairs

(I, J) ∈ P(S ) × P(S ), we look at the graph of the covering relation of the Bruhat order and

highlight the J I,J-classes. This allows us to illustrate concepts like minr JI,J
s and dr

J I,J

e .

Each graph contains the 34 matrices of the Renner monoid of M3(K) two matrices are

connected by a line if the matrix lower down the page is covered by the higher matrix with

respect to the Bruhat order. That is, r and s are connected if there exists no matrix t so that

r < t < s. A matrix lower on the page is smaller with respect to ≤ than a matrix higher up if

there is an upward path in the graph connecting the two matrices.

Matrices connected by a gray, dashed line are in different J I,J-classes. Each pair of matri-

ces connected by a solid, coloured line are members of the same J I,J-class. Each J I,J-class is

granted its own colour, although in the case of size one equivalence classes this colour does not

appear. The colours are for visual convenience only, and do not have any particular meaning.

The first of these charts corresponds to J ∅,∅, or rather the equality relation. As such

every equivalence class has only one element, so there are no solid coloured lines. The fourth,

thirteenth, and sixteenth graphs represent the R-, L -, and J -classes. So confused readers are

encouraged to view those charts first to get a better sense of reading the others.
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Classes depicted correspond to
I = {} and J = {}

 0 0 1
0 1 0
1 0 0



 0 0 1
1 0 0
0 1 0


 0 1 0

0 0 1
1 0 0


 0 0 0

0 1 0
1 0 0



 1 0 0
0 0 1
0 1 0


 0 1 0

1 0 0
0 0 1


 0 0 0

1 0 0
0 1 0


 0 0 0

0 0 1
1 0 0


 0 1 0

0 0 0
1 0 0



 1 0 0
0 1 0
0 0 1


 0 0 0

0 0 1
0 1 0


 0 0 0

1 0 0
0 0 1


 1 0 0

0 0 0
0 1 0


 0 1 0

1 0 0
0 0 0


 0 0 1

0 0 0
1 0 0



 0 0 0
0 1 0
0 0 1


 1 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 1


 0 0 1

0 0 0
0 1 0


 0 0 1

1 0 0
0 0 0


 0 0 0

0 0 0
1 0 0



 0 1 0
0 0 0
0 0 1


 1 0 0

0 0 1
0 0 0


 0 0 1

0 1 0
0 0 0


 0 0 0

0 0 0
0 1 0


 0 0 0

1 0 0
0 0 0



 0 0 0
0 0 0
0 0 1


 0 1 0

0 0 1
0 0 0


 0 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 0



 0 0 0
0 0 1
0 0 0


 0 1 0

0 0 0
0 0 0



 0 0 1
0 0 0
0 0 0



 0 0 0
0 0 0
0 0 0


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Classes depicted correspond to
I = {} and J = {(1 2)}

 0 0 1
0 1 0
1 0 0



 0 0 1
1 0 0
0 1 0


 0 1 0

0 0 1
1 0 0


 0 0 0

0 1 0
1 0 0



 1 0 0
0 0 1
0 1 0


 0 1 0

1 0 0
0 0 1


 0 0 0

1 0 0
0 1 0


 0 0 0

0 0 1
1 0 0


 0 1 0

0 0 0
1 0 0



 1 0 0
0 1 0
0 0 1


 0 0 0

0 0 1
0 1 0


 0 0 0

1 0 0
0 0 1


 1 0 0

0 0 0
0 1 0


 0 1 0

1 0 0
0 0 0


 0 0 1

0 0 0
1 0 0



 0 0 0
0 1 0
0 0 1


 1 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 1


 0 0 1

0 0 0
0 1 0


 0 0 1

1 0 0
0 0 0


 0 0 0

0 0 0
1 0 0



 0 1 0
0 0 0
0 0 1


 1 0 0

0 0 1
0 0 0


 0 0 1

0 1 0
0 0 0


 0 0 0

0 0 0
0 1 0


 0 0 0

1 0 0
0 0 0



 0 0 0
0 0 0
0 0 1


 0 1 0

0 0 1
0 0 0


 0 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 0



 0 0 0
0 0 1
0 0 0


 0 1 0

0 0 0
0 0 0



 0 0 1
0 0 0
0 0 0



 0 0 0
0 0 0
0 0 0


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Classes depicted correspond to
I = {} and J = {(2 3)}

 0 0 1
0 1 0
1 0 0



 0 0 1
1 0 0
0 1 0


 0 1 0

0 0 1
1 0 0


 0 0 0

0 1 0
1 0 0



 1 0 0
0 0 1
0 1 0


 0 1 0

1 0 0
0 0 1


 0 0 0

1 0 0
0 1 0


 0 0 0

0 0 1
1 0 0


 0 1 0

0 0 0
1 0 0



 1 0 0
0 1 0
0 0 1


 0 0 0

0 0 1
0 1 0


 0 0 0

1 0 0
0 0 1


 1 0 0

0 0 0
0 1 0


 0 1 0

1 0 0
0 0 0


 0 0 1

0 0 0
1 0 0



 0 0 0
0 1 0
0 0 1


 1 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 1


 0 0 1

0 0 0
0 1 0


 0 0 1

1 0 0
0 0 0


 0 0 0

0 0 0
1 0 0



 0 1 0
0 0 0
0 0 1


 1 0 0

0 0 1
0 0 0


 0 0 1

0 1 0
0 0 0


 0 0 0

0 0 0
0 1 0


 0 0 0

1 0 0
0 0 0



 0 0 0
0 0 0
0 0 1


 0 1 0

0 0 1
0 0 0


 0 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 0



 0 0 0
0 0 1
0 0 0


 0 1 0

0 0 0
0 0 0



 0 0 1
0 0 0
0 0 0



 0 0 0
0 0 0
0 0 0


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Classes depicted correspond to
I = {} and J = {(1 2), (2 3)}
(R-classes)

 0 0 1
0 1 0
1 0 0



 0 0 1
1 0 0
0 1 0


 0 1 0

0 0 1
1 0 0


 0 0 0

0 1 0
1 0 0



 1 0 0
0 0 1
0 1 0


 0 1 0

1 0 0
0 0 1


 0 0 0

1 0 0
0 1 0


 0 0 0

0 0 1
1 0 0


 0 1 0

0 0 0
1 0 0



 1 0 0
0 1 0
0 0 1


 0 0 0

0 0 1
0 1 0


 0 0 0

1 0 0
0 0 1


 1 0 0

0 0 0
0 1 0


 0 1 0

1 0 0
0 0 0


 0 0 1

0 0 0
1 0 0



 0 0 0
0 1 0
0 0 1


 1 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 1


 0 0 1

0 0 0
0 1 0


 0 0 1

1 0 0
0 0 0


 0 0 0

0 0 0
1 0 0



 0 1 0
0 0 0
0 0 1


 1 0 0

0 0 1
0 0 0


 0 0 1

0 1 0
0 0 0


 0 0 0

0 0 0
0 1 0


 0 0 0

1 0 0
0 0 0



 0 0 0
0 0 0
0 0 1


 0 1 0

0 0 1
0 0 0


 0 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 0



 0 0 0
0 0 1
0 0 0


 0 1 0

0 0 0
0 0 0



 0 0 1
0 0 0
0 0 0



 0 0 0
0 0 0
0 0 0


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Classes depicted correspond to
I = {(1 2)} and J = {}

 0 0 1
0 1 0
1 0 0



 0 0 1
1 0 0
0 1 0


 0 1 0

0 0 1
1 0 0


 0 0 0

0 1 0
1 0 0



 1 0 0
0 0 1
0 1 0


 0 1 0

1 0 0
0 0 1


 0 0 0

1 0 0
0 1 0


 0 0 0

0 0 1
1 0 0


 0 1 0

0 0 0
1 0 0



 1 0 0
0 1 0
0 0 1


 0 0 0

0 0 1
0 1 0


 0 0 0

1 0 0
0 0 1


 1 0 0

0 0 0
0 1 0


 0 1 0

1 0 0
0 0 0


 0 0 1

0 0 0
1 0 0



 0 0 0
0 1 0
0 0 1


 1 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 1


 0 0 1

0 0 0
0 1 0


 0 0 1

1 0 0
0 0 0


 0 0 0

0 0 0
1 0 0



 0 1 0
0 0 0
0 0 1


 1 0 0

0 0 1
0 0 0


 0 0 1

0 1 0
0 0 0


 0 0 0

0 0 0
0 1 0


 0 0 0

1 0 0
0 0 0



 0 0 0
0 0 0
0 0 1


 0 1 0

0 0 1
0 0 0


 0 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 0



 0 0 0
0 0 1
0 0 0


 0 1 0

0 0 0
0 0 0



 0 0 1
0 0 0
0 0 0



 0 0 0
0 0 0
0 0 0


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Classes depicted correspond to
I = {(1 2)} and J = {(1 2)}

 0 0 1
0 1 0
1 0 0



 0 0 1
1 0 0
0 1 0


 0 1 0

0 0 1
1 0 0


 0 0 0

0 1 0
1 0 0



 1 0 0
0 0 1
0 1 0


 0 1 0

1 0 0
0 0 1


 0 0 0

1 0 0
0 1 0


 0 0 0

0 0 1
1 0 0


 0 1 0

0 0 0
1 0 0



 1 0 0
0 1 0
0 0 1


 0 0 0

0 0 1
0 1 0


 0 0 0

1 0 0
0 0 1


 1 0 0

0 0 0
0 1 0


 0 1 0

1 0 0
0 0 0


 0 0 1

0 0 0
1 0 0



 0 0 0
0 1 0
0 0 1


 1 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 1


 0 0 1

0 0 0
0 1 0


 0 0 1

1 0 0
0 0 0


 0 0 0

0 0 0
1 0 0



 0 1 0
0 0 0
0 0 1


 1 0 0

0 0 1
0 0 0


 0 0 1

0 1 0
0 0 0


 0 0 0

0 0 0
0 1 0


 0 0 0

1 0 0
0 0 0



 0 0 0
0 0 0
0 0 1


 0 1 0

0 0 1
0 0 0


 0 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 0



 0 0 0
0 0 1
0 0 0


 0 1 0

0 0 0
0 0 0



 0 0 1
0 0 0
0 0 0



 0 0 0
0 0 0
0 0 0


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Classes depicted correspond to
I = {(1 2)} and J = {(2 3)}

 0 0 1
0 1 0
1 0 0



 0 0 1
1 0 0
0 1 0


 0 1 0

0 0 1
1 0 0


 0 0 0

0 1 0
1 0 0



 1 0 0
0 0 1
0 1 0


 0 1 0

1 0 0
0 0 1


 0 0 0

1 0 0
0 1 0


 0 0 0

0 0 1
1 0 0


 0 1 0

0 0 0
1 0 0



 1 0 0
0 1 0
0 0 1


 0 0 0

0 0 1
0 1 0


 0 0 0

1 0 0
0 0 1


 1 0 0

0 0 0
0 1 0


 0 1 0

1 0 0
0 0 0


 0 0 1

0 0 0
1 0 0



 0 0 0
0 1 0
0 0 1


 1 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 1


 0 0 1

0 0 0
0 1 0


 0 0 1

1 0 0
0 0 0


 0 0 0

0 0 0
1 0 0



 0 1 0
0 0 0
0 0 1


 1 0 0

0 0 1
0 0 0


 0 0 1

0 1 0
0 0 0


 0 0 0

0 0 0
0 1 0


 0 0 0

1 0 0
0 0 0



 0 0 0
0 0 0
0 0 1


 0 1 0

0 0 1
0 0 0


 0 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 0



 0 0 0
0 0 1
0 0 0


 0 1 0

0 0 0
0 0 0



 0 0 1
0 0 0
0 0 0



 0 0 0
0 0 0
0 0 0


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Classes depicted correspond to
I = {(1 2)} and J = {(1 2), (2 3)}

 0 0 1
0 1 0
1 0 0



 0 0 1
1 0 0
0 1 0


 0 1 0

0 0 1
1 0 0


 0 0 0

0 1 0
1 0 0



 1 0 0
0 0 1
0 1 0


 0 1 0

1 0 0
0 0 1


 0 0 0

1 0 0
0 1 0


 0 0 0

0 0 1
1 0 0


 0 1 0

0 0 0
1 0 0



 1 0 0
0 1 0
0 0 1


 0 0 0

0 0 1
0 1 0


 0 0 0

1 0 0
0 0 1


 1 0 0

0 0 0
0 1 0


 0 1 0

1 0 0
0 0 0


 0 0 1

0 0 0
1 0 0



 0 0 0
0 1 0
0 0 1


 1 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 1


 0 0 1

0 0 0
0 1 0


 0 0 1

1 0 0
0 0 0


 0 0 0

0 0 0
1 0 0



 0 1 0
0 0 0
0 0 1


 1 0 0

0 0 1
0 0 0


 0 0 1

0 1 0
0 0 0


 0 0 0

0 0 0
0 1 0


 0 0 0

1 0 0
0 0 0



 0 0 0
0 0 0
0 0 1


 0 1 0

0 0 1
0 0 0


 0 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 0



 0 0 0
0 0 1
0 0 0


 0 1 0

0 0 0
0 0 0



 0 0 1
0 0 0
0 0 0



 0 0 0
0 0 0
0 0 0





164 APPENDIX

Classes depicted correspond to
I = {(2 3)} and J = {}

 0 0 1
0 1 0
1 0 0



 0 0 1
1 0 0
0 1 0


 0 1 0

0 0 1
1 0 0


 0 0 0

0 1 0
1 0 0



 1 0 0
0 0 1
0 1 0


 0 1 0

1 0 0
0 0 1


 0 0 0

1 0 0
0 1 0


 0 0 0

0 0 1
1 0 0


 0 1 0

0 0 0
1 0 0



 1 0 0
0 1 0
0 0 1


 0 0 0

0 0 1
0 1 0


 0 0 0

1 0 0
0 0 1


 1 0 0

0 0 0
0 1 0


 0 1 0

1 0 0
0 0 0


 0 0 1

0 0 0
1 0 0



 0 0 0
0 1 0
0 0 1


 1 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 1


 0 0 1

0 0 0
0 1 0


 0 0 1

1 0 0
0 0 0


 0 0 0

0 0 0
1 0 0



 0 1 0
0 0 0
0 0 1


 1 0 0

0 0 1
0 0 0


 0 0 1

0 1 0
0 0 0


 0 0 0

0 0 0
0 1 0


 0 0 0

1 0 0
0 0 0



 0 0 0
0 0 0
0 0 1


 0 1 0

0 0 1
0 0 0


 0 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 0



 0 0 0
0 0 1
0 0 0


 0 1 0

0 0 0
0 0 0



 0 0 1
0 0 0
0 0 0



 0 0 0
0 0 0
0 0 0


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Classes depicted correspond to
I = {(2 3)} and J = {(1 2)}

 0 0 1
0 1 0
1 0 0



 0 0 1
1 0 0
0 1 0


 0 1 0

0 0 1
1 0 0


 0 0 0

0 1 0
1 0 0



 1 0 0
0 0 1
0 1 0


 0 1 0

1 0 0
0 0 1


 0 0 0

1 0 0
0 1 0


 0 0 0

0 0 1
1 0 0


 0 1 0

0 0 0
1 0 0



 1 0 0
0 1 0
0 0 1


 0 0 0

0 0 1
0 1 0


 0 0 0

1 0 0
0 0 1


 1 0 0

0 0 0
0 1 0


 0 1 0

1 0 0
0 0 0


 0 0 1

0 0 0
1 0 0



 0 0 0
0 1 0
0 0 1


 1 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 1


 0 0 1

0 0 0
0 1 0


 0 0 1

1 0 0
0 0 0


 0 0 0

0 0 0
1 0 0



 0 1 0
0 0 0
0 0 1


 1 0 0

0 0 1
0 0 0


 0 0 1

0 1 0
0 0 0


 0 0 0

0 0 0
0 1 0


 0 0 0

1 0 0
0 0 0



 0 0 0
0 0 0
0 0 1


 0 1 0

0 0 1
0 0 0


 0 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 0



 0 0 0
0 0 1
0 0 0


 0 1 0

0 0 0
0 0 0



 0 0 1
0 0 0
0 0 0



 0 0 0
0 0 0
0 0 0


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Classes depicted correspond to
I = {(2 3)} and J = {(2 3)}

 0 0 1
0 1 0
1 0 0



 0 0 1
1 0 0
0 1 0


 0 1 0

0 0 1
1 0 0


 0 0 0

0 1 0
1 0 0



 1 0 0
0 0 1
0 1 0


 0 1 0

1 0 0
0 0 1


 0 0 0

1 0 0
0 1 0


 0 0 0

0 0 1
1 0 0


 0 1 0

0 0 0
1 0 0



 1 0 0
0 1 0
0 0 1


 0 0 0

0 0 1
0 1 0


 0 0 0

1 0 0
0 0 1


 1 0 0

0 0 0
0 1 0


 0 1 0

1 0 0
0 0 0


 0 0 1

0 0 0
1 0 0



 0 0 0
0 1 0
0 0 1


 1 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 1


 0 0 1

0 0 0
0 1 0


 0 0 1

1 0 0
0 0 0


 0 0 0

0 0 0
1 0 0



 0 1 0
0 0 0
0 0 1


 1 0 0

0 0 1
0 0 0


 0 0 1

0 1 0
0 0 0


 0 0 0

0 0 0
0 1 0


 0 0 0

1 0 0
0 0 0



 0 0 0
0 0 0
0 0 1


 0 1 0

0 0 1
0 0 0


 0 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 0



 0 0 0
0 0 1
0 0 0


 0 1 0

0 0 0
0 0 0



 0 0 1
0 0 0
0 0 0



 0 0 0
0 0 0
0 0 0


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Classes depicted correspond to
I = {(2 3)} and J = {(1 2), (2 3)}

 0 0 1
0 1 0
1 0 0



 0 0 1
1 0 0
0 1 0


 0 1 0

0 0 1
1 0 0


 0 0 0

0 1 0
1 0 0



 1 0 0
0 0 1
0 1 0


 0 1 0

1 0 0
0 0 1


 0 0 0

1 0 0
0 1 0


 0 0 0

0 0 1
1 0 0


 0 1 0

0 0 0
1 0 0



 1 0 0
0 1 0
0 0 1


 0 0 0

0 0 1
0 1 0


 0 0 0

1 0 0
0 0 1


 1 0 0

0 0 0
0 1 0


 0 1 0

1 0 0
0 0 0


 0 0 1

0 0 0
1 0 0



 0 0 0
0 1 0
0 0 1


 1 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 1


 0 0 1

0 0 0
0 1 0


 0 0 1

1 0 0
0 0 0


 0 0 0

0 0 0
1 0 0



 0 1 0
0 0 0
0 0 1


 1 0 0

0 0 1
0 0 0


 0 0 1

0 1 0
0 0 0


 0 0 0

0 0 0
0 1 0


 0 0 0

1 0 0
0 0 0



 0 0 0
0 0 0
0 0 1


 0 1 0

0 0 1
0 0 0


 0 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 0



 0 0 0
0 0 1
0 0 0


 0 1 0

0 0 0
0 0 0



 0 0 1
0 0 0
0 0 0



 0 0 0
0 0 0
0 0 0


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Classes depicted correspond to
I = {(1 2), (2 3)} and J = {}
(L -classes)

 0 0 1
0 1 0
1 0 0



 0 0 1
1 0 0
0 1 0


 0 1 0

0 0 1
1 0 0


 0 0 0

0 1 0
1 0 0



 1 0 0
0 0 1
0 1 0


 0 1 0

1 0 0
0 0 1


 0 0 0

1 0 0
0 1 0


 0 0 0

0 0 1
1 0 0


 0 1 0

0 0 0
1 0 0



 1 0 0
0 1 0
0 0 1


 0 0 0

0 0 1
0 1 0


 0 0 0

1 0 0
0 0 1


 1 0 0

0 0 0
0 1 0


 0 1 0

1 0 0
0 0 0


 0 0 1

0 0 0
1 0 0



 0 0 0
0 1 0
0 0 1


 1 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 1


 0 0 1

0 0 0
0 1 0


 0 0 1

1 0 0
0 0 0


 0 0 0

0 0 0
1 0 0



 0 1 0
0 0 0
0 0 1


 1 0 0

0 0 1
0 0 0


 0 0 1

0 1 0
0 0 0


 0 0 0

0 0 0
0 1 0


 0 0 0

1 0 0
0 0 0



 0 0 0
0 0 0
0 0 1


 0 1 0

0 0 1
0 0 0


 0 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 0



 0 0 0
0 0 1
0 0 0


 0 1 0

0 0 0
0 0 0



 0 0 1
0 0 0
0 0 0



 0 0 0
0 0 0
0 0 0


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Classes depicted correspond to
I = {(1 2), (2 3)} and J = {(1 2)}

 0 0 1
0 1 0
1 0 0



 0 0 1
1 0 0
0 1 0


 0 1 0

0 0 1
1 0 0


 0 0 0

0 1 0
1 0 0



 1 0 0
0 0 1
0 1 0


 0 1 0

1 0 0
0 0 1


 0 0 0

1 0 0
0 1 0


 0 0 0

0 0 1
1 0 0


 0 1 0

0 0 0
1 0 0



 1 0 0
0 1 0
0 0 1


 0 0 0

0 0 1
0 1 0


 0 0 0

1 0 0
0 0 1


 1 0 0

0 0 0
0 1 0


 0 1 0

1 0 0
0 0 0


 0 0 1

0 0 0
1 0 0



 0 0 0
0 1 0
0 0 1


 1 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 1


 0 0 1

0 0 0
0 1 0


 0 0 1

1 0 0
0 0 0


 0 0 0

0 0 0
1 0 0



 0 1 0
0 0 0
0 0 1


 1 0 0

0 0 1
0 0 0


 0 0 1

0 1 0
0 0 0


 0 0 0

0 0 0
0 1 0


 0 0 0

1 0 0
0 0 0



 0 0 0
0 0 0
0 0 1


 0 1 0

0 0 1
0 0 0


 0 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 0



 0 0 0
0 0 1
0 0 0


 0 1 0

0 0 0
0 0 0



 0 0 1
0 0 0
0 0 0



 0 0 0
0 0 0
0 0 0


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Classes depicted correspond to
I = {(1 2), (2 3)} and J = {(2 3)}

 0 0 1
0 1 0
1 0 0



 0 0 1
1 0 0
0 1 0


 0 1 0

0 0 1
1 0 0


 0 0 0

0 1 0
1 0 0



 1 0 0
0 0 1
0 1 0


 0 1 0

1 0 0
0 0 1


 0 0 0

1 0 0
0 1 0


 0 0 0

0 0 1
1 0 0


 0 1 0

0 0 0
1 0 0



 1 0 0
0 1 0
0 0 1


 0 0 0

0 0 1
0 1 0


 0 0 0

1 0 0
0 0 1


 1 0 0

0 0 0
0 1 0


 0 1 0

1 0 0
0 0 0


 0 0 1

0 0 0
1 0 0



 0 0 0
0 1 0
0 0 1


 1 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 1


 0 0 1

0 0 0
0 1 0


 0 0 1

1 0 0
0 0 0


 0 0 0

0 0 0
1 0 0



 0 1 0
0 0 0
0 0 1


 1 0 0

0 0 1
0 0 0


 0 0 1

0 1 0
0 0 0


 0 0 0

0 0 0
0 1 0


 0 0 0

1 0 0
0 0 0



 0 0 0
0 0 0
0 0 1


 0 1 0

0 0 1
0 0 0


 0 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 0



 0 0 0
0 0 1
0 0 0


 0 1 0

0 0 0
0 0 0



 0 0 1
0 0 0
0 0 0



 0 0 0
0 0 0
0 0 0


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Classes depicted correspond to
I = {(1 2), (2 3)} and J = {(1 2), (2 3)}
(J -classes)

 0 0 1
0 1 0
1 0 0



 0 0 1
1 0 0
0 1 0


 0 1 0

0 0 1
1 0 0


 0 0 0

0 1 0
1 0 0



 1 0 0
0 0 1
0 1 0


 0 1 0

1 0 0
0 0 1


 0 0 0

1 0 0
0 1 0


 0 0 0

0 0 1
1 0 0


 0 1 0

0 0 0
1 0 0



 1 0 0
0 1 0
0 0 1


 0 0 0

0 0 1
0 1 0


 0 0 0

1 0 0
0 0 1


 1 0 0

0 0 0
0 1 0


 0 1 0

1 0 0
0 0 0


 0 0 1

0 0 0
1 0 0



 0 0 0
0 1 0
0 0 1


 1 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 1


 0 0 1

0 0 0
0 1 0


 0 0 1

1 0 0
0 0 0


 0 0 0

0 0 0
1 0 0



 0 1 0
0 0 0
0 0 1


 1 0 0

0 0 1
0 0 0


 0 0 1

0 1 0
0 0 0


 0 0 0

0 0 0
0 1 0


 0 0 0

1 0 0
0 0 0



 0 0 0
0 0 0
0 0 1


 0 1 0

0 0 1
0 0 0


 0 0 0

0 1 0
0 0 0


 1 0 0

0 0 0
0 0 0



 0 0 0
0 0 1
0 0 0


 0 1 0

0 0 0
0 0 0



 0 0 1
0 0 0
0 0 0



 0 0 0
0 0 0
0 0 0


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