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Abstract

This thesis is concerned with quantization of two types of multisymplectic man-

ifolds that have multisymplectic forms coming from a Kähler form. In chapter 2 we

investigate how Berezin-Toeplitz quantization can be used to quantize them and we

study their properties in the semiclassical limit.

In the last chapter of this work, we obtain two additional results. The first

concerns the deformation quantization of the (2n − 1)-plectic structure that we

examine in chapter 2, we make the first step toward the definition of a star product

on the Nambu-Poisson algebra (C∞(M), {., . . . , .}). The second result concerns the

algebraic properties of the generalized commutator.

Keywords: Differential Geometry, Quantization, Nambu-Poisson structures, Berezin-

Toeplitz Quantization, n-plectic Quantization, Star products, Deformation Quan-

tization, Generalized Commutator, n-plectic Manifolds, Hamiltonian mechanics,

Nambu mechanics, Geometric Quantization, Kähler Quantization, Projective em-

bedding.

i



To my parents

Elahe and Siamak

and my sister

Sareh.

ii



Acknowledgements

I would like to express my sincere gratitude to my research advisor Tatyana

Barron. She was always willing to help and to give me her time when I asked for

it. I owe her a lot for her encouragement and support. This thesis would have not

been possible without her guidance.

I would also like to thank Martin Pinsonnault for helpful discussions, and in

particular for pointing me toward the geometric formulation of quantum mechanics.

My sincere thanks also go to Dr. Ajneet Dhillon, Dr. Lex Renner, Dr. Lyudmila

Goncharova and Dr. Eli Hawkins for their careful reading of the manuscript and for

their helpful corrections.

Also, I would like to thank the administrative staff at the UWO Mathematics

Department: Janet Williams and Terry Slivinski.

While I have been a graduate student at Western, I have made great friends

among my colleagues. I am especially thankful to Chandra Rajamani, Tyson Davis

and Subhajyoti Pal for always being available when I needed someone to talk to. I

would also like to thank Minh-Tri Do, although he left London after my first year

there, my experience that year would not have been the same without him. A special

thank you goes as well to Chad Gu, Faiyaz Hassan, Ramen Nissan, Amen Singh and

Harish Ramanathan, for their encouragement and friendship.

I also want to acknowledge Vatche Deyirmenjian, Charles Dyer and Sergey

Arkhipov for their invaluable guidance during my undergraduate years.

Finally, I would like to thank my parents Elahe and Siamak and my loving sister

iii



Sareh. I am deeply indebted to them for their unconditional love, encouragement

and support throughout my life.

Baran Serajelahi.

London, Ontario, August 2015.

iv



List of symbols and abbreviations

This list is organized by the order of appearance of the symbol or abbreviation

in the text of the thesis.

(M,ω) denotes a symplectic manifold

C∞(M) denotes the smooth functions on the manifold M

{·, ·} denotes a Poisson bracket

[·, ·] denotes the commutator of operators

H denotes a Hilbert space

End(H) denotes the algebra of endomorphisms on the Hilbert space H

const(x) denotes a constant that depends on x⊗m denotes the mth tensor power

Ω always denotes an m-plectic form

Ci denotes the i times differentiable functions

CPq denotes the q dimensional complex projective space

T
(k)
f denotes the Toeplitz operator of level k for the function f

TM denotes the tangent bundle of the manifold M

T ∗M denotes the cotangent bundle of the manifold M

df denotes the differential of the function f, it is a 1-form

ωcan denotes the canonical symplectic 2-form that can be defined on T ∗M

∇V denotes the gradient of the function V

ḟ denotes the time derivative of the function f

∂f
∂x

denotes the partial derivative of the function f with respect to x

Xf denotes the Hamiltonian vector field for the function f

ι(XH)ω denotes the insertion of the vector field XH into the 2-form ω

LX denotes the Lie derivative alond the vector field X

v



Γ∞(TM) denotes the smooth sections of TM, which are smooth vector fields

on M

� is used to indicate the end of a proof

Aut(H) denotes the automorpisms of the Hilbert space H

YF̂ denotes the Schrödinger vector field associated to the operator F̂

{·, ·}Ω denotes the Poisson bracket defined on any complex Hilbert space H

PH denotes the projectivization of the Hilber space H

|ψ| denotes the absolute value of the wave function ψ

L2(Rn) denotes the square integrable functions defined on Rn

S1 denotes the unit circle in C

σp denotes the principal symbol of a Toeplitz operator

Π denotes a projection operator

I denotes the identity operator

c1(L) denotes the first Chern class of the line bundle L

Lm denotes the mth tensor power of the line bundle L

L
⊗
k denotes the kth tensor power of the line bundle L

H0(M,Lk) denotes the space of holomorphic sections of the line bundle Lk

|f |∞ denotes the sup norm of the function f

||A|| denotes the operator norm of the operator O

Qk
f denotes the geometric quantization operator of level k

inf is a shorthand for the word infimum

sup is a shorthand for the word supremum

Alt· denotes the alternating sum of an expression

ε(σ) denotes the sign (+ for even and - for odd) of the permuation σ⊕
denotes a direct sum⊗
denotes a tensor product

sign(i, j, k, l) stands for the sign of a particular permutation of 4 indices
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? denotes a formal star product

?{·, · · · , ·} denotes the generalized star product

[·, ·]Q denotes the quantum Lie bracket that comes from the star product ?

KN(f, g) denotes a constant that may depend on the functions f and g or the

index N but does not depend on the index m

A∗ denotes the adjoint of the operator A

dim is a shorthand for the word dimension
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Introduction

A lot of rich mathematics (in differential geometry, algebra, complex analy-

sis, topology) comes from physics or is motivated by physics, as a result a lot

of the language is borrowed from physics as well. The set of results referred to

as“quantization” encompasses a number of powerful techniques in complex geome-

try and representation theory and goes back to the 1950-60s when well known rep-

resentation theorists, including Kostant and Kirillov became interested in problems

related to the correspondence between classical mechanics and quantum mechanics.

Kirillov became interested in quantization when he observed that the coadjoint or-

bits of a Lie group G carry a natural symplectic structure which is invariant under

the action of G. In this context the axioms of quantization (section 1.3) say that

one should look for the irredulcile unitary representations of the Lie algebra g. This

thesis deals with asymptotic questions in analysis on line bundles on compact Kähler

manifolds that arise in certain problems motivated by physics.

Hamiltonian mechanics is a formulation of classical mechanics that allows for the

phase space to be any symplectic manifold, rather than just R2n. In 1973 Yoichiro

Nambu [N] introduced a generalization of Hamiltonian mechanics which later be-

came known as Nambu mechanics. Nambu mechanics is based on a generalization of

the Poisson bracket of Hamiltonian mechanics to a bracket involving n functions, for

n ≥ 3. In Hamiltonian mechanics, the state of a physical system is given by a point

1
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in a symplectic manifold and observables are represented by functions on this phase

space. In the Hilbert space formulations of quantum mechanics states are given by

points in a Hilbert space and observables are represented by endomorphisms on the

Hilbert space (this is summarized in the table below). Quantization is a mapping

between the algebra of observables on the classical side and the algebra of observ-

ables on the quantum side that satisfies certain properties, we will be interested in

applications of a particular realization of this mapping known as Berezin-Toeplitz

quantization.

Hamiltonian mechanics Quantum mechanics

Phase space (M,ω) H

Observables C∞(M) End(H)

Assoc algebra · (commutative) ◦ (noncommutative)

Lie algebra {·, ·} [·, ·]

While Berezin-Toeplitz quantization is interesting to study by itself, it has also

turned out to have applications in several areas of mathematics. Over the years

Berezin-Toeplitz quantization was found to have applications to deformation quan-

tization (see e.g. [?], [KS]), to study of the Hitchin connection and TQFT (work of

J. Andersen, see in particular [A1], [A2]), L. Polterovich’s work on rigidity of Pois-

son brackets [P], and work of Y. Rubinstein and S. Zelditch [RZ] on homogeneous

complex Monge-Ampère equation, in connection to geodesics on the space of Kähler

metrics. T. Foth (T. Barron) and A. Uribe applied Berezin-Toeplitz quantization

to give another proof of Donaldson’s“scalar curvature is a moment map” statement

[FU].

Both geometric quantization and Kähler/Berezin-Toeplitz quantization are op-

erator quantizations in the sense of section 1.3, they associate a Hilbert space H

and operators on it to a symplectic manifold (M,ω) and its algebra of functions
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C∞(M). In physics’ terminology this is a way to pass from classical Hamiltonian

mechanics to a quantum system. Let C∞(M) denote the space of complex-valued

smooth functions on M . Quantization is a linear map C∞(M)→ {operators on H},

f 7→ f̂ , satisfying a version of Dirac’s quantization conditions:

1 7→ const(~)I,

{f, g} 7→ const(~)[f̂ , ĝ].

Berezin-Toeplitz quantization can be understood as a modified1 version of geometric

quantization. The groundwork for Berezin-Toeplitz quantization was laid in [Ber],

[BG]. Theorem 1.5.3(i) below shows that the {., .} [., .] quantization condition is

satisfied in the semiclassical limit ~ = 1
k
→ 0, which is essentially the best one can

get, due to no-go theorems [GM],[Go].

We will be interested in quantization in a setting where the algebraic structure

on C∞(M) is given by an m-ary bracket {., . . . , .} : ⊗mC∞(M) → C∞(M). Quan-

tization in this context is the same as in the symplectic case, where we have a

bracket of just two functions except that now we are interested in a correspondence

{., . . . , .} → [., . . . , .], between an m-ary bracket and a generalization of the commu-

tator. The symplectic (operator) quantization axioms will be discussed in section

1.3. Their generalization to the m-ary case will be discussed in 2.2. In particular we

will be interested in two situations where the m-ary bracket comes from an (m− 1)-

plectic form Ω defined on M (i.e. a closed non-degenerate m-form), for m ≥ 1. The

1The Hilbert space of Berezin-Toeplitz quantization is exactly the Hilbert space of geomertic

quantization, the Kähler structure provides a natural polarization known as the Kähler polar-

ization. The quantization maps of geometric quantization and Berezin-Toeplitz quantization are

different. The two quantization maps are however related by the Tuynman relation [Tu], which

implies that the these operators become equal up to multiplication by i for sufficiently large k.
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case m = 1 is when Ω is symplectic. Let (M,ω) be a compact integral2 Kähler

manifold of complex dimension n. In both of the cases that we will be looking into,

the m-plectic form Ω on (M,ω) is constructed from a Kähler form (or forms):

(I) m = 2n− 1, Ω = ωn

n!

(II) M is, moreover, hyperkähler, m = 3,

Ω = ω1 ∧ ω1 + ω2 ∧ ω2 + ω3 ∧ ω3

where ω1, ω2, ω3 are the three Kähler forms on M given by the hyperkähler structure.

It is well-known (and easy to prove) that a volume form on an orientedN -dimensional

manifold is an (N − 1)-plectic form, and that the 4-form above is a 3-plectic form

on a hyperkähler manifold. See, for example, [CIL], [R1].

It is intuitively clear that in these two cases the classical multisymplectic system

is essentially built from Hamiltonian system(s) and it should be possible to quantize

(M,Ω) using the (Berezin-Toeplitz) quantization of (M,ω). In both cases there

are natural multisymplectic analogues of the Poisson bracket and the commutator:

an almost Poisson bracket {., ..., .} and the generalized commutator [., ..., .]. Our

discussion mainly revolves around the {., ..., .} [., ..., .] quantization condition.

We note that while, for simplicity, the exposition throughout the thesis is for

C∞ symbols, - all our results hold, in fact, for C4 symbols. To modify the proofs in

order to get the same statements for C4 symbols, the estimates from [BMS] should

be replaced by estimates from [BMMP] - see subsection 1.5. Results from [BMMP]

allow to tackle the case of C2 and C3 symbols as well, but we do not include the

corresponding version of our results (the asymptotics will differ from the C∞ case).

There are physical systems whose behaviour is encoded by an m-plectic form

on M . Specific examples from physics, with m ≥ 2, are discussed in [N], [CT],

2This terminology is explained in section 1.4.3.
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[BHR]. See also discussion and references in [CIL]. Multisymplectic geometry has

been thoroughly studied by mathematicians. See, in particular, [M], [CIL], [MSw],

[BCI], [T], [BHR], [BR], [R1]. There has been extensive discussion of quantization of

n-plectic manifolds in physics literature, and substantial amount of work has been

done by mathematicians too. See, for example, [N], [T], [CT], [DFST], [CZ1], [CZ2],

[DSZ], [SS], [R2], [V]. Work of C. Rogers [R2] addresses quantization of 2-plectic

manifolds. It seems that the appropriate quantum-mechanical setting there involves

a category, instead of a vector space, and intuitively this makes sense because an

(integral) 2-plectic form corresponds to a gerbe and sections of a gerbe form a

category, not a vector space.

There have been attempts, informally speaking,“to embed a multisymplectic

physical system into Hamiltonian system” [BF], [MSu], [DSZ]. As far as we know,

there is no known canonical way of doing this.

DeBellis, Sämann and Szabo [DSZ] used Berezin-Toeplitz quantization for mul-

tisymplectic spheres via embedding them in a certain explicit way into complex

projective spaces CPq and using Berezin-Toeplitz quantization on CPq. This is

somewhat related to our results in Section 2.3, only for M = S2 (because among

spheres only S2 admits a Kähler form).

Thesis Organization

Chapter 1: This chapter is meant to provide the context and much of the

background for the investigations in chapters 2 and 3. We begin in section 1.1 by

explaining the role of symplectic geometry in Hamiltonian mechanics. In section 1.2

we introduce quantum mechanics and its Hilbert space (mathematical) formulations.
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We also discuss the geometric formulation of quantum mechanics in this section. In

section 1.3 we discuss the meaning of quantization and introduce the quantization

axioms. In section 1.4 we introduce the theory of Toeplitz operators. Finally in

section 1.5 we describe the Berezin-Toeplitz quantization mapping and the main

theorems that relate to it.

Chapter 2: The main result of section 2.3 is Theorem 2.3.4. It is an analogue,

for brackets of order 2n, of well-known Theorem 1.5.3(i), and of its C l analogue

(l ∈ N) from [BMMP].

In section 2.4 we work on a hyperkähler manifold M . For a smooth function f

on M we have three Berezin-Toeplitz operators T
(k)
f ;1 , T

(k)
f ;2 , T

(k)
f ;3 , and to four smooth

functions f, g, h, t on M we associate three brackets of order 4: {f, g, h, t}r, r =

1, 2, 3. In subsection 2.4.1 we show that the direct sum of generalized commutators

is asymptotic to

T
(k)
{f,g,h,t}1;1 ⊕ T

(k)
{f,g,h,t}2;2 ⊕ T

(k)
{f,g,h,t}3;3

(Theorem 2.4.3). In subsection 2.4.2 we show that the attempt to formulate every-

thing on one vector space (not three), by taking direct sums, goes through all the

way in the case when M is the 4-torus with three linear complex structures, where

we get a straightforward analogue of Theorem 1.5.3(i) - see Example 2.4.6 (2.9). In

subsection 2.4.3 we take the tensor product of the three operators, instead. The

tensor product of generalized commutators is asymptotic to

T
(k)
{f,g,h,t}1;1 ⊗ T

(k)
{f,g,h,t}2;2 ⊗ T

(k)
{f,g,h,t}3;3

(Proposition 2.4.13). Asymptotic properties of commutators and generalized com-

mutators of operators T(k)
f = T

(k)
f ;1 ⊗ T

(k)
f ;2 ⊗ T

(k)
f ;3 are captured in Prop. 2.4.10 and

Theorem 2.4.14.

Chapter 3: The Berezin-Toeplitz operator quantization leads also to a defor-

mation quantization (Berezin-Toeplitz star product)[?]. In section 3.2 we make use
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of that result to make a first step toward defining a star product (deformation quan-

tization) for Nambu-Poisson algebra of a Kähler manifold with the Nambu-Poisson

bracket defined using the volume form. In section 3.3 we use a result that falls out of

the geometrical formulation of quantum mechanics to look further into the algebraic

properties of the generalized commutator.

To summarize, the main results of the thesis are: Theorem 2.3.4, Theorem 2.4.3,

Proposition 2.4.4, Theorem 2.4.5, Proposition 2.4.10, Proposition 2.4.13, Theorem

2.4.14, Proposition 3.3.1, Proposition 3.4.4.



Chapter 1

From classical to quantum

mechanics: 1-plectic quantization

via Toeplitz operators

1.1 Hamiltonian mechanics

In this section we will describe how the formalism of symplectic geometry may

be used to extend classical mechanics from the phase space Rn × Rn, which car-

ries a natural symplectic structure, to more general symplectic manifolds. This

more general formulation of classical mechanics is known as Hamiltonian mechan-

ics. Historically Hamilton’s formulation of classical mechanics has been important

because it had a strong influence on the early mathematical formulations for quan-

tum mechanics, this will be the subject of the next section. In this section we

will be concerned only with those aspects of symplectic geometry that we will need

later on or that elucidate the role of symplectic manifolds in Hamiltonian mechanics.

8



CHAPTER 1. 1-PLECTIC QUANTIZATION VIA TOEPLITZ OPERATORS 9

1.1.1 Remarks on Hamiltonian mechanics

In classical mechanics to describe a system consisting of a single point mass mov-

ing in n dimensions it is sufficient to use the flat manifold Rn×Rn ∼= T ∗Rn, referred

to as its phase space.

Remark 1.1.1. The configuration space of a (dynamical1) system is a manifold

with one coordinate qj for each of the possible positional degrees of freedom2. This

is in contrast to the phase space (sometimes referred to as the state space) of a

classical mechanical system, which must have one coordinate qj for each positional

degree of freedom in the system and another coordinate pj = q̇j for it’s time deriva-

tive (in classical mechanics the positions and their time derivatives constitute all of

the degrees of freedom). Consequently, the phase space is always even dimensional

(when the configuration space is N, the phase space is T ∗N). Furthermore, knowing

the state of a system (the point in phase space that it occupies) is necesssary and

sufficient to determine its past and future time evolution. This is a consequence of

the second order nature of Newton’s (second) law of motion, and to first approxi-

mation (that is, when effects related to quantum mechanics and relativity can be

1The concept of a dynamical system is a mathematical formalisation which unifies any fixed

rules that describe how a point moves with time inside it’s ambient space. Many different types

of rules have emerged, with different choices for the ambient space as well as different choices for

how time is measured. Time can be measured by integers, by real or complex numbers or can be

a more general algebraic object, losing the memory of its physical origin, and the ambient space

may be simply a set, without the need of a smooth space-time structure defined on it. For the rest

of this thesis, whenever we mention the word ”system”, it will refer to a dynamical system in the

domain of classical mechanics, although sometimes we will be discussing the quantum mechanical

description of the system.
2A system is said to have m degrees of freedom if in order to know its condition for certain one

must specify the value of exactly m variables. For a point mass in Rn this is 2n.
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ignored), this leads to an accurate description of time evolution for real physical

systems [Ar].

Remark 1.1.2. Let N be a smooth manifold, then T ∗N carries a natural 2-form.

First of all, one may canonically define a 1-form on T ∗N . Let v ∈ T(p,q)(T
∗N) and

define a 1-form α by the formula

α(p,q)(v) = q(dπ(v)),

where (p, q) ∈ T ∗N , so that p ∈ N and q : TpN → R is a linear mapping. Now the

natural 2-form is defined to be

ωcan := dα.

Let (q1, . . . , qn) be local coordinates for a neighbourhood U ⊂ M . These can be

extended to local coordinates (q1, . . . , qn, p1, . . . , pn) on T ∗U by the condition:

∀ξ ∈ T ∗xU, pi(ξ) = ξ(
∂

∂qi
).

In these coordinates we have

α =
n∑
i=1

pi dqi

so that

ω =
n∑
i=1

dpi ∧ dqi.

Every state has an energy associated with it, these energies fit together to give

a smooth3 function H ∈ C∞(T ∗Rn) called the Hamiltonian function.

For our point mass moving in Rn its state may be specified by giving its position

and its momentum4, that is, by giving a point in the phase space M = Rn × Rn. If

3Although non-smooth Hamiltonians have been considered as well [Ma].
4The momentum is defined by p = mq̇ so that p2

2m = mv2

2 is the usual kenetic energy term.
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the point mass is under the influence of a potential V its Hamiltonian is given by

H(p, q) =
P 2

2m
+ V (q),

in Newton’s formulation it’s time evolution is given by Newton’s (second) Law of

Motion:
dp

dt
:= ṗ = −∇V.

By combining the definition of momentum with Newton’s second law of motion

Hamilton was able to treat the q and the p variables symmetrically and to rewrite

Newton’s second order relation for time evolution in configuration space as a system

of two first order equations that give the time evolution of a point (q, p) in phase

space:

q̇ =
p

m
ṗ = −∇V.

These can be expressed in terms of the Hamiltonian as

q̇ =
∂H

∂p
ṗ = −∂H

∂q
,

these are Hamilton’s equations. In Hamiltonian mechanics it is Hamilton’s equations

that are taken as the equations of motion rather than Newton’s law. That is, it

was Hamilton’s postulate that the time evolution of a classical system with phase

space (T ∗N,ωcan) for which the energy is given by the Hamiltonian H ∈ C∞(M) is

determined by the vector field:

XH = (
∂H

∂p
,−∂H

∂q
),

XH is called the Hamiltonian vector field and its flow is called the Hamiltonian

flow. The canonical 2-form ωcan can be used to encode the equations of motion5

in a coordinate-independant way, XH may be defined in terms of the symplectic

structure by the formula

5The relationship between the Hamiltonian function H and the Hamiltonian vector field XH .
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dH(.) = ω(XH , .) = ι(XH)ω. (1.1)

Remark 1.1.3. It should be noted that Hamilton’s equations form a system of

two first order equations. The dynamics depend only on the gradient of the energy

function H, the coordinate free expression makes this evident.

To read this definition recall that being a 2-form on the phase space M = T ∗N , ωcan

may be regarded as a bundle map, ωcan : TM → T ∗M by insertion into the first

argument. This means that at each point (q, p) of T ∗N , ωcan restricts to a maping

of linear spaces, ωcan|(q,p) : T(q,p)M → T ∗(q,p)M. In order for the vector field XH to be

well defined at each point (q, p) of T ∗N , these linear mappings must be injective6,

in that case ωcan is called non-degenerate. In fact, ωcan is non-degenerate, which

can easily be checked using the expression in local coordinates. Because ωcan = dα

is globally exact, it is closed, dωcan = ddα = 0. Consider Cartan’s formula for the

Lie derivative

LX = ι(X) ◦ d+ d ◦ ι(X).

Along the vector field XH , the Lie derivative of ωcan is

LXHωcan = ddH = 0,

where we have applied equation 1.1. We have demonstrated that for any function

f ∈ C∞(M) it’s Hamiltonian vector field Xf generates a flow which leaves ωcan

invariant.

This brings us to the concept of a symplectic manifold, this notion generalizes

the structure on T ∗N that we have been looking at. The need to consider these

6Because the domain and target are finite dimentional, the mappings will be surjective as well

and so they will be isomorphisms.
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more general phase spaces in physics arises for example when some classical systems

are subject to constraint.

1.1.2 Symplectic geometry

Definition 1.1.4. A symplectic manifold is a pair (M,ω), where M is a smooth

manifold and ω is a 2-form on M which is both closed (dω = 0) and non-degenerate.

Example 1.1.5. T ∗N with the natural 2-form ωcan is a symplectic manifold. ωcan

is exact (ωcan = dα), so d2 = 0, it is closed. The easiest way to see that ωcan is

non-degenerate is to use the formula in local coordinates given in remark 1.1.2. This

is in some sense7 the canonical example of a symplectic manifold.

Because the symplectic form ω is non-degenerate every symplectic manifold M will

have even dimension dimM = 2n. ωn is a nowhere vanishing 2n-form and so it

defines a (canonical) orientation on M. ωn

n!
is called Liouville’s volume form.

With the discussion of (T ∗N,ωcan) in mind, it is easy to see that given any

symplectic manifold M and a real valued function f ∈ C∞(M) one may define a

dynamical system in a parallel fashion. We now proceed to make this explicit. After

an introduction to the notion of quantization in section 1.3, the discussion in section

1.5 will be about the quantization of this dynamical system. The discussion in the

last two chapters will revolve around the quantization of one of its generalizations.

Definition 1.1.6. (Symplectomorphism)

An isomorphism in the category of symplectic manifolds is called a symplec-

tomorphism. A symplectomorphism is a diffeomorphism φ : (M,ω) → (N,ω′)

7See for example the Weinstein Tubular Neighborhood Theorem [CD]page 17.
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between two symplectic manifolds where the pull back of ω′ under φ is ω,

φ∗ω′ = ω.

The infinitesimal version (which consists of the collection of all tangent vectors to

the trajectories of φ) leads to the concept of symplectic vector fields. A vector

field X ∈ Γ∞(TM) is a symplectic vector field if its flow generates a symplec-

tomorphism, LXω = 0. The Hamiltonian vector fields are symplectic. Examples of

symplectomorphisms include the flow generated by a Hamiltonian function and the

map of cotangent bundles T ∗M → T ∗N induced by a diffeomorphism M → N .

Definition 1.1.7. (Hamiltonian dynamical system)

The triple (M,ω, f) of a smooth manifold M, a symplectic 2-form ω defined on

M and a real valued function f ∈ C∞(M ;R) define a dynamical system whose time

evolution is given by the flow of the vector field Xf defined by

df(.) = ω(Xf , .) = ι(Xf )ω.

Xf is referred to as the Hamiltonian vector field associated to f, its flow is

referred to as the Hamiltonian flow. The manifold M is called the phase space

of the system and the set C∞(M ;R) is the Poisson algebra of observables (see

theorem 1.1.13). The Poisson bracket is given by {f, g} := ω(Xf , Xg). The time

evolution of an observable g ∈ C∞(M ;R) is by definition given by

dg

dt
= LXfg = dg(Xf ) = ω(Xf , Xg) = {f, g}. (1.2)

For any function f ∈ C∞(M ;R), it’s Hamiltonian vector field Xf generates a sym-

plectomorphism, LXfω = 0, this can be established in exactly the same way as it

was above for T ∗N .
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Remark 1.1.8. In the general context of symplectic geometry the vector field Xf is

referred to as the symplectic gradient of f. While flow according to the gradient

(df) of f results in the fastest possible change in f, the symplectic gradient is tangent

to the level sets of f, so flow along Xf preserves f,

df(Xf ) = ω(Xf , Xf ) = 0

when f is the Hamiltonian of a system, this statement expresses the fact that energy

is conserved.

Example 1.1.9. Some examples of observables include: For a system of point

masses, the position and momentum coordinate functions, the total angular mo-

mentum L (about the center of mass) and the energy function H.

Example 1.1.10. (Geodesic flow on T ∗N)[Bo]

A particle moving freely on a Riemannian manifold (N,g) has phase space M = T ∗N

as above, the Hamiltonian has only the kinetic energy term and is given by

H =
1

2
|ξ|g2.

One can compute that

dH =
1

2

∂gij

∂xk
ξiξjdxk + gijξidξj,

so that

XH = gijξi
∂

∂xj
− 1

2

∂gij

∂xk
ξiξj

∂

∂ξk
.

The resulting tragectory when projected onto N satisfies the defining equation for a

geodesic (a path which is a local extremum of the distance functional [Mil]Section

10) on N,

ẍj =
d

dt
(gjkξk) = −gjl∂g

li

∂xl
ẋlẋi +

1

2
gjk

∂gli
∂xk

ẋjẋi = −Γj liẋ
lẋi,
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where Γ is the Christoffel symbol for g. That is, a free particle will travel along a

trajectory that is from its point of view a straight line.

Remark 1.1.11. In the Darboux coordinates 1.1.15 where ω =
∑
i

dqi ∧ dpi, the

bracket {., .} is given by the formula

{f, g} =
n∑
i=1

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
.

Lemma 1.1.12. For f, g ∈ C∞(M),

[Xf , Xg] = −X{f,g}.

Proof. From Cartan’s formula

LXf (ι(Xg)ω) = ι(LXfXg)ω + ι(Xg)LXfω,

and [Xf , Xg] = LXfXg, so we have

ι([Xf , Xg])ω = LXf (ι(Xg)ω)− ι(Xg)LXfω.

Now ι(Xg)ω = dg by definition, and because the Hamiltonian flow is a symplecto-

morphism, LXfω = 0, we have

ι([Xf , Xg])ω = dg(Xf ) = {g, f}.

Theorem 1.1.13. Let (M,ω) be a symplectic manifold, the bracket {., .} gives the

associative algebra of observables (C∞(M), ·) the structure of a Poisson algebra.

Proof. Bilinearity and skew-symmetry of the bracket are evident from the definition.

The Leibniz rule follows from the formula

{f, g} = ω(Xf , Xg) = df(Xg).
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To prove the Jacobi identiy Cartan’s formula for the exterior derivative is useful.

dω(X, Y, Z) =
1

3
(LXω(Y, Z)− LY ω(X,Z) + LZω(X, Y )

− ω([X, Y ], Z) + ω([X,Z], Y )− ω([Y, Z], X)),

where X, Y, Z ∈ V ect(M). After substituting X = Xf , Y = Xg, Z = Xh and

using the fact that dω = 0, this becomes

dω(Xf , Xg, Xh) =
−1

3
(ω([Xf , Xg], Xh) + ω([Xh, Xf , ]Xg) + ω([Xg, Xh], Xf )

=
1

3
(ω(Xh, X{f,g}) + ω(Xf , X{g,h}) + ω(Xg, X{h,f}))

=
1

3
({h, {f, g}}+ {f, {g, h}}+ {g, {h, f}})

= 0

where we have used the lemma and the fact that each of the vector fields Xf , Xg, Xh

generates a 1 parameter family of symplectomorphisms.

Remark 1.1.14. The coordinate positions and momenta form a complete set of

observables, this means that any observable that Poisson commutes with all of

them is constant (since all of its directional derivatives at all points of the phase

space will be constant). As far as we are aware this term was coined by M. Blau[B].

Theorem 1.1.15. (Darboux) All symplectic manifolds are locally diffeomorphic.

Let (M,ω) be a symplectic manifold, then for each m ∈M there exists a neibour-

hood Um ∈M wth a coordinate chart x = (x1, y1, x2, y2, . . . , xn, yn) : Um → Rn ×Rn

such that ω =
n∑
i=1

dxi ∧ dyi. Every symplectic 2-form can be written in this local

canonical form.
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1.2 Quantum mechanics

Quantum mechanics describes the behaviour of systems that are very very small,

on the scale of an atom. These systems are so easily perturbed that the effect of

a measurement on the state of the system is not negligible. Classical mechanics

does not take into account the disturbance caused by interacting with the system

during the measurement process (this is manifested by the commutative nature of

the pointwise product of functions as opposed to the noncommutative nature of the

corresponding operators), so it is only applicable to systems where the disturbance

is negligible. In the classical (Hamiltonian) theory the phase space (state space)

is (T ∗N,ωcan) or more generally any symplectic manifold (M,ω) and the set of

observable quantities is represented by functions f ∈ C∞(M ;R). When the system

is in the state (q, p) ∈ M , the result of a measurement of the observable f ∈

C∞(M ;R) will always be f(q, p). With the pointwise multiplication of functions

C∞(M) is a commutative associative algebra. The bracket {f, g} := ω(Xf , Xg)

satisfies the Leibnitz rule (with respect to the pointwise multiplication) as well as

the Jacobi identity, making it a Poisson bracket and this makes C∞(M) into a

Poisson algebra. To every observable f there is associated a Hamiltonian vector

field Xf , the dynamics are determined by a special observable H (which represents

the energy) called the Hamiltonian and the dynamical equation is, expressed in

terms of this natural algebraic structure by,

df

dt
= {H, f}.

If the system is in the state (q, p), the t in df
dt

represents a parameterization of the

unique trajectory of XH that passes through (q, p), so from this point of view the

time evolution is formulated infinitesimally as a derivation. For this reason it should

be emphasized that in order to be able to write this dynamical equation, the Jacobi
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identity (which can be understood as expressing a derivation property of the bracket

{., .} with respect to itself) has played a pivotal role.

Mathematical formulations of quantum mechanics, on the other hand, have tra-

ditionally been based on a Hilbert space approach. In the Hilbert space approach

the states of a system are represented by rays8 in a Hilbert space H, the observables

are given by self adjoint operators on H. The theory of measurement in quantum

mechanics is markedly different than it is in classical mechanics. For an observable

Ô ∈ End(H) which has no degenerate eigenvalues9, the usual description of mea-

surement theory (based on the Copenhagen interpretation of quantum mechanics)

goes as follows. Before we make a measurement of the observable Ô, the state ψ

may be any superposition of eigenstates of Ô (for this we appeal to the appropriate

spectral theorem). The result of a measurement of Ô will be an eigenvalue of Ô and

the state ψ, will immediately collapse to the corresponding eigenstate.

One example of a mathematical formulation that falls into the Hilbert space

paradigm is Matrix mechanics. The matrix formulation of quantum mechanics was

the earliest formulation of quantum mechanics. Matrix mechanics was formulated

by Werner Heisenberg in June of 1925[SBB], six months before Erwin Schrödinger

published his formulation based on wavefunctions. In matrix mechanics observables

are represented by N ×N matrices. For a system with N basis10 states each observ-

8By a ray we mean an equivalence class of vectors in H under the equivalence relation v ∼ w

iff v = λw for some nonzero complex number λ. The reason for this is that the information that

can be extracted from the theory (for example, the dynamics or the results of measurements) does

not depend on the complex number λ (known as a phase factor) multiplying v.
9It is a postulate of quantum mechanics that those endomorphisms that correspond to observ-

ables should be self-adjoint so that their eigenvalues will be real.
10The number of basis states will normally be infinite, and often it will be uncountable as it is

for example for position and momentum.
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able is represented by a N ×N Hermitian matrix. States are represented by N × 1

column matrices. Suppose an observable A is represented by the martix Â, then

the expectation value (the value that the results will tend toward after repeated

measurements) for a measurement of A in the state ψ is given by the inner product

〈ψ, Âψ〉. (1.3)

The dynamics are determined by a prefered self-adjoint matrix Ĥ called the Hamil-

tonian, which represents energy. The dynamical equation for any observable Â is

dÂ

dt
= − i

~
[Â(t), Ĥ].

In section 1.3, which is about (operator11) quantization we will discuss another

Hilbert space formulation of quantum mechanics (wave mechanics).

1.2.1 Geometric formulation of quantum mechanics

It is possible to formulate quantum mechanics geometrically[AS] as a Hamilto-

nian system. In order to reach a geometric formulation the first major observation

that is needed is the that every complex Hilbert space is naturally a Kähler man-

ifold. We will now follow the chain of ideas that leads to a full fledged geometric

formulation as far as we will need to for the discussions in chapters 2 and 3.

The complex Hilbert space of quantum mechanics may be viewed as a real vector

space with a complex structure J ∈ Aut(H), J2 = −I. The complex structure J

11Quantization proceedures were initially proposed in the Hilbert space framework. This is

in contrast to quantization procedures that are based on deformations of algebras, these were

introduced in polished form for the first time in [BFFLS].
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represents multiplication by i. Since we are viewing H as a real vector space it

is natural to decompose the Hermitian inner product into it’s real and imaginary

parts,

〈ψ, φ〉 =
1

2~
G(ψ, φ) +

i

2~
Ω(ψ, φ).

From the properties of the Hermitian inner product one can show that Ω is a sym-

plectic form and G is a positive definite real inner product, both Ω and G are

non-degenerate, this means that G is a metric. From the identity 〈ψ, Jφ〉 = i〈ψ, φ〉,

we can conclude that the metric G and the symplectic form Ω are related as

G(ψ, φ) = Ω(ψ, Jφ).

This makes the triple (H, G,Ω), into a (linear) Kähler space, this holds true for

any complex Hilbert space. To make H into a Kähler manifold we can extend Ω

naturally to a closed, non-degenerate 2-form (also called Ω) on H by using the

canonical identification of the tangent space at any point of H with H itself. In this

way we may view any complex Hilbert space as a cotangent bundle12 (the simplest

classical phase space). In terms of the complex structure J , the Schrödinger equation

may be written

ψ̇ = −1

~
JĤψ.

This motivates the assignment of a vector field

YF̂ (ψ) := −1

~
JF̂ψ,

12Although admittedly not in a natural way as we are considering R2n and there is no natural

half dimensional subspace.
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to each observable F̂ . YF̂ is called the Schrödinger vector field associated to F̂ ,

it is defined so that the time evolution is given by the Schrödinger vector field asso-

ciated to the Hamiltonian Ĥ. By definition YF̂ is the generator of a one-parameter

family of unitary mappings of H, this flow is the representation of the evolution of

the system under study. Since the flow of YF̂ preserves the Hermitian inner product,

it must be simultaneously an isometry with respect to the metric G and a symplec-

tomorphism with respect to the symplectic form Ω. This brings us to the second

major point in the development of a geometric formulation, the Schrödinger vector

field YF̂ is Hamiltonian for the expectation function F := 〈ψ, F̂ψ〉 : H → R, of F̂ .

The calculation that demonstrates this fact is illustrative of the role of the (multipli-

cation by i) complex structure J , which acts on the rescaled gradient vector −1
~ F̂ψ,

to turn it into the symplectic gradient vector −1
~JF̂ψ. The calculation also relies on

the fact that F̂ is self-adjoint. Let ξ be a tangent vector based at ψ, then

dF (ξ) =
d

dt
〈ψ + tξF̂ (ψ + tξ)〉|t=0 = 〈ψ, F̂ ξ〉+ 〈ξ, F̂ψ〉

=
1

~
G(F̂ ξ, ψ, ξ) = Ω(YF̂ , ξ) = iYF̂ (Ω)(ξ).

This description of the the Schrödinger vector field (as the Hamiltonian vector field

for F ) already allows us to view each quantum mechanical system as a Hamiltonian

system. The Hamiltonian systems that are obtained in this way have very different

Hamiltonians than the usual classical systems, there will be terms in the Hamiltonian

that represent quantum mechanical effects. In addition the subset of C∞(H) that

is comprised of expectation value functions of quantum observables is much smaller

than C∞(H) itself, where as in a classical system any f ∈ C∞(M) may be regarded

as an observavble. Let F̂ and K̂ be quantum observables and let F and K be

their respective expectation values, there is a nice relation between Poisson bracket

{F,K}Ω and the expectation value of the bracket [F̂ , K̂] of operators that will be
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useful for the discussion in chapter 3,

{F,K}Ω = Ω(XF , XK) =
1

i~
〈[F̂ , K̂]〉.

Notice that the Poisson bracket that appears in the relation is the quantum Poisson

bracket, so that this is not Dirac’s principle13. So far we have been been working

with the full Hilbert space H with the assumptions that the quantum states are

normalized and that the states ψ and eiθψ (we say that these states are related by a

phase factor) are equivalent. These assumptions come out of the measurement the-

ory, we take normalized states in so that the transition probabilities (the probability

that the quantum system will end up in a particular state after a measurement) will

be between 0 and 1. We regard two states that are related by a phase factor as

the same because the expectation value of states that are related by a phase factor

are the same. The upshot of all this is that it reveals that the apparent linearity14

of quantum mechanics is an artifact of the Hilbert space formulations. The true

physical phase space of quantum mechanics is the projectivization P := PH of the

Hilbert space we have been discussing so far. This observation, when carried to it’s

conclusion[AS], leads to a formulation of quantum mechanics that makes no refer-

ence to the Hilbert space or it’s linear structure. We will not be needing the full

formalism in this thesis, so we will conclude this section with this comment.

1.3 Quantization

The aim of quantization is to find a recipe that allows one to cook up a quantum

description of a classical system with only the classical information and some as-

13If this comment does not make sense now, it will make sense after reading the next section.
14In physics the usual situation is that a linear theory is the linearization of a more general

theory, this is the relation of special relativty to general relativity for example.
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sumptions about how the quantum system should be related to the classical one as

the ingredients, there are a variety of ways of doing this. Initially quantization was

developed with reference to the Hilbert space formulations of quantum mechanics.

Within this framework quantization can be described as a mapping

classical observables
Q−→ quantum observables.

This mapping is required to satisfy some properties (known as the quantization

axioms), the exact list of axioms depends on the classical and quantum viewpoints

that are being considered. This approach to quantization is known as operator

quantization and it is the quantization mapping (along with its target Hilbert space)

that we hope will provide the extra information and allow us to pass from a the

classical description to a more detailed quantum description. We will present the

axioms with a view toward the Kähler quantization of Kähler manifolds, in this

context we will adopt the convention C∞(M) := C∞(M ;C), the Poisson structure

is extended to the complex valued functions by complex linearity. We will take

C∞(M ;C) as the algebra of observables, rather than just C∞(M ;R), however only

the real valued functions have any physical meaning. Let (M,ω,H) be a Hamiltonian

system, then the axioms can be expressed as follows:

1. Q should be C-linear.

Q(cf + g) = cQ(f) +Q(g)

2. The constant function 1 should be sent to identity operator I.

3. Real valued functions should be sent to Hermitian operators so that their

eigenvalues will be real.

Q(f) = Q∗(f)
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4. We will require that,

i

~
[Q(f),Q(g)] = Q({f, g}) +O(~).

5. The final axiom can be stated in terms of the concept of a complete set of

observables. If {f1, . . . , fk} is a complete set of observables, than we require

that {Q(f1), . . . ,Q(fk)} is a complete set of operators.

The first two conditions say that Q is a representation of (unital) associative al-

gebras. The third condition is required to have a consistent interpretation for the

measurement theory, since the eigenvalues of the operator Q(f) are the possible

results of measurements. The fourth condition is a variation of what is often called

Dirac’s quantum condition, although Niels Bohr was the first to suggest it. Dirac

referred to i
~ [Â, B̂] = i

~(ÂB̂− B̂Â) as the “quantum Poisson bracket15 ”. According

to Dirac [., .] should be analogous to the classical Poisson bracket, he showed that the

classical Poisson bracket and the “quantum Poisson bracket” share the same alge-

braic structure, the JI. This 4th axiom is related to the concept of the classical limit.

The big O notation means that in the limit ~→ 0 there should be equality. We will

see shortly that the 5th axiom can be understood as an irreducibility condition, for

now let us just say that a set of operators is called a complete set of operators

if any operator that commutes with all of them is a multiple of the identity operator.

As another example of the Hilbert space approach to quantum theory take

Schrödingers wave mechanics, it will be instructive to examine the quantization

axioms in this context. We will revisit the example of a single particle moving in

Rn. Where in the classical theory the state of the particle was given by a point

(q, p) ∈ T ∗Rn, the state of the quantum particle is given by a complex valued func-

tion of position ψ(q), such that |ψ(q)|2 is the probability density for the particles

15Although it is really only a Lie bracket because it does not satisfy the Leibniz rule.
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position. The function ψ(q) is called the wavefunction for the system. Where in the

classical theory observables were functions f ∈ C∞(T ∗Rn), in the quantum theory

an observable is expressed as an operator on the Hilbert space H = L2(Rn). For an

observable f̂ ∈ L2(Rn) its possible values (the values that can be observed upon a

measurement) are its eigenvalues, and the probability that that a particular eigen-

value will be observed depends on the eigenbasis decomposition of the state being

observed. The expected value of the observable f̂ for the state ψ is given by

〈ψ, f̂ψ〉 =

∫ ∞
−∞

ψ∗(x, t)f̂ψ(x, t)dx.

There are two ways of writing the time evolution. Recall that the equation for the

Hamiltonian flow can be written in terms of the Lie bracket as

dqi
dt

= {H, qi}

dpi
dt

= {H, pi}

Then the time evolution of an arbitrary observable can be written

df

dt
= {H, f}.

It is a basic principle of quantum mechanics (axiom 4) that the role played by the

Poisson bracket of functions {., .} in the classical theory should be played by i
~ times

the commutator of operators in the quantum theory. This suggests the equation

df̂

dt
=
i

~
[Ĥ, f̂ ]

for the time evolution of a quantum observable, which has as its formal solution

Â(t) = e
−i
~ tĤ f̂e

i
~ tĤ .
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We are regarding the state of the system as stationary and the observable as de-

pendant on time, this viewpoint would be natural for an observer moving along

with the particle, this was Heisenberg’s approach. Alternatively we could proceed

according to Schrödinger’s approach and put the time dependance into the state ψ

while letting the observable remain constant. Then the equation for time evolution

is Schrödinger’s equation
∂ψ

∂t
=
−i
~
Hψ.

There are many other formulations of quantum mechanics, for a selection of nine,

which includes the two we have mentioned so far see [SBB]. If we try to carry out

quantization in the simplest case N = Rn, M = T ∗N imposing a strict version of the

4th axiom, namely the equality i
~ [Q(f),Q(g)] = Q({f, g}), then for the coordinate

functions qi and pj we will have

[Q(qi),Q(qj)] = {qi, qj} = 0

[Q(pi),Q(pj)] = {pi, pj} = 0

[Q(qi),Q(pj)] = i~{qi, pj} = i~δij.

This is known as the Heisenberg algebra. Applying Schur’s lemma we see that the

5th axiom asks us to find an irreducible representation of the Heisenberg algebra.

This special case is the reason that the 5th axiom is regarded as an irreducibility

condition. The Stone-von Neumann theorem says that any irreducible representation

of the Heisenberg algebra16 is unitarily equivalent to the one17 on L2(N) = L2(Rn)

16That exponentiates to a representation of the Heisenberg group.
17Notice that the correct Hilbert space is not functions on L2(T ∗N) but rather L2(N), functions

on a half dimensional subspace of the phase space T ∗N .
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given by

Q(qi)ψ(x) = xiψ(x),

Q(pj)ψ(x) = −i~ ∂ψ
∂xj

(x)

This result was actually one of the motivating factors for the formulation of these

quantization axioms. It turns out that up to a choice of ordering for the Q(qj)
′s and

Q(pj)
′s (because on the quantum side the algebra of observables is not commutative)

any observables quadratic in the q′js and p′js can be quantized while conforming to

the strict version of the 4th axiom i
~ [Q(f),Q(g)] = Q({f, g}). If we try to quantize

the cubic or higher observables by extending the above quantization, we will see that

we run into problems with the 4th axiom. This can be understood as a shadow of

the Groenewald-van Hove theorem. The Groenewald-van Hove theorem is a no-go

theorem that essentially says that quantization of observables which are cubic or

higer in the q′js and p′js is not possible if we insist on the strict form of the 4th

axiom and on the 5th axiom18.

Despite the efforts of many researchers working in mathematics and physics, the

body of work collectively known as quantization has not yet been able to lead us

to a theory of quantum mechanics that we can write down from scratch, avoiding

the process of quantization altogether, and maybe it never will. It is clear that the

classical theory does not contain all of the information, if it did there would be no

need for a quantum theory or for quantization. When we try to get a quantum

theory from a classical one we must somehow add some information, in operator

quantization this happens when you introduce the quantization mapping (which

is required to satisfy certain axioms) and its target Hilbert space, this gives an

image of the classical theory inside what people understand as the mathematical

18For a review of the Groenewald-van Hove theorem see[Go]
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framework for quantum mechanics. The reason why the Hilbert space along with its

endomorphisms and their noncommutative structure are understood as ”quantum”

is that this setting works well in some particular situations that are of interest,

like the free particle moving in Rn. The free particle in Rn is quantized by Diracs’

axioms of canonical quantization19. As we have seen, even in this (the simplest

possible scenario) only observables that are quadratic (or of lower order) in the

positions and momenta can be quantized. When one tries to quantized higher order

observables in keeping with Diracs axioms, there will be algebraic inconsistencies

[MJG]. Canonical quantization for the flat space Rn is really the best that we are

able to do in that case. This means that whenever we write down quantization

axioms for more general spaces (for example geometric quantization tries to quantize

symplectic manifolds, Kähler quantization quantizes Kähler manifolds) if we try to

do it using the strict version of axiom 4 and ask for a condition that reduces to

irreducibility for a representation of the Heisenberg algebra we cannot quantize a

general observable that is cubic or higher in the positions and momenta, if we would

like to be able to quantize more observables we must somehow modify the axioms so

that we may avoid the no go theorems. In deformation quantization and in Kähler

quantization this is acomplished by adding the O(~) term to axiom 4. Therefore we

see that there are challenges in building bridges between these two areas (classical

mechanics and quantum mechanics), in a satisfying way, and people keep looking

for new ideas.

1.4 Toeplitz operators

The Toeplitz operators that appear in chapter 2 are the ”global” Toeplitz opera-

tors of Boutet de Monvel and Guillemin [BG]. The ”global” Toeplitz operators can

19That is in keeping with axioms 1,2,3,4 (the strict version without the O(~) term).
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be defined over ∂W , where ∂W is the smooth boundary of a strictly pseudoconvex

domain W in a complex n-dimensional manifold, n ≥ 1. We will introduce the

”global” Toeplitz operators in 1.4.2. However Toeplitz operators were first defined

on the circle S1, so we will give this definition first.

1.4.1 Toeplitz operators on the circle

Toeplitz operators on the circle S1 = {z ∈ C | |z| = 1} are defined as follows[BH].

Let µ denote the standard Lebesgue measure and let en = en(z) = zn, z ∈ S1, n ∈ Z.

The en are bounded measureable functions and they form a basis for L2 = L2(S1, µ).

The Hardy space H2 is defined as the space of all functions in L2 that are analytic,

a function f ∈ L2 is called analytic if
∫
S1 f ēndµ = 0 for all n < 0. Denote by

Π : L2 → H2 the orthogonal projector. For any bounded measurable function f

there is a corresponding Toeplitz operator Tf : H2 → H2 defined by Tf := Π ◦Mf ,

where Mf is the operator that multiplies by the function f. The Toeplitz operator

corresponding to the constant function 1 is the identity operator I and for f, g ∈

C∞(S1) we have Tαf+βg = αTf + βTg.

Example 1.4.1. 1. The function z ∈ C∞(S1) has a Toeplitz operator that acts

in the standard basis as multiplication by z.

c1 + c2z + c3z
2 + . . . 7→ c1z + c2z

2 + c3z
3 + . . .

2. The function 1
z
∈ C∞(S1) has a Toeplitz operator that acts in the standard

basis as multiplication by 1
z

followed by a truncation.

c1 + c2z + c3z
2 + . . . 7→ c2 + c3z + c4z

2 + . . .
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1.4.2 Toeplitz operators on smooth boundaries of strictly

pseudoconvex domains

Let W be a strictly pseudoconvex domain in a complex n-dimensional manifold

M , assume that the boundary ∂W is smooth and that W̄ = W ∪ ∂W is compact,

n ≥ 1. Choose a defining function, r ∈ C∞(M), with the following properties:

r|W < 0, r|∂W = 0, dr 6= 0 near ∂W . Let j : ∂W ↪→ W̄ be the inclusion map.

The 1-form α = j∗Im(∂̄r) is a contact form on ∂W , the upshot of this is that the

(2n− 1)-form Ω = α ∧ (dα)n−1 is a volume form for ∂W . Denote by µ the measure

associated to the volume form Ω and let L2 = L2(∂W, µ). Let A(W) denote the

space of functions defined on W̄ which are continuous on W̄ , smooth on ∂W , and

holomorphic on W. Define the Hardy space H2 = H2(∂W ) to be the closure in

{f |∂W | f ∈ A(W )}. Denote by Π : L2 → H2 the orthogonal projector.

Definition 1.4.2. [Toeplitz operator]

An operator T : C∞(∂W )→ C∞(∂W ) is called a Toeplitz operator of order

k if it is of the form ΠQΠ, where Q is a pseudodifferential operator of order k.

The principal symbol of T is defined by σ(T ) := σ(Q)|Σ, where σ(Q) is the prinipal

symbol of Q and

Σ = {(x, ξ) |x ∈ ∂W, ξ = rαx, r > 0}

is a symplectic submanifold of T ∗∂W .

In [BG] it is shown that the principal symbol of Toeplitz operators is well defined and

that they form a ring. It is also shown that the principal symbol of Toeplitz operators

obeys the same rules as the pricipal symbol of pseudo-differential operators:

σ(T1T2) = σ(T1)σ(T2),
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σ([T1, T2]) = i{σ(T1), σ(T2)},

where the Poisson bracket is the one coming from the symplectic structure of

Σ. For a more detailed explaination of this theory in the context that is needed to

understand section 2.3.1 of the thesis see [Bo] section 11.

1.4.3 Quantum line bundles

For a symplectic manifold (M,ω) a quantum line bundle is a triple (L, h,∇),

where L is a complex line bundle, h is a Hermitian metric on L, and∇ is a connection

compatible with the metric h and such that the following (pre)quantum condition

is satisfied

curvL,∇(X, Y ) := ∇X∇Y −∇Y∇X −∇[X,Y ] = −iω(X, Y ).

The symplectic manifold is called quantizable if there exists a quantum line bundle.

Line bundles are topologically classified by their first Chern class c1(L) ∈ H2(M,Z).

In de Rham cohomology, c1(L) is represented by the curvature form of any connec-

tion on L, although the curvature form will depend on the connection, its cohomology

class does not. This means that a necessary condition (it turns out that it is a suf-

ficient condition also) for having a quantizable symplectic manifold is that ( 1
2π

)ω

represent an integral cohomology class, in this case ω
2π

is called integral.

When the manifold is Kähler, the quantum line bundle must be holomorphic and

the connection must be compatible with the metric as well as the complex structure

of the bundle. For compact Kähler manifolds the (pre)quantum condition leads to

an embedding into projective space.

Theorem 1.4.3. Kodaira’s embedding theorem



CHAPTER 1. 1-PLECTIC QUANTIZATION VIA TOEPLITZ OPERATORS 33

Let M be a compact complex manifold, M can be embedded into projective space

if and only if there exists a positive line bundle L on M.

A line bundle L → M is called positive ifc1(L) can be represented by a real posi-

tive closed (1,1) form. Kähler forms are positive, so the quantum condition implies

that the quantum line bundle is positive, so that the embedding theorem applies to

any quantizable Kähler manifold. The embedding is achieved by using the global

holomorphic sections of some tensor power Lm of the quantizing line bundle L, in

this case L is called an ample line bundle and Lm is called very ample. Kodaira’s

embedding theorem characterizes projective manifolds among compact Kähler man-

ifolds.

1.5 Berezin-Toeplitz operator quantization

In this section we will introduce the Berezin-Toeplitz20 operator quantization of

a Kähler manifold.

Let (M,ω) be a compact Kähler manifold. Let (L, h,∇) be a quantum line bundle

over M and let (L⊗k, h⊗k,∇⊗k), k ∈ N0, be its tensor powers21. L is a holomorphic

hermitian line bundle such that the curvature of the hermitian connection is −iω.

We introduce a scalar product on Γ∞(M,L⊗k) (the space of smooth sections of L⊗k)

and let L2(M,L⊗k) be its L2-completion under this inner product.

〈φ, ψ〉 :=

∫
M

hk(φ, ψ)Ω,

where Ω := 1
n!
ωn. Let H0(M,L⊗k) be its closed subspace of holomorphic sections,

this is a finite dimensional vector space due to the compactness of M. By Πk we will

20This is also known as the Kähler quantization, we will see that although the Hilbert space

for this quantization is the same as in geometric quantization, the choice of polarization and the

definition of the mapping C∞(M)→ End(H) make use of the Kähler structure.
21Sometimes we will simply write hk for h⊗k etc..
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denote the natural projection

Πk : L2(M,Lk)→ H0(M,Lk).

Smooth symbol

The reference used throughout this subsection is [BMS], where the method is

based on the analysis of Toeplitz structures from [BG]. Results mentioned here and

more extensive discussion can be found in surveys on Berezin-Toeplitz quantization,

- for example in [S2].

The general theory developed by Boutet de Monvel and Guillemin (see 1.4.2),

for W being the disk bundle in L∗ and pseudo differential operators of order zero,

leads to the following definition. For f ∈ C∞(M), the Toeplitz operator (of level k)

is defined by

Tf
(k) := Πk ◦ (Mf ) : H0(M,Lk)→ H0(M,Lk).

Given a holomorphic section s we multiply it by f to obtain the section fs, which will

not be holomorphic in general, to end up with a holomorphic section we keep only

the holomorphic part of fs by acting with the natural projection. For a survey on

Berezin-Toeplitz quantization see for example, [S2]. For α, β ∈ C and f, g ∈ C∞(M)

we have that

T
(k)
αf+βg = αT

(k)
f + βT (k)

g .

In this way we obtain for each k ∈ N0 a linear mapping

T k : C∞(M)→ End(H0(M,Lk))

f → Tf
k
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In general we have that

Tf
(k)Tg

(k) = Πk(Mf )Π
k(Mg) 6= Πk(Mfg) = Tfg

(k)

so that T (k) is not an associative algebra homomorpism, nor is it a Lie algebra

homomorphism. Furthermore because Γhol(M,Lk) is finite dimensional, T (k) is not

even injective, it is however surjective[BMS].

Remark 1.5.1. 1. For α, β ∈ C and f, g ∈ C∞(M) we have that

T
(k)
αf+βg = αT

(k)
f + βT (k)

g .

2. Any constant function c is clearly mapped to cI

3. Toeplitz operators satisfy the equality T
(k)∗
f = T

(k)

f̄
. In particular for real

valued functions T
(k)∗
f = T

(k)
f .

These are the first three axioms of quantization, that these Toeplitz operators also

satisfy the fourth axiom of quantization is the content of theorem 1.5.3 below.

Definition 1.5.2. (Berezin-Toeplitz quantization map)

T =
⊕
k

T (k) : C∞(M)→
∏
k

End(H0(M,Lk))

f 7→
⊕
k

(T
(k)
f )

In BT-quantization the index k plays the role of 1
~ . In order to be a quantization

of (M,ω), we should be able to approximate C∞(M) with End(H0(M,Lk)) by

adjusting k, this is the content of the next theorem.

Theorem 1.5.3 ([BMS] Th. 4.1, 4.2, [S2] Th. 3.3). For f, g ∈ C∞(M), as k →∞,

(i)

||ik[T
(k)
f , T (k)

g ]− T (k)
{f,g}|| = O(

1

k
),
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(ii) there is a constant C = C(f) > 0 such that

|f |∞ −
C

k
≤ ||T (k)

f || ≤ |f |∞.

Proposition 1.5.4 ([BMS] p. 289, [S2] Prop. 3.5 ). For f, g ∈ C∞(M)

lim
k→∞
||[T (k)

f , T (k)
g ]|| = 0.

Remark 1.5.5. Proof of this Proposition actually implies that

||[T (k)
f , T (k)

g ]|| = O(
1

k
)

as k →∞.

Part (i) of the theorem expresses the fact that although Dirac’c conditon is not

satisfied at any fixed level k, asymptotically Dirac’s condition is satisfied.

Proposition 1.5.6 ([BMS] p. 291, [S2] Prop. 3.4). For f1, ..., fp ∈ C∞(M)

||T (k)
f1
...T

(k)
fp
− T (k)

f1...fp
|| = O(

1

k
)

as k →∞.

At first glance these Berezin-Toeplitz operators do not appear to be related to the

operator of geometric quantization (with Kähler polarization). They are however

related by the well known Tuynman relation[Tu],

Q
(k)
f = iT

(k)

f− 1
2k

∆f
. (1.4)

It is a consequence of the Tuynman relation that the theorems and propositions of

this section hold also for the operator of geometric quantization Qk
f .
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C l symbol

The reference for theorems analogous to those above in subsection 1.5, with

f ∈ C l(M), is [BMMP]. In [BMMP] the method is different from [BMS]. It relies

on techniques developed in [MM1], [MM2], see also [MM3]. For l = 4 statements

similar to Theorem 1.5.3, Prop. 1.5.6 follow from Cor. 4.5, Remark 5.7(b), Cor. 4.4

of [BMMP]. The fact that for f, g ∈ C4(M) ||[T (k)
f , T

(k)
g ]|| = O( 1

k
) as k →∞ easily

follows too, from Cor. 4.5 and Remark 5.7(b) [BMMP].

This concludes the first chapter of the thesis. In the second chapter we will

discuss quantization in a more general context than we have been doing in this first

chapter. Our goal will be to prove an analog of theorem 1.5.3 in this more general

setting.



Chapter 2

m-plectic quantization via Toeplitz

operators

This chapter contains the main results of the thesis. In section 2.3, by an ap-

plication of Berezin-Toeplitz quantization we suggest a way to quantize a compact

quantizable Kähler manifold regarded as a (2n−1)-plectic manifold. In section 2.4.3

we make another application of Berezin-Toeplitz quantization, this time to quantize

a compact hyperkähler manifold equipped with a natural 4-form, we show that in

both of these cases, the quantization has reasonable semiclassical properties.

2.1 Preliminaries

Here we will lay out some notations and definitions, as well as some lemmas

concerning them, that we will use in the last two chapters of the thesis. Sn, for a

positive integer n, will denote the symmetric group (the group of permutations of

1, . . . , n). For σ ∈ Sn, ε(σ) will denote the sign of the permutation (+1 for an even

permutation and -1 for an odd permutation). For a complex vector space V and

38
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A,B ∈ End(V ), [A,B] = AB − BA. I will denote the identity operator on V. Our

vector spaces will be equipped with an inner product and as a consequence they will

carry a norm, then ||A|| will denote the operator norm of A defined for bounded1

linear operators by

||A|| = inf{c ≥ 0 : ||Av|| ≤ c||v||for allv ∈ V }.

A∗ will denote the adjoint of the operator A. We will continue to denote the al-

gebra of smooth complex-valued functions on a smooth manifold M (which will

be a Kähler manifold in this section) by C∞(M), for f ∈ C∞(M) we will write

|f |∞ = supx∈M |f(x)|.

Definition 2.1.1. An (m+1)-form Ω on a smooth manifold M is called an m-plectic form

or a multisymplectic form if it is closed (dΩ = 0) and non-degenerate (v ∈

TxM, vyΩx = 0 ⇒ v = 0). If Ω is a multisymplectic form on M, (M,Ω) is called a

multisymplectic or m-plectic, manifold.

Example 2.1.2. The canonical example of an m-plectic manifold is
∧m T ∗M , where

M is any smooth manifold, this generalizes the 1-plectic (symplectic structure on)

T ∗M , which has already been introduced as the canonical example of a symplectic

manifold. There is a canonical m-form α on
∧m T ∗M defined as:

α(v1, . . . , vm) = x(dπ(v1), . . . , dπ(vm))

where each vi is a tangent vector at a point x ∈
∧m T ∗M and π :

∧m T ∗M →M is

the natural projection. The (m+ 1)-form

ω = dα

1If V is finite dimensional than every linear operator V → V is bounded, the vector spaces for

Kähler quantization that we will be considering in this chapter are finite dimensional.
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is m-plectic. To see this introduce coordinates q1, . . . , qd on an open set U ⊂ M .

Then the vectors dqI = dqi1 ∧ · · · ∧ dqim where I = (i1, . . . , im) ranges over multi-

indices of length m provide a basis for m-forms on U . To these m-forms there are

corresponding fibre coordinates pI which when combined with the coordinates qi

pulled back from the base give a coordinate system on
∧m T ∗U . In this coordinate

system we may write

α =
∑
I

pIdq
I .

So that we have

dα = ω =
∑
I

dpI ∧ dqI .

From this formula we can see that ω is closed (since it is exact) and non-degenerate

(this follows from the linear independence of the dqI).

Remark 2.1.3. The Jacobi identity may be written in any of a number of ways, we

give some of the most common here. Let Xi ∈ (A, •, [., .]) where (A, •) is an algebra

(which may or may not be associative) and [., .] :
∧2A → A, (A, [., .]) is a bracket

that satisfies the Jacobi identity (JI), giving (A, [., .]) the structure of a Lie algebra.

The Jacobi identity may be a expressed in any of the following forms:

[X1, [X2, X3]] = [[X1, X2], X3] + [X2, [X1, X3], (2.1a)

[X1, [X2, X3]] + [X2, [X3, X1] + [X3, [X1, X2]] = 0, (2.1b)∑
σ∈cyclic permutations

[Xσ(1), [Xσ(2), Xσ(3)]] = 0, (2.1c)

∑
σ∈S3

ε(σ)[Xσ(1), [Xσ(2), Xσ(3)]] = 0, (2.1d)

(1a) emphasizes that the JI is a derivation property for any operator [X, .] (where

X ∈ A) with respect to the bracket [.,.], which may be viewed as a product. (1b)



CHAPTER 2. M -PLECTIC QUANTIZATION VIA TOEPLITZ OPERATORS41

suggests another perspective on the JI, suppose the algebra (A, •) is associative,

than we have:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]]

= X[Y, Z]− [Y, Z]X + Y [Z,X]− [Z,X]Y + Z[X, Y ]− [X, Y ]Z

= X(Y Z)−X(ZY )−(Y Z)X+(ZY )X+Y (ZX)−Y (XZ)+(ZX)Y−(XZ)Y+Z(XY )

−Z(Y X)− (XY )Z + (Y X)Z

= XY Z−XZY−Y ZX+ZY X+Y ZX−Y XZ−ZXY+XZY+ZXY−ZY X−XY Z+Y XZ = 0

where in the last line associativiy permits us to drop the brackets and we have written

X•Y = XY throughout. (1b),(1c) are precisely the same identity written in different

notations. To see that (1a) is equivalent to (1b) simply apply the antisymmetry

property of the bracket. The l.h.s of (1d) is proportional to the l.h.s of (1c), so these

identities are equivalent as well.

Definition 2.1.4. ([T], [G]) Let M be a smooth manifold. A multilinear map

{., ..., .} : (C∞(M))⊗j → C∞(M)

is called a Nambu-Poisson bracket or (generalized) Nambu bracket of order

j if it satisfies the following properties:

• (skew-symmetry) {f1, ..., fj} = ε(σ){fσ(1), ..., fσ(j)} for any f1, ..., fj ∈ C∞(M)

and for any σ ∈ Sj,

• (Leibniz rule) {f1, ..., fj−1, g1g2} = {f1, ..., fj−1, g1}g2 + g1{f1, ..., fj−1, g2} for

any f1, ..., fj−1, g1, g2 ∈ C∞(M),
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• (fundamental identity)

{f1, ..., fj−1,, {g1, ..., gj}} =

j∑
i=1

{g1, ..., {f1, ..., fj−1, gi}, ..., gj},

for all f1, ..., fj−1, g1, ..., gj ∈ C∞(M).

The fundamental identity generalizes the Jacobi identity along the lines of (1a)

above, that is, the fundamental identity generalizes the derivation property of the

JI. It is natural to ask how to generalize the Hamiltonian formalism of symplectic

geometry to the multisymplectic setting. This generalization relies on a bracket that

satisfies the fundamental identity for the formulation of it’s dynamics and is called

Nambu mechanics, it first appeared in [N]. We don’t need the full multisymplectic

formalism for the purposes of this thesis, and we refer the reader to [T], [He], [R1].

Definition 2.1.5. Let M be a smooth manifold and let {. . . . , .} be a Nambu-Poisson

bracket defined on C∞(M), than the pair (M, {., . . . , .}) is called a Nambu-Poisson

manifold.

Example 2.1.6. Let M be an oriented n-dimensional manifold with volume form

vM , we may define an n-ary bracket on C∞(M) by the formula

df1 ∧ df2 ∧ · · · ∧ dfn = {f1, f2, . . . , fn}vM

This defines a Nambu-Poisson bracket[G].

Example 2.1.7. A smooth manifold M is called a hyperkähler manifold if it comes

with a Riemannian metric g and three complex structures J1, J2, J3 compatible with

g in the sense that each i ∈ {1, 2, 3}, ωi(X, Y ) = g(X, JiY ) is a Kähler form, where

X, Y are vector fields on M and such that these complex structures satisfy the

quaternionic relations, that is, J3 = J1J2 = −J2J1.
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Definition 2.1.8. ([APP], [AI]) Let M be a smooth manifold and suppose j is an

even positive integer. A multilinear map

{., ..., .} : (C∞(M))⊗j → C∞(M)

is called a generalized Poisson bracket if it satisfies the following properties:

• (skew-symmetry) {f1, ..., fj} = ε(σ){fσ(1), ..., fσ(j)} for any f1, ..., fj ∈ C∞(M)

and for any σ ∈ Sj,

• (Leibniz rule) {f1, ..., fj−1, g1g2} = {f1, ..., fj−1, g1}g2 + g1{f1, ..., fj−1, g2} for

any f1, ..., fj−1, g1, g2 ∈ C∞(M),

• (generalized Jacobi identity)

Alt{f1, ..., fj−1, {fj, ..., f2j−1}} :=∑
σ∈S2j−1

ε(σ){fσ(1), ..., fσ(j−1), {fσ(j), ..., fσ(2j−1)}} = 0

for any f1, ..., f2j−1 ∈ C∞(M).

The generalized Jacobi identity, generalizes (1d) and for an associative algebra it is

a consequence of the associativity[AI].

Definition 2.1.9. ([ILMM]) A bracket as in definition 2.1.8 satisfying only the

first two conditions (skew-symmetry and Leibniz rule) is called an almost Poisson

bracket of order j.

Remark 2.1.10. A Nambu-Poisson bracket of even order is a generalized Poisson

bracket [ILMM].
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2.1.1 Generalized commutator

Let [., ., ., .] denote the Nambu generalized commutator ([N], [T], [CT]): for

a finite-dimensional complex vector space V and A1, ..., A2n ∈ End(V )

[A1, ..., A2n] =
∑
σ∈S2n

ε(σ)Aσ(1)...Aσ(2n).

For example, for n = 2

[A1, A2, A3, A4] =
∑
σ∈S4

ε(σ)Aσ(1)Aσ(2)Aσ(3)Aσ(4) =

[A1, A2][A3, A4]− [A1, A3][A2, A4] + [A1, A4][A2, A3]+

[A3, A4][A1, A2]− [A2, A4][A1, A3] + [A2, A3][A1, A4].
(2.2)

The bracket [., ., ., .] defines a map
∧4End(V )→ End(V ) which does not satisfy the

Leibniz rule and does not satisfy the fundamental identity. There has been some

discussion of this in physics literature (e.g. [CZ1]) and they seem to think that

requiring these two conditions is not necessary. There has been investigation into

algebraic properties of this bracket - see e.g. [CJM] and [AI], where some ideas go

back to [Br], [F], and earlier work by Kurosh and his school.

Remark 2.1.11. Because the composition of linear operators is associative, the

generalized commutator satisfies the generalized Jacobi identity[AI].

Lemma 2.1.12.

[A1, ..., A2n] =
1

2n

∑
σ∈S2n

ε(σ)[Aσ(1), Aσ(2)][Aσ(3), Aσ(4)]...[Aσ(2n−1), Aσ(2n)].

Proof. By straightforward comparison of the polynomials. Observe that each

monomial from the left-hand side appears on the right-hand side exactly 2n times,

with appropriate sign, and this accounts for all the terms on the right hand side. �

Remark 2.1.13. Equality (2.2) is (93) [CZ1]. It is not hard to see that Lemma

2.1.12 is equivalent to (94) [CZ1].
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2.2 n-plectic quantization

Where in classical mechanics the algebra of observables was (C∞(M), {., .}), a

Poisson algebra, the goal of the usual (1-plectic) quantization was to find a map-

ping Q : C∞(M) → End(H) taking classical observables to quantum observables

satisfying some desirable properties which included a correspondence {., .} → [., .],

between the classical and quantum Lie algebra structures. In both of the situations

that we will be considering in the rest of this chapter we will have an almost Pois-

son algebra (C∞(M), {., . . . , .}) where {., . . . , .} is an almost Poisson structure. We

will be interested in a finding a mapping Q : C∞(M) → End(H) where the alge-

braic structure on the Hilbert space side is provided by the generalized commutator

[., . . . , .]. This mapping should satisfy some properties which mirror the axioms

of the usual quantization (they will be outlined below) and which will include a

correspondence {., . . . , .} → [., . . . , .] between the Nambu-Poisson structure and the

generalized commutator. By an n-plectic quantization of (C∞(M), {., . . . , .}) we will

mean a mapping Q : C∞(M)→ End(H) satisfying the following axioms:

1. Q should be C-linear

Q(cf + g) = cQ(f) +Q(g)

2. The constant function 1 should be sent to identity operator I.

3. Real valued functions should be sent to self-adjoint operators so that their

eigenvalues will be real.

Q(f) = Q∗(f)

4. We will require that

(
i

~
)n[Q(f1), . . . ,Q(f2n)] = Q({f1, . . . , f2n}) +O(~).
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Axioms 1,2, and 3 are the same ones that are desired for 1-plectic quantization (of

which Berezin-Toeplitz quantization is an example). Axiom 4 is a straightforward

generalization that we need in order to extend Berezin-Toeplitz quantization to

the n-plectic case. Our focus in this chapter will be to demonstrate that this 4th

axiom is satisfied in the two situations to which we will be applying Berezin-Toeplitz

quantization. It should be noted that in the 1-plectic case both the classical algebra

of observables and the quantum algebra of observables are Lie algebras and that

although the Berezin-Toeplitz quantization map is not a Lie algebra morphism at

any particular level k, the fact that it satifies axiom 4 means that asymptotically

it becomes a Lie algebra homomorpism. The situation in the Nambu-Poisson case

is a little different, the algebraic structure on the Hilbert space side is provided

by the generalized commutator [., . . . , .] which does not satisfy the same identity

(fundamental identity) as the algebraic structure on the classical side. We will

however show that when we extend Berezin-Toeplitz quantization to the n-plectic

case the generalized version of axiom 4 holds, so that we will also have in this case

that the mapping becomes a homomorphism asymptotically.

2.3 Quantization of the (2n − 1)-plectic structure

on an n-dimensional Kähler manifold

In this section we will use the Berezin-Toeplitz operator quantization to quantize

a compact quantizable Kähler manifold of complex dimension n regarded as a (2n−

1)-plectic manifold. We will show that the quantization has reasonable semiclassical

properties.

Let (M,ω) be a compact n-dimensional Kähler manifold (n ≥ 1). Denote by {., .}

the Poisson bracket on M coming from ω. Assume there is a hermitian holomorphic
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line bundle L on M such that the curvature of the hermitian connection is equal to

−iω.

Every volume form is closed and non-degenerate so the volume form Ω = ωn

n!
is

a (2n− 1)-plectic form. The bracket {., ..., .} :
∧2nC∞(M)→ C∞(M) defined by

df1 ∧ ... ∧ df2n = {f1, ..., f2n}Ω

is a Nambu-Poisson bracket (example 2.1.6) [G, Cor. 1 p. 106] .

Lemma 2.3.1. For f1, ..., f2n ∈ C∞(M)

{f1, ..., f2n} =
1

2nn!

∑
σ∈S2n

ε(σ)
n∏
j=1

{fσ(2j−1), fσ(2j)} (2.3)

Remark 2.3.2. In particular, for n = 2

{f1, f2, f3, f4} = {f1, f2}{f3, f4} − {f1, f3}{f2, f4}+ {f1, f4}{f2, f3}.

Proof of Lemma 2.3.1. Let’s use the Darboux theorem and compare the left-hand

side and the right-hand side of (2.3) in a local chart with coordinates x1,...,x2n such

that in this chart ω =
∑n

j=1 dx2j−1∧dx2j. Locally, in this chart, the Poisson bracket

is

{fi, fl} =
n∑
j=1

(
∂fi

∂x2j−1

∂fl
∂x2j

− ∂fi
∂x2j

∂fl
∂x2j−1

)

and {f1, ..., f2n} = det J , where J = ( ∂fi
∂xl

). det is the only function on (2n) × (2n)

complex matrices which takes value 1 on the identity matrix, linear in the rows,

and takes value zero on a matrix whose two adjacent rows are equal (axiomatic

characterization of the determinant, see e.g. Theorem 3.14 [A]). The right-hand

side of (2.3) is a polynomial in the entries of J that satisfies these three conditions,

therefore it must be equal to det J . �

Remark 2.3.3. The previous lemma holds true for any almost Poisson bracket of

order j [AI], our proof makes use of the fact the bracket we are investigating is

defined in terms of non-degenerate Poisson brackets.
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The following theorem shows that, informally speaking, ”{., ..., .} → [., ..., .] as

k →∞”.

Theorem 2.3.4. For f1, ..., f2n ∈ C∞(M)

||(ik)n

n!
[T

(k)
f1
, ..., T

(k)
f2n

]− T (k)
{f1,...,f2n}|| = O(

1

k
)

as k →∞.

Proof. By Theorem 1.5.3 (i)

||ik[T
(k)
f2j−1

, T
(k)
f2j

]− T (k)
{f2j−1,f2j}|| = O(

1

k
) (2.4)

for j = 1, ..., n. Using Prop. 1.5.6 and the triangle inequality, we get:

||(ik)n[T
(k)
f1
, T

(k)
f2

]...[T
(k)
f2n−1

, T
(k)
f2n

]− T (k)
{f1,f2}...{f2n−1,f2n}|| ≤

||(ik)n[T
(k)
f1
, T

(k)
f2

]...[T
(k)
f2n−1

, T
(k)
f2n

]− T (k)
{f1,f2}...T

(k)
{f2n−1,f2n}||+

||T (k)
{f1,f2}...{f2n−1,f2n} − T

(k)
{f1,f2}...T

(k)
{f2n−1,f2n}|| =

||
(
(ik[T

(k)
f1
, T

(k)
f2

]− T (k)
{f1,f2}) + T

(k)
{f1,f2}

)
...
(
(ik[T

(k)
f2n−1

, T
(k)
f2n

]− T (k)
{f2n−1,f2n}

+T
(k)
{f2n−1,f2n}

)
− T (k)

{f1,f2}...T
(k)
{f2n−1,f2n}||+O(

1

k
).

This is O( 1
k
). Indeed, within ||.|| the term T

(k)
{f1,f2}...T

(k)
{f2n−1,f2n} cancels and all the

other terms are products of factors of the form (ik[T
(k)
f2j−1

, T
(k)
f2j

]−T (k)
{f2j−1,f2j}) (at least

one of these appears) and of the form T
(k)
{f2j−1,f2j}. Using the triangle inequality, (2.4)

and Theorem 1.5.3 (ii), we get O( 1
k
). Thus, as k →∞,

||(ik)n[T
(k)
f1
, T

(k)
f2

]...[T
(k)
f2n−1

, T
(k)
f2n

]− T (k)
{f1,f2}...{f2n−1,f2n}|| = O(

1

k
).

The exact same proof shows that

||(ik)n[T
(k)
fσ(1)

, T
(k)
fσ(2)

]...[T
(k)
fσ(2n−1)

, T
(k)
fσ(2n)

]− T (k)
{fσ(1),fσ(2)}...{fσ(2n−1),fσ(2n)}

|| = O(
1

k
).
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We note that

T
(k)
{f1,...,f2n} =

1

2nn!

∑
σ∈S2n

ε(σ)T
(k)∏n
j=1{fσ(2j−1,fσ(2j)}

(by Lemma 2.3.1). The desired statement now follows from Lemma 2.1.12 and the

triangle inequality. �

The following proposition is similar to Prop. 1.5.4. It implies that limk→∞ ||[T (k)
f1
, ..., T

(k)
f2n

]|| =

0 (i.e. T
(k)
f1

, ..., T
(k)
f2n

“Nambu-commute” as k →∞′.

Proposition 2.3.5. For f1, ..., f2n ∈ C∞(M)

||[T (k)
f1
, ..., T

(k)
f2n

]|| = O(
1

kn
)

as k →∞.

Proof. Let us denote, for convenience,∑′

σ∈S2n

=
∑
σ∈S2n

σ(1)<σ(2),...,
σ(2n−1)<σ(2n)

.

||[T (k)
f1
, ..., T

(k)
f2n

]|| =

||
∑′

σ∈S2n

ε(σ)[T
(k)
fσ(1)

, T
(k)
fσ(2)

][T
(k)
fσ(3)

, T
(k)
fσ(4)

]...[T
(k)
fσ(2n−1)

, T
(k)
fσ(2n)

]|| ≤

∑′

σ∈S2n

||[T (k)
fσ(1)

, T
(k)
fσ(2)

]||...||[T (k)
fσ(2n−1)

, T
(k)
fσ(2n)

]||

which is O( 1
kn

) by Remark 1.5.5. �

2.3.1 Alternative proof of theorem 2.3.4

We are also able to give a proof of theorem 2.3.4 by following the method that

yeilded the result 1.5.3(i) in the first place.For a discussion of the background mate-

rial needed in order to understand this alternative proof see [Bo] , along with further

references, we write down the proof here.
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Proof. Theorem 2.3.4

Let fi ∈ C∞(M), the commutator [Tfi , Tfj ] is a Toeplitz operator of order −1

with principal symbol i{τ ?Σfi, τ ?Σfj}Σ(tα(λ)) = it−1{fi, fj}M(τ(λ)) [BMS]. It fol-

lows from lemma 2.3.1 that [Tf1 , . . . , Tf2n ] is a Toeplitz operator of order −n, its

principal symbol can be obtained by applying lemma 2.1.12, lemma 2.3.1 and the

multiplicative property of the principal symbol:

σp([Tf1 , . . . , Tf2n ]) = σp(
1

2n

∑
σ∈S2n

ε(σ)[Aσ(1), Aσ(2)][Aσ(3), Aσ(4)]...[Aσ(2n−1), Aσ(2n)])

=
1

2n

∑
σ∈S2n

ε(σ)σp([Aσ(1), Aσ(2)][Aσ(3), Aσ(4)]...[Aσ(2n−1), Aσ(2n)])

=
1

2n

∑
σ∈S2n

ε(σ)σp([Aσ(1), Aσ(2)])σp([Aσ(3), Aσ(4)])...σp([Aσ(2n−1), Aσ(2n)])

=
int−n

2n

∑
σ∈S2n

ε(σ){fσ(1), fσ(2)}{fσ(3), fσ(4)}...{fσ(2n−1), fσ(2n)}M(τ(λ))

=
int−nn!

1
{fσ(1), . . . , fσ(2n)}M(τ(λ))

Now consider the Toeplitz operator

A := Dn+1
φ [Tf1 , . . . , Tf2n ]− inn!DφT{fσ(1),...,fσ(2n)}

Apriori this operator is of order 1, but after a calculation we see that its principal

symbol vanishes, so that it is infact of order 0:

σp(A) = tn+1σp([Tf1 , . . . , Tf2n ])− inn!tσp(T{f1,...,f2n})

= inn!t{f1, . . . , f2n}M(τ(λ))− inn!t{f1, . . . , f2n}M(τ(λ)) = 0

Zeroth order pseudo-differential operators on compact manifolds are bounded and

since
∏

is bounded as an operator on L2(Q, ν) (here Q is the unit cirlce bundle
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inside L∗ and ν is a measure coming from the contact form described in section

1.4.2), it follows that A is bounded. Since ||A(m)|| ≤ ||A|| we have

||A(m)|| = ||A|H(m)|| = ||mn+1[T
(m)
f1

, . . . , T
(m)
f2n

]− inn!mT
(m)
{f1,...,f2n}|| ≤ K

after dividing through by inn!m we obtain

|| m
n

inn!
[T

(m)
f1

, ..., T
(m)
f2n

]− T (m)
{f1,...,f2n}|| = O(

1

m
)

Like theorem 1.5.8, this applies to the Nambu-Poisson algebra (that comes from the

bracket of) Â. Â is obtained from A, after applying the Poisson algebra isomorphism

given by multiplication by i. If we apply the inverse isomorphism (if we multiply

by −i), we get the desired statement (theorem 2.3.4) which applies to the Nambu-

Poisson algebra (that comes from the bracket of) A.

||(im)n

n!
[T

(m)
f1

, ..., T
(m)
f2n

]− T (m)
{f1,...,f2n}|| = O(

1

m
)

as m→∞

and we are done.

2.4 Quantization of a hyperkähler manifold

Let (M, g, J1, J2, J3) be a compact connected hyperkähler manifold. Let 4q de-

note the real dimension of M . Denote ωr = g(., Jr.) for r = 1, 2, 3. The 4-form

Ω = ω1 ∧ ω1 + ω2 ∧ ω2 + ω3 ∧ ω3

is 3-plectic (example 2.1.7)[CIL]. Define the brackets {., ., ., .}r, {., ., ., .}hyp (maps∧4C∞(M)→ C∞(M)) as follows:

{f1, f2, f3, f4}r = {f1, f2}r{f3, f4}r − {f1, f3}r{f2, f4}r + {f1, f4}r{f2, f3}r,
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where {., .}r is the Poisson bracket on (M,ωr), r = 1, 2, 3,

{f1, f2, f3, f4}hyp =
3∑
r=1

{f1, f2, f3, f4}r. (2.5)

In lemma 2.3.1 we proved that a bracket of order 2n where 2n = dimM may be

written in terms of Poisson brackets, for a bracket of order m < 2n we are simply

taking the formula in terms of Poisson brackets as the definition of the bracket. The

map C∞(M)⊗4 → C∞(M) defined by (2.5) is multilinear and anti-symmetric. From

the properties of the Poisson bracket it immediately follows that the Leibniz rule is

satisfied:

{f1, f2, f3, f4f5}hyp = f4{f1, f2, f3, f5}hyp + {f1, f2, f3, f4}hypf5.

Therefore {., ., ., .}hyp is an almost Poisson bracket of order 4.

For q = 1 ωr ∧ ωr (r = 1, 2, 3) and Ω are volume forms. The standard bracket

{., ., ., .}(r) is defined by

df1 ∧ df2 ∧ df3 ∧ df4 = {f1, f2, f3, f4}(r) 1

2
ωr ∧ ωr.

From Lemma 2.3.1, or by a direct calculation (using the Darboux theorem, in local

coordinates), we get:

Lemma 2.4.1. For q = 1 {., ., ., .}r coincides with {., ., ., .}(r).

From [G, Cor. 1 p.106] it immediately follows that for q = 1 (M is 4-dimensional)

the fundamental identity

{f1, f2, f3, {g1, g2, g3, g4}hyp}hyp = {{f1, f2, f3, g1}hyp, g2, g3, g4}hyp+

{g1, {f1, f2, f3, g2}hyp, g3, g4}hyp + {g1, g2, {f1, f2, f3, g3}hyp, g4}hyp+

{g1, g2, g3, {f1, f2, f3, g4}hyp}hyp
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is satisfied. When q > 1 it is not necessarily a Nambu-Poisson bracket (it may not

satisfy the fundamental identity if q > 1).

Assume that the Kähler forms ω1, ω2, ω3 are integral. Let Lr be a holo-

morphic Hermitian line bundle with curvature of the Hermitian connection equal

to −iωr, for r = 1, 2, 3. For a positive integer k and f ∈ C∞(M) denote by

T
(k)
f ;r ∈ End(H0(M,L⊗kr )) the Berezin-Toeplitz operator for f . There are two ob-

vious ways to form a Hilbert space out of three Hilbert spaces H0(M,L⊗kr ) (r =

1, 2, 3): by taking direct sum or tensor product. Another way to approach this

is to say that the vector space of quantization is H0(M, (L1 ⊗ L2 ⊗ L3)⊗k), -

this would be just the usual Berezin-Toeplitz quantization, with the line bundle

L1 ⊗ L2 ⊗ L3. Note: in general H0(M, (L1 ⊗ L2 ⊗ L3)⊗k) is not isomorphic to

H0(M,L⊗k1 )⊗H0(M,L⊗k2 )⊗H0(M,L⊗k3 ).

Of course, the hyperkähler structure defines a whole S2 of complex structures

(and of Kähler forms) on M , not just three. A. Uribe pointed out to us that maybe

an appropriate notion of quantization on a hyperkähler manifold should take into

account all J ∈ S2, and should involve an appropriate vector bundle over the twistor

space, with fibers H0(M,L⊗kJ ). We look forward to seeing his work on this.

Note that the twistor space of a hyperkähler manifold is not Kähler (it is generally

well-known, see for example [VK] p. 37, or [Hu]), so it’s not possible to construct a

Berezin-Toeplitz quantization on the twistor space.

2.4.1 Direct sum

Denote

Hk = H0(M,L⊗k1 )⊕H0(M,L⊗k2 )⊕H0(M,L⊗k3 )

(direct sum of Hilbert spaces) and

T
(k)
f = T

(k)
f ;1 ⊕ T

(k)
f ;2 ⊕ T

(k)
f ;3 ,
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(T
(k)
f acts on Hk by T

(k)
f (s1, s2, s3) = (T

(k)
f ;1 s1, T

(k)
f ;2 s2, T

(k)
f ;3 s3)).

Remark 2.4.2. Since ||T(k)
f || = max{||T (k)

f ;1 ||, ||T
(k)
f ;2 ||, ||T

(k)
f ;3 ||}, we immediately have:

• For f, g ∈ C∞(M), as k →∞,

||ik[T
(k)
f ,T(k)

g ]−T
(k)
{f,g}|| = O(

1

k
), ||[T(k)

f ,T(k)
g ]|| = O(

1

k
)

• For f ∈ C∞(M), as k →∞, there is a constant C = C(f) > 0 such that

|f |∞ −
C

k
≤ ||T(k)

f || ≤ |f |∞.

• For f1, ..., fp ∈ C∞(M)

||T(k)
f1
...T

(k)
fp
−T

(k)
f1...fp

|| = O(
1

k
)

as k →∞.

For f, g, h, t ∈ C∞(M) we have:

[T
(k)
f ,T(k)

g ,T
(k)
h ,T

(k)
t ] = ⊕3

r=1[T
(k)
f ;r , T

(k)
g;r , T

(k)
h;r , T

(k)
t;r ].

Theorem 2.4.3. For f, g, h, t ∈ C∞(M)

|| − k2

2
[T

(k)
f ,T(k)

g ,T
(k)
h ,T

(k)
t ]−⊕3

r=1T
(k)
{f,g,h,t}r;r|| = O(

1

k
)

as k →∞.

Proof. As k →∞, for r = 1, 2, 3, by Theorem 1.5.3 (i) for f, g ∈ C∞(M)

||ik[T
(k)
f ;r , T

(k)
g;r ]− T (k)

{f,g}r;r|| = O(
1

k
), (2.6)

||ik[T
(k)
h;r , T

(k)
t;r ]− T (k)

{h,t}r;r|| = O(
1

k
). (2.7)

Using Prop. 1.5.6, we get:

||(ik)2[T
(k)
f ;r , T

(k)
g;r ][T

(k)
h;r , T

(k)
t;r ]− T (k)

{f,g}r{h,t}r;r|| ≤
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||(ik)2[T
(k)
f ;r , T

(k)
g;r ][T

(k)
h;r , T

(k)
t;r ]− T (k)

{f,g}r;rT
(k)
{h,t}r;r||+ ||T

(k)
{f,g}r;rT

(k)
{h,t}r;r − T

(k)
{f,g}r{h,t}r;r|| =

||(ik[T
(k)
f ;r , T

(k)
g;r ]− T (k)

{f,g}r;r + T
(k)
{f,g}r;r)(ik[T

(k)
h;r , T

(k)
t;r ]− T (k)

{h,t}r;r + T
(k)
{h,t}r;r)

−T (k)
{f,g}r;rT

(k)
{h,t}r;r||+O(

1

k
) =

||(ik[T
(k)
f ;r , T

(k)
g;r ]− T (k)

{f,g}r;r)(ik[T
(k)
h;r , T

(k)
t;r ]− T (k)

{h,t}r;r)+

(ik[T
(k)
f ;r , T

(k)
g;r ]− T (k)

{f,g}r;r)T
(k)
{h,t}r;r + T

(k)
{f,g}r;r(ik[T

(k)
h;r , T

(k)
t;r ]− T (k)

{h,t}r;r)||+O(
1

k
)

≤ ||ik([T
(k)
f ;r , T

(k)
g;r ]− T (k)

{f,g}r;r)|| ||ik[T
(k)
h;r , T

(k)
t;r ]− T (k)

{h,t}r;r)||+

||ik[T
(k)
f ;r , T

(k)
g;r ]−T (k)

{f,g}r;r|| ||T
(k)
{h,t}r;r||+ ||T

(k)
{f,g}r;r|| ||ik[T

(k)
h;r , T

(k)
t;r ]−T (k)

{h,t}r;r||+O(
1

k
) =

O(
1

k
)O(

1

k
) + |{h, t}r|∞O(

1

k
) + |{f, g}r|∞O(

1

k
) +O(

1

k
) = O(

1

k
).

In the last line we used (2.6), (2.7), and applied Theorem 1.5.3 (ii) twice. Similarly

we conclude, for f, h and g, t:

||(ik)2[T
(k)
f ;r , T

(k)
h;r ][T (k)

g;r , T
(k)
t;r ]− T (k)

{f,h}r{g,t}r;r|| = O(
1

k
),

etc. (i.e. we get similar asymptotics for f, t and g, h, for h, t and f, g, for g, t and

f, h, for g, h and f, t). Note:

T
(k)
{f,g,h,t}r;r = T

(k)
{f,g}r{h,t}r;r − T

(k)
{f,h}r{g,t}r;r + T

(k)
{f,t}r{g,h}r;r.

Therefore, by (2.2) and the triangle inequality,

|| − k2

2
[T

(k)
f ;r , T

(k)
g;r , T

(k)
h;r , T

(k)
t;r ]− T (k)

{f,g,h,t}r;r|| = O(
1

k
).

We get:

|| − k2

2
[T

(k)
f ,T(k)

g ,T
(k)
h ,T

(k)
t ]−⊕3

r=1T
(k)
{f,g,h,t}r;r|| =

max
1≤r≤3

|| − k2

2
[T

(k)
f ;r , T

(k)
g;r , T

(k)
h;r , T

(k)
t;r ]− T (k)

{f,g,h,t}r;r|| = O(
1

k
).

�

The following proposition is similar to Prop. 1.5.4. It implies that T
(k)
f , T

(k)
g , T

(k)
h ,

T
(k)
t ”Nambu-commute as k →∞”.
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Proposition 2.4.4. For f1, f2, f3, f4 ∈ C∞(M)

||[T(k)
f1
,T

(k)
f2
,T

(k)
f3
,T

(k)
f4

]|| = O(
1

k2
)

as k →∞.

Proof.

||[T(k)
f1
,T

(k)
f2
,T

(k)
f3
,T

(k)
f4

]|| = max
1≤r≤3

||[T (k)
f1;r, T

(k)
f2;r, T

(k)
f3;r, T

(k)
f4;r]|| =

max
1≤r≤3

||
∑′

σ∈S4

sign(σ)[T
(k)
fσ(1);r

, T
(k)
fσ(2);r

][T
(k)
fσ(3);r

, T
(k)
fσ(4);r

]|| ≤

max
1≤r≤3

∑′

σ∈S4

||[T (k)
fσ(1);r

, T
(k)
fσ(2);r

]|| ||[T (k)
fσ(3);r

, T
(k)
fσ(4);r

]||.

By Remark 1.5.5 it is O( 1
k2

). �

2.4.2 Direct sum: dimension 4

To discuss the correspondence between the the bracket on functions and the

generalized commutator (as k → ∞) in the hyperkähler case: we showed (Theo-

rem 2.4.3) that for a hyperkähler manifold M of arbitrary dimension and smooth

functions f, g, h, t on M [T
(k)
f ,T

(k)
g ,T

(k)
h ,T

(k)
t ] is asymptotic to

T
(k)
{f,g,h,t}1;1

T
(k)
{f,g,h,t}2;2

T
(k)
{f,g,h,t}3;3

 ,

not to

T
(k)
{f,g,h,t}hyp =


T

(k)
{f,g,h,t}hyp;1

T
(k)
{f,g,h,t}hyp;2

T
(k)
{f,g,h,t}hyp;3

 .

To clarify, we have obtained an asymptotic relation between a map∧4
C∞(M)→ C∞(M)× C∞(M)× C∞(M)
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f, g, h, t 7→ ({f, g, h, t}1, {f, g, h, t}2, {f, g, h, t}3)

and the Nambu generalized commutator [., ., ., .]. It is not the same as a correspon-

dence between {., ., ., .}hyp :
∧4C∞(M)→ C∞(M) and [., ., ., .].

From now on M will be of real dimension 4 (so M is a compact hyperkähler 4-

manifold, hence M is isomorphic to a K3-surface or a torus [Be] 14.22). In this case

we get Theorem 2.4.5 below, and in the case when M is a 4-torus with three standard

linear complex structures (Example 2.4.6 below) - we get that [T
(k)
f ,T

(k)
g ,T

(k)
h ,T

(k)
t ]

is asymptotic to T
(k)
{f,g,h,t}hyp .

We have: for r = 1, 2, 3

Ω =
µr
2
ωr ∧ ωr,

where µr is a smooth non-vanishing function on M . Denote by {., ., ., .} the Nambu-

Poisson bracket defined by

df1 ∧ df2 ∧ df3 ∧ df4 = {f1, f2, f3, f4}Ω.

Therefore

{f1, f2, f3, f4}r = {f1, f2, f3, f4}(r) = µr{f1, f2, f3, f4}.

Denote

T(k)
µ =


T

(k)
µ1;1

T
(k)
µ2;2

T
(k)
µ3;3

 .

The following theorem shows that [T
(k)
f1
,T

(k)
f2
,T

(k)
f3
,T

(k)
f4

] is asymptotic to T
(k)
{f1,f2,f3,f4}T

(k)
µ .

Theorem 2.4.5. For f, g, h, t ∈ C∞(M)

|| − k2

2
[T

(k)
f ,T(k)

g ,T
(k)
h ,T

(k)
t ]−T

(k)
{f,g,h,t}T

(k)
µ || = O(

1

k
)

as k →∞.
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Proof. For r = 1, 2, 3 the same argument as in the proof of Theorem 2.4.3 gives:

|| − k2

2
[T

(k)
f ;r , T

(k)
g;r , T

(k)
h;r , T

(k)
t;r ]− T (k)

{f,g,h,t}r;r|| = O(
1

k
) (2.8)

We have:

|| − k2

2
[T

(k)
f ;r , T

(k)
g;r , T

(k)
h;r , T

(k)
t;r ]− T (k)

{f,g,h,t};rT
(k)
µr;r|| ≤

|| − k2

2
[T

(k)
f ;r , T

(k)
g;r , T

(k)
h;r , T

(k)
t;r ]− T (k)

{f,g,h,t}µr;r||+ ||T
(k)
{f,g,h,t}µr;r − T

(k)
{f,g,h,t};rT

(k)
µr;r||.

This is O( 1
k
) by (2.8) and Prop. 1.5.6. Hence

|| − k2

2
[T

(k)
f ,T(k)

g ,T
(k)
h ,T

(k)
t ]−T

(k)
{f,g,h,t}T

(k)
µ ||

= max
1≤r≤3

|| − k2

2
[T

(k)
f ;r , T

(k)
g;r , T

(k)
h;r , T

(k)
t;r ]− T (k)

{f,g,h,t};rT
(k)
µr;r|| = O(

1

k
).

�

Example 2.4.6. Denote M̃ = R4, with coordinates x1, x2, x3, x4, and equipped

with three (linear) complex structures

J1 =


0 1

−1 0

0 −1

1 0

 , J2 =


1 0

0 1

−1 0

0 −1

 , J3 =


1

−1

1

−1

 .

We have: J1J2 = J3 and, of course, J2
1 = J2

2 = J2
3 = −I.

Note: if we regard M̃ as the one-dimensional quaternionic vector space, with

basis 1, i, j, k (i2=j2=k2=−1, ij=k), then J1, J2, J3 correspond to left multiplication

by i, j, k respectively.

For the standard Riemannian metric on M̃ , with the metric tensor g = I, the

symplectic forms are as follows:

ω1 = −dx1 ∧ dx2 − dx3 ∧ dx4,
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ω2 = −dx1 ∧ dx3 + dx2 ∧ dx4,

ω3 = −dx1 ∧ dx4 − dx2 ∧ dx3.

For r = 1, 2, 3
1

2
ωr ∧ ωr = dx1 ∧ dx2 ∧ dx3 ∧ dx4,

Ω =
3∑
r=1

ωr ∧ ωr = 6dx1 ∧ dx2 ∧ dx3 ∧ dx4.

Everything is Z4-invariant and g, J1, J2, J3, ω1, ω2, ω3, Ω descend to M = M̃/Z4.

We get: µ1 = µ2 = µ3 = 6 and

6{., ., ., .} = {., ., ., .}r = {., ., ., .}(r) =
1

3
{., ., ., .}hyp.

Theorem 2.4.5 gives: for f, g, h, t ∈ C∞(M)

|| − 3

2
k2[T

(k)
f ,T(k)

g T
(k)
h T

(k)
t ]−T

(k)
{f,g,h,t}hyp|| = O(

1

k
) (2.9)

as k →∞.

2.4.3 Tensor product

Denote

Hk = H0(M,L⊗k1 )⊗H0(M,L⊗k2 )⊗H0(M,L⊗k3 )

(tensor product of Hilbert spaces) and

T(k)
f = T

(k)
f ;1 ⊗ T

(k)
f ;2 ⊗ T

(k)
f ;3 ,

(T(k)
f (s1⊗s2⊗s3) = T

(k)
f ;1 s1⊗T (k)

f ;2 s2⊗T (k)
f ;3 s3 and the action extends toHk by linearity,

also note: ||T(k)
f || = ||T

(k)
f ;1 || ||T

(k)
f ;2 || ||T

(k)
f ;3 ||).

In the proofs below we shall need the following elementary statement.
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Lemma 2.4.7. If Mj, Nj are linear operators on a finite dimensional Hilbert space

Vj (j = 1, 2, 3), then

||M1 ⊗M2 ⊗M3 −N1 ⊗N2 ⊗N3|| ≤ ||M1 −N1|| ||M2 −N2|| ||M3 −N3||+

||M1 −N1|| ||M2|| ||N3||+ ||M1|| ||N2|| ||M3 −N3||+ ||N1|| ||M2 −N2|| ||M3||

Proof. This immediately follows from the equality

(M1 −N1)⊗ (M2 −N2)⊗ (M3 −N3) = M1 ⊗M2 ⊗M3 −N1 ⊗N2 ⊗N3−

(M1 −N1)⊗M2 ⊗N3 −M1 ⊗N2 ⊗ (M3 −N3)−N1 ⊗ (M2 −N2)⊗M3

�

We also note the following identity for tensor products of operators:

[A1 ⊗ A2 ⊗ A3, B1 ⊗B2 ⊗B3] = [A1, B1]⊗ [A2, B2]⊗ [A3, B3]+ (2.10)

[A1, B1]⊗B2A2 ⊗ A3B3 + A1B1 ⊗ [A2, B2]⊗B3A3 +B1A1 ⊗ A2B2 ⊗ [A3, B3].

Remark 2.4.8.

• For f ∈ C∞(M), there is a constant C = C(f) > 0 such that, as k →∞,

(|f |∞ −
C

k
)3 ≤ ||T(k)

f || ≤ (|f |∞)3.

• For f1, ..., fp ∈ C∞(M)

||T(k)
f1
...T(k)

fp
− T(k)

f1...fp
|| = O(

1

k
)

as k →∞.
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The last statement holds for p = 2 by Lemma 2.4.7, Theorem 1.5.3 and Prop. 1.5.6.

It follows for arbitrary p by induction.

Proposition 2.4.9. For f, g ∈ C∞(M)

||(ik)3[T
(k)
f ;1 , T

(k)
g;1 ]⊗ [T

(k)
f ;2 , T

(k)
g;2 ]⊗ [T

(k)
f ;3 , T

(k)
g;3 ]− T (k)

{f,g}1;1 ⊗ T
(k)
{f,g}2;2 ⊗ T

(k)
{f,g}3;3|| = O(

1

k
)

as k →∞.

Proof. This follows from Lemma 2.4.7, Theorem 1.5.3 and Remark 1.5.5. �

Proposition 2.4.10. For f, g ∈ C∞(M)

||ik[T(k)
f ,T(k)

g ]− (T
(k)
{f,g}1;1 ⊗ T

(k)
fg;2 ⊗ T

(k)
fg;3 + T

(k)
fg;1 ⊗ T

(k)
{f,g}2;2 ⊗ T

(k)
fg;3+

T
(k)
fg;1 ⊗ T

(k)
fg;2 ⊗ T

(k)
{f,g}3;3)|| = O(

1

k
)

as k →∞.

Proof. Using (2.10), we get:

||ik[T(k)
f ,T(k)

g ]− (T
(k)
{f,g}1;1 ⊗ T

(k)
fg;2 ⊗ T

(k)
fg;3 + T

(k)
fg;1 ⊗ T

(k)
{f,g}2;2 ⊗ T

(k)
fg;3+

T
(k)
fg;1 ⊗ T

(k)
fg;2 ⊗ T

(k)
{f,g}3;3)|| ≤

||ik[T
(k)
f ;1 , T

(k)
g;1 ]⊗ T (k)

g;2 T
(k)
f ;2 ⊗ T

(k)
f ;3T

(k)
g;3 − T

(k)
{f,g}1;1 ⊗ T

(k)
fg;2 ⊗ T

(k)
fg;3||+

||T (k)
f ;1T

(k)
g;1 ⊗ ik[T

(k)
f ;2 , T

(k)
g;2 ]⊗ T (k)

g;3 T
(k)
f ;3 − T

(k)
fg;1 ⊗ T

(k)
{f,g}2;2 ⊗ T

(k)
fg;3||+

||T (k)
g;1 T

(k)
f ;1 ⊗ T

(k)
f ;2T

(k)
g;2 ⊗ ik[T

(k)
f ;3 , T

(k)
g;3 ]− T (k)

fg;1 ⊗ T
(k)
fg;2 ⊗ T

(k)
{f,g}3;3||+

k||[T (k)
f ;1 , T

(k)
g;1 ]⊗ [T

(k)
f ;2 , T

(k)
g;2 ]⊗ [T

(k)
f ;3 , T

(k)
g;3 ]||.

Each of the first three terms is O( 1
k
) by Lemma 2.4.7, Theorem 1.5.3, Prop. 1.5.6

and Remark 1.5.5. The last term is O( 1
k2

) by Remark 1.5.5. �
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Corollary 2.4.11. For f, g ∈ C∞(M)

||[T(k)
f ,T(k)

g ]|| = O(
1

k
)

as k →∞.

Proof. Follows from Proposition 2.4.10 and Theorem 1.5.3(ii) by triangle inequality.

�

Corollary 2.4.12. For f, g, h, t ∈ C∞(M)

||[T(k)
f ,T(k)

g ,T(k)
h ,T(k)

t ]|| = O(
1

k2
)

as k →∞.

Proof. Follows from equality (2.2) and Corollary 2.4.11 by triangle inequality. �

Proposition 2.4.13. For f, g, h, t ∈ C∞(M)

|| − k6

8
[T

(k)
f ;1 , T

(k)
g;1 , T

(k)
h;1 , T

(k)
t;1 ]⊗ [T

(k)
f ;2 , T

(k)
g;2 , T

(k)
h;2 , T

(k)
t;2 ]⊗ [T

(k)
f ;3 , T

(k)
g;3 , T

(k)
h;3 , T

(k)
t;3 ]−

T
(k)
{f,g,h,t}1;1 ⊗ T

(k)
{f,g,h,t}2;2 ⊗ T

(k)
{f,g,h,t}3;3|| = O(

1

k2
)

as k →∞.

Proof. For r = 1, 2, 3

||[T (k)
f ;r , T

(k)
g;r , T

(k)
h;r , T

(k)
t;r ]|| = O(

1

k2
)

as k → ∞ (this follows by triangle inequality from (2.2) and Remark 1.5.5). The

statement now follows from Lemma 2.4.7, Theorem 2.4.3 and Theorem 1.5.3 (ii). �

It is natural to ask about asymptotics of [T(k)
f ,T(k)

g ,T(k)
h ,T(k)

t ] for given f, g, h, t ∈

C∞(M). Proposition 2.4.10 dictates the following very technical statement.
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Theorem 2.4.14. For f1, f2, f3, f4 ∈ C∞(M)

|| − k2

2
[T(k)

f1
,T(k)

f2
,T(k)

f3
,T(k)

f4
]−W(k)

f1,f2,f3,f4
|| = O(

1

k
)

as k →∞, where

W(k)
f1,f2,f3,f4

= T
(k)
{f1,f2,f3,f4}1;1 ⊗ T

(k)
f1f2f3f4;2 ⊗ T

(k)
f1f2f3f4;3+

T
(k)
f1f2f3f4;1 ⊗ T

(k)
{f1,f2,f3,f4}2;2 ⊗ T

(k)
f1f2f3f4;3 + T

(k)
f1f2f3f4;1 ⊗ T

(k)
f1f2f3f4;2 ⊗ T

(k)
{f1,f2,f3,f4}3;3+∑

(i,j,m,l)=(1,2,3,4),
(1,3,2,4),(1,4,2,3)

sign(i, j,m, l)
[
T

(k)
fifj{fm,fl}1;1 ⊗ (T

(k)
fmfl{fi,fj}2;2 ⊗ T

(k)
fifjfmfl;3

+

T
(k)
fifjfmfl;2

⊗ T (k)
fmfl{fi,fj}3;3) + T

(k)
fmfl{fi,fj}1;1⊗

(T
(k)
fifj{fm,fl}2;2 ⊗ T

(k)
fifjfmfl;3

+ T
(k)
fifjfmfl;2

⊗ T (k)
fifj{fm,fl}3;3)+

T
(k)
fifjfmfl;1

⊗ (T
(k)
fifj{fm,fl}2;2 ⊗ T

(k)
fmfl{fi,fj}3;3 + T

(k)
fmfl{fi,fj}2;2 ⊗ T

(k)
fifj{fm,fl}3;3)

]
.

Proof. First, we observe: as k →∞

||(ik)2[T(k)
fi
,T(k)

fj
][T(k)

fm
,T(k)

fl
]− (T

(k)
{fi,fj}1;1 ⊗ T

(k)
fifj ;2

⊗ T (k)
fifj ;3

+

T
(k)
fifj ;1

⊗ T (k)
{fi,fj}2;2 ⊗ T

(k)
fifj ;3

+ T
(k)
fifj ;1

⊗ T (k)
fifj ;2

⊗ T (k)
{fi,fj}3;3)

(T
(k)
{fm,fl}1;1 ⊗ T

(k)
fmfl;2

⊗ T (k)
fmfl;3

+ T
(k)
fmfl;1

⊗ T (k)
{fm,fl}2;2 ⊗ T

(k)
fmfl;3

+

T
(k)
fmfl;1

⊗ T (k)
fmfl;2

⊗ T (k)
{fm,fl}3;3)|| = O(

1

k
).

This follows from the elementary inequality

||M1M2 −N1N2|| = ||M1M2 −M2N1 +M2N1 −N1N2|| ≤

||M2||||M1 −N1||+ ||N1||||M2 −N2||

by setting

M1 = ik[T(k)
fi
,T(k)

fj
], M2 = ik[T(k)

fm
,T(k)

fl
]
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N1 = T
(k)
{fi,fj}1;1 ⊗ T

(k)
fifj ;2

⊗ T (k)
fifj ;3

+ T
(k)
fifj ;1

⊗ T (k)
{fi,fj}2;2 ⊗ T

(k)
fifj ;3

+

T
(k)
fifj ;1

⊗ T (k)
fifj ;2

⊗ T (k)
{fi,fj}3;3,

N2 = T
(k)
{fm,fl}1;1 ⊗ T

(k)
fmfl;2

⊗ T (k)
fmfl;3

+ T
(k)
fmfl;1

⊗ T (k)
{fm,fl}2;2 ⊗ T

(k)
fmfl;3

+

T
(k)
fmfl;1

⊗ T (k)
fmfl;2

⊗ T (k)
{fm,fl}3;3,

with the use of Theorem 1.5.3(ii), Prop. 2.4.10 and Cor. 2.4.11. Next, using Lemma

2.4.7, Theorem 1.5.3(ii) and Prop. 1.5.6, we get:

|| − k2[T(k)
fi
,T(k)

fj
][T(k)

fm
,T(k)

fl
]−
[
T

(k)
{fi,fj}1{fm,fl}1;1 ⊗ T

(k)
fifjfmfl;2

⊗ T (k)
fifjfmfl;3

+

T
(k)
fifjfmfl;1

⊗ T (k)
{fi,fj}2{fm,fl}2;2 ⊗ T

(k)
fifjfmfl;3

+ T
(k)
fifjfmfl;1

⊗ T (k)
fifjfmfl;2

⊗ T (k)
{fi,fj}3{fm,fl}3;3+

T
(k)
fifj{fm,fl}1;1 ⊗ (T

(k)
fmfl{fi,fj}2;2 ⊗ T

(k)
fifjfmfl;3

+ T
(k)
fifjfmfl;2

⊗ T (k)
fmfl{fi,fj}3;3)+

T
(k)
fmfl{fi,fj}1;1 ⊗ (T

(k)
fifj{fm,fl}2;2 ⊗ T

(k)
fifjfmfl;3

+ T
(k)
fifjfmfl;2

⊗ T (k)
fifj{fm,fl}3;3)+

T
(k)
fifjfmfl;1

⊗ (T
(k)
fifj{fm,fl}2;2 ⊗ T

(k)
fmfl{fi,fj}3;3 + T

(k)
fmfl{fi,fj}2;2 ⊗ T

(k)
fifj{fm,fl}3;3)

]
|| = O(

1

k
).

After that we note:

[T(k)
f1
,T(k)

f2
,T(k)

f3
,T(k)

f4
] =

∑
(i,j,m,l)=

(1,2,3,4),(1,3,2,4),(1,4,2,3)
(3,4,1,2),(2,4,1,3),(2,3,1,4)

sign(i, j,m, l)[T(k)
fi
,T(k)

fj
][T(k)

fm
,T(k)

fl
]

(see (2.2)). Taking the sum, we get:

|| − k2[T(k)
f1
,T(k)

f2
,T(k)

f3
,T(k)

f4
]− 2W(k)

f1,f2,f3,f4
|| = O(

1

k
).

�
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2.5 Conclusions

In section 2.3 we were able to use the Berezin-Toeplitz quantization of the Pois-

son algebra (C∞(M), {·, ·}) (where the bracket is defined using the 1-plectic form ω

defined on M) to quantize the Nambu-Poisson algebra (C∞(M), {·, · · · , ·}) (where

the bracket is defined using the (2n-1)-plectic2 structure ωn

n!
). We kept the same

Hilbert space H as is used in Berezin-Toeplitz quantization, but we use the gener-

alized commutator [·, · · · , ·] as the algebraic structure on End(H) rather than the

usual commutator [·, ·]. We prove theorem 2.3.4, which generalizes the well know

theorem 1.5.3(i) [BMS].

In section 2.4 we worked on a hyperkähler manifold (M,ω1, ω2, ω3). The manifold

M comes with three integral symplectic forms and thus is quantized by Berezin-

Toeplitz in three different ways. We combine the three Hilbert spaces of Berezin-

Toeplitz quantization in two different ways, by taking their direct sum and by taking

their tensor product. We prove theorem 2.4.5 and show that when dimR(M) =

4, the direct sum Hilbert space can be used to quantize M . In theorem 2.1.14,

where the three Hilbert spaces are combined by taking their tensor product we

extend the Berezin-Toeplitz quantization map to the tensor product and in analogy

with theorem 1.5.3(i) [BMS] we compute the k → ∞ asymptotics of the extended

mapping. We note that in all cases the map functions→ operators is linear, except

for the map f → T(k)
f .

2recall that dim(M) = 2n.



Chapter 3

Two additional results

3.1 Introduction

In this chapter we have collected together two additional results. In section 3.3

we discuss the deformation quantization of the volume form Nambu-Poisson struc-

ture from chapter 2. In section 3.4 we write down a set of conditions on operators

F̂1, . . . , F̂2m−1, Ĝ1, . . . , Ĝ2m ∈ End(H) (where H is any complex Hilbert space) that

ensures that the generalized commutator [., . . . , .] will satisfy the fundamental iden-

tity of a Nambu-Poisson bracket with respect to these operators.

3.2 Deformation quantization

Let A = C∞(M)[[t]], the space of formal power series with coefficients in C∞(M).

A product ? on A is called a (formal) star product if it is an associative C-linear

product such that

1. A/tA ∼= C∞(M), in particular f ? g mod t = fg, for f, g ∈ C∞(M) ⊂

C∞(M)[[t]].

66
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2. 1
t
(f ? g − g ? f) mod t = −i{f, g},

where f, g ∈ C∞(M). We can also write

f ? g =
∞∑
j=0

Cj(f, g)tj, (3.1)

with Cj(f, g) ∈ C∞(M). The Cj should be C-bilinear in f and g. The conditions 1.

and 2. can be reformulated as

C0(f, g) = fg, (3.2)

and

C1(f, g)− C1(g, f) = −i{f, g} (3.3)

The billinearity of the Cj guarantees that the star product will be bilinear. The

condition 1. says that the star product is in fact a deformation of the associative

algebra (C∞(M), •), where f • g is the usual pointwise multiplication of functions

[Ger]. Every star product defines a skew symmetric bracket of functions by the

formula

[f, g]Q :=
1

t
(f ? g − g ? f). (3.4)

Condition 2. is equivalent to the correspondence principle1 (of quantum mechanics)

for the quantum bracket defined by 3.4. That is, 2. says that [f, g]Q is a deformation

of the Poisson algebra (C∞(M), {, }) [Ger].

In the article [MS], Schlichenmaier gives a proof of the following theorem.

Theorem 3.2.1. [MS][thm 2.2] There exists a unique (formal) star product on

C∞(M)

f ? g ≡
∞∑
j=0

νjCj(f, g), (3.5)

1This is the quantization axiom 4.
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in such a way that for f,g∈ C∞(M) and for every N ∈ N we have with suitable

constants KN(f, g) for all m

||T (m)
f T (m)

g −
∑

0≤j<N

(
1

m
)jT

(m)
Cj(f,g)

|| ≤ KN(f, g)(
1

m
)N (3.6)

For N = 1 3.6 reads

|||T (m)
f T (m)

g − T (m)
fg || = O(

1

m
) (3.7)

For N=2 it reads

||T (m)
f T (m)

g − T (m)
fg − (

1

m
)T

(m)
C1(f,g)|| = O(

1

m
)N (3.8)

from which we can obtain

||(T (m)
f T (m)

g − T (m)
fg − (

1

m
)T

(m)
C1(f,g))− (T (m)

g T
(m)
f − T (m)

gf − (
1

m
)T

(m)
C1(g,f))|| =

||[T (m)
f , T (m)

g ]− T (m)
fg + T

(m)
gf −

1

m
(T

(m)
C1(f,g) − T

(m)
C1(g,f))|| =

||[T (m)
f , T (m)

g ] +
1

m
T

(m)
i{f,g}|| =

||[T (m)
f , T (m)

g ] +
i

m
T{f,g}|| =

||im[T
(m)
f , T

(m)
g ]− T{f,g}||
m

≤

||T (m)
f T (m)

g − T (m)
fg −

1

m
T

(m)
C1(f,g)||+ ||T

(m)
g T

(m)
f − T (m)

gf −
1

m
T

(m)
C1(g,f)|| = O(

1

m2
)

That is

||im[T
(m)
f , T (m)

g ]− T{f,g}|| = O(
1

m
) (3.9)

Together 3.7 and 3.9 comprise one part of Theorem 1.5.3 [BMS].
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3.3 A deformation of the Nambu bracket

In chapter 2, section 2.3 we showed how to use Berezin-Toeplitz quantization in

one kind of n-plectic setting to generalize theorem 1.5.3 from the symplectic setting.

As has been explained already, Berezin-Toeplitz quantization leads to a deformation

quantization and the Berezin-Toeplitz star product[?]. In this section we start to

perform this step in the multisymplectic setting of section 2.3. We propose to define

a higher order analogue of the Berezin-Toeplitz star product.

Consider the (2n-1)-plectic manifold (M,Ω) obtained from the symplectic man-

ifold (M,ω), where Ω = 1
n!
ωn. Define a star product (the terminology is justified by

the next lemma) of 2n functions in C∞(M) by the formula

?(f1, f2, . . . , f2n−1, f2n) =
∞∑
j=0

tjDj(f1, f2, . . . , f2n−1, f2n) (3.10)

where

Dj(f1, f2, . . . , f2n−1, f2n) := Cj(f1, f2) . . . Cj(f2n−1, f2n) (3.11)

and the Cj are the coefficients in the Berezin-Toeplitz star product 3.2.1, then we

have

Proposition 3.3.1. The 2n-ary product defined above has as its classical limit 2 the

volume form Nambu-Poisson structure.

1. D0(f1, f2, . . . , f2n−1, f2n) = f1f2 . . . f2n−1f2n

2.
∑

σ∈S2n
ε(σ)D1(fσ(1), fσ(2), . . . , fσ(2n−1), fσ(2n)) = n!(−i)n{f1, f2, . . . , f2n−1, f2n}

Where the bracket {., ..., .} :
∧2nC∞(M) → C∞(M) is the Nambu-Poisson

bracket defined by

2The limit t→ 0.
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df1 ∧ ... ∧ df2n = {f1, ..., f2n}Ω (3.12)

In order to prove the proposition we will use a formula for the 2n-ary bracket defined

by 3.12, in terms of the usual Poisson bracket and a (2n-2)-ary bracket. One may

define a 2j-ary bracket (j ≤ n) for any Poisson manifold (M, {., .}) of dimension 2n

by the formula,

{f1, . . . , f2j} =
1

2jj!

∑
σ∈S2j

ε(σ)

j∏
i=1

{fσ(2i−1), fσ(2i)} (3.13)

In chapter 2 we demonstrated that the (2n)-ary bracket defined by 3.12 agrees with

the one defined by 3.13 when j = n, so that 3.13 may be regarded as a generalization

of the Nambu-Poisson bracket 3.12. It should be noted that for j < n the bracket

defined by the formula 3.13 does not satisfy the fundamental identity of the Nambu-

Poisson bracket. Those identities are not needed to establish the relation 3.14 that

we will need.

{f1, . . . , f2n} = {f1, f2, }{f3, . . . , f2n}

+
2n−1∑
i=3

(−1)i{f1, fj}{f2, . . . , fi−1, fi+1, . . . , f2n}

+ {f1, f2n}{f2, . . . , f2n−1} (3.14)

For j=3 the formula reads

{f1, f2, f3, f4, f5, f6} = {f1, f2}{f3, f4, f5, f6} − {f1, f3}{f2, f4, f5, f6}

+ {f1, f4}{f2, f3, f5, f6} − {f1, f5}{f2, f3, f4, f6}

+ {f1, f6, }{f2, f3, f4, f5} (3.15)
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3.14 can be established by simply substituting the definition (13) for all of the

brackets on both sides of the relation 3.14.

Proof. Proof of proposition 3.3.1

The proof is an induction with base case n=1 provided by 3.3 and involving 3.14

in the induction step.

∑
σ∈S2n

ε(σ)C1(fσ(1), fσ(2)) . . . C1(fσ(2n−1), fσ(2n))

= n(C1(f1, f2)− C1(f2, f1))(
∑

σ∈S2n−2

ε(σ)C1(fσ(3), fσ(4)) . . . C1(fσ(2n−1), fσ(2n)))

+
2n−1∑
i=3

n(C1(f1, fi)−C1(fi, f1))(
∑

σ∈S2n−2

ε(σ)C1(fσ(1), fσ(2)) . . . C1(fσ(i−1), fσ(i+1)) . . . C1(fσ(2n−1), fσ(2n)))

+n(C1(f1, f2n)− C1(f2n, f1))(
∑

σ∈S2n−2

ε(σ)C1(fσ(3), fσ(4)) . . . C1(fσ(2n−2), fσ(2n−1)))

= n!(−i)n({f1, f2, }{f3, . . . , f2n}

+
2n−1∑
i=3

(−1)i{f1, fj}{f2, . . . , fi−1, fi+1, . . . , f2n}

+{f1, f2n}{f2, . . . , f2n−1})

= n!(−i)n{f1, . . . , f2n}

This proves 2., 1. follows from 3.2 and 3.11.

Remark 3.3.2. The requirement
∑

σ∈S4
ε(σ)D1(fσ(1), fσ(2), . . . , fσ(2n−1), fσ(2n)) =

n!(−i)n{f1, f2, . . . , f2n−1, f2n} is a generalization of the requirement C1(f, g)−C1(g, f) =

−i{f, g} which we make for binary star products. As we will see by the next defini-

tion, this constraint ensures that our star products (which are deformations, of the

associative product of two or more functions, vis-a-vis condition 1.) lead to infinites-

imal deformations of the 2n-bracket 3.12 (we will denote this family of deformations

by ?[f1, . . . , f2n]t) .
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?[f1, . . . , f2n]t :=
1

t
(
∑
σ∈S2n

ε(σ) ? (fσ(1), . . . , fσ(2n))

=
∑
σ∈S2n

ε(σ)D1(fσ(1), . . . , fσ2n) + t
∑
σ∈S2n

ε(σ)D2(fσ(1) . . . , fσ(2n)) +O(t2)

= n!in{f1, . . . , f2n}+ t
∑
σ∈S2n

ε(σ)D2(fσ(1), . . . , fσ(2n)) +O(t2)

= n!in{f1, . . . , f2n}+ tα(f1, . . . , f2n) +O(t2)

where

α : ∧2nC∞(M)→ C∞(M)

Remark 3.3.3. The star product ?(., . . . , .) satisfies some additional properties that

are worth mentioning.

1. ?(1, f2, . . . , f2n) = ?(f2, 1, . . . , f2n) = · · · = ?(f2, f3, . . . , f2n−1, 1) = f2f3 . . . f2n−1f2n

This means, in other words, that multiplication by a constant c in classical

mechanics corresponds throughout the deformation to multiplication by the

constant power series c. . This is one of the usual axioms of quantization.

This property is equivalent to Dk(1, f2, . . . , f2n) = Dk(f2, 1, . . . , f2n) = · · · =

Dk(f2, f3, . . . , f2n−1, 1) = 0 for k ≥ 1, it follows from the corresponding prop-

erty of 3.5 and the definition of the Dk.

2. A star product of 2n functions should be called local if for all f, g ∈ C∞(M),

the support suppDj(f1, . . . , f2n) is contained in suppf1

⋂
· · ·
⋂
suppf2n for all

j ∈ N0. This is the obvious generalization of locality of a star product for n=1.

The locality of our star product depends on the locality of the star product

defined by Schlichenmaier, see [MS] and the comments therein.
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Remark 3.3.4. To establish analogy with deformations of associative algebras in

the sense of Gerstenhaber[Ger] we would need a (generalized) associativity property.

3.4 Generalized commutator

In this section we will write down a set of conditions on operators F̂1, . . . , F̂2n−1,

Ĝ1, . . . , Ĝ2n ∈ End(H) (whereH is any complex Hilbert space) that ensures that the

generalized commutator [., . . . , .] will satisfy the fundamental identity of a Nambu-

Poisson bracket with respect to these operators.. Throughout this section our Hilbert

space H will be finite dimensional with dimR(H) = 2n and m ≤ n.

Recall from our discussion of the geometric formulation of quantum mechanics

in chapter one that for any F̂ , K̂ ∈ End(H) we have the relation

{F,K}Ω =
1

i~
〈[F̂ , K̂]〉, (3.16)

where F,K are the expectation values of F̂ and K̂ respectively (these are functions

F,K ∈ C∞(H)) and {., .}Ω is the natural Poisson structure that can be defined on

Hilbert space[AS]. The expectation value of an operator F̂ is defined as

F (ψ) = 〈F̂ 〉ψ = 〈ψ, F̂ψ〉.

Lemma 3.4.1. For any self-adjoint operator Ĝ ∈ End(H), if 〈Ĝ〉ψ = 0 for every

ψ ∈ H then Ĝ = 0. In other words, if G = 0 than Ĝ = 0 (the converse statement is

of course true as well).

Proof. Assume that Ĝ is not the zero operator. Ĝ is self-adjoint so it will have at

least one non-zero eigenvalue c (which will be real) with non-zero eigenvector ψ,

then



CHAPTER 3. TWO ADDITIONAL RESULTS 74

〈ψ, Ĝψ〉 = 〈ψ, cψ〉 = c〈ψ, ψ〉 = c||ψ||2 = 0.

This last equality contradicts the assumption that both c and ψ are non-zero.

Remark 3.4.2. Recall that an operator corresponding to a real valued function is

always self-adjoint. From a physical point of view restricting to self-adjoint operators

is natural.

Lemma 3.4.3. For even n the generalized commutator of 2n Hermitian (self-adjoint3)

operators is again Hermitian.

Proof. In order to prove the lemma first of all we will use the following calculation

which demonstrates that when n = 1 the commutator of Hermitian operators is

skew-Hermitian. Let A∗ = A and B∗ = B be two Hermitian operators and consider

their commutator,

[A,B]∗ = (AB −BA)∗ = (AB)∗ − (BA)∗ = B∗A∗ − A∗B∗ = BA− AB = −[A,B].

(3.17)

For the general case the calculation goes like this, where A∗i = Ai,

[A1, . . . , A2n]∗ =
1

2n

∑
σ∈Sn

ε(σ)([Aσ(1), Aσ(2)] . . . [Aσ(2n−1), Aσ(2n)])
∗

=
1

2n

∑
σ∈Sn

ε(σ)[Aσ(2n−1), Aσ(2n)]
∗ . . . [Aσ(1), Aσ(2)]

∗

3For the finite dimensional vector spaces that we are considering these notions coincide. When

the vector spaces are infinite dimensional the domain of definition of a operator need not be the

entire space and these notions diverge.
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=
1

2n

∑
σ∈Sn

ε(σ)(−1)n[Aσ(2n−1), Aσ(2n)] . . . [Aσ(1), Aσ(2)]

=
1

2n

∑
σ∈Sn

ε(σ)(−1)n[Aσ(1), Aσ(2)] . . . [Aσ(2n−1), Aσ(2n)]

= (−1)n[A1, . . . , A2n]

This proves the lemma.

We would like to compare the generalized commutator [., . . . , .] to the Nambu-

Poisson bracket {., . . . , .}Ω, these cannot be compared directly because one of them

is an operator on Hilbert space and the other is a function on Hilbert space. We

can instead compare the expectation value 〈[., . . . , .]〉 which is a function on Hilbert

space to the Nambu Poisson bracket. Consider the difference

D(F1, . . . , F2n) ≡ {F1, . . . , F2n}Ω −
1

(i~)n
〈[F̂1, . . . , F̂2n]〉 (3.18)

Now, the fundamental identity for {., . . . , .}Ω with respect to the operators F̂1, . . . , F̂2n−1,

Ĝ1, . . . , Ĝ2n reads,

{F1, . . . , F2n−1, {G1, . . . , G2n}} − {{F1, . . . , F2n−1, G1}, G2, . . . , G2n}

−{G1, {F1, . . . , F2n−1, G2}, G3, . . . , G2n}−· · ·−{G1, . . . , G2n−1, {F1, . . . , F2n−1, G2n}} = 0

Where the Fi and the Gi are expectation values of self-adjoint operators F̂i and

Ĝi respectively. When D(G1, . . . , G2n) = 0 and D(F1, . . . , F2n−1, Gi) = 0 for i ∈

{1, . . . , 2n}, we may substitute from 3.18 to get,

1

(i~)n
({F1, . . . , F2n−1, 〈[Ĝ1, . . . , Ĝ2n]〉} − {〈[F̂1, . . . , F̂2n−1, Ĝ1]〉, G2, . . . , G2n}
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−{G1, 〈[F̂1, . . . , F̂2n−1, Ĝ2]〉, G3, . . . , G2n}−· · ·−{G1, . . . , G2n−1, 〈[F̂1, . . . , F̂2n−1, Ĝ2n]〉}) = 0.

If furthermoreD(F1, . . . , F2n−1, 〈[Ĝ1, . . . , Ĝ2n]〉) = 0, D(〈[F̂1, . . . , F̂2n−1, Ĝ1]〉, G2, . . . , G2n) =

0, D(G1, 〈[F̂1, . . . , F̂2n−1, Ĝ2]〉, G3, . . . , G2n) = 0, . . . , D(G1, . . . , G2n−1, 〈[F̂1, . . . , F̂2n−1, Ĝ2n]〉) =

0, we may further substitute from 3.18 to get,

1

(i~)2n
(〈[F̂1, . . . , F̂2n−1, [Ĝ1, . . . , Ĝ2n]]〉 − 〈[[F̂1, . . . , F̂2n−1, Ĝ1], Ĝ2, . . . , Ĝ2n]〉

−〈[Ĝ1, [F̂1, . . . , F̂2n−1, Ĝ2], Ĝ3, . . . , Ĝ2n]〉−· · ·−〈[Ĝ1, . . . , Ĝ2n−1, [F̂1, . . . , F̂2n−1, Ĝ2n]]〉) = 0.

We may drop the overall constant and because expectation is linear we may bring

the angled brackets to the outside to get,

〈[F̂1, . . . , F̂2n−1, [Ĝ1, . . . , Ĝ2n]]− [[F̂1, . . . , F̂2n−1, Ĝ1], Ĝ2, . . . , Ĝ2n]

−[Ĝ1, [F̂1, . . . , F̂2n−1, Ĝ2], Ĝ3, . . . , Ĝ2n]−· · ·−[Ĝ1, . . . , Ĝ2n−1, [F̂1, . . . , F̂2n−1, Ĝ2n]]〉 = 0.

The expression inside the angled brackets is a Hermitian operator whenever n is

even by lemma 3.4.3, so we may apply lemma 3.4.1 to drop the angled brackets and

obtain the fundamental identity for the generalized commutator.

[F̂1, . . . , F̂2n−1, [Ĝ1, . . . , Ĝ2n]]− [[F̂1, . . . , F̂2n−1, Ĝ1], Ĝ2, . . . , Ĝ2n]

−[Ĝ1, [F̂1, . . . , F̂2n−1, Ĝ2], Ĝ3, . . . , Ĝ2n]−· · ·−[Ĝ1, . . . , Ĝ2n−1, [F̂1, . . . , F̂2n−1, Ĝ2n]] = 0.

We have proven the following proposition.

Proposition 3.4.4. Let H be a complex Hilbert space with dimR(H) = 2n and let

F̂1, . . . , F̂2n−1, Ĝ1, . . . , Ĝ2n ∈ End(H) be self-adjoint operators. Assume also that m

is even and that the difference function 3.18 is zero for all of the following combi-

nations:
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1. D(G1, . . . , G2n) = 0 and D(F1, . . . , F2n−1, Gi) = 0 for i ∈ {1, . . . , 2n}.

2. D(F1, . . . , F2n−1, 〈[Ĝ1, . . . , Ĝ2n]〉) = 0,

D(〈[F̂1, . . . , F̂2n−1, Ĝ1]〉, G2, . . . , G2n) = 0,

D(G1, 〈[F̂1, . . . , F̂2n−1, Ĝ2]〉, G3, . . . , G2n) = 0, . . . ,

D(G1, . . . , G2n−1, 〈[F̂1, . . . , F̂2n−1, Ĝ2n]〉) = 0

Than the generalized commutator [., . . . , .] satisfies the fundamental identity with

respect to the operators F̂1, . . . , F̂2n−1, Ĝ1, . . . , Ĝ2n ∈ End(H).

Remark 3.4.5.

In order to be able to say something about when we will expect D = 0 we can write

both of {., . . . , .}Ω and [., . . . , .] in terms of the brackets {., .}Ω and [., .] respectively

and apply the relation 3.16.

D ≡ {F1, . . . , F2n}Ω −
1

(i~)n
〈[F̂1, . . . , F̂2n]〉

=
1

2nn!

∑
σ∈Sn

ε(σ){Fσ(1), Fσ(2)}Ω . . . {Fσ(2n−1), Fσ(2n)}Ω

− 1

(i~)n
〈 1

2n

∑
σ∈Sn

ε(σ)[F̂σ(1), F̂σ(2)] . . . [F̂σ(2n−1), F̂σ(2n)]〉

After substituting from 3.16 and bringing the angled brackets to the inside of the

sum using linearity of the expectation we get,

D =
1

2nn!(i~)n

∑
σ∈Sn

ε(σ)〈[F̂σ(1)F̂σ(2)]〉 . . . 〈[F̂σ(2n−1), F̂σ(2n)]〉

− 1

2n(i~)n

∑
σ∈Sn

ε(σ)〈[F̂σ(1), F̂σ(2)] . . . [F̂σ(2n−1), F̂σ(2n)]〉.
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From this we see that the difference D is a sum of differences of the form

ε(σ)(〈[F̂σ(1), F̂σ(2)]〉 . . . 〈[F̂σ(2n−1), F̂σ(2n)]〉 − 〈[F̂σ(1), F̂σ(2)] . . . [F̂σ(2n−1), F̂σ(2n)]〉)

When n=2 this is exactly the covariance of the operators [F̂σ(1), F̂σ(2)] and [F̂σ(3), F̂σ(4)].

For n ≥ 3 this suggests a generalization of covariance to more than two operators.

3.5 Conclusions

The Berezin Toeplitz operator quantization leads to a deformation quantization,

the Berezin Toeplitz star product, theorem 3.2.1. In equation (3.10) we define a

higher order analog of the Berezin Toeplitz star product. We prove in proposi-

tion 3.3.1 that this higer order star product reduces to the Nambu-Poisson algebra

(C∞(M), {·, · · · , ·}) in the limit t→∞.

In section 3.4 we investigate the generalized commutator [·, · · · , · · · ], which sat-

isfies the generalized Jacobi identity. In proposition 3.4.4 we determine conditions

on operators F̂1, . . . , F̂2n−1, Ĝ1, . . . , Ĝ2n ∈ End(H) (where H is any complex Hilbert

space) that ensures that the generalized commutator will satisfy the fundamental

identity.
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