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Abstract

The research contained in this thesis is two-fold: understanding the behavior of dib-

orane under pressure, and engineering wide-gap semiconductors in order to promote

their optical e�ciency. Each of these themes are further explained below.

Diborane (B2H6), is a prototypical electron-deficient molecule and has received a great

deal of attention in recent years due to its unique and peculiar structure, as well as its

potential applications as a hydrogen-storage material. At high pressures, vibrational

spectroscopy analysis have revealed several changes in the spectral profile that suggest

occurrence of polymorphic transformations; however, the new crystal structures at

high pressures have not been identified due to experimental challenges. In this study,

we employ electronic structure calculations to investigate and assign the pressure-

induced polymorphic transformations of crystalline diborane observed by vibrational

spectroscopy up to 88 GPa. In particular, our density-functional calculations predict

that diborane will remain in molecular form up to near-megabar pressures, above

which it should transform into a structure with covalently bonded chains of boron

atoms and eventually become metallic around 138 GPa.

Zinc oxide (ZnO) and zinc sulfide (ZnS) are abundant and nontoxic compound semi-

conductors, but their band gaps are too wide for potential use in light-harvesting

applications. Integration of these thermally and chemically stable compounds into

a bulk heterostructure presents an opportunity for the generation of novel materials

with notably di↵erent properties from their bulk counterparts. Using screened hy-

brid density-functional methods, we show that the band gaps of ZnO and ZnS can

be dramatically reduced by creating layered ZnO/ZnS bulk heterostructures in which

m contiguous monolayers of ZnO alternate with n contiguous monolayers of ZnS. In

particular, the band gap decreases by roughly 40% upon substitution of every tenth

monolayer of ZnS with a monolayer of ZnO (and vice versa) and becomes as low as

1.5 eV for heterostructures with m = 3 to m = 9 contiguous monolayers of ZnO

alternating with n = 10 � m monolayers of ZnS. The predicted band gaps of lay-

ered ZnO/ZnS heterostructures span much of the visible spectrum, which makes these

materials suitable for photovoltaic device engineering.

Keywords: quantum-chemistry simulations, density-functional theory, diborane, pressure-

induced polymorphic transformation, bulk heterostructures, band gap engineering.
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Chapter 1

Computational methodology

1.1 Introduction

Computer simulation is a fairly young branch of scientific research, and yet, it is

already recognized for its pivotal role in a wide variety of disciplines. Experiments

that are either di�cult or impossible to set up in laboratories, now have a chance to

be simulated computationally. This has been made possible thanks to the tremendous

advancement in hardware technology and high-performance programming over the

past few decades. Whether it is employed to generate data that we do not have, or

to help us comprehend the data that we do already have, computer simulations have

transformed our ability to understand the physical world. A legitimate concern in

computer simulations, however, is how to build a model, and how truthful the results

are. The most reliable strategy regarding simulations in chemistry is not to rely on

any hypothesis or conjecture, and formulate a model from the most fundamental laws

of nature, i.e., from the very beginning, or as they call it in Latin: ab initio.

1.2 Ab initio methods

The most fundamental principles of nature are based on quantum mechanics, and thus,

this would be a reasonable starting point for formulating a simulation model. Quantum

mechanics postulates that all the knowledge about an electronic system, whether it be

a single atom or a large and complex biopolymer, is stored in its wavefunction. This

wavefunction can be in principle obtained in the non-relativistic, time-independent,

stationary-nucleus scheme by solving the Schrödinger equation

Ĥ (r1, r2, . . . , rN) = E (r1, r2, . . . , rN), (1.1)

1
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where Ĥ,  (r1, r2, . . . , rN) and E are, respectively, the Hamiltonian operator, the

many-body wavefunction, and the total energy of the system, and r
i

denote electronic

degrees of freedom.

In fact, a large part of chemistry and physics would be revealed, if only the many-body

wavefunction of electronic systems could be exactly determined [1]. However, despite

the fact that the equations required for an exact solution have been well known since

1920s, analytical solutions have remained unattainable for all but the simplest systems

such as hydrogen-like ions.

This di�culty arises not so much from the complexity of the physical laws. After all,

all the matter is composed of positively and negatively charged particles, i.e., electrons

and protons, interacting via the Coulomb potential. Instead, the di�culty is due to

the pairwise and instantaneous interaction of N electrons and M nuclei within an

electronic system, and hence, within the Hamiltonian operator:

Ĥ = �1

2

NX

i=1

r2
i

�
NX

i=1

MX

j=1

Z
j

|r
i

�R
j

| +
NX

i<j

1

|r
i

� r
j

| . (1.2)

The first term in Eq. (1.2) is the kinetic energy of electrons, and the last two are,

respectively, the Coulomb interactions arising from the pairwise and instantaneous

electron-nucleus attraction and electron-electron repulsion. The electron-nucleus at-

traction term, also known as the external potential, vext, is the only system-dependent

component in Eq. (1.2), and distinguishes atoms, molecules, solids, etc. Atomic units

have been employed above in which ~ = e = m
e

= 4⇡✏0 = 1. Z
j

and R
j

in Eq. (1.2)

are, respectively, the charge and position of the nuclei.

The pairwise interaction in Eq. (1.2) renders the 3N -dimensional many-body wave-

function too complicated to obtain, and this complication grows dramatically with

increasing number of electrons and nuclei. This necessitates a fundamental change in

tackling the solution of Schrödinger equation.

Formulating e�cient schemes for approximating this complex many-body wavefunc-

tion has been a key objective of scientists since the dawn of quantum mechanics [2].

Most notably, the Hartree�Fock method makes a drastic simplification by assuming

that electrons move independently of each other and feel an e↵ective Coulomb re-

pulsion arising from the average positions of all the other electrons. In a way, the

Hartree�Fock method is decoupling the 3N degrees of freedom in the many-body

wavefunction, thereby enabling each to be treated independently. Furthermore, to
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satisfy the Pauli exclusion principle, the Hartree�Fock method involves a so-called

exchange potential, which prevents electron from occupying identical quantum states.

The total many-body wavefunction is approximated in the Hartree�Fock scheme by

a single determinant composed of single-particle wavefunctions, otherwise known as

spin-orbitals:

 ⇡ 1p
N !

����������

 1(x1)  2(x1) · · ·  N(x1)

 1(x2)  2(x2) · · ·  N(x2)
...

...
...

...

 1(xN)  2(xN) · · ·  N(xN)

����������

(1.3)

where  
i

(x) are single-particle functions, containing both a spatial, �
i

(r), and a spin,

�(�), counterpart such that

 
i

(x
i

) = �
i

(r
i

)�(�
i

). (1.4)

The spatial part of single-particle wavefunctions is obtained from a Schrödinger-like

equations of the form

 
�1

2
r2 �

MX

j=1

Z
j

|r
i

�R
j

|

!
�
i

(r) +
NX

j=1

ˆ
dr0

|�
j

(r0)|2
|r� r0| �i

(r)

�
NX

j=1

ˆ
dr0

�⇤
j

(r0)�
j

(r)

|r� r0| �
i

(r0) = ✏
i

�
i

(r) (1.5)

known as the Hartree�Fock equations. The second term on the left-hand side is

the Hartree potential, vH(r), which represents the Coulombic potential arising from

the electronic charge distribution; and the third term is the exchange potential. It is

called “exchange” because according to the principles of quantum mechanics, the total

wavefunction of indistinguishable particles, like electrons, should change sign when two

particles are exchanged:

 (x1, . . . , xi

, . . . , x
j

, . . . , x
N

) = � (x1, . . . , xj

, . . . , x
i

, . . . , x
N

) (1.6)

Wavefunctions in the Hartree�Fock method exactly preserve this property as a con-

sequence of their determinantal form (a determinant changes sign upon exchange of

two rows or two columns).
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The total Hartree�Fock energy is obtained as:

EHF
Tot =

NX

i=1

ˆ  
�1

2
r2 �

MX

j=1

Z
j

|r
i

�R
j

|

!
�⇤
i

(r)�
i

(r)dr

+
1

2

NX

i,j=1

ˆ
dr

ˆ
dr0

|�
i

(r)|2|�
j

(r0)|2
|r� r0|

� 1

2

NX

i,j=1

ˆ
dr

ˆ
dr0

�
i

(r)�⇤
i

(r0)�⇤
j

(r)�
j

(r0)

|r� r0| , (1.7)

where the terms on the right-hand side are, respectively, the kinetic energy of electrons,

the external energy, the Hartree energy and the exchange energy.

Despite being a milestone in the development of quantum-chemistry methods, the

Hartree�Fock predictions fall far short of chemical accuracy (s 1 kcal/mol). It even

often fails to provide a qualitative description, the famous example being the case of

fluorine molecule F2, which according to the Hartree�Fock method should not even

exist, because it is unstable with respect to atomic dissociation. Therefore, a number

of more accurate theories, having their roots in the Hartree�Fock method, have been

made available. Configuration interaction, coupled cluster, and Møller–Plesset per-

turbation theory are among the most popular post-Hartree�Fock methods. However,

the added accuracy in these methods have come with a steep price of extra compu-

tational demand, and thus, their applications are limited to small electronic systems.

That being the case, it did not take long before it was realized that a bare applica-

tion of ab initio methods to real-size chemical problems is an impossible mission. For

electronic systems in which the cost of these methods is restrictive, a more e↵ective

computational approach is required. This has been achieved by the density-functional

theory (DFT) [3], which is a well-tempered balance between computational demand

and numerical accuracy at present, and the most widely used approach for electronic

structure investigations in physics, chemistry and biology.

1.3 Density-functional theory

In quantum mechanics, the standard approach is to insert the potential energy function

of an electronic system into the Schrödinger equation to solve for the wavefunctions.

Once the wavefunctions are known, all observable quantities correspond to the expec-



5

tation value of their corresponding operators, Ô, through the relation:

hOi = h |Ô| i. (1.8)

Density-functional theory reverses this approach for the ground state, in the sense that

the electron density is promoted to be the main variable in place of the wavefunction,

and all other properties are found as functionals of the electron density. This is a

remarkable reduction in the computational complexity, since now, instead of pursuing

3N -dimensional wavefunctions,  (r1, r2, . . . , rN), we are dealing with a 3-dimensional

density ⇢(r) ⌘ ⇢(x, y, z) that has a smoother behavior.

The Hohenberg�Kohn [4] and Kohn�Sham [5] papers established the theoretical foun-

dations of density-functional theory, which later earned Walter Kohn, along with John

Pople, the 1998 Nobel Prize in Chemistry.

Hohenberg�Kohn theorems state that for the ground state of an electronic system,

the Hamiltonian, and hence all the properties that can be derived from it, are all

unique functionals of the ground-state electron density. In particular, the total energy

is expressed as

E = E[⇢(r)], (1.9)

and attains its minimum value for the ground-state density. In other words, the

ground-state electron density contains simply all the information needed to describe

a system. However, the Hohenberg�Kohn theorems only prove the existence of such

relation, and do not o↵er a practical recipe to obtain the exact functional form of

E[⇢(r)]. Indeed, the exact functional form of E[⇢(r)] has remained unrevealed until the

present day, and some suspect that it is perhaps too complicated to be ever obtainable.

A year after the seminal work of Hohenberg and Kohn, Kohn and Sham settled for

less and proposed a practical strategy for approximating this functional. The strategy

proposed by Kohn and Sham is to map the real interacting electronic system into

a fictitious and non-interacting one, in which electrons feel an e↵ective one-electron

potential, but produce the same ground-state density ⇢0(r). Since the real and ficti-

tious systems share the same ground state density, all the properties that are solely

and directly determined by the density must be the same for them. The Kohn�Sham

e↵ective potential is further partitioned into three components:

vKS(r) = vext(r) + vH(r) + vXC(r), (1.10)
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where vext(r) and vH(r) are, respectively, the external and Hartree potentials, and

bear the same meaning as in the Hartree�Fock method; and vXC(r) is the so-called

exchange-correlation potential. It is added to compensate for the interaction of now

non-interacting electrons, and is the only unknown component in Eq. (1.10) which has

to be approximated.

It should be stressed that the e↵ective potential does not anymore contain a pair-

wise interaction term. As a result, Kohn�Sham theory transforms the problem of

finding N -dimensional wavefunctions into the problem of finding N 1-dimensional

wavefunctions (orbitals) from a set of Schrödinger-like equations of the form

✓
�1

2
r2 + vKS(r)

◆
�
i

(r) = ✏
i

�
i

(r). (1.11)

The single-particle orbitals, �
i

(r), are further constrained to build the same ground-

state density as that of the true interacting system:

⇢0(r) =
occ.X

i=1

|�
i

(r)|2 , (1.12)

where the summation in Eq. (1.12) is over all occupied orbitals. Equations (1.11) and

(1.12) are known as the Kohn-Sham equations.

Similar to the expression for potential, the total energy functional is partitioned in the

Kohn�Sham DFT as:

EKS[⇢] = T
s

[⇢] + Eext[⇢] + EH[⇢] + EXC[⇢], (1.13)

where T
s

is the kinetic energy of the fictitious non-interacting electrons, Eext and EH

are, respectively, the external and Hartree energies arising from the Coulombic inter-

action of the electron density with the external vext(r), and Hartree vH(r) potentials;

and lastly, EXC is the exchange-correlation energy functional, which is related to the

exchange-correlation potential, vXC(r), in Eq. (1.10), but still unknown and needs to

be treated approximately.

In essence, the Kohn�Sham method splits the total energy into several terms and

wraps all the complications of the many-body interactions into one term, i.e., exchange-

correlation, in the hope that approximating a fraction of the total energy is more pru-

dent than approximating the whole. Likewise, the exchange-correlation energy is itself
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split into two parts, the exchange and correlation functionals:

EXC[⇢] = EX[⇢] + EC[⇢], (1.14)

and approximations for each part is sought separately. The exchange part in Eq. (1.14)

could be treated in the same exact form as in the Hartree�Fock method (see Eq. 1.7

and the discussion afterward),

Eexact
X [⇢] = �

NX

i,j=1

ˆ
dr

ˆ
dr0

�
i

(r)�⇤
i

(r0)�⇤
j

(r)�
j

(r0)

|r� r0| . (1.15)

It should be emphasized that �
i

(r) in Eq. (1.15) are the Kohn�Sham orbitals origi-

nating from the Kohn�Sham equations, while �
i

(r) in Eq. (1.7) are the Hartree�Fock

orbitals, arising from the Hartree�Fock equations. Therefore, despite their identical

functional forms, Eexact
X and EHF

X use with di↵erent orbitals, and thus, will return

di↵erent energy values.

The correlation part in Eq. (1.14) does not enjoy a similar exact treatment, and it

was soon realized that the pair of exact exchange, and approximate correlations does

not live up to expectations. Besides, the exact-exchange functional is not an explicit

functional of ⇢, and depends on the density only implicitly through the Kohn�Sham

orbitals by Eq. (1.12). Therefore, the exact exchange is discarded in favor of approx-

imate ones that are explicit functional of density and fit better with the available

approximate correlation functionals.

Approximate exchange-correlation energy functionals, EXC[⇢], can also be expressed in

an integral form and in terms of the exchange-correlation density functions, eXC(⇢, . . .)

EXC[⇢] =

ˆ
eXC(⇢, . . .)dr, (1.16)

where eXC is a function of the electron density, ⇢, but may also contain other ingredients

such as the gradient of the density, r⇢, the Laplacian of the density, r2⇢, or even the

exact-exchange energy density, eexactX .

In local-density approximation (LDA), for example, eLDA
XC is solely a function of the

density ⇢(r) at each point in space, and does not contain other ingredients. LDA is,

by construction, the exact functional for a homogeneous electron gas (i.e., when ⇢(r)

is constant), and still a decent approximation for electronic systems in which density
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is slowly varying in space, as in solid-state materials; however, it is not su�cient for

atoms and molecules. LDA usually overestimates binding energies, and underestimates

bond lengths [6].

Generalized-gradient approximations (GGA) are another class of approximate func-

tionals that can be considered as an extension to LDA, in the sense that eGGA
XC depends

not only on the density at each point in space, but also on how rapidly the density is

varying at that point through the gradient of the density, r⇢:

EGGA
XC [⇢] =

ˆ
eGGA
XC (⇢,r⇢)dr =

ˆ
eLDA
XC (⇢)FXC(⇢,r⇢)dr. (1.17)

In the rightmost equality of Eq. (1.17), the so-called enhancement factor FXC(⇢,r⇢)
is introduced to emphasize the deviation of GGAs from the LDA behavior. To fulfill

certain dimensionality requirements, the dependence of the GGA enhancement factors

on the gradient of the density is expressed through a dimensionless parameter s of the

form

s =
|r⇢|
⇢4/3

. (1.18)

The analytic form of FXC(s) varies in di↵erent GGAs, but the asymptotic behavior of

FX(s) in the s ! 0 limit is known [7] to be:

FX(s) �����!
s�!0

1 +
10

81
s2. (1.19)

The dependence on the gradient of the density makes GGAs more appropriate for

electronic systems in which the electron density is far from being uniform. GGAs

significantly improve upon LDA for binding energies and atomization energies, but

often slightly overestimate bond lengths [8]. Despite this encouraging improvement,

GGA approximations systematically fail to reproduce certain observed properties of

materials, the most notorious one being the band gaps. GGA functionals severely

underestimate semiconductor band gaps and sometimes even erroneously predict them

to be metallic. To remedy this shortcoming, more sophisticated density functional

approximations (DFA) are called for.

As discussed earlier, exact exchange does not pair well with approximate correlation

functionals. In 1993, however, Becke [9] showed that a significant progress will be

made, if a mixture of exact and approximate exchange is paired with an approximate
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correlation functional, in the so-termed hybrid functionals:

Ehybrid
XC = aEexact

X + (1� a)EDFA
X + EDFA

C , (1.20)

where a (0 6 a 6 1) is the mixing fraction, may be a constant or a function of r, and is

usually obtained by empirically fitting to experimental data. Hybrid functionals have

o↵ered a remarkable improvement in accuracy of optical properties over LDA and

GGAs. This, however, has been achieved at the expense of a greater computational

e↵ort.

Development of approximate exchange and correlation potential or energy functionals

that produce more reliable results with less computational demand, and for broader

class of electronic systems with less empirical input, has been an active and challenging

domain of research in the DFT community. There are currently a variety of DFAs,

based on di↵erent ideas, in the literature [10]. Some functionals include parameters

that are to be obtained by fitting to a set of empirical data; these functionals typically

yield accurate results only for systems that are close to their fit set. Others are

constructed nonempirically and based on physical concepts and known constraints,

and are more well-founded for investigation of unknown compounds and materials.

Regardless of how it is constructed, each functional comes with its own strengths and

deficiencies, and it is of paramount importance for practitioners of DFT to choose

proper ones for any particular situation.

During the course of this work, we employed, for the most part, two energy density-

functional approximations: the Perdew�Burke�Ernzerhof (PBE) generalized-gradient

approximation [12], along with its minor but critical modification for solids, PBEsol [13];

and also the range-separated Heyd�Scuseria�Ernzerhof (HSE) hybrid density func-

tional [14]. They are each designed to fulfill a particular objective which will be

addressed in the following two sections.

1.3.1 PBE and PBEsol functionals

Despite the fact that the exact functional form of Exc is not known, some of its prop-

erties and behaviors are indeed known [15]. For example, any approximate exchange

density-functional should reduce to the known exact expression of ELDA
x for a homo-

geneous electron gas:

Ex[⇢] = ELDA
x [⇢] if ⇢(r) = const. (1.21)
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Moreover, Levy and Perdew [16] have suggested that the exchange enhancement factor

should be bounded from below:

Fx 6 1.804. (1.22)

In 1996, Perdew, Burke and Ernzerhof employed these constraints and proposed a

non-empirical exchange and correlation functional. In particular, the PBE exchange

enhancement factor takes the form of

FPBE
x (s) = 1 +

µs2

1 + µs2/k
, (1.23)

where k = 0.804 is set to the maximum value allowed by Eq. (1.22), and µ = 0.21951, is

determined from the condition that the second-order gradient coe�cient for exchange

cancels the corresponding counterpart for correlation. This value, which is almost twice

as large as the exact value of 10
81 in Eq. (1.19), is set to ensure that the PBE exchange-

correlation reduces to LDA in the slowly varying regions. Perdew and coworkers have

shown that accurate atomization energy predictions are achieved using PBE only at

the expense of this violation.

Owing to its non-empirical derivation and relatively simple form, the PBE functional

has been the computational workhorse in the solid-state community for almost two

decades. However, despite its accurate atomization energy predictions and superior

performance over LDA and other GGAs, PBE usually overestimate bond lengths and

lattice parameters by 1%. This error is essentially spread out to many physical prop-

erties whose values are sensitive to geometries. In 2008, Perdew and coworkers [13]

revised PBE with the aim of remedying this situation for solids; the revision, called

PBEsol, retains the same functional form of PBE in Eq. (1.23), but restores the orig-

inal value of µ = 10
81 in Eq. (1.19). This new parameterization has been demonstrated

to yield more accurate equilibrium geometries, and is expected to become increasingly

more accurate at high pressures, where solids are truly slowly varying in density [13].

Atomization energies, however, are predicted with less accuracy with PBEsol than

PBE. Therefore, PBEsol outperforms PBE in predicting geometrical parameters but

fall behind it in predicting atomization energies. It appears that no GGA can perform

well for both of these properties at the same time.
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1.3.2 HSE functional

The exact exchange component of hybrid functionals (see Eq. 1.15) has a large spatial

extent arising form its 1
r12

dependence. This causes hybrid functionals to su↵er from

severe convergence problems in extended electronic systems, where density does not

decay fast enough. In order to accelerate the decay of exact exchange interaction in

solids, Heyd, Scuseria and Ernzerhof introduced the idea of range-separated hybrid

functional in 2003 [14], in which the 1
r12

operator is partitioned into a short-range

(SR) and a long-range (LR) components:

1

r12
=

1� f(r12)

r12| {z }
SR

+
f(r12)

r12| {z }
LR

. (1.24)

A popular choice for f(r12) is the Gauss error function:

f(r12) = erf(!r12) =
2p
⇡

ˆ
!r12

0

e�t

2
dt, (1.25)

with ! being a positive parameter. When ! ! 0, we have f ! 0, and thus, the

long-range component of 1
r12

in Eq. (1.24) is switched o↵, and the Coulomb operator

is described only by its short-range component. Conversely, when ! ! 1, we have

f ! 1, thereby, Eq. (1.24) will be dominated by its long-range component. At other

intermediate values of !, we have 0 6 f 6 1, which controls how 1
r12

is split between

its short- and long-range components.

Utilizing the range-separated Coulomb operator, we can further split both DFA and

exact exchange energies into their short- and long-range components:

EDFA
X = EDFA,SR

X + EDFA,LR
X , (1.26)

Eexact
X = Eexact,SR

X + Eexact,LR
X . (1.27)

The hybrid exchange-correlation functional will then be:

Ehybrid
XC = aEexact

X + (1� a)EDFA
X + EDFA

C

= a(Eexact,SR
X + Eexact,LR

X ) + (1� a)(EDFA,SR
X + EDFA,LR

X ) + EDFA
C (1.28)

HSE then proposes to replace the expensive long-range portion of exact exchange,
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Eexact,LR
X , with the inexpensive long-range portion of a DFA, EDFA,LR

X .

Employing PBE as the DFA in Eq. (1.28) yields the range-separated HSE hybrid

density functional, in the form of:

EHSE
XC = aEexact,SR

X + (1� a)EPBE,SR
X + EPBE,LR

X + EPBE
C , (1.29)

for which the optimum value of ! is set by empirical fitting to 0.106 bohr�1, and

a = 1
4 is the mixing fraction of exact and approximate exchange energies, determined

by perturbation theory [17].

HSE has substantially lowered the computational demand for calculations in extended

systems, and thus has extended the success of hybrid functionals in quantum chem-

istry into solid-state physics, thereby reproducing experimental optical properties more

accurately and at an a↵ordable computational e↵ort.

1.4 Periodic systems

Thus far, the many-body problem of interacting electrons within an electronic system

has been addressed in terms of density-functional theory. This, however, is not the

only obstacle to surmount. In solids, unlike single atoms and isolated molecules, we

are faced with an enormous number of ions (of the order of Avogadro’s number) closely

packed together in a tiny chunk of matter, with nearly the same amount of electrons

moving around and among them. The ions and electrons are so close to each other in

solids that the e↵ect of one on another cannot be neglected.

On the face of it, this depicts a too complicated picture to fit into any computational

modeling; we seem to need to integrate over an infinite space. This complexity, how-

ever, is relieved by observing that most solids have significant degrees of periodicity in

their structure; so much so that the whole structure can be constructed by replicating

a single atomistic-scale building block, known as the primitive unit cell. The primitive

unit cell is identified by a set of three linearly-independent vectors a
i

, which will shape

the whole lattice once translated in three dimensions by

T =
3X

i=1

n
i

a
i

, (1.30)

with n
i

being any set of three integers.
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An important consequence of this observation is that all the macroscopic properties

of an infinitely large solid can be studied by only focusing on their finite-size unit cell,

and instead of taking into account of an infinite number of electrons, it is only required

to consider the number of electrons within a single unit cell (or perhaps half of that

number, if energy states are doubly occupied).

1.4.1 Bloch’s theorem

We may consider the non-interacting electrons of the Kohn-Sham scheme under the

influence of an e↵ective Kohn-Sham potential vKS(r), which essentially possesses the

same periodicity as the underlying lattice,

vKS(r+T) = vKS(r). (1.31)

Bloch’s theorem states that the Kohn-Sham orbitals under such a periodic potential

can be written as:

�
k

(r) = eik·ru
k

(r), (1.32)

where u
k

(r) is a periodic function with, once again, the same periodicity as the un-

derlying lattice,

u
k

(r+T) = u
k

(r), (1.33)

and k is the Bloch wave vectors, to be discussed below. Being periodic, u
k

(r) can

always be expressed as a Fourier series in the form of

u
k

(r) =
X

G

c
k,G

eiG·r, (1.34)

where c
k,G

are the Fourier coe�cients, and G = ⌃3
i=1mi

b
i

defines the reciprocal lat-

tice vectors, with m
i

being any set of three integers, and b
i

a set of three linearly-

independent vectors, identifying the reciprocal primitive unit cell, also known as the

first Brillouin zone. Furthermore, the primitive unit cell vectors a
i

, are set by the

Fourier transformation to be related to their reciprocal counterparts b
i

by

a
i

· b
j

= 2⇡�
ij

, i, j = 1, 2, 3, (1.35)

which further causes the lattice vectors T and the reciprocal lattice vectors G to be
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related by G ·T = 2⇡l, with l being an integer.

Combining Eqs. (1.32) and (1.34), we have

�
k

(r) =
X

G

c
k,G

ei(G+k)·r. (1.36)

This shows that Kohn-Sham orbitals in an extended electronic system can be expressed

as a linear combination of s. They are termed plane waves because the planes of

constant phase are all parallel to each other and perpendicular to the propagation

direction.

One of the essential elements of all first-principles methods is representing complicated

functions in terms of a set of predefined and conveniently chosen functions known as

basis sets. In the case of isolated atoms and molecules, wavefunctions tend to decay

at distances far from nuclei. This necessitates the employment of spatially localized

basis sets, such as Gaussian- or Slater-type orbitals. They resemble atomic orbitals in

the vicinity of nuclei and decay fast far from them. However, Eq. (1.36) denotes that

wavefunctions in periodic systems do not decay. This requires utilization of a spatially

extended basis set. In fact, the Bloch’s theorem implies the natural basis sets needed:

plane wave basis sets. Plane wave basis sets have simple mathematical form, and

unlike the localized ones, cover all space equally without biasing any particular region.

Eq. (1.32) implies that the orbitals in adjacent unit cells are written as

�
k

(r+T) = eik·(r+T)u
k

(r+T) = eik·Teik·ru
k

(r) = eik·T�
k

(r), (1.37)

which further reveals for the corresponding charge density that

|�
k

(r+T)|2 = ��eik·T�
k

(r)
��2 = |�

k

(r)|2 . (1.38)

These indicate that in a periodic potential, only the phase of the orbitals are di↵erent

in di↵erent unit cells, and the charge densities remain periodic, as expected.

The orbitals in Eq. (1.32) are also labeled by the Bloch wave vectors k, whose values

are determined by the Born-von Karman periodic boundary conditions. The Born-von

Karman periodic boundary condition states that when there is an infinite number of

atoms in a linear chain, the atoms in the middle are unaware of what is happening to

the atoms at either end. Therefore, we can always close a chain on itself and treat an
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infinite linear chain of atoms as an infinite ring of atoms. That is to say

�
k

(r+N
i

a
i

) = �
k

(r), i = 1, 2, 3, (1.39)

with N
i

(⇡ 1023) being the number of lattice points in each direction. Enforcing

Bloch’s theorem on both sides of Eq. (1.39), we have

eik·(r+Niai)u
k

(r+N
i

a
i

) = eik·ru
k

(r), i = 1, 2, 3. (1.40)

Employing the periodic property of u
k

(r), Eq. (1.40) can only be true if

eik·Niai = 1, i = 1, 2, 3. (1.41)

This restricts the allowed Bloch wave vectors to a discrete but densely packed form,

k =
3X

i=1

m
i

N
i

b
i

, m
i

= integer. (1.42)

The Bloch wave vector k is not only restricted to the form of Eq. (1.42), but also can

always be confined within the first Brillouin zone. This is because any k0 not in this

zone can be rewritten in term of one k inside the zone and one reciprocal lattice vector

G as:

k0 = G+ k =) eik
0·T = eik·T · eiG·T

| {z }
=1

= eik·T; (1.43)

therefore, if Eq. (1.37) holds for k0, it will also hold k, such that all k0 = G + k are

associated with the same orbital �
k

.

At this point, it appears that the Bloch’s theorem has mapped the original problem

of solving orbitals over an infinite space onto new problems. First of all, since Fourier

transformations decompose periodic functions into a sum of infinite terms, the orbitals

in Eq. (1.32) are expanded over an infinite number of reciprocal lattice vectors G.

In addition, Bloch wave numbers k has populated the Brillouin zone with infinite

density. Bloch’s theorem has seemingly traded one infinity for two other infinities.

These problems, however, are easily dealt with by first, introduction of a plane wave

cuto↵ energy, and second, an e�cient scheme of sampling the Brillouin zone. These

will be addressed in the following sections.
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1.4.2 Cuto↵ energy

The kinetic energy of noninteracting electrons in the Kohn-Sham method is written

as the sum of the terms: ˆ
�⇤(r)

✓
�r2

2

◆
�(r)dr. (1.44)

Substituting the Kohn-Sham orbitals of Eq. (1.36) into the above term we have,

ˆ X
G

0

c⇤
k,G

0e�i(G0+k)·r
✓
�r2

2

◆X

G

c
k,G

ei(G+k)·rdr =

X

G,G

0

c⇤
k,G

0c
k,G

✓
G+ k

2

◆2 ˆ
dre�i(G0�G)·r

| {z }
= �GG0

=
X

G

✓
G+ k

2

◆2

|c
k,G

|2 (1.45)

This shows that the kinetic energy term of the Kohn-Sham energy is proportional

to square of G + k. On the other hand, G + k is the frequency of the oscillating

Bloch plane waves, with higher G + k indicating a more rapid oscillation, and thus,

a less contribution to the Fourier expansion of the ground state. This establishes

a justification for truncating the plane wave expansions above a certain point. The

point at which the plane waves basis sets are truncated is called the plane-wave cuto↵

kinetic-energy, ✓
G+ k

2

◆2

6 Ecuto↵ . (1.46)

The value of cuto↵ energy depends on the atomic structure within the unit cell, and

it is crucial to test the convergence of the results with respect to it. The accuracy of

calculations in periodic systems can always be systematically improved by increasing

this single parameter. This is a remarkable advantage over other localized basis sets,

with which computed properties are often greatly a↵ected by small changes in the

basis sets, and a systematic pattern for increasing convergence is not available.

1.4.3 K-point sampling

Bloch’s theorem has shifted the focus from the infinite real space to the finite k space

within the first Brillouin zone. On the other hand, Eq. (1.42) indicates that in the limit

of N
i

! 1, the first Brillouin zone space is densely filled with k points. This problem

can be surmounted by observing that Kohn-Sham orbitals �
k

do not significantly vary
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over small changes in k, such that an integration within the first Brillouin zone can

be replaced by a summation over a finite but su�cient number of k points:

ˆ
F (k)dk ⇡

X

j

!
j

F (k
j

). (1.47)

A number of methods have been developed for e�ciently sampling the k-space. In this

work, we employed the Monkhorst-Pack scheme [18]. The Monkhorst-Pack scheme

samples the first Brillouin zone with an unbiased and uniform mesh, in which k points

are homogeneously distributed parallel to the reciprocal primitive unit cell in the form

of

k = u1b1 + u2b2 + u3b3, (1.48)

where b
i

are the reciprocal primitive vectors, and

u
i

=
2m�M

i

� 1

2M
i

, m = 1, 2, 3, . . . ,M ; and i = 1, 2, 3, (1.49)

withM
i

being a user-defined integer determining the number of k points in b
i

direction.

A k point mesh of M ⇥ M ⇥ M , for instance, will generate M3 points within the

first Brillouin zone. Structural symmetries, however, may be exploited to reduce this

number.

Unlike the value of cuto↵ energy, the number of k-points sampling the first Brillouin

zone is not a variational parameter, and thus, the total energy of an electronic system

does not necessarily exhibit a monotonous decrease as the number of the k-points is

increased. Nevertheless, it is always crucial to ensure that computed properties are

converged with respect that to the k-point mesh.

1.5 Pseudopotentials

A further simplification regarding calculations in extended systems can be achieved by

the use of pseudopotentials [19]. This approximation is motivated by the observation

that core electrons are not chemically active and can be frozen within the inner atomic

shells, while valence electrons are the ones responsible for most chemical activities and

are to be treated with care.

As eigenstates of a Hermitian operator, orbitals of core and valence electrons are

required to be mutually orthogonal. Core orbitals are highly localized in the vicinity
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of nuclei, while valence orbitals are extended far from the nuclei; however, in order to

maintain their orthogonality to the core states, valence orbitals oscillate rapidly and

have multiple nodes in the core regions.

Figure 1.1 illustrates the radial atomic orbitals of silicon, calculated using the PBEsol

exchange-correlation functional. We can see that the core orbitals are all localized

within 2 bohr of the nucleus with the expectation values of r being around 0.2�0.5

bohr. On the other hand, valence orbitals extend beyond 5 bohr, and oscillate around

the origin.
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Figure 1.1: Radial atomic orbitals of silicon, calculated using PBEsol functional.

This observation highlights the major drawback of plane wave basis sets: they are

not e�cient for describing the oscillations of valence orbitals in the unexciting core

region. In other words, we need a large number of plane wave basis sets, and thus,

computational resources for not much practical usage. In addition, the electron-nucleus

potential varies as 1
r

, and diverges to infinity as r ! 0, which again, is di�cult to be

described in terms of plane waves. These di�culties can be avoided by the use of

pseudopotentials.

The pseudopotential approximation removes all core electrons as well as the full 1
r

Coulomb potential arising from the bare nuclear charges, and replace them with a fic-

titious smooth nondiverging pseudopotential, such that it only reproduces the behavior
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of chemically-active valence electrons in the chemically-important valence region. To

this end, the rapidly oscillating valence orbitals are replaced with pseudo-orbitals (PO)

that are identical to the real ones in the outer region, but is non-oscillating and node-

less in the core region (Figure 1.2). These modifications give rise to softer potentials

and orbitals, and consequently a substantially smaller number of plane wave basis sets

for adequately describing them.
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Figure 1.2: Radial atomic all-electron and pseudo orbitals of silicon, calculated using
the PBEsol functional.

In order to construct the pseudo-orbitals for an atom, we should first decide which

electrons are to be treated as core or valence. Then, for each valence electron with

an angular momentum l, a cuto↵ radius r
c,l

should be set for separating the core and

valence regions. It is then crucial to produce good quality all-electron atomic orbitals

for each valence electron using a density-functional method. The radial part of each

pseudo-orbital is then constructed so that it is identical to its all-electron counterpart

beyond the cuto↵ radios:

Rl

PO(r) = Rl

all-electron(r), r > r
c,l

. (1.50)

This ensures that the pseudo-orbitals retain the same properties as that of the real ones

in the chemically-important zone. For r 6 r
c

, however, the construction of pseudo-

orbitals is not unique, but all the available recipes attempt to smooth them out in the

core region. In particular, the Troullier-Martins norm-conserving pseudopotential [21]
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assumes that

Rl

PO(r) = rlep(r), r 6 r
c,l

, (1.51)

where p(r) is a polynomial of order six in r2:

p(r) = c0 + c2r
2 + c4r

4 + c6r
6 + c8r

8 + c10r
10 + c12r

12. (1.52)

The odd powers of r are not included in the polynomial to obtain a smoother behavior

of the pseudo-orbitals. In order to determine the seven coe�cients of the polynomial,

Troullier and Martins demand that the core charge enclosed within r
c,l

must be the

same for the pseudo-orbital and its all-electron counterpart

ˆ rc,l

0

��Rl

PO(r)
��2 r2dr =

ˆ rc,l

0

��Rl

all-electron(r)
��2 r2dr. (1.53)

This guarantees that the total charge within the core region, and thus, the electrostatic

potential of the real- and pseudo-orbitals are the same. Moreover, according to Troul-

lier and Martins, the pseudo-orbitals and their first four derivatives must be continuous

at the cuto↵ radios r
c,l

, and the screened pseudopotential must have zero curvature at

the origin. These conditions are set to ensure the smoothness of pseudo-orbitals.

Once pseudo-orbitals are constructed, the screened (scr) atomic pseudopotential is

obtained by inversion of the radial Schrödinger equation:

vl,scrPP (r) = ✏
l

� l(l + 1)

2r2
+

1

2rRl

PO(r)

d2

dr2
[rRl

PO(r)]. (1.54)

The total atomic pseudopotential will be composed of several components, one for

each angular momentum involved; the total molecular or crystalline pseudopotential

will also be obtained by a linear superposition of their constituent atomic pseudopo-

tentials. Since the pseudo-orbitals are, by construction, continuous up to the fourth

derivatives, the pseudopotentials emerging from Eq. (1.54) will also be continuous;

and since pseudo-orbitals are nodeless and behave as rl near the origin, the pseudopo-

tentials will not have any singularity, and thus, is non-diverging.

The screened pseudopotential of Eq. (1.54) is the total single-particle potential whose

eigenstates are the desired pseudo-orbitals. An unscreened pseudopotential, which

will play the role of the external potential in the Kohn-Sham scheme, can be ob-

tained by subtracting the Hartree and exchange-correlation potentials from the screen
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pseudopotential:

vl,ionPP (r) = vl,scrPP (r)� vH(r)� vxc(r), (1.55)

where the Hartree and exchange-correlation potentials of Eq. (1.55) are evaluated from

the occupied valence pseudo-orbitals.

It should also be noted that the exchange-correlation functional utilized in Eq. (1.55)

must be the same employed for the construction of all-electron atomic orbitals, and

the same as in the targeted calculations employing the unscreened pseudopotential.

Inconsistencies between them will lead to unpredictable outcomes.

1.6 Evolutionary crystal structure prediction

Structure is the most paramount piece of information about a condensed-matter sys-

tem, which has been traditionally garnered from X-ray or neutron di↵raction exper-

iments. Given this information, computational chemists have been able to compute

most of the properties of materials using state-of-the-art simulation techniques.

Predicting the crystal structure of a solid at a given pressure and temperature, based on

pure human reasoning and without any prior knowledge of experiments, has long been

believed to be an impossible mission. It corresponds to finding the global minimum of

a 3N + 3 dimensional potential landscape, where N, the number of atoms within the

unit cell, may not even be known. It is indeed such a formidable task that two decades

ago, the answer to the question “Are crystal structures predictable?” [20] was:

“No”: by just writing down this concise statement, in what would be the

first one-word paper in the chemical literature, one could safely summarize

the present state of a↵airs, earn an honorarium from the American Chemi-

cal Society, and do a reasonably good service to his or her own reputation.

Since then, a number of methods have been developed to address this di�culty. In

particular, an evolutionary algorithm for crystal structure prediction was pioneered by

Oganov et al. in 2006 [22], and implemented and made public in 2010 in the USPEX

code [23]. This has proved to be a powerful approach in determining the crystal

structure of materials, and has led to a number of significant discoveries [24, 25, 26, 27].

The USPEX code combines first-principles enthalpy calculations with an evolution-

ary algorithm to find the most stable and a number of metastable crystal structures,



22

by only knowing their chemical compositions. The evolutionary algorithm for crys-

tal structure prediction imitates Darwinian evolution and employs its terminology. It

starts with an unbiased sampling of the potential energy surface by randomly gen-

erating a number of structures to populate the first generation. It then determines

the quality of each member of the population by optimizing their geometries using

the accompanying first-principles code. Poor members of the first generation, i.e., the

structures with the highest enthalpies, will be discarded, and the fittest ones will be

selected as parents from which members of the second generation are born. This pro-

cess is repeated in multiple generations until reaching a certain number of subsequent

generations where the fittest member is not changing anymore.

To ensure that good genes are passed on from one generation to the subsequent ones,

USPEX employs a mixture of special operators, known as lattice mutation, atomic

permutation, softmutation and heredity. Through lattice mutation, fractional coordi-

nates of atoms within parent unit cells remain unchanged, but their unit cell vectors

are randomly distorted. This enables an e�cient exploration in the neighborhood of

good individuals on the potential landscape. Through atomic permutation, unit cell

vectors remain unchanged, but chemical identities of atoms are exchanged in randomly

selected pairs. This is especially useful for electronic systems in which chemically sim-

ilar atoms are present. Heredity operator combines random slices of two parent unit

cells to form a single o↵spring. Heredity expands diversity in the population while

still preserving the already found good individuals. Softmutation involves mutation of

unit cells, not along a random vector, but along the softest phonon eigenmodes. Soft

phonon modes are indicative of instabilities in structures, and by mutating the unit

cells along them, one can avoid instabilities. These special operators enable one to

zoom into more promising regions of the potential landscape until a global minimum

is found.

The strength of the evolutionary algorithm lies in the fact that subsequent generations

have, by construction, increasingly better quality than previous generations. In that

sense, it is a self-learning and self-improving method that locates, step by step, the

best structures. Employing evolutionary algorithm for structure prediction, one can

compute most of the properties of a material, even before it is synthesized.
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1.7 Scope of this study

This study is focused on quantum-chemistry simulations, in the framework of density-

functional theory, in order to understand, explain, and predict experimental results.

This is partly carried out in collaboration with Prof. Yang Song group in the De-

partment of Chemistry at the University of Western Ontario. Prof. Song and his

colleagues have obtained experimental infrared and Raman spectra of solid diborane

at high pressures, and based on changes in the spectral profile, have suggested that

diborane undergoes a number of phase transitions. However, the crystal structures of

the new phases have not been identified due to experimental challenges in both sample

confinement and in situ structural characterization under extreme pressures. We have

simulated the pressure dependence in the vibrational spectra of a number of plausible

structures of diborane, and by comparison with the available experimental data, have

interpreted the pressure-induced polymorphic transitions in diborane.

The second part of this thesis is focused on band gap engineering of wide-gap semicon-

ducting materials in the hope of improving their optical performance. In particular,

we have studied how the band structures and band gap energies can be modified in

layered heterostructures of zinc oxide and zinc sulfide.

In Chapter 2, we investigate and assign the pressure-induced structural transforma-

tions in crystalline diborane observed spectroscopically by Song and co-workers (J.

Phys. Chem. B 2009, 113, 13509; J. Chem. Phys. 2009, 131, 174506) between 3.5

and 24 GPa at room temperature. The assignment is made by calculating the Raman

and infrared vibrational spectra of 10 candidate structures at various pressures and

comparing the results to experiment. We find that solid diborane undergoes a poly-

morphic transition at about 6 GPa from �-diborane (P21/n) to a P21/c diborane and

possibly a second transition near 14 GPa to another P21/c diborane structure. We

conclude that no cyclic oligomers or chains of the composition (BH3)
n

(n > 2) are

formed from diborane up to at least 24 GPa under the experimental conditions em-

ployed by the Song group, even when such structures are thermodynamically favored.

This suggests that pressure-induced chemical transformations of molecular crystals of

diborane are kinetically hindered.

In Chapter 3, we report new pressure-induced polymorphic transformations of crys-

talline diborane observed between 36 and 88 GPa by in situ Raman spectroscopy and

interpreted using electronic structure calculations. Two previously unknown phase

transitions are identified near 42 and 57 GPa, as evidenced by significant changes
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in the Raman profiles. The corresponding new phases, labeled IV and V, consist

of B2H6 molecules and have triclinic unit cells (P 1̄), as deduced through evolution-

ary structure search and comparison of experimental and simulated Raman spectra.

Density-functional calculations suggest that, at pressures above 110 GPa, phase V will

form new molecular structures consisting of one-dimensional (BH3)
n

chains and will

become metallic near 138 GPa.

In Chapter 4, using screened hybrid density-functional methods, we show that the

band gaps of ZnO and ZnS can be dramatically reduced by creating layered ZnO/ZnS

bulk heterostructures in which m contiguous monolayers of ZnO alternate with n

contiguous monolayers of ZnS. In particular, the band gap decreases by roughly 40%

upon substitution of every tenth monolayer of ZnS with a monolayer of ZnO (and

vice versa) and becomes as low as 1.5 eV for heterostructures with m = 3 to m = 9

contiguous monolayers of ZnO alternating with n = 10�m monolayers of ZnS.
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Chapter 2

Pressure-induced polymorphic tran-

sitions in diborane up to 24 GPa

2.0 Introduction

Boron has a unique and exceptional chemistry. It is located between the metals and

insulators in the second period of the Periodic Table, with fewer valence electrons than

valence orbitals. Three electrons in the valence shell favor metallicity, and indeed, most

compounds of this element are found to be either metallic or ionic. However, there are

others found to be insulating and non-polar. The existence of such compounds could

not be initially explained by conventional schemes of bonding. Diborane (B2H6), for

instance, has two borons and six hydrogens, Figure 2.1, resulting in a total of twelve

valence electrons; and yet, it appears to create eight bonds, for which it is four electrons

short. It is also two electrons short to be bonded as in ethane (C2H6), and di↵erent

from dialuminum hexachloride (Al2Cl6), in which the bridging bonds are created by

donation of a lone pair of electrons from the chlorine atoms to the empty 3p orbitals

of aluminum atoms.

Such compounds are termed “electron-deficient”, and their structures are described by

the existence of the so-called three-center two-electron bonds. William N. Lipscomb

received the 1976 Nobel Prize in Chemistry for his work on structures of boron hy-

drides [1]. The bonding scheme in diborane is described by first assigning eight of

the twelve electrons to the conventional � bonds between the terminal hydrogens and

Reprinted in part with permission from A. Torabi, Y. Song and V. N. Staroverov, “Pressure-
induced polymorphic transitions in crystalline diborane deduced by comparison of simulated and
experimental vibrational spectra”, J. Phys. Chem. C 2013, 117, 2210. Copyright 2013, The Amer-
ican Chemical Society.
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borons. The remaining four valence electrons are then used to create three-center–two-

electron bonds between the bridging hydrogens and each boron. In this way, the boron

atoms make the most out of a poor condition, and for this, the bridging electrons have

to labor more than usual. The outcome is consequently a weaker and longer bond

than the terminal ones.

Figure 2.1: Structure of diborane molecule.

It should also be noted that monoborane BH3, is not a stable compound, as the empty

2p orbital of boron makes it a good target for nucleophiles. In the absence of an

external nucleophile, however, it dimerizes to diborane. A pair of electrons which used

to bond two centers in monoborane, is now spread over three centers in diborane. This

makes diborane the simplest stable molecular boron hydride.

At ambient conditions, diborane is a gas (melting point = 108 K, boiling point = 181 K

at 1 atmosphere), but it can be liquefied and solidified by cooling or compression.

Solid phases of diborane, especially at high-pressure conditions, have been identified

as possible high-temperature superconductors with a predicted critical temperature of

around 100 K [2], and also hydrogen-storage media with a storage density exceeding

that of liquid H2 [3]. Twenty two percent of diborane weight is hydrogen, which

makes it comparable to methane (25%) in terms of hydrogen capacity. Experimental

and theoretical investigations of high-pressure structures and transformations of boron

hydrides are therefore of significant technological interest.

At present, experimental information about crystalline boron hydrides is very limited

due to the di�culty of locating weakly scattering hydrogen and boron atoms by X-ray

di↵raction techniques. At low temperatures (T < 100 K) and ambient pressure, only

four forms of B2H6 have been reported in the literature [4, 5] and only one of them,

�-diborane, has been identified and characterized [6]. The �-phase crystallizes in the

P21/n space group (monoclinic crystal system), with two formula units per cell [6] as

shown in Figure 2.2.
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Figure 2.2: Structure of �-diborane at ambient pressure (a = 4.416 Å, b = 5.963 Å, c =
6.069 Å, � = 104.2). The lattice parameters were optimized using the PBEsol func-
tional.

Even less is known about high-pressure phases of solid boron hydride. In 2009, the

Song group [8, 7] studied pressure-induced structural transformations of diborane at

room temperature using in situ Raman and synchrotron infrared (IR) spectroscopy.

On the basis of changes in spectral profiles of B2H6 between 1 atmosphere and 24

GPa, it was suggested that diborane undergoes three phase transitions at about 4, 6,

and 14 GPa. The first of these is from the liquid to the solid state, and the other two

are polymorphic transitions. The structures of the crystalline phases involved in the

polymorphic transitions, however, have not been identified.

In 2011, Yao and Ho↵mann [9] carried out an extensive theoretical investigation of

possible pressure-induced transformations of boron hydride between 1 atmosphere

and 100 GPa using the PBE functional. These workers considered several plausi-

ble polymorphs including structures consisting of dimers, cyclic trimers, tetramers,

and hexamers of the general formula (BH3)n, as well as crystals of one-dimensional

infinite chains of BH3. By comparing the calculated enthalpies of these structures at

various pressures, Yao and Ho↵mann predicted two phase transitions at 0 K: the first

at ⇠4 GPa, from �-diborane to a molecular crystal of cyclic trimers crystallizing in

the P 1̄ space group; the second at ⇠36 GPa, from the molecular crystal of trimers

to a P21/c crystal of one-dimensional chains, (BH3)n [9]. The predictions of Yao and

Ho↵mann are consistent with the local-density approximation calculations by Barbee

et al. [3] which also suggested that molecular forms of boron hydride become unstable

at high pressure. One should keep in mind that these predictions were made theoreti-
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cally by considering only the relative thermodynamic stability (enthalpies) of various

phases, leaving aside the issue of kinetic persistence, and that the post-2009 computa-

tional studies of crystalline diborane [2, 9] did not fully exploit the experimental data

of Song and co-workers [8, 7].

In this study, we interpret the structural changes in compressed diborane observed

spectroscopically by the Song group [8, 7]. We do this by calculating the frequencies

and intensities of Raman and IR transitions for the 10 candidate structures listed

in Table 2.1, and comparing the results to the observed spectra. We selected these

structures because, to the best of our knowledge, they are the only ones for which full

structural parameters have been published in the literature [6, 2, 9].

Table 2.1: Candidate structures of crystalline boron hydride used for spectroscopic
assignment in this study.

structure molecular unit source

P21/n dimer Ref. [6]
P21/c (A) dimer Ref. [9]
P21/c (B) dimer Ref. [2]
Cmc21 trimer Ref. [9]
P 1̄ trimer Ref. [9]
P21/c chain Ref. [9]
Pna21 chain Ref. [2]
P21/m chain Ref. [2]
Pbcn chain Ref. [2]
Cmcm chain Ref. [2]

The main di↵erence between the computational methodology adopted in this work

and those of the previous studies [2, 3, 9] is that here we go beyond the LDA and PBE

approximation and use the Perdew−Burke−Ernzerhof exchange-correlation functional

for solids (PBEsol), a minor but critical modification of the PBE functional. We

chose the PBEsol functional because it makes the most accurate prediction for the

lattice parameters of the best-studied phase (�-diborane) at low temperature and

ambient pressure experiment, and is supposed to become increasingly accurate at high

pressures. The agreement between theory and experiment turns out to be su�ciently

clear-cut to propose specific structure assignments.
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2.1 Computational methodology

All calculations reported in this work were performed using Quantum Espresso

(version 4.3), [10] a plane-wave/pseudopotential electronic structure code. The lattice

parameters and atomic positions for each candidate structure were optimized at a fixed

pressure at T = 0 K by minimizing the enthalpy. To simulate IR spectra, we optimized

the candidate structures at the PBEsol level and then calculated IR frequencies and

intensities using the PBEsol functional. To simulate Raman spectra, we reoptimized

all structures at the LDA level and calculated Raman frequencies and intensities using

the LDA. Di↵erent functionals had to be used for simulating IR and Raman spectra

because Raman spectral intensities are implemented in Quantum Espresso only for

the LDA functional. In all cases, we used vibrational frequencies without applying

any scale factors.

The pseudopotentials were taken from the Quantum Espresso pseudopotential li-

brary. In the PBEsol calculations, the PBE ultrasoft Vanderbilt pseudopotentials [11]

with a cuto↵ energy of 90 Ry for the plane-wave expansion were utilized. In the

LDA calculations, the norm-conserving LDA pseudopotentials with a cuto↵ energy of

130 Ry were employed. The Brillouin zone was sampled using the Monkhorst−Pack

scheme. The following k-point meshes were used: 6⇥ 4⇥ 4 for �-diborane; 6⇥ 6⇥ 4

for the P21/c (A) dimer and P 1̄ trimer; 6 ⇥ 4 ⇥ 6 for the P21/c (B) dimer and the

Pna21, Pbcn, and Cmcm chains; 4 ⇥ 6 ⇥ 4 for the Cmc21 trimer; 4 ⇥ 6 ⇥ 6 for the

P21/c chain; 6 ⇥ 6 ⇥ 6 for the P21/m chain. Convergence with respect to the cuto↵

energy and the k-point mesh was verified for all structures. The convergence criterion

for Kohn−Sham self-consistency cycles was set to 10�10 Ry.

In all structural optimizations, the Broyden−Fletcher−Goldfarb−Shanno quasi-Newton

algorithm was used for both ionic and cell dynamics. The optimization was stopped

when the components of all Hellmann−Feynman forces dropped below 10�4 Ry/Å,

and the pressure on the cell was less than 0.05 GPa of the target. Lattice parameters

and atomic positions optimized at each pressure were used as initial guesses for the

optimization at the next higher pressure.

The nonresonant Raman intensities were computed using the method described in

Ref. [12]. IR intensities were calculated by density-functional perturbation theory [13].

The XCrySDen package [14] was used for visualizing the results.
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2.2 Results and discussion

Figure 2.3 shows how the computed enthalpies of the candidate structures studied in

this work vary with pressure. We see that �-diborane is not the most stable structure

under compression. The trimer-based structures are more stable than �-diborane

above ⇠0.5 GPa; the linear-chain P21/c structure becomes the most favored above

⇠35 GPa. These observations are generally in agreement with the PBE calculations by

Yao and Ho↵mann [9] and by Abe and Ashcroft [2]. One noteworthy di↵erence is that

the PBEsol method predicts the two trimer structures (Cmc21 and P 1̄) to be almost

as stable as �-diborane at ambient pressure (see the inset in Figure 2.3), whereas

PBE calculations predict [9] the trimers to have a slightly higher enthalpy than �-

diborane until about 4 GPa (the di↵erence is ⇠0.04 eV/BH3 at ambient pressure).

Although such thermodynamic stability data are useful, they are not su�cient for

making spectroscopic assignments. To cite a well-known example, diamond does not

spontaneously turn into graphite at ambient temperature and pressure, even though

the latter is favored thermodynamically.

Figure 2.3: Enthalpies of the 10 candidate structures as functions of pressure, relative
to the enthalpy of P21/n (�-diborane). All enthalpies are calculated using the PBEsol
functional.
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In order to facilitate comparison with experiment, the Raman and IR spectra of the

10 candidate structures were calculated at the specific pressures for which the exper-

imental data of Refs. [8] and [7] are available. It should be kept in mind that, at

room temperature, diborane remains in the liquid state until ⇠3.5 GPa, [8, 7] so the

experimental spectra recorded below this pressure cannot be directly compared to our

calculations.

2.2.1 Raman spectra

All experimental Raman spectra shown in this work are composite; that is, each was

formed by combining three separate spectral regions from the original experimental

work of Ref. [7]: 100�1300, 1400�2400, and 2500�3000 cm�1. The spectral region

between 1300 and 1400 cm�1 was excluded because of intense Raman scattering by

the diamond of the anvil cell. In the resulting composite spectra, arbitrary peak

intensities within each window were scaled to approximately match the distribution of

peak intensities in the simulated spectra. Frequencies below 700 cm�1 correspond to

lattice modes; frequencies above 700 cm�1 are due to internal molecular vibrations.

Murli and Song [7] found that the lowest-pressure solid phase of diborane (phase I)

exists at room temperature between 3.5 and about 6 GPa. To identify this phase, we

computed the Raman spectra of all candidate structures at 4.2 GPa and compared

them to the experimental Raman spectrum recorded at the same pressure. The best

agreement was found for �-diborane (P21/n), as shown in Figure 2.4.

 0  500  1000  1500  2000  2500

frequency (cm–1)

R
a
m

a
n
 in

te
n
si

ty
 (

a
rb

itr
a
ry

)

β-diborane, 4.2 GPa

Figure 2.4: Experimental (red) and simulated (blue) Raman spectra of �-diborane at
4.2 GPa.

The most intense peaks in Figure 2.4 correspond to the terminal B�H symmetric

stretching mode. In the calculated spectrum, it occurs at 2562 cm�1 compared with



35

2574 cm�1 in the observed spectrum. The second most intense peak corresponds to

the symmetric BHBH ring stretching; it occurs at a lower frequency of 2141 cm�1,

compared to the experimental value of 2128 cm�1. The calculated depolarization

ratio of these two modes is close to zero, as anticipated for totally symmetric modes.

The antisymmetric terminal BH stretching is calculated to occur at 2647 cm�1, in

good agreement with the experimental value of 2633 cm�1. The ring antisymmetric

stretching mode is predicted to occur at 1871 cm�1 and was observed at 1813 cm�1.

Two lattice modes observed [7] at 179 and 222 cm�1 are reproduced in our simulation

at 167 and 246 cm�1, respectively.

We note that the simulated Raman spectra of P21/c (A) and P21/c (B) diboranes

are similar to the experimental spectrum at 4.2 GPa, but we rule out these structures

because they have no lattice modes below 200 cm�1 (Figure 2.5). The simulated

spectra of the other seven candidate structures clearly do not match the experiment.

The trimer and linear-chain structures consist of di↵erent molecular units, so their

internal vibrational modes are very di↵erent from those of diborane molecules (Figure

2.5). All this allows us to conclude that phase I of Ref. [7] is �-diborane.
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Figure 2.5: Experimental (red) and simulated (blue) Raman spectra of P21/c (A) and
P21/c (B) dimers, P 1̄ trimer, and P21/c chain at 4.2 GPa.
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Upon compression of the sample to 6.4 GPa, Murli and Song [7] observed the emer-

gence of several new lattice and internal modes and interpreted them as evidence of

a polymorphic transition from �-diborane to another phase referred to as phase II.

As we argue below, these spectral changes are best reproduced by the calculated Ra-

man spectrum of P21/c (A) diborane. Just like �-diborane, the P21/c (A) structure

contains two B2H6 molecules per unit cell but has a di↵erent stacking of diborane

molecules, depicted in Figure 2.6.
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Figure 2.6: Left: structure of P21/c (A) diborane at ambient pressure (a = 4.519, b =
4.725, c = 8.874 Å, � = 120.0). The lattice parameters were optimized using the
PBEsol functional. Right: experimental (red) and simulated (blue) Raman spectra of
P21/c (A) diborane at 6.4 GPa.

Figure 2.6 also shows the calculated Raman spectrum of P21/c (A) diborane at

6.4 GPa along with the experimental spectrum of the sample taken at the same pres-

sure [7]. The experimental spectrum has two low-intensity lattice modes at 326 and

367 cm�1 which were not present at 4.2 GPa. These modes are found in the sim-

ulated spectrum of P21/c (A) diborane at 340 and 370 cm�1. The lattice mode

observed at 265 cm�1 is no longer found in the simulated spectrum of �-diborane at

6.4 GPa but corresponds nicely to the peak at 227 cm�1 in the calculated spectrum of

P21/c (A) diborane. The calculated spectrum also contains a BH2 twisting mode at

864 cm�1, a BH2 wagging mode at 931 cm�1, and two low-intensity modes at 886 and

912 cm�1. These correspond to the experimentally observed modes at 855, 907, 936,

and 962 cm�1 [7]. No other candidate structure has a Raman spectrum that matches

experiment better than this.

The above evidence strongly suggests that phase II is P21/c (A) diborane. The tran-

sition from �-diborane to this phase occurs around 6 GPa. Note that Yao and Ho↵-
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mann [9] have previously identified P21/c (A) diborane with the phase observed in

1925 by Mark and Pohland [4]. We therefore propose that phase II observed by Murli

and Song [7] is the phase of Mark and Pohland. This is despite the fact that, accord-

ing to the PBE calculations of Yao and Ho↵mann [9] and to our PBEsol calculations

(Figure 2.3), P21/c (A) diborane is slightly less stable than �-diborane, P21/c (B)

diborane, and the trimer structures at pressures between 1 and 80 GPa.

At pressures above 14 GPa, another phase transition was proposed in Ref. [7] to

account for several subtle changes in the Raman spectrum. However, the experimental

spectrum of diborane recorded at 14.1 GPa (after the proposed phase transition has

occurred) is still well matched by the simulated spectrum of P21/c (A) diborane

(Figure 2.7).
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Figure 2.7: Experimental (red) and simulated (blue) Raman spectra of P21/c (A) and
P21/c (B) diboranes at 14.1 GPa.

Note that all three dimer structures considered in this work (�-diborane and the

two P21/c diboranes) have very similar internal vibration modes, so their spectra

di↵er mainly by the positions of lattice modes. The greatest discrepancy between

the calculated and observed spectra of P21/c (A) diborane at 14.1 GPa is in the

position of the first lattice mode, which in our calculation occurs at 281 cm�1, while

the experimental one is at 323 cm�1. This lattice mode is more closely matched in the

simulated spectrum of P21/c (B) diborane, where it occurs at 341 cm�1. At 20.0 GPa,

the first observed lattice mode shifts to 361 cm�1, whereas the first lattice modes in

the simulated Raman spectra of structures A and B are found at 298 and 359 (or

possibly 337) cm�1, respectively. Thus, if a phase transition above 14 GPa does take

place, it is from P21/c (A) diborane (phase II) to P21/c (B) diborane (phase III).

The structure of the latter is shown in Figure 2.8.
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Figure 2.8: Structure of P21/c (B) diborane at ambient pressure (a = 4.577, b =
6.954, c = 4.998 Å, � = 95.8�). The lattice parameters were optimized using the
PBEsol functional.

To investigate the remaining possibility that the phase existing above 14 GPa con-

sists of (BH3)
n

units with n > 2, we calculated the Raman spectra of all candidate

structures at 20.0 GPa and compared them to the experimental spectrum of the sam-

ple recorded at the same pressure. At 20.0 GPa, the simulated Raman spectrum of

P21/c (A) diborane remains the best match with experiment, although the P21/c (B)

structure cannot be ruled out (Fig. 2.9). At the same time, the spectra of the trimer

and linear chain structures are not even close to experiment (Fig. 2.10). We conclude

that the subtle changes in the observed Raman spectra of diborane above 14 GPa are

most likely consequences of the compression of P21/c (A), but allow for the possibility

that P21/c (A) diborane transforms near 14 GPa into P21/c (B) diborane.
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Figure 2.9: Experimental (red) and simulated (blue) Raman spectra of P21/c(A) and
P21/c(B) dimers at 20.0 GPa.
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Figure 2.10: Experimental (red) and simulated (blue) Raman spectra of P 1̄ trimer
and P21/c chain at 20.0 GPa.

2.2.2 Infrared spectra

To provide additional evidence supporting our structural assignments, we also simu-

lated infrared absorption spectra of compressed diborane and compared them to the

published infrared spectra from the Song group [8]. Note that Ref. [8] did not report

infrared absorption data for frequencies below 800 cm�1. Also, the broad band ap-

pearing above 3700 cm�1 in all experimental infrared spectra of Ref. [8] is associated

with overtones or combination modes [8], so it is absent from the simulated spectra

which show only fundamental transitions.

The experimental infrared spectrum recorded at 5.4 GPa is well matched by the sim-

ulated spectrum of �-diborane, as shown in Figure 2.11.
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Figure 2.11: Experimental (red) and simulated (blue) infrared spectra of �-diborane
at 5.4 GPa.

The most intense peak in the simulated spectrum occurs at 1637 cm�1, accompanied

by a low-intensity mode at 1650 cm�1. This pair matches the split band observed near
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1600 cm�1 in the experimental spectrum. Two internal modes occur in the simulated

spectrum at 930 and 1092 cm�1, respectively, compared to 980 and 1176 cm�1 in

the experimental spectrum. The simulated terminal BH symmetric stretching and

antisymmetric BH stretching modes at 2565 and 2655 cm�1 likely correspond to the

experimental peaks at 2598 and 2630 cm�1, respectively. The high-intensity band

at 2379 cm�1 is due to overtones/combination modes [8], so it is not present in the

simulated spectrum. The simulated infrared spectra of trimer and chain structures

agree poorly with the experimental spectrum at 5.4 GPa. Thus, our simulated infrared

data are consistent with the conclusion that at 5.4 GPa diborane exists in the form of

the �-phase (phase I).

Upon compression above 6 GPa, the best match between the calculated and experi-

mental infrared spectra is found for P21/c (A) diborane (phase II), as was the case

with the Raman spectra. The experimental and simulated spectra of P21/c (A) dib-

orane at 6.9 GPa are compared in Figure 2.12. The simulated spectrum reproduces

most of the features noted in Ref. [8] including the evolution of a shoulder band near

1100 cm�1 and a more pronounced separation of the two peaks near 1630 cm�1.
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Figure 2.12: Experimental (red) and simulated (blue) infrared spectra of P21/c (A)
diborane at 6.9 GPa.

As in the Raman spectroscopic studies, the subtle di↵erences between the experimen-

tal spectra taken at 6.9 GPa and above 14 GPa were interpreted by Song et al. [8]

as evidence of a polymorphic transition from phase II to phase III. These di↵erence

include the emergence of a new mode near 2760 cm�1, development of an asymmetric

profile of a mode near 1000 cm�1, and an enhanced splitting of a mode near 1200 cm�1.

These changes are consistent with the simulated infrared spectrum of P21/c (A) dib-

orane at 16.7 GPa and, to a lesser degree, with the spectrum of P21/c (B) diborane

(see Figure 10). The latter possibility cannot be ruled out because of the similarity
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between the infrared spectra of these two structures.
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Figure 2.13: Experimental (red) and simulated (blue) infrared spectra of P21/c (A)
and P21/c (B) diboranes at 16.7 GPa.

Infrared spectra of crystalline triboranes and chain structures di↵er starkly from the

experimental spectra recorded above 14 GPa. This again means that the high-pressure

phases observed by the Song group are not oligomer or polymer structures. Thus, the

spectral changes observed above 14 GPa are most likely consequences of compression

of P21/c (A) diborane. No other polymorphic transitions between 14 and 24 GPa

were observed or proposed in Ref. [8].
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Figure 2.14: Experimental (red) and simulated (blue) infrared spectra of P 1̄ trimer
and P21/c chain at 20.6 GPa.

2.3 Conclusion

We have simulated the pressure dependence of Raman and infrared spectra of 10

plausible crystalline structures of boron hydride for which experimental data [7, 8] are
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available. Comparison of the simulated spectra to the experiment shows (Figure 2.15)

that boron hydride exists as �-diborane (phase I) until about 6 GPa when it transforms

into P21/c (A) diborane (phase II). The subtle spectral changes above 14 GPa, which

were previously interpreted as an indication of another phase transition [7, 8], are

attributed here to the compression of P21/c (A) diborane. However, we do not rule

out the possibility that near 14 GPa P21/c (A) diborane is converted into P21/c (B)

diborane (phase III). This ambiguity is due to the fact that the simulated spectra

of P21/c (A) and P21/c (B) diboranes are similar. What is certain is that none of

the structures built up of (BH3)
n

units with n > 2 has a vibrational spectrum that

is consistent with the experimental observations. Although the formation of cyclic

oligomers and polymer chains is favored thermodynamically, it appears to be hindered

kinetically. Our findings strongly agree with the conclusion of Refs. [7] and [8] that

the geometry of the BHBH diborane ring is not altered significantly by compression

and that B2H6 molecules remain chemically stable up to at least 24 GPa.

Figure 2.15: Pressure-induced polymorphic transitions in crystalline diborane.
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Chapter 3

Polymorphic transitions of diborane

at sub- and near-megabar pressures

3.0 Introduction

Chemical hydrides under extreme pressures have become the subject of explosive in-

terest in recent years. Rich in elemental hydrogen, these materials o↵er attractive pos-

sibilities for high-density energy storage [11]. Being “chemically pre-compressed” [12],

they also provide a practical route to achieving pressure-induced hydrogen metalliza-

tion, a long-standing challenge of high-pressure physics. In this context, experimental

and theoretical studies of compressed silane (SiH4) and other hydrides have already

yielded notable discoveries[13, 14, 15, 16, 17, 18, 19].

Diborane (B2H6), a peculiar electron-deficient molecule with bridging hydrogen atoms,

is a chemical hydride that attracts much attention in high-pressure research [3, 4, 6,

7, 8, 20]. At ambient pressure and below 60 K, solid diborane crystallizes as an or-

thorhombic structure (a = 7.89 Å, b = 4.54 Å, c = 8.69 Å, Z = 4) referred to as the

↵-phase, while annealing to above 90 K results in the formation of the �-phase (space

group P21/n, a = 4.40 Å, b = 5.72 Å, c = 6.50 Å, � = 105.1�) [5, 22]. Song and

co-workers [7, 6] were the first to report intriguing pressure-induced phase transitions

in diborane. Specifically, they found that diborane progresses through three crystal

structure phases (labeled I, II, and III) in the pressure region between 3.5 GPa (the

liquid−solid boundary at room temperature) and 24 GPa. Using density-functional

calculations, Torabi et al. [20] identified phase I with the �-diborane structure and

Reprinted in part with permission from A. Torabi, C. Murli, Y. Song and V. N. Staroverov,
“Polymorphic transitions of diborane at sub- and near-megabar pressures”, Sci. Rep. 2015, 5, 13929.
Copyright 2015, Nature Publishing Group
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found that phases II (formed at 6 GPa) and possibly phase III (formed at 14 GPa)

both have monoclinic P21/c structures di↵ering by molecular orientations. Abe and

Ashcroft [3] used density-functional theory to show that diborane is thermodynami-

cally unstable with respect to decomposition into B and H between 40 and 350 GPa,

but also predicted that the metastable B2H6 structures should become metallic around

160 GPa. Yao and Ho↵mann [8] demonstrated the thermodynamic possibility of oligo-

and polymerization of B2H6 units above 4 GPa. Torabi et al. [20] arrived at the same

conclusions, but showed that phases II and III were still molecular crystals of B2H6.

More recently, Hu et al. [21] suggested that B2H6 should decompose into BH and H2

at 153 GPa and that the most stable structure of BH should become metallic at 168

GPa.

Despite these theoretical predictions, no direct evidence of non-dimer-based phases

of boron hydride has been obtained to date due to experimental challenges in both

sample confinement and in situ structural characterization under extreme pressures.

In particular, it is very di�cult to unambiguously locate atoms of light elements such

as boron and hydrogen by X-ray di↵raction. As a result, the structure of compressed

diborane have remained controversial. Here we report the first experimental evidence

of new polymorphs of diborane using an alternative yet highly sensitive spectroscopic

probe in a wide pressure regime approaching one megabar, which is unprecedented for

this class of compounds. Our interpretation of the experimental data using electronic

structure calculations suggests that B2H6 molecular units persist beyond 100 GPa,

but transform into one-dimensional (BH3)n chains near 110 GPa, and that the latter

polymorph becomes metallic at even higher pressures. These findings shed light on the

previously unknown high-pressure structures of diborane and take us one step closer

to solving the problem of hydrogen metallization.

3.1 Results

In situ Raman spectroscopy was used to monitor the structural changes as a function

of pressure. The Raman spectra of diborane recorded upon compression at selected

pressures between 36 and 88 GPa are presented in Figure 3.1.
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Figure 3.1: Experimental Raman spectra of compressed diborane, recorded in three
frequency regions at selected pressures between 36 and 88 GPa. The dashed lines in
panel (a) trace the soft behavior of the lattice mode. The asterisks label the new
bands emerging near 57 GPa.

At the starting pressure of 36 GPa, we deal with the known phase III, P21/c, as ev-

idenced by the fact that the experimental Raman profile of the sample at 36 GPa is

best reproduced by the simulated Raman spectrum of phase III for the same pres-

sure (Figure 3.2). The simulated Raman spectrum, in blue, is broadened using the

Lorentzian scheme to better simulate the experimental spectrum.
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Figure 3.2: Experimental (red) and simulated (blue) Raman spectra of phase III at
36 GPa.

Upon compression of phase III to 42 GPa, most Raman modes below 2000 cm�1

blue-shift and broaden; other significant changes include a red shift and a profile
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change of the symmetric ring-stretching mode near 2250 cm�1, and the splitting of

the terminal symmetric BH stretching mode (t-BH) near 2750 cm�1 (Figure 3.1).

These observations suggest a polymorphic transition at 42 GPa to a new phase, which

we label phase IV.

Upon compression of phase IV to 57 GPa, another set of prominent changes was

observed. The first of these is the appearance of two new Raman modes near 600 and

2100 cm�1, which are marked with asterisks in Figure 3.1. With increasing pressure,

the latter mode evolves into a very intense band. More interestingly, the doublet of

the terminal BH symmetric stretching mode near 2750 cm�1 undergoes an intensity

reversal between the two components at 57 GPa. Finally, the lowest-frequency lattice

mode exhibits a soft turning behavior near 57 GPa, which is usually indicative of

a phase transition. These observations suggest that another phase is formed near 57

GPa, which we label phase V. Given the similarity in Raman profiles recorded between

57 and 88 GPa, we conclude that no other phase transition occurs in that pressure

range.

Further experimental evidence of the formation of phases IV and V is provided by the

pressure-dependence plots for Raman shifts, shown in Figure 3.3.
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Figure 3.3: Experimental Raman shifts of compressed diborane as functions of pres-
sure. The calculated frequencies of the lattice mode are shown in the left panel as
open squares. t-BH stands for terminal B�H bond.
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These plots reveal two phase boundaries in the 36�88 GPa range: one at 42 GPa and

another at 57 GPa, denoted by the vertical dashed lines. Note that in the previous

experimental studies [7] of compressed diborane using infrared spectroscopy at pres-

sures up to 50 GPa, a phase transition near 42 GPa was not observed. This is not

inconsistent with the present findings because infrared absorption bands at pressures

above 30 GPa were so broad that infrared data alone could neither indicate nor rule

out a phase transition.

To assign possible crystal structures to phases IV and V, we proceeded as follows. First,

we ran the evolutionary structure search algorithm of Oganov and co-workers [2, 23, 24]

to generate candidate crystal structures of the empirical formula BH3 for pressures of

30, 60, and 90 GPa. The only information used on input was that there are either 4

B and 12 H atoms or 6 B and 18 H atoms in a unit cell; no constraints were imposed

on the type or number of bonds between the atoms. These runs produced a total

of 5502 candidate structures. Out of these, we selected by inspection a short list of

134 candidates by keeping the structures that had either a low enthalpy or a high

symmetry. To maintain diversity, we included comparable numbers of structures with

two, three, or four B atoms per molecular unit (36, 18, and 21 structures, respectively),

as well as 59 polymers of BH3 units. Then we optimized the lattice parameters and

atomic coordinates of each of these 134 structures at the corresponding experimental

pressure (36, 42, 57, 61, 74 and 88 GPa), and calculated their Raman spectra at each

pressure point.

By comparing the observed Raman spectra of phases IV and V to the simulated spectra

of these 134 candidate structures, we found two best matches which correspond to the

structures shown in Figure 3.4.

a

c

Phase IV

a

c

Phase V

Figure 3.4: Structures assigned to phases IV and V.

The structure assigned to phase IV has a triclinic unit cell (P 1̄) with two B2H6 units
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per cell (Z = 2), almost perpendicular to each other. The cell parameters of phase

IV at 42 GPa calculated using PBEsol functional are a = 4.740 Å, b = 4.425 Å, c =

3.217 Å, ↵ = 73.37�, � = 97.41�, and � = 87.56�. The structure assigned to phase

V also has a triclinic cell (P 1̄) but with Z = 3; here the B2H6 molecules form a

layered structure with B or H atoms roughly aligned in the [101] direction. The

cell parameters of phase V at 88 GPa calculated using PBEsol functional are a =

6.216 Å, b = 3.060 Å, c = 4.350 Å, ↵ = 69.90�, � = 78.75�, and � = 89.81�.

The experimental and simulated Raman spectra of phases IV at 42 GPa, and phase

V at 57, 61, 74 and 88 GPa are shown in Figure 3.5.
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Figure 3.5: Experimental (red) and simulated (blue) Raman spectra of phases IV at
42 GPa and phase V at 57, 61, 74 and 88 GPa.

The simulated Raman spectra exhibit most of the essential features of the experimental
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profiles of Figure 3.1, including a number of important details. In particular, the

soft behavior of the lowest-frequency lattice mode is qualitatively reproduced by our

calculations (Figure 3.3). The new modes near 600 and 2200 cm�1 at pressures of 57

GPa and higher (those labeled with asterisks in Figure 3.1) are unambiguously present

in the simulated spectra. Also reproduced are the complex features corresponding to

the ring vibrations in the spectral region of 800�1300 cm�1 as well as the reversal of

relative intensities of the terminal BH symmetric stretching modes near 2800 cm�1,

which occurs between 42 and 57 GPa (Figure 3.1). The experimental and simulated

relative intensities of the dominant peaks near 2200 and 2400 cm�1 are consistent at

both 42 and 88 GPa. Although only one prominent lattice mode is observed near 400

cm�1 at 88 GPa, the simulated spectra suggest that the broad base of this intense

mode contains other lattice vibrations (Figure 3.5). All these facts strongly support

the proposed structural assignments to phases IV and V. No other of the 134 crystal

structures matched the experimental Raman spectra of phases IV and V nearly as well

as the structures shown in Figure 3.4. Because the structure of phase V matches the

experimental Raman spectra of compressed diborane not only at 57 GPa but also at

every higher pressure, we conclude that no other phase transitions occur between 57

and 88 GPa, and that diborane remains in molecular form up to at least 88 GPa.

More evidence supporting our identification of phases III�V is provided by enthalpy

calculations using the PBEsol functional (Figure 3.6).

Figure 3.6: Calculated enthalpies of phases IV and V relative to phase III. All en-
thalpies are calculated using the PBEsol functional.
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Although PBEsol was specifically developed to produce more accurate structural pa-

rameters than PBE at the expense of less accurate energies (at least at ambient pres-

sure), we observed here and earlier in Ref. [20] that the relative PBEsol enthalpies of

various high-pressure polymorphs of diborane are nearly the same as those predicted

with the PBE functional. According to PBEsol, phase III is the most stable among

the three up to about 40 GPa, phase IV is the most stable from ⇠40 to ⇠60 GPa, and

phase V is the most stable from ⇠60 up to at least 100 GPa. The crossover points

near 40 and 60 GPa are in good agreement with the experimentally deduced phase

boundaries at 42 and 57 GPa (Figure 3.6).

Interestingly, none of the phases III�V is thermodynamically the most stable structure

among the 5502 candidate structures studied in this work at any pressure between 20

and 100 GPa. The candidate structure with the lowest enthalpy proved to be a Pca21

phase of BH and H2 (Figure 3.7), whose boron-containing units resemble the Ibam

phase reported by Hu et al. [21].

Figure 3.7: The lowest-enthalpy structure (Pca21).

It is likely that dispersion interactions between diborane molecules also play a role

in determining the relative stability of various polymorphs. However, because disper-

sion corrections usually rely on empirical short-range damping functions developed for

systems where interatomic distances are not too short, we deemed it unsafe to apply

those corrections to highly compressed structures.

PBEsol phonon calculations for phase IV at 42 GPa and phase V at 57, 61, 74, and

88 GPa revealed no imaginary frequencies at any of these pressures. The absence of

imaginary frequencies indicates that the proposed structures of phases IV and V are

dynamically stable and genuine minima (Figure 3.8).
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Figure 3.8: Phonon dispersions, calculated using the PBEsol functional, for phase IV
at 42 GPa, and phase V at 88 GPa.

As an extra assurance of our structural assignments, we calculated and plotted the

average volume per B2H6 unit for the proposed structures of phases III�V at various

pressures. The resulting plots (Figure 3.9) exhibit two volume contractions with ratios

of 1.84% and 1.43% at 42 and 57 GPa, respectively, which are consistent with pressure-

induced polymorphic transitions.

Figure 3.9: Calculated volume per B2H6 unit as a function of pressure. The volumes
are calculated for the PBEsol structures optimized at a fixed pressure.
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3.2 Discussion

Our experiments and calculations strongly suggest that diborane remains in the molec-

ular crystal form over an extended pressure range from 3.5 GPa to at least 88 GPa. At

the same time, the soft behavior of the lattice mode in phase V hints at the possibility

of upcoming structural changes at even higher pressures. Of particular interest in this

regard are the two long-standing questions: 1) whether diborane eventually leaves the

molecular B2H6 motif and forms polymeric boron hydride [8]; 2) whether su�ciently

compressed diborane becomes metallic [3].

To address the first of these questions, we explored the behavior of phase V at pressures

above 88 GPa using the PBEsol method. We found that, between 88 GPa and 110

GPa, the crystal structure of phase V changes continuously, but still can be described

as consisting of B2H6 molecules. Near 110 GPa, however, it finally leaves the molecular

diborane motif and is best described as consisting of one-dimensional zigzag chains of

boron atoms. This transformation is evidenced by the disappearance of B�B bond

length alternation and by the absence of identifiable molecular units in plots of the

electron localization function [25] (Figure 3.10).

Figure 3.10: Units cells of phase V at 88 GPa (left) and 110 GPa (right) and the
corresponding ELF plots are shown for the plane containing the right B-atom chain.
The ELF is calculated using the HSE06 functional for the PBEsol-optimized structures.
B�B bonds inside the unit cells are shown as sticks; H atoms inside the unit cells are
removed for clarity.

In particular, the B�B distances in zigzag chains along the b axis alternate between

1.605 Å and 2.084 Å at 88 GPa, whereas all B�B bond lengths in the chains are

1.716 Å at 110 GPa. Also shown in Fig. 6 are the corresponding plots of the electron

localization function (ELF) for the plane containing a B atom chain. The areas with

low ELF values represent the B atoms; the areas with high values represent the H

atoms. Note that, at 88 GPa, there are two bridging H atoms in the plane for every
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two B atoms, but at 138 GPa one of those bridging H atoms moves out of the plane,

but each B atom at 110 GPa is still coordinated by four H atoms (Figure 3.10).

To investigate the possibility of pressure-induced metallization of compressed diborane,

we calculated the band gaps, the total and projected density of states of phase V in

the 36�150 GPa pressure range using the Heyd–Scuseria–Ernzerhof (HSE06) screened

hybrid density functional, known for realistic band gap predictions. These calculations

show that at 88 GPa, phase V is a semiconductor with a band gap of 1.6 eV. The

band gap gradually decreases with increasing pressure and finally closes near 138

GPa (Figure 3.11), resulting in a nonzero total density of states at the Fermi level

(Figure 3.12).
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Figure 3.11: Band structure of phase V, calculated at 88 and 138 GPa. The unit cell
parameters are optimized at each pressure using the PBEsol functional, the electronic
energy bands are calculated using the HSE06 functional. Horizontal dashed lines
represent the top of the valence band and the bottom of the conduction band

Analysis of the projected density of states plot (Figure 3.12) reveals that the main

contribution to the metallization is from the boron’s 2p orbitals. Although extremely

experimentally challenging, in situ conductivity measurements would be needed to

characterize the electronic properties of diborane at high pressures in the future.
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3.3 Conclusion

In summary, we have reported and interpreted two previously unknown polymorphic

transformations of compressed diborane occurring between 36 and 88 GPa. At the

lower end of this pressure range, diborane exists in the form of phase III which trans-

forms into phase IV near 42 GPa and then into phase V near 57 GPa. All these

phases retain the diborane motif and are thermodynamically metastable. Future syn-

chrotron and neutron-based in situ di↵raction experiments should be able to verify

these structure assignments and predictions. We also predict that phase V will remain

in molecular form up to near-megabar pressures, above which it should transform

into a structure with covalently bonded chains of boron atoms and eventually become

metallic around 138 GPa. While such pressures have not yet been reached exper-

imentally, they are feasible, which means that the first reports of pressure-induced

polymerization and metallization of diborane are a matter of time.

3.4 Computational methodology

All candidate crystal structures of diborane were generated using the evolutionary

structure search algorithm as implemented in the USPEX code [2, 23, 24]. The en-

thalpies of the structures at 0 K were used as a fitness criterion: the 40% least stable

structures were discarded and the remaining was allowed to produce the next gener-

ation through heredity (60%), softmutation (20%) and lattice mutation (20%). Two
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distinct lowest-enthalpy structures of each generation were allowed to survive into the

subsequent one, and the runs were terminated after 50 generations. The enthalpy cal-

culations were performed with the Quantum ESPRESSO program (version 5.0.1) [9].

Because Raman spectral intensities are implemented in Quantum ESPRESSO only

for the local density approximation (LDA), we re-optimized all structures at the LDA

level and calculated Raman frequencies and intensities using the LDA. The resulting

vibrational frequencies were used without applying any scale factors. The pseudopo-

tentials were taken from the Quantum ESPRESSO pseudopotential library. In the

PBEsol calculations, PBE ultrasoft Vanderbilt pseudopotentials with a cuto↵ energy

of 90 Ry were used. In the LDA calculations, the norm-conserving LDA pseudopo-

tentials with a cuto↵ energy of 130 Ry were employed. The Brillouin zone was sam-

pled using the homogeneous Monkhorst–Pack k-point meshes [1] with reciprocal space

resolution of 0.08p Å�1. The convergence criterion for Kohn–Sham self-consistency

cycles was set to 10�8 Ry. All structure optimizations were performed using the

Broyden�Fletcher�Goldfarb�Shanno quasi-Newton method [26]. The optimization

was stopped when the components of all Hellmann–Feynman forces dropped below

10�4 Ry/Å and the stress on the cell was within 0.05 GPa of the target. The phonon

frequency was obtained by diagonalization of the dynamical matrix calculated by the

density-functional perturbation theory. The non-resonant Raman intensities were com-

puted using the method described in Ref. [10].
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Chapter 4

Band gap reduction in ZnO and ZnS

by creating layered ZnO/ZnS het-

erostructures

4.0 Introduction

The intense search for renewable and economically viable sources of energy has spurred

much interest in semiconductor-based devices capable of converting solar energy into

electricity. Zinc oxide (ZnO) and zinc sulfide (ZnS) are abundant, chemically stable,

and nontoxic materials that are particularly appealing for building such devices. In

one of their common forms, bulk ZnO and ZnS have wurtzite-type structures with

tetrahedrally coordinated zinc atoms. The wide band gaps of wurtzite-type ZnO (3.4

eV) and ZnS (3.91 eV) [2] are well suited for absorption in the ultraviolet region of

the electromagnetic spectrum [3, 4, 5], but are too large for harvesting visible light.

Photocatalytic hydrogen production, for instance, is expected to be achievable for

semiconductors with band gaps in the range 1.8–2.2 eV [6]. In photovoltaic devices,

the maximum e�ciency is reached for a band gap of 1.1 eV [7].

The fact that inexpensive semiconductors such as ZnS and ZnO have wide band gaps

is unfortunate because ultraviolet light accounts for only a small fraction (⇠5%) of

the solar energy compared to visible light (⇠45%) [8]. It would greatly facilitate

photovoltaic device engineering if one could reduce the band gaps of either ZnO or

ZnS.

Reprinted in part with permission from A. Torabi and V. N. Staroverov, “Band gap reduction
in ZnO and ZnS by creating layered ZnO/ZnS heterostructures”, J. Phys. Chem. Lett. 2015, 6,
2075. Copyright 2015, The American Chemical Society.
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The conventional technique for modulating the band gap of a given semiconductor is

by doping the crystal with other elements. However, the e�cacy of this approach is

limited by the maximum dopability of the material, which in the case of ZnO and ZnS

is extremely low [9]. Another technique to reduce the band gap is to combine ZnO

and ZnS into bulk or nanosized heterostructures, through a judicious control of atomic

composition and structural configuration. As a matter of fact, multi-component ma-

terials involve intriguing morphological features which enable them to exhibit distinct

properties from those observed in their bulk forms.

Numerous studies have shown that, despite the large lattice parameter mismatch be-

tween ZnS and ZnO (⇠16%), one can successfully synthesize high-quality ZnO/ZnS

heterostructures with a variety of morphologies, such as nanocables [10, 11], nanosaw

[12], nanoring [13], nanobelt [14], nanoribbons [15, 16], nanotetrapod [17], nanoflower

[18], nanowires [19, 20], core-shell nanotubes [21, 22], nanorod [23], and nanocone

[24]. More recently and for the first time, nanoscaled spectroscopy across an interface

between ZnS nanobelt/ZnO nanorod was studied in detail by Sham and coworkers [25].

The possibility of band gap engineering with ZnO and ZnS has so far been explored

computationally for bulk ZnO/ZnS heterostructures [26], multilayered structures and

solid solutions of ZnO or ZnS with group-13 phosphides and nitrides [27, 28], ZnO/ZnS

core/shell nanowires [26, 29, 30] and heteronanotubes [31]. In particular, Schrier et al.

[26] predicted a band gap of 2.31 eV for ZnO/ZnS bulk heterostructures consisting

of zinc-blende ZnO and ZnS slabs in the (001) direction with seven monolayers per

slab, and a band gap of 2.07 eV for ZnO/ZnS core/shell heterostructured nanowires.

Hart et al. [27] showed that the band gap of ZnS can be reduced to about 2 eV by

forming layered ZnS/GaP structures. Saha et al. [30] studied the electronic structure

of ZnO/ZnS core/shell nanowires as a function of core radius and shell thickness and

found that when the radius of the ZnO nanowire core is kept fixed, the band gap of

the heterosystem decreases with increasing ZnS shell thickness.

4.1 Models

Motivated by the importance of the problem and the intriguing findings of Refs. [26,

27, 28, 29, 30, 31] we undertook a systematic investigation of layered wurtzite-type

ZnO/ZnS bulk heterostructures in order to find out to what extent their band gap can

be reduced through ZnO�ZnS layered alternation.
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Unit cells of layered ZnO/ZnS bulk heterostructures were constructed as follows. We

started with ten (0001)-monolayers of ZnS (i.e., monolayers normal to the [0001] di-

rection) and replaced them, one by one, with (0001)-monolayers of ZnO. Replacement

of a single monolayer of ZnS with ZnO per every 10 monolayers of ZnS gives the 1:9

ZnO/ZnS structure shown in Figure 4.1.

Figure 4.1: Side and top views of a supercell of the layered 1:9 ZnO/ZnS bulk het-
erostructure. The primitive unit cell is the highlighted parallelepiped. The angle
between the a and b axes is � = 60.

Replacement of two contiguous monolayers gives a 2:8 ZnO/ZnS heterostructure, and

so forth until all 10 monolayers of ZnS are replaced by 10 monolayers of ZnO. Unit

cells of the intermediate 5:5 ZnO/ZnS and 9:1 ZnO/ZnS heterostructures are shown in

Figure 4.2. All the atoms in these heterostructures remain tetrahedrally coordinated.

Wurtzite-type structures of ZnO and ZnS are characterized by the following param-

eters: the lattice constants a = b (translations normal to the [0001] direction), c

(translation along the [0001] direction), and the internal parameter u related to the

c/a ratio [32]. In the case of ZnO/ZnS heterostructures, the meaning of parameters a

and b is preserved, but parameter c is replaced by parameter d representing the length

of the primitive unit cell (Figure 4.1).
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Figure 4.2: Side views of supercells of layered 5:5 ZnO/ZnS (top) and 9:1 ZnO/ZnS
(bottom) bulk heterostructure. The conventions are the same as in Figure 4.1.

We note in passing that the ZnO/ZnS heterostructures constructed as above may also

serve as models for various interfaces between ZnS nanobelt and ZnO nanorod struc-

tures studied by the Sham group [25]. Specifically, the 1:9 ZnO/ZnS heterostructure

represents an early stage of the ZnO nanorod growth on a ZnS nanobelt, whereas

the 5:5 ZnO/ZnS heterostructure mimics the interface between a ZnS nanobelt and a

grown ZnO nanorod.

4.2 Results

The lattice parameters of ZnO, ZnS and ZnO/ZnS heterostructures were optimized

using the Quantum Espresso program and the modification of the PBE generalized

gradient approximation for solids known as PBEsol, which gives more realistic values

of lattice parameters than the PBE functional. No change in the hexagonal pattern oc-

curred during the supercells relaxation; the Zn, O, and S atoms of the heterostructures

remained in the same fractional atomic positions (1/3, 1/3) and (2/3, 2/3) relative

to the a and b axes as in bulk wurtzite. To compute the band gaps, we employed

the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid density functional [1, 33, 34]
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in its 2006 parametrization [35] (HSE06) which is known to give superior band-gap

predictions [36] compared to generalized gradient approximations such as PBE. The

use of the HSE06 functional for band-gap calculations distinguishes this work from

previous computational studies of ZnO, ZnS, [37, 38, 39, 40, 41] and ZnO/ZnS nanos-

tructures [26, 29, 30, 31].

In order to demonstrate that the HSE06 functional is more suitable for our purposes

than PBE and PBEsol, we first calculated the band gaps of pure bulk ZnO and ZnS

using all three functionals at the respective optimized geometries (Table 4.1).

Table 4.1: Optimized structures and corresponding band gaps of wurtzite-type ZnO
and ZnS in comparison with experiment.

ZnO

method a c u E
g

(eV)

PBE 3.318 5.339 0.380 0.67
PBEsol 3.272 5.260 0.380 0.63
HSE06 3.252 5.245 0.382 2.58
exp. 3.249 5.207 0.382 3.4

ZnS

method a c u E
g

(eV)

PBE 3.789 6.358 0.374 1.86
PBEsol 3.843 6.258 0.374 1.92
HSE06 3.803 6.233 0.376 3.59
exp. 3.811 6.234 0.375 3.91

The results of these calculations (Table 4.1 and Figure 4.3) show that PBE as usual

overestimates the lattice parameters relative to the experimental values and predicts

band gaps that are much too low: 20% and 48% of the experimental values for ZnO and

ZnS, respectively. The PBEsol functional gives significantly more accurate values of

lattice parameters, but the band gaps are still too low: 19% and 49% of the experimen-

tal values for ZnO and ZnS, respectively. By contrast, the HSE06 functional predicts

lattice constants that are similar to the PBEsol values but gives much more realistic

band gaps: 76% and 92% of the experimental values for ZnO and ZnS, respectively.

Because the PBEsol and HSE06 values of lattice parameters are close to each other,

we will henceforth assume that it is a good approximation to use PBEsol-optimized

lattice parameters of ZnO, ZnS, and ZnO/ZnS heterostructures as substitutes for the

HSE06-optimized values.

We also confirm the recent observation [42] that one can obtain an essentially exact

band gap of 3.4 eV for ZnO by increasing the value of the exact-exchange mixing

parameter a
X

in the HSE06 functional from 0.25 to 0.375. However, we decided

against using this modification for calculations on ZnO/ZnS heterostructures because

we found that for pure bulk ZnS the HSE06 functional with a
X

= 0.375 produces a

band gap that is far too large (4.3 eV).
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Figure 4.3: Density of states (DOS) calculated using PBEsol and HSE06 functionals
for bulk ZnO and ZnS. The Fermi level is at 0 eV. Vertical dashed lines indicate
positions of the highest occupied and lowest unoccupied states of each type.

The results of HSE06 band gaps calculations for the PBEsol-optimized geometries of

ZnO, ZnS, and ZnO/ZnS heterostructures are summarized in Table 4.2.

Table 4.2: Calculated structural parameters, band gaps and total energies of layered
m : n ZnO/ZnS heterostructures. The structures were optimized using the PBEsol
functional. The band gaps were computed using the HSE06 functional for the PBEsol
geometries. The parameters a and d are defined in Figure 4.1. r̄(ZnO) and r̄(ZnS)
are, respectively, the Zn–O and Zn–S bond lengths averaged over the chain of atoms
inside the unit cell.

structure structural parameters (Å)

m : n a d r̄(ZnO) r̄(ZnS) E
g

(eV) Total energy (eV)

m+ n = 10
0:10 3.843 31.290 2.348 3.59 -1299.689019
1:9 3.832 31.013 2.120 2.359 2.23 -1308.246830
2:8 3.795 30.454 2.102 2.363 1.97 -1316.822891
3:7 3.750 29.795 2.092 2.355 1.58 -1325.405887
4:6 3.692 29.257 2.084 2.345 1.57 -1333.999945
5:5 3.631 28.790 2.074 2.336 1.50 -1342.609644
6:4 3.564 28.362 2.064 2.325 1.53 -1351.220893
7:3 3.496 28.024 2.054 2.314 1.54 -1359.851845
8:2 3.432 27.637 2.043 2.312 1.55 -1368.498064
9:1 3.371 27.231 2.033 2.324 1.55 -1377.165925
10:0 3.272 26.300 1.995 2.58 -1385.842070

The most striking conclusion emerging from these data is that the introduction of

a single ZnO monolayer per every 10 monolayers of ZnS (1:9 ZnO/ZnS) decreases
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the band gap by 38% from 3.59 eV to 2.23 eV. Similarly, substitution of every tenth

monolayer in bulk ZnO with a single ZnS monolayer (9:1 ZnO/ZnS) decreases the

band gap by 40% from 2.58 eV to 1.55 eV. Between 3:7 ZnO/ZnS and 9:1 ZnO/ZnS,

the band gap does not vary much and stays in the range between 1.50–1.58 eV. The

minimum of 1.50 eV is reached in 5:5 ZnO/ZnS. As can be inferred from the calculated

total electronic energies (last column in Table 4.2), the 5:5 ZnO/ZnS heterostructure

is thermodynamically metastable as it has a higher molar energy than bulk ZnO and

ZnS separately:

� 1342.609644 (5:5 ZnO/ZnS) > �1342.765544 = �(
1385.842070 + 1299.689019

2
).

(4.56)

Since the lower band gap was found for a ZnO/ZnS heterostructure with equal mole

fractions of ZnO and ZnS, it is natural to ask whether the n : n heterostructure with

n = 5 yields the lowest possible band gap. To answer this question, we optimized the

geometries of n : n ZnO/ZnS heterostructures for n = 1 to n = 6 and computed their

band gaps using the same computational methodology as above. We found that the

computed band gap as a function of n indeed reaches its minimum at n = 5 (Table 4.3).

Table 4.3: Calculated structural parameters and band gaps of layered n : n ZnO/ZnS
heterostructures. The conventions are the same as in Table 4.2.

structure structural parameters (Å)

m : n a d r̄(ZnO) r̄(ZnS) E
g

(eV)

m = n
1:1 3.600 5.872 2.077 2.327 2.31
2:2 3.615 11.645 2.074 2.334 1.97
3:3 3.624 17.367 2.074 2.335 1.77
4:4 3.627 23.066 2.073 2.336 1.66
5:5 3.631 28.790 2.074 2.336 1.50
6:6 3.626 34.152 2.069 2.327 1.65

It is interesting to note that the lattice parameter a for n : n ZnO/ZnS heterostructures

first increases with n and then decreases, with a maximum reached at n = 5. In the

theoretical limit n ! 1, the calculated parameter a for n : n heterostructures should

approach 3.558 Å, the average of the a values for bulk ZnO and ZnS.
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4.3 Discussion

To understand the origin of band gap reduction in crystals with ZnO/ZnS layer alter-

nation, we computed the band structure (Figure 4.4) and projected densities of states

(PDOS) for bulk ZnO, ZnS, and selected ZnO/ZnS heterostructures (Figure 4.5).
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Figure 4.4: Electronic band structure of bulk ZnO, 5:5 ZnO/ZnS, and ZnS computed
using the HSE06 functional at the respective PBEsol-optimized geometries. The k-
path inside the Brillouin zone for a hexagonal reciprocal lattice is defined in Ref. [43].
The lowest band gaps in bulk ZnO and ZnS are direct and in 5:5 ZnO/ZnS is indirect.
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Figure 4.5: Total and projected densities of states calculated using the HSE06 func-
tional at the PBEsol-optimized geometries of wurtzite-type bulk ZnS, wurtzite-type
bulk ZnO, and selected ZnO/ZnS heterostructures. The Fermi level is always at 0 eV.
Vertical dashed lines indicate positions of the highest occupied and lowest unoccupied
states of each type. Note the di↵erent scales on the vertical axes for the total and
Zn-3d densities of states.
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These plots suggest the following mechanisms of band gap narrowing. In pure ZnS,

the band gap is essentially the gap between the highest occupied (bonding) S-3p level

and the lowest unoccupied (antibonding) Zn-4s level. In bulk ZnO, the band gap is

the gap between the highest occupied O-2p level and the lowest unoccupied Zn-4s

and Zn-4p levels. In the ZnO/ZnS heterostructures, the highest occupied S-3p level in

the heterostructures is always higher in energy than the highest occupied O-2p level,

and so their band gap is essentially determined by the gap between highest occupied

S-3p level and the lowest unoccupied Zn-4s/4p levels. From Figure 4.5, we see that,

as the fraction of ZnO in ZnO/ZnS heterostructures increases, the highest occupied

S-3p level shifts to higher energies, whereas the lowest unoccupied Zn-4s and Zn-4p

levels drift slightly toward lower energies. The net result of these opposite trends is a

narrowing of the total band gap, with a minimum band gap value attained for the 5:5

ZnO/ZnS heterostructure.

The observed shifts in the S-3p and Zn-4s/4p levels can be explained in terms of

contraction and expansion of the crystal lattice of the 5:5 ZnO/ZnS heterostructure

relative to pure bulk ZnS and ZnO. The calculated lattice parameters a for the 5:5

ZnO/ZnS heterostructure and pure bulk ZnO and ZnS are, respectively, 3.631, 3.272,

and 3.843 Å (Table 4.2). This means that, in the 5:5 ZnO/ZnS heterostructure, the S

atoms are e↵ectively in a contracted ZnS lattice, while the Zn atoms of the ZnO layers

are in an expanded ZnO lattice. The contraction of the ZnS lattice causes the orbital

energy levels of the S atoms to rise, while the expansion of the ZnO lattice lowers the

orbital energy levels of the Zn atoms of the ZnO layers, as seen in Figure 4.5. To

validate this explanation, we computed the PDOS for the normal and distorted ZnS

and ZnO lattices. The calculations showed that when the ZnS lattice parameter a

is decreased from 3.843 Å to 3.631 Å, the highest occupied S-3p level shifts up from

�3.30 eV to �2.81 eV, and when the ZnO lattice parameter a is increased from 3.272

Å to 3.631 Å, the lowest unoccupied Zn-4s level shifts down from 1.11 eV to 0.89 eV,

and the lowest unoccupied Zn-4p level from 1.06 eV to 0.91 eV.

To determine whether the observed band-gap reduction is also influenced by a possible

transfer of charge between the atoms and/or interfaces, we calculated Bader atomic

charges [49] on all atoms in the unit cell of the 5:5 ZnO/ZnS heterostructure and

compared them to the corresponding atomic charges in pure bulk ZnO (±1.285e) and

ZnS (±0.911e) (Figure 4.6). The individual charges on the Zn and S atoms of the ZnS

layers were found to have changed very little relative to pure ZnS (by 0.012e on average

and 0.031e at most), whereas the charges on the Zn and O atoms of the ZnO layers
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all decreased in magnitude relative to pure ZnO (by 0.065e on average and 0.101e at

most). The net charge of the 5 ZnO contiguous monolayers in the heterostructure is

�0.050e per unit cell, whereas the net charge of the 5 contiguous ZnS monolayers is

+0.050e per unit cell, indicating that the overall charge transfer between the ZnO and

ZnS interfaces is negligible.

Figure 4.6: Bader atomic charges of pure bulk ZnO (top left), pure bulk ZnS (top
right) and 5:5 ZnO/ZnS heterostructure (bottom). The numbers are in units of e.

Therefore, the redistribution of charge occurs mainly between the Zn and O atoms of

the heterostructure and enhances the observed band-gap reduction by slightly lowering

the Zn–O bond polarity, but this e↵ect is less significant than the lattice distortion.

We have also calculated the valence band maximum (VBM) and conduction band

minimum (CBM) orbitals for the 5:5 ZnO/ZnS heterostructure, and found that they

are localized in di↵erent regions: the VBM on the ZnS layers, the CBM on the ZnO

layers, with both VBM and CBM densities increasing toward the ZnO/ZnS interface

boundary. This spatial separation of the VBM and CBM orbitals facilitates charge

carrier control and therefore is beneficial for photovoltaic applications.

4.4 Conclusion

In conclusion, we have found computationally that one can reduce the relatively large

band gap of semiconductors ZnO and ZnS by up to 42% and 58%, respectively, by

creating bulk heterostructures in which nanolayers of ZnO alternate nanolayers of ZnS.

Band gaps as low as 1.5–1.6 eV are achieved when m = 3 to m = 9 contiguous mono-

layers of ZnO alternative with n = 10�m contiguous monolayers of ZnS (Figure 4.7).



71

Because the HSE06 functional underestimates band gaps of pure bulk ZnO and ZnS

by 24% and 8%, respectively, the calculated minimum band gap of 1.5 eV is likely

underestimated as well. Assuming conservatively that the HSE06 functional under-

estimates band gaps of ZnO/ZnS heterostructures by 20% relative to experiment, we

expect the unknown experimental band gap of the 5:5 ZnO/ZnS heterostructure to be

no higher than 1.9 eV. Our findings indicate that integration of ZnO and ZnS semicon-

ductors into layered heterostructures is an e↵ective strategy for band-gap engineering

and the development of photovoltaic devices that can harness, store and utilize the

solar energy.
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Figure 4.7: Band gap energy of m : n ZnO/ZnS heterostructures.

4.5 Computational methodology

All electronic structure calculations reported in this work were performed with the

Quantum Espresso program (version 5.0.1) at T = 0 K using plane-wave basis sets

with a cuto↵ energy of 120 Ry and the Troullier–Martins norm-conserving pseudopo-

tentials. PBE and PBEsol calculations were carried using PBE and PBEsol pseudopo-

tentials, respectively, but the HSE06 calculations used PBEsol pseudopotentials. The

pseudopotentials were taken from the PSLibrary (version 1.0.0). The 3d electrons of

Zn atoms were treated as valence electrons. A 8×8×6 Monkhorst–Pack k-point grid

was adopted for calculations on bulk ZnO and ZnS; a 8⇥ 8⇥ 1 grid was used for the
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m + n = 10 heterostructures. For the n : n heterostructures, we used a 8 ⇥ 8 ⇥ K
z

grid with K
z

= 6, 3, 2, 2, 1 for n = 1, 2, 3, 4, 6, respectively. With these settings, the

total energy was converged to within 1 mRy with respect to the k-point grid. The

convergence criterion for Kohn–Sham self-consistency cycles was set to 10�8 Ry. All

atomic coordinates and lattice parameters were optimized without any constraints

by employing the Broyden–Fletcher–Goldfarb–Shanno quasi-Newton algorithm. The

structures were considered optimized when the components of all Hellmann–Feynman

forces dropped below 10�4 Ry/Å. Because structure optimization at the HSE06 level

is not implemented in the version of Quantum Espresso which we used, we found

the optimal HSE06 lattice parameters of ZnO and ZnS reported in Table 4.1 by a

two-dimensional search on the potential energy surface using a discrete step size of

0.001 Å. The results of our calibration calculations on bulk ZnO and ZnS are in good

agreement with previous investigations [44, 45, 46, 47, 48], small discrepancies being

due to di↵erences in pseudopotentials, plane wave cuto↵s, and other details of the

calculations. The XCrySDen package was employed for visualizing the results.
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[32] H. Morkoç, Ü. Özgür, “Zinc Oxide: Fundamentals, Materials and Device Tech-

nology”, Wiley- VCH: Weinheim, 2009.



76

[33] J. Heyd, G. E. Scuseria. “E�cient hybrid density functional calculations in

solids: assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid

functional”. J. Chem. Phys. 2004, 121, 1187.

[34] J. Heyd, J. E. Peralta, G. E. Scuseria, R. L. Martin. “Energy band gaps and

lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid

functional”. J. Chem. Phys. 2005, 123, 174101.

[35] A. V. Krukau, O. Vydrov, A. F. Izmaylov, G. F. Scuseria. “Influence of the ex-

change screening parameter on the performance of screened hybrid functionals”.

J. Chem. Phys. 2006, 125, 224106.

[36] T. M. Henderson, J. Paier, G. E. Scuseria. “Accurate treatment of solids with

the HSE screened hybrid”. Phys. Status Solidi B 2011, 248, 767.

[37] H. Xu, Y. Li, A. L. Rosa, T. Frauenheim, R. Q. Zhang. “First-principles study

of the structural stability and electronic properties of ZnS nanowires”. J. Phys.

Chem. C 2008, 112, 20291.

[38] F. De Angelis, L. Armelao. “Optical properties of ZnO nanostructures: a hybrid

DFT/TDDFT investigation”. Phys. Chem. Chem. Phys. 2011, 13, 467.

[39] J. M. Azpiroz, E. Mosconi, F. D. Angelis. “Modeling ZnS and ZnO nanostruc-

tures: structural, electronic, and optical properties”. J Phys. Chem. C 2011,

115, 25219.

[40] J. M. Azpiroz, I. Infante, X. Lopez, J. M. Ugalde, F. D. Angelis. “A first-

principles study of II–VI (II= Zn; VI= O, S, Se, Te) semiconductor nanostruc-

tures”. J. Mater. Chem. 2012, 22, 21453.

[41] G. Malloci, L. Chiodo, A. Rubio, A. Mattoni. “Structural and optoelectronic

properties of unsaturated ZnO and ZnS nanoclusters”. J. Phys. Chem. C 2012,

116, 8741.

[42] Z. Wang, M. Zhao, X. Wang, X. Yan, X. He, X. Liu, S. Yan. “Hybrid density

functional study of band alignment in ZnO–GaN and ZnO–(Ga1- xZnx)(N1-

xOx)–GaN heterostructures”. Phys. Chem. Chem. Phys. 2012, 14, 15693.

[43] W. Setyawan, S. Curtarolo. “High-throughput electronic band structure calcu-

lations: challenges and tools”. Comput. Mater. Sci. 2010, 49, 299.



77
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Chapter 5

Summary and future directions

Extreme packing of atoms under compression can have a profound e↵ect on the physi-

cal and chemical properties of materials. For instance, insulators can become metallic

under pressure [3, 2, 4], whereas metals can become wide-gap insulators [1]. These

observations represent pressure as an intriguing tool for tuning the properties of ma-

terials. The interest in high-pressure conditions is also driven by the possibility of

discovering novel industrial materials with exceptional properties that are unprece-

dented at ambient conditions.

While experimental challenges may limit one’s ability to investigate the properties of

materials at extreme conditions, there will be no practical limit for computationally

simulating high pressure. Employing electronic structure simulations, this thesis ex-

amined the pressure-induced polymorphic transformations in solid diborane up to an

unprecedented pressure for this class of materials. In particular, our findings suggest

that B2H6 molecules in solid diborane remain chemically stable up to near-megabar

pressures, and the geometry of the BHBH ring is not significantly altered by compres-

sion. We further predict that at pressures above 110 GPa, diborane will form new

molecular structures consisting of one-dimensional (BH3)n chains, and will become

metallic near 138 GPa. While such pressures have not yet been reached experimentally,

they are feasible, meaning that the first reports of pressure-induced polymerization and

metallization of diborane are a matter of time. This will provide a practical pathway

to one of the long-standing challenges of high-pressure materials science: achieving

pressure-induced hydrogen metallization.

Escalating concerns for environmental pollution and energy shortage have also created

a pressing demand for the development of semiconductor-based heterogeneous materi-

als. New physical and chemical behaviors emerge when dissimilar semiconductors are

78



79

merged into a multi-component heterostructure. Properties also get a↵ected as the ge-

ometry and morphology of the shrinking structures vary; and these have the potential

to meet the ever-increasing demand for novel materials with improved functionalities.

Employing electronic structure simulations, this thesis examined how the band gaps

of ZnO and ZnS can be dramatically reduced by creating layered ZnO/ZnS bulk het-

erostructures in which m contiguous monolayers of ZnO alternate with n contiguous

monolayers of ZnS. The predicted band gaps of layered ZnO/ZnS heterostructures

span much of the visible spectrum, which makes these materials suitable for photo-

voltaic device engineering. The models proposed and studied in this work are helpful

as they allow understanding of experimental observations on band gap modulations in

various heterostructures.
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