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Abstract 

A key characteristic of selective visual attention is that it may be deployed on the basis of 

our knowledge or goals of the task at hand. Here, we used cryogenic deactivation to 

investigate the contribution of the dorsolateral PFC to cognitive flexibility and working 

memory, as well as their relation to the deployment of attention. Macaque monkeys 

performed visual search tasks requiring them to foveate a target in an array of stimuli. 

These included a feature search, a constant-target conjunction search, a variable-target 

search and variable-target with delay search task, with each being more cognitively 

demanding than the last. Bilateral deactivation of the DLPFC during more demanding 

tasks resulted in increased reaction time and decreased accuracy. These effects on visual 

search performance suggest that the DLPFC is involved in the deployment of attention to 

a target, and also contributes to the flexible and mnemonic processes needed when task 

demands increase. 
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Introduction 

Imagine you are looking at playing cards spread face up on a table, and your goal is to 

find the Queen of Spades. Although all of the cards are in plain view, searching from one 

card to the next is necessary to locate the correct one. Looking for this card is an example 

of a conjunction search in which two features define the target, in this case the value of 

the card and the suit. To narrow our search we can direct our attention to relevant target 

features, such as to all cards that are Queens or all cards that are Spades. We can end our 

search and identify the target card when what we are looking at is a Spade and also a 

Queen, thus matching the features we were searching for, and correctly identifying the 

Queen of Spades. This is the process of selective visual attention.  

 A prerequisite for successful visual behaviour is the ability to selectively attend to 

relevant stimuli, while ignoring irrelevant ones. Attention is the process of filtering 

irrelevant information to focus on more behaviourally relevant information. Given the 

inherent demand for processing resources, the visual system cannot fully process the 

entirety of the visual field (Tsotsos 1990). As a result of this demand, only a small area of 

the visual field can be processed to higher order brain areas (Wolfe 1994). This area of 

the visual field from which information is further processed comes from the high-

resolution area of the retina, the fovea. Foveal vision occupies only about 1% of our 

visual field but already a much larger amount (up to 50%) in our primary visual cortex 

(Horton and Hoyt 1991). Since the majority of our visual information comes from foveal 

input, relocating the fovea to relevant stimulus locations is essential, and thus movements 

of the eyes direct the fovea toward objects of interest to facilitate detailed visual 
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processing (Findlay 2009). The most common type of eye movement is called a saccade, 

which is a fast ballistic movement of the eye to redirect the fovea to a new location 

(Gilchrist 2011). When scanning a visual scene, saccades (interrupted by fixations) 

redirect our gaze up to several times a second and are crucial to gather more information 

from the visual environment. Though this is typically how visual information is gathered, 

attention can also be directed without movements of the eyes (covert attention; Posner 

1980). Fixation on an object allows the image of that object to fall on the fovea for visual 

information to be processed, while saccades continue to relocate our fovea to different 

aspects of the scene.  

 Visual attention is understood to be deployed on the basis of both bottom-up and 

top-down processes. Bottom-up processes consist of the distinctiveness of particular 

stimuli in the environment, while top-down processes comprise the knowledge and goals 

of the observer (Wolfe 1994, Miller and Cohen 2001, Bundesen et al. 2005, Hamker 

2006, Wolfe 2010). Stimuli that are salient or perceptually different compared to 

neighbouring stimuli, seem to automatically draw our attention (Wolfe 1994). An item 

containing a unique feature, such as colour, shape or a particular orientation, increasingly 

draws our attention the greater the difference between it and objects around it. The role of 

bottom-up attention can be demonstrated in searching for a target defined by a single 

feature, known as a feature search. An example of this would be looking for a red 

stimulus on a screen full of green stimuli. The oddball red stimulus is distinctive on the 

screen, and the target can be located without prior knowledge of its features. Top-down 

attention on the other hand involves directing attention towards objects of interest, and 

can help locate targets that may not be visually distinctive from the distractors. Although 
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locating a red stimulus among green ones can be driven by bottom-up attention, searching 

for a target defined by multiple features requires prior knowledge. Searching for a target 

defined by two features (such as colour and shape) is known a conjunction search, such as 

a red square among red and green squares and circles. The target now shares features with 

the distractors, as a red square would be the same colour as a red circle distractor, and the 

same shape as a green square distractor. Since all stimuli in a conjunction search are 

perceptually similar, one must know what the target is in order to find it, which is similar 

to locating the Queen of Spades in a pile of cards. This prior knowledge can be in the 

form of a memory representation of the target following instruction (Bichot and Schall 

1999b), or can be drawn upon given verbal direction (Yarbus 1967). Prior knowledge can 

also be used to override bottom-up attentional processes during search for a single unique 

stimulus (Bichot et al. 1996). This demonstrates that in addition to being driven by 

bottom-up processes, attention can also be allocated using top-down control. 

 Eye movements facilitate more detailed visual processing and may thus be 

considered an overt form of selective visual attention (Findlay & Gilchrist 2003, Findlay 

2009). While covert attention can direct attention without deploying an eye movement, an 

eye movement cannot be directed to one location while attention is directed to another 

(Deubel and Schneider 1996, Hoffman and Subramaniam 1995, Findlay & Gilchrist 

2003). The fundamentals of this obligatory relationship between eye movements and 

attention, however, are somewhat debatable (see review, Smith and Schenk 2012). The 

premotor theory of attention proposes that attention is actually a consequence of the 

motor preparation for an eye movement (Rizzolatti et al. 1987), which can result in 

attention preceding to the target location ahead of the fovea (Hoffman and Subramaniam 
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1995). As demonstrated earlier, eye movements are crucial to gathering more information 

about the visual environment. Saccades help direct attention to different aspects of a 

visual scene, while something that draws our attention in the visual field results in an 

orienting saccade to place the fovea on it and examine this stimulus further. Enhanced 

perceptual discrimination at the target location of the upcoming saccade demonstrates the 

influence of eye movements on attention (Deubel and Schneider 1996); while attention 

can also influence saccades, such as distracting stimuli affecting saccade latency (Walker 

et al. 1997). The fact that eye movements and attention are so intertwined and attention is 

potentially even a consequence of oculomotor system activation suggests the use of 

similar neural substrates or mechanisms. 

 Visual search tasks have been used extensively to investigate the neural basis of 

attention and cognitive processes related to the deployment of attention. In visual search 

tasks, the object is to locate a target from among non-target distractors (for review, see 

Wolfe 1998). Visual search paradigms can also be modified to investigate different 

cognitive functions. For example, the identity of the target and distractors can be altered 

to increase attentional demand. An example of a low-demand paradigm is a simple 

feature search where the target is defined by a unique feature (e.g. colour), and where 

attention can be guided to by way of bottom-up processes. In contrast, a conjunction 

search is an example of a more demanding task. This is demonstrated when a target is 

defined by a conjunction of features (e.g. colour and shape), in that the target not only 

shares some of the features with the distractors, but is also perceptually similar as well. 

As a result, top-down control using prior knowledge would now be needed to direct 

attention to the conjunction target. Prior knowledge can be a representation of the target 
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(either defined by its features, or a picture-like representation) held as a target template to 

assist with top-down attention. Another cognitive process that can be tested in visual 

search is working memory. Working memory is the temporary retention of information to 

guide future behaviour (Baddeley 1992). At the beginning of a visual search task, target 

information (e.g. location, colour) can be briefly presented and subsequently followed by 

a blank-screen delay in which the subject must hold this target information in working 

memory. This information can then be used to guide attention to the target when the array 

is presented (Chelazzi et al. 1998, Woodman et al. 2007). Working memory of target 

location can also be tested by incorporating a delay after array presentation (Hasegawa et 

al. 2000, Iba and Sawaguchi 2002). Lastly, changing the search target or having multiple 

search targets in a visual search task can test cognitive or behavioural flexibility 

(Horowitz and Wolfe 2001, Bichot and Schall 2002, Rossi et al. 2007, Woodman et al. 

2007). Altering the search target on a trial-by-trial basis requires subjects to now direct 

attention to the behavioural relevant stimulus using top-down control (Rossi et al. 2009). 

This includes updating the target template to the current search target on each trial. The 

target also may have been a distractor on the previous trial, making the task even more 

demanding as erroneous saccades are made to distractors that were targets on the previous 

day (Bichot and Schall 1999a). 

 Performance in visual search tasks is quantified by taking simple measurements, 

most commonly reaction time and accuracy (Wolfe 1998). Reaction time—the time 

between when the array is presented to the start of the saccade—is useful for determining 

the processing time of target selection. Two of these processes include discrimination of 

the target from distractors, and saccade programming to the target. A target more similar 
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to distractors would take longer to identify, delaying this process and untimely delaying 

the reaction time. The percentage of trials in which the fovea lands at the target location, 

or the percentage of trials that a subject correctly identifies a search target as present in an 

array, is known as accuracy. By assessing reaction time and accuracy on different search 

paradigms, it can be determined how much the target stands out from distractors and 

insight can be gathered as to whether bottom-up attention guides the fovea to the target, 

or if it involves the direction of top-down attention. By making modifications to a visual 

search paradigm, it is useful to test processes besides visual attention, including working 

memory and cognitive flexibility (Wolfe 1994, Bundesen et al. 2005).  

 Though theories and models of attention are useful starting points, physiological 

data is needed to constrain them. It is beneficial that human studies can uncover 

functional areas underlying neural networks involved with attention and eye movements 

(Corbetta et al. 1998), but more invasive studies are needed to determine the neural 

mechanism of attention. This requires an appropriate animal model, the macaque monkey 

(Macaca). One of the highlighting factors that make these animals such useful models is 

that their brains are highly homologous to humans. This means that both macaque and 

human brains have many shared, derived characteristics from a common ancestor. This 

has been determined through cytoarchitecture studies examining cellular and brain layer 

composition and connectivity studies showing the similarity of brain connections to 

humans, in everywhere from the primary visual system to the prefrontal cortex (Kritzer 

and Goldman-Rakic 1995, Preuss 2007, Wise 2008, Passingham 2009). Their well-

developed homologous visual system (Hubel and Wiesel 1977) and retinal similarity 

means they must also direct their fovea to objects of interest to facilitate visual 
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processing. As rhesus macaques must orient their fovea in a similar manner to humans, 

including a large oculomotor range and saccade amplitude, they have a well-developed 

and well-studied oculomotor network. This network includes a number of interconnected 

cortical and subcortical brain areas, including the frontal eye field (FEF), supplementary 

eye field (SEF) and the lateral intraparietal area (LIP), all of which send projections to the 

common output target superior colliculus (SC), a midbrain structure connected to saccade 

motor generators (Selemon and Goldman-Rakic 1988, Johnston and Everling 2008, 

Johnston and Everling 2011, Curtis 2011). Again, comparative cytoarchitecture and 

functional MRI (fMRI) studies have determined homologues of these areas in the human 

brain (Petrides and Pandya 1999, Koyama et al. 2004, Baker et al. 2006). In addition, 

macaques’ eye-movement repertoire is also very similar to humans, with only slight 

differences (Johnston & Everling 2008). As well, due to the oculomotor and saccade 

similarity with humans, macaques can be trained to perform many of the same eye 

movement tasks as humans. Single neuron recording in the awake macaque during eye 

movement tasks has allowed the correlation of neural activity with behaviour to better 

understand the neural basis of attention (e.g. Bisley and Goldberg 2003). By using the 

rhesus macaque as a model, researchers can manipulate eye movement tasks to examine 

many cognitive processes.  

 From comparative anatomical and neurophysiological studies of macaques 

performing visual search tasks, a network of cortical and subcortical areas has been 

shown to overlap with the oculomotor network, areas responsible for eye movements and 

voluntary shifts in attention towards objects of interest. This network consists of several 

inter-connected areas, including the FEF (Bichot and Schall 1999a, Schall 2002), area 
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LIP (Ipata et al. 2006, Thomas and Pare 2007) and the SC (Shen et al. 2011). 

Neuroimaging studies have identified similar brain regions and corresponding areas of 

activation in human participants, known as the dorsal frontoparietal attention network 

(Corbetta et al. 1998, Corbetta & Shulman 2011). Single-unit neuronal recordings have 

found neurons in these areas that exhibit activity consistent with the correct selection of a 

target in visual search. Their activity profile is as follows: immediately following 

presentation of the stimulus array, neurons that have a stimulus in their response field (the 

location in the visual field that they represent) have an initial, indiscriminate increase in 

activity (see Figure 1). Depending on whether this stimulus is a target or a distractor, the 

neuron’s activity will subsequently be enhanced or attenuated, respectively (e.g. Schall 

2002). Similar activity is seen throughout this network; the FEF, SC and area LIP (Schall 

2002, Thomas and Pare 2007, Shen et al. 2011). The common idea is that all stimuli in 

the visual environment compete for our attention, while only those neuron’s activity 

representing stimuli that are behaviourally relevant are enhanced, and all others are 

filtered out. Current theories of visual attention also propose the existence of a visual 

priority map that represents all stimuli in our visual field (also referred to as a salience 

map, see Figure 2; Olshausen et al. 1993, Wolfe 1994, Itti and Koch 2001, Bundesen et 

al. 2005, Thompson and Bichot 2005, Fecteau and Munoz 2006, Hamker 2006, Bisley 

and Goldberg 2010, Jerde and Curtis 2013). Each stimulus in this priority map is thought 

to have an attentional weight assigned to it based on bottom-up factors (how unique it is) 

and top-down factors (how behaviourally relevant it is). After each stimulus has been 

assigned its attentional weight, the stimulus with the highest activation on the map is 

chosen as the next target of selection in a winner-take-all approach. This map is thought 

not to exist at only a single location, but is in fact instantiated in each of the areas of the 
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oculomotor network (Kusunoki et al. 2000, Schall 2002, Thompson and Bichot 2005, 

Fecteau and Munoz 2006, Thomas and Pare 2007, Shen et al. 2011), and possibly the 

pulvinar nucleus of the thalamus (Robinson and Petersen 1992, Bundesen et al. 2005). 

Since there appears to be top-down neural modulation (enhancement and attenuation of 

neural activity) based upon which stimuli are relevant, it is proposed that this represents 

top-down control from a higher-order area requiring knowledge of the target and task 

goals (Wolfe 1994, Miller & Cohen 2001, Bundesen et al. 2005, Hamker 2006). This area 

is the prefrontal cortex (PFC), which is the region thought to be one of the main control 

centers of the brain. To support this, human neuroimaging data also identified a frontal 

region involved in attention besides the above noted oculomotor network, which is the 

dorsolateral PFC (DLPFC; Corbetta et al. 1998).  

 The DLPFC is thought to have influence over much of the brain due to its unique 

position and connections with important brain areas, and is thought to have involvement 

with many cognitive processes related to attention. These include functions such as 

attention, target selection, response suppression, decision making, task flexibility, and 

working memory. Attention—specifically visual attention—is thought to be controlled by 

the PFC (e.g. Hamker 2006). Cells in this area show filtering to spatially unattended 

targets, and even neuronal enhancement to attended stimuli (Everling et al. 2002). 

Lesions in macaques and human fMRI findings pinpointed the DLPFC as necessary on 

visual tasks that required top-down attentional control (Rossi et al. 2009). Working 

memory is a process that has been hallmarked by neural activity during a delay interval in 

a delayed response task, with this area possibly retaining or holding information during a  
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Figure 1. Neuronal activity during target selection. Illustration of neuronal activity in the 

oculomotor network when a target stimulus (solid line) or a distractor stimulus (dotted 

line) appears in the response field of a neuron. Initial increase in activity does not 

discriminate the target from a distractor. However, the target begins to be identified at the 

leftward red line, and target activity compared to distractor activity is statistically 

different by the rightward red line (discrimination time), signifying that the target is 

discriminated from the distractor. Once a certain saccade initiation threshold is reached, a 

saccade is executed (black vertical line). 
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Figure 2. The visual priority map. Illustration of the theoretical visual priority map and 

its contribution based on models of visual search and visual attention. This map receives 

input relating to both stimulus-related (bottom-up) and goal-directed (top-down) signals. 

The stimulus with the highest activation on the priority map (represented by stimulus size 

in this case) is chosen as the next target of selection. Adapted from Hamker (2006). 
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delay and subsequently using it to guide behaviour. The memory-guided saccade task 

requires animals to saccade to a remembered location after holding that target location in 

working memory for a delay period. Neurons in the PFC showed elevated directional 

delay period activity during the memory-guided saccade task (Funahashi et al. 1989), and 

also a delayed match to sample task of complex stimuli (Miller et al. 1996; see review, 

Curtis and D’Esposito 2003). These findings demonstrate that the PFC plays a role in the 

working memory process.  

 Attention must also be flexibly allocated based on the varying behavioural 

relevance of a stimulus or task, and the DLPFC has shown to be involved with this as 

well. Recordings from macaque DLPFC during a non-cued antisaccade switch task 

(saccade to the location opposite a stimulus) found that neurons in this area modulated 

their activity depending on whether the monkey was in a prosaccade or antisaccade block, 

suggesting that neurons in this area maintain some sort of rule selectivity in the flexible 

control of behaviour (Everling and DeSouza 2005). Also, neuronal encoding of abstract 

rules has been demonstrated in the PFC while flexibly switching between different rules 

using complex object stimuli (Wallis et al. 2001). Prefrontal activation has also been 

demonstrated in both macaques and humans on a similar set-shifting task during fMRI 

(Nakahara et al. 2002), and flexibility on a visual discrimination task requires the PFC 

(Rossi et al. 2007, Pessoa et al. 2009). Lastly, principal sulcus lesions impaired the 

maintenance of current rules in working memory during the Wisconsin Card Sorting Task 

(Buckley et al. 2009). Therefore, the DLPFC is an excellent candidate region for 

influencing a number of processes related to attention, working memory and cognitive 

flexibility in visual search. In addition to the physiological data of the DLPFC, there have 
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also been studies determining its connections with other areas of the oculomotor network, 

particularly involving the FEF (Stanton et al. 1993), parietal cortex (Petrides & Pandya 

1984) and the SC (Fries 1984, Johnston and Everling 2009). 

 The DLPFC has also been investigated during visual search using 

neurophysiology and deactivation techniques to determine its role in target selection. 

Neurophysiological studies in which DLPFC neurons were recorded while monkeys 

performed visual search tasks (Hasegawa et al. 2000, Iba and Sawaguchi 2002, Katsuki 

and Constantinidis 2012) established that neurons in this area showed activity consistent 

with the identification of the search target (discriminating the target from distractors), 

followed by directional delay-period activity (holding target information during the 

delay). Based on these findings, Iba and Sawaguchi (2002) proposed that the DLPFC 

forms an attention-memory system, tasked with target identification as well as temporary 

storage of target information. While the above studies support the role of the DLPFC in 

visual target selection, a bottom-up feature search task in which the target was defined by 

colour or shape was used. Deactivation studies using a conjunction search in which the 

target was defined by shape and colour also showed that muscimol-induced reversible 

deactivation of the DLPFC resulted in deficits selecting the target from distractors in the 

contralateral hemisphere (Iba & Sawaguchi 2003). Thus, the DLPFC has been 

demonstrated to contain visuospatial mnemonic processes, and appears to use this to help 

correctly identify a target from distractors and subsequently direct attention to the target 

location. However, its contribution to the searches may have been limited as the target 

was clearly identified in a feature search, and the target remained constant in the 

conjunction search therefore removing behavioural flexibility from the task. In addition, 
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the delay following the search required only the target location to be held in working 

memory, and may not have required temporary retention of any relevant target features. 

Taken together, these studies suggest that the DLPFC is involved in selective visual 

attention, possibly working with other areas in the oculomotor network to help provide 

top-down influence. These studies, however, have not uncovered the potential 

contribution of the DLPFC when selective visual attention involves working memory or 

behavioural flexibility. 

 Given that we now have an understanding of what is occurring at the neuronal 

level in the oculomotor network (FEF, LIP, SC) during target selection, our goal is to 

determine what contribution the DLPFC has in flexible or mnemonic processes in target 

selection. There are multiple approaches that can be taken to determine this contribution, 

including neuronal recording, stimulation or deactivation. An easy initial step to 

determine the degree of a brain area’s involvement with a particular process is to remove 

that area and observe the subsequent behaviour. Lesion studies have been invaluable in 

understanding how the brain works, either naturally in patients or experimentally in 

animals (e.g. see Fuster 2001). Regarding the link between neurons and behaviour, one 

method is to permanently or reversibly deactivate a candidate set of neurons and measure 

any cognitive deficit (Parker and Newsome 1998). One such study did exactly this, which 

performed PFC lesions and investigated its contribution to visual attention. Monkeys that 

had unilateral PFC lesions were unaffected in a visual discrimination task involving 

bottom-up attention or when target identity stayed the same, but showed deficits when the 

target identity changed frequently across trials (Rossi et al. 2007). Though many 

subdivisions of the PFC were removed, this suggests a role of the PFC in behavioural 
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flexibility (similar to what was noted earlier regarding task switching) and additionally 

suggests a role in visual attention. While this study examined top-down PFC control 

processes, these and other cognitive processes still need to be explored in visual search. In 

addition, while traditional lesion studies have allowed us to gain tremendous knowledge 

regarding brain function, less permanent and just as effective techniques have been 

developed to accomplish the same goal. 

 Cryogenic deactivation is one technique that can be used to reversibly inactivate a 

brain region or related neural circuit. There are also different methods to cryogenically 

deactivate the brain. The cryoloop technique involves running chilled methanol through 

stainless steel loops that are in contact with the cortical surface to selectively and 

reversibly deactivate a brain area (see review, Lomber et al. 1999). By custom designing 

cryoloops using anatomical MRI data, it is possible deactivate a selected brain area within 

minutes of running chilled methanol through the loop, and then remove deactivation 

again within minutes following stoppage of methanol flow. The effect of cortical cooling 

on neuronal activity has been studied extensively (Jasper et al. 1970, Horel 1984, Lomber 

et al. 1996, Lomber et al. 1999), and these studies have determined that cooling the 

cortex below 20°C results in the abolishment of neural activity by means of blocking 

synaptic transmission. Since the use of various cooling methods (Jasper et al. 1970), the 

use of the highly circumscribed cryoloops have now allowed researchers to chronically 

and selectively deactivate more specific areas to determine functional specialization 

(Lomber et al. 2010, Hussein et al. 2014). Unlike pharmacological inactivation 

techniques (e.g. muscimol), cryogenic inactivation can be used to both inactivate and 

reactivate a brain region or circuit within the same task session, collecting control and 
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experimental data within a single session. Though muscimol inactivation has been used to 

study target selection (Wardak et al. 2002, Iba and Sawaguchi 2003), the spread of 

inactivation can be difficult to replicate and this technique can ultimately result in tissue 

damage and permanent effects (Lomber 1999). The reproducibility, lack of permanent 

damage, ability to combine with neuronal recording and amount of control over 

inactivation makes cooling a useful and effective technique to study the DLPFC and 

examine its role in visual search.  

 Although there exists substantial literature which has detailed the neural basis of 

saccade target selection, some of the cognitive processes related to top-down control in 

visual search have been less studied. Task-set reconfiguration (behavioural flexibility) 

and working memory are two cognitive processes that have been linked to the 

deployment of visual attention, but their roles in visual search have not been identified. 

Task-set reconfiguration is as follows: when a visual search target changes, the brain must 

draw upon relevant past knowledge of the goal and target, form a new target template 

from which to search, reconfigure the top-down selective attention processes, and direct 

attention by moving the eyes to the new target. Given the theories and evidence discussed 

thus far, there is logical foundation that these processes—in visual target selection—are 

associated with the function of the PFC. 

 The aim of this project is to investigate the role of the DLPFC in top-down 

cognitive processes related to the deployment of attention as measured in visual search 

tasks. Specifically, we will reversibly and bilaterally deactivate the DLPFC of rhesus 

macaque monkeys performing visual search tasks to determine the link between this area 

and the processes of task-set reconfiguration and working memory, as well as their 
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relationship to selective visual attention. We designed four visual search tasks, with each 

more cognitively demanding than the previous. The first task was a feature search in 

which the oddball target was defined by colour. The second task was a constant-target 

conjunction search, as the target was defined by a combination of shape and colour and 

the target remained constant for the entire session. Since the target was now perceptually 

similar to the distractors, top-down control was required to locate the target. The third 

task was a variable-target conjunction search task, with the search target now changing on 

a trial-by-trial basis. This task not only required knowledge of the conjunction target, but 

also tested behavioural flexibility, the process of task-set reconfiguration. The fourth and 

final task was a variable-target with delay conjunction search task. In addition to 

requiring knowledge of the target and testing the process of task-set reconfiguration, the 

trial-specific target must also be held in working memory during the delay before 

presentation of the array.  

 We hypothesize that DLPFC deactivation will impair search performance on the 

visual search tasks involving top-down control and flexible or mnemonic processes. We 

predict that DLPFC deactivation will result in minimal reaction time or accuracy changes 

on the feature search task and the constant-target conjunction search task, but that 

reaction time increases and accuracy decreases will be observed on the tasks involving 

behavioural flexibility and working memory, the variable-target and variable-target with 

delay conjunction search tasks. 
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Materials & Methods 

Surgical Procedures 

Data were collected from two male rhesus monkeys (Macaca mulatta) weighing 9 and 12 

kg. All procedures were carried out in accordance with the guidelines of the Canadian 

Council of Animal Care Policy on the Use of Laboratory Animals and a protocol 

approved by the Animal Use Subcommittee of the University of Western Ontario Council 

on Animal Care. Both animals were prepared for chronic implantation of plastic head 

restraints and stainless steel cryoloops (see Koval et al. 2011). Briefly, monkeys 

underwent an MRI to determine the location and shape of the principal sulcus and 

subsequently underwent an aseptic surgery. Animals were anesthetized and placed in a 

stereotaxic apparatus to prepare them for surgery. A craniotomy was performed on each 

hemisphere to expose the surface of the brain at the principal sulcus. Stainless steel 

cryoloops (6 × 3 mm) were implanted bilaterally into the caudal portion of the principal 

sulcus (cPS; see Figure 3) and bilaterally on the cortex immediately dorsal to the principal 

sulcus (DPC). A plastic head restraint was also implanted, all using dental acrylic. 

Animals received antibiotics and analgesics post-surgery and were closely monitored by a 

university veterinarian. Cryoloops were custom fashioned from 23-gauge hypodermic 

stainless steeling tubing based on the anatomical MR images of the animals. Details and 

technicalities of the cryoloop—including design, surgery and use—have been previously 

described (Lomber et al. 1999).  
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Figure 3. Cryoloop placement in the macaque prefrontal cortex. Cryoloops were 

implanted bilaterally in the caudal principal sulcus (PS). Blue line denotes approximate 

location of the cryoloop. AS, arcuate sulcus. 
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Behavioural Paradigms 

Both animals were trained on four visual search tasks in which they were required to 

make a single saccade to a target stimulus amongst an array of distractors (Figure 4). The 

first task was a feature search task in which the target was defined by colour. The 

additional tasks were three versions of a conjunction search task in which the target was 

identified by both colour and shape. The first of these contained a constant search target. 

The second task contained a variable search target, and the third conjunction search task 

consisted of a variable target followed by a delay. All tasks began with the presentation of 

a central white fixation spot at the center of a CRT monitor. Horizontal and vertical eye 

positions were recorded at 500 Hz using an Eyelink II system (SR Research, Kanata, 

Canada). 

Feature Search Task 

In this task, animals were required to make a saccade to a target defined by colour. 

Animals were required to fixate on a central white fixation spot (0.5°) and maintain eye 

position within a 4° x 4° electronic window for 500 msec. Eight visual stimuli (circles 

approximately 1.3° in size) were then presented 8° equidistant from the fixation (see 

Figure 4), and monkeys were required to make a single saccade to the search target. The 

search target was either a green circle with an array of seven red circle distractors, or a 

red circle with an array of seven green circle distractors. The target was presented 

pseudorandomly to any of the eight stimuli positions, and thus there were eight conditions 

for this task. Each session consisted of either a green or a red target and remained 

constant for each session. On correct trials—there in which the animals fixated at the 
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target location for 200 msec—animals received a liquid reward. Lost or broken fixation at 

any point during the trial resulted in termination of the trial. Errors were defined as a trial 

in which the array was presented and the animal made a saccade to one of the distractor 

stimuli. A two second intertrial interval consisting of a blank screen followed all trials 

before the next trial commenced. 

Constant-Target Conjunction Search Task 

In this task, animals were required to make a saccade to a target defined by a conjunction 

of features, those being colour and shape. The four stimuli were a red square, green 

square, red circle and a green circle. Thus, on any trial the target shared a common 

feature, either shape or colour, with the distractors. One distractor had the same shape, 

one had the same colour, and the other distractor shared no feature. In this task, one of the 

four stimuli was pseudorandomly chosen as the search target for the each session. To 

instruct the monkey of which item was the search target for each session, a 50-trial 

training preview was completed. In this training session, the target began at fixation and 

subsequently appeared at one of the four target positions following a 500 msec fixation 

period. This preview allowed the animal to determine what the target was before each 

session started. In the task, and following a 500 msec fixation of the white fixation spot, 

the array would be presented and the monkey was required to make a single saccade to 

the target position. As before, 200 msec fixation at the target location resulted in a correct 

trial and administration of a liquid reward. Lost or broken fixation at any point during the 

trial resulted in termination of the trial. Errors were defined as a trial in which the array 

was presented and the animal made a saccade to one of the distractor stimuli. The target 

could appear at any of the four locations, with any potential array of distractors. As 
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before, a two second intertrial interval consisting of a blank screen followed each trial 

before the next trial commenced. 

Variable-Target Conjunction Search Task 

For the variable-target version of the conjunction search task, the search target was 

instructed on a trial-by-trial basis. Two of the set of four stimuli—red square, green 

square, red circle, green circle—were randomly chosen as the search targets in each 

session, with either of the two being randomly selected as the search target for a particular 

trial. Following a 500 msec fixation, the target stimulus was presented while the animal 

maintained fixation. The target stimulus was presented for 500 msec to instruct the 

monkey of the target for that specific trial (see Figure 4). This was followed by a 100 

msec white fixation spot delay to minimize any screen afterimage of the search target, 

which could serve as a preview to saccade to the target. The array was then presented and 

the monkey was required to make a single saccade to the target position. As before, 200 

msec fixation in the target location resulted in a correct trial and the administration of 

liquid reward. Lost or broken fixation at any point during the trial resulted in termination 

of the trial. Errors were defined as a trial in which the array was presented and the animal 

made a saccade to one of the distractor stimuli. An intertrial interval of two seconds 

occurred before the next trial commenced. 

Variable-Target with Delay Search Task 

The final version of the conjunction search task was similar to that of the variable-target 

version, except with a longer post-target instruction delay. Similar to the variable-target 

version, two of the four stimuli were randomly chosen as targets for each session, with  
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Figure 4. Behavioural search paradigms. (A) In the feature search task, the target was 

defined by colour (red or green), and randomly appeared in one of eight stimulus 

positions. (B) Constant-target conjunction search, with any one stimuli being randomly 

chosen as the target for an entire session. (C) Variable-target conjunction search, with two 

of the stimuli being randomly chosen for a session, and one of the two stimuli randomly 

being cued before presentation of the array. (D) Lastly, in the variable-target with delay 

conjunction search, the task is similar to (C) but included a 1000 msec delay before 

presentation of the array. 
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either of the two being randomly selected as a target for a particular trial. Following the 

500 msec fixation and a 500 msec target-instruction period, a 1000 msec delay now 

occurred while the animal maintained fixation. The array was presented at the end of this 

delay and the monkey had to make a single saccade to the target. As with the previous 

task, each combination of target and distractor arrays was presented within each session. 

Again, 200 msec fixation in the target location resulted in a correct trial and the 

administration of liquid reward. Lost or broken fixation at any point during the trial 

resulted in termination of the trial. Errors were defined as a trial in which the array was 

presented and the animal made a saccade to one of the distractor stimuli. A two second 

intertrial interval occurred before the next trial commenced. 

Prefrontal Deactivations 

We collected data from a total of 79 sessions, with each animal performing nearly 10 

sessions for all four tasks. All data was collected from bilateral deactivation of the cPS 

loops. The cPS loops have been estimated to deactivate Brodmann areas 46 and 9/46, as 

well as part of area 8A (Petrides & Pandya 1999, Hussein et al. 2014). Since the spread of 

cooling is approximately 2 mm on either side of the loop, each loop is thought to 

deactivate the volume of a box with dimensions 10 × 7 × 4 mm, or an estimated 280 mm3 

of cortex. The DPC loops have been estimated to deactivate portions of areas 46, 9, 9/46d 

and 8 (Hussein et al. 2014). Different tasks and/or different search targets were randomly 

run on separate days, with one session per animal per day.  

 Both experimental and control data were collected on every day, as each 45 

minute session was divided into three 15-minute epochs: pre-cooling, cooling and post-
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cooling (see Figure 5). An initial 15-minute pre-cooling control epoch was obtained at the 

beginning of each session. The first three minutes of the epoch were later removed to 

allow performance to stabilize as the animals were still acquiring the target for that 

session. At 15 minutes, two pumps were turned on (one for each cryoloop) and methanol 

drawn up from a reservoir was pumped through Teflon tubing which resided in a 

methanol bath, the temperature of which was reduced to approximately -80°C by the 

addition of dry ice (see Figure 6). Chilled methanol then continued to flow through the 

tubing and through the loop, where after it was then returned to the initial reservoir. 

Thermocouples attached to the union of the loop monitored the temperature of the loops 

at all times. Data from the first three minutes of the cooling epoch (15–18 minutes) were 

excluded as loop temperature was changing, and to allow the animal’s performance to 

reach a steady state at the decreased temperature. Target temperature was approximately 

3°C, resulting in a temperature range of between 0–5°C. In majority of sessions (94%), 

loops were below this target temperature at approximately 18 minutes into the session, 

with the rest of the sessions reaching this temperature in the next two minutes. At this 

temperature, a large volume of cortex is deactivated, as ~2 mm of tissue around the loop 

is deactivated (Lomber et al. 1999). At 30 minutes, the two pumps were turned off and 

chilled methanol stopped flowing through the loops. Temperature rapidly increased back 

towards normal temperature, with loop temperature going above 30°C within the first 

minute. Data from the first three minutes of the post-cooling control epoch (30–33 

minutes) were excluded as loop temperature was changing, and allow the animal’s 

performance to again reach a steady state at this temperature. Each session was ended at 

45 minutes. Following each session, monkeys received liquid until satiation and were 

returned to their home cages. 
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Data Analysis 

Data was analyzed using custom-designed software in Matlab (Mathworks, Natick, MA). 

Reaction time was defined as the time between when the array was presented until the 

time the animal began to make a saccade. Saccade onset was defined as the time when 

eye velocity exceeded 30°/second. Only the reaction times from correct trials were 

included in the analysis. Accuracy was calculated as the number of correct trials divided 

by the total number of trials attempted (saccades to distractors). Following removal of the 

first three minutes of each epoch, a total of approximately 400 trials were obtained for 

each session, or 130 trials per session for each epoch. Significance was determined by a 

one-way repeated measures ANOVA with three levels of factor cooling epoch. The levels 

were pre-cooling, cooling and post-cooling. An ANOVA was run separately for each 

animal and each task, for both saccadic reaction time and accuracy. For example, a one-

way repeated measures ANOVA was run for Monkey B’s reaction time for feature search 

task. Three data sets were included in the ANOVA; pre-cooling epoch reaction time, 

cooling epoch reaction time, and a post-cooling epoch reaction time. Accuracy was 

calculated for each session, and then averaged across the sessions. In contrast, the 

saccadic reaction times were pooled across all sessions for each epoch. For example, if 

there were 130 trials per session in each epoch, and ten sessions, there would 1300 

saccadic reaction times in each epoch for the ANOVA. Follow-up tests (one-tailed two 

sample student t tests) were performed given a significant ANOVA. One test was 

between pre-cooling and cooling epochs, and another test was between cooling and post-

cooling epochs to determine where the significance resided.  
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Figure 5. Cortical cooling timeline. Each 45-minute session was divided into three 

epochs: pre-cooling, cooling and post-cooling. The first three minutes of each epoch were 

removed to allow performance to reach a steady state. Solid line indicates cryoloop 

temperature. Dashed line indicates temperature at which synaptic transmission is 

abolished (20 °C). 

0"

5"

10"

15"

20"

25"

30"

35"

40"

45"

0" 3" 6" 9" 12" 15" 18" 21" 24" 27" 30" 33" 36" 39" 42" 45" 48"

Te
m
pe

ra
tu
re
"(°
C)
""

Time"(minutes)"



28 

 

 

 

Figure 6. Reversible cryogenic deactivation with cryoloop (left) and experimental 

cooling setup (right). Room-temperature methanol was pumped from a reservoir through 

Teflon tubing which passed through a methanol dry ice bath that was cooled to 

approximately -80°C. The chilled methanol was then pumped through the cryoloop and 

back to the reservoir. Cryoloop temperature was monitored at all times by an attached 

thermocouple, with the temperature reading out to a thermometer. Temperature was 

maintained around the 3°C by adjusting the flow rate of the pump. 
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Results 

Effects of DLPFC deactivation on feature search task performance 

Figure 7 shows each monkey’s performance on the feature search task (n = 10 sessions 

for Monkey B consisting of n = 5028 total trials, and n = 10 sessions for Monkey T 

consisting of n = 4982 total trials). Each session was divided into three epochs; pre-

cooling, cooling and post-cooling. Accuracy is represented as proportion correct 

responses. Saccadic reaction times for each animal are also plotted in msec. Bilateral 

cooling of the cPS resulted in performance changes for both animals. To statistically 

examine effects on accuracy, a one-way repeated measures ANOVA was performed and 

showed no change in accuracy across the different epochs for both Monkey B and Monkey 

T (F(1,2) = 2.78, p = 0.119 for Monkey B, F(1,2) = 1.38, p = 0.277 for Monkey T). 

Monkey B showed a significant effect for reaction time (F(1,2) = 80.28, p < 0.001), as did 

Monkey T (F(1,2) = 13.58, p < 0.001). Post-hoc comparisons (one-tailed two sample t 

tests) revealed that Monkey B had an increase in reaction time during the cooling epoch 

compared to both the pre-cooling epoch (p < 0.001) and the post-cooling epoch (p < 

0.001). Post-hoc comparisons for Monkey T revealed this difference was not significant 

between the pre-cooling and cooling epochs (p = 0.053), but was significant between the 

cooling and post-cooling epochs (p < 0.001). Monkey B reaction time increased to 202 

msec during cooling from 185 msec before, and then dropped to 196 msec following 

cooling. The reaction time change for Monkey T changed from 206 msec during cooling 

to 198 msec following cooling (see Table 1).   
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Effects of DLPFC deactivation on constant-target conjunction search task 

performance 

Figure 8 shows each monkey’s performance on the constant-target conjunction search 

task (n = 10 sessions for Monkey B consisting of, n = 3827 total trials, and n = 9 session 

for Monkey T consisting of n = 3828). A one-way repeated measures ANOVA showed 

that bilateral cooling of the cPS resulted in no change in accuracy either monkey (F(1,2) 

= 1.47, p = 0.256 for Monkey B, F(1,2) = 2.21, p = 0.142 for Monkey T). Regarding 

reaction time, Monkey B showed a significant effect (F(1,2) = 160.37, p = < 0.001). 

Monkey T also demonstrated a change in reaction time during this task (F(1,2) = 31.62, p 

= < 0.001). Post-hoc comparisons for Monkey B (one-tailed two sample t tests) revealed 

that a reaction time increase occurred between pre-cooling and cooling (p < 0.001), as 

well as reaction time decrease between cooling and post-cooling (p < 0.001). Post-hoc 

comparisons for Monkey T revealed that there was a decrease in reaction time between the 

pre-cooling and cooling epoch (p < 0.001), which then decreased again following cooling 

(p < 0.001). Monkey B had a reaction time increase from 199 msec during pre-cooling to 

230 msec during cooling. This decreased back to 201 msec during the post-cooling epoch. 

Monkey T’s reaction time seemed to decrease as the session progressed. Starting with a 

224 msec reaction time during the pre-cooling epoch, this decreased to 215 msec during 

the cooling epoch, and decreased again during the post-cooling epoch to 207 msec. 

Effects of DLPFC deactivation on variable-target conjunction search task 

performance 

Figure 9 shows each monkey’s performance on the variable-target conjunction search 

task (n = 10 sessions for Monkey B consisting of n = 3872 total trials, and n = 10 sessions 
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for Monkey T consisting of n = 3680 total trials). cPS deactivation affected performance 

in both animals when the target now changed on a trial-by-trial basis. A one-way repeated 

measures ANOVA demonstrated Monkey B had a change in accuracy during cooling 

(F(1,2) = 6.99, p = 0.006), whereas Monkey T had no change in accuracy (F(1,2) = 1.60, p 

= 0.229). Post-hoc comparisons (one-tailed two sample student t tests) revealed that 

Monkey B had a decrease in accuracy between both the pre-cooling and cooling epochs (p 

= 0.009) and an increase between the cooling and post-cooling epochs (p = 0.026). After 

performing at 86% during pre-cooling, Monkey B’s accuracy dropped to 77% during 

cooling. This drop however showed recovery, with accuracy increasing back to 83% in 

the post-cooling epoch. Both animals also showed a statistically significant effect on 

reaction time during the cooling (F(1,2) = 206.05, p = < 0.001 for Monkey B, F(1,2) = 

21.26, p = < 0.001 for Monkey T). Post-hoc comparisons for Monkey B demonstrated an 

increase in reaction time during cooling compared to pre-cooling (p < 0.001), which then 

decreased when comparing cooling to post-cooling (p < 0.001). Monkey T also 

demonstrated a reaction time increase, increasing from pre-cooling to cooling (p < 0.001), 

and demonstrated a decrease between the cooling and post-cooling epoch (p < 0.001). 

Monkey B demonstrated a reaction time increase from 223 msec during pre-cooling, to 

255 msec during the cooling epoch, which then decreased to 238 msec following cooling. 

Monkey T had a reaction time increase to 218 msec during cooling, compared to 208 msec 

during the pre-cooling epoch and 210 msec during the post-cooling epoch. 
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Effects of DLPFC deactivation on variable-target with delay conjunction 

search task performance 

Figure 10 shows each monkey’s performance on the variable target with delay search task 

(n = 10 sessions for Monkey B consisting of n = 3540 total trials, and n = 10 sessions for 

Monkey T consisting of n = 3084 total trials). Again, to statistically evaluate both animal’s 

performance, a one-way repeated measures ANOVA showed that cooling had a 

significant effect on Monkey B’s accuracy (F(1,2) = 5.14, p = 0.017). A repeated 

measures ANOVA revealed that Monkey T demonstrated no change in accuracy during 

cooling (F(1,2) = 2.71, p = 0.094). Post-hoc comparisons (one-tailed two sample student t 

tests) revealed a decrease in accuracy when comparing the pre-cooling to the cooling 

epoch (p = 0.009) and comparing the cooling to the post-cooling epoch (p = 0.008). 

Performing at 82% during pre-cooling, Monkey B’s accuracy dropped to 70% during 

cooling of the cPS. This accuracy increased back to 82% in the post-cooling epoch. A 

one-way repeated measures ANOVA revealed both animals showed an effect on saccadic 

reaction time (F(1,2) = 88.82, p < 0.001 for Monkey B, F(1,2) = 17.92, p < 0.001 for 

Monkey T). Reaction time effects for Monkey B increased during cooling compared to 

pre-cooling (p < 0.001), and subsequently decrease when comparing the cooling and post-

cooling epoch (p < 0.001). Post-hoc comparisons also revealed Monkey T had a 

significant increase in reaction time when comparing the pre-cooling and cooling epochs 

(p < 0.001) as well as between cooling and post-cooling (p < 0.001). Monkey B had a 

reaction time increase from 224 msec during pre-cooling to 256 msec during cooling. 

Reaction time decreased to 236 during the post-cooling epoch. Reaction time for Monkey 
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T increased during cooling to 209 msec from 199 msec during pre-cooling, which then 

decreased back to 199 msec following cooling. 
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Figure 7. Performance on the feature search task. Left column (A and C) represents 

Monkey B, while right column (B and D) represents Monkey T. A and B denote 

proportion correct responses. C and D denote saccadic reaction time. Error bars indicate 

SEM. See legend for pre-cooling, cooling and post-cooling epochs. * p < 0.05. 
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Figure 8. Performance on the constant-target conjunction search task. Left column (A 

and C) represents Monkey B, while right column (B and D) represents Monkey T. A and B 

denote proportion correct responses. C and D denote saccadic reaction time. Error bars 

indicate SEM. See legend for pre-cooling, cooling and post-cooling epochs. * p < 0.05. 
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Figure 9. Performance on the variable-target conjunction search task. Left column (A and 

C) represents Monkey B, while right column (B and D) represents Monkey T. A and B 

denote proportion correct responses. C and D denote saccadic reaction time. Error bars 

indicate SEM. See legend for pre-cooling, cooling and post-cooling epochs. * p < 0.05. 
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Figure 10. Performance on the variable-target with delay conjunction search task. Left 

column (A and C) represents Monkey B, while right column (B and D) represents Monkey 

T. A and B denote proportion correct responses. C and D denote saccadic reaction time. 

Error bars indicate SEM. See legend for pre-cooling, cooling and post-cooling epochs.     

* p < 0.05. 
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Table 1. Accuracy and reaction time in a visual search tasks. Accuracy (in proportion 

correct) and reaction time (in msec) for both Monkey B and Monkey T in the feature 

search task, constant-target conjunction search task, variable-target conjunction search 

task and the variable-target with delay conjunction search task. 
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Discussion 

Our findings confirm and extend the DLPFC involvement with the deployment of 

attention, specifically when it involves behavioural flexibility and/or working memory. 

Performance deficits on a number of visual search tasks were seen when the region lining 

the caudal principal sulcus of the DLPFC was reversibly deactivated in two rhesus 

monkeys. Although we observed some performance changes during cooling for feature 

and constant-target conjunction search tasks, this was inconsistent between the two 

animals. One animal showed increased reaction time for both tasks, while the other 

showed an incomplete reaction time increase for the feature search, and decreased 

reaction time over the progression of the constant-target conjunction search task. We did 

however, observe more consistent effects of increased reaction time in one animal, and 

increased reaction time with decreased accuracy in the other for the variable-target and 

variable-target with delay conjunction search tasks—the more demanding tasks. These 

results suggest that DLPFC involvement is most critical for situations requiring more 

cognitive control, as greater and more consistent effects appeared during the more 

cognitively demanding tasks.  

 Upon cooling the DLPFC, we noted behavioural performance changes in all four 

of our visual search tasks. Both animals demonstrated an increase in saccadic reaction 

time during cooling for the feature search, though for Monkey T this was only between the 

cooling and post-cooling epochs. For the constant-target conjunction search, while both 

monkeys showed reaction time changes, neither showed a change in accuracy. Monkey B 

showed an increase in reaction time during cooling, whereas Monkey T showed a decrease 

in reaction time as the session progressed. As for the variable-target conjunction search 
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task, both animals demonstrated an increase in reaction time during the cooling epoch, 

whereas Monkey B additionally demonstrated an accuracy decrease. Lastly, the variable-

target with delay conjunction search task revealed performance deficits as well. Though 

only Monkey B showed an accuracy decrease during cooling, both animals showed an 

increase in saccadic reaction time. While deactivation of the DLPFC led to minor 

impairments on the first two tasks, each monkey demonstrated greater impairments in the 

last two tasks. Altogether, the most consistent effects were seen in tasks that required 

behavioural flexibility, and behavioural flexibility with working memory. 

 The concept of a visual salience or priority map has been proposed to account for 

neural activity that is consistent with representing all competing stimuli in our visual 

field, and which is crucial in order to direct attention to the correct object of a scene 

(Wolfe 1994, Desimone and Duncan 1995, Bundesen et al. 2005, Fecteau and Munoz 

2006, Hamker 2006). By assigning each stimulus an attentional weight, combining both 

bottom-up (salience) and top-down (relevance) factors, the stimulus with the highest 

activation on the priority map can be chosen. Bottom-up attentional processing is thought 

to consist of distinct feature channels, with each feature (such as colour, shape or 

orientation) of a stimulus activating an individual channel (Wolfe 1994, Itti and Koch 

2001, Hamker 2006). Thus, a red circle would activate both the feature channel “red”, and 

the feature channel “circle”. These feature channels would then be combined back 

together to represent this stimulus on the priority map. Top-down attention can also bias 

the signals on the priority map, or perhaps earlier on the feature channels. By searching 

for a specific target (e.g. a red circle amongst an array of coloured circles and squares), 

top-down control can enhance or filter select feature channels to help increase the 
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activation of the target on the priority map (Wolfe 1994, Hamker 2006, Woodman et al. 

2013), making it possible to identify a target that is perceptually similar to the distractors 

around it. Top-down attention also involves the use of a target template. The target 

template is a representation of the target (either defined by its features, or a picture-like 

representation), which can be used to aid visual search (Desimone and Duncan 1995, 

Bundesen et al. 2005, Hamker 2006, Woodman et al. 2007, Woodman et al. 2013). When 

looking from one stimulus to the next, the template, which is thought to be held in 

working memory (Vickery et al. 2005, Woodman and Chun 2006, Woodman and Luck 

2007, Olivers 2009, Woodman et al. 2013), can also serve to send feedforward signals 

and resolve the winner on the priority map (Hamker 2006). By examining the model of 

the priority map in the context of visual search, it can provide a framework and shed light 

on the role the PFC plays in the deployment of attention. 

 One of the reasons we tended to see greater effects during the final search task 

(variable-target with delay conjunction search task) was that each task was more 

cognitively demanding than the previous. Beginning with the feature search, the target 

stood out from the distractors because there was only a single feature discriminating the 

target, that being colour. Little top-down control was necessary to direct attention to the 

singleton, as the target’s activation on the priority map would have been higher than the 

other stimuli (Wolfe 1998, Fecteau and Munoz 2006). The oddball stimulus draws our 

attention by way of bottom-up processes, as the target is unique and highly salient 

compared to the stimuli around it. For example, the set size effect is not seen for simpler 

visual search tasks in which the target has a unique feature (Treisman and Gelade 1980, 

Wolfe 1994, Findlay and Gilchrist 2003). The set size effect refers to the increase in 
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reaction time that accompanies the increase in the number of stimuli or distractors (the set 

size) in a visual search task (Palmer 1994, McPeek et al. 1999, Jerde et al. 2011). This 

effect is not seen for simple tasks, as distinguishing the target in a feature search is an 

automatic process using bottom-up attention, with search time not increasing when the 

number of distractors increase. 

 In the constant-target conjunction search task, the target was defined by a 

conjunction of features, shape and colour. Some of the distractors now shared a feature 

with the search target. One distractor was the same shape, one distractor was the same 

colour as the target, and the third distractor was of a different shape and colour. Thus, the 

target was now more similar to the distractors compared to the feature search. Searching 

for a target defined by a conjunction of features results in a less efficient search as it is 

more difficult to discriminate the target from the distractors, and where attention now 

needs to be directed by way of top-down processes to the target (Treisman and Gelade 

1980, Wolfe 1998, Woodman et al. 2007, Woodman et al. 2013). For example, if the 

target was a green square, the subject must look for stimuli that are green and stimuli that 

are square. Since the target no longer stands out, its activation on the priority map from 

bottom-up processes would be similar to the distractors. Top-down activation of the 

colour green and square shapes (or filtering of the colour red and circle shapes), would 

make the green square target the most salient stimulus as it contains both features, and 

attention could subsequently be directed to this target (Treisman and Sato 1990, Wolfe 

1998, Fecteau and Munoz 2006). This is indeed the case, as FEF neuronal activity in a 

conjunction search reflects that the target stimulus has the highest activation, followed by 

stimuli with the same colour, stimuli with the same shape, and finally stimuli that share 
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no feature with the target (Bichot and Schall 1999a). Behavioural data support this as 

well, with errant saccades reflecting stimulus activation going to distractors with the same 

colour or same shape, and then to distractors sharing no feature with the target. 

 The next two search tasks, the variable-target and variable-target with delay 

conjunction search tasks were more cognitively demanding than the first two tasks, and 

more consistent performance deficits were seen in our two animals during cooling. For 

the variable-target conjunction search task, an update must be made on a trial-by-trial 

basis of what to search for. This flexible control process or task-set reconfiguration 

updated the target template for each trial (Desimone and Duncan 1995, Bundesen et al. 

2005, Vickery et al. 2005, Woodman et al. 2013). The feature channels that were filtered 

before (colour, shape, etc.) were now dynamically reconfigured for each new search 

target, with the PFC likely taking responsibility for this process (Di Lollo et al. 2001, Itti 

and Koch 2001). This flexibility allowed the animal to perform the same task but direct 

attention to the new target. As well, what was the target on the previous trial could now 

have been a distractor on the current trial. This task required more cognitive control, as 

evidence has been shown that targets on a previous day’s session maintain a higher than 

normal neuronal representation on the priority map (Bichot and Schall 1999a, Schall 

2002), let alone stimuli that were targets on the previous trial. Repetition of target or 

target features for even a few trials has also been shown to both decrease reaction time 

and increase accuracy, demonstrating the increased attentional demand with a variable 

target paradigm (Bichot and Schall 2002). This task-set reconfiguration must now truly 

operate on a trial-by-trial basis, using top-down control to filter out the appropriate 

distractors. 
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 The final paradigm was the variable-target with delay conjunction search task. 

Besides task-set reconfiguration and the guidance of attention to the conjunction search 

target, the DLPFC was now tasked with holding a mnemonic representation of the target 

or target features (the target template) in working memory during the delay period. The 

delay-period activity of neurons in this area demonstrate that this area plays some role in 

working memory during visual search, possibly maintaining a mnemonic representation 

of the target template (Hasegawa et al. 2000, Sawaguchi and Iba 2002). The new target 

on a trial-by-trial basis required temporary maintenance of the updated target template 

followed by the correct filtering of appropriate distractors. In summary, after examining 

each of our tasks, these results suggest that the more demanding the task, the greater the 

involvement of the DLPFC, and the greater the effects seen during DLPFC cooling. 

 A study similar to the present one had previously suggested that the PFC was 

important when attention was to be flexibly allocated based on the behavioural relevance, 

or, by using top-down control. Rossi and colleagues (2007) performed lateral PFC lesions 

of the right hemisphere in macaques (removing the FEF, DLPFC, ventrolateral PFC, and 

frontopolar cortex) and found that their behavioural deficits on a visual discrimination 

task increased in magnitude the more frequently the target changed. This suggested that 

the top-down reconfiguration process was performed by the PFC, lending support to 

previous proposals (Di Lollo et al. 2001, Itti and Koch 2001). Although important 

findings, there were several differences between the study by Rossi and colleagues and 

the present one. The researchers had only narrowed this attentional process to the lateral 

prefrontal cortex as a whole as they performed lesions on these animals. Utilizing the 

technique of reversible cryogenic deactivation, we were able to narrow the possible 
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location of task-set reconfiguration to the DLPFC, specifically the region lining the cPS. 

In addition, Rossi and colleagues studied covert attention and did not use a conventional 

visual search task. The task in which they used was a visual discrimination task, as the 

animals were required to discriminate the orientation of a line. The task was completed 

not with a saccade, but with the monkeys performing a bar release while maintaining 

central fixation throughout the task. Although they removed eye movements from this 

task to isolate the reconfiguration process, overt attention is a crucial component of 

directing attention to objects of interest (Findlay and Gilchrist 2003). A similar research 

group (Pessoa et al. 2009, Rossi et al. 2009) also performed the same orientation 

discrimination task using functional neuroimaging on human subjects. They found higher 

activation in the middle frontal gyrus (MFG, the approximate area of deactivation in our 

study) during a target switch than when the target remained the same, and also found 

higher activation during a more cognitively-demanding colour-cued task than a colour 

pop-out task. These findings are in line with ours regarding the relationship between 

attentional demands and top-down control by the PFC. For the present study, we further 

pinpointed the DLPFC as responsible for the attentional reconfiguration process in visual 

search, with the addition of a working memory component as well. 

 Additional human research has also implicated the DLPFC for similar processes 

to the ones studied here, as there have been a number of studies investigating the link 

between working memory and visual search. In order to determine if these processes use 

the same limited-capacity processing system, a task involving both should interfere with 

each other. Performing a visual search task at the same time as a working memory task is 

known as the dual-task paradigm (Woodman et al. 2001). According to the logic of this 
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paradigm, if both processes compete for same processing resources, filling visual working 

memory should interfere with visual search. Woodman and colleagues (2007) had human 

subjects perform a dual-task paradigm, with a visual search task during the delay of a 

working memory task. Their results were similar to the findings of Rossi and colleagues 

(2007; who in contrast removed the lateral PFC from monkeys), in that the two tasks 

interfered with each other when the search target changed on a trial-by-trial basis, but 

subjects were not impaired when the target remained constant across trials. Woodman and 

colleagues suggested that since the flexible control required in the attention-shifting 

visual search task and the working memory task interfered with each other, these 

processes might compete for the same resources and even have the same underlying 

anatomical locations. Support for this hypothesis comes from more recent findings. fMRI 

data (Makino et al. 2004, Anderson et al. 2010) found overlapping brain regions for both 

visual search and working memory. By testing subjects on a dual-task paradigm, 

Anderson and colleagues (2010) localized increased activation again to the MFG. This 

activation was greater than that of the same area for a working memory task or a visual 

search task by itself, suggesting that the greater the attentional demand, the greater the 

involvement of the DLPFC for top down control, consistent with our results (Also Iba and 

Sawaguchi 2002, Rossi et al. 2009). 

 While we were not expecting any effects during the cognitively less-demanding 

feature and constant-target conjunction searches, studies in this area have shown mixed 

findings which could shed light on the lack of consistency between our two animals. 

Regarding feature search, application of theta TMS to disrupt the DLPFC in humans 

determined that this area was involved in conjunction search where the target was defined 
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by colour and orientation, but not for feature search where the target was defined only by 

colour (Kalla et al. 2009). This supports the idea of bottom-up attentional processes in the 

feature search task, and top-down control for conjunction targets. Neuronal recordings 

from the PFC also suggest that this area is more involved with top-down processes than 

bottom-up processes in visual search (Buschman and Miller 2007). Katsuki and 

Constantinidis (2012), however, showed that neurons in the DLPFC are involved in 

bottom-up searches, as these neurons discriminated simple targets from distractors in a 

feature search for colour. In addition, this discrimination occurs on a similar timescale to 

other areas in the oculomotor network (FEF, SC, LIP). Based on these findings, they 

proposed that the DLPFC is also part of this network, and furthermore contributes to the 

formation of a priority map. They also suggested that the identification of targets from 

distractors occurs in parallel, as the DLPFC detects the targets just as quickly as area LIP 

of the parietal cortex, an area thought of as contributing more to bottom-up attention 

(Buschman and Miller 2007). This data contradicts that of Kalla and colleagues (2009) by 

suggesting that the DLPFC is actually in fact involved in feature search tasks. Monkeys 

performing a feature search pop-out task in an MRI scanner also support lateral PFC 

activation during the simpler bottom-up feature searches (Wardak et al. 2010).  

 Regarding conjunction search in which a target is defined by a conjunction of 

features, it has been suggested that when target identity remains constant it may be not as 

challenging to identify the target, and that the PFC may be minimally involved. Similar to 

their previous study (Woodman et al. 2001), Woodman and colleagues (2007) showed 

that even when working memory was filled to capacity, dual-task visual search remained 

efficient as long as the target remained constant. This finding supports views of 
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automaticity by Logan (1990, 1992) that following an initial performance stage of 

acquiring and directing attention to a target in visual search, attentional shifts thereafter 

could be quickly guided by a target template in long-term memory (Woodman and Chun 

2006, Woodman et al. 2007, Woodman et al. 2013). Short-term memory templates allow 

us to maintain limited-capacity temporary information and use it for the task at hand. 

Long-term memory on the other hand is of unlimited capacity utilizing different brain 

regions from working memory, and target templates from a vast number of stimuli could 

be retrieved whenever they were needed to guide attention (Woodman et al. 2013). This 

automaticity would now allow the DLPFC to operate in a more minimalistic manner 

similar to its possible role in the feature search task. Evidence supporting the contribution 

of long-term memory comes from FEF recordings showing targets that were targets in the 

previous had higher than normal representation as distractors on the current session 

(Bichot and Schall 1999a, Schall 2002). Studies using EEG event related potentials have 

shown that activity consistent with holding a template in working memory decreased in 

amplitude the longer the repetition of a target, and this was accompanied by both an 

increase in amplitude of the ERP long-term memory measure and a concurrent decrease 

in reaction time (Carlisle et al. 2011, Woodman et al. 2013). This supports the role of 

automaticity (Logan 1990) in that long-term memory retrieval is quick and automatic. 

Though the target template could be stored in long-term memory, some theories still posit 

that the PFC retrieves these representations for directing attention to the target (Woodman 

and Chun 2006, Olivers 2009). The literature seems to show mixed findings on constant-

target conjunction searches, and our data reflects this as well. The automaticity theory 

could explain Monkey T’s performance on the constant-target conjunction search, as his 

reaction time decreased over the course of the session is similar to human findings 
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(Carlisle et al. 2011). At the beginning of the constant-target conjunction search task, 

Monkey T would still be acquiring the target for that particular session. After some time, 

the target stimulus would be clearly known and a target template in long-term memory 

would serve as a template to help direct attention to the target. Thus, cooling the cPS 

would show no performance effects, similar to what we observed. 

On tasks in which the target changes frequently, the target template must be 

continuously updated to represent the currently relevant stimulus, and then maintained in 

working memory during search (Desimone and Duncan 1995, Di Lollo et al. 2001, 

Bundesen et al. 2005, Vickery et al. 2005, Woodman and Chun 2006, Rossi et al. 2007, 

Woodman et al. 2007, Woodman et al. 2013). This flexible control process (task-set 

reconfiguration) is thought to generate a new target template to search for on each trial, 

making a variable-target search more cognitively demanding than a constant-target 

conjunction search. The PFC is thought to be responsible for this reconfiguration process 

(Rossi et al. 2009), which is in line with extensive research concluding the PFC as 

responsible for maintaining relevant information and using it to direct top-down attention. 

Task-relevant information has been shown to be held in the DLPFC by using a cued 

target-detection task (Kadohisa et al. 2015), and principal sulcus lesions impaired the 

maintenance of current rules in working memory during the Wisconsin Card Sorting Task 

(Buckley et al. 2009). Also, an n-back task (a task in which subjects must compare the 

current stimulus to the stimulus presented either 1, 2 or 3 trials previous) using geometric 

designs demonstrated DLPFC activation responsible for both working memory and 

manipulation of targets (Ragland et al. 2002). This activation was greater for maintenance 

and manipulation than for either process alone, similar to the current theme of more 
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cognitive demand, more DLPFC involvement. An additional hypothesis is that several 

target templates can be actively held in long-term memory, and individual templates can 

be directly accessed to hold in working memory for the current trial (Oberauer 2002, 

Olivers 2009). This would mean the two targets for any session could be available for 

direct access, and the current target could be placed in working memory for attentional 

selection, or maintained until array presentation. DLPFC cooling could affect the retrieval 

of the target template, the maintenance, or both. If cooling affected maintenance, 

performance effects would be seen with a longer delay requiring target template 

maintenance. However, if cooling only affected retrieval, similar effects would be seen 

for any variable target task, since target template retrieval from long-term memory would 

be required in situations with no delay or a long delay. Our results suggest cooling would 

affect retrieval since similar effects were seen for both variable-target searches. 

One result that requires further probing is the finding of increased reaction time 

during deactivation, which can be explored by examining the neural mechanism of target 

selection. This increase could be due to one of two factors in visual search; either delayed 

target selection or delayed saccade generation, or possibly even both (see Figure 11). The 

delay of target selection could be a longer discrimination time, which is the time it takes 

to discriminate the target from the distractors. At the neuronal level (in the oculomotor 

network and inferotemporal cortex), this is reflected by the time at which the activity for 

the target differs significantly from the distractor activity, based on a target compared to a 

distractor in the response field (Desimone 1998, Sato et al. 2001, Schall 2002). The 

activity for a target is enhanced, whereas the activity for a distractor is attenuated, thus 

activity is biased to the behaviourally relevant stimulus (Desimone and Duncan 1995, 
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Chelazzi et al. 1998, Desimone 1998, Schall 2002). It is hypothesized that top-down 

control from the prefrontal cortex could be modulating these neuron’s activity (e.g. see 

Desimone 1998, Miller and Cohen 2001). DLPFC cooling could potentially disrupt these 

modulation signals, thus delaying the identification of the target, delaying the 

discrimination time and ultimately delaying the onset of saccade. The reaction time 

increase could also be accounted for by a delayed or a slower rate of rise of neural 

activity up to the saccade initiation threshold (see Figure 11). Though analysis of saccade 

parameters during principal sulcus cooling showed slight differences in velocity, duration 

and gain (Koval et al. 2011), these differences would still allow the animal to properly 

respond to the task by selecting the target with a saccade. As well, although bilateral 

cooling of the DLPFC during prosaccades to a stimulus resulted in no reaction time 

increase (Hussein et al. 2014), there may be a differing effect on target selection. If 

cooling the DLPFC did result in a delay of saccade generation, this would be the same for 

all tasks, and the feature search (which uses the least top-down control) would show a 

baseline reaction time increase. The saccadic reaction time increases for both monkeys 

are the smallest on the feature search task, with the more demanding tasks showing larger 

reaction time increases during cooling. Thus, if cooling results in a slight reaction time 

increase due to delayed saccade generation, the more demanding tasks still show an even 

greater reaction time increase, suggesting that cooling is affecting the discrimination of 

the target from the distractors. Support for the idea that cooling affects discrimination 

time also comes from constant-target conjunction search performance from Monkey T. 

The decrease in reaction time over the course of the session suggests that the decrease in 

reaction time from pre-cooling to cooling does not affect saccade generation and result in 

longer reaction times. Although this reaction time again decreases into the post-cooling 
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period, it seems as if DLPFC cooling did not affect Monkey T at this task. While the 

explanations of what is causing the increased reaction times may seem plausible, further 

investigation with neurophysiology is required. 

 Given the evidence that the DLPFC is suggested to play a role in the attentional or 

mnemonic processes in visual search, there is a good chance that this area communicates 

or plays some role with the oculomotor network in target selection. As the other areas of 

this network are evidenced to play a role in forming a priority map of the visual world 

(Schall 2002, Thomas & Pare 2007, Shen et al. 2011), it is not known what the DLPFC 

contributes to this network. The findings by Katsuki and Constantinidis (2012) 

demonstrated that the DLPFC identifies target stimuli from distractors on a similar 

timescale as other areas of this network. Neuroimaging studies have also identified this 

area as part of the frontoparietal attention network, responsible for eye movements, 

directing attention and stimulus salience (Corbetta et al. 1998, Corbetta and Shulman 

2011). How the DLPFC exerts its action during visual search or communicates with other 

brain areas during target selection is not known. The DLPFC could be responsible for 

top-down feedforward signals to extrastriate visual areas and possibly activating or 

filtering feature channels (colour, shape, orientation, etc; Miller et al. 1996, Wolfe 1998). 

It could also be involved with signaling the areas of the oculomotor network to either 

enhance or filter stimuli directly on the priority map (Wolfe 1994, Bundesen et al. 2005, 

Hamker 2006), which would then make it easier to determine the target from other stimuli 

in the visual field. One of the ways in which we could help determine the underlying 

neuronal effects of cooling would be to deactivate the cPS while recording from another 

area in the oculomotor network. Evidence from the pro- and antisaccade task during 
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Figure 11. Possible mechanisms of increased saccadic reaction time during cooling. (A) 

Solid grey line denotes neuronal activity in oculomotor network, increasing until saccade 

threshold is reached and saccade is executed. Blue line denotes possible activity during 

DLPFC cooling. Time begins at array presentation. A longer discrimination time to 

identify the target from the distractors could result in a reaction time increase, even with 

unaltered saccade buildup rate. (B) Target discrimination could require the same time, but 

cooling could reduce the rate of saccade buildup to threshold. 
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DLPFC cooling and simultaneous neuronal recording demonstrated that cooling the 

DLPFC alters activity in at least one area of the oculomotor network, the SC (Koval et al. 

2011, Johnston et al. 2014). Specifically, unilateral cooling resulted in changes in pre-

stimulus and stimulus-related activity, as well as saccade-related activity while affecting 

reaction times. DLPFC deactivation has also been shown to affect neuronal activity in 

inferotemporal cortex during a delayed match-to-sample task (Fuster et al. 1985) and the 

parietal cortex during memory-guided saccades (Chafee and Goldman-Rakic 2000). FEF, 

SC or LIP neuronal recording during cPS cooling would be necessary to determine what 

neural activity changes occur for target selection in visual search. This could determine if 

these areas take longer to identify the target—longer discrimination time—or if the target 

is identified as usual but saccade buildup rate is longer during PFC cooling.  

 It is reasonable to assume that the DLPFC is responsible for spatial and motor 

mapping, whereas the ventrolateral PFC (VLPFC) is more devoted to features and object 

information (Hamker 2006). This idea can be explained by the way in which visual 

information is processed. Since there are two main streams of visual processing, 

consisting of a dorsal “where” stream through the parietal cortex for spatial and location 

processing, and a ventral “what” stream through the temporal cortex for feature-based 

processing (Mishkin and Ungerleider 1982), it might be expected that they converge in 

the PFC to integrate this information for planning and execution. Though it has been long 

shown that neurons in the PFC demonstrate activity consistent with working memory, the 

potential segregation between object-based and location-based working memory has been 

an issue of contention (e.g. Itti and Koch 2001, Hamker 2006). Neurons recorded in the 

primate frontal cortex initially supported this segregation, finding mnemonic object 
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activity more ventrally and mnemonic location activity more dorsally (Wilson et al. 

1993). As well, Courtney and colleagues (1996) used positron emission tomography 

(PET) imaging to determine object working memory increased blood flow more in 

inferior frontal cortex, whereas superior frontal blood flow increased for location working 

memory. Although these studies found segregation of the two streams, it could have 

reflected the segregation of two types of working memory in the tasks. A task designed to 

test both object and location working memory was used to probe the integration of the 

two streams in the PFC, and neurophysiology showed the integration of these two streams 

in the lateral PFC, as neurons showing both object and location delay activity were spread 

out equally between the dorsal and ventral lateral PFC (Rao et al. 1997). A high level of 

integration has been demonstrated between dorsal frontoparietal network and the ventral 

frontoparietal network, with the dorsal network being responsible for goal-directed target 

selection, whereas the ventral network is more responsible for working with the dorsal 

PFC to orient attention to unexpected salient stimuli (Corbetta and Shulman 2002). In our 

study, cooling the cPS deactivates the more ventral portion of the DLPFC. The final task 

integrates both object and spatial attention, as the variable-target with delay conjunction 

search requires the animal to hold a mnemonic representation of the target during a delay 

and subsequently locate and direct attention to the target stimulus amongst other 

distractors. It might be beneficial to deactivate different subregions of the lateral PFC, 

cooling more dorsally or more ventrally from the principal sulcus to increase the area of 

deactivation, and see what effect a more dorsal or more ventral deactivation area would 

have on performance in our paradigms. 
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Manipulation of our paradigms to further affect attentional demand in addition to 

working memory and flexible control is one potential next step. As previously described, 

the set size effect is a great tool to determine the difficulty of a paradigm, by plotting the 

number of stimuli against reaction time (Wolfe 1994, Wolfe 1998, Jerde et al. 2011). 

Comparing the slopes of pre-cooling and post-cooling against cooling would give us an 

understanding of the cognitive demand of the task, and be able to see if the reaction time 

slope increased, signifying the increased difficulty to identify the target (Woodman et al. 

2007). Increasing the number of distractors in the conjunction searches would create a 

more cognitively demanding task, as there are more distractors that need to be filtered 

before a target can be identified. Though our set size is four in all conjunction search 

tasks, we could potentially add more distractors to make a more demanding task, and 

explore for a set size effect.  

Speed-accuracy tradeoff was another point of potential discussion, as both 

reaction time and accuracy were measured in this study. A speed-accuracy tradeoff is 

when the subject has some sense that they are impaired, and thus compensate by slowing 

down their responses in order to ensure their accuracy is not diminished, while actually 

getting better at the task. Though we did not find this with our performance, there seemed 

to be a trend toward increased reaction time and increased accuracy in the feature search 

and constant-target conjunction search task performance. Had there been both an increase 

in reaction time and an increase in accuracy, one possible explanation to this finding 

could have been looking at the competitive accumulator model (similar to biased 

competition), present in attentional selection tasks (Desimone 1998, Usher and 

McClelland 2001). This model of the neural mechanisms of selection proposes that there 
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are multiple populations of neurons integrating incoming sensory information about the 

choice stimuli, and through reciprocal competition, the population with the greatest 

activity ultimately wins and the stimuli represented by that population is chosen. Cooling 

could potentially disrupt the signals needed for target identification, thereby allowing 

more time for the population identifying the target to get the greatest activity and be the 

next item of selection, thus being more accurate (see Shen et al. 2010). So, though this 

may look like a speed-accuracy tradeoff, the increased reaction time is a result of 

disrupted signals, and the increase in accuracy would be a potential consequence based on 

this mechanistic model. Though not seen in our results, this model could explain a speed-

accuracy tradeoff in a target selection paradigm.  

Examining reaction time and accuracy data, baseline performance was somewhat 

different between the four tasks at the time of data collection. It may have been beneficial 

to gather behavioural data when the animals were performing similar on each task, as the 

fact that our animals were well trained on all of the tasks suggests that they had already 

achieved ceiling performance. With similar baseline performance during cooling, a more 

accurate comparison between tasks could have been made. In addition, the lack of 

significance of accuracy for Monkey T on the variable-target and variable-target with 

delay conjunction search tasks could be an issue of power. Though Monkey B showed an 

accuracy decrease in both those tasks, Monkey T only showed a trend, slightly in the 

variable-target conjunction search task and more so in the final task that included the 

delay. More sessions may give us a better estimation of the mean and make any potential 

differences statistically reliable to match with Monkey B. Finally, while we have designed 

four visual search paradigms, additional tasks can be designed. A more attention-
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demanding task to potentially see reaction time and accuracy effects in both monkeys 

would be a variable-target conjunction search task with a variable delay as well. The 

same delay on each trial might allow a more routine approach to completing the task, and 

more focused attention may be required to complete a variable-target and variable-delay 

conjunction search task. A longer delay would also increase the cognitive demand, as the 

target template would have to be maintained longer in working memory (Schmidt and 

Zelinsky 2011).  

 The results of the present study suggest that the DLPFC is involved in visual 

search, specifically to attentional processes related to behavioural flexibility and working 

memory in visual search. However, the DLPFC may be minimally involved on simple, 

searches involving bottom-up processes and become more activated when the attentional 

demands of the task are increased, such as when top-down reconfiguration for a new 

search target is required, temporary retention of a search target is necessary, or both of the 

above. The fact that the more demanding tasks involve behavioral flexibility and working 

memory, these two processes could be competing for the same cortical processing 

resources in the DLPFC, resulting in performance deficits during deactivation in visual 

search. Exactly what effects DLPFC deactivation has for outgoing neural signals or on the 

rest of the oculomotor network will require further probing, specifically single-unit 

recording of other network areas during DLPFC cooling on visual search tasks. 
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