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ABSTRACT 

 Mutations in chromatin organizer CTCF were identified in patients with intellectual 

disability and skeletal defects.  Previous studies demonstrated that depletion of CTCF in murine 

limb mesenchyme results in apoptosis in the forelimb. The role of CTCF in the hindlimb, 

however, is unknown. My objective was to investigate effects of CTCF deletion on 

chondrogenesis and skeletal development in the hindlimb.  In vitro wild-type micromass cultures 

demonstrate that chondrocyte-specific gene expression is delayed in the hindlimb when 

compared to forelimbs.  Embryonic Ctcf
Fl/Fl

;Prx1Cre mice were investigated, and qRT-PCR and 

histology were performed on limb buds and long bones.  Results show that E12.5 mutant 

hindlimb buds have increased apoptosis, but no change in proliferation.  Later time points reveal 

growth plate defects, and delayed cartilage mineralization in mutant tibiae.  Furthermore, mutant 

mice have skull defects, shortened long bones and oligodactyly.  Overall, data suggest that CTCF 

is a key regulator of endochondral/intramembranous ossification and hindlimb development. 
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1.1   Skeletal Development 

 The human skeleton is a remarkable organ composed of over 200 fused and individual 

bones that provide coordinated structure, anchor muscles, and protect essential organs
1
.  Skeletal 

development is highly regulated, and any disruption in the process can result in severe and 

sometimes life-threatening malformations.  The two major routes of bone formation, or 

osteogenesis, are intramembranous and endochondral ossification, both of which involve the 

transformation of mesenchyme into mineralized bone.  Intramembranous ossification occurs in 

the developing clavicle, portions of the facial skeleton, and the flat bones of the skull, and 

involves direct formation of bone from mesenchymal cells
2
.  In contrast, endochondral 

ossification is characteristic of the majority of bones in the axial and appendicular skeleton and 

involves a cartilaginous precursor to mineralized bone
3
.  

 

1.1.1   Intramembranous Ossification 

 The calvariae of the skull, clavicle, mandible, and frontal region of the facial skeleton are 

all formed through intramembranous ossification, a process that is also critical to certain types of 

bone repair
4
.  Intramembranous ossification commences when cranial neural crest and 

mesoderm-derived mesenchymal cells proliferate and then condense into nodules
4
.  Some of 

these mesenchymal cells then differentiate into bone-forming osteoblasts and secrete an 

extracellular matrix (ECM) called osteoid that is rich in collagen type I (COLI)
5
.  The osteoid 

matrix is calcified through the binding of calcium salts, and bony spicules form and radiate 

outwards from the start point of ossification
5
.  Compact mesenchymal cells then surround the 

developing bone to form a membrane known as the periosteum
5
.  The innermost periosteum cells 
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then develop into osteoblasts and continue secreting osteoid matrix, thus enabling the 

development of many calcified bone layers
5
. 

 

1.1.2 Endochondral Ossification 

 The majority of the human skeleton, and particularly the long bones in the developing 

limbs, is formed through endochondral ossification.  Endochondral ossification is an osteogenic 

process in which an anlage composed of chondrocytes and a cartilage-specific ECM is deposited 

and subsequently replaced by mineralized bone (Figure 1.1)
3,5

.  Like other developmental 

processes, endochondral ossification involves numerous growth factors, transcriptional 

regulators, and signaling molecules, and is tightly regulated. 

 Endochondral ossification commences with the commitment of mesodermal cells to the 

cartilage lineage.  Mesenchymal cells express the transcription factors PAX1 and Scleraxis 

(SCX), which are believed to activate cartilage-specific genes, before condensing into nodules
7,8

.  

The precartilaginous condensations then express various growth factors and associated receptors, 

including sonic hedgehog (SHH), bone morphogenic proteins (BMP), and fibroblast growth 

factor receptor (FGFR), as well as runt-related transcription factor 2 (RUNX2)
9
.  The adhesion 

molecules N-cadherin (Cadherin-2; CDH-2), Cadherin-11 (CDH-11), and N-CAM are important 

for stabilizing these condensations, which then enables peripheral mesenchymal cells to flatten 

and elongate forming the rudimentary perichondrium
10,11

.  The first condensations occur in 

humans at 6.5 weeks of development and in mice at embryonic day 10.5 (E10.5)
12

.   

 Next, expression of SOX9, the master chondrogenic transcription factor, in the 

condensations leads to the differentiation of these cells into chondrocytes
13

.  SOX9 is a DNA-

binding protein that, together with L-SOX5 and SOX6, regulates the chondrocyte-specific genes   
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Figure 1.1  Schematic representation of endochondral ossification. 

Endochondral ossification involves mesenchymal cells condensing and differentiating into 

chondrocytes.  Chondrocytes express SOX9, leading to activation of COL2A1 and ACAN which 

are critical for the cartilaginous ECM.  The chondrocytes line up in characteristic zones known 

as the growth plate and undergo rapid proliferation before becoming hypertrophic, characterized 

by the expression of COL10A1 and VEGF.  The hypertrophic chondrocytes then attract invading 

vasculature and bone-forming osteoblasts before undergoing apoptosis or becoming osteoblasts 

or osteocytes.  Mineralized bone forms in the middle, appropriately known as the primary 

ossification centre and as the bone grows outward secondary ossification centres form on either 

end.  This figure has been modified from Solomon, et al., 2008
6
. 
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collagen type II (COL2A1), collagen type IX (COLIX), collagen type XI (COLXI), and aggrecan 

(ACAN)
14–17

.  The chondrocytes then undergo a number of maturation steps involving 

proliferation and hypertrophy.  Developing cartilage forms a number of characteristic zones 

known as the growth plate
18

.  Chondrocytes at the outermost edge of the growth plate are 

considered resting chondrocytes, and are small and round in morphology
19

.  The resting zone 

chondrocytes proliferate at a slower rate than the neighbouring proliferating zone, but continue to 

express high levels of COL2A1 and ACAN
19

.  Adjacent to the resting zone, is the proliferative 

zone, in which chondrocytes divide at a rapid rate.  The proliferating chondrocytes are flattened 

or discoidal in morphology, and form characteristic longitudinal columns
20

.  The proliferating 

chondrocytes then exit the cell cycle and increase their volume, becoming prehypertrophic. 

 Prehypertrophic chondrocytes express genes related to both proliferating and 

hypertrophic chondrocytes, and differentiation into hypertrophic chondrocytes is governed by the 

Indian hedgehog/Parathyroid hormone-related protein (IHH/PTHrP) negative feedback loop
21–23

.  

IHH regulates cell cycle progression and stimulates PTHrP secretion from both proliferating 

chondrocytes and perichondrial cells, which inhibits the onset of hypertrophy.  An increase in 

chondrocyte hypertrophy is accompanied by increased IHH/PTHrP signaling, thus maintaining 

the proliferative pool of chondrocytes.  Hypertrophic chondrocytes are round to cuboidal in 

shape and up-regulate the expression of RUNX2, which triggers the secretion of a matrix rich in 

collagen type X (COL10A1)
18

.  The cell volume increase during hypertrophy is considered a 

major determinant of bone length and growth.  Hypertrophic chondrocytes release osteopontin 

and the extracellular matrix remodeling proteins matrix metalloproteinase-9 (MMP-9), matrix 

metalloproteinase-13 (MMP-13) and the aggrecanases ADAMTS4 and ADAMTS5
24–27

.  

Additionally, cleavage of the collagen ECM by MMP-9 causes the release of vascular 
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endothelial growth factor (VEGF) 
24

.  At the same time as hypertrophy begins, the cells of the 

perichondrium also differentiate into osteoblasts, which enables the formation of the mineralized 

bone collar, or periosteum, around the developing skeletal element
28

.  While some hypertrophic 

chondrocytes undergo apoptosis, new evidence suggests that some hypertrophic chondrocytes 

trans-differentiate into osteoblasts
6,29

.   

 Capillaries are recruited into the cartilage anlage from surrounding tissues and the 

perichondrium, through a VEGF-dependent pathway
28,30

.  The invading vasculature is 

accompanied by osteoclasts, which act to resorb the ECM while the osteoblasts lay down 

mineralized bone
30

.  The first region in a long bone to become mineralized is considered the 

primary ossification centre (POC) and forms in the centre of the bone, also known as the 

diaphysis.  As the developing bone lengthens, secondary ossification centres (SOC) form at 

either end, also known as the epiphyses.  In humans, the growth plates between the diaphyses 

and epiphyses disappears after skeletal maturity is reached, between ages 18 to 25, while in mice 

a growth plate is visible in the long bones throughout the entire life of the animal
5
. 

 

1.1.3 Transcription Factors, Growth Factors, and Signaling Molecules Regulating 

Endochondral Ossification 

 While there are many regulatory factors involved in chondrogenesis, members of the sex 

determining region Y (SRY) box (SOX) family, specifically SOX9, L-SOX5, and SOX6, are of 

particular importance
31

.  SOX9 is considered the master transcription factor of chondrogenesis 

and regulates the differentiation of mesenchymal cells to chondrocytes
32

.  SOX9 expression is 

restricted to all chondroprogenitors and differentiated chondrocytes, and is not expressed in 

hypertrophic chondrocytes
17

.  Initial studies on mouse embryo chimeras from Sox9-null 
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embryonic stem cells demonstrated that mutant cells were absent from mesenchymal 

condensations and failed to express chondrogenic markers including Col2a1 and Acan
32

.  

Furthermore, limb-specific Sox9-null mice display a complete absence of cartilage and bone in 

the developing limb, and cartilage-specific Sox9-null mice present with severe generalized 

chondrodysplasia and lack L-Sox5 and Sox6 expression
17

.  Interestingly, the SOX9 gene locus has 

a complex regulatory region spanning approximately 3Mb upstream and downstream of the 

coding region that is highly conserved between humans and mice
33

.  This regulatory region was 

first identified in patients with Campomelic Dysplasia (discussed below) when translocations 

upstream of the coding region caused reduced SOX9 transcription and severe skeletal defects
34

.  

The regulatory region is flanked by two genes with no known function in chondrogenesis, 

KCNJ2 and SLC39A11, and is devoid of other protein-coding genes.  This aptly named gene 

desert does, however, encode the two long non-coding RNAs BC006965 and D17RIK, both of 

which have unknown functions.  Overall, data indicate complex regulation of the SOX9 locus, 

however, the details are not well understood.  The relatively long distance between some 

regulatory elements and the coding regions suggest that DNA looping may be important in the 

control of SOX9 transcription. 

 L-SOX5 and SOX6 are co-expressed with SOX9 in chondroprogenitors and differentiated 

chondrocytes, and act cooperatively with SOX9 to activate COL2A1 expression via the COL2A1 

enhancer
15

.  Mice null for either L-Sox5 or Sox6 died of neonatal respiratory distress and both 

had only a small subset of endochondral elements affected
14

.  L-Sox5
-/-

 mice present with cleft 

palate and shortened ribs, as well as delayed mineralization of vertebral bodies and nasal bones
14

.  

Sox6
-/-

 mice also die in the perinatal period and develop severe dwarfism
14

.  Interestingly, L-Sox5 
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and Sox6 double mutants have chondrocytes which fail to produce a typical proteoglycan-rich 

ECM, and never form growth plates
14,15

. 

A recent study screened the genomic region upstream of the SOX9 gene and reported 

three enhancers primarily active in chondrocytes
35

.  These enhancers affect gene expression in  

chondrocytes at different stages of their life cycle, including condensed prechondrocytes, 

proliferating chondrocytes, and all differentiated chondrocytes
35

.  While the SOX9 protein has 

been shown to activate previously reported enhancers by itself, it requires both L-SOX5 and 

SOX6 proteins as well as additional factors to robustly activate these enhancers
35

.  Therefore, 

evidence demonstrates an elegant synergistic regulation of chondrogenic genes by the SOX trio 

of transcription factors. 

Another important transcription factor in skeletal development is RUNX2.  Formerly 

known as CBFA1, RUNX2 is an important regulator of chondrocyte and osteoblast 

differentiation
36,37

.  RUNX2 is expressed at a high level in prehypertrophic and hypertrophic 

chondrocytes, as well as perichondrial cells, and osteoblasts
37

.  The developing bones in Runx2-

null mice show decreased chondrocyte maturation and fail to develop osteoblasts, thus they do 

not undergo ossification
37

.  RUNX2 is therefore necessary for proper chondrocyte differentiation 

and osteogenesis. 

 Finally, cell cycle machinery and cyclin-dependent kinases have been demonstrated to 

control cell proliferation
18

.  Responsible for controlling cell cycle exit and differentiation into 

prehypertrophic chondrocytes, p57 is a cyclin-dependent kinase inhibitor of the Kip family
38

.  

p57 functions to inhibit the G1-S phase cyclin-dependent kinases and is expressed at very high 

levels in prehypertrophic and hypertrophic chondrocytes
38

.  p57-null mice display shortened, 
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thick bones with thinner hypertrophic zones and reduced Col10a1 expression
38

.  p57 is therefore 

critical for regulating chondrocyte differentiation and cell cycle exit. 

 

1.1.4 Skeletal Dysplasias 

 The group of genetic conditions known as skeletal dysplasias encompasses over 200 

phenotypes identified in humans, ranging in severity from profound truncations to subtle 

alterations in length.  Patients affected by skeletal dysplasia have impaired bone growth and 

abnormal cartilage, and are often very short in stature.  More specifically, the subset of over 150 

skeletal disorders affecting cartilage growth and development are termed chondrodysplasias.  

The most common form of chondrodysplasia is achondroplasia, caused by a heterozygous gain-

of-function mutation in the FGFR3 gene
39

.  Achondroplasia is a type of short-limbed dwarfism 

in which patients also present with short digits, trident hand, megalencephaly, spinal curvature, 

and limitation of elbow extension
39

.  Interestingly, the growth plates of patients with 

achondroplasia have shortened proliferating zones, but do not appear otherwise disorganized as 

in other chondrodysplasias
39

. 

 Another significant skeletal disorder is campomelic dysplasia (CD), a form of dwarfism 

in which the patients suffer from congenital bowing and angulation of the long bones
40

.  CD is an 

autosomal dominant disorder caused by loss-of-function mutations in a single allele of the SOX9 

gene, leading to haploinsufficiency
34,41

.  Importantly, mutations are reported not only within the 

coding region for SOX9, but also in the region upstream
42

.  Patients with CD also often present 

with genital ambiguities, 46 XY sex reversal, cleft palate, micrognathia, facial abnormalities, and 

only 11 sets of ribs
40,43

.  Ribcage defects lead to respiratory distress during the perinatal period, 

accounting for the high mortality rate
40

.  Heterozygous Sox9 mutant mice have been generated 
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and are considered a model of CD, as they recapitulate most of the skeletal abnormalities 

including bowing of the long bones, cleft palate, hypoplasia, and ribcage defects
44

.    

 Other skeletal dysplasias exist and are can be caused by mutations in ECM-related genes.  

For example, Schmid metaphyseal dysplasia is caused by mutations in the COL10A1 gene and 

results in shortened stature, bowed legs, and irregular growth plates
45

.  Additionally, 

haploinsuffiency of RUNX2 causes the autosomal dominant skeletal dysplasia cleidocranial 

dysplasia (CCD)
46

.  Patients with CCD also present with short stature, decreased COL10A1 

expression, and diminished hypertrophic zones in their growth plates.  While all of these 

conditions severely impact a patient's quality of life, there are also high mortality rates associated 

with skeletal disorders.  The use of model systems to deeply investigate endochondral 

ossification is therefore an important step in identifying the specific causes of skeletal dysplasia.  

 

1.2 CCCTC-Binding Factor 

 The large size and complexity of higher eukaryotic genomes necessitates the 

sophisticated and dynamic packaging of DNA into stratified levels of organization.  DNA is 

wrapped around histones to form nucleosomes, which are subsequently looped into higher-order 

structures and ultimately form chromosomes residing in defined nuclear territories.  Chromatin 

acts in a dynamic manner, condensing and de-condensing as a cause and consequence of 

transcriptional activity
47

.  There exists an extensive nuclear network aptly nicknamed the 

"loopome" or "interactome," in which local and long-range intra- and interchromosomal loops 

form contacts
47

.  While some of these cis- and trans- contacts are stochastic, others appear highly 

regulated and have been associated with specific biological processes including X chromosome 

inactivation, monoallelic gene expression, and transcription during development
48–50

.  Thus, 
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accumulating evidence over the past decade suggests that chromatin structure and the stability of 

its 3D architecture significantly affect nuclear functions including transcription, replication, 

DNA repair, and mitosis
51

.   

 CCCTC-binding factor, commonly known as CTCF, is a highly-conserved transcription 

factor that has been heralded as "the master weaver of the genome."
47

 Evidence demonstrates a 

role for CTCF in regulating higher-order chromatin structure and influencing many processes 

including X chromosome inactivation, genomic imprinting, long-range interactions, and 

transcriptional regulation (Figure 1.2).  Currently there are no reported/published studies 

investigating the role of CTCF in cartilage development. 

 

1.2.1 Structure and Regulation 

 The name CCCTC-binding factor, shortened to CTCF, was determined based on the 

initial discovery of CTCF binding to three regularly spaced repeats of the core sequence CCCTC 

approximately 200 bp upstream of the transcriptional start site of the chicken c-myc 

oncogene's
52,53

.  CTCF is a ubiquitously expressed 82-kDa protein containing 11-zinc finger 

motifs
54,55

. CTCF is highly conserved in most eukaryotes, displaying a 93% identity between 

avian and human amino acid sequences, however it is not conserved in yeast and plants
55,56

.  A 

study by Klenova et al. reported four CTCF RNA species and six differentially expressed forms 

of CTCF protein with molecular masses ranging from 55-130 kDa
54

.  The authors speculated that 

alternative mRNA processing was involved in the generation of multiple isoforms of mRNAs 

and multiple forms of proteins, and proposed that some forms of the CTCF protein may act 

predominantly as repressors or activators with different characteristics
54

. 
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Figure 1.2  Schematic representation of CTCF-mediated chromatin looping 

CTCF has been shown to form chromatin loops between genes and their associated enhancers.  

These loops can either promote gene expression (left) or prevent the enhancer's association with 

genes, thereby inhibiting expression (right). 
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 The structure of CTCF involves three distinct domains: an N-terminal domain, a C-

terminal domain, and the central 11-zinc finger domain
55

.  The central zinc finger domain is 

particularly highly conserved, which underscores its importance
55

.  CTCF is regulated, in part, 

by distinct modifications of each domain. CTCF can be post-translationally modified by 

phosphorylation, poly(ADP-ribosy)lation, and SUMOylation.  All strong phosphorylation sites in 

CTCF have been mapped to the C-terminal domain and studies have demonstrated that CTCF 

can be phosphorylated by protein kinase CK2, leading to abrogation of its repressive activity at 

the c-myc promoter
57,58

.  Another group reported poly(ADP-ribosy)lation in vivo, and data from 

in vitro studies in breast cancer cells have shown that proper poly(ADP-ribosy)lation is required 

for CTCF to associate with and activate the CDKN2A tumour suppressor gene
59,60

.  Finally, 

CTCF can be modified at one site in each of the C-terminal domain and the N-terminal domain 

by small ubiquitin-like modifier proteins (SUMO).  In contrast to phosphorylation, 

SUMOylation of CTCF is important for maintaining the repressive activity of CTCF on the c-

myc promoter
61

. 

 CTCF function is also regulated through other processes including DNA methylation, 

interactions with other proteins, and even interactions with RNAs.  In particular, DNA 

methylation plays a critical role in regulating CTCF function, as both cause and consequence.  A 

study by Wang et al. found that 41% of cell-type-specific CTCF-binding sites are associated 

with differential DNA methylation at two specific positions within the CTCF recognition 

sequence
62

.  A key example is that of the imprinted H19/IGF2 locus, where the H19 and IGF2 

genes are separated by an imprinting control region (ICR).  When the ICR is conditionally 

methylated on the paternal allele, CTCF cannot bind and the promoter of IGF2 is activated by a 

distal enhancer.  Conversely, when the ICR is unmethylated, CTCF binds and the enhancer 
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activates the H19 promoter
63

. CTCF has also been shown to form a complex with poly(ADP-

ribose) polymerase 1 (PARP1) and DNA (cytosine-5)-methyltransferase 1 (DNMT1) to maintain 

methyl-free CpGs in certain CTCF-bound regions throughout the genome
64

.   

 In addition to PARP1, CTCF interacts with other proteins, which provides another level 

of complexity to its regulation.  In particular, the interaction between CTCF and the multiprotein 

cohesin complex has been well-studied.  The cohesin complex is ring-shaped and composed of 4 

subunits: SMC1, SMC3, RAD21, and SA1/SA2
65

.  Cohesin is known for providing sister 

chromatid cohesion during DNA replication and until cell division, but also has roles in 

postmitotic cells
65

.  The cohesin complex does not bind DNA directly, but the SCC3 subunit 

associates with C-terminal domain of CTCF.  Cohesin is present at 50-80% of CTCF-binding 

sites, depending on the cell type, and multiple studies have demonstrated that a down-regulation 

of cohesin leads to disturbance of the chromatin structure at certain loci, such as the Cystic 

Fibrosis Transmembrane Conductance Regulator (CFTR) locus
66–69

.  Cohesin is also required for 

the insulator function of CTCF, particularly at the H19/IGF2 locus as discussed in detail below
70

.  

Overall, CTCF is necessary to enrich cohesin binding at specific sites, and cohesin is necessary 

to mediate CTCF's insulator activity.
70

 

 Finally, in mammalian cells CTCF was shown to form a complex with DEAD-box RNA 

helicase p68 (DDX5) and its associated non-coding RNA, steroid receptor RNA activator 

(SRA)
71

.  This complex is necessary for stabilizing the cohesin-CTCF interaction at the ICR that 

allows for proper imprinted expression of the H19/IGF2 locus, and provides evidence for an 

interaction between CTCF and RNAs
71

. 

 

1.2.2 Function and Roles 
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 As previously mentioned, CTCF is ubiquitously expressed and binds 55,000-65,000 sites 

in mammalian genomes
72

.  Of these binding sites, approximately 5,000 are conserved between 

species and tissues, and ~30-60% of binding sites are cell-type-specific
73–75

.  Studies demonstrate 

that approximately ~50% of CTCF-binding sites are in intergenic regions, ~15% are proximal to 

promoters, and ~35% are intragenic
72,74

.  Described as a "multivalent factor," CTCF exerts 

combinatorial control over its different zinc fingers to bind to a wide range of variant 

sequences
55

.  For example, zinc fingers 2-7 are utilized in CTCF binding to the chicken c-myc 

site, whereas fingers 3-11 are utilized in binding at the human C-MYC site
55

.  This structural 

feature of CTCF enables it to serve a diverse set of roles in genome regulation, largely through 

altering the genome's topology and 3D architecture.  The importance of CTCF in multiple 

biological processes is further underscored by CTCF homozygous knockout mice exhibiting 

early embryonic lethality prior to implantation
76

.   

 Of all the functions assigned to CTCF, its classical role is as an insulator protein; 

however, newer evidence suggests insulation is a minor role compared to CTCF's involvement in 

regulating chromatin loops in megabase-scale topologically associated domains (TADs).  

Insulators are DNA elements that function to block genes from the action of cis-acting elements, 

such as enhancers.  The well-characterized H19/IGF2 locus discussed above serves as evidence 

for CTCF as an insulator
63

.  This locus also provides evidence of CTCF operating by mediating 

long-range chromatin interactions.  When CTCF binds the ICR, it forms a loop with IGF2 and 

blocks enhancers from activating the IGF2 promoter in cis
63

.  Another important piece of 

evidence for CTCF as an insulator protein and chromatin looping mediator involves the chicken 

β-globin locus, which was shown to contain an insulator sequence
77

.  CTCF binds to the 

insulator and forms a chromatin loop encompassing the β-globin gene and locus control region, 
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positioning the elements in such a way that blocks enhancer signals and represses transcription
78

.  

Beyond its role as an insulator protein, studies have shown CTCF functions as a context-

dependent promoter activator and repressor.  The original studies on CTCF and the chicken c-

myc gene demonstrated through reporter assays that CTCF is a transcriptional repressor
52

.  In 

these experiments, deletion of the CTCF binding sequence led to a 4 to 8-fold increase in 

transcription of c-myc fusion constructs, thereby providing evidence of repressive activity by 

CTCF
52

.  A later study also reported that CTCF binds to and acts as a transcriptional repressor at 

the amyloid β-protein precursor (APP) gene promoter
79

.  Interestingly, the APP gene transcript 

level is increased in Down's syndrome and in certain brain regions of patients with Alzheimer's 

disease, potentially linking CTCF to these neurological pathologies
79

.   

 One of the most important processes during development is the precise expression of 

Homeobox (HOX) gene clusters.  The HOX genes are a group of highly-conserved transcription 

factors required for cells to maintain their relative position in the developing embryo, and are 

partitioned transcriptionally into discrete clusters.  Mammals have 39 HOX genes in four 

clusters, A-D, each on a different chromosome
80

.  The HOX genes pattern the anterior-posterior 

axis of the body, and are also critical to limb and genitalia formation.  Interestingly, the 5'-end 

HOX genes A7-13 are repressed by Polycomb group (PcG) proteins, which utilize repressive 

post-translational histone modification H3K27me3, until the correct developmental 

timepoint
80,81

.  Evidence also demonstrates that the HOX clusters are organized into multiple 

chromatin loops which are dependent on transcription activity
80

.  In order to understand the 

proper temporal and spatial expression of the HOX gene clusters, CTCF was investigated as a 

candidate regulatory protein in the process.  A highly-conserved binding site for CTCF exists 

between genes in the HOXD clusters in human cells, so the role of CTCF as an insulator for the 
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HOX gene clusters was investigated
82

.  Narendra et al. deleted the CTCF binding sites and 

showed the expansion of active chromatin into the adjacent repressive domain of the HOXA 

cluster in motor neuron progenitor cells
81

.  The study concluded that CTCF partitions the HOX 

clusters into architectural domains
81

.  These domains are then acted upon by Trithorax and 

Polycomb proteins to establish discrete transcriptional proteins
81

.  Therefore, CTCF is required 

to insulate heterochromatin from adjacent euchromatin and to facilitate proper gene expression 

patterns of the HOX genes.   

This study is in contrast with experiments performed by Soshnikova et al. involving 

conditional inactivation of Ctcf in the developing limbs using the Prx1-Cre driver.  The mice had 

severe developmental defects, including a complete lack of forelimbs
83

.  The authors also noted 

that the hindlimb was malformed and had oligodactyly, but did not investigate the hindlimb in 

any detail
83

.  In the mutant forelimbs, expression patterns of Hoxa13 and Hoxa11 were not 

different from controls, and there was no induction of Hoxb or Hoxc genes in mutant 

mesenchyme
83

.  The limbs did show weakened Shh gene expression, which may have affected 

Fgf4 expression and the absolute amount of Hoxd transcripts; however the authors felt that this 

explanation did not account for the whole effect
83

.  Rather, the investigation showed massive cell 

death caused by the impairment of mitochondrial processes and attributed the phenotype to this 

effect
83

. 

 CTCF has also been implicated in neuroprogenitor differentiation and survival in the 

developing mouse brain.  A study by Watson et al. elegantly showed that CTCF is required in 

the developing telencephalon to prevent massive apoptosis and regulate differentiation and 

proliferation of neuroprogenitors
84

.  This study also indicated that the loss of CTCF contributed 

to a depletion of the neuroprogenitor pool early in development
84

.  These data provide new 
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evidence for the relationship between CTCF-depletion and intellectual disability pathology 

discussed below.   

  Although emerging evidence suggests an important role for CTCF in many tissues and 

cell types, little evidence linking CTCF to the developing skeleton has been produced.  Notably, 

however, was the discovery by Schaub et al. that many CTCF binding sites overlap single 

nucleotide polymorphisms (SNP) associated with human height
85

.  Their analysis found that 15 

of the 39 SNPs associated with height overlap a ChIP-seq peak for CTCF
85

.  This finding 

suggests a possible link between human height, which is partially dependent on proper skeletal 

growth, and CTCF.  Additionally, recent unpublished data from our laboratory by Bush et al. 

demonstrate that the conditional knockout of CTCF in developing cartilage, using the Col2a1-

Cre driver, severely affects cartilage development.  Mutant mice are neonatal lethal and die from 

respiratory distress caused by ribcage defects.  These animals also demonstrate severely 

malformed limbs and bowing of the long bones.  This phenotype resembles that of patients with 

CD and the current mouse model of the disease.  Furthermore, the Ctcf
Fl/Fl

;Prx1Cre mice present 

with a slight but significant reduction in Sox9 gene expression and SOX9 protein levels.  The 

growth plates were also affected in the knockout animals, showing a shortened hypertrophic zone 

with fewer and smaller hypertrophic chondrocytes.  Together these data suggest that CTCF is 

critical for normal cartilage development, potentially through the regulation of Sox9 gene 

expression  

 

1.2.3 Pathologies 

 As the study of epigenetics and chromatin structure grows, so too does the number of 

genes implicated in developmental pathologies. A recent article by Gregor and colleagues 
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identified de novo mutations in CTCF in four individuals presenting with intellectual disability
86

.  

The mutations varied between individuals, although all were heterozygous.  Individuals one and 

two had frameshift mutations in exon three and exon six of CTCF, which corresponds to the N-

terminal region and fifth zinc finger, respectively.  Individual three presented with a missense 

mutation in exon nine, which corresponds to the eleventh zinc finger.  Finally individual four had 

a large deletion containing CTCF and seven additional genes.  All four individuals suffered from 

developmental delay, and two of the individuals presented with cryptorchidism (undescended 

testicles).  Interestingly, individuals one, two, and four all had reduced expression of CTCF, 

which suggested that haploinsufficiency can cause the intellectual disability phenotype.  

Conversely, individual three had unaltered CTCF mRNA and CTCF protein levels, but modeling 

programs indicate that the amino acid substitution may affect DNA binding affinity and 

specificity.  Of particular interest, all four individuals presented with short stature and two 

patients had digit abnormalities, suggesting that hypomorphic mutations in CTCF also affect 

proper skeletal development. 

 Gene mutations in the cohesin network also leads to a family of rare human diseases 

known as cohesinopathies.  The two cohesinopathies that have been studied in depth are Cornelia 

de Lange syndrome (CdLS) and Roberts syndrome.  CdLS is an autosomal dominant 

neurodevelopmental disorder most commonly caused by mutations in the gene encoding 

NIPBL
87

.  While not a subunit of cohesin, NIPBL is required to load cohesin onto chromatin
87

.  

Patients with CdLS are characterized by intellectual disability, facial dysmorphism, upper limb 

abnormalities, and growth retardation, however the disease is thought to result from 

transcriptional alterations, not from problems in sister chromatid cohesion
87

.  Roberts syndrome 

is phenotypically related to CdLS, however it is autosomal recessive and caused by mutations in 
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the gene encoding ESCO2, another cohesin-associated protein required for the establishment of 

cohesion between sister chromatids following DNA replication
87

.  Roberts syndrome is 

extremely rare and severe, patients also present with craniofacial abnormalities, limb reduction, 

and growth retardation
87

.  In patients with Roberts syndrome, both sister chromatin cohesion and 

mitosis are affected.  All these conditions, therefore, underscore the importance of proper 

epigenetic regulation and chromatin cohesion via the cohesin complex during skeletal 

development. 

 

1.3 Governing Rationale and Objectives 

 Emerging evidence shows that CTCF is critical for the proper regulation of multiple cell 

and tissue types. However, the role of CTCF in the developing hindlimb and skeleton has never 

before been investigated.  Studies show a role for CTCF in regulating the HOX gene clusters, 

which are critical for limb development, and other studies have demonstrated that CTCF is 

required to prevent massive apoptosis in the developing forelimb
81,83

.  Furthermore, our 

unpublished research reveals that CTCF is required for the maintenance of Sox9 expression in 

developing cartilage and that loss of CTCF in cartilage causes campomelia.  Thus, both these 

CTCF-deficient animal models and de novo human CTCF mutations suggest that CTCF 

regulates limb and cartilage development.  Given that CTCF deletion in the forelimb of mice 

using the Prx1-Cre driver line caused excessive apoptosis and loss of tissue, my objective was 

to investigate the effects of CTCF deletion on chondrogenesis and skeletal development in 

the hindlimb of Ctcf
Fl/Fl

;Prx1Cre mice.  The Ctcf
Fl/Fl

;Prx1Cre hindlimb presents an 

intermediate phenotype that falls in between the completely abrogated Ctcf
Fl/Fl

;Prx1Cre 

forelimb, and the slightly bowed Ctcf
Fl/Fl

;Col2Cre hindlimb.  My first objective was to 
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investigate differences in the onset of chondrogenic gene expression in micromass cultures 

established from wild-type forelimbs versus hindlimbs.  Secondly, I assessed gene expression 

differences and alterations in development of the hindlimbs and long bones of the 

Ctcf
Fl/Fl

;Prx1Cre mice.  This thesis, to the best of my knowledge, represents the first in-depth 

characterization of the role of CTCF in the developing hindlimb of Ctcf
Fl/Fl

;Prx1Cre mice. 
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2.0  MATERIALS & METHODS 
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2.1 Timed Pregnant CD1 Mice 

 Timed pregnant CD1 mice were purchased from Charles River Laboratories (Sherbrooke, 

Quebec) and were sacrificed for experimentation by carbon dioxide asphyxiation.  The use of 

animals for experimentation was approved by Animal Care and Veterinary Services at Western 

University. 

2.2 Murine Micromass Cultures 

 Micromass cultures were prepared as described with minor modifications
88,89

.  Forelimb 

and hindlimb buds of up to 12 embryonic day 10.5 (E10.5) CD1 mouse embryos were dissected 

in Puck's Saline Solution A buffer (PSA) and diced using a sterile razor blade.  The limb buds 

were then digested in 10 mg/ml dispase (Roche Molecular Biochemicals, Indianapolis, IN, USA) 

solution containing 10% fetal bovine serum (FBS; Sigma-Aldrich, Oakville, ON, Canada)/PSA 

for 2 hours at 37°C and shaken at 100 rpm, with vortexing every 15 minutes.  After digestion, the 

enzymatic reaction was neutralized with 2:3 Dulbecco's Modified Eagles Medium (DMEM):F12 

media (Sigma-Aldrich) containing 10% FBS, 0.25% Penicillin (10,000 units/ml; Sigma-

Aldrich)/Streptomycin (10,000 μg/ml; Sigma-Aldrich), and 0.25% L-glutamine (200mM; Sigma-

Aldrich).  Digested tissue was passed through a 40 μm cell strainer (Falcon, Lincoln Park, NJ) 

before centrifugation for 5 minutes at 23°C and 1000 rpm.  Cells were then re-suspended in 

DMEM:F12 media containing 10% FBS, 0.25% Penicillin/Streptomycin, and 0.25% L-

glutamine, and counted using a haemocytometer (Hausser Scientific Partnership, Horsham, PA, 

catalogue number 3200).  Cells were then centrifuged again for 5 minutes at 23°C and 1000 rpm, 

re-suspended at a final concentration of 2.5x10
7
 cells/ml, and plated in eight 10 μl droplets per 

well in a six-well NUNC delta surface cell culture plate (Thermo Scientific, Burlington, ON, 

Canada).  Cells adhered to the plate during a 1-hour incubation period at 37°C and 5% CO2.  
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Finally, 2 ml of 2:3 DMEM:F12 media containing 10% FBS, 0.25% Penicillin/Streptomycin, and 

0.25% L-glutamate was added to each well.  Micromass cultures were grown for up to 60 hours 

with media changed every 24 hours. 

2.3 Ctcf
Fl/Fl

;Prx1Cre Mice 

 All studies were conducted in accordance with the policies and guidelines set forth by the 

Canadian Council on Animal Care and were approved by the Animal Use Subcommittee of 

Western University.  Mice were housed in Animal Care and Veterinary Services facilities at 

Western University and cared for according to protocol number 2007-045 (Appendix A).  Mice 

were housed in standard cages and maintained on a 12-hour light/dark cycle, with rodent chow 

and water available ad libitum.  Timed matings involved one male Ctcf
Fl/+

;Prx1Cre and one 

female Ctcf
Fl/Fl

 mouse per cage, placed together at 5:00 pm and separated the following morning 

at 9:00 am (Figure 2.1).  Pregnant females were sacrificed and embryos were collected at 

embryonic day 12.5 (E12.5), 13.5 (E13.5), 15.5 (E15.5), and 18.5 (E18.5).  Pups were also 

collected at post-natal day 0 (P0).  Litters containing a wild-type, heterozygote, and homozygote 

conditional knockout mouse were considered one trial (N=1).  Euthanasia was performed on the 

pregnant dames by carbon dioxide asphyxiation or lethal injection of 270 μg Euthanyl/g body 

weight (Animal Health Inc.) for P0 pups. 

 Tissue for genotyping was collected from tail clippings of euthanized embryos and pups.  

Clippings were digested in Eppendorf tubes with 100 μl of Solution A (25 mM NaOH, 0.5 M 

EDTA at pH 6.0) for 1 hour at 95°C before 100 μl of Solution B (40 mM Tris-HCL at pH 6.0) 

was added.  Polymerase chain reaction (PCR) was performed using oligonucleotides Ctcf 

forward primer (5'- CTAGGAGTGTAGTTCAGTGAG -3'), Ctcf reverse primer (5'- 

GCTCTAAAGAAGGTTGTGAGT -3') and Cre forward primer  
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Figure 2.1  Schematic representation of mouse breeding strategy. 

The Cre/loxP recombination system was utilized in C57BL/6 mice to produce conditional Ctcf 

knockout animals.  Female mice homogenous for the floxed Ctcf locus were bred with male mice 

heterogeneous for the floxed Ctcf locus and expressing Cre recombinase under the control of the 

Prx1 enhancer.  After Cre-mediated recombination, Ctcf-null pups were produced (KO) and 

compared to littermates lacking Cre as controls. 
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(5'-CCTGGAAAATGCTTCTGTCCG -3'), Cre reverse primer (5'-

CAGGGTGTTATAACAATCCC. -3') for amplification.  All oligonucleotides were purchased 

from Sigma-Aldrich and all additional genotyping reagents were purchased from Roche.  

Samples were run in a MyCycler
TM

 thermal cycler (Bio-Rad, Mississauga, ON, Canada).  PCR 

protocol included a 3-minute denaturing step at 95°C, followed by 34 cycles of 95°C for 45 

seconds, 58°C for 30 seconds, and 72°C for one minute, before a 10-minute incubation at 72°C.  

PCR products were run on a 1.5% agarose (Bio-Shop, Burlington, ON, Canada), 0.005% 

Ethidium bromide (Sigma-Aldrich) gel at 120 V for 1 hour.  Bands were visualized using a Gel 

Doc
TM

 EZ System (Bio-Rad).   

2.4 Skeletal Preparation 

 Following euthanasia, P0 mice were skinned, eviscerated, and fixed in 70% ethanol for 

24 hours at room temperature.  The solution was then changed to acetone for 24 hours at room 

temperature before the bodies were placed in staining solution (0.05% Alizarin Red (Sigma-

Aldrich), 0.015% Alcian Blue (Sigma-Aldrich), 5% Acetic Acid and 70% ethanol) for five days.  

Upon removal of staining solution, soft tissue was digested by graded potassium hydroxide 

solutions placed on a rocker at room temperature.  Finally, clean skeletons were stored in a 1:1 

Glycerol:70% ethanol solution. 

 Skeletons were visualized using a Leica S6D Stereomicroscope with a 0.63x de-

magnifying lens and images were taken using a Leica EC3 digital camera.  Total long bone 

length and mineralized zone length were measured using the Leica Application Suite software. 

2.5 Tissue Processing 
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 Following euthanasia, the skulls, forelimb and hindlimb buds of E12.5 wild-type mice 

were microdissected in phosphate buffered saline (PBS) and fixed in 4.0% paraformaldehyde 

(PFA) for 15 minutes.  Following fixation, tissues were submerged in a 30% sucrose in PBS 

solution and kept for 24 hours at 4°C.  Tissues were then embedded in Tissue-Tek
®
 O.C.T 

(Optimal Cutting Temperature; VWR International, Mississauga, ON, Canada) compound and 

stored at -80°C until cryosectioning was completed at the Molecular Pathology Core Facility, 

Robarts Research Institute (London, ON, Canada). 

 Additionally, following euthanasia, tibiae were dissected from E15.5 conditional 

knockout mice and controls in PBS and fixed in 4.0% PFA for 24 hours.  Following fixation, the 

solution was replaced with 70% ethanol, and bones were labeled using 2% Mercurochrome 

(Fisher Scientific, Toronto, ON, Canada) before being sent to the Molecular Pathology Core 

Facility, Robarts Research Institute, for tissue processing, paraffin embedding, and sectioning. 

2.6 Histology 

 Paraffin sections were de-waxed in xylene and rehydrated for staining in graded series of 

ethanol solutions (100%, 100%, 95%, 70%) and then water.  Histological staining was performed 

on sections of E15.5 tibiae using Safranin-O/Fast Green, and von Kossa staining.  For Safranin-

O/Fast Green staining of proteoglycans, sections were incubated in Hematoxylin (Fisher 

Scientific) for 2 minutes, then washed in running tap water for 10 minutes.  Slides were then 

incubated in 0.01% Fast Green (Fisher Scientific) for 25 minutes, dipped in 1% Acetic Acid five 

times, and incubated in 0.1% Safranin-O (Fisher Scientific) for 7 minutes.  Slides were then 

dehydrated and cover slips were applied using SHUR/Mount
TM

 Liquid Mounting Medium 

(VWR).  Representative images of tibia sections were taken using a Leica DM1000 microscope. 
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 Sections processed for von Kossa staining were incubated with 5% silver nitrate solution 

under light for 1 hour, then were washed with water and incubated in 5% sodium thiosulfate for 

5 minutes.  Slides were then rinsed in distilled water, counterstained with Methyl Green (Fisher 

Scientific), dehydrated and cover slips were applied using SHUR/Mount
TM

 Liquid Mounting 

Medium (VWR).  Representative images of tibia sections were taken using a Leica DM1000 

microscope. 

2.7 Immunohistochemistry and Immunofluorescence 

 Immunohistochemistry (IHC) was performed on E15.5 tibiae using antibodies against 

p57 (Santa Cruz Biotechnology, Dallas, TX, USA).  Sections were de-waxed and rehydrated in 

xylenes and a graded series of ethanol, then incubated in 3% hydrogen peroxide in methanol for 

15 minutes at room temperature.  Antigen retrieval was performed by incubating sections in 

0.1% Triton-X (Sigma-Aldrich) at room temperature for 13 minutes before sections were 

blocked in 5% goat serum in PBS-0.1% Tween (PBST; Sigma-Aldrich) for 1 hour at room 

temperature.  Primary antibody against p57 was diluted in blocking solution according to its 

optimized concentration of 1:200.  Sections were incubated with the primary antibody overnight 

in a humidified chamber at 4°C before being washed in dH20 the following day.  Sections were 

then incubated in horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG secondary 

antibody (Santa Cruz Biotechnology) diluted 1:200 in PBS for 1 hour at room temperature.  

Visualization was performed using 3,3'-Diaminobenzidine (DAB) substrate solution (Dako, 

Burlington, ON, Canada) before being counterstained with Methyl Green (Fisher-Scientific) in 

0.1 mM sodium acetate buffer for 10 minutes.  Sections were then dehydrated and cover slips 

were applied using SHUR/Mount
TM

 Liquid Mounting Medium (VWR).   Representative images 
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of tibia sections were taken using a Leica DM1000 microscope and Leica Application Suite was 

used for measurements of the unstained resting and proliferating chondrocyte zones. 

 Immunofluorescence (IF) was performed on frozen E12.5 hindlimb bud sections for 

CTCF, SOX9, and proliferating cell nuclear antigen (PCNA).  Sections were thawed at room 

temperature for 1 hour, baked at 42°C for 30 minutes, then rehydrated in PBS at room 

temperature for 5 minutes.  Antigen retrieval was performed by incubating slides in 10 mM 

sodium citrate, pH 6, at 95°C for 10 minutes, then cooled for 20 minutes before blocking with 

5% donkey serum or goat serum in PBST for 1 hour at room temperature.  Primary antibody 

against CTCF (rabbit anti-CTCF; Cell Signaling Technologies, Danvers, MA, USA) was diluted 

in blocking solution according to its optimized concentration of 1:400.  Primary antibody against 

SOX9 (goat anti-SOX9; R&D Systems, Minneapolis, MN, USA) was diluted in blocking 

solution according to its optimized concentration of 1:300.  Primary antibody against PCNA 

(mouse anti-PCNA; Cell Signaling Technologies) was diluted in blocking solution according to 

its optimized concentration of 1:400.  Sections were incubated with the primary antibody 

overnight in a humidified chamber at 4°C before being washed in dH20 the following day.  

Sections were then incubated with donkey anti-goat IgG (Life Technologies, Burlington, ON, 

Canada) or goat anti-mouse IgG (Life Technologies) secondary antibody diluted 1:200 in PBS 

for 1 hour at room temperature, prior to applying cover slips with VECTASHIELD Mounting 

Medium with DAPI (Vector Laboratories, Burlington, ON, Canada).  Images of CTCF staining 

were captured with a digital camera (ORCA-ER; Hamamatsu, Middlesex, NJ, USA) on a Leica 

DMI 6000b microscope.  Open-Lab imaging software (PerkinElmer, Waltham, MA, USA) was 

used for image capture, and processing was performed using Volocity software (PerkinElmer).  

Images of SOX9 and PCNA staining were captured with a Leica DMRA2 fluorescence 
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microscope.  SOX9- and PCNA-positive cells were counted in a region of interest using ImageJ 

software (National Institutes of Health, Bethesda, MD, USA), and the positively stained cells 

were taken as a percentage of the total cells (DAPI-positive cells) in the area. 

2.8 TUNEL Staining 

 TUNEL staining was performed on E12.5 hindlimb bud sections using the In Situ Cell 

Death Detection Kit, Fluorescin (Roche) according to the manufacturer's instructions.  Cover 

slips were then applied using VECTASHIELD Mounting Medium with DAPI (Vector), and 

representative images were visualized with a Leica DMRA2 fluorescence microscope.  TUNEL-

positive cells were counted in a region of interest using ImageJ software (National Institutes of 

Health), and the positively stained cells were taken as a percentage of the total cells in the area. 

2.9  RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction 

 Total RNA was isolated from wild-type limb bud micromass cultures at 0, 12, 24, 36, 48, 

and 60 hours after plating.  Total RNA was also isolated from whole E12.5 and E13.5 hindlimb 

buds of conditional knockout embryos and control littermates.  In both cases, TRIzol reagent 

(Life Technologies) was used to extract RNA according to the manufacturer's instructions.  A 

NanoDrop 2000 spectrophotometer (Thermo Scientific) was used to quantify RNA. 500 ng of 

RNA were reverse transcribed into complementary DNA (cDNA) using the iScript cDNA 

Synthesis kit (Bio-Rad) according to the manufacturer's instructions. 

 Gene expression was assessed by real-time PCR using a Bio-Rad CFX384 RT-PCR 

system.  PCR reactions were run in triplicate, using 0.4 μl of cDNA per reaction and 0.1 μl 

forward and reverse primers (100 μM).  PCR parameters involved an initial denaturing step at 

95°C for 3 minutes, followed by 40 cycles of denaturing at 95°C for 10 seconds, and 

annealing/elongating at 58°C for 20 seconds.  Relative gene expression was calculated using the 
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ΔΔCt normalized for input using β-actin and expressed relative to the 0 h time point in 

micromass cultures, or E12.5 control in hindlimb buds. 

 Relative gene expression was determined for Ctcf, type II collagen (Col2a1), the 

proteoglycan aggrecan (Acan), the Sox trio (Sox9, Sox5, Sox6), long non-coding RNAs 

BC006965 and D17Rik, the two genes bordering the Sox9 locus: Kcnj2 and Slc39a11, N-

cadherin (Cdh2) and cadherin-11 (Cdh11; Table 2.1).  Standard curves were generated to control 

for primer efficiency, and the specificity of the primers was determined by melt curve analysis 

(0.5°C/5 seconds). 

2.10 Statistical Analysis 

 All data collected were from a minimum of three independent trials.  Data were 

expressed as mean ± SD.  P values less than 0.05 were considered significant (*).  Statistical 

significance was determined with a t-test, one-way ANOVA, or two-way ANOVA followed by a 

Tukey's multiple comparison test using GraphPad Prism version 6.0 (GraphPad Software, San 

Diego, CA, USA). 
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Table 2.1  Primers for Quantitative Real-Time PCR 

NCBI Gene Symbol Primer Sequence 5' » 3' 

β-actin Fwd 

β-actin Rev 

CTGTCGAGTCGCGTCCACCC 

ACATGCCGGAGCCGTTGTCG 

Ctcf Fwd 

Ctcf Rev 

GAGCCTGCTGTAGAAATTGAA 

CCAATAGTCCTGGTGCCGAGCAAGGCCCC 

Sox9 Fwd 

Sox9 Rev 

CTCTGGGCAAGCTCTGGA 

GTCGGTTTTGGGAGTGGTG 

Sox5 Fwd 

Sox5 Rev 

CCTGAAGCAGAGGAAGATGG 

CTCCTTCTCAGCGAGGCTCT 

Sox6 Fwd 

Sox6 Rev 

CTGAGCAACTGAGGACTGA 

AGCCATTCATTGCTTTGCTT 

Col2a1 Fwd 

Col2a1 Rev 

AAGGGTCACAGAGGTTACCC 

GTCCTCTCTCACCAGGCAG 

Acan Fwd 

Acan Rev 

GCTGCAGTGATCTCAGAAGAAG 

CACCAGCAGTACCACCTCCT 

BC006965 Fwd 

BC006965 Rev 

GTCAAGTCTTGGGCCTGATG 

CGCACAGAAACGTACCATTG 

D17Rik Fwd 

D17Rik Rev 

CGCACAGAAACGTACCATTG 

CTTGCTCTTGTTCCATGCAG 

Kcnj2 Fwd 

Kcnj2 Rev 

TAATCCCCACTTCCACTCCA 

TCGGTGAAGACACACCAAAA 

Slc39a11 Fwd 

Slc39a11 Rev 

TTCCAGAGGGTCTTGCTGTT 

GCTCAGCTGTCCATACCAGA 

Cdh2 Fwd 

Cdh2 Rev 

TGCCAGAAAACTCCAGAGGA 

TCGATCCAGAGGCTTTGTGA 

Cdh11 Fwd 

Cdh11 Rev 

GACACAGCCAATGGACCAAG 

ACGTCGGGCATATACTCCTG 
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3.0  RESULTS 
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3.1  Micromass cultures from wild-type forelimb and hindlimb buds showed patterns of  

increasing chondrogenic gene expression over 60 hours post-plating. 

 Ctcf
Fl/Fl

;Prx1Cre mice were originally described by Soshnikova et al. in 2010 during a 

study on CTCF and Hox gene regulation.  This study described the mutant mice as having 

truncated forelimbs and a milder hindlimb phenotype: shortened long bones and oligodactyly 

(reduced number of digits).  Given the startling difference between the forelimb and hindlimb 

phenotypes, I began my investigation by examining key chondrogenic genes in wild-type 

micromass cultures from E10.5 forelimb and hindlimb buds.  Micromass cultures replicate early 

chondrogenesis in vitro, thus I explored the possibility of differential gene expression between 

limbs as a contributor to phenotypic severity.  RNA was collected from micromass cultures 

every 12 hours post-plating, and qRT-PCR was utilized to examine gene expression changes.  I 

first set out to examine expression differences in the Sox gene trio because of their critical role in 

differentiation of mesenchymal cells into chondrocytes.  Sox9 gene expression in the forelimb 

showed a significant 3.5-fold and 4-fold increase at 48 hours and 60 hours post-plating, while 

expression showed a trend in increasing expression in the hindlimb, although the increase was 

not statistically significant (Figure 3.1A).  The increase in Sox9 expression was also steeper in 

the forelimb than in hindlimb micromass cultures, particularly between 12-24 hours post-plating 

(Figure 3.1A).  Sox5 transcript levels showed a pattern of increasing expression in forelimb 

micromass cultures until 24 hours, then maintained steady expression levels until 36 hours before 

declining back to baseline levels by 60 hours post-plating (Figure 3.1B).  Conversely, Sox5 

expression in hindlimb micromass cultures increased slightly until 24 hours, plateaued until 48 

hours, and then increased again at 60 hours post-plating (Figure 3.1B). However, trends seen in 

Sox5 expression in both forelimb and hindlimb cultures were not statistically significant.   



38 
 

 
 

 

 

 

 

 

 

Figure 3.1  Sox9, Sox5, and Sox6 gene expression in micromass cultures from wild-type 

forelimbs and hindlimbs. 

 Micromass cultures from E10.5 forelimb buds and hindlimb buds were plated and collected at 

12-hour intervals.  RNA from the cultures was used to perform qRT-PCR reactions to examine 

Sox9, Sox5, and Sox6 gene expression.  A. Forelimb micromass cultures demonstrated a 

significant increase in Sox9 expression at 48 hours and 60 hours post-plating.  Although there 

was no significant difference in Sox9 transcript in the hindlimb, data suggest a trend showing a 

steady increase in expression in both cultures after 12 hours.  B. There was no significant 

difference in Sox5 gene expression in either forelimb or hindlimb micromass cultures over time; 

however, a trend suggests increasing Sox5 expression in hindlimb micromass cultures.  Sox5 

expression in forelimb micromass cultures appeared to increase immediately after plating then 

decreases after 36 hours.  C. Although there was no significant difference in Sox6 transcript 

levels in either forelimb or hindlimb micromass cultures over time, data suggest a trend showing 

a steady increase in expression in both cultures after 0 hours.  All data represented are mean ± 

SD; * = P < 0.05. N=3 for forelimb, N=6 for hindlimb.  
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Finally, Sox6 expression showed a trend of increasing expression in both forelimb and hindlimb 

micromass cultures, but while forelimb cultures showed a decrease in expression from 36-48 

hours before increasing again by 60 hours, hindlimb micromass cultures demonstrated a 

relatively steady increase in transcript expression over the time course (Figure 3.1C).  These 

results indicate that the overall patterns of Sox trio gene expression are similar between forelimb 

and hindlimb, although Sox9 expression increased more rapidly in the forelimb micromass 

cultures which suggests chondrogenesis is occurring more rapidly. 

 To investigate potential differences between limbs in chondrogenic genes downstream of 

the Sox trio, transcript levels of the cartilaginous ECM genes Acan and Col2a1 were analyzed.  

Expression profiles of forelimb micromass cultures showed a robust and steady increase in Acan 

expression that reached a significant 50-fold increase at 60 hours post-plating, when compared to 

0 hours (Figure 3.2A).  Acan expression levels in hindlimb micromass cultures also increased 

approximately 4-fold over 60 hours, although these results did not reach significance (Figure 

3.2A).  Moreover, Col2a1 transcript levels showed a significant 180-fold increase at 60 hours 

post-plating in the forelimb micromass cultures (Figure 3.2B).  Hindlimb micromass cultures 

also showed a significant increase in Col2a1 expression, although the increase was 

approximately 75-fold (Figure 3.2B).  Taken together, these results demonstrate that forelimb 

and hindlimb micromass cultures show similar overall patterns of cartilaginous ECM gene 

expression, although the fold-change appears to be higher, and the time course faster, in forelimb 

micromass cultures than in hindlimb.   

 Given our lab's unpublished data suggesting a role for CTCF in regulating gene 

expression at the Sox9 locus, I set out to investigate expression of the long non-coding RNA 

BC006965, whose gene is located directly upstream of the Sox9 gene, overlapping with genomic  



41 
 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.2  Relative Acan and Col2a1 expression in wild-type micromass cultures from 

forelimbs and hindlimbs. 

Micromass cultures from E10.5 forelimb buds and hindlimb buds were plated and collected at 

12-hour intervals.  RNA from the cultures was used to perform qRT-PCR reactions to examine 

Acan and Col2a1 gene expression.  A. Acan expression showed a steady and significant increase 

in forelimb micromass cultures 60 hours post-plating when compared to expression levels at 0 

hours.  Hindlimb micromass cultures showed no significant differences, however data show a 

trend indicating an increase in Acan expression over the time course.  B.  Col2a1 gene 

expression was significantly increased in forelimb and hindlimb micromass cultures at 60 hours 

post-plating when compared to 0 hours.  All data represented are mean ± SD; * = P < 0.05. N=3 

for forelimb, N=6 for hindlimb.  
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CTCF binding sites identified by us (Bush et al., in prep).  In forelimb micromass cultures, 

BC006965 expression showed a trend of increasing transcript levels until 36 hours post-plating, 

then a slight decrease in expression between 36-48 hours (Figure 3.3A).  Conversely, transcript 

levels in the hindlimb micromass cultures appeared to show a slight but steady increase over 

time, although the fold-change is not statistically significant (Figure 3.3A).  Interestingly, a 

comparison of the expression patterns of Sox9 and BC006965 in hindlimb micromass cultures 

revealed that both transcripts are up-regulated over the time course, with similar relative 

expression levels at each time point (Figure 3.3B). These results indicate that BC006965 

expression may be regulated in a similar manner to Sox9 gene expression in the developing 

hindlimb. 

 

  



44 
 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.3  Expression of the long non-coding RNA BC006965 in wild-type forelimb and 

hindlimb micromass cultures. 

Micromass cultures from E10.5 forelimb buds and hindlimb buds were plated and collected at 

12-hour intervals.  RNA from the cultures was used to perform qRT-PCR reactions to examine 

gene expression of BC006965, a long non-coding RNA proximal to the Sox9 locus.  A. 

BC006965 expression did not show a significant increase in either forelimb or hindlimb 

micromass cultures, however trends indicate a slight increase in expression over the time course.  

B. The trend in steadily increasing gene expression levels of BC006965 in hindlimb micromass 

cultures is similar to the expression of Sox9 in hindlimb micromass cultures across the 60 hour 

time course.  All data represented are mean ± SD; * = P < 0.05, N=3 for forelimb, N=6 for 

hindlimb.  
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3.2  Validation of Ctcf inactivation in hindlimb buds of E12.5 Ctcf
Fl/Fl

;Prx1Cre embryos and 

the published phenotype. 

 To validate the Ctcf
Fl/Fl

;Prx1Cre mouse published by Soshnikova et al., I began by 

confirming the loss of CTCF protein and Ctcf transcript levels through immunostaining and 

qRT-PCR on hindlimb buds at age E12.5.  The previous study had focused on the developing 

forelimb and reported a 90% loss of Ctcf mRNA in mutant forelimbs at E10.75, but had not 

examined the hindlimb.  To confirm the loss of CTCF protein, immunofluorescent staining for 

CTCF was performed on cryosections from Ctcf-null and control hindlimb buds.  Control 

hindlimb buds showed the ubiquitous expression of CTCF protein and knockout hindlimb buds 

showed a reduction in CTCF protein in the mesoderm, with normal CTCF protein expression in 

the surrounding ectodermal tissue (Figure 3.4A,B).  Ctcf gene expression was also examined and 

revealed a significant 70% reduction in mRNA in the Ctcf-null hindlimb bud (Figure 3.4C).  

These results confirm that CTCF expression is decreased in the hindlimb buds of 

Ctcf
Fl/Fl

;Prx1Cre compared to controls. 

 The published phenotype of the Ctcf
Fl/Fl

;Prx1Cre mice was then validated at various 

developmental time points.  At E15.5, Ctcf-null embryos had truncated forelimbs and shortened 

hindlimbs with oligodactyly, features that were also present at P0 (Figure 3.5A,B).  The mutant 

embryos also presented with a brain protrusion above their skull at E15.5, which was still 

apparent at E18.5, but absent after birth, likely due to shearing during delivery (Figures 3.5A,B, 

3.6A,B).  Furthermore, the knockout mice were dead at birth and displayed holes of various sizes 

in the skull (Figure 3.6B).  Interestingly, the Ctcf-null mice appeared to have looser skin than 

their control counterparts, as evidenced by the wrinkled skin around their necks (Figure 3.5B).  

Thus, the phenotypes of the Ctcf
Fl/Fl

;Prx1Cre mice are in accordance with those previously 
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described by Soshnikova et al., although this is the first report on the skull defect and potential 

skin abnormalities. 
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Figure 3.4  Ctcf gene expression and CTCF protein distribution in E12.5 Ctcf
Fl/Fl

;Prx1Cre 

hindlimb buds. 

A. Immunofluorescent staining for CTCF in the hindlimb bud at E12.5 from control animals 

demonstrated uniform expression of CTCF protein throughout the developing limb.  B. Ctcf-null 

hindlimb buds displayed a noticeable reduction in CTCF protein at E12.5 when compared to 

littermate controls.  C. qRT-PCR results from whole E12.5 hindlimb buds showed a significant 

reduction in Ctcf gene expression in knockout animals when compared to littermate controls.  

Data represented are mean ± SD; * = P < 0.05, N=3.  Scale bar = 200 μm at 10x, 100 μm at 20x 

zoom.  
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Figure 3.5  Gross examination of Ctcf
Fl/Fl

;Prx1Cre animals and littermate controls at E15.5 

and P0. 

A. Whole body inspection of  Ctcf-null animals showed a severely shortened forelimb, hindlimb 

abnormalities, and a protrusion above the skull at E15.5.  B. At P0, Ctcf-null animals showed 

severe limb defects and display an open skull vault.  Scale bar = 5 mm 
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Figure 3.6  Gross examination of the skulls of Ctcf
Fl/Fl

;Prx1Cre mice and littermate controls 

at E18.5 and P0. 

A. Gross examination of the heads of E18.5 pups just prior to birth indicated that tissue still 

covers the protruding brain in Ctcf-null animals.  B. Examination of the heads after birth, 

however, revealed one knockout mouse with an intact brain protrusion (left), and holes of 

variable sizes in the skull vault of other Ctcf-null pups.  Scale bar = 3 mm 
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3.3  Ctcf
Fl/Fl

;Prx1Cre hindlimbs had significantly higher levels of apoptosis than littermate 

controls at E12.5, but no differences in proliferation. 

 Soshnikova et al. previously reported that Ctcf
Fl/Fl

;Prx1Cre mice had significantly higher 

levels of apoptosis in their forelimb buds at E11.5, but did not investigate cell death in the 

hindlimb.  To validate this finding and investigate potential apoptosis in the hindlimb, a 

fluorescent TUNEL stain was used in forelimb and hindlimb cryosections from E12.5 

Ctcf
Fl/Fl

;Prx1Cre and control embryos.  As previously reported, the mutant forelimb showed 

significantly more apoptosis in a representative area when compared to control forelimbs 

(Figure 3.7A, B).   Mutant hindlimbs also showed higher levels of apoptosis than corresponding 

littermate controls, but significantly less than mutant forelimbs (Figure 3.7A, B).   

 A reduction in proliferation in the Ctcf
Fl/Fl

;Prx1Cre hindlimb could also contribute to the 

shortened limb phenotype.  To address this possibility, E12.5 hindlimb cryosections were 

fluorescently stained for proliferating cell nuclear antigen (PCNA), a marker of cellular 

proliferation.  Both control and Ctcf-null hindlimbs showed a relatively uniform distribution of 

PCNA protein across the entire limb bud, although the intensity of staining did appear to be 

variable (Figure 3.8A).  Additionally, no differences were seen in protein localization at the 

cellular level between mutant hindlimbs and controls, and quantification of PCNA-positive cells 

indicated no significant difference between genotypes (Figure 3.8B, C).  These results indicate 

that the shortened hindlimb phenotype may be caused, in part, by increased apoptosis in the early 

limb bud. 
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Figure 3.7  Fluorescent TUNEL staining for apoptosis in E12.5 limb bud sections from 

Ctcf
Fl/Fl

;Prx1Cre mice and control littermates. 

A. Fluorescent TUNEL staining of forelimb and hindlimb revealed cells positively stained for 

apoptosis in frozen sections from E12.5 knockout mice.  B. Quantification of TUNEL-positive 

cells in a representative area (white box) showed a significant increase in apoptosis in the Ctcf-

null animals when compared to controls, and significantly increased apoptosis in the knockout 

forelimb when compared to the knockout hindlimb.  All data represented are mean ± SD; a, b, c 

= P < 0.05 using a two-way ANOVA, columns with different letters are significantly different 

from one another; N=3.  Scale bar = 250 μm 
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Figure 3.8  Immunofluorescent staining for proliferating cell nuclear antigen (PCNA) in 

E12.5 hindlimb bud sections from control and Ctcf
Fl/Fl

;Prx1Cre mice. 

Representative images demonstrating the immunolocalization of PCNA within the E12.5 

hindlimb of Ctcf-null animals and control littermates.  A. 10x magnification showed an even 

distribution of the protein throughout the hindlimb bud.  B. 20x magnification showed no 

differences between control and knockout animals.  C. No differences were seen in the 

percentage of PCNA-positive cells in a representative area from Ctcf-null animals and control 

littermates.  N=3, scale bar = 250 μm 
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3.4  Ctcf
Fl/Fl

;Prx1Cre hindlimbs showed no differences in SOX9 localization when 

compared to littermate controls at E12.5, and no differences in relative Sox9 transcript 

levels at E12.5 or E13.5. 

 Our unpublished data indicate an important role for CTCF in maintaining expression of 

the Sox9 gene, therefore examining Sox9 transcript and SOX9 protein levels in Ctcf
Fl/Fl

;Prx1Cre 

mice was important.  To investigate possible alterations in SOX9 protein localization in 

Ctcf
Fl/Fl

;Prx1Cre  animals, E12.5 hindlimb cryosections were fluorescently stained for SOX9.  

Both control and Ctcf-null hindlimb buds showed strong localization of SOX9 protein to the 

developing digit rays (Figure 3.9A).  Furthermore, no significant differences were observed in 

protein localization at the cellular level between mutant hindlimbs and controls, and this 

observation was further underscored by quantification of SOX9-positive cells in a representative 

area, indicating no significant difference between genotypes (Figure 3.9B, C).   

 To confirm the immunohistochemical results, qRT-PCR was performed on RNA from 

whole Ctcf-null and control hindlimb buds at E12.5 and E13.5.  An examination of Sox9 gene 

expression confirmed no significant difference in expression levels between mutant and control 

limb buds at either E12.5 or E13.5 (Figure 3.10A).  Based on these data, I conclude that at this 

time point, CTCF does not appear to play a role in regulating Sox9 transcript or SOX9 protein 

levels. 
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Figure 3.9  Immunofluorescent staining for SOX9 in E12.5 hindlimb bud sections from 

Ctcf
Fl/Fl

;Prx1Cre animals and control littermates. 

Representative images demonstrating the immunolocalization of SOX9 within the E12.5 

hindlimb of Ctcf-null animals and control littermates.  A. 10x magnification showed protein 

localization to the developing digit rays.  B. 20x magnification showed no noticeable differences 

in a representative area from Ctcf-null animals and control littermates.  C. No differences were 

seen in the percentage of SOX9-positive cells in a representative area from Ctcf-null animals and 

control littermates.  N=3, scale bar = 250 μm 
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Figure 3.10  Relative gene expression of Sox9, Sox5 and Sox6 in Ctcf
Fl/Fl

;Prx1Cre and 

control hindlimb buds at E12.5 and E13.5. 

Whole hindlimb buds were removed from Ctcf-null and control animals at ages E12.5 and E13.5.  

RNA was collected and qRT-PCR was utilized to examine Sox trio gene expression.  A. No 

significant difference in Sox9 expression was seen between control and mutant hindlimb buds at 

either time point.  B.  Sox5 expression was significantly reduced in mutant hindlimb buds at 

E13.5 when compared to control hindlimb buds at E12.5.  C. No significant difference in Sox6 

expression was seen between control and mutant hindlimb buds at either time point.  All data 

represented are mean ± SD; * = P < 0.05 using a two-way ANOVA; N=4.  
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3.5  Relative gene expression levels of Sox5, Sox6, and Col2a1 were unchanged between 

Ctcf
Fl/Fl

;Prx1Cre hindlimb buds and controls at E12.5 and E13.5, while Acan transcript 

levels increased in control limb buds over time. 

 To follow up on potential changes in chondrogenic differentiation and ECM genes 

expressed downstream of Sox9, transcript levels of Sox5, Sox6, Col2a1, and Acan were evaluated 

in control and Ctcf
Fl/Fl

;Prx1Cre hindlimb buds at E12.5 and E13.5. Sox5 expression was 

unchanged between control and Ctcf-null hindlimb buds at E12.5 and E13.5 (Figure 3.10B).  

Sox5 expression also showed a trend towards slightly reduced expression in E13.5 control 

hindlimbs compared to E12.5 controls, however this trend was not statistically significant 

(Figure 3.10B).  Finally, Sox6 expression appeared unchanged between Ctcf-null and control 

hindlimb buds at both E12.5 and E13.5 time points (Figure 3.10C).  Additionally, no significant 

differences were noted in relative Col2a1 expression between knockout and control hindlimb 

buds at either E12.5 or E13.5 time points (Figure 3.11A).  However, there was a significant 

increase in Acan expression in control hindlimb buds from E12.5 to E13.5 (Figure 3.11B).  The 

mutant hindlimb buds failed to show this same increase in expression across time, instead 

maintaining almost identical Acan expression levels at both E12.5 and E13.5 (Figure 3.11B), 

suggesting that CTCF may have a role in regulating Acan expression at this time point.  Results 

also suggested, however, that the loss of CTCF did not affect expression of Sox5, Sox6, and 

Col2a1 at this embryonic stage. 
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Figure 3.11  Relative transcript levels of Col2a1 and Acan in E12.5 and E13.5 control and 

Ctcf
Fl/Fl

;Prx1Cre hindlimbs.  

Whole hindlimb buds were removed from Ctcf-null and control animals at E12.5 and E13.5.  

RNA was collected and qRT-PCR was utilized to examine Col2a1 and Acan chondrocyte marker 

gene expression.  A. No significant difference in Col2a1 expression was seen between control 

and mutant hindlimb buds at either time point, although there appeared to be a trend showing 

reduced Col2a1 expression in mutant hindlimb buds at E13.5.  B. Acan expression was increased 

significantly from E12.5 to E13.5 in control hindlimb buds, however there was no significant 

increase in Acan expression in the mutant hindlimb buds at E13.5 when compared with E12.5 

control hindlimbs.  All data represented are mean ± SD; * = P < 0.05 using a two-way ANOVA; 

N=4.  
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3.6  Long non-coding RNAs at the Sox9 gene locus, BC006965 and D17Rik, showed relative 

expression changes between genotypes or developmental stages in the hindlimb bud, while 

expression levels of Kcnj2 and Slc39a11, genes bordering the Sox9 locus, did not change. 

 To follow up on potential expression changes in the two long non-coding RNAs present 

at the Sox9 locus, BC006965 and D17Rik transcript levels were examined in Ctcf
Fl/Fl

;Prx1Cre 

and control hindlimbs at E12.5 and E13.5.  BC006965 showed no difference in expression 

between Ctcf-null hindlimb buds and control at each time point examined; however, both control 

and mutant hindlimb buds showed significantly increased gene expression at E13.5 when 

compared to E12.5 (Figure 3.12A).  Furthermore, D17Rik expression showed no significant 

changes between genotypes at either E12.5 or E13.5 (Figure 3.12B).  Furthermore, I examined 

potential expression changes in genes bordering the Sox9 locus, Kcnj2 and Slc39a11.  While 

there were no significant differences in relative Kcnj2 expression between Ctcf-null and control 

hindlimbs at both time points, there was a trend towards a slight reduction in gene expression in 

mutant hindlimbs at E13.5 (Figure 3.13A).  No significant changes were observed in Slc39a11 

expression levels between either genotypes or developmental stages (Figure 3.13B).  Taken 

together, these results suggest that CTCF does not appear to play a critical role in regulating 

either lncRNAs at the Sox9 gene locus, or neighbouring genes.  
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Figure 3.12  Relative gene expression of long non-coding RNAs BC006965 and D17Rik in 

Ctcf
Fl/Fl

;Prx1Cre and control hindlimb buds at ages E12.5 and E13.5. 

Whole hindlimb buds were removed from Ctcf-null and control animals at E12.5 and E13.5.  

RNA was collected and qRT-PCR was utilized to examine gene expression of the long non-

coding RNAs BC006965 and D17Rik.  A. While BC006965 expression did not differ between 

genotype at either time point, both control and knockout hindlimb buds showed significantly 

increased expression at E13.5 when compared to E12.5.  B. D17Rik expression was significantly 

higher in the mutant hindlimb bud at E12.5 when compared to control hindlimb buds at E13.5.  

All data represented are mean ± SD; *, a, b = P < 0.05 using a two-way ANOVA, columns with 

different letter labels are significantly different; N=4.  
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Figure 3.13  Relative transcript levels of the genes bordering the Sox9 gene locus, Kcnj2 

and Slc39a11, in E12.5 and E13.5 Ctcf
Fl/Fl

;Prx1Cre and control hindlimb buds. 

Whole hindlimb buds were removed from Ctcf-null and control animals at E12.5 and E13.5.  

RNA was collected and qRT-PCR was utilized to examine Kcnj2 and Slc39a11  gene expression.  

A. No significant difference in Kcnj2 expression was seen between control and mutant hindlimb 

buds at either time point, although there appeared to be a trend showing reduced Kcnj2 

expression in mutant hindlimb buds at E13.5.  B. No significant difference in Slc39a11 

expression was seen between control and mutant hindlimb buds at either time point.  All data 

represented are mean ± SD; * = P < 0.05 using a two-way ANOVA; N=3.  
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3.7  No gene expression changes were seen in Cdh-2 or Cdh-11 in hindlimb buds of Ctcf-null 

or control animals at E12.5 or E13.5. 

 Proper cell-cell adhesion is critical to mesenchymal condensations and chondrogenesis 

and involves the expression of cell-cell adhesion molecules Cadherin-2 and Cadherin-11.  To 

investigate potential aberrations in cell-cell adhesion within the Ctcf
Fl/Fl

;Prx1Cre hindlimb, 

transcript levels of Cdh-2 and Cdh-11 were evaluated E12.5 and E13.5 in mutant and control 

hindlimb buds.  No discernible trends or significant differences were discovered in relative 

expression levels for both genes when examining Ctcf-null and control hindlimb buds at either 

time point (Figure 3.14A, B).  Therefore, these findings suggest that CTCF does not appear to 

play a significant role in regulating cadherin-mediated cell-cell adhesion in the developing 

hindlimb at this time point. 
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Figure 3.14  Relative gene expression of Cdh-2 and Cdh-11  in control and Ctcf
Fl/Fl

;Prx1Cre 

hindlimb buds at E12.5 and E13.5. 

Whole hindlimb buds were removed from Ctcf-null and control animals at E12.5 and E13.5.  

RNA was collected and qRT-PCR was utilized to examine Cdh-2 and Cdh-11 gene expression.  

A. No significant difference in Cdh-2 expression was seen between control and mutant hindlimb 

buds at either time point.  B. No significant difference was seen in Cdh-11 expression between 

control and mutant hindlimb buds at either time point.  All data represented are mean ± SD; * = 

P < 0.05 using a two-way ANOVA; N=4.  
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3.8  Tibiae from E15.5 Ctcf
Fl/Fl

;Prx1Cre mice displayed severe growth plate and 

mineralization defects. 

 To gain a better understanding of growth plate structure and development in the 

Ctcf
Fl/Fl

;Prx1Cre long bones, mutant and control tibiae were collected at E15.5 then sectioned 

and stained with Safranin-O/Fast Green, Von Kossa, or p57 antibody that detected cartilaginous 

proteoglycans, cartilage mineralization, and terminally differentiated cells, respectively.  

Safranin-O/Fast Green staining confirmed that  mutant tibiae were severely shortened at E15.5, 

and had few hypertrophic chondrocytes (Figure 3.15).  When stained by Von Kossa, Ctcf-null 

tibiae also showed no mineralized cartilage when compared to control littermates (Figure 

3.16A).  Finally, immunostaining was performed for p57, a marker of cell cycle exit and 

prehypertrophic chondrocyte differentiation.  Mutant tibiae showed a shortened region of cells 

positively-stained for p57 (Figure 3.16B).  The resting and proliferating zones of the growth 

plate, which did not show p57 staining, were then measured and showed significantly shorter 

zone length than control littermates (Figure 3.16C).  Notably, the tissue surrounding the tibia 

also stained positively for p57.  These results indicate that Ctcf-null mice have delayed 

chondrocyte differentiation, as well as shorter proliferative and hypertrophic zones, which likely 

contributes to the shortened hindlimb length. 
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Figure 3.15  Safranin-O/Fast Green staining of Ctcf
Fl/Fl

;Prx1Cre and control tibiae at E15.5. 

Sections from E15.5 tibiae were stained with Safranin-O/Fast Green and morphology was 

examined.  Representative images demonstrate tibiae from Ctcf-null animals (outlined in yellow 

rectangle) were shorter than control littermates and possess shorter resting, proliferative, and 

hypertrophic zones.  Scale bar = 100 μm  
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Figure 3.16  Von Kossa staining and immunostaining for p57 in Ctcf
Fl/Fl

;Prx1Cre and 

control littermate tibiae at E15.5. 

Sections of E15.5 Ctcf-null and control tibiae were stained with Von Kossa for mineralized 

cartilage, and terminal differentiation marker p57.  A. Von Kossa staining demonstrated that 

mutant tibiae lack all mineralization (brown staining) at E15.5.  B. Immunostaining for p57 in 

the prehypertrophic and hypertrophic chondrocytes showed reduced staining in mutant tibiae 

when compared to control littermates.  Resting and proliferating zones are indicated by a yellow 

bar.  C. Quantification of the resting and proliferating zones demonstrated a significant decrease 

in zone length in mutant tibiae, when compared with controls.  Data represented are mean ± SD; 

* = P < 0.05 using an unpaired T-test; N=3.  Scale bar = 100 μm  
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3.9  Ctcf
Fl/Fl

;Prx1Cre skeletons showed severely malformed hindlimbs with oligodactyly and 

reduced mineralization in the long bones, and calvarial defects at P0. 

 To examine the skeletal defects in more detail, whole skeletons from Ctcf
Fl/Fl

;Prx1Cre 

and control animals were collected at P0 and stained with Alcian blue/Alizarin red for cartilage 

and mineralized bone, respectively.  The Ctcf-null skeletons confirmed the truncated forelimbs 

and severely shortened hindlimbs with oligodactyly (Figure 3.17A, B).  The total length of each 

of the long bones was measured and results indicated that the femur, tibia, and fibula are 

significantly shorter in Ctcf-null animals than in control littermates (Figure 3.17C).  

Measurements of the mineralized zone as a percentage of total bone length also indicated that the 

mutant tibia and fibula have significantly less mineralization than controls, even after 

normalization to total length (Figure 3.17D).  An examination of the skull also showed severe 

calvarial defects.  Ctcf-null mice were missing portions of the interparietal (IP), parietal (P), 

frontal (F), and nasal (N) skull plates, which are labeled with corresponding letters on the control 

skull (Figure 3.18A).  Both the palate and jaw of the mutant animals, however, appeared 

morphologically normal when compared to controls (Figure 3.18B, C).  Therefore, these results 

suggest a role for CTCF in both endochondral and intramembranous ossification, and 

Ctcf
Fl/Fl

;Prx1Cre mice appear to have delayed chondrocyte differentiation and cartilage 

mineralization. 
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Figure 3.17  Skeletal preparations of Ctcf
Fl/Fl

;Prx1Cre animals and littermate controls at 

P0, double stained with Alcian blue and Alizarin red. 

Skeletons from Ctcf-null animals and control littermates were stained with Alcian blue and 

Alizarin red, then examined and measured for morphological differences in long bone length and 

mineralized zone.  A. Whole skeletons of the Ctcf-null animals had severely truncated forelimbs 

and shortened hindlimbs.  B. Hindlimbs of mutant animals were shorter than control littermates 

and also presented with oligodactyly.  C. Mutant femurs, tibiae, and fibulae were significantly 

shorter than in littermate controls.  D. The tibia and fibula in mutant hindlimbs had significantly 

shorter mineralized zones, as a proportion of total bone length, when compared to littermate 

controls.  All data represented are mean ± SD, * = P < 0.05 using an unpaired T-test; N=3.  Scale 

bar = 5 mm for whole body and 3 mm for hindlimbs 
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Figure 3.18  Comparison of the skull vault, palate, and jaw between Ctcf
Fl/Fl

;Prx1Cre mice 

and control littermates at P0. 

Skeletons from Ctcf-null animals and control littermates were stained with Alcian blue and 

Alizarin red, then examined for morphological differences.  A. Ctcf-null animals displayed 

severe skull defects and an open skull vault missing portions of the interparietal (IP), parietal (P), 

frontal (F) and nasal (N) skull plates, labeled with the corresponding letter on the control skull, 

and outlined in yellow in the mutant skull.  B. No differences were noted in the palates of mutant 

animals and controls.  C. No differences were noted in jaw size or morphology of mutant 

animals and controls.  N=3, scale bar = 3 mm   
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4.0  DISCUSSION 
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4.1 Summary of Results 

 The relationship between epigenetic regulation and developmental biology is becoming 

increasingly complex and exciting.  However, the role of chromatin organizers, such as CTCF, in 

the development of the hindlimb and skeleton is currently unknown.  Previous studies by 

Soshnikova et al. demonstrated the importance of CTCF in cell survival in the developing 

forelimb of Ctcf
Fl/Fl

;Prx1Cre mice
83

.  Moreover, unpublished studies from our lab using 

Ctcf
Fl/Fl

;Col2Cre mice (which lack CTCF in developing cartilage) indicate an important role for 

CTCF in maintaining Sox9 expression in cartilage (Bush et al., in prep.).  These mice present 

with a slight, but significant reduction in both Sox9 gene and SOX9 protein expression, altered 

growth plates with fewer and smaller hypertrophic chondrocytes, and campomelia - a phenotype 

that resembles the human disease Campomelic Dysplasia.  The Ctcf
Fl/Fl

;Col2Cre mouse model, 

however, involves Ctcf deletion after the onset of Sox9 expression.  Therefore, both these CTCF-

deficient animal models, as well as de novo CTCF mutations in humans, suggest a role for CTCF 

in regulating limb and cartilage development.  I used the published model of CTCF deficiency in 

the developing limb, as presented by Soshnikova et al., to examine the effects of Ctcf deletion in 

the developing hindlimb
83

.  My objective was to investigate the effects of CTCF deletion on 

chondrogenesis and skeletal development in the hindlimb of Ctcf
Fl/Fl

;Prx1Cre mice, which 

presents an intermediate phenotype between the severely malformed Ctcf
Fl/Fl

;Prx1Cre forelimb 

and the mildly disfigured Ctcf
Fl/Fl

;Col2Cre hindlimb.   

Micromass cultures from wild-type forelimbs and hindlimbs were utilized to explore the 

possibility of differential chondrogenic gene expression between limbs as a contributor to 

phenotypic activity.  Gene expression analysis was performed by qRT-PCR on key chondrogenic 

genes, and the long non-coding RNA encoded at the Sox9 locus, BC006965.  Results revealed a 
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statistically significant 3.5-fold increase in Sox9 expression in the developing forelimb 48 hours 

after plating, and 4-fold increase at 60 hours post-plating, while expression in the hindlimb 

appeared to increase over time, but these results were not statistically significant.  Sox5 

expression differed between the limbs, showing an increase in expression in the forelimb 

immediately after plating, then maintenance of expression levels from 24 to 36h before the 

transcript levels returned to baseline at 60 hours post-plating.  The hindlimb, however, showed a 

steady increase in Sox5 transcript levels over the time course, and reached a higher transcript 

level after 60 hours than the forelimb.  Sox6 expression also showed a trend towards increasing 

expression in both the forelimb and hindlimb over the time course.  Additionally, both Col2a1 

and Acan show steadily increasing expression in both forelimb and hindlimb cultures across all 

time points.  Col2a1 expression is significantly higher at 60 hours post-plating in both forelimbs 

and hindlimbs, while Acan expression is significantly higher only in the forelimb at 60 hours.  

Finally, I investigated expression levels of the long non-coding RNA BC006965 to examine a 

potential relationship with the regulation of Sox9.  Transcript levels also show trends towards 

increasing expression over time in both forelimb and hindlimb micromass cultures.  

Interestingly, when expression patterns of Sox9 and BC006965 are compared in hindlimb 

micromass cultures, they reveal almost identical changes in transcript levels at each time point.  

Taken together, these results suggests that chondrogenesis appears to occur more rapidly in 

developing forelimbs, and expression of the Sox9 and BC006965 genes may be regulated in the 

same manner.  These phenotypic differences between forelimbs and hindlimbs, provide a further 

rationale for examining the development of the hindlimb in Ctcf
Fl/Fl

;Prx1Cre mice. 

Loss of CTCF in Ctcf
Fl/Fl

;Prx1Cre mice was validated through immunostaining and qRT-

PCR.  Ctcf-null hindlimbs at age E12.5 revealed a 70% decrease in Ctcf mRNA, and a reduction 
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of CTCF protein in the limb bud mesoderm.  An examination of gross morphology revealed the 

severe limb malformations previously published, as well as a novel skull phenotype, discussed 

below.  Apoptosis in the developing hindlimb was then examined using a fluorescent TUNEL kit 

on E12.5 limb cryosections, which demonstrated that the mutant hindlimb has significantly more 

apoptosis than littermate controls, but significantly less apoptosis than corresponding mutant 

forelimbs.  The levels of cell death in the forelimb and hindlimb appear to correlate with the 

severity of the overall limb phenotype, suggesting that it may contribute to the phenotypic 

differences seen between limbs.  Another possible cause of limb shortening is a defect in 

proliferation, which I examined in the E12.5 hindlimb.  Staining for PCNA revealed no 

significant differences in proliferation at that time point; thus it does not appear that defects in 

cell proliferation are contributing to the phenotype at this embryonic stage.   

Given our unpublished data (Bush et al., in prep) indicating a role for CTCF in 

maintaining Sox9 gene expression, investigating Sox9 transcript and SOX9 protein levels in 

Ctcf
Fl/Fl

;Prx1Cre hindlimbs was important.  Immunofluorescent staining for SOX9 protein at 

E12.5 revealed no significant differences in SOX9 protein distribution between control and 

mutant animals at that time.  Sox9 transcripts also showed no differences between genotypes at 

E12.5 and E13.5. 

To investigate potential changes in chondrogenic marker genes, ECM genes, and genes 

related to the Sox9 locus, transcript levels of Sox5, Sox6, Col2a1, Acan, BC006965, D17Rik, 

Kcnj2, and Slc39a11 were analyzed in control and Ctcf-null animals at ages E12.5 and E13.5.  

No changes in Sox5 or Sox6 transcript levels were seen between genotypes at either time point.  

Col2a1 expression is also not different between genotypes or time, although mutant hindlimbs at 

E13.5 do appear to show a trend toward lower expression.  In contrast, Acan expression is 
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significantly higher in the E13.5 control limb bud, compared to E12.5 controls, but there is no 

corresponding increase in expression in the mutant hindlimb at E13.5.  Both BC006965 and 

D17Rik demonstrate no significant difference across time or genotype in expression, although 

there is a marked trend towards increased BC006965 expression in both control and mutant 

hindlimbs at E13.5.  The two genes bordering the Sox9 locus, Kcnj2 and Slc39a11, were also 

examined, but showed no significant changes, suggesting they are regulated independently of 

Sox9.  Finally, gene expression changes for Cdh-2 and Cdh-11 were also examined to rule out 

potential defects in cell-cell adhesion in early mesenchymal condensations, but no significant 

differences were seen.  Taken together, these results suggest that CTCF may have a role in 

regulating Acan expression in early limb development, however it does not contribute to 

regulation of other cartilage and ECM markers, as well as Sox9 locus-related genes and cell-cell 

adhesion markers examined. 

To gain a better understanding of the role of CTCF in growth plate structure and 

development, Ctcf
Fl/Fl

;Prx1Cre long bones were examined via histology at E15.5.  Tibial 

sections were stained with Safranin-O/Fast Green, and Von Kossa, and immunohistochemistry 

was performed for cell cycle exit marker p57.  Safranin-O staining revealed disorganized growth 

plates with fewer hypertrophic chondrocytes in the mutant tibia.  Mutant tibiae also failed to 

mineralize at E15.5, although control counterparts demonstrated significant mineralization.  p57 

staining and measurements of the resting and proliferating zones also revealed that each growth 

plate zone is significantly shorter in Ctcf-null animals.  Therefore, Ctcf
Fl/Fl

;Prx1Cre mice appear 

to have a delay in chondrocyte differentiation and severe growth plate defects. 

Finally, the skeletons were examined at P0 using Alcian blue/Alizarin red double staining 

for cartilage and mineralized bone.  After birth, Ctcf-null mice show severe hindlimb defects and 
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oligodactyly, and the femur, tibia, and fibula are all significantly shorter than control 

counterparts.  Interestingly, P0 tibiae show mineralization, however the amount of mineralization 

as a proportion of total bone length is significantly reduced in the tibia and fibula of Ctcf-null 

mice.  Furthermore, mutant mice are missing portions of each of the interparietal, parietal, 

frontal, and nasal skull plates.  These findings suggest that CTCF is critical for proper 

chondrogenesis and hindlimb development, as well as skull development. 

 

4.2 Contribution to the Current State of Knowledge of CTCF in Hindlimb Development 

and Potential Future Studies 

 The role of CTCF in limb development was first described by Soshnikova et al. in 2010 

through analysis of the developing forelimb in Ctcf
Fl/Fl

;Prx1Cre mice.  Ctcf-null forelimbs were 

described as undergoing massive amounts of apoptosis, which was correlated to up-regulation of 

the pro-apoptotic gene Puma (p53 up-regulated modulator of apoptosis), contributing to the 

severe defect and total abrogation of limb growth.  Additionally, although genome-wide studies 

identified CTCF binding sites within and surrounding the HOXD cluster, Soshnikova et al. found 

that the Hoxd genes were not regulated by CTCF.  These studies, however, did not investigate 

the effects of CTCF inactivation in the developing hindlimb, which presented with a less severe 

phenotype.  Moreover, unpublished data from our lab suggest a role of CTCF in maintaining 

Sox9 expression, however the effects of deletion of Ctcf prior to the onset of chondrogenesis 

have not yet been investigated.  Therefore, the studies presented in this thesis are the first to 

examine the hindlimb of Ctcf
Fl/Fl

;Prx1Cre mice in detail at the molecular level.   

 I confirmed that, as presented by Soshnikova et al., loss of CTCF in the developing 

forelimb leads to an increase in apoptosis, which we also observe in the mutant hindlimb
83

.  

However, the reduced amount of apoptosis in the Ctcf-null hindlimb (compared to the mutant 
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forelimb) might account for its less severe phenotype.  I speculate that the reduced level of 

apoptosis seen in the hindlimb is correlated with reduced Cre expression in the hindlimb 

compared to the forelimb
83,90,91

.  The population of cells that escape Cre inactivation and are not 

Ctcf-null in the hindlimb is therefore greater that in the corresponding forelimb, which likely 

contributes to the less severe phenotype.  I speculate that the increased cell death in the hindlimb 

may also be correlated to up-regulation of the p53 effector PUMA, as seen in the mutant 

forelimb.  CTCF is a known repressor of PUMA, and has been shown to bind with cohesin 

intragenically at the PUMA locus to dampen expression of PUMA
92

.  Moreover, PUMA was also 

up-regulated in the Ctcf-null developing forebrain studied by Watson et al., and deletion of both 

Ctcf and Puma in the embryonic brain rescued Ctcf-null neuroprogenitor apoptosis
84

.  Taken 

together these results suggest that loss of CTCF in the hindlimb may lead to PUMA up-

regulation, thereby causing apoptosis.  Further investigations into Puma expression and function 

in the Ctcf-null hindlimb would be needed to confirm this hypothesis. 

My investigation into proliferation also confirmed results reported by Soshnikova et al. 

where Ctcf mutant forelimbs showed normal cell proliferation at E11.5
83

.  The PCNA-stained 

hindlimbs at age E12.5 showed no differences in proliferation between control and Ctcf-null 

hindlimbs, as we expected.  This finding also provides insight into the phenotypic differences 

between the developing forelimb and hindlimb in Ctcf
Fl/Fl

;Prx1Cre mice, suggesting that cell 

proliferation does not contribute to the differences witnessed, and that CTCF is not critical for 

regulating proliferation at this stage of development.  It is important to note, however, that 

immunostaining analysis of proliferation is not as sensitive as detection of DNA synthesis with 

BrdU or EdU, and future experiments confirming proliferation using a thymidine analogue 

method would be appropriate.  
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During the mesenchymal condensation stage at E12.5 immediately preceding 

chondrogenic differentiation, CTCF does not appear to be important in regulating the onset of 

Sox9 transcript expression or SOX9 protein localization.  These data are in agreement with the 

absence of changes in levels of Sox5 and Sox6 transcripts between control and Ctcf-null mice at 

these time points.  This finding was somewhat unexpected given our lab's data on CTCF binding 

to the Sox9 locus and its critical role in maintaining Sox9 expression in cartilage (Bush et al., in 

prep.).  Thus, the absence of changes in the expression of most other examined genes was not 

surprising, since most of them are regulated by SOX9.  Our data suggest that CTCF plays 

different roles in the regulation of Sox9 expression at different developmental stages; the 

molecular basis of this interesting phenomenon is unknown, but should be examined in the 

future.  For such studies, it will be essential to determine how CTCF regulates DNA looping and 

epigenetic events (DNA methylation, histone modifications etc.) in the Sox9 locus.   

CTCF loss did not affect the expression of the critical cartilage ECM gene Col2a1 at 

either E12.5 or E13.5 in the hindlimb bud, however Acan expression failed to increase in the 

mutant hindlimb at E13.5.  Since Sox9 does not appear affected in the mutants at this stage, these 

data suggest that CTCF regulates Acan expression through other mechanisms. Deletion of Ctcf 

leads to a disrupted growth plate with shorter resting and proliferative zones, as well as fewer 

hypertrophic chondrocytes.  Interestingly, the shortened hypertrophic zone seen in 

Ctcf
Fl/Fl

;Prx1Cre mice is similar to the growth plates in humans with CCD, caused by 

haploinsufficiency of RUNX2
46

.  Additionally, mutant tibiae fail to mineralize at E15.5, but have 

some mineralization by birth, although significantly less than controls.  The mineralization 

defects suggest that CTCF may, in part, regulate cartilage mineralization in the long bones.  

Taken together, these results provide strong evidence for CTCF as a regulator of chondrocyte 
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differentiation and progression through the chondrocyte life cycle, perhaps through regulation of 

Runx2.  These results also suggest a potential explanation for the short stature seen in human 

patients with heterozygous mutations in CTCF.   

In contrast to long bone development, the skull is formed through intramembranous 

ossification.  The murine skull is composed largely of parietal and frontal skull plates, which are 

derived from cephalic mesoderm and cranial neural crest cells, respectively.  Here I show that 

CTCF is important for normal development of the cranial vault.  The Ctcf
Fl/Fl

;Prx1Cre mice are 

born with large holes in their skull, and lack portions of each of the parietal, frontal, nasal, and 

interparietal calvariae, or skull plates.  No previous studies have implicated CTCF in skull 

development or intramembranous ossification, thus the novelty of this result should be 

underscored.  Interestingly, the poorly developed skull is remarkably similar to, but slightly less 

severe than that described for conditional knockout mice for transforming growth factor beta 

(TGF) reported by Seo and Serra in 2009.   The Tgfb2
Fl/Fl

;Prx1Cre mice are also neonatal lethal 

and are born with an open skull.  Their studies demonstrate that while slightly reduced 

proliferation in the developing skull vault may contribute to the phenotype, there is a significant 

down-regulation of both Runx2 and Osterix (OSX) expression in the mutant embryos, suggesting 

altered osteoblast differentiation.  Given the similarity of the phenotypes, one possibility is that 

CTCF may play a role in regulating RUNX2, OSX, or both, potentially through TGF, and future 

studies should consider investigating these factors. 

It is also possible that CTCF function in tissues surrounding the developing skeleton 

contributes to the phenotype seen in the Ctcf
Fl/Fl

;Prx1Cre mice.  Both paracrine or biomechanical 

mechanisms should be considered, and tendons are a potential candidate tissue to investigate 

further.  The Prx1 enhancer used to drive Cre expression in Ctcf
Fl/Fl

;Prx1Cre mice is expressed 
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in the tendons of the forelimb and hindlimb buds by E15.5
90

.  CTCF function has not yet been 

investigated in tenogenic cells, yet it seems critical for all tissues in which it has been examined, 

therefore we speculate that the deficiency of CTCF in tendons could lead to chemical or physical 

force alterations, or both.  Generation and analysis of a mouse with the conditional deletion of 

CTCF in tendons using a Scleraxis Cre driver would be a reasonable way to approach these 

postulations. 

Finally, my studies suggest subtle differences in chondrogenesis between forelimbs and 

hindlimbs.  It is well established that development proceeds from cranial to caudal; thus, a slight 

delay in development of the hindlimb is expected. However, my data also suggest some 

variances in the patterns of chondrogenic gene induction between the limbs. On the other hand, 

some of the experimental limitations discussed below resulted in large variability between trials, 

especially for the hindlimb; thus, further investigations are required to characterize the 

differences between forelimb and hindlimb.  

 

4.3 Limitations of Research and Alternative Approaches 

 In the studies presented, an in vitro micromass culture system was utilized.  This culture 

method allows investigators to examine chondrogenic tissue formation in a controlled 

environment without artificial materials and is well-established in the field of skeletal 

biology
88,89,93

.  However, mesenchymal cells are pluripotent and can differentiate into other non-

cartilaginous tissues, such as adipose tissue, muscle, and bone.  Although previous studies in our 

lab demonstrated an increase in cartilage-specific markers and gene expression over time, in 

conjunction with a decrease in gene expression for markers of other cell types, the differentiation 

of these cells into chondrocytes is density-dependent.  Cells on the periphery of these micromass 

cultures are subject to slightly different conditions, and therefore the potential exists for 
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additional cell types to be present within these cultures. This results in increased variability in 

gene expression analyses, which we did observe, especially in the hindlimb micromass cultures.  

Another cause of this variability is the exact time between fertilization and harvest of embryos 

that can vary from litter to litter (as discussed further below). This will particularly affect the 

hindlimb as it is developmentally delayed compared to the forelimb.  

 The Ctcf
Fl/Fl

;Prx1Cre mouse model used in these studies was originally published in 

2010 by Soshnikova et al
83

.  This mouse model involves the conditional loss of CTCF in early 

limb mesenchyme, prior to the onset of chondrogenesis.  The Prx1 Cre driver is well-established 

in the limb development field for examining limb-specific effects of a certain gene, however 

there are certain limitations to this mouse model use of this model
90,91

.  First, Prx1 is not as 

robustly expressed in the developing hindlimb as in the forelimb, and Cre expression is therefore 

considered “leaky”.  Because a number of cells escape Cre inactivation, there is still CTCF 

protein present in the mutant mouse hindlimb.  The presence of any amount of CTCF is a 

confounding factor when considering results, particularly differences between the forelimb and 

hindlimb phenotype in these mice.  Second, a mesenchyme-specific Cre driver leads to deletion 

of Ctcf in chondrogenic precursor cells, as well as progenitors for other cell types such as 

tendons and osteoblasts
90,91,94,95

.  This consideration is important because of the large number of 

interactions between tissue types during development.  Furthermore, the deletion of Ctcf in 

developing tissue and tissue surrounding the cartilage elements may contribute to the limb 

defects witnessed and the severity of the phenotype in Ctcf
Fl/Fl

;Prx1 mice compared to 

Ctcf
Fl/Fl

;Col2 mice with Ctcf-null cartilage.  The loss of CTCF in multiple tissues therefore 

makes it difficult to pinpoint a specific role for the protein in one individual tissue.  This model 

is, however, beneficial when examining a more global role for CTCF in a developing body part.  
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Third, Prx1 expression is not just limited to the developing limb mesenchyme.  Ctcf is therefore 

conditionally deleted in other tissues including the skull mesenchyme, forebrain, and developing 

heart valves.  The loss of CTCF in multiple tissues leads to difficulty in discerning the cause for 

the neonatal lethality of the mutant mice.   

Beyond limitations of the mouse model utilized, there are technical limitations to these 

studies as well.  Mice were mated in a timed process, as described in methods, and all dissections 

took place at 10 am to reduce variability.  However, timed matings do not guarantee that all 

embryos are the same age at the time of dissection.  Both the time of mating and fertilization 

contributes to variability between embryonic age; therefore, although the hindlimb tissue taken 

from mutant and control mice for RNA isolation and gene expression analyses were assumed to 

be E12.5, there is some variability between litters.  These studies would thus benefit from 

increasing the number of trials to ensure the studies have enough power.  Additionally, the whole 

hindlimb bud was taken from mutant and control embryos, including the ectoderm, in which Ctcf 

was not deleted.  Inclusion of the CTCF-rich ectoderm in the samples taken for qRT-PCR 

analyses may have confounded the results, and future studies should involve microdissection of 

just mesenchymal tissue.  Another significant limitation to these studies involved mouse 

breeding issues.  Although the colonies were closely monitored and taken care of in accordance 

with all animal breeding protocols at Western University, I encountered difficulty when breeding 

mice for experiments and was limited by the small number of litters containing both mutant and 

control animals.  This lack of animals for use in experiments led to the decision of examining 

only E12.5, E15.5, and P0 animals.  Although these three time points have led to a wealth of 

information on the role of CTCF in the developing hindlimb, examining additional time points is 

advisable to produce a more complete time course.  Future studies should examine histology and 
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immunofluorescence at E13.5, and histology at E14.5, E16.5, and E17.5 to pinpoint the earliest 

onset of the phenotype, and when mineralization occurs in mutant tibiae. 

Finally, my findings raised multiple interesting questions that should be followed up with 

additional experiments.  First, previous studies in our lab have examined CTCF binding to 

genomic DNA in developing wild-type cartilage at E15.5.  Performing RNA sequencing (RNA-

seq) on cartilage from Ctcf
Fl/Fl

;Prx1Cre tibiae at E15.5 to detect key target genes would be an 

appropriate follow-up.  Genes identified by RNA-seq as having altered transcription in Ctcf-null 

hindlimbs could then be compared to CTCF-binding in normal cartilage, and a list of target 

genes could be compiled.  This experiment would help narrow the focus to the specific role of 

CTCF in developing cartilage.  Once target genes have been identified, performing circularized 

chromosome conformation capture (4C) and chromosome conformation capture (3C) may be of 

interest to detect chromosomal interactions at target gene loci and provide more insight into the 

mechanism of CTCF-mediated gene regulation.  Moreover, performing ChIP-seq for cohesin 

binding and other epigenetic markers (e.g. histone modifications) in the wild type and Ctcf-null 

hindlimb would provide mechanistic insights into how CTCF controls DNA looping and gene 

expression. 

Additionally, my studies have shown growth plate abnormalities in Ctcf-null tibia, and a 

failure or delay of chondrocytes to become hypertrophic.  Use of a Ctcf
Fl/Fl

;Col10Cre mouse line 

to conditionally delete CTCF in hypertrophic chondrocytes would undoubtedly provide more 

insight into this interesting phenotype and the role of CTCF in chondrocyte differentiation.  

Furthermore, evidence indicates the importance of CTCF in proper cartilage and long bone 

development, however both the Ctcf
Fl/Fl

;Prx1Cre and Ctcf
Fl/Fl

;Col2Cre mice are neonatal lethal.  

Using the tamoxifen-inducible Ctcf
Fl/Fl

;Aggrecan-CreER(T2) mouse model would allow the 
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depletion of CTCF in developing or adult cartilage at various time points.  In particular, this 

mouse model would allow an investigation into the role of CTCF in adult cartilage and a 

potential role for CTCF in age-related cartilage diseases such as osteoarthritis.  Finally, these 

studies have provided evidence for a role of CTCF in the developing skull.  This result is novel 

and given the severity of the calvarial defects, an investigation into the role of CTCF in 

intramembranous ossification and specifically skull development is advised.  These studies 

should include histology to examine proliferation and apoptosis in the developing skull vault, as 

well as investigation of osteoblast differentiation markers. 

  

 

4.4 Significance 

 Human limb malformations are a type of congenital anomaly with a major burden on 

individuals, families and the public health system.  The 2013 Congenital Anomalies in Canada 

Report by the Public Health Agency stated that Limb Deficiency Defects are characterized by 

total or partial absence of a limb, or a smaller portion, and occur in three to eight infants per 

10,000 live births.  Limb defects, however, are a heterogeneous group of malformations and limb 

development is a highly complex process that is not yet completely understood.  Knowledge of 

the regulation of chondrogenesis and skeletal development in the hindlimb is critical for 

understanding both normal and pathological limb development.  Particularly, elucidating the role 

of chromatin organizers such as CTCF will shed light on the regulation of key genes involved in 

chondrogenesis and help provide a more global understanding of severe chondrodysplasias.  The 

studies in this thesis have underscored the importance of CTCF in proper hindlimb development 

and endochondral ossification, and provided insight into the phenotype seen in human patients 

with mutations in CTCF.  My work suggests that CTCF is an important regulator of the cartilage 
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growth plate and proper mineralization of developing long bones, and is critical for preventing 

apoptosis in the developing limb.  In conclusion, these studies have contributed valuable insights 

into chondrogenesis and hindlimb development, and may ultimately lead to improved detection 

and treatments of limb and skeletal malformations. 
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APPENDIX 

Animal Use Protocol 

 

2007-045-06::7: 

AUP Number: 2007-045-06 

AUP Title: Regulation of Endochondral Bone Growth by Hormones 

 

 

Yearly Renewal Date: 08/01/2014 

The YEARLY RENEWAL to Animal Use Protocol (AUP) 2007-045-06 has been approved, and will be approved 

for one year following the above review date. 

1. This AUP number must be indicated when ordering animals for this project. 

2. Animals for other projects may not be ordered under this AUP number. 

3. Purchases of animals other than through this system must be cleared through the ACVS office. 

Health certificates will be required. 

REQUIREMENTS/COMMENTS 

Please ensure that individual(s) performing procedures on live animals, as described in this protocol, are familiar with 

the contents of this document. 

The holder of this Animal Use Protocol is responsible to ensure that all associated safety components (biosafety, 

radiation safety, general laboratory safety) comply with institutional safety standards and have received all necessary 

approvals. Please consult directly with your institutional safety officers. 

Submitted by: Kinchlea, Will D  

on behalf of the Animal Use Subcommittee  
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