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Abstract 

Here, we apply Molecular Dynamics (MD) simulations to investigate fundamental 

aspects of structural mass spectrometry (MS). We first examine microscopic phenomena 

underlying Hydrogen/Deuterium exchange (HDX). HDX interrogates structural dynamics 

of proteins by measuring the rate of Deuterium uptake into backbone amides. We 

perform microsecond MD simulations on ubiquitin to investigate this process. We find 

that HDX protection often cannot be explained by H-bonding or solvent accessibility 

considerations. These findings caution against non-critical use of HDX data in structural 

contexts. We next use MD to examine the Electrospray ionization (ESI) mechanism of 

proteins. ESI is a soft ionization technique resulting in the production of gaseous protein 

ions. The mechanism of ion formation from nanometer sized droplets is unclear. We 

apply a trajectory stitching MD approach to simulate protein-containing nanodroplets, 

finding that natively-folded proteins remain solvated as droplets shrink. Residual charge 

carriers remain following desolvation, consistent with Dole’s charged residue model. 
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1 Introduction 

1.1 Proteins 
Proteins are a diverse class of biological macromolecules responsible for the vast 

majority of physiological functions in vivo, including structural, signaling, and catalytic 

processes. They are polymers of amino acids ranging in size from single chains of only a 

few kDa1 to multi-chain complexes of several MDa.2 

The dependence of correct protein function on structure is a long-established tenet of 

structural biology.3-5 In the textbook example of serine protease action, the enzyme active 

site contains an “oxyanion hole” positioned ideally to coordinate a tetrahedral 

intermediate along the protein hydrolysis reaction coordinate. Similarly elegant 

geometries are present in the active sites of enzymes ranging from lysozyme4,6 to FOF1 

ATPase.7 Conversely, even small changes in the amino acid sequence of proteins – 

sometimes referred to as their “primary structure” – can result in deleterious 

consequences for the protein’s three-dimensional structure and function. For example, a 

single amino acid substitution to the oxygen carryier hemoglobin results in sickle cell 

disease.8 As a result of this dependence, research on proteins often focuses on 

determining both structural and dynamic properties. 

X-ray crystallography remains the gold-standard technique for high-resolution protein 

structural determination, accounting for more than 90% of structures deposited in the 

RCSB Protein Data Bank.9 High resolution structures have led to revelations in 

understanding of biological systems from the first protein X-ray structure of sperm whale 

myoglobin10 to solving the crystal structure of the bacterial ribosome.11 Unfortunately, 

many proteins cannot be purified in sufficient quantity to form suitable crystals for X-ray 

diffraction, are intrinsically disordered, or are otherwise not amenable to x-ray 

crystallography studies. Nuclear magnetic resonance (NMR) spectroscopy and 

cryo-electron microscopy can obtain high-resolution structures of some of these 

proteins12,13 but each still requires high concentrations of homogenous sample, and also 

suffers from size limitations and other disadvantages. When high resolution cannot be 
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easily obtained, one can still probe structure using lower-resolution techniques including 

ultraviolet-visible light spectroscopy14, circular dichroism spectroscopy15, small angle 

scattering experiments16, or structural mass spectrometry. Structural mass spectrometry is 

a widely-applicable and highly adaptable technique which can yield a wealth of structural 

data17, as will be discussed below. 

1.2 Mass Spectrometry 

Mass spectrometry (MS) is an analytical technique that measures the mass to charge ratio 

(m/z) of analyte ions, where m is the ion mass in Daltons and z is the charge in terms of 

the elementary charge, e. The foundations for MS were laid during J. J. Thomson’s 

search for the electron, and subsequent developments in the early 20th century extended 

its use to characterizing isotopic distributions and identifying organic compounds.18 

Further developments opened the door for MS on biological macromolecules and 

structural MS studies. Today, alongside their use in traditional research environments, 

MS is applied in fields as diverse as forensics19 and space exploration.20 

MS is a hugely useful technique for chemical and protein analysis largely because of its 

minimal analyte consumption, high sensitivity, low cost of operation, and tolerance for 

non-homogenous samples. Instruments are varied, and often specialized for particular 

applications, but they generally consist of three components: an ion source, a mass 

analyzer, and a detector. We will touch on each of these components briefly, highlighting 

aspects relevant to protein MS. 

1.2.1 The Ion Source 

The ion source generates charged gas-phase species. Many different ionization strategies 

have been developed. Electron impact ionization has been in use for both solid and 

gaseous analytes for nearly a century21,22, and has proven to be effective for detection and 

identification of small molecules. Other techniques, including chemical ionization 

approaches23 have also been successful in this area. Unfortunately, these “harsh” 

ionization techniques, which rely on gas phase collisions between the analyte and 

charged particles, lead to extensive fragmentation, a problem that is exacerbated for large 

analytes. 
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In order to analyze proteins via MS, researchers typically rely on one of two “soft” 

ionization methods developed in the late 1980’s: matrix-assisted laser 

desorption/ionization (MALDI) and electrospray ionization (ESI). MALDI, developed by 

Karas and Hillenkamp24, uses an ultraviolet laser to vaporize and ablate a protein 

co-crystallized with an organic “matrix.” The precise mechanism of ionization in 

MALDI is still not comprehensively understood25, but it is known to produce intact 

protein ions in the gas phase and can be tuned for resilience to the presence of 

contaminants such as salt and detergent.26,27 

ESI, which will be discussed in more detail below, was developed by Fenn and 

co-workers.28 It relies on the production of highly-charged protein ions from charged 

solvent droplets. ESI has many of its own advantages for protein analysis, including its 

ability to be directly coupled to upstream chromatography for efficient separation and 

analysis of complex mixtures, and has become the most-used ionization technique in 

protein MS.29 

More recently, a number of “ambient” ionization techniques have been developed for in 

situ analyses that require efficient ionization outside the confines of the laboratory. These 

include desorption electrospray ionization30 and laser ablation / electrospray ionization.31 

1.2.2 The Mass Analyzer 

The mass analyzer separates gas phase ions based on their m/z values. These analyzers 

typically consist of magnetic and electric fields forming ion “optics” which focus and 

guide the analyte ions to the detector, as governed by the classical equation of motion for 

ions: 

𝑚
𝑧
𝒂
𝑒

 = 𝑬 + (𝒗 ×  𝑩)                                               (1.1) 

where m is the mass of the particle, z is the ion charge in terms of the elementary charge 

(e), a is acceleration, E is the electric field, v is velocity, and B is the magnetic field 

(bolded quantities represent vectors). Equation 1.1 is derived from Newton’s second law 

and the Lorentz force law. 
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In order to reduce collisions with background gas molecules, prevalent at ambient 

pressures, mass analyzers are housed inside a vacuum chamber held at a pressure that is 

typically less than 10-6 Torr by vacuum pumps. Modern mass analyzers are able to 

achieve both high sensitivity and high resolution. Capacity for tandem MS experiments, 

low cost, and small size are additional desirable features in a mass analyzer. 

Electric and/or magnetic sector mass analyzers were among the first to be developed32 

and are still in use today. In this type of instrument, travelling ions are deflected by static 

electric or magnetic fields in discrete regions of their flight path. For particles with a 

known initial velocity, their deflection can be calculated precisely using equation 1.1. 

These instruments are typically operated in a continuous scanning mode, which 

modulates the magnitude of the electric or magnetic field to transmit only a single m/z to 

the detector at a given time. This scanning is highly selective, but carries the risk that 

ions which are not “caught” by the specific parameters chosen will not be detected by the 

instrument. Sector instruments also tend to be expensive due to the strong static magnetic 

fields that they must generate and are less suitable for performing tandem MS 

experiments than other platforms, resulting in their being used primarily for small 

molecule analyses. 

Quadrupole mass analyzers consist of four conducting cylindrical rods, which use a 

combination of radio-frequency (RF) voltage and DC voltage to filter out all but a small 

m/z window. The RF voltage is applied such that the potential on opposite rods is 

in-phase and that on adjacent rods is out-of phase. When only this RF voltage is applied, 

ions oscillate about the center of the quadrupole, but all are transferred through (except 

for ions with very low m/z such that they impact the rods). However, when a DC voltage 

is applied such that opposite rods have the same potential, trajectories of ions outside a 

small m/z window become destabilized, impacting the rods and not transmitting to the 

detector. Quadrupole mass analyzers are commonly used in protein MS because they are 

inexpensive, compact, and amenable for use in tandem MS, such as in a triple quadrupole 

arrangement.33 Quadrupoles analyzers are typically operated in scanning mode, similar to 

sector instruments. 
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Pulsed mode analyzers accept packets of ions from an upstream ion gate or directly from 

a pulsed ion source such as MALDI. This type of analyzer includes time-of-flight (TOF) 

analyzers, Orbitrap analyzers, and Fourier transform ion cyclotron resonance (FTICR) 

analyzers. The latter two operate under a similar principle, whereby ions are trapped in a 

harmonic oscillating orbit passing close to a detector and inducing a current, which is 

recorded and later deconvoluted using a Fourier transformation to identify the individual 

m/z ratios of species in the ion packet. Orbitrap instruments use an electric field to 

accomplish this task34, while FTICR instruments use a strong magnetic field.35 Both can 

achieve very high resolutions and mass accuracy, but require long acquisition times to do 

so for large analytes, making them somewhat less useful for coupling to continuous flow 

sources such as ESI. Superconducting magnets needed for the highest resolution ion 

cyclotron resonance instruments are also very expensive to cool and maintain. 

TOF instruments have somewhat lower resolving power than Orbitrap or FTICR 

instruments, but still provide many of the same advantages, while being relatively 

inexpensive. Their high duty cycle allows efficient coupling to chromatography and use 

in tandem MS applications.36 TOF analyzers accelerate ions through an electric field 

before allowing them to drift through a field-free region. The speed of the ions as they 

enter the field free region is given by: 

𝐸𝑝𝑝𝑝𝑒𝑝𝑝𝑝𝑝𝑝 = 𝐸𝑘𝑝𝑝𝑒𝑝𝑝𝑘                                              (1.2) 

  𝑒𝑒∆𝑈 = 1
2
𝑚𝑣2                                                  (1.3) 

𝑣 = �2𝑒𝑧∆𝑈
𝑚

                                                        (1.4) 

where v is the ion speed, z is the charge in terms of the elementary charge, e, ∆U is the 

potential difference across the electric field, and m is the ion mass. Since particles move 

at a constant speed in the vacuum environment of the TOF’s field free region, flight time 

can be calculated as: 

𝑡𝑓 = 𝑝
𝑣
                                                              (1.5) 
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where tf is the ion flight time, l is the length between the “pusher” field region and the 

detector. Combining equations 1.4 and 1.5 yields: 

𝑝
𝑝𝑓

= �2𝑒𝑧∆𝑈
𝑚

                                                        (1.6) 

𝑡𝑓 = 𝑙� 𝑚
2𝑒𝑧∆𝑈

= �𝑚
𝑧
� 𝑝2

2𝑒∆𝑈
                                              (1.7) 

which can be simplified to 

𝑡𝑓 = �𝑚
𝑧
𝑘                                                          (1.8) 

where k is a constant that is independent of the ion species. Ions with a greater m/z arrive 

later after the ion packet is released, and the flight time recorded can be used to 

determine the m/z precisely using equation 1.8. For improved resolution, modern TOF 

analyzers typically employ acceleration orthogonal to the ions’ original direction of 

travel. A reflectron reduces peak broadening which is encountered when ions with the 

same m/z have different initial velocities. The reflectron also lengthens the ion path 

without substantially increasing instrument size. TOF analyzers are commonly used for 

MS analysis of both proteins and small molecules. 

1.2.3 The Detector 

The detector is the component in a MS instrument that is responsible for recognizing the 

presence of ions at a given m/z which have been separated in the mass analyzer. In 

instruments where ions make direct contact with the detector, such as TOF, quadrupole, 

or sector analyzers, some form of electron multiplier is typically used. In these devices, a 

single ion impacting the detector induces secondary emission of several electrons from 

the detector surface. This multiplication of signal occurs several times over as emitted 

electrons impact the multiplier again, resulting in a detectable current pulse. Modern 

instruments often make use of multi-channel plates with many small electron multiplier 

channels due to their high signal gain, short duty cycle, and ability to resolve ions in both 

space and time.36 For Orbitrap and FTICR instruments, ions do not impact a detector, but 
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instead pass between pairs of metal-plate electrodes while being trapped in the analyzer, 

inducing a weak AC voltage, which can be transformed into discrete m/z signals.34,35 

The detector signals are digitized and recorded on a computer, which performs the 

necessary mathematical transformations to calculate m/z values and intensities of ions. 

Many separate signals from the detector are combined to yield a full mass spectrum. 

1.3 Electrospray Ionization 

Electrospray ionization is a soft ionization technique, which is capable of ionizing large 

proteins to very high charge states. ESI is effective for a wide range of analyte sizes, 

from inorganic ions to small organic molecules to GDa proteins37, regardless of whether 

these species are charged or neutral in solution. ESI-MS was first demonstrated by Dole 

for analyzing masses of polystyrene38, with subsequent development by Fenn and 

co-workers extending the technique to other organic molecules, negatively charged 

analytes, and large proteins28,39,40 for which he was awarded a part of the 2002 Nobel 

Prize in chemistry.29 

In ESI, a low-concentration protein solution is introduced into a metal capillary. A 

potential of several kV is applied, with the counter electrode located at the orifice of the 

instrument’s mass analyzer (Figure 1.1). Electrophoretic separation of charge in the 

analyte solution is driven by this potential, resulting in the formation of a Taylor cone at 

the capillary tip41 as charge is accumulated and deforms the meniscus. When Coulombic 

repulsion exceeds surface tension, a highly-charged jet is emitted from the Taylor cone42, 

which quickly deforms and disintegrates into charged droplets. Charge balance is 

provided by electrolytic reactions at the capillary electrode, resulting in continuous 

emission of charged droplets as long as sample is infused. Charge in these droplets is 

predominantly carried by small ions including H+, Na+, Cl-, or NH4
+ which were present 

in the initial analyte solution. For simplicity, the remainder of the discussion on ESI will 

assume that instrument is run in positive ion mode (i.e. a positive potential is applied to 

the capillary) such that ESI generates gaseous cations. 
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1.3.1 Charged Droplets 

Charged droplets are generated from the ESI source, carrying away a large portion of the 

charge accumulated in the Taylor cone, but a comparatively small volume of sample. The 

size of these droplets is strongly dependent on the size of the capillary tip, and varies 

based on voltage and sample flow rate, but they are typically on the order of 10-5 m to 

10-7 m range.37,43 Charge density at the surface of these droplets increases over time 

concomitant with solvent evaporation, until surface tension is overcome by Coulombic 

repulsion at the Rayleigh limit, which can be calculated by44: 

𝑒𝑅 = 8𝜋
𝑒
�𝜀0𝛾𝑟3                                                         (1.9) 

where zR is the number of elementary charges, e, at the Rayleigh limit, ε0 is the vacuum 

permittivity, γ is the surface tension of the solvent, and r is the droplet radius. 

Figure 1.1 Schematic of an ESI ion source. Taylor cones are formed at the inlet 
capillary (left) and in evaporating droplets (inset), as charge accumulates at the surface. 
Late progeny droplets (blue) give rise to gas-phase ions (red), which are detected inside 
the instrument, at right. 
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At the Rayleigh limit, micrometer-sized droplets form Taylor cones, and emit still 

smaller progeny droplets, which carry away a substantial portion of the charge, but 

comparatively little of the droplet volume.42,45 After this fission, both parent and progeny 

droplets carry charges below the Rayleigh limit, and solvent evaporation occurs again. 

Several cycles of evaporation and fission may occur, until final-generation nanometer 

scale droplets are produced. These final progeny droplets emit gas phase ions, which 

ultimately enter the mass analyzer. 

1.3.2 ESI Mechanisms 

The mechanisms by which ion species are transferred from the final-generation droplets 

to the gas phase are still being debated.46-49 Several mechanisms have been proposed 

which are relevant to the formation of gas-phase protein ions: the ion evaporation model 

(IEM), the charged residue model (CRM), and the chain ejection model (CEM) (Figure 

1.2). All predict that ions are formed by nanometer scale droplets, but they differ in the 

mechanism of ion release. 

1.3.2.1 The Ion Evaporation Model 

The IEM suggests that once droplets are below a radius of several nanometers, charged 

ions are directly emitted from the droplet to shed charge as the surface charge density 

approaches the Rayleigh limit50 (Figure 1.2a). The IEM is suspected to be the dominant 

ion formation mechanism for small pre-formed ions, such as NH4
+ and CH3COO- but has 

also been proposed as a mechanism by which protein ions may enter the gas phase.51 

Simulation studies of the ESI process have generally supported the view that IEM 

pertains predominantly to small molecules.47,48,52 

1.3.2.2 The Charged Residue Model 

The CRM was proposed by Dole in his formative work on ESI.38 It supposes that there 

exist many late-progeny droplets which contain only a single analyte ion. As solvent 

evaporates from these droplets, the remaining charge is left on the residual solute by 

charge transfer reactions or ionic attraction, resulting in a charge state that is 

approximately equal to that of an analyte-sized Rayleigh-charged droplet (Figure 1.2b). 
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This model is well supported in both experimental and simulation studies of proteins and 

model polymers48,53,54, although it has not been observed directly. For small charged 

NaCl clusters and solvated metal ions, the CRM has been shown to be the dominant 

mechanism of ion formation by molecular dynamics simulation52,55, and it is suspected 

that this mechanism will also be dominant for large, hydrophilic species, such as folded 

proteins. 

1.3.2.3 The Chain Ejection Model 

A final model relevant to protein ion formation, the CEM, proposes that unfolded 

proteins are extruded from the droplet concomitant with charging via protonation on 

acidic and basic sites (Figure 1.2c). It suggests that this extension allows increased 

protein charging by spreading charges apart on the extended protein chain, which extends 

outside the droplet interior reducing Coulombic repulsion. Simulations using model 

polymers and polyethylene glycol polymers have supported this mechanism.47,48 

Figure 1.2 Proposed models of ESI ion formation. The Ion Evaporation model is 
proposed for small ions (a), while the charged residue model (b) and chain ejection 
model (c) are proposed schemes for ionization of larger species such as proteins and 
polymers. 

a 

b 

c 
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1.4 Structural Mass Spectrometry 
A number of techniques exist to elucidate protein structural information using MS. These 

techniques generally provide data at low-to-medium resolution, but can be informative 

when higher-resolution techniques are ineffective – when samples are at low 

concentration, are non-homogenous, or contain integral membrane and/or intrinsically 

disordered proteins. Many of these techniques use ESI as an ionization source due to its 

compatibility with chromatographic separation and soft ionization to very high charge 

states of large proteins, reducing instrument m/z range requirements. 

Perhaps the simplest of these techniques is native ESI-MS, which attempt to reduce 

gas-phase collision and activation of proteins and protein-ligand complexes by tuning 

instrument parameters to lower pressures and voltages. In this way, non-covalent 

complexes can be preserved, and stoichiometries may be determined directly from the 

mass spectrum.56,57 ESI charge state distributions can provide information about the 

conformations of proteins in the sprayed solution, as a consequence of the ionization 

mechanisms discussed above, with higher average charge states corresponding to 

unfolded species. Analysis of these distributions can be used to probe structural 

transitions, such as folding events, and even look at structural distributions in 

intrinsically disordered species.17,57,58 

1.4.1 Collision-Induced Dissociation and Tandem MS 

More detailed information about analytes can be acquired by analyzing not just full 

molecules, but also fragmented species by MS. Harsh ionization sources can be used to 

generate these fragments in-source, but this will result in undue loss of sensitivity for 

protein-containing samples, due to poor selectivity and extensive fragmentation. A better 

approach is the use of tandem mass spectrometry (MS/MS). In MS/MS, an ion of interest 

is isolated using a mass analyzer as a filter, then subjected to fragmentation before 

fragments are subsequently characterized in a second mass analyzer.59 

In proteins, collision-induced dissociation (CID) is often used for fragmentation. Proteins 

or peptides are accelerated by an electric potential in a region of the mass spectrometer 

which has been filled with an inert background gas. High speed collisions with this 
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background gas result in activated species which generate ion fragments. This technique, 

in combination with MS/MS, can be used to sequence and subsequently identify proteins 

and peptides.60 Although collision-induced dissociation and MS/MS do not provide 

protein structural data directly, they can be coupled to solution or gas phase chemical 

techniques such as covalent labelling and hydrogen-deuterium exchange which induce 

mass changes in the protein ions, yielding valuable conformational and dynamic data. 

1.4.2 Covalent Labelling and Cross-Linking 

Covalent labelling techniques, as the name implies, rely on modifying exposed region of 

a protein with a reactive species such as a hydroxyl radical.61 These labels have a 

predictable mass shift when measured in MS/MS, and their location gives information 

about the solvent accessibility of amino acid side chains. Cross-linking studies are 

conceptually similar, but the reactive species is bifunctional, and therefore capable of 

reacting with two protein side chains. The functional groups are typically separated by a 

flexible linker, and identification of groups which have been chemically cross-linked by 

MS/MS can yield distance restraints which are useful in structural modelling.62 

1.4.3 Ion Mobility Spectrometry 

Ion mobility spectrometry (IMS) is being widely used in structural MS due to its ability 

to analyze gas phase structure, and its integration into commercially available MS 

instruments.63 In IMS, ions are pushed through a region containing inert background gas 

by a weak electric field. Ions are accelerated at a rate proportional to charge, but 

experience a “drag” force opposite their direction of travel due to the background gas. As 

a result, they will move through the IMS cell at a rate that is proportional to their charge, 

but inversely proportional to their collisional cross section, Ω. Compact, folded proteins 

have small Ω values and move through the IMS cell quickly, while large, unfolded 

species move more slowly.64 Recorded drift times can be compared to values calculated 

from possible structures using programs such as MOBCAL65, even allowing direct ion 

identification for some small species. IMS cells integrated into mass spectrometers 

provide gas-phase structural data, and can simultaneously act as an extra dimension of 

ion separation for discrimination of structurally-diverse compounds with the same m/z. 
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1.4.4 Hydrogen/Deuterium Exchange 

Hydrogen/Deuterium Exchange (HDX) probes protein structure and dynamics by taking 

advantage of the lability of protein O-H, S-H, and N-H bonds. When a protein is exposed 

to an isotopically-enriched solvent such as D2O, these labile hydrogens will be replaced 

with deuterons from the solvent. This process can be monitored by MS since D is 1 Da 

heavier than H, and so its incorporation into the protein results in a shift to higher m/z. 

NMR may also be used to monitor this process, as a result of the differing spins of the H 

and D nuclei. Regardless of the instrumentation used, HDX experimentalists often seek 

to obtain the rate of exchange, kHDX, which is then related to protein structure and 

dynamics. Focus is usually on protein backbone amide groups which undergo HDX at a 

rate that is accessible in MS and NMR.66 Exchange proceeds at each amide site 

according to the Linderstrøm-Lang scheme67,68: 

𝑁𝑁𝑘𝑝𝑝𝑐𝑒𝑐
𝑘𝑜𝑜𝑜𝑜

⇌
𝑘𝑐𝑐𝑜𝑠𝑜

𝑁𝑁𝑝𝑝𝑒𝑝
𝑘𝑐ℎ

→ 𝑁𝑁𝑝𝑝𝑒𝑝
𝑘𝑐𝑐𝑜𝑠𝑜

⇌
𝑘𝑜𝑜𝑜𝑜

𝑁𝑁𝑘𝑝𝑝𝑐𝑒𝑐                   (1.10) 

where “open” conformations are exchange-competent, while “closed” configurations are 

exchange-incompetent, kopen and kclose are rates of structural transition between these 

states, and kch is an intrinsic rate constant which can be calculated based on the protein 

sequence, temperature and pD of the solution.66 The experimentally-measured exchange 

rate, kHDX, represents the rate of the overall conversion of NHND regardless of open or 

closed state. It can be related to the fundamental HDX constants above by: 

𝑐[𝑁𝐻𝑜𝑜𝑜𝑜+𝑁𝐻𝑐𝑐𝑜𝑠𝑜𝑐]
𝑐𝑝

= −𝑘𝑘ℎ[𝑁𝑁𝑝𝑝𝑒𝑝]                                (1.11) 

𝑐𝑁𝐻𝑜𝑜𝑜𝑜
𝑐𝑝

= 𝑘𝑝𝑝𝑒𝑝[𝑁𝑁𝑘𝑝𝑝𝑐𝑒𝑐] − (𝑘𝑘𝑝𝑝𝑐𝑒 + 𝑘𝑘ℎ)[𝑁𝑁𝑝𝑝𝑒𝑝]                (1.12) 

Under equilibrium conditions, NHopen is constant, so equation 1.12 gives: 

(𝑘𝑘𝑝𝑝𝑐𝑒 + 𝑘𝑘ℎ)�𝑁𝑁𝑝𝑝𝑒𝑝� = 𝑘𝑝𝑝𝑒𝑝[𝑁𝑁𝑘𝑝𝑝𝑐𝑒𝑐]                         (1.13) 

(𝑘𝑘𝑝𝑝𝑐𝑒 + 𝑘𝑘ℎ)�𝑁𝑁𝑝𝑝𝑒𝑝� = 𝑘𝑝𝑝𝑒𝑝��𝑁𝑁𝑝𝑝𝑒𝑝 + 𝑁𝑁𝑘𝑝𝑝𝑐𝑒𝑐� − 𝑁𝑁𝑝𝑝𝑒𝑝�        (1.14) 
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𝑁𝑁𝑝𝑝𝑒𝑝 = 𝑘𝑜𝑜𝑜𝑜
𝑘𝑜𝑜𝑜𝑜+𝑘𝑐𝑐𝑜𝑠𝑜+𝑘𝑐ℎ

[𝑁𝑁𝑝𝑝𝑒𝑝 + 𝑁𝑁𝑘𝑝𝑝𝑐𝑒𝑐]                       (1.15) 

Substituting equation 1.15 into equation 1.12 yields a first-order rate equation: 

−𝑐�𝑁𝐻𝑜𝑜𝑜𝑜+𝑁𝐻𝑐𝑐𝑜𝑠𝑜𝑐�
𝑐𝑝

= 𝑘𝐻𝐻𝐻[𝑁𝑁𝑝𝑝𝑒𝑝 + 𝑁𝑁𝑘𝑝𝑝𝑐𝑒𝑐]                       (1.16) 

where: 

𝑘𝐻𝐻𝐻 = 𝑘𝑜𝑜𝑜𝑜𝑘𝑐ℎ
𝑘𝑜𝑜𝑜𝑜+𝑘𝑐𝑐𝑜𝑠𝑜+𝑘𝑐ℎ

                                           (1.17) 

Based on the system under study, approximations can be made which allow kHDX to be 

interpreted as a measure of opening free energy or kinetics. In general, kopen << kclose, and 

it can be left out of the denominator of equation 1.17. For most proteins at ambient 

temperature and near-neutral pH, amides spend a majority of time in the closed state, and 

only undergo rare, short-lived excursions to an exchange-competent structure giving the 

approximation kclose >> kch, in the “EX2” limiting regime and: 

𝑘𝐻𝐻𝐻 = 𝑘𝑜𝑜𝑜𝑜
𝑘𝑐𝑐𝑜𝑠𝑜

𝑘𝑘ℎ                                                (1.18) 

allowing for estimation of the Gibbs’ free energy of the opening transition by the ratio of 

observed and intrinsic exchange rates: 

𝛥𝐺𝑝𝑝𝑒𝑝 = −𝑅𝑅𝑙𝑅 � 𝑘𝑜𝑜𝑜𝑜
𝑘𝑐𝑐𝑜𝑠𝑜𝑐

� = −𝑅𝑅𝑙𝑅 �𝑘𝐻𝐻𝐻
𝑘𝑐ℎ

�                           (1.19) 

Conversely, at high temperature or pH, the intrinsic exchange rate is elevated and 

proteins may be destabilized, occupying exchange-competent states for longer periods of 

time in the “EX1” regime where kclose << kch. In this case, the measured rate constant 

corresponds to the rate of structural opening events: 

𝑘𝐻𝐻𝐻 = 𝑘𝑝𝑝𝑒𝑝                                                     (1.20) 

Experimentally, in HDX/MS, these regimes are observed at a peptide level as a gradual 

m/z increase in the case of EX2 kinetics, and a two-state distribution in the EX1 limit. 
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Mixed behavior is also possible.69 This exchange occurs as a result of individual protein 

molecules exploring their full conformational space over time, allowing for the structural 

transitions that underlie these HDX schemes. The m/z shift observed over time can be 

used to estimate the rate of exchange by measuring at multiple time points. Exchange 

rates can be estimated at or near individual amide resolution using NMR, extensive 

protyolytic digestion or non-ergodic fragmentation techniques such as electron capture 

dissociation, in MS/MS.70,71 

1.5 Computer Simulations 

Simulation are a useful tool for studying phenomena that are difficult or even impossible 

to observe experimentally. Chemical simulations rely on computer algorithms to provide 

numerical solutions to equations derived from fundamental theories. The accuracy of 

these methods depends on the level of theory that is applied, but approximations are 

inherent to all chemical simulations. The level of accuracy required and the size of the 

system will determine which simulation strategies are employed, as greater size and 

accuracy require greater computational power.72 

1.5.1 Ab Initio Methods and Density Functional Theory 

Ab initio methods are based on the fundamental tenets of quantum mechanics, without 

input from empirical studies. These methods do not provide exact solutions to the 

Schrödinger equations, but they give the closest approximations available. Hartree-Fock 

simulations represent a commonly used ab initio method which is based on molecular 

orbital theory. It makes only a few approximations about the system under study, such as 

not explicitly considering electron-electron repulsion. These methods are highly 

computationally expensive since they include many-electron wavefunctions.72 Density 

Functional Theory (DFT) is somewhat less expensive, since its models are based on 

single electron density rather than many-electron wavefunctions. Hybrid functional 

methods, which combine Hartree-Fock methods and DFT for greater accuracy with little 

additional computation time, have been developed73, but even the fastest of these 

methods are not sufficient for simulating proteins or other large biological molecules on 

experimentally-relevant timescales. 
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1.5.2 Molecular Mechanics 

Molecular mechanics is a modelling technique which can be applied to simulate large 

systems such as proteins by treating the systems classically, avoiding costly quantum 

mechanical calculations. Atoms are treated as the smallest unit in the simulation, and are 

modelled as discrete point masses and/or charges. In these systems, potentials are 

calculated from empirically- or ab initio simulation-calibrated force fields that include 

bonded and non-bonded interaction terms. Bonded interactions such as stretching, 

bending, and torsion are generally modelled through harmonic potentials, while 

non-bonded interactions are modelled by various long-range potentials.72 A more 

detailed look at these force fields is presented in 1.6.2 Force Fields. 

1.5.3 Monte Carlo Methods 

Monte Carlo methods rely on random permutations of a system to generate an ensemble 

of structures, whose properties and stabilities are usually determined based on molecular 

mechanics force fields. The Monte Carlo simulation scheme can provide excellent 

conformational sampling in protein systems, but it is limited to the study of systems at 

equilibrium and no correlation to time is possible.72 

1.5.4 Molecular Dynamics 

Molecular Dynamics (MD) simulations are another technique that typically relies on 

molecular mechanics force fields. In MD, Newton’s equations of motion are integrated 

over discrete time steps to model the evolution of the simulated system over time. MD is 

a preferred simulation technique for proteins because of its low computational cost, 

scalability to large computer systems, and its ability to model kinetic processes.72 

1.6 Molecular Dynamics in Detail 
The growing use of MD simulations in recent decades is largely attributable to the wide 

availability of heavily-optimized simulation programs and steadily increasing 

computational power that have led to the many orders of magnitude increases in both 

system size and timescale accessible in MD simulation of proteins.74 The earliest protein 

simulations were limited to systems of tens of particles evolving for tens of 
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picoseconds75, while the state-of-the-art today includes thousands of particles simulated 

for several milliseconds.76 

Regardless of the particulars of the system, all MD simulations share some common 

features. Perhaps the most important of these features is the generation of a time-resolved 

trajectory of system configurations. This trajectory is a series of snapshots that 

correspond to individual microstates of the system under study. At equilibrium, these 

snapshots can be used to make predictions about the macroscopic system. This is due to 

the ergodic principle – that is, the ensemble average (replicate microstates in simulation) 

is equal to the time average (one system measured experimentally)77, provided enough 

microstates are sampled. The statistical ensemble that is modelled is generally selected to 

correspond to the experimental system under study. Examples include: the 

microcanonical ensemble (NVE) with constant number of particles, volume, and energy, 

which simulates an isolated system; the canonical ensemble (NVT) with constant number 

of particles, volume, and temperature, which simulates a system in thermal equilibrium 

with its surroundings; and the isothermal-isobaric ensemble (NPT), which simulates a 

system that is similar to NVT, but in a flexible container, such that pressure and 

temperature are in equilibrium with the surroundings. 

1.6.1 Newton’s Laws and Integration Algorithms 

In MD, particles are treated classically, and are modelled as point masses. As a result, the 

evolution of the system can be modelled using Newtonian mechanics. In particular, the 

position of a particle, ri, can be fully described over the evolution of the system by 

Newton’s second law: 

𝑭𝑝 = −𝜕𝑼(𝒓𝒊,…,𝒓𝑵)
𝜕𝒓𝒊

= 𝑚𝑝
𝑐2𝒓𝒊
𝑐𝑝2

                                           (1.21) 

where Fi is the force on particle i, U(ri,…,rN) is the potential acting on the particle, mi is 

the particle’s mass, and t is time (bolded quantities are vectors). Since forces can be 

calculated from the system’s current position, if it is assumed that acceleration is constant 

over some small timestep, Δt, and initial position and velocity are known, the system can 

be evolved over time by iterative calculation of new positions, velocities, and forces. 
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Several different integration schemes have been developed to perform these iterative 

calculations. 

1.6.1.1 The Leapfrog Algorithm 

With known initial conditions, an algorithm for updating positions and velocities might 

consist of simple first-order approximations: 

𝒓𝒊(𝑡 + ∆𝑡) = 𝒓𝒊(𝑡) + ∆𝑡𝒗𝒊(𝑡) + 𝑂(∆𝑡2)                              (1.22) 

𝒗𝒊(𝑡 + ∆𝑡) = 𝒗𝒊(𝑡) + ∆𝑡 𝑭𝒊(𝑝)
𝑚𝑖

+ 𝑂(∆𝑡2)                               (1.23) 

where the O term represents a trunctation error of the indicated order (in this case Δt2). 

This is known as the Euler integration scheme. Unfortunately, because velocity changes 

with time, equation 1.22 accumulates error quickly, since the value of the instantaneous 

velocity at t is not a good estimate of the average velocity over the full timestep. In order 

to improve accuracy, it is preferable to expand the Taylor series in equation 1.22 to 

include the second order term: 

𝒓𝒊(𝑡 + ∆𝑡) = 𝒓𝒊(𝑡) + ∆𝑡𝒗𝒊(𝑡) + 1
2
∆𝑡2 𝑭𝒊(𝑝)

𝑚𝑖
+ 𝑂(∆𝑡3)                    (1.24) 

which we can rearrange to: 

𝒓𝒊(𝑡 + ∆𝑡) = 𝒓𝒊(𝑡) + ∆𝑡 �𝒗𝒊(𝑡) + 1
2
∆𝑡 𝑭𝒊(𝑝)

𝑚𝑖
� + 𝑂(∆𝑡3)                   (1.25) 

In equation 1.25, we recognize the centre term as the right side of equation 1.23, but 

substituting Δt for a half time step. Thus, we may write: 

𝒓𝒊(𝑡 + ∆𝑡) = 𝒓𝒊(𝑡) + ∆𝑡𝒗𝒊 �𝑡 + 1
2
∆𝑡� + 𝑂(∆𝑡3)                         (1.26) 

Similarly, expanding equation 1.23 to include the second order term and rearranging will 

yield a center term that simplifies to the acceleration (force over mass) term a 

half-timestep ahead: 
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𝒗𝒊(𝑡 + ∆𝑡) = 𝒗𝒊(𝑡) + ∆𝑡 � 1
𝑚𝑖
𝑭𝒊(𝑡) + 1

2𝑚𝑖
∆𝑡 𝑐

𝑐𝑝
𝑭𝒊(𝑡)�+ 𝑂(∆𝑡3)             (1.27) 

= 𝐯𝐢(t) + ∆t � 1
mi
𝐅𝐢(t + 1

2
∆t)�+ O(∆t3)                               (1.28) 

By substituting t=t+½ Δt: 

𝒗𝒊(𝑡 + 3
2
∆𝑡) = 𝒗𝒊 �𝑡 + 1

2
∆𝑡� + ∆𝑡 � 1

𝑚𝑖
𝑭𝒊(𝑡 + ∆𝑡)�+ 𝑂(∆𝑡3)              (1.29) 

The Leapfrog algorithm iterates between equations 1.26 and 1.29 to update the system 

over many time steps with considerably less error than the Euler algorithm.78 The 

Leapfrog Algorithm gets its name from the positions/forces and velocities “hopping” one 

another in each iteration, with positions and forces being updated only at full time steps, 

and velocities being updated only at half-timesteps. It is an oft-used algorithm in MD 

because it requires only 3 calculations per iteration, making it efficient, with relatively 

low error. 

1.6.1.2 Verlet and Velocity Verlet Integration 

The Verlet algorithm is an alternative integration scheme that was popularized by Loup 

Verlet.79 It is based on the Taylor expansion of ri(t) around t±Δt: 

𝒓𝒊(𝑡 − ∆𝑡) = 𝒓𝒊(𝑡) − ∆𝑡𝒗𝒊(𝑡) + 1
2
∆𝑡2 1

𝑚𝑖
 𝑭𝒊(𝑡) −

1
6
∆𝑡3 1

𝑚𝑖

𝑐
𝑐𝑝
𝑭𝒊(𝑡) + 𝑂(∆𝑡4)   (1.30) 

𝒓𝒊(𝑡 + ∆𝑡) = 𝒓𝒊(𝑡) + ∆𝑡𝒗𝒊(𝑡) + 1
2
∆𝑡2 1

𝑚𝑖
 𝑭𝒊(𝑡) + 1

6
∆𝑡3 1

𝑚𝑖

𝑐
𝑐𝑝
𝑭𝒊(𝑡) + 𝑂(∆𝑡4)   (1.31) 

Adding equations 1.30 and 1.31 yields the Verlet algorithm, after rearranging: 

𝒓𝒊(𝑡 + ∆𝑡) + 𝒓𝒊(𝑡 − ∆𝑡) = 2𝒓𝒊(𝑡) + ∆𝑡2 1
𝑚𝑖
𝑭𝒊(𝑡) + 𝑂(∆𝑡4)              (1.32) 

𝒓𝒊(𝑡 + ∆𝑡) = 2𝒓𝒊(𝑡) − 𝒓𝒊(𝑡 − ∆𝑡) + ∆𝑡2 1
𝑚𝑖
𝑭𝒊(𝑡) + 𝑂(∆𝑡4)              (1.33) 

The Verlet integration scheme is slightly more accurate than leapfrog integration, but it is 

seldom used due to lacking information on velocities, the need to know two successive 



20 

 

configurations of the system to begin integration, and the possibility of accumulating 

round-off errors in computer systems when adding the (very small) second order term to 

zero-order positions stored in memory. 

A more commonly used variation of the Verlet algorithm is the velocity Verlet 

integration scheme: 

𝒓𝒊(𝑡 + ∆𝑡) = 𝒓𝒊(𝑡) + ∆𝑡𝒗𝒊(𝑡) + 1
2
∆𝑡2 1

𝑚𝑖
𝑭𝒊(𝑡) + 𝑂(∆𝑡3)                 (1.34) 

𝒗𝒊(𝑡 + ∆𝑡) = 𝒗𝒊(𝑡) + 1
2𝑚𝑖

∆𝑡(𝑭𝒊(𝑡) + 𝑭𝒊(𝑡 + ∆𝑡)) + 𝑂(∆𝑡3)              (1.35) 

This algorithm solves the major issues of the Verlet scheme, but it is not as accurate. It is 

very similar in performance and efficiency to the Leapfrog algorithm, but has the 

advantage of calculating velocities and positions at the same time points, which is useful 

in some cases. The second force calculation in equation 1.35 is typically stored in 

memory for the next iteration so that expensive force calculations are performed only 

once per timestep. 

1.6.1.3 Energy Minimization Schemes 

Energy minimization is an important step in an MD workflow, prior to the beginning of 

the actual simulation. The purpose of energy minimization is to move the modelled 

molecular configuration towards a local energy minimum in order to gently relax any 

highly unfavourable interactions, such as non-bonded atoms overlapping, resulting in 

overly-large repulsive forces at the first timestep (see 1.6.2.2 Van der Waals Forces). 

Energy minimization is a molecular mechanics method, since it is not correlated with 

time. A typical integration scheme is the method of steepest decent: 

𝒓(𝑅 + 1) = 𝒓(𝑅) − 𝛾𝛾𝑼(𝒓(𝑅))                                    (1.36) 

where r(n) is a matrix containing all particle positions at step n, γ is a small, scalar 

distance increment, and ∇U is the gradient of the potential function. Equation 1.36 is 

iterated until the potential converges to a minimum, or the maximum repulsive force in 

the system is below some tolerance threshold. 
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1.6.2 Force Fields 

The efficient integration of Newton’s equations in MD depends on fast computation of 

potentials in a position-dependent manner. This would, ideally, be accomplished using 

the ab initio approaches previously discussed, but these calculations are prohibitively 

expensive for MD of large molecules. Instead, interactions between atoms are modelled 

by “effective” potentials which are calculated by a molecular mechanics force field. 

Force fields consist of a set of parameters describing the interactions between various 

atom types, and a set of equations to calculate the potential based on these parameters 

and the system’s state. 

Force fields differ in their level of detail in describing the system and how parameters are 

generated. Force fields commonly used in MD can be divided into several groups: 

“all-atom” potentials, which include explicit parameters for every atom in the system; 

“united atom” potentials, which save computation time by including contributions from 

non-polar hydrogens, such as those on methyl groups, in the parameters for the heavy 

atoms they are bonded to; and “coarse-grained” potentials, which reduce detail even 

further to improve efficiency, combining groups of heavy atoms and hydrogens into 

single, large pseudo-atoms. The parameters in united-atom and coarse-grained force 

fields are usually fitted to reproduce experimental results. All-atom force fields may be 

parameterized from ab initio calculations or an empirical fitting procedure. MD 

simulations of proteins are often carried out with all-atom force fields, including the 

Optimized Potential for Liquid Simulations – All Atom (OPLS/AA) force field, which is 

parameterized to fit experimental properties of liquids.80 The Chemistry at Harvard 

Molecular Mechanics (CHARMM)81 and Assisted Model Building with Energy 

Refinement (AMBER)82 force fields, which derive their charge parameters from density 

functional theory calculations, are also common. 

Each of these force fields contains similar sets of equations to determine the system 

potential, which can be summarized as: 

𝑈𝑇𝑝𝑝𝑝𝑝 = 𝑈𝐵𝑝𝑝𝑐𝑒𝑐 + 𝑈𝑁𝑝𝑝−𝐵𝑝𝑝𝑐𝑒𝑐                                        (1.37) 
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where the total calculated potential is a sum of bonded and non-bonded interaction terms 

(Figure 1.3). Non-bonded interactions are often ignored or reduced for atoms in the same 

molecule separated by fewer than 4 covalent bonds, as these interactions are captured by 

the bonded terms. The following sections will discuss how these terms are usually 

represented. 

1.6.2.1 Bonded Interactions 

Bonded interactions in protein MD are described in the force field by terms relating to 

covalent bond stretching (2-body term), bond bending (3-body term), and dihedral 

torsion (4 body term). Some force fields also include additional terms, such as an 

“improper” dihedral term which describes out-of-plane bending in planar systems (an 

additional 4-body term), or Urey-Bradley interactions which describe non-bonded force 

between atoms separated from one another by two covalent bonds (an additional 2-body 

term). The functional forms of these interactions are often based on harmonic potentials. 

For example, bond stretching potential in the AMBER force field is described by81: 

UBond = ∑ kbond(d− d0)2bonds                                      (1.38) 

where Ubond is the contribution of bond stretching to total potential, kbond is a parameter 

determined by the identity of the bonded atoms, d is the current bond length, d0 is a 

parameter representing the minimum of the harmonic potential, and the sum is over all 

bonds in the system. Angle, improper dihedral, and Urey-Bradley interactions are also 

usually represented by harmonic potentials similar to equation 1.38. 
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The dihedral angles term is somewhat more complicated, because the modelled systems 

may have more than one energy minimum at each bond. For example, in small 

molecules, several stable rotamers, such as anti and gauche configurations, may 

interconvert. In proteins, the backbone torsion angles are usually favoured to reside in 

certain ranges that are determined by local secondary structure. A harmonic potential 

with a single minimum would not effectively model this behavior, so the dihedral term is 

usually represented by a Fourier series, as in the AMBER force field81: 

𝑈𝑐𝑝ℎ𝑒𝑐𝑒𝑝𝑝 = ∑  ∑ 𝑘𝑗[1 + 𝑐𝑐𝑐 (𝑗𝑗 − 𝑗0,𝑗)]𝑝
𝑗=1𝑐𝑝ℎ𝑒𝑐𝑒𝑝𝑝𝑐                      (1.39) 

where kj and ϕ0,,j are parameters describing the amplitude and offset of the jth multiplicity 

term in the Fourier series, ϕ is the current dihedral angle, and the sums are over all 

dihedral angles and all defined multiplicities, respectively. 

Figure 1.3 Interactions in a typical force field. Bond, angle and Urey-Bradley 
interactions are often described with harmonic potentials, while torsion interactions are 
described by a Fourier series. Non-Bonded interactions include Coulombic and 
Lennard-Jones potentials. Not all interactions are labelled. 
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1.6.2.2 Van der Waals Forces 

Collectively, van der Waals forces describe the interactions between molecules that are 

not caused by covalent bonding or electrostatic effects. This includes permanent dipole/ 

permanent dipole interactions (Keesom forces), permanent dipole/ induced dipole 

interactions (Debye forces), induced dipole/ induced dipole interactions (London 

dispersion forces), and can be either attractive or repulsive. These interactions are usually 

modelled in MD force fields using a Lennard-Jones potential80-82: 

𝑈𝐿𝐿 = ∑ 4𝑝,𝑗 𝜖 �� 𝜎
𝑐𝑖,𝑗
�
12
− � 𝜎

𝑐𝑖,𝑗
�
6
�                                 (1.40) 

where ϵ and σ are parameters which define the position and depth of the minimum in the 

Lennard-Jones potential, and di,j is the distance separating particles i and j. The potential 

is summed over all pairs of particles to which the non-bonded interaction terms apply. 

The 10-6 term of the Lennard-Jones potential is attractive and there is net attraction 

between particles at distances past the minimum (Figure 1.4). This term approximates the 
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Figure 1.4 The Lennard Jones Potential. Units of distance and potential are arbitrary. 
The large negative slope as distance approaches zero prevents atoms from overlapping, 
modelling the Pauli repulsion. 
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averaged Keeson, Debye, and London forces. The 10-12 term is repulsive, and accounts 

for the Pauli repulsion of overlapping electron orbitals at very short range (Figure 1.4). 

The repulsive term can also be represented by an exponential, as in a Buckingham 

potential, but the 10-12 term is often chosen for this purpose because of its fast calculation 

as the square of 10-6. 

The Lennard-Jones potential falls off quickly as distance between particles increases, 

meaning that it is often modelled with a cutoff, dc, to improve computational efficiency. 

This only minimally impacts accuracy, if the cutoff is large, and a shifting adjustment is 

made such that the potential equals exactly 0 at the cutoff distance: 

ULJ−shifted(d) = �
  ULJ(d) − ULJ(dc) for d ≤ dc
                   0              for d > dc

                         (1.41) 

 

1.6.2.3 Electrostatic Interactions 

In MD, charged particle interactions are usually modelled with the Coulomb potential: 

𝑈𝐶𝑝𝐶𝑝𝑝𝑚𝐶 = ∑ 𝑞𝑖𝑞𝑗
4𝜋𝜀0𝑐𝑖,𝑗𝑝,𝑗                                             (1.42) 

where qi and qj are the charges of particles i and j, ε0 is the vacuum permittivity, di,j is the 

distance between the particles, and the sum is over all interacting pairs of particles 

(Figure 1.5). Equation 1.42 is often also shifted to include a cutoff, similar to the 

Lennard-Jones potential, but this may introduce problems, as the electrostatic interactions 

fall off much more slowly at long range. This can lead to undesirable artifacts in MD 

simulations, particularly in periodic systems which simulate bulk media (discussed in 

1.6.4.2 Boundary Conditions and Simulation Cells).83 

A solution to this problem is modelling the long range electrostatic interactions in 

periodic systems using the Ewald summation.84,85 This summation technique replaces 

each point charge in the system with a point charge screened by a Gaussian charge 

distribution opposite in sign, whose contribution to the potential rapidly goes to zero at 
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large distances. To compensate for these screening charges, a second Gaussian charge 

distribution equal in magnitude, but opposite in sign to the screening charges is added. 

Short range electrostatic contributions are calculated directly using the screened point 

charges, while long range contributions can be calculated from the Fourier transform of 

the compensating Gaussians. The end result is summation that rapidly converges to the 

correct value for electrostatic potential, including the long range interactions. 

To further improve efficiency of the Ewald summation, MD software packages often 

approximate it using a Particle Mesh Ewald (PME) algorithm. PME computes the 

long-range electrostatic interactions by distributing compensating charges on a discrete 

lattice, such that the overall charge density is maintained.86,87 In this way, the 

compensating charge distribution can be computed quickly by a Fast Fourier Transform, 

allowing much-improved scaling in large systems, such as proteins. 
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Figure 1.5 The Coulombic potential for oppositely charged species. Units of distance 
and potential are arbitrary. The Coulomb potential converges to zero much more slowly 
than the Lennard-Jones potential (Figure 1.4). 
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1.6.2.4 Water Models 

Although implicit solvation algorithms have been developed, water is usually modelled 

explicitly (i.e. as discrete particles in the system, rather than as a continuous dielectric 

medium). Despite the small size of H2O molecules, there are many different models to 

describe them in MD, which can be classified based on the number of simulated 

interaction sites, flexibility of covalent bonds, and polarizability. Polarizable and flexible 

models impose additional computation costs, meaning that most protein MD studies will 

benefit from use of a rigid, non-polarizable model, if it accurately reproduces properties 

of import. 

Rigid three-site models such as TIP3P88 and SPC/E89 represent the H and O atoms 

explicitly with their own partial charges, and typically only consider Lennard-Jones 

interaction with the O atom. These models are highly efficient, and reasonably reproduce 

many of the physical properties of water, such as density and diffusion coefficient. 

Four-site models including TIP4P88 and its modified relative TP4P/200590 place the O 

charge on a massless “virtual site” that sits on the bisector of the HOH angle. These 

models better reproduce experimental surface tension values relative to their three-site 

counterparts. Five site models that split the O charge between two virtual sites 

representing lone pairs of electrons have also been developed, with sites in a tetrahedral 

geometry, such as TIP5P.91 However, no model perfectly reproduces all properties of 

water, and so selection of an appropriate model requires diligence on the part of the MD 

practitioner. 

1.6.3 Thermostats 

Thermostat algorithms are used in MD simulations in order to maintain an average 

temperature throughout the simulation run (for sampling in the NVT or NPT ensemble). 

This is particularly desirable for systems containing large molecules, such as proteins, 

since conformational changes in these molecules could otherwise lead to large 

temperature fluctuations in such a small system, which is not consistent with 

experimental conditions – for example, denaturing a protein and breaking H-bonds in 

vitro will not cause the system temperature to drop drastically, as it might in silico 
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without a thermostat. Initial thermalization of a system is usually accomplished by 

sampling velocities from a Maxwell-Boltzmann distribution, while the average 

temperature is maintained over time by one of several thermostat algorithms. 

1.6.3.1 The Berendsen Weak Coupling Algorithm 

The Berendsen thermostat is a velocity scaling scheme, which is implemented by 

multiplying all particle velocities in the system by a constant, λ, determined by92: 

𝜆 = �1 + ∆𝑝
𝜏𝑇
�𝑇
𝑇0
− 1�                                            (1.43) 

where ∆t is the simulation timestep, τT is a coupling constant, T is the instantaneous 

temperature of the system, and T0 is the thermostat’s target temperature. The square root 

is taken since macroscopic temperature scales as the square of microscopic velocities. 

The coupling constant describes the strength of interaction with the simulated heat bath, 

with larger values producing a weaker coupling. Unfortunately, this thermostat does not 

reproduce a correct NVT ensemble, partly because it does not conserve angular 

momentum, however, this can be addressed by including a stochastic “noise” term in the 

algorithm, at relatively little computational cost.93 

1.6.3.2 The Andersen Thermostat 

The Andersen thermostat is a conceptually simple algorithm for coupling to a heat bath, 

and was the earliest thermostats to demonstrate NVT sampling in MD.94 In this scheme, a 

subset of particles is randomly selected at each timestep, and velocities are re-sampled 

from a Maxwell-Boltzmann distribution for only these particles. The major shortcoming 

of this thermostat is that the repeated randomization of velocities results in poor 

modelling of time-dependent processes in the system, such as diffusion. 

1.6.3.3 The Nose Hoover Extended Ensemble 

The Nose Hoover thermostat is another commonly-used thermostat which couples the 

system to a heat bath by adding a non-Newtonian term to the equations of motion at each 

time step in order to maintain the average kinetic energy.95,96 This additional term 
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simulating the heat reservoir is multiplied by the current velocities, and effectively adds a 

thermodynamic drag force. The thermostat modifies the equations of motion as follows 

(the Verlet integration scheme from equation 1.33 is chosen for simplicity, but the Nose 

Hoover thermostat may be used with any of the integration schemes): 

𝒓(𝑡 + ∆𝑡) = 2𝒓(𝑡) − 𝒓(𝑡 − ∆𝑡) + ∆𝑡2 � 𝑭(𝑝)
𝑚

− 𝝃(𝑡 + ∆𝑡) ∙ 𝒗(𝑡)�           (1.44) 

𝝃(𝑡 + ∆𝑡) = 𝝃(𝑡) + [∑ 𝑚𝑝𝒗𝑝2(𝑡) − 𝑔𝑅0𝑝  ] ∆𝑝
2𝑄𝑁

                          (1.45) 

where T0 is the thermostat target temperature, g is the number of degrees of freedom in 

the system, and QN is a coupling constant of the heat bath, which results in stronger 

coupling at greater values. This thermostat has the advantage of being time-reversible, 

and correctly reproduces the NVT ensemble, although it is somewhat more expensive to 

calculate than the Berendsen or Andersen schemes. 

1.6.4 Additional Considerations 

Several additional algorithms may be applied in MD simulations to better represent 

experimental conditions, or improve computational efficiency. Examples in the former 

category include applying barostat algorithms to control pressure and use of solid or 

periodic boundaries to achieve bulk or slab system geometries. The latter category 

includes optimizing simulation cell shape, generation of neighbor lists, and application of 

rigid constraints. Each of these will be discussed briefly. 

1.6.4.1 Barostats 

Barostat algorithms are analogous to thermostats, allowing simulation of a system under 

constant pressure, so long as boundaries are defined (i.e. the simulation is not performed 

in a vacuum environment). A number of different schemes have been developed for this 

purpose. The simplest of these is probably the Berendsen barostat92, which calculates a 

scaling factor μ by: 

𝜇 = �1 − ∆𝑝
𝜏𝑃

 (𝑃 − 𝑃0)3                                                 (1.46) 
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where τP is a parameter controlling the strength of coupling to the barostat, with larger 

values representing tighter coupling, ∆t is the simulation timestep, P is the instantaneous 

pressure, and P0 is target pressure of the barostat. At each timestep, the vectors defining 

the box, and the positions of all particles relative to the box center are scaled by μ. The 

form of this barostat is analogous to the Berendsen thermostat, previously discussed. 

1.6.4.2 Boundary Conditions and Simulation Cells 

In order to simulate realistic systems, various boundary conditions may be applied to 

MD. The finite region defined by the position of these boundaries is called the simulation 

or unit cell. The most commonly used boundary type is periodic boundary conditions 

(PBC) in all directions, in order to simulate a bulk system (Figure 1.6). PBC effectively 

surrounds the simulated system with “images” of itself in all directions, such that when a 

particle leaves the simulation cell along one face, it re-enters on the opposite face. 

Inter-atomic forces also extend into these images. Rigid boundaries can also be defined 

so that particles cannot exit the simulation cell along one or more axis. For example, a 

cell may have rigid boundaries along the z axis with PBC along the x and y axes, leading 

to a slab geometry that is infinite in the xy plane, which can be useful for MD simulations 

of membranes, interfaces, or surfaces. 

In protein MD, when simulating in bulk solvent with PBC, the volume of the simulation 

cell determines the number of solvent molecules that must be included. The shape of the 

cell can be any infinitely tile-able 3d structure, such as a cube. The smallest size that can 

be used for this cell is defined by the minimum image convention, which states that 

images of a single particle should be farther apart than the short-range interaction cutoff 

of the Lennard-Jones and electrostatic potentials to prevent artificial self-interaction. 

With this in mind, other simulation cell shapes can be selected that maintain the same 

minimum particle-to-image distance as a cube, but with lower volume. The truncated 

octahedron and rhombic dodecahedron are often used for this purpose.  
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1.6.4.3 Neighbour Lists 

Neighbour lists are used when non-bonded interactions have a cutoff distance to reduce 

computation time by efficiently identifying particles likely to interact with one another, 

and only calculating interactions between particles on those lists. The Verlet cutoff 

scheme97 accomplishes this by storing a list of potential interaction partners for each 

particle that are within the cutoff distance plus some buffer distance, and reusing this list 

for several integration steps, since only those particles on the list will fall within the 

cutoff distance during a short period following the list generation. The Verlet cutoff 

scheme is much more efficient than a pairwise distance calculation at every timestep, and 

can be improved even further by applying domain decomposition when building the list. 

Domain decomposition splits the simulation cell into small, regular blocks whose size is 

based on some cutoff distance – such as the interaction cutoff plus the Verlet buffer 

distance – such that pairwise distance calculation to build the neighbor list for a particle 

Figure 1.6 Schematic of Periodic Boundary Conditions. The simulation cell is 
located in the center, with images surrounding it on all sides. Only one “layer” of 
images is shown for clarity. Particle I interacts with the image of particle J in the 
Northwest image, since it is within the non-bonded cutoff (dotted circle). If J diffuses 
into the East image cell, its image from the West cell will enter the central simulation 
cell and replace it. 
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need only consider the same and adjacent blocks. When used together, these techniques 

allow non-bonded force calculation time to scale linearly with system size, instead of 

quadratically which is the case for an all-vs-all distance check at each timestep. 

1.6.4.4 Constraints 

Constraint algorithms are used in MD simulation to allow a larger timestep by reducing 

the frequency of the fastest vibrational motions in the system. They model covalent 

bonds as rigid, instead of as a harmonic potential, since the stretching frequency of these 

bonds is much higher than the translational motions of unbounded atoms. Commonly 

used algorithms include the SHAKE98, SETTLE99, and LINCS100 algorithms, which 

modify the forces on constrained particles using the method of Lagrange multipliers. The 

algorithms are iterative, and proceed until the constraint is satisfied within some small 

tolerance. When all covalent bonds in a protein MD simulation are constrained, the 

timestep may be increased several-fold, allowing for much longer simulations to be 

achieved at the same computational cost. 

1.7 Scope of the Thesis 

Here, we use molecular dynamics simulations to explore fundamental aspects of HDX, 

and ion desolvation during protein electrospray ionization. MD simulation provides an 

atomistic view of protein dynamics, giving insight on how the microscopic motions of 

proteins and unobservable processes within the ESI source give rise to the m/z signals 

that are observed experimentally. By taking advantage of the powerful computation 

capabilities of modern hardware and software, large protein systems can be investigated 

on timescales relevant to MS investigations. In this way, the marrying of simulations at 

an atomistic level with medium resolution structural mass spectrometry data can provide 

new insights into observed phenomena in both the solution and gas phase. 

First, MD simulation is used to probe the structural and dynamic basis of amide 

protection in HDX (Chapter 1). We perform microsecond-scale simulations of ubiquitin. 

We compare amide-resolved protection factors from previously-published HDX/NMR 

datasets to the solution-phase structural environment of each NH group in the MD 

simulation. We evaluate the importance of microscopic properties including hydrogen 
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bonding to backbone carbonyls, hydrogen binding to side-chains, solvent accessible 

amide surface area, and solvent dynamics to experimentally observed HDX protection. 

We highlight anomalous protection in many amides in this well-studied model system, 

stressing the importance of critical use of HDX data in structural contexts. 

Next, the final stages of the electrospray ionization process are investigated using MD 

(Chapter 2). In ESI, repeated cycles of droplet evaporation and fission give rise to 

nanometer-scale charged droplets containing few analyte ions. These droplets are too 

small to be directly observed, but are known to give rise to naked gas-phase ions which 

are detected in MS. Large, hydrophilic species such as folded proteins are usually 

thought to emerge from the droplet as charged species following complete solvent 

evaporation, the “Charged Residue Model,” although other mechanisms have been 

proposed. We use MD to investigate the evolution of charged protein-containing droplets 

in the ESI source, reporting the first simulation of such a droplet to dryness and 

supporting for the idea that proteins are CRM products. Moreover, we identify final-stage 

droplet radius as a primary factor determining experimentally observed charge states in 

protein ESI/MS. 

We conclude with a brief discussion of MD as a complementary technique to structural 

MS of proteins, and highlight some future directions of research (Chapter 4). 
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2 Challenges in the Interpretation of Protein H/D 
Exchange Data: A Molecular Dynamics Simulation 
Perspective 

2.1 Introduction 
Backbone H/D exchange (HDX) measurements are widely used for studying protein 

structure and dynamics. Both NMR spectroscopy1-4 and mass spectrometry5-14 can serve 

as detection methods. Ideally, these measurements yield the HDX rate constant kHDX for 

each single NH site. 

In short peptides the deuteration kinetics are governed by the two side chains adjacent to 

the amide of interest. HDX in near-neutral solution proceeds with OD- catalysis through a 

R-C(O-)=N-R imidate that subsequently interacts with D2O to form R-CO-ND-R.17 

Positive charge density in the vicinity of the NH lowers the amide pKa by stabilizing the 

imidate, thereby accelerating HDX. The opposite effect is encountered for negative 

charge.18-20 Accordingly, the interactions between a peptide NH and its two adjacent side 

chains can be attributed to inductive effects, with some modulation by steric factors. 21 

Empirical rules have been established to describe how these nearest neighbor interactions 

determine the second-order rate constant kB, resulting in an overall peptide “chemical” 

rate constant21 

kch = kB × [OD-]                                                   (2.1) 

Additional considerations are required to understand HDX in proteins. Disordered 

segments are said to be in an “open” state, and they exchange with rates close to those 

expected for short peptides (kHDX ≈ kch).21 In contrast, HDX in structured regions tends to 

proceed much more slowly. The factors contributing to the protection of these amides 

remain controversial. It is instructive to briefly highlight some of the pertinent issues. 

Solvent accessibility is often quoted as an important determinant of HDX rates.5,24-28 This 

notion is in sharp contrast to the view that protection is chiefly governed by H-bonding,29 

typically via backbone NH.....OC contacts.16 Experiments confirm that H-bonded amides 
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usually exhibit strong protection, even if they are at the surface.29 The H-bond-centric 

view emphasizes the role of conformational dynamics. Accordingly, NH groups in 

structured segments predominantly reside in a “closed” (exchange-incompetent) state, but 

they can undergo transient opening events that briefly disrupt H-bonds and provide NH 

contact with the solvent. HDX-relevant fluctuations can range from local events all the 

way to global unfolding/refolding.2 During the brief time intervals that NH sites spend in 

the “open” state they may undergo deuteration with the rate constant kch (equation 2.1). 

The resulting HDX mechanism can be expressed as30 

exchangedNHNH
OD

k
open

k

k
closed

ch

cl

op

2

 →
←
→                   (2.2) 

This framework yields an EX2 rate constant kHDX = kop/kcl × kch. The extent of protection 

relative to the peptide-calibrated state can be reported as8,16,29 

log P = log( kch / kHDX)                                             (2.3) 

Although the H-bond-centric view is quite well established,3,8,16,29 the relative importance 

of steric shielding (without H-bonding, e.g., in collapsed regions31) remains an open 

question. 

The above considerations notwithstanding, some amides exchange very slowly, despite 

being apparently solvent accessible and free of H-bonds.29,32-34 This phenomenon is 

difficult to reconcile with traditional views of the HDX process. It has been proposed that 

such anomalous protection arises from tertiary interactions that provide a unique 

electrostatic environment, thereby affecting the NH pKa in ways that go beyond the 

nearest neighbor effects seen in peptides.21 This idea shows promise in some cases,32,35 

but fails in others.29 A competing proposal29,36 dismisses the importance of tertiary 

electrostatic contacts. Instead, it envisions that exposed NH sites can be protected by 

H-bonding to crystallographically defined waters at the protein surface. This alternative 

view re-emphasizes the role of H-bonding for HDX protection, by including tightly 

bound waters as suitable H-bond acceptors.37,38 The idea of NH protection via water 

contacts is intriguing, but it has not been thoroughly tested yet.35 
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The inter-related issues outlined above complicate the interpretation of HDX 

experiments. Very basic concepts such as the exact nature of “closed” and “open” 

conformations remain nebulous. These difficulties may be partly rooted in the fact that 

HDX data are often interpreted in the context of static X-ray structures.11,16,25,27,35,36 

Crystal packing effects can significantly distort amide exposure and H-bonding.36,37 

Hence, X-ray structures may not properly represent the thermally activated ensemble 

encountered under ambient solution conditions. Molecular dynamics (MD) 

simulations15,39-44 and related computational approaches26,38,45 can help address these 

shortcomings by providing a dynamic view of the protein and its solvent environment. 

Unfortunately, the µs – ms range accessible in all-atom MD simulations46 is much shorter 

than most HDX-relevant conformational fluctuations.29 Coarse-grained simulations 

provide better conformational sampling15 but lack structural details, thereby complicating 

comparisons with experimental data. Despite these limitations, MD data should provide a 

better comparison basis for the interpretation of HDX data than static X-ray structures. 

Here we conduct all-atom MD simulations on ubiquitin to examine how well the solution 

phase behavior of this protein correlates with its HDX protection pattern. Ubiquitin is 

relatively small (76 residues, 72 backbone amides) with a well-defined native fold.47 It 

was chosen for this work because its HDX behavior has been characterized in great 

detail, with log P values that span more than six orders of magnitude.14,16,22,23,33 The 

disordered C-terminus lacks protection and thus serves as internal standard. Our MD 

simulations provide a dynamic view of the protein ground state in solution. These data 

allow us to scrutinize on an amide-by-amide basis in how far HDX protection can be 

attributed to H-bonding, solvent accessibility, crystallographic waters, or other factors. 

We find that the interpretation of HDX data in a protein conformational context is 

surprisingly difficult; 21% of all backbone amides exhibit log P values that are seemingly 

inconsistent with their structural environment. Our findings highlight severe 

shortcomings in the current understanding of structure-rate relationships, and they 

caution against a non-critical use of HDX data for deducing protein conformational 

features. 
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2.2 Methods 

2.2.1 MD Simulations 

All-atom ubiquitin simulations in explicit water were conducted using GROMACS 

4.6.5.48,49 Like other MD studies on ubiquitin46 we used the 1.8 Å crystal structure 

1UBQ47 as starting point. Hydrogens were added using the PDB2GMX routine. All 

titratable moieties were set to their standard charge states expected for pH 7 

(N-terminus+, R+, K+, D-, E-, C-terminus-) with H68 in its deprotonated state, resulting in 

a net protein charge of zero. The discussion below will focus on data generated using the 

CHARMM22* force field50 with TIP3P water.51 In addition, simulations were conducted 

using Amber99sb-ILDN52 with TIP4P water.51 None of these (or any other commonly 

used) water models accounts for the self-dissociation of H2O into H+ and OH-.53,54 The 

protein was placed in a rhombic dodecahedral periodic box, with a minimum distance of 

7 Å between protein atoms and the edge of the box. ~4400 water molecules were added 

from a pre-equilibrated configuration file. Randomly selected solvent molecules were 

replaced with Na+ or Cl- for a total salt concentration of 150 mM. The systems were 

subjected to energy minimization for 800 iterations, prior to 100 ps of equilibration at 

298 K and 1 bar using a velocity-rescaling thermostat55 and Berendsen barostat.56 Initial 

velocities were sampled from a Maxwell-Boltzmann distribution. 1 µs production runs 

were initialized from the equilibrated systems, using leap-frog integration with a time 

step of 2 fs. These simulations were carried out under NVT conditions with velocity 

rescaling at 298 K.55 Bonds were constrained using the linear constraint solver algorithm 

for protein57 and the SETTLE algorithm for water.58 Short range interactions were 

modeled with a Lennard-Jones 10 Å potential-shifted cut-off, while electrostatics were 

modeled using the smooth particle-mesh Ewald method59 with a grid spacing of 2.4 Å. 

The coordinates of all atoms were recorded every 2 ps for analysis. 

2.2.2 Data Analysis 

An in-house program was written in C++ to detect backbone amide H-bonds. The 

program reports the distance between each amide hydrogen and the closest possible 

H-bond acceptor (A) that satisfies the N-H-A angle criterion of 90° - 180°.60 A NH is 
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considered to be H-bonded if the 

angle criterion is satisfied while at 

the same time the H/A distance is 

less than 2.5 Å (Figure 2.1a). All 

oxygen and nitrogen atoms, 

including those in side chains, were 

considered as possible A moieties. 

The program was designed to record 

the fraction of time that each NH site 

interacts with each possible acceptor. 

When discussing H-bonds between 

two residues we will use the 

convention of naming the NH donor 

first, followed by the acceptor. 

A second program was developed to 

measure the solvent accessible 

surface area (SASA) of specified 

atoms at each time point using the 

double cubic lattice method.61 This 

technique models each atom as a 

sphere, with previously published 

effective van der Waals radii that 

represent protein interactions with 

water.62 SASA values discussed 

below refer to the sum of the amide 

nitrogen and hydrogen for each residue. 

To investigate the possible presence of tightly bound water networks at solvent-exposed 

NH sites29,36 a “bulk interaction rate” was determined. This parameter represents a 

measure of how rapidly H2O (or D2O) molecules can diffuse from bulk solution into the 

direct vicinity of an NH site. For implementing this strategy, each water within 7.5 Å of 

Figure 2.1 Scematic of H-bond and bulk  
interaction rate algorithms. (a) H-bond 
detection algorithm. An NH is considered to 
be H-bonded if a possible acceptor A is 
located within the shaded semi-sphere 
(exemplified by A1). A2 is too far away; A3 
falls outside the permitted angular range. (b) 
Cartoon description of the algorithm used for 
assessing how rapidly bulk solvent can 
replace water molecules adjacent to a NH site 
(“bulk interaction rate”). One possible 
trajectory of a bulk H2O (or D2O) is 
indicated in red. 



46 

 

the protein surface was tagged. Next, we determined how much time elapsed before the 

first untagged water came within 3 Å of the amide hydrogen (Figure 2.1b). This 

algorithm is only meaningful for NH sites that are not permanently buried. The analysis 

was therefore only performed for residues with greater-than-mean SASA values. The 

calculations were repeated 1000 times with starting points that were spaced by 1 ns. The 

mean of these replicates was used to determine the interaction rate in units of ps-1. 

2.3 Results and Discussion 

2.3.1 Ubiquitin Structure and Dynamics 

All-atom MD simulations of native ubiquitin in explicit water were conducted at 298 K. 

During the 1 µs simulation window the protein remained relatively close to its initial 

structure, with root-mean-square 

deviation (RMSD) values between 1 

and 3 Å (Figure 2.2a). Global 

unfolding/refolding transitions were 

not observed. This behavior is 

consistent with the known high 

stability of ubiquitin.47 A root mean 

square fluctuation (RMSF) plot 

further illustrates the rigid nature of 

the protein, with RMSF values of no 

more than 1 Å for most residues 

(Figure 2.2b). Only the C-terminal 

tail (residues 73-76) is more flexible, 

in agreement with existing structural 

data.47 Local regions occasionally 

undergo opening/closing transitions, 

as envisioned by eq. 2. For example, 

the H-bonds R42-L71 and R72-Q40 

are intact at 944 ns (Figure 2.3a), 

Figure 2.2 RMSD and RMSF plots for 
ubiquitin simulation. (a) Root mean square 
deviation of ubiquitin backbone atoms 
relative to the energy-minimized crystal 
structure. (b) Root mean square fluctuation of 
backbone atoms averaged for each residue. 
Panel (b) also shows the protein sequence and 
key secondary structure elements. 
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whereas both contacts are broken at 

946 ns (Figure 2.3b). A few ns later 

both contacts are regenerated (not 

shown in Figure 2.3).  

The H-bonding status of all backbone 

NH sites was tracked as a function of 

time. For each residue we identified 

the closest possible acceptor A that 

satisfied the 90° - 180° angle criterion, 

and we plotted the distance of this 

atom to the amide hydrogen. H/A 

distances below 2.5 Å imply the 

presence of a H-bond Figure 2.1a).60 

Figure 4 exemplifies three of the 

profiles obtained in this way. I44 is 

permanently H-bonded, R72 is 

H-bonded most of the time, whereas 

G76 is almost completely free. This 

analysis was conducted for all NH 

sites, yielding average values that are 

summarized in Figure 2.5 (discussed 

below). 

Opening/closing events of the type 

illustrated in Figure 2.3 are quite rare in our simulations. Many sites (such as I44, Figure 

2.4a) remain permanently H-bonded on the time scale considered here, despite 

undergoing deuteration with finite kHDX values.14,16,22,23,33 This reflects the well-known 

fact that all-atom MD studies cannot adequately sample all the conformational events 

probed by HDX, where labeling times extend to days.14,16,22,23,33 Even state-of-the-art (~1 

ms)46 simulations are orders of magnitude too short for this purpose.29 Fluctuations can 

be enhanced by running simulations at elevated temperature,46 but such semi-denaturing 

Figure 2.3 A structural fluctuation opens 
H-bonds near ubiquitin's C-terminus. 
MD snapshots for t = 944 ns (a) and t = 946 
ns (b). Side chains are omitted. Backbone 
NH groups are colored according to their 
experimental protection factors (from 
Figure 2.5a): blue, strongly protected; pink, 
weakly protected; red, unprotected. Panel 
(a) highlights two backbone H-bonds, 
R42-L71 and R72-Q40. In (b) these two 
H-bonds are disrupted due to a local 
fluctuation. 
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conditions favor large-scale dynamics 

that are not adequate for modeling a 

native HDX environment. 2 

In summary, although our data do not 

report on slow opening/closing 

transitions, they provide rich 

information on the ubiquitin ground 

state ensemble and its solvent 

environment. NH sites that are 

experimentally found to be protected 

must predominantly reside in a 

“closed” state under the simulation 

conditions used here. Conversely, sites 

with log P ≈ 0 must be “open”.2,30 Our 

trajectories, therefore, allow a detailed 

examination of the structural features 

that cause NH sites to be “open” or 

“closed”. 

2.3.2 Experimental Results 

Ubiquitin HDX/NMR data are 

available from several sources.16,22,23,33 

The log P values from different 

laboratories agree with each other quite well (Figure 2.5a), and they are also consistent 

with recent top-down mass spectrometry experiments. 14 Craig et al. 15 compiled an 

averaged log P profile that will serve as foundation for the following considerations 

(filled symbols in Figure 5a). To simplify the discussion we categorize amides according 

to their experimental behavior. NH groups with log P < 1 are considered to be 

unprotected. The remaining sites are broken down into weakly protected (1 < log P < 2) 

and strongly protected (log P > 2). The locations of these NH groups are highlighted in 

Figure 3 using red, pink, and blue, respectively. 

Figure 2.4 H-bonding properties of three 
NH sites. Shown is the amide hydrogen 
distance to the closest carbonyl acceptor 
(“A”) that falls within the permissible 
angular range (see Figure 2.1a). H/A 
distances below 2.5 Å (indicated by red 
lines) reflect the presence of a H-bond. (a) 
Data for I44, with H-bonding to H68 for 
100% of the time; (b) R72, with 93% 
H-bonding to Q40. The asterisk marks the 
opening event of Figure 2.3. (c) G76, with 
7% H-bonding to L73 and 1% to D39. 
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Figure 2.5 Overview of experimental HDX data, and various properties extracted 
from a 1 µs CHARMM22*/TIP3P simulation. (a) Experimental protection factors 
compiled by Craig et al.15 are highlighted as solid circles. Also shown are individual data 
sets as open triangles,16 open circles,22 and open squares.23(4, 5) (b) Average distance 
between the backbone NH of each residue and the closest possible main chain carbonyl 
acceptor. Values below 2.5 Å (red line) reflect the presence of an H-bond. (c) Same as in 
panel b, but including side chains. (d) Average NH SASA values. The red line represents 
the SASA threshold of 0.23 Å2. (e) Average bulk interaction rate, describing how fast 
bulk water diffuses to an NH site. Red asterisks represent exposed amides that are 
unprotected. Blue asterisks represent “problem cases”, where exposed amides are 
strongly protected. Error bars shown in all panels represent standard deviations. 
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2.3.3 Main Chain H-Bonds 

MD simulations reveal that 42 residues are H-bonded via main chain NH.....OC contacts, 

evident from H/A distance values that fall below the 2.5 Å threshold 60 in Figure 2.5b. 

These NH sites are highlighted green in the Figure 2.6a. All of them fall into the strongly 

or weakly protected HDX/NMR categories. Many of these sites are located in the α helix 

and the five-stranded β sheet, consistent with the view16 that HDX protection is often 

correlated with the presence of secondary structure. 

2.3.4 Side Chain H-Bonds 

In addition to main chain contacts, NH interactions with side chains are encountered 

(Figure 2.6b). Experiments show that K11, E51, and D58 are protected (Figure 2.5a), 

despite lacking H-bonds to main chain carbonyls (Figure 2.5b). However, inclusion of 

side chain atoms in our analysis lowers their H/A distance below the 2.5 Å threshold 

(Figure 2.5c). Specifically, K11 is H-bonded to the T7 side chain 83% of the time, E51 is 

98% bonded to the hydroxyl group of Y59, and D58 alternates between bonding to the 

T55 side chain (48%) and the T55 main chain carbonyl (38%). 

E18 and T55 are strongly protected, and they interact with aspartate side chains. The 

corresponding contacts (E18-D21 and T55-D58) fall short of the 2.5 Å distance threshold 

(Figure 2.5c). These cases represent examples of “bifurcated” H-bonds, where a 

backbone NH interacts with both oxygens of a carboxylate. It has been noted previously 

that this type of H-bond goes undetected when applying standard geometric criteria.60 

Our data nonetheless underscore the importance of bifurcated H-bonds for HDX 

protection. 

The MD results discussed so far confirm that H-bonding generally leads to protection. 

Interestingly, more than 10% of the HDX-relevant H-bonds do not constitute main chain 

contacts but side chain interactions, including bifurcated H-bonds. Yet, it is not possible 

to explain the protection pattern of ubiquitin solely on the basis of H-bonding. Eight 

strongly protected NH groups remain unaccounted for, as well as nine weakly protected 

sites (blue and pink, Figure 2.6b). 
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2.3.5 Solvent Accessibility 

In an effort to rationalize the HDX properties of the remaining sites, we next examined 

whether a low solvent accessibility might contribute to protection of amide groups that 

are not H-bonded. NH SASA values range from zero for permanently buried sites all the 

way to ~10 Å2 in the disordered C-terminal tail (Figure 2.5d). It is not unreasonable to 

assume that SASA values below a certain threshold will slow down HDX by inhibiting 

Figure 2.6 Energy-minimized structure of ubiquitin, where blue/pink/red coloring 
denotes the level of HDX/NMR protection as in Figure 2.3. Green represents NH sites 
with experimental HDX properties that are consistent with features seen in the MD 
simulations. These “explainable” sites are then grayed out in the subsequent panels. (a) 
Green: Protected sites that are involved in main chain NH.....OC H-bonds. (b) Green: 
Protected sites that are H-bonded to side chains. Orange: Side chain H-bond acceptors. 
(c). Green: NH sites protected by low solvent accessibility. I36 is not visible in this 
all-atom spacefill representation. (d) Green: Unprotected sites that are solvent accessible 
and not H-bonded. 
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NH contact with catalyst and solvent.5,24,25,27-29 Our data offer some clues as to what a 

suitable threshold might be. D39 is unprotected with SASA = 0.38 Å2, whereas S20 with 

SASA = 0.23 Å2 is protected (Figure 2.5). This suggests that protection should be a 

significant factor for SASA values around 0.23 Å2 and below. When adopting this 

threshold one can identify I36 and S65 as being occluded from the solvent (in addition to 

S20). All three residues are protected according to HDX/NMR, despite not being 

H-bonded (Figure 2.5). Readers might object to our somewhat heuristic choice of a 

SASA threshold. Indeed, it will be discussed below that the properties of T9 are not in 

line with the explanation attempts offered here. Our analysis is nonetheless compatible 

with the view that the low solvent accessibility of the non-H-bonded residues S20, I36, 

and S65 is a contributing factor to their experimentally observed protection (Figure 2.6c). 

2.3.6 Unprotected Sites 

The above considerations focused on sites that are protected according to HDX/NMR. 

We attempted to ascribe this protection to H-bonding and NH burial. It is also instructive 

to pursue the opposite strategy, i.e., examine unprotected sites and identify the reason(s) 

underlying their high HDX rates. From the data compiled in Figure 2.5 one can identify 

seven residues that have log P values close to zero, with high SASA values and no 

H-bonding. This group comprises L8, D39, A46, as well as the C-terminal tail 

(L73 - G76). In Figure 2.6d the corresponding amides are highlighted in green. These 

residues conform to the commonly held expectation that a lack of both H-bonding and 

burial will render NH sites prone to rapid exchange. 

2.3.7 Problem Cases 

The preceding discussion successfully addressed 79% of the ubiquitin backbone sites. 

Unfortunately, H-bonding and SASA considerations fail for the remaining 21%. In other 

words, 15 out of 72 amides do not behave in accordance with classical HDX expectations 

(Figure 2.7a). Most of these problem cases are NH groups that show experimental 

protection, despite having high solvent accessibilities and no H-bonding. This behavior is 

most dramatically illustrated by Q2, E16, T22, L43, Q62, and T66, which have log P 

values between 2.2 and 3.6. The opposite problem is encountered for T9, where log P = 
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0. This residue is not H-bonded, but it 

is situated in a narrow pocket with a 

low SASA value of 0.16 Å2 (Figure 

2.7b). According to the threshold value 

identified above these conditions 

should provide significant protection. 

For comparison, S20 (SASA = 0.23 Å) 

exhibits log P = 1.6 without 

H-bonding. 

2.3.8 Crystallographically 
Defined Water Molecules 

It has been proposed that H-bonding of 

exposed amides to crystallographically 

defined waters can provide HDX 

protection.29,36 This proposal envisions 

that specific solvent molecules are 

immobilized at the protein surface not 

only in the crystal, but also in bulk 

solution.35 To examine this idea we 

inspected the X-ray structure of 

ubiquitin, which comprises 58 crystal 

waters.47 Ten of these are H-bonded to 

exposed NH groups (Figure 2.7c). Is 

the presence of these H2O molecules 

correlated with HDX protection? Of 

the six exposed NH sites that exhibit 

anomalously high protection (Figure 

2.7c, blue), three are H-bonded to 

crystal water (Q2, E16, and L43); the 

remaining three are not engaged in 

Figure 2.7 Problem cases and waters 
resolved in the crystal structure. (a) 
Colored NH sites are problem cases, with 
HDX/NMR properties that are inconsistent 
with their H-bonding or SASA 
characteristics. Not all amides are annotated 
to prevent clutter. (b) Same as in (a), but in 
all-atom spacefill representation. (c) Ten 
crystallographically defined waters (red) are 
H-bonded to backbone amides in the pdb 
file 1UBQ. Only three out of six strongly 
protected surface amides interact with water 
molecules. Highlighted in gray are 
water-bound surface amides that are 
unprotected. 
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defined solvent contacts (T22, Q62, and T66). Focusing on the weakly protected problem 

cases (Figure 2.7c, pink), it is seen that four of them (T12, G47, G53, and K63) interact 

with crystal waters, whereas no water contacts are evident for T14, Q49, D52, and L71. 

Most importantly, L8, D39, and A46 are H-bonded to crystal waters, despite exhibiting 

log P values close to zero (Figure 2.7c, gray). This analysis demonstrates a complete lack 

of correlation between NH protection and H-bonding to crystallographically defined 

water molecules. 

A discussion of NH hydration on the basis of isolated crystal waters may be too 

simplistic. Some studies suggest that protein surfaces in solution can give rise to 

H-bonded water cages, resulting in solvent regions that exhibit retarded exchange with 

the bulk.63-65 It seems conceivable that such solvent cages might be able to provide HDX 

protection for exposed amides. To test for the presence of such protecting solvent cages 

we characterized the water dynamics at the protein surface around each NH site. A “bulk 

interaction rate” was determined from our MD data, which describes how fast solvent 

molecules can diffuse from the bulk into the direct vicinity of any given NH. A large 

interaction rate signifies that solvent molecules adjacent to an NH site are in rapid 

exchange with the bulk, implying the absence of protecting water networks. The 

unprotected sites in the C-terminal tail (residues 73-76) provide a reference context for 

this analysis. Bulk interaction rates for individual amides were generally found to be 

between zero to ~0.05 ps-1 (Figure 2.5e). This range is consistent with earlier reports of 

surface solvent exchange on picosecond time scales.63 The key question is the following: 

Do exposed NH sites with log P >> 0 exhibit lower bulk interaction rates than NH sites 

with log P ≈ 0? 

It is most instructive to examine the bulk exchange characteristics of exposed NH sites by 

focusing on the two extreme cases of strongly protected vs. unprotected surface amides 

(marked with blue and red asterisks, Figure 2.5e). The average bulk exchange rate of the 

“blue” sites is 0.020 ± 0.01 ps-1, whereas the “red” sites have a bulk exchange rate of 

0.024 ± 0.01 ps-1. The standard deviations of these average rates overlap with each other. 

While the “red” average is slightly higher, it would be far-fetched to propose that this 

small difference could be responsible for modulating HDX rates by more than two orders 
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of magnitude. We conclude that the solvent interactions for protected and unprotected 

exposed amides are not significantly different. In other words, our data do not support the 

idea that the HDX properties of exposed amides can be modulated by partially 

immobilized water molecules. 

2.3.9 Force Fields and Solvent Models 

It is unlikely that the lack of correlation between HDX protection and water 

immobilization in Figure 2.5e reflects inherent limitations of the MD strategy used here. 

The data of Figure 5b-e were obtained using the CHARMM22* force field50 with TIP3P 

water.51 Earlier simulations using the same approach were found to be remarkably 

accurate in folding simulations on a range of proteins.66 The TIP3P water model has 

recently been applied to address intricate solvation details at protein surfaces.65,67 

Nonetheless, it is clear that the results of MD simulations can be affected to some extent 

by the choice of force field.50,68 To test the robustness of our findings we repeated the 

simulations using a different force field (Amber99sb-ILDN52) and a different water 

model (TIP4P51). The results obtained in this way are compiled in Figure 2.8. 

Comparison of these data with those of Figure 2.5 shows a very high degree of 

consistency. These additional data do not affect any of the aforementioned 

considerations. 
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Figure 2.8 Overview of experimental HDX data, and various properties extracted 
from a 1 µs Amber99sb-ILDN/TIP4P simulation trajectory. (a) Experimental 
protection factors as in Figure 5. (b) Distance between backbone amide hydrogens and 
the closest possible main chain carbonyl acceptor. Values below 2.5 Å (red line) reflect 
the presence of an H-bond. (c) Same as in panel (b), but including side chains. (d) NH 
SASA values. (e) Bulk interaction rate, describing how fast bulk water diffuses to an 
NH site. Blue asterisks represent “problem cases”, where exposed amides are highly 
protected. Red asterisks represent exposed amides that are not protected. 
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2.4 Conclusions 
It is sobering that after 50+ years of using HDX as a structural biology tool30 practitioners 

have now concluded that it is necessary to revisit very simple proteins for conducting “a 

detailed hydrogen by hydrogen analysis to examine the bases of structure-rate 

relationships”.29 The current work employs all-atom MD simulations in an effort to 

scrutinize some of the pertinent issues. Computational techniques of the type used here 

cannot model actual NH → ND conversion events; doing so would require ab-initio 

approaches that are not practical for large systems.69 Nonetheless, even classical 

simulations can provide insights that go beyond those obtainable from static crystal 

structures.46,66 

It remains undisputed that amides in rigid regions tend to be more protected than those in 

disordered segments. For ubiquitin, most of the amides in the structured sequence range 

(residues 1-72) are protected, while the disordered C-terminus (residues 73-76) is 

unprotected. However, the exact physicochemical features that provide amide NH 

protection are poorly defined. The results of the current analysis can be summarized as 

follows (Table 1): (i) H-bonding always leads to HDX protection. This includes H-bonds 

to backbone carbonyls, side chains, as well as bifurcated H-bonds. (ii) For NH sites that 

are not H-bonded, low SASA values are often (but not always) associated with HDX 

protection. (iii) A lack of H-bonding at solvent-accessible amides does not imply that the 

corresponding sites are unprotected. Instead, many of these amides are characterized by 

log P >> 0.29,32-34 Aspect (iii) is the most troublesome finding of our work, as it goes 

against paradigms that are widely accepted in the HDX community. Most practitioners 

would concur that log P >> 0 implies either H-bonding or NH burial (or both). Our work 

demonstrates that this view is incorrect for many surface amides. This issue is 

particularly worrisome for modeling initiatives that rely on HDX data or other “sparse” 

structural information for elucidating protein conformations.40,43,45,70 The unexpected 

HDX behavior displayed by a considerable fraction of amides in a small model protein 

does not bode well for investigations on larger systems with unknown structures. 



58 

 

Efforts have been undertaken to account for unexpected surface amide protection on the 

basis of electrostatic factors.32,33,35 As noted earlier, negative charges in the vicinity of an 

amide will slow down HDX by raising the NH pKa.18-20,71 It remains unclear if such 

electrostatic effects can be responsible for the surface amide protection considered here. 

A recent study found no correlation between the HDX rates of surface amides and the 

calculated electrostatic field.29 Also, our MD trajectories do not reveal enhanced charge 

density (from E- or D- side chains) in the vicinity of protected surface amides, with the 

exception of NH sites that engage in bifurcated H-bonds.60 Electrostatic effects could 

nonetheless be a contributor to anomalous surface NH protection. Electrostatic modeling 

approaches require future refinement, as current results are strongly 

parameter-dependent.33 Challenges include an adequate description of polarizabilities, 

dielectric properties, solvent contributions, salt-mediated screening,18,33 as well as the 

choice of suitable reference structures.35 

 

 

Table 2.1 Summary of backbone NH protection behavior. 

NH Structural Context HDX Protection Status 

H-bonded to backbone protected 

H-bonded to side chain protected 

buried (not H-bonded) often (not always) protected 

located in rigid region, solvent-accessible, 

not H-bonded 

often (not always) protected 

located in disordered region, 

solvent-accessible, not H-bonded 

unprotected 

H-bonded to crystal water no effect on protection 
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Our results do not support the proposal29,36 that crystallographically defined water 

molecules can protect exposed amides via H-bonding contacts. The validity of this idea 

had previously been questioned by others.35 Many of the surface amides in ubiquitin are 

indeed bound to crystal water, but these interactions are not correlated with the degree of 

NH protection. We further tested whether protection might arise from higher order water 

networks. Unfortunately, there is no evidence for differences in the solvation behavior of 

protected vs. unprotected exposed amides. It would be of interest to extend this analysis 

by including interaction rates of NH sites with OH- (or OD-) which acts as HDX catalyst. 

Regrettably, such calculations require ab initio strategies that are out of reach for systems 

of the size considered here.72,73 

The interpretation of HDX kinetics in terms of log P values (eq. 3) relies on the adequacy 

of peptide-calibrated kch data.21 This approach has been criticized because peptides may 

not always properly mimic the environment experienced by protein NH groups (eq. 2).34 

Indeed, there are indications of discrepancies between protein and peptide-calibrated data 

in a few cases.74,75 Some log P values can also be affected by measurement artifacts. 

These issues introduce uncertainties, especially for the “weakly protected” sites of Figure 

5a. Data obtained for the “strongly protected” and “unprotected” amides are more robust, 

which is why most of our discussion focused on the latter two categories.  

Overall, the results of this study emphasize that HDX data have to be interpreted with 

caution. Widely accepted tenets such as the putative correlation between HDX protection 

and amide H-bonding (and/or solvent exclusion) may have to be revised. At the current 

stage of development there is no consistent explanation for the fact that surface NH sites 

can be strongly protected, while structural data show them to reside in a seemingly 

“open” conformation. These inconsistencies show that the mechanism of protein HDX is 

far from being understood. Perhaps it is time to move beyond the simple 

Linderstrøm-Lang formalism (eq. 2),30 which has governed the interpretation of HDX 

kinetics for decades. Quantum mechanical investigations that take into account the 

electronic properties of all interaction partners (protein, solvent, catalyst) as well as their 

conformational dynamics may be required to fully understand the intricacies associated 

with the seemingly trivial conversion of NH to ND.  
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3 The Electrospray Mechanism of Natively Folded 
Proteins: a Molecular Dynamics Investigation 

3.1 Introduction 

Electrospray ionization (ESI) is a soft ionization technique capable of producing multiply 

charged gas phase ions from macromolecular analytes in solution, including proteins.1-3 

ESI coupled to mass spectrometry (MS) can overcome m/z limitations of some types of 

mass analyzers by generating high charge states, and it supports facile coupling to 

upstream liquid chromatography, leading to its wide use as an analytical technique.3 The 

ESI process is initiated by infusing analyte-containing solution through a capillary to 

which a high electric potential has been applied. Electrophoretic separation of charge and 

electrochemical reactions at the capillary electrode lead to buildup of excess charge at the 

tip and formation of a Taylor cone.5,6 Charged droplets are emitted from this Taylor cone 

into a heated desolvation gas7,8 where evaporation of solvent promotes charge buildup in 

droplets and subsequent jet fission.9 Progeny droplets undergo repeated cycles of 

evaporation and fission, giving rise to a final generation of nanometer-sized droplets that 

produce the gaseous ions detected by MS.5,10 

Coulombic fission in micrometer sized droplets has been directly observed9, and is 

expected to occur when charge repulsion on the droplet surface exceeds surface tension, 

as described by the Rayleigh limit11,12: 

𝑒𝑅 = 8𝜋
𝑒

 �𝜀0𝛾𝑟3                                                   (3.1) 

where zR is the number of elementary charges, e, ε0 is the vacuum permittivity, γ is the 

surface tension, and r is the droplet radius. Daughter droplets carry away only a small 

portion of the parent droplet’s volume, but a disproportionate share of its excess 

charge.5,9,13 

The mechanism of ion release from the final generation of nanodroplets remains a 

controversial topic5,14-16. Many groups have postulated that ions – particularly small ions 

such as Na+ and NH4
+ – are emitted from these droplets via an activated field emission 
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process, the ion evaporation model (IEM).16-19 Conversely, it is envisioned that droplet 

evaporation to dryness leaves behind larger charged analytes such as ion clusters and 

macromolecules, the charged residue model (CRM).5,20-22 Others have proposed 

intermediate mechanisms that include features of both the IEM and CRM.23,24 Recent 

studies have also suggested that a third mechanism may apply to extended polymers such 

as polyethylene glycols, whereby the polymer is extruded from the droplet concomitant 

with charging, the chain ejection model (CEM).14,25 

In protein ESI-MS, ion charge state is related to the conformation of ions in solution, 

with denaturing solutions giving rise to higher charge states.1,26 Additionally, low charge 

species tend to be more heavily adducted when sprayed from salt-containing solution.27 

This suggests that unfolded protein ions are ejected from droplets via the CEM, while 

folded proteins emerge following solvent evaporation via the CRM.15 Indeed, folded 

globular proteins with molecular weights ranging over several orders of magnitude 

produce ions with charges comparable to Rayleigh-charged droplets of the same mass, 

supporting the notion that these species are CRM products.20 However, the droplets that 

produce these ions are small and short-lived, making them difficult to observe 

experimentally. 

Molecular dynamics (MD) simulations can provide a detailed atomistic view of 

sub-microscopic processes, and are becoming an increasingly useful method to probe the 

mechanisms underlying ESI.14,15,28-33 Studies in this direction have generally supported 

the idea that small carriers including Na+ and NH4
+ are ejected from the droplet via the 

IEM.15,28,30,33 Simulations of disordered polymers from our group25 and Consta14, have 

also supported the notion that the CEM is the dominant ionization mechanism for these 

species. However, simulations modelling the CRM have been limited. To our knowledge, 

only two previous studies have simulated a CRM process to completion – that is, the total 

desolvation of the analyte – and neither of these included macromolecules.22,29 The issue 

in simulating this process is threefold. Firstly, the CRM occurs over a much longer 

timescale than the < 2 ns simulations required to observe the IEM or CEM.14,15,22,25,28,30 

Second, and further compounding this issue, is that mechanistic MD studies of the ESI 

process on proteins necessitates very large droplets, which are computationally expensive 
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to simulate over long timescales. Finally, evaporative cooling of the simulated droplets 

results in drastic decreases in temperature which tends to halt solvent evaporation, even 

when a thermostat is applied.22,25,31,32 As a result, MD simulations of proteins solvated in 

ESI droplets which result in solvent-free gaseous ions have not yet been reported. 

In this work, we apply a trajectory stitching approach, which we have previously used in 

MD simulations of salt-containing nanodroplets22,34, to systems containing folded protein 

molecules and excess positive charge. We conduct 125 – 175 ns temperature-stabilized 

simulations on droplets of radius 3 nm which result in the formation of fully desolvated 

proteins in the gas phase. As solvent evaporates, droplets shed charge via emission of 

solvated single ions, consistent with the IEM. However, the protein remains solvated in 

the shrinking droplet until all solvent molecules have evaporated, consistent with the 

CRM. We find that these simulations yield clusters with charges comparable to the 

Rayleigh charge of a protein-sized water droplet across a range of analyte sizes, 

consistent with predictions of the CRM and folded species observed in ESI-MS. Further, 

through investigation of protein ions simulated with initial immobilized charges, we find 

that the remaining charge following solvent evaporation depends primarily on protein 

conformation, rather than initial charge in solution phase, in agreement with 

experimental data. 

3.2 Materials and Methods 

3.2.1 Protein Solutions 

Bovine ubiquitin (Ubq), equine holo-myoglobin (hMb), and equine heart cytochrome c 

(Cyt) were purchased from Sigma (St. Louis, MO). pH 7 solutions were prepared with a 

protein concentration of 5 μM in 10 mM aqueous ammonium acetate. Acidic and basic 

solutions of ubiquitin were prepared at 5 μM protein concentration without buffer in 

70 mM aqueous ammonium hydroxide (pH 11.2) and 2.65 mM aqueous formic acid 

(pH 3), respectively. Salt-containing samples additionally contained 200 μM sodium 

acetate. The protein mixture used to calibrate the ion mobility spectrometry (IMS) cell 

consisted of 10 μM each of Ubq, hMb, and Cyt in 49:49:2 (v/v/v) methanol:water:acetic 

acid (pH 2.2). 
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3.2.2 Mass Spectrometry and Ion Mobility Spectrometry 

Mass spectra were gathered on a Synapt G1 HDMS instrument (Waters, Milford, MA) 

equipped with a Z-spray ESI source. Ion mobility data were gathered concurrently with 

MS data using the instrument’s travelling-wave IMS cell. Samples were infused by a 

syringe pump at a flow rate of 5 μL/min. ESI was carried out with capillary voltage of 

2.8 kV and N2 desolvation gas at a rate of 500 L/h. Other instrument voltages were tuned 

to maximize the relative intensity of the most compact conformer observed in IMS for 

the 6+, 8+, and 9+ charge states of Ubq, Cyt, and hMb, repectively. Drift times observed 

in the IMS cell were converted to collision cross section (Ω) data using a calibration 

procedure similar to that published by Robinson and co-workers35, except that calibrant 

ions were collisionally activated using high sample cone voltage, and linear regression 

was against literature Ω values of unfolded species. 

3.2.3 MD Simulations: System Construction 

All MD simulations were carried out using GROMACS version 4.6 or 5.036 on Linux 

workstations. Ubq, Cyt, and hMb were modelled based on the crystal structures with 

PDB accession codes 1UBQ37, 1HRC38, and 1WLA39, respectively. Solvent molecules 

were removed and hydrogens were added using the PDB2GMX routine of GROMACS. 

A slightly modified version of the CHARMM36 force field40 which includes proper 

parameters for heme c41 was used for all three proteins. An in-house script was used to 

build the Cyt topology which allowed for axial ligation of the heme iron by His18 and 

Met80 and correct geometry at the Cys14/heme and Cys17/heme thioether linkages. All 

titratable sites were set to their pH 7 protonation states (N-terminus+, Lys+, Arg+, His0, 

Cys0, Tyr0, C-terminus-, Asp-, Glu-), unless otherwise noted. 

In order to build droplets, proteins were centered inside a rhombic dodecahedral box and 

subsequently solvated with water in a pre-equilibrated geometry using the GROMACS 

solvate utility. Approximately spherical droplets were formed from this dodecahedral 

system by applying an in-house Perl program called “dropletCarver” which removes all 

molecules in the system that are farther from the protein center of mass than a 

user-specified distance. For droplet construction, dropletCarver was set to create 
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spherical clusters with a radius of 3 nm. In each droplet, random solvent molecules were 

replaced with Na+ ions to bring the total system charge to 16+. These sodium ions are the 

mobile charge carriers in our system since simulation of protons, which requires ab initio 

methods42, is not feasible for droplets of this size. The droplets were then centered in a 1 

μm periodic cube for MD simulation, in order to take advantage of GROMACS GPU 

acceleration. 

3.2.4 MD Simulations: General Aspects 

Droplets were first subjected to up to 50000 iterations of steepest descent energy 

minimization such that the maximum force in the system was less than 250 kJ/mol/nm. 

Following energy minimization, the system was equilibrated for 2500 steps under 

constant temperature using the Nose Hoover thermostat43,44, with initial particle 

velocities sampled from a Maxwell-Boltzmann distribution. Production simulations were 

also carried out with initial thermalization from a Maxwell-Boltzmann distribution and 

maintained at constant temperature using a Nose Hoover thermostat. The leapfrog 

integrator was used for both equilibration and production phases of the simulations. Van 

der Waals forces were modelled using a Lennard-Jones potential, while electrostatic 

interactions were computed directly with a Coulomb potential. All non-bonded 

interactions used a potential-shifted cutoff at 333.3 nm. Neighbour lists were generated 

every 50 steps using the Verlet buffer method45. Linear momentum was removed from 

the system at every timestep. Constraints were applied to all bonds, using the LINCS 

algorithm46 for proteins and the SETTLE algorithm47 for water, to enable an integration 

timestep of 2 fs. 

Different water models vary considerably with respect to the set of bulk properties which 

they can reproduce. We therefore performed simulations with both the 3-site TIP3P48 and 

4-site TIP4P/200549 water models, in order to examine the effects of water model choice 

on our simulations. 

Droplets were coupled to a thermostat in order to simulate the collisional heating that 

occurs in the ESI source8, with activation depending on instrumental parameters. 

However, studies also show that ions may experience temperatures up to 450-800 K as 
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they are transported through the sampling region and ion guides of a mass 

spectrometer.50,51 This is examined further in the simulations of Ubq by simulating 

droplets at either initial “lower activation” conditions of 330 K for 125 ns or “higher 

activation” conditions at 370 K for 75 ns. Droplets containing Cyt or hMb were only 

simulated under the higher activation conditions. All droplets were then subjected to a 

temperature of 450 K for 50 ns. 

Finally, we investigated the effect of solution charge state of the protein on final system 

charge state by protonating or deprotonating Ubq side chains to achieve initial protein 

charge states of 0 (ph 7 default), 8-, 4-, 4+, and 8+. For positively charged Ubq, Glu 

residues were protonated to achieve the desired charge. Conversely, Lys residues were 

deprotonated to achieve negatively charged Ubq. Cyt and hMb were simulated only at 

their pH 7 protonation states, with initial protein charges of 6+ and 2-, respectively. 

Table 1 summarizes all simulation conditions discussed in this study, with each condition 

consisting of 5 replicates. 

 

 

Table 3.1 Summary of simulation conditions discussed in this chapter. 

Condition Protein 
Initial Protein 

Charge 
Water Model Na+ 

Activation 

Profile 

1 Ubq 0 TIP4P/2005 16 Higher 

2 Ubq 0 TIP3P 16 Higher 

3 Ubq 0 TIP4P/2005 16 Lower 

4 Ubq 8- TIP4P/2005 24 Higher 

5 Ubq 4- TIP4P/2005 20 Higher 

6 Ubq 4+ TIP4P/2005 12 Higher 

7 Ubq 8+ TIP4P/2005 8 Higher 

8 Cyt 6+ TIP4P/2005 10 Higher 

9 hMb 2- TIP4P/2005 18 Higher 
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3.2.5 MD Trajectory Stitching 

Simulating droplets in a vacuum environment under constant energy conditions has been 

previously shown to result in evaporative cooling as energetic solvent molecules escape 

the droplet, even when thermostats are used.22,28,32 This is inconsistent with the 

collisional heating that the droplet undergoes in the source region, which eventually 

results in desolvation of ions.8 In order to counteract this cooling, we applied a trajectory 

stitching approach, as discussed in previous studies from our lab.22,34 Under this scheme, 

production simulations were not continuous, but broken up into discrete 500 ps 

simulation windows. At the end of each simulation window, the dropletCarver script was 

applied such that any molecule that had moved more than 15 nm away from the protein 

center of mass was removed from the system. The droplet was then re-centered in the 

simulation cell, and new velocities were sampled from a Maxwell-Boltzmann 

distribution prior to beginning the next simulation window. This process was iterated 

until the desired total run length was reached. We have previously shown that this 

approach maintains droplet temperatures over long trajectories.22 The trajectory stitching 

approach used has the additional benefit of reducing the number of particles in the 

system over the course of the simulation, resulting in considerable speed-up versus 

simulating all particles for the full trajectory length. 

3.3 Results and Discussion 

3.3.1 Folded Species in ESI-MS 

We infused a 10 μM solution of Ubq in 10 mM ammonium acetate (pH 7) into a positive 

mode ESI source, and applied gentle instrument parameters. Consistent with previous 

reports1,25,52, these conditions produce a fully desolvated protein charge state distribution 

centered at a low charge (Figure 3.1a). The most prominent peak in the spectrum is the 

[M + 6H]6+ species, while the 5+ and 7+ charge states are also observed at lower 

intensity (Figure 3.1a). 
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Figure 3.1 ESI mass spectra of ubiquitin in 10 mM ammonium acetate under gentle 
conditions. (a) Full spectrum of Ubq in 10 mM ammonium acetate, showing a low 
charge state distribution. (b) Close up of the 6+ peak in (a). (c) close up of the 6+ peak 
when 2 mM sodium acetate is added to the sprayed solution, showing extensive sodium 
adduction. 
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Figure 3.2 ion mobility traces of adducted species in Figure 3.1c. Species display 
decreasing levels of sodium adduction from top to bottom, with the identity of each 
species identified at the right each panel. The dashed red vertical line indicates the 
collision cross section of the unadducted 6+ species from Figure 3.1b (1018 Å2). 
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The full mass spectrum was also subjected to ion mobility spectrometry analysis using 

our instrument’s in-line travelling wave ion mobility cell. The recorded drift times were 

converted to collision cross sections using a protocol similar to that of Robinson and 

co-workers.35 The 6+ protonated ubiquitin species shows a collision cross section 

centered at 1018 Å2 (Figure 3.2), which is in agreement with values previously measured 

by the Bowers group in a drift tube IMS device53, and theoretical values calculated from 

ubiquitin’s X-ray crystal structure using the exact hard spheres scattering algorithm.54 

These data suggest that the 6+ species is a fully desolvated ubiquitin ion in a native-like 

conformation. 

It is worth noting that these species are formed from a pH 7 solution in which Ubq 

molecules are expected to predominantly have a neutral charge (isoelectric point 6.56). 

Charging of the ion must therefore occur during the ESI process, as a result of 

protonation in the source or during desolvation. This is problematic for MD, since 

simulations including protons require use of much more computationally expensive ab 

initio methods.42,55 We circumvent this issue by instead modelling mobile charges in our 

system using Na+ ions, which can be treated classically. 

We sought to examine the structural properties of multiply-sodiated Ubq ions by infusing 

a protein solution inoculated with 200 μM sodium acetate. This solution produces a 

charge state distribution comparable to that shown in Figure 3.1a for the sodium-free 

sample (data not shown), but the intensity of each protein peak is split between several 

sodium-adducted species (Figure 3.1c), an effect we have previously investigated with 

other salt additives.34 Using these sodium acetate solutions, we are able to produce a 

ubiquitin ion whose excess charge is entirely carried by sodium adducts, labelled in 

Figure 3.1c. We also subjected these adducted species to IMS analysis. Multiply-sodiated 

species produced under these conditions display collision cross sections that are 

indistinguishable from the unadducted 6+ ion (Figure 3.2). They are, therefore, inferred 

to have a native-like structure comparable to the unadducted ion.53 Based on these data, 

we suspect that formation of both protonated and sodiated Ubq ions proceeds via a 

similar mechanism. MD simulations using Na+ ions as the excess charge carrier should 

therefore provide a reasonable model of the ESI process for folded proteins. 
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3.3.2 Temporal Evolution of Protein Nanodroplets 

We first performed MD simulations on a Ubq-containing nanodroplet with excess charge 

carried by 16 Na+ ions. Snapshots of a typical simulation are presented in Figure 3.3. At 

the beginning of the simulation, the droplet is roughly spherical, and Ubq is located at the 

center (Figure 3.3, 0 ns). As the simulation progresses, the protein migrates to the 

droplet’s surface (Figure 3.3, 20 ns). We have previously seen this behavior with 

compact hydrophobic polymers25, but in this case, the effect seems to be Coulombically 

driven. Ubq’s positively-charged basic side chains are excluded from the interior, 

remaining solvated close to the droplet surface. Gratifyingly, this agrees with Rayleigh’s 

continuum model which envisions charge evenly distributed over the droplet surface12, as 

well as previous simulations in which the charge of small solvated cations was projected 

to the surface by orientation of solvent molecules.56 The roughness of the droplet surface 

as solvent evaporates, particularly as charge density increases (Figure 3.3, 20 ns), has 

been previously observed in MD simulations, and may be analogous to Taylor cones that 

Figure 3.3 Snapshots from a 125 ns simulation of a ubiquitin-containing 
nanodroplet. Protein is shown in cartoon representation, in red. Sodium ions are in 
space-fill representation in blue. Water is displayed in line representation in red. 
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form in charged micrometer droplets, promoting field emission of solvated ions via the 

IEM.14 Indeed, we observe many Na+ ions ejected in small solvent clusters to reduce 

system charge. These ejection events consist only of single ions, as we have previously 

seen in droplets containing salt species.22,34 

Evaporation slows as the number of solvent molecules dwindles, and charged species 

“cling” to the last few waters in the system (Figure 3.3, 75 ns). These last solvent 

molecules are removed when the simulation temperature is increased to 450 K for 50 ns, 

modelling the higher collisional activation ions encounter in the sampling region and ion 

optics of a mass spectrometer.50,51 These elevated temperatures do not result in loss of 

sodium adducts. The simulations culminate in desolvated protein ions clustered with 6 to 

7 sodium ions (Figure 3.3, 125 ns), and an average charge of 6.2 ± 0.4. The adducted 

sodium ions tend to reside in the vicinity of the α-helix, since Ubq has many acidic 

residues in this region which facilitates ionic cluster formation with Na+. The charge 

states obtained are in remarkably good agreement with the mass spectrum displayed in 

Figure 3.1a, where the 6+ charge state of Ubq dominates and the 7+ species is the highest 

intensity minor constituent of the Ubq distribution. 

An interesting result of these simulations is that the secondary and tertiary structure of 

ubiquitin appear to be unperturbed by desolvation and heating to at least 450 K in the gas 

phase, at least on the timescales studied here (Figure 3.3, 0 ns and 125 ns). Root mean 

square deviation (RMSD) analysis comparing the position of α carbons in the protein 

Figure 3.4 Root mean square deviation of ubiquitin vs the crystal structure in an 
evaporating nanodroplet. The RMSD values seen here are comparable to ubiquitin in 
bulk solvent, and an order of magnitude lower than denatured ubiquitin.4 
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backbone to the published crystal structure37 confirm that solution phase structure is 

maintained throughout our simulations (Figure 3.4). This observation agrees with a 

previous ESI-MS study which suggests that Ubq may be kinetically trapped in a 

near-native configuration on at least microsecond timescales.53 In IMS, observed 

collision cross section data generally agrees with theoretical values calculated from 

published high resolution structures when proteins are subjected to gentle ESI conditions, 

further supporting this idea.35,53 

These simulations unambiguously characterize the folded Ubq ions discussed above as 

CRM products. As the droplet shrinks, excess charge is shed through IEM ejection of 

solvated Na+ ions, but the protein remains solvated. Ionization depends on solvent 

evaporation, with residual charged species from the final stage droplet deposited on the 

protein surface. This is analogous to the formation of salt clusters discussed in a previous 

paper by our group.22 

3.3.3 Temperature Profile and Water Model Effects 

We next investigated whether the temperature profile applied in our MD simulations had 

an effect on the observed results. The simulations outlined above applied a thermostat a 

constant temperature of 370 K for 75 ns to simulate the heated gas environment in the 

source region followed by a temperature of 450 K to simulate collisional activation in the 

sampling region and ion optics. In-source activation can be made gentler by reducing 

instrument voltages and/or using a sub-atmospheric pressure electrospray source.5,57 We 

therefore repeated our initial simulations in a “lower activation” regime in which droplets 

would be heated to a lesser extent over a longer period of time prior to reaching the 

sampling region. These simulations employed an initial temperature of 330 K for 125 ns, 

followed by a temperature of 450 K for 50 ns. Typical snapshots from these simulations 

are virtually indistinguishable from those in Figure 3.3, except that evaporation rate is 

slower during the 330 K simulation window (data not shown). Resultant protein ions 

from these runs are fully desolvated, near-natively folded Ubq/Na+ clusters with 6 to 7 

sodium ions and a mean charge of 6.4 ± 0.5. This suggests that the temperature profile in 

our simulations does not strongly affect Ubq charge states within the regime examined. 

The observation that changes in charge state caused by in-source activation appears to be 
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driven by protein conformational changes52 suggests that a temperature regime which 

maintains Ubq structure ought to result in approximately the same charge state. We 

therefore conducted all additional simulations in the higher temperature regime, in order 

to reduce computation time. 

We also examined the effect of the water model selected for our MD simulations. The 

runs discussed above employed the TIP4P/2005 water model due to its broad agreement 

with many different empirical properties of water across a range of temperatures49, 

including surface tension.58 In previous MD studies, we have chosen to use a simple 

3-site water model due to its low computational cost.22,25,56. We therefore attempted 

simulations of the droplet system using the TIP3P water model.48 In these simulations 

evaporation occurs more quickly (data not shown), possibly due to the decreased heat of 

vaporization in the TIP3P model relative to experiment, which may result from a less 

realistic description of hydrogen bonding in 3-site models.48 TIP4P/2005, conversely, 

slightly overestimates the heat of vaporization.49 Otherwise, the TIP3P droplets behaved 

similarly to the TIP4P/2005 droplets, but resulted in final products with charge states 

from 5+ to 6+, with a mean charge of 5.6 ± 0.5. This reduction in charge relative to the 

droplets previously discussed is possibly due to the lower surface tension of the TIP3P 

water model compared to TIP3P/2005.58 The dependence of equation 3.1 on surface 

tension suggests that these droplets may eject Na+ via the IEM at a lower charge density. 

We find that Na+ ejection occurs at a singnificantly lower proportion of the Rayleigh 

limit in simulations using the TIP3P water model (78 ± 4 %) compared to TIP4P/2005 

(89 ± 3 %). The TIP3P droplets eject sodium ions at approximately 1.14-fold lower mean 

charge density than the TIP4P/2005 droplets in agreement with the 1.15 to 1.30-fold 

reduction expected based on the square root dependence on γ in equation 3.1.58 These 

data highlight both the importance of selecting an appropriate water model in MD 

simulation and the relevance of the Rayleigh model for our charged droplet system. We 

selected the TIP4P/2005 water model for all subsequent simulations, despite its higher 

computational cost, because of its excellent agreement with experimentally measured 

water surface tension values.58 
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3.3.4 Variations in Initial Protein Charge State 

The charge states of proteins in solution can be modulated by adjusting the pH, which 

could potentially affect charge states of resultant ions when such a solution is used in 

ESI-MS. Acid is often added to protein solutions prior to ESI-MS and promotes 

denaturation of proteins and the formation of high charge states.25,26 To investigate 

whether pH changes affected charge states produced for Ubq, we infused acidified (pH 3) 

and basified (pH 11.2) protein solutions into the ESI source. The acidic solution is 

sufficient to protonate most glutamic acid residues (pKa = 4.25) and so Ubq in solution 

should carry a net positive charge. Conversely the basic solution should deprotonate most 

lysine residues (pKa = 10.5), resulting in Ubq with a net negative charge. The spectra 

generated from these solutions are centered at low charge state (Figure 3.5), similar to pH 

7 solutions (Figure 3.1a). The acidic solution is shifted to slightly higher charge (Figure 

Figure 3.5 Mass spectra of ubiquitin sprayed from acidified and basified solution. 
Upper panel was collected from ESI-MS of 2.65 mM aqueous formic acid, while bottom 
panel was from 70 mM NH4OH. 

6+ 

6+ 

7+ 

7+ 5+ 

8+ 



81 

 

3.5, upper panel), but lacks the distribution centered at high charge state characteristic of 

unfolded proteins.1 We also examined these species by IMS (Figure 3.6). The 6+ charge 

state ions produced from both acidified and basified solutions have collision cross 

sections comparable to the pH 7 products (Figure 3.2), suggesting that these proteins are 

in native-like conformations. 

We modelled these scenarios in MD by assigning non-default charges to side chains in 

the Ubq structure. We generated 8+ and 4+ Ubq ions by protonating glutamic acid side 

chains to simulate ions emerging from acidic solutions, as well as 8- and 4- ions by 

deprotonating lycine side chains to simulate ions emerging from basic solutions. These 

ions were then solvated in droplets and a sufficient number of Na+ were added to bring 

the total system charge to 16+ (Table 3.1). Ubq with an initial charge of 8+ emerged 

from the droplet with 0 Na+ adducts in all cases, suggesting that the protein carried 

sufficient charge to drive IEM ejection of Na+ ions in the final stages of droplet 

evaporation. It’s possible that one or more additional charge ejections would have 

Figure 3.6 Ion mobility spectra of 6+ ubiquitin ions from acidified and basified 
solutions. 



82 

 

occurred in these simulations, but bonds cannot be broken in classical MD, so the ions 

cannot be deprotonated. However, the 4+, 4-, and 8- ions yielded final clusters with mean 

charges of 6.8 ± 0.4 (2 to 3 adducts), 5.8 ± 0.4 (9 to 10 adducts), and 6.2 ± 0.4 

(14 to 15 adducts), respectively. Final charge state is insensitive to the initial protein 

charge state for folded Ubq in our MD simulations, so long as the simulated species has a 

sufficient number of charge carriers to shed, in agreement with the experimental data, 

above (Figure 3.5 and Figure 3.6). These data suggest that protein conformation, rather 

than solution charge, is the primary factor determining final charge state of a protein in 

ESI-MS, as previously suggested.1,26 

3.3.5 Additional Proteins 

We performed additional experiments and simulations using Cyt and hMb. These 

proteins were selected as additional model systems so that the proteins studied would 

range across several different sizes (Ubq: 76 residues, 8.5 kDa; Cyt: 104 residues, 

12.4 kDa; hMb: 153 residues, 17.5 kDa) and charges at pH 7 (Ubq: 0; Cyt: 6+; hMb: 2-). 

The mass spectra of hMb and Cyt are qualitatively similar to Ubq in that they consist 

only of low charge states (Figure 3.7). It is evident from the hMb spectrum that this 

protein has not unfolded, since there is no heme peak at m/z 616, nor are there apo-

myoglobin peaks interleaved with the holo- species (Figure 3.7, lower panel). IMS traces 

of the most intense ion in each of these spectra also show that these proteins are compact 

and native-like (data not shown). 
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We performed MD simulations on droplets containing either Cyt or hMb. Typical 

snapshots of these simulations can be seen in (Figure 3.8). Similar to the simulations on 

Ubq (Figure 3.3), the proteins remain solvated until all solvent molecules have 

evaporated, and excess charge carriers remaining in the final stage droplet are deposited 

on the protein surface. The proteins remain essentially native with α-carbon RMSD 

versus the crystal structure < 4 Å, even after heating in the gas phase at 450 K. The mean 

charge on products of these simulations is 8.0 ± 0.6 for Cyt and 8.6 ± 0.8 for hMb. The 

charge states generated in MD simulation again agree well with the distribution seen in 

experimental mass spectra. Our data consistently show that folded, soluble proteins 

emerge from nanodroplets as multiply-charged ions via a CRM process. 

Figure 3.7 Mass spectra of cytochrome c and holo-myoglobin at pH 7. 
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3.4 Conclusions 

In this study, we conducted MD simulations on aqueous nanodroplets containing natively 

folded proteins and excess charge carried by sodium ions. As these droplets evolve, 

solvent molecules evaporate while proteins remain solvated, ultimately retaining the 

residual charge following complete desolvation. We unambiguously identify the protein 

hMb Cyt 

Figure 3.8 Snapshots from MD simulations of holo-myoglobin and cytochrome c. 
Proteins are shown in cartoon representation, coloured red. Na+ ions are shown in space 
fill representation, colored blue. Water molecules are shown as lines, coloured red. Heme 
groups are shown in stick representation, coloured black. 
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ions generated under gentle ESI conditions as CRM products, while droplet charge 

density is moderated by IEM ejection of small charge carrier ions, in line with previous 

models and simulation studies.22,23 Our work adds to the emerging consensus within the 

ESI-MS literature that suggests the IEM applies for small, charged analytes; the CEM 

applies to elongated, hydrophobic analytes; and the CRM applies for compact, 

hydrophilic analytes.5,14,15 

We note a general agreement between the charge states produced in our simulations and 

those observed in experimental ESI-MS spectra. Previous models have suggested that the 

charge remaining on these desolvated species is determined by the favourability of ion 

emission events which deplete the charge of the late stage droplet23,59. Our data agree 

with these notions insofar as the residual charged species that are not ejected from the 

shrinking droplet seem to become affixed to the protein surface upon desolvation. This 

and previous simulation studies from our lab15,22,34 have shown that these ion emission 

events tend to maintain the droplet charge close to the Rayleigh limit. In this study, we 

also observed that the charge density in the evolving droplets depends on surface tension 

of the solvent model applied, in agreement with Rayleigh’s continuum model. Further, 

through simulation of variously charged Ubq ion with excess Na+ in these droplet 

systems, we showed evidence that the final charge of CRM products is determined 

primarily by macromolecular conformation. The ultimate charge states of our model 

folded systems, as well as recorded spectra, are well-predicted by the Rayleigh charge of 

a native-protein-sized water droplet regardless of initial solution conditions, as in the 

model of de la Mora20 (Figure 3.8). 
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This excellent agreement is promising, but it must be emphasized that the simulations 

presented in this work are not sufficient to reproduce an entire mass spectrum. Without 

additional insights into the breakup of droplets and partitioning of ions within the ESI 

plume, studies of this nature cannot be conducted, even if the computational demands of 

Figure 3.9 Comparison of experimental data, MD simulation results and a 
Rayleigh charge-based model for charge states of folded proteins. ESI-MS spectra 
for Ubq (top), Cyt (middle), and hMb (bottom). Vertical dashed red lines labelled zR 
correspond to the charge predicted for a Rayleigh-charged droplet with the same 
volume as the protein. Values at right are charge states produced in our MD 
simulations for these systems. 
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such an endeavor were within reach. As well, the present MD approach is limited to 

study of charge carriers that can be modelled classically, such as Na+. The use of ab 

initio methods42,55 which allow for inclusion of protons and modelling of acid/base 

chemistry in these droplet systems would undoubtedly provide additional insights. 

Unfortunately, the size of the systems involved makes these approaches too 

computationally expensive to be feasible, at present. 

It will also be informative to extend this method to larger proteins including non-covalent 

complexes. MD simulations to explore the ionization of unfolded proteins in ESI 

nanodroplets may also be within reach, but this approach will likely require some 

treatment of protons, since extrusion of elongated chains in predicted to be concomitant 

with analyte charging in these systems.14,25 If ab initio strategies prove impractical, 

simulation schemes such as those developed by Fegan and Thachuk to deal with proton 

mobility in the gas phase60 may be fruitful in such an investigation. 
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4 Conclusions and Future Work 

4.1 Conclusions 
In this work we have applied molecular dynamics simulations to shed light on 

fundamental aspects of structural mass spectrometry techniques. These simulations 

provide an atomistic view into the unobservable processes that underpin the data 

observed in experiment. We examined the behavior of proteins in both bulk solution and 

isolated nanometer sized droplets, resulting in new insights that will inform interpretation 

of Hydrogen/Deuterium exchange rates and electrospray ionization charge state 

distributions. 

In Chapter 2, we examined the microscopic phenomena that underlie 

Hydrogen/Deuterium exchange (HDX), a common technique in protein structural 

investigations. The work presented focuses on ubiquitin for exploring the defining 

features that distinguish amides in “open” (exchange-competent) and “closed” 

(exchange-incompetent) environments. Instead of relying on static X-ray structures, we 

employed all-atom molecular dynamics (MD) simulations for obtaining a dynamic view 

of the protein ground state and its surrounding solvent. The HDX properties for 57 out of 

72 NH sites can be readily explained on the basis of backbone and side chain H-bonding, 

as well as solvent accessibility considerations. Unexpectedly, the same criteria fail for 

predicting the HDX characteristics of the remaining 15 amides. Significant protection is 

seen for numerous exposed NH sites that are not engaged in intramolecular H-bonds, 

whereas other amides that seemingly share the same features are unprotected. We 

scrutinized the proposal that H-bonding to crystallographically defined water can cause 

the protection of surface amides. For ubiquitin, the positioning of crystal water is not 

compatible with this idea, nor do our MD data reveal a difference in the solvation 

properties of protected vs. unprotected surface amides, making it unlikely that restricted 

water dynamics can cause anomalous amide protection. The findings reported here 

suggest that efforts to deduce protein structural features on the basis of HDX protection 

factors may yield misleading results. This conclusion is relevant for initiatives that rely 

on sparse structural data as constraints for elucidating protein conformations. This study 
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demonstrates the utility of MD simulation for examining protein behavior observed in 

structural MS. We next sought to apply MD simulations to a mechanistic study of the 

electrospray ionization process, which produces the gas phase ions central to HDX and 

other structural MS experiments. 

In Chapter 3, we studied the mechanism of Electrospray Ionization (ESI) for natively 

folded proteins. Electrospray ionization (ESI) coupled to mass spectrometry (MS) is a 

commonly used analytical technique for probing protein structure and dynamics. We 

employed all-atom molecular dynamics simulations to explore the process by which 

natively folded proteins are released from nanometer sized aqueous droplets into the gas 

phase. A trajectory stitching approach was applied to maintain system temperature and 

remove evaporated solvent as the droplet evolves. We find that shrinking droplets 

maintain charge densities close to the Rayleigh limit1,2 through ejection of small charge 

carriers such as Na+, while protein molecules remain solvated in the droplet interior. As 

the last solvent molecules evaporate, the proteins are ionized by residual charge carriers 

which remained at the surface of the vanishing droplet. Our data provide clear evidence 

that protein ions formed during native ESI are produced by Dole’s charged residue model 

(CRM).3 Moreover, we find that the ultimate charge states produced in these simulations 

agree with experimental MS charge state distributions, are predictable based on 

Rayleigh’s continuum model1, and are insensitive to protein charge in the initial solution. 

To our knowledge, this study represents the first MD simulation to achieve complete 

desolvation of a protein ion in a CRM process. Once again, the utility of MD for 

interrogation of microscopic phenomena that lead to the m/z values observed in MS is 

highlighted. 

Simulation and computation have been called the third pillar of modern science, 

alongside theory and experiment. Here, we have used MD simulations to explore 

fundamental aspects of structural mass spectrometry. The true value in our simulations 

comes in viewing them alongside experimental data and theory. In Chapter 2, we 

reaffirmed the H-bond-centric view of H/D exchange protection, but found that more 

than 20% of HDX protection observed in ubiquitin could not be rationalized by 

H-bonding or solvent accessibility. Researchers relying on HDX data for structural 
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initiatives will be well-served in applying similar simulation methods to better understand 

how their measured exchange rates relate to secondary and tertiary structure of proteins. 

Similarly, in Chapter 3, we found excellent agreement between our simulations and 

experiments, as well as Rayleigh’s continuum model, for predicting the final charge state 

of a folded protein under gentle ESI-MS conditions. As computational power continues 

to expand, we foresee that studies marrying simulation and experiment, like those 

presented here, will be fruitful ground for critical evaluation and enhanced understanding 

of the fundamental aspects of structural mass spectrometry and other analytical 

techniques. 

4.2 Future Directions of Study 

4.2.1 Extended Simulations and Additional Proteins in HDX/MS 

Extended, millisecond scale simulations on ubiquitin, such as those performed by Shaw 

and co-workers4, could provide additional insights into HDX at an amide-resolved level. 

In particular, these simulations could provide considerably greater conformational 

sampling, and the possibility for quantitative correlation of protection factors, based on 

amide properties in unfolded protein states. These simulations could also provide insights 

into how the extent of correlation in the opening and closing events of various amides, an 

important aspect of interpreting HDX at the peptide level.5 Studies of additional proteins 

could alos facilitate greater understanding of HDX protection. Detailed studies on 

Staphylococcal nuclease by Englander and co-workers6,7 could make it a natural first 

choice for such endeavours. 

4.2.2 Gas Phase HDX and Pulsed HDX 

Our studies in Chapter 2 focused on solution-phase HDX data gathered in continuous 

labelling experiments, where a protein spends a long period of time solvated in D2O. 

However, HDX can also be carried out for comparatively short periods by pulsed 

labelling, where the protein is only exposed to D2O for a as short a time as possible 

before exchange is “quenched” at low temperature and acidic pH.8 Gas phase HDX can 

be carried out in a mass spectrometer through introduction of D2O vapor into the 

sampling or ion transport regions.9 MD simulations could be especially useful in probing 
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the exchange phenomena in these regimes, since it can potentially achieve 

experimentally-relevant timescales. Challenges will be in generating appropriate starting 

structures, since these techniques are often applied to examine partially unfolded or 

disordered species, which are not well characterized by high-resolution structural 

techniques.8,10 

4.2.3 ESI-MS of Noncovalent Complexes 

In Chapter 3, it was found that proteins maintained their solution-phase structure upon 

transmission to the gas phase, but only monomeric proteins were discussed. The 

simulations and experiments on holo-myoglobin which show heme retained in the protein 

structure strongly suggest that this should also be the case for larger noncovalent 

complexes, including multimeric proteins. Since large proteins with many subunits are 

often the focus of structural mass spectrometry experiments11,12, a natural extension of 

the work presented would be exploration of the retention of quarternary structure in ESI-

MS. Simulation of a tetrameric protein such as hemoglobin could be informative in such 

a study. 

4.2.4 Additional Macromolecules in ESI-MS 

We extensively interrogated ESI-MS of folded proteins, but examination of other 

analytes may reveal further insights. Peptides, such as those created from pepsin or 

trypsin digestion of proteins, are often analyzed by ESI-MS in protein studies in order to 

localize modifications on the protein structure. Short peptides may emerge from 

nanodroplets via a different mechanism than natively folded proteins due to their small 

size and disordered structure. Interrogation of the ESI mechanisms of additional 

macromolecules of biological or pharmaceutical importance including lipids, nucleic 

acids, oligosaccharides, or dendrimers could also be informative. 
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