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Abstract

It is well known that encoding times in persons with schizophrenia are longer than those

of normal controls. Neufeld and others have argued that this is the consequence of additional

subprocesses being executed during the encoding process in the case of schizophrenia. In

general they expressed an encoding time as the sum of k′ independent exponentially-distributed

subprocesses, each executed with rate v. A troubling consequence of their application of this

model to real data was that under some circumstances some individuals appeared to encode

instantaneously. This was accommodated in Neufeld et al. by placing a Poisson distribution

on k′. In this thesis the view is taken that k′ = 0 is not realistic and an alternative model is

developed in which k′ is restricted to positive integers. This is made compatible with very short

encoding times by introducing a task parameter α into the model. The problem of estimating

α is addressed.

Keywords: encoding times, schizophrenia, subprocesses
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Chapter 1

Mathematical Models and Theoretical

Results

1.1 Introduction

Of considerable interest in cognitive science are the earmarks of psychopathology, in particular

the key elements which might distinguish one disorder from another. One concept which has

received considerable attention is that of encoding in the case of paranoid schizophrenia (for a

review see Neufeld, 2007a). Encoding is the process by which an object or event is transformed

mentally into a form which facilitates carrying out the task at hand. For example, consider a

basic memory search task (Sternberg, 1975) where the participant is first presented with a

collection of alphanumeric items (memory set) then later is presented with an item (probe

item) which may or may not have been in the set. The total reaction time is the amount of

time required for the participant to indicate whether or not the item belonged to the memory

set. In order to accomplish this, the participant must first encode the probe item, i.e., extract its

salient physical features (curves, lines, and intersections) in order to facilitate comparison with

members of the memory set. Alternatively, if the task at hand were to have participants indicate

whether the “real-life size” of a probe item matched with that of a member of a memory set,

1
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then the relevant information to be encoded would be the size properties of the item. Tasks

which involve sentence verification would require the encoding of linguistic properties, and so

forth.

The reaction time z can then be decomposed into a sum

z = t + y + w (1.1)

where t represents the encoding time, y consists of additional mental processes such as making

comparisons with members of a memory set and making a decision, and w is the physical

reaction time to render a yes-no response.

Converging evidence suggests that persons with schizophrenia display prolonged reaction

times and that this prolongation is due specifically to a protracted encoding time t (the other

terms y and w are spared; e.g., Neufeld, Vollick, & Highgate, 1993; Neufeld, 2007a). This

elongation of encoding times is particularly apparent in persons with paranoid schizophrenia

(Neufeld & Williamson, 1996). The paranoid subtype has been removed from the new DSM-

V but there is evidence that such a subtype exists, e.g., Nicholson & Neufeld, 1993, and the

previous DSM-IV. A person will be considered to have paranoid schizophrenia if he or she

meets the criteria in DSM-IV. The elongation of encoding times is not only apparent in memory

search tasks such as those described above, but is believed to be the reason behind the saccadic

eye movements observed in persons with paranoid schizophrenia when they attempt to track a

continuously moving object . Paranoid patients display the highest rate of saccades compared

to non-paranoid patients, patients with affective disorders, and healthy controls (Neufeld &

Williamson, 1996). The saccades have been viewed as the result of inefficient encoding of the

visual stimulus properties required for smooth tracking.
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Consequently, methods of determining parameters related to encoding times (particularly

if they do not tax an already stressed patient) might provide a welcome window into the degree

of “illness” of the patient (see Neufeld, 2007a, and the discussion in Section 5 of Neufeld,

Boksman, Vollick, George, & Carter, 2010). A first step in this is to recognize that encoding

times will vary from trial to trial and will be governed by a stochastic process. The goal is

to develop a mathematical model that adequately captures the stochastic system that is the

encoding process. The expression “the encoding process” is used because evidence suggests

that the same model architecture holds in general. In the case of paranoid schizophrenic illness,

a slippage in a parameter occurs, not a change in architecture (Neufeld, 2007a; Neufeld et al.,

2010).

In order to motivate the models considered in this thesis, results from the analysis of some

aspects of an experiment of George and Neufeld (2007) will first be described. Participants

viewed a four-letter word in the central visual field for 1.5 seconds. This was immediately

followed by the presentation of a probe item for 20 milliseconds; this probe item consisted

of two words, one in the left visual field and one in the right visual field. Participants were

instructed to press the “yes” key as quickly as possible if either of the probe words matched

the first word; otherwise they were to press “no” as quickly as possible. In the case of a match,

there was considered to be a differential encoding load (low vs. high) depending on the visual

field in which the matching probe word was presented. A word presented in the right visual

field should be processed more quickly (left hemispheric superiority for verbal stimuli) than

one presented in the left visual field. For the purposes of this investigation only positive trials

(i.e., trials on which a probe word matched the original word) were considered. In this way a

2 x 2 factorial design with four cells was created, where one factor was encoding load (low vs.
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high) and one factor was health status (healthy control vs. paranoid schizophrenia). Multiple

trials were run on each participant and the expression of the reaction time on a single trial took

the form of (1.1). More specifically, if the reaction time on the jth trial of the ith participant in

one of the four cells is denoted by zi j, then

zi j = ti j + yi j + wi j (1.2)

In their analysis of the above data, Neufeld et al. (2007) and Neufeld et al. (2010) first cal-

culated the sample mean and the sample variance of the reaction times for each participant

within a cell. Those values were then averaged over all the participants within the cell (see the

sampling schematic in Appendix A where there are M participants per cell, each subject to N

encoding trials.) The effect was to produce two statistics from each cell, an average mean ¯̄z and

an average variance ū2. These quantities were the basic units of analysis and had the advantage

of cancelling out much of the noise in the individual trials so that differences between cells

could be observed. The basic results were as expected: reaction times were longer when the

encoding load was higher or when the participant had paranoid schizophrenia. A particularly

interesting result, however, was that means and variances were additive over the four cells (i.e.,

there was no interaction). Mean reaction times for both healthy and paranoid individuals in-

creased by the same amount as the encoding load moved from low to high; similarly for mean

variances. This observation is important as it restricts the possible valid models for encoding,

a topic which has been addressed at length by Neufeld et al. (2010).

Since, as noted earlier, processes other than encoding seem to be spared in paranoid schizophre-

nia, it is not unreasonable to assume that over all participants the yi j variables are independently

and identically distributed with some mean E(Y) and variance Var(Y), and similarly that the wi j
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are independently and identically distributed with their own mean and variance. However it is

expected that the distribution of the ti j variables will depend on the cell to which the participant

belongs, since encoding is affected by encoding load and health status. Simply put, if for a

particular cell (*) we write

¯̄z = ¯̄t + ¯̄y + ¯̄w (1.3)

then

E(¯̄z) = E(T )∗ + E(Y) + E(W) (1.4)

where only the first term on the right hand side of (1.4) depends on the cell (*). With somewhat

more work it can be argued that

E(ū2) = E(Var(T ))∗ +Var(Y)+ Var(W) (1.5)

where only the first term on the right hand side of (1.5) depends on the cell (*)1. The initial

work of this thesis is to examine models of encoding times whose parameters can be suitably

adjusted for the cell (*) to which the participant belongs.

Returning to the problem of additivity, first consider the case of the four means in the four

cells. Additivity in (1.4) is clearly unaffected by the “nuisance parameters” E(Y) and E(W).

Suppose there exists a constant c > 0 such that E(T )∗ in the cell (*) takes the general form

E(T )∗ = m∗ c (1.6)

for some m∗ > 0 which depends on the cell. Evidently, based on the knowledge that encoding

times increase under increased encoding load or under change from healthy status to paranoid

1The expectation sign appears in the first element on the right hand side of (1.5) because ultimately the distri-

bution of the encoding time T will depend on the individual and must be averaged out over individuals in the cell.

See (1.15) and (1.16).
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schizophrenia status, it can be deduced that there are parameters m > 0, h > 0, and g > 0 such

that m∗ = m for normals under low-encoding load, m∗ = m+h for normals under high-encoding

load, and m∗ = m + g for patients with paranoid schizophrenia under low encoding load.

Additivity then results if and only if m∗ = m + g + h for patients with paranoid schizophrenia

under high encoding load. Similar conclusions can be reached about the four average variances

in the four cells if E(Var(T ))∗ takes the form

E(Var(T ))∗ = n∗ d (1.7)

where the constants here do not necessarily take the same values as those in (1.6). (However a

proliferation of different constants may result in a situation where it is not possible to estimate

all parameters or to test model fit.) In Neufeld et al. (2007, 2010) the tendered model (to be

described more fully in the next section) featured m∗ = n∗ and both c and d were functions of the

same parameters. Moreover additivity was “forced” in the estimation procedure by requiring

that m∗ = m + g + h in the fourth cell (a tactic to be followed later in the procedure considered

in this thesis). Model parameters in (1.6) and (1.7), as well as the nuisance parameters E(Y)

and Var(Y) were estimated by fitting a loss function and using a minimization procedure (e.g.,

Neufeld & McCarty, 1994; Chandler, 1959). The quantities E(W) and Var(W) were directly

replaced by the known experimental values 0.160 and 0.001296 respectively (Woodworth &

Schlossberg, 1954). See (1.17) and (1.18) and the discussion in the next section.

As a consequence of the above estimation procedure, an anomalous value was found for m

that cast some doubt upon the overall correctness of the model. This provided the impetus for

the research in this thesis. In the next section the original Neufeld model is described in detail

and the anomaly discussed. Subsequently, a modified new model is then developed, along
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with estimation procedures and a discussion of the attendant difficulties. Finally, in the second

chapter, some numerical techniques and results are provided.

1.2 The Original Neufeld Model

The first step in model construction occurs under the assumption that two basic parameters are

involved in the distribution of the encoding time T : the number k′ of subprocesses that must

be executed in order for a probe item to be encoded, and the rate v at which each subprocess

can be completed (sometimes called capacity). This construct must take place within an ar-

chitectural framework that embraces additivity as discussed in the Introduction. See Neufeld

and Williamson (1996), Neufeld et al. (1993), Neufeld et al. (2007), and Neufeld et al. (2010)

for detailed discussions on architectures that support additivity. The basic conclusion here is

that additivity can be obtained with a model when capacity behaves the same from cell to cell

(i.e., remains constant under a change in encoding load or health status) but the number of

subprocesses increases as encoding load increases or as health status switches from healthy

to paranoid schizophrenia. An increase in number of subprocesses is to be expected with an

increase in encoding load, but it is not known why individuals with paranoid schizophrenia

show an increase in the number of subprocesses required to encode an item. This may occur

for various reasons; the person may simply fail at navigating a subprocess step (requiring rep-

etition), may fail to tag the step as completed and unnecessarily repeat it, or may be disturbed

by the intrusion of irrelevant subprocesses (see Cromwell & Dokecki (1968), Hemsley (1993,

1994), Steffy and Galbraith (1980), and Steffy and Waldman (1993) for discussion). Russell

and Knight (1977) have suggested that there is insertion of “priming” or activating subpro-

cesses prior to the start of actual encoding. This is somewhat supported by recent fMRI results
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(Bluhm et al., 2007; Murphy, Birn, Handwerker, & Bandettini, 2009) that suggest there is

an abnormal “resting state” neurocircuitry in individuals with paranoid schizophrenia. Braver

and Barch (2006) have also noted that anomalous default-system connectivity may reduce the

deployment of resources once encoding is initiated.

The Neufeld model (Neufeld et al., 2002, Neufeld et al., 2007; Neufeld et al., 2010) can

be built as follows. Suppose that for a given individual the time ` required to complete a

subprocess is exponentially distributed with rate parameter v, i.e., it has probability density

function (pdf)

g(` | v) = ve−v` for ` > 0 (1.8)

The quantity v is the capacity or rate at which the individual can execute a subprocess. Townsend

and Ashby (1983) discuss some empirical evidence in support of exponentially-distributed sub-

process times but this is by no means definitive and will be modified later in this thesis. If the

individual must complete k′ subprocesses in order to encode an item (where k′ is a positive

integer) then his or her encoding time is given by

t = `1 + · · · + `k′ (1.9)

It has been emphasized that k′ should be a positive integer as it is central to this thesis that in

order for encoding to occur at least one subprocess must be executed (this will be expanded

upon shortly). Further assuming that the subprocessing times are mutually independent (again

a defensible assumption, Neufeld et al. 2010), it follows that t will have an Erlang distribution

with parameters k′ and v, and pdf given by

f (t | k′, v) =
vk′tk′−1

(k′ − 1)!
e−vt for t > 0 (1.10)
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The Erlang is a special case of the gamma distribution and it is well-known (Hogg, McKean,

& Craig, 2005) that its mean and variance are given by

µ =
k′

v
and σ2 =

k′

v2
(1.11)

Note that the simplest implementation of this model would be to keep v identical over all

four cells while keeping k′ fixed within a cel1 but allowing it to vary between cells, reflecting

a change in the number of subprocesses executed as encoding load or health status changes.

Then (1.6) and (1.7) hold with m∗ = n∗ = k′, c = 1/v, and d = 1/v2 and additivity can be

obtained by a simple constraint on the fourth cell as discussed in the second last paragraph of

the Introduction.

The shortcoming of the above implementation, however, is that it assumes that all individ-

uals have the same capacity v and that all individuals within a cell require the same number

of subprocesses k′ to encode an item. This is unlikely to hold in practice. An innovation of

Neufeld et al. (2002), Neufeld et al. (2007), and Neufeld et al. (2010) was to assign each

participant his or her own particular values of k′ and v, then allow these values to vary over

each cell according to some distribution (to be discussed shortly). In keeping with the evi-

dence that capacity does not depend on encoding load or health status, the distribution for v

was deemed to be the same in each cell. However, the distribution of k′ shifted from cell to cell

to accommodate the expected changes in the average number of required subprocesses.

The distribution assigned to v was that of a gamma distribution with shape parameter k > 0

and rate parameter r > 0 (note that k need not be an integer here), thus having pdf

f (v | k, r) =
rkvk−1

Γ(k)
e−rv for v > 0 (1.12)

In this context k and r are sometimes called hyperparameters. The parameter k is related
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to performer competence on the task at hand whereas r is determined by the participant’s

susceptibility to stress efffects (Neufeld, 2007b).

The distribution assigned to k′ in the cell (*) was Poisson with parameter λ∗. This is a

discrete distribution on the nonnegative integers k′ = 0, 1, 2, . . . with probability mass function

(pmf) given by

P(k′) =
e−λ

∗

(λ∗)k′

(k′)!
(1.13)

The parameter λ∗ is the mean of the distribution, i.e., E(k′) = λ∗. Note that P(k′ = 0) =

e−λ
∗

> 0 so this violates the original assumption that k′ ≥ 1. This yields both a conceptual

problem (some individuals must be able to encode without executing any subprocesses) and a

mathematical problem (the Erlang distribution (1.10) is not defined when k′ = 0) although the

latter can be resolved by setting the encoding time t = 0 when k′ = 0. This situation will be

elaborated upon further when estimation of parameters is discussed.

Now let Ti denote the encoding distribution of the ith participant in cell (*). It follows from

the model assumptions and (1.11) that there exist parameters k′
i

and vi such that

E(Ti) =
k′

i

vi

and Var(Ti) =
k′

i

v2
i

(1.14)

Assume now that the distributions of k′ and v are independent. Mixing over all participants in

cell (*) (i.e, averaging over all individuals in the cell with respect to the Poisson and gamma

distributions) thus yields

E(T )∗ = E(E(Ti)) = E

(

k′
i

vi

)

= E(k′)E(1/v) (1.15)

and

E(Var(T ))∗ = E(Var(Ti)) = E

(

k′
i

v2
i

)

= E(k′)E(1/v2) (1.16)
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Remark 1.2.1 Note that regardless of the distributions placed on k′ and v, (1.15) and (1.16) hold

and take the form of (1.6) and (1.7) with m∗ = n∗ = E(k′), c = E(1/v), and d = E(1/v2), so that

additivity can be obtained even with changes in the distributions provided that the distribution

of k′ has the property that E(k′) can be adjusted to be any value a > b0 (by a change in its

parameter(s)) where b0 is the infimum over all values that E(k′) can take on. This will be called

the fill property for convenience. To see the connection of the fill property with additivity, note

that if E(k′) = m in the first cell, then the fill property implies that, for the subsequent cells,

E(k′) = m + h, E(k′) = m + g and E(k′) = m+ g + h are possible since h, g > 0. The Poisson of

course has the fill property since b0 = 0 in this case and E(k′) = λ∗ is possible for any λ∗ > 0.

For the gamma distribution it can easily be shown that E(1/v) = r/(k − 1) for k > 1 and

E(1/v2) = r2/(k − 1)(k − 2) for k > 2. Neufeld et al. (2007) and Neufeld et al. (2010) obtained

the equations

E(¯̄z) =
λ∗r

k − 1
+ E(Y) + .160 in cell (*) (1.17)

and

E(ū2) =
λ∗r2

(k − 1)(k − 2)
+ Var(Y) + .001296 in cell (*) (1.18)

The parameter k was set to k = 30 as an appropriate choice for the encoding task at hand

(Neufeld, 2007b; Neufeld et al., 2007) so it did not require estimation. The value of λ∗ was

set to m, m + h, m + g, or m + g + h depending on the cell (*). This resulted in six parameters

to be estimated: m, g, h, r, E(Y), and Var(Y) using eight observations (the cell means and

cell variances). The estimated value of m turned out to be m̂ = .0971 < 1. Since m is the

expected number of subprocesses E(k′) executed by healthy controls under the low encoding

load, this implies that a segment of that population was encoding instantaneously without exe-



12 C 1. MM  T R

cuting any subprocesses (i.e. k′ = 0 for some individuals). In fact ĥ = .08175 so the expected

number of subprocesses m+ h executed by healthy controls even under the high encoding load

was only 0.1789, again implying that some individuals must be encoding without executing

subprocesses. The estimates for the participants with paranoid schizophrenia exceeded 1 but

this was not reassuring; instantaneous encoding could be occurring for some individuals while

being compensated for by particularly poor performances by others.

It is important to note, as indicated earlier in the Introduction, that the parameters in (1.17)

and (1.18) were estimated by minimizing a loss function in which the Poisson played no role

other than to ensure that additivity could be obtained. It would be correct to say that the Poisson

did not cause the anomalous values for m̂ and ĥ but rather that it accommodates them by virtue

of the fact that P(k′ = 0) > 0 renders instantaneous encoding mathematically possible. In

this sense, the small values for m̂ and ĥ can be viewed as providing evidence for instantaneous

encoding and supporting a Poisson model. In this thesis a competing model is developed which

does not permit instantaneous encoding but can still account for the small estimates m̂ and ĥ.

1.3 A Competing Model

In this section it will be assumed that any viable candidate for the distribution of the number of

subprocesses k′ must take values only on the positive integers k′ = 1, 2, 3, . . . . For convenience

such distributions will be called positive distributions and they necessarily feature E(k′) ≥ 1.

In order to be able to account for fractional values of m such as that obtained in the preceding

section, the processing time of subprocesses will be speeded up by introducing a parameter

α. (In principle any value of α > 0 is possible but what will be of interest here is the case

0 < α < 1.) The time to execute a subprocess will no longer be exponentially-distributed as in
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(1.8) but rather will follow a gamma distribution with shape parameter α and rate parameter v

g(` |α, v) =
vα`α−1

Γ(α)
e−v` (1.19)

Again letting the encoding time be the sum of the subprocess execution times

t = `1 + . . . + `k′ (1.20)

it follows that the distribution of t is gamma with shape parameter k′α and rate v (see Hogg et

al. 2005)

f (t |α, k′, v) =
vk′αtk′α−1

Γ(k′α)
e−vt (1.21)

The mean and variance are respectively

µ =
k′α

v
and σ2 =

k′α

v2
(1.22)

Note that the mean and variance go to zero as α→ 0. The parameter α has an interpretation as

a task parameter. For very simple encoding tasks, subprocess execution might be dispatched

very quickly (small α) and hence encoding times would be very short (but not instantaneous).

If Ti is the encoding time of the ith participant in cell (*) then

E(Ti) =
k′

i
α

vi

and Var(Ti) =
k′

i
α

v2
i

(1.23)

Now place a positive probability distribution P(k′) on k′ with parameter(s) that vary over cells

and satisfies the fill property in Remark 1.2.1. Place the same gamma distribution (1.12) on v.

Then mixing over participants in a cell (*) with respect to these distributions yields

E(T )∗ = E(E(Ti)) = E

(

k′iα

vi

)

= αE(k′)E(1/v) (1.24)

and

E(Var(T ))∗ = E(Var(Ti)) = E

(

k′
i
α

v2
i

)

= αE(k′)E(1/v2) (1.25)
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Thus m∗ = αE(k′) rather than E(k′) as in (1.15) and (1.16), and the estimates of m∗ could be

very small if α is very small. Specifically, that which is actually being estimated by the loss

function is the product αE(k′) rather than E(k′).

Two common distributions that are candidates for P(k′) are now described.

Example 1.3.1 Consider the geometric distribution P(k′) given by

P(k′) = (1 − p)k′−1 p for k′ = 1, 2, 3 . . . (1.26)

where the parameter p > 0 represents the probability of “success” on a trial. It is well known

that E(k′) = 1/p and it follows that the fill property in Remark 1.2.1 is satisfied because here

b0 = 1 (occurring when p = 1) and obviously any value of E(k′) > 1 can be obtained by

the correct selection of p. This fact will be utilized later when developing a constraint on the

parameter p4 in the fourth cell (as a function of the parameters p1, p2, p3 in the first three cells)

to obtain additivity as discussed in the Introduction. The geometric distribution has a nice

physical interpretation here as each trial (each “subprocess”) can be viewed as an attempt to

encode the item. The value of k′ corresponds to the number of attempts required to successfully

encode the item.

Example 1.3.2 Consider the truncated Poisson distribution P(k′) given by

P(k′) =
e−λλk′

(1 − e−λ)(k′)!
for k′ = 1, 2, 3 . . . (1.27)

The truncated Poisson is obtained from the standard Poisson by removing zero from the range

of possible values and redistributing the mass over the positive integers. The distribution

behaves much like the standard Poisson when λ is reasonably large. It can be shown that

E(k′) = λ/(1 − e−λ). The infimum b0 occurs when λ → 0; specifically limλ→0 E(k′) =

limλ→0 λ/(1 − e−λ) = 1 by L’Hôpital’s rule. The fill property of Remark 1.2.1 thus holds
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because E(k′) is a continuous function of λ which diverges to ∞ as λ → ∞ and hence by the

Intermediate Value Theorem must take on every value between 1 and∞.

Now suppose a positive distribution P(k′) satisfying the fill property has been selected.

Then (1.17) and (1.18) take the form

E(¯̄z) =
m∗r

k − 1
+ E(Y) + .160 in cell (*) (1.28)

and

E(ū2) =
m∗r2

(k − 1)(k − 2)
+ Var(Y) + .001296 in cell (*) (1.29)

where m∗ = αE(k′) in cell (*). Note that it is not possible to separate α and E(k′) in the

above. If α is adjusted downward then E(k′) can be adjusted upward so that the product m∗ is

unchanged (this uses the fill property). Formally this nonuniqueness problem is stated as the

following:

Proposition 1.3.3. Suppose α,m, g, h have been found so that m∗
1
= αm, m∗

2
= α(m + h),

m∗
3
= α(m + g) and m∗

4
= α(m + g + h). Then there exist alternate solutions α0, m0, h0, and g0

such that m∗
1
= α0m0, m∗

2
= α0(m0 + h0), m∗

3
= α0(m0 + g0) and m∗

4
= α0(m0 + g0 + h0).

See Appendix B for a proof.

As a consequence of the above, another method must be found for estimating α. The key

here is to not average reaction time data across participants in a cell as done in (1.28) and (1.29).

Rather, the differences between reaction times of individuals in a cell provide information about

k′ and α. This involves looking at the data on a microscopic level instead of through summary

statistics. This is the topic of the next section.
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1.4 Estimating α

In this section an additional assumption will be made on the distribution P(k′) in order to

facilitate understanding and simplify proofs. A positive probability distribution P(k′) will be

called complete if P(k′) > 0 for each integer k′ ≥ 1. (Note that the geometric and truncated

Poisson distributions are examples of complete distributions.)

1.4.1 Estimating α from the x data

Suppose a sequence of values k′1, k
′
2, k
′
3, . . . has been generated from a complete distribution

P(k′) (for example by sampling over individuals within a cell). This is considered to be a

“hidden” sequence in that it is not observed by the experimenter. Suppose there is also an

unknown value of α > 0 and the actual observed data consists of the sequence x1, x2, x3, . . .

where xi = k′
i
α for each i. This is called the x data and may seem mysterious at this juncture.

However, obtaining the x data from encoding time data is discussed in the next subsection.

At present it is simply assumed that the x data has been obtained by some procedure, and the

question of estimating α from it is addressed.

The first step is to verify the uniqueness of α.

Theorem 1.4.1.1 Suppose x1, x2, . . . has two representations

x1 = k′1α, x2 = k′2α, . . . , xm = k′mα, . . .

x1 = k′′1 β, x2 = k′′2 β, . . . , xm = k′′mβ, . . .

(1.30)

where α > 0, β > 0, and k′1, k
′
2, k
′
3, . . . and k′′1 , k

′′
2 , k

′′
3 , . . . are independent and identically-

distributed sequences from the same positive distribution P(k′). Then α = β and thus necessar-

ily k′
i
= k′′

i
for every i. (Note: this result does not require P(k′) to be complete; see proof in

Appendix B.)
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Whereas uniqueness of α holds for an infinite sequence, this is not the case in a finite

sample x1, x2, . . . , xM from a complete distribution. Suppose

x1 = k′1α, x2 = k′2α, . . . , xM = k′Mα (1.31)

Then the x sample can also be expressed as

x1 = (nk′1)(α/n), x2 = (nk′2)(α/n), . . . , xM = (nk′M)(α/n) (1.32)

for any positive integer n, so there are infinitely many representations. Thus finding α is not

simply a matter of constructing integers from the x sample, i.e., selecting some α such that

x1/α, x2/α, . . . , xM/α produces integers. There are infinitely many such α and the goal is to

find the one “true” α as described in Theorem 1.4.1.1. From this point onward, in order to

avoid confusion, the symbol α will be reserved for the true α. An estimate of α will now be

developed.

Proposition 1.4.1.2 Let x1, x2, . . . , xM be an x sample arising from a complete distribution.

Define

A =

{

β > 0 |
xi

β
is a positive integer for all i = 1, 2, . . . ,M

}

(1.33)

Then A is not empty and it has a largest member which will be denoted by αmax.

Note that A is of course not empty because α ∈ A. The quantity αmax can be expressed as

αmax = sup A. The work of the proof of Proposition 1.4.1.2 (in Appendix B) is to show that

αmax belongs to A. It then follows that the constructed set of integers

j1 =
x1

αmax

, j2 =
x2

αmax

, . . . , jM =
xM

αmax

(1.34)

are the smallest integers that can be constructed from the x sample. In fact even more can be

said about this constructed set.



18 C 1. MM  T R

Proposition 1.4.1.3 The set of integers j1, . . . , jM in (1.34) is coprime, i.e., if there exists an

integer n ≥ 1 and integers j′1, . . . , j
′
M

such that ji = n j′
i

for all i = 1, . . . ,M, then n = 1.

(Equivalently, gcd { j1, . . . , jM} = 1.)

To see that Proposition 1.4.1.3 must be true, suppose that ji = n j′i for all i = 1, . . . ,M.

Then xi = jiαmax = j′i(nαmax) for i = 1, . . . ,M, yielding xi/(nαmax) = j′i for i = 1, . . . ,M. Thus

β = nαmax belongs to the set A in (1.33). If n ≥ 2 then this would imply that αmax is not the

largest member of A. Hence n = 1.

The quantity αmax is a viable candidate for an estimate of α based on the following Propo-

sition and Theorem.

Proposition 1.4.1.4 Let k′1, k
′
2, . . . , k

′
m, . . . be an independent and identically-distributed se-

quence from a complete distribution P(k′). Then there exists M ≥ 1 such that k′1, k
′
2, . . . , k

′
M

is

coprime.

The above result can be seen to hold because P(k′ = 1) > 0 and hence the value 1 must

appear at some point, say M, in the sequence. It follows then that k′1, k
′
2, . . . , k

′
M is coprime. In

fact k′1, k
′
2, . . . , k

′
M will tend to be coprime even for rather small M since the completeness of

P(k′) implies that two coprime integers k′i and k′j are likely to be generated early in the sequence

(it is generally not necessary to wait for a 1).

Theorem 1.4.1.5 Suppose k′
1
, k′

2
, . . . , k′

M
is generated from a complete distribution P(k′) and

x1 = k′
1
α, x2 = k′

2
α, . . . , xM = k′

M
α is the observed x sample. Then αmax = α if and only

if k′
1
, k′

2
, . . . , k′

M
is coprime. Moreover, as a consequence of Proposition 1.4.1.4, there will be

some M for which αmax = α.

Remark 1.4.1.6 It must be reiterated that the integer sample k′1, k
′
2, . . . , k

′
M

is unobserved so the
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value of M at which it becomes coprime will be unknown. Thus the point at which αmax = α is

also unknown. A guess at the latter can be made by plotting αmax vs. M and locating a plateau

(however, a plateau may be temporary). The utility of the procedure lies in the fact that the

necessary value of M is likely to be relatively small.

Example 1.4.1.7 The present example illustrates the consequences of k′1, k
′
2, . . . , k

′
M not being

coprime. Suppose M = 3, k′1 = 6, k′2 = 2, and k′3 = 4 with α = 1/8. Then the observed x

sample is x1 = 3/4, x2 = 1/4, and x3 = 1/2. It follows that αmax = 1/4 (in particular, αmax , α)

and the constructed integers (1.34) are j1 = 3, j2 = 1, and j3 = 2. Thus αmax , α and produces

a coprime set (as it must, cf. Proposition 1.4.1.3) which disagrees with the true hidden integer

set k′1, k
′
2, k
′
3.

An algorithm for finding αmax: In the preceding example it was easy to see what αmax must

be. However, for a large x sample (or for one in which the xi are expressed to several decimal

digits) it may not be so straightforward. The key to developing a simple algorithm for finding

αmax is to realize that αmax ≤ xmin (where xmin is the smallest value in the x sample) and that in

fact αmax = xmin/ j for some positive integer j. Under the important restriction that there be no

rounding error in the members of the x sample, the algorithm proceeds as follows:

1. Let α1 = xmin. If x1/α1, x2/α1, . . . , xM/α1 are integers, then αmax = α1 and the algorithm

stops. Otherwise proceed to Step 2.

2. Let α2 = xmin/2. If x1/α2, x2/α2, . . . , xM/α2 are integers, then αmax = α2 and the algo-

rithm stops. Otherwise proceed to Step 3.

3. Let α3 = xmin/3. If x1/α3, x2/α3, . . . , xM/α3 are integers, then αmax = α3 and the algo-
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rithm stops. Otherwise proceed to Step 4.

Ultimately the algorithm stops at the first integer j for which division of the x sample by

α j = xmin/ j produces integers.

Example 1.4.1.8 A hidden sample of 15 integers k′1, . . . , k
′
15 was generated from a truncated

Poisson distribution P(k′) and multiplied by an unknown α to produce the observed x sample

.135 .090 .120 .120 .090 .150 .135 .180 .105 .120 .150 .180 .195 .135 .240 (1.35)

Note that xmin = .090 so α1 = .090. However, .135/.090 = 1.5 which is not an integer, so the

algorithm proceeds to Step 2. Setting α2 = .090/2 = .045, note that .120/.045 = 2.67 which is

not an integer, so proceed to Step 3. Set α3 = .090/3 = .030. Then .135/.030 = 4.5 is not an

integer. Carrying on in this way, it can be seen that the first integer j for which division by α j

produces a sample of integers is j = 6. Thus αmax = xmin/6 = .090/6 = .015 and this is the

suggested estimate of α. The constructed integer sample (1.34) from αmax = .015 is

9 6 8 8 6 10 9 12 7 8 10 12 13 9 16 (1.36)

In practice it cannot be known for certain if αmax = α and if the correct integer sample has

been constructed because it cannot be known for certain if k′1, . . . , k
′
15

is coprime. However, in

the case of this example, (1.35) was created by generating a random sample k′1, . . . , k
′
15

from

a truncated Poisson distribution with parameter λ = 10 (using the statistical software program

R(2013)) and multiplying by α = .015. Hence the correct values were recovered. This should

not be a surprise because P(k′) is complete. In fact, because k′1 = 9, k′2 = 6, k′3 = 8 form a

coprime set, the correct value αmax = α = .015 would have been reached at M = 3. (A plateau

in αmax would have been observed for M ≥ 3.)
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Example 1.4.1.9: Now suppose k′1, . . . , k
′
15

have been sampled from a geometric distribution

and multiplied by some α to obtain the following x sample

0.270000000 0.203333333 0.205000000 0.165000000 0.501666667 0.231666667 0.096666667

0.145000000 0.133333333 0.101666667 0.056666667 0.135000000 0.235000000 0.028333333

0.003333333

Nine-digit decimal accuracy has deliberately been taken in order to avoid significant round-

ing error. (The problem of rounding error is discussed below in Remark 1.4.1.10, and a

method for coping with it is addressed in Chapter 2.) Note that α1 = xmin = .003333333

and that division by this value does not produce a sample of integers because, for example,

.028333333/.003333333 = 8.5 is not an integer. However, setting α2 = xmin/2 = .001666667

produces a sample of integers (to within rounding error in the 9th decimal place). Thus αmax =

.001666667 and the constructed sample j1, . . . , j15 of integers (1.34) is

162 122 123 99 301 139 58 87 80 61 34 81 141 17 2 (1.37)

In fact the original k′ sample was generated using the geometric random number generator

in R with p = .01 and coincided with (1.37). The multiplier was α = 1/600 = αmax =

.001666667. Again it is not a surprise that the correct values were recovered because the

geometric distribution rapidly generates a coprime set.

Remark 1.4.1.10 Although the above method is a particularly powerful theoretical tool for

determining α and recovering the original integer sample, it is deeply adversely affected by

rounding error in the x sample. Rounding error and/or noise is of course ubiquitous in real-

world data. In Chapter 2 a statistical method will be developed to estimate α for noisy x data

and applied to the case where P(k′) is geometric.
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1.4.2 Obtaining the x data from encoding times

At this point a crucial simplifying assumption is made, namely that the actual encoding times

t (not just the reaction times z) can be observed. Since zi j = ti j + yi j + wi j as before in (1.2),

this implies that either some method of observing the ti j directly must exist or the terms yi j and

wi j can be satisfactorily estimated and subtracted from zi j. At this point an adequate method

has not been determined (although see Donders (1969) and Townsend and Wenger (2004) for

a discussion). It should be noted that an attempt by the present author to obtain encoding

times for the George and Neufeld (1987) data by subtracting the estimates of E(Y) and E(W)

utilized by Neufeld et al. (2007) resulted in failure as the estimates were too crude to apply to

individual trials rather than means. Having said that, it will nonetheless be assumed that the

encoding times ti j have been obtained.

Consider the M participants within a given cell, and assume that the competing model holds

for some unknown α. Associated with the ith participant are parameters k′
i

and vi where k′
i

is

generated according to some complete distribution P(k′) which satisfies the fill property, and vi

is generated according to the gamma distribution (1.12). The distribution of the encoding time

Ti of the ith participant is gamma with mean and variance (see (1.23))

E(Ti) =
k′

i
α

vi

and Var(Ti) =
k′

i
α

v2
i

(1.38)

The goal here is to estimate the product xi = k′
i
α for each participant, thereby generating an x

sample so that the method of estimating α of the previous subsection can be applied. The key

to estimating the xi values lies in the following theorem:

Theorem 1.4.2.1 Suppose P(k′) has the additional property that its mean and variance are

finite. Let ti1, ti2, . . . , tiN denote the sample of encoding times of the ith participant, and let t̄i
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and s2
i

denote the sample mean and sample variance. Then

lim
N→∞

t̄i =
k′

i
α

vi

=
xi

vi

almost surely (1.39)

and

lim
N→∞

s2
i =

k′
i
α

v2
i

=
xi

v2
i

almost surely (1.40)

The above theorem may at first seem a simple consequence of the Strong Law of Large Num-

bers. However, the sequence of encoding times is not independently and identically-distributed;

rather, it forms an exchangeable sequence. See Appendix B for a discussion of exchangeability

and a proof of this theorem.

Theorem 1.4.2.1 implies that, for sufficiently large N, t̄i may be equated with xi/vi and s2
i

may be equated with xi/v
2
i
. This makes it possible to solve for an estimate x̂i of xi. Specifically

x̂i =
t̄2
i

s2
i

(1.41)

Thus an estimated x sample x̂1, . . . , x̂M is generated for the participants in a cell. It is important,

however, to reiterate that these are estimates and hence contaminated by noise. An approach to

dealing with noise is given in Chapter 2. The idea is to estimate α and the parameter(s) of P(k′)

directly within each cell. This will not only provide direct estimates of αE(k′) within each cell,

but permit testing of the quality of the estimate of α by testing goodness-of-fit to the putative

distribution. The technique will be illustrated by application to the geometric distribution. To

this end, estimation of the parameters α and p when P(k′) follows a geometric distribution is

discussed in the next section.
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1.5 Maximum likelihood for the geometric distribution

Let α > 0 and suppose k′
1
, . . . , k′

M
are integers generated according to a geometric distribution

P(k′) with parameter 0 < p < 1. Let x1 = k′
1
α, . . . , xM = k′

M
α be the corresponding x sample.

Note that it is possible to directly consider the likelihood function (Hogg et al., 2005) of α and

p as a function of x1, . . . , xM . Specifically

L(α, p; x1, . . . , xM) =

M
∏

i=1

(1 − p)
xi
α −1 p = (1 − p)

∑

xi
α −M pM (1.42)

Since α is unknown it may be considered to vary at this point, and (1.42) will hold only for those

α for which x1/α, . . . , xM/α produces positive integers. Such an αwill be called admissible. (If

α is not admissible the likelihood will equal zero.) This means that for a given x sample there

is a discrete set of candidates for the value of α; this set coincides with the set A described in

(1.33). The quantity p, on the other hand, can take on any value 0 ≤ p ≤ 1 and there is no

range restriction based on the x sample. The following theorem is proved in Appendix B:

Theorem 1.5.1 The values α̂ and p̂ which maximize the likelihood function (1.42) are

α̂ = αmax and p̂ = αmax/x̄ (1.43)

It follows then that there exists M for which α̂ = α (the true α) by applying Proposition 1.4.1.4

and Theorem 1.4.1.5, and that p̂ → p (the true p) in probability as M → ∞ by applying

Theorem 6.1.3 of Hogg et al. (2005).

Thus the maximum likelihood method provides an alternative method for deriving αmax as

an estimator of α in the case of the geometric. However, it also provides an optimal estimator

of p. This allows estimation of parameters within a cell.

Now consider the four cell model of Neufeld et al. (2007), Neufeld et al. (2010). The task
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is the same in each of the four cells and so the task parameter α is assumed to be the same in

all four cells. However, the probability p of successful encoding varies within each cell. Let

Cell 1 denote the healthy-low load (with probability p1), Cell 2 denote the healthy-high load

(with probability p2), Cell 3 denote the paranoid schizophrenia-low load (with probability p3),

and Cell 4 denote the paranoid schizophrenia-high load (with probability p4). The parameters

p1, p2, p3 are not related to one another although it is expected that p2 < p1 and p3 < p1 as the

first cell produced the shortest encoding times. However, p4 is constrained through additivity.

Specifically, the fourth cell is not independent of the first three cells. This yields the following

Theorem 1.5.2 Let x̄1, x̄2, and x̄3, denote the respective x sample means within each of the first

three cells. Let x
(1)

1
, . . . , x

(1)

M
denote the x sample from the first cell, x

(2)

1
, . . . , x

(2)

M
denote the x

sample from the second cell, and x
(3)

1
, . . . , x

(3)

M
denote the sample from the third cell. Then

α̂ = max















α > 0 |
x

(1)

1

α
, . . . ,

x
(1)

M

α
,

x
(2)

1

α
, . . . ,

x
(2)

M

α
,

x
(3)

1

α
, . . . ,

x
(3)

M

α
are integers















p̂1 = α̂/x̄1, p̂2 = α̂/x̄2, p̂3 = α̂/x̄3

(1.44)

and

p̂4 =
p̂1 p̂2 p̂3

p̂1 p̂2 + p̂1 p̂3 − p̂2 p̂3

(additivity) (1.45)

(See Appendix B).

These results are applied in the next chapter.



Chapter 2

Numerical Results

In this chapter the problem of noisy data is addressed. P(k′) is assumed to be geometric and

two examples are presented, one where α = .01 and the other where α = .17. In each example

the four-cell model is considered, where data is generated and parameters estimated from each

of the first three cells, the parameters in the fourth cell then being estimated by the additivity

constraint. The geometric probabilities in each of the first three cells are p1 = .8, p2 = .2, and

p3 = .05, respectively. There were assumed to be 30 participants in each cell (the value M = 30

was chosen in order to give the chi-square tests considered herein sufficient power). Within

each cell a hidden geometric sample k′1, . . . , k
′
30 was generated using the geometric random

number generator from R with the appropriate value of p. A random sample v1, . . . , v30 was

generated according to the gamma distribution (1.12) in R with shape parameter k = 30 and

rate parameter r = 10. (The value k = 30 was used by Neufeld et a1. (2007), Neufeld et al.

(2010), and a value of r approximately equal to 10 was estimated in those references.) For

the ith participant in a cell, N encoding times ti1 . . . , tiN were then generated according to the

gamma distribution (1.21) with shape parameter k′
i
α and rate parameter vi. The sample mean

t̄i, the sample variance s2
i
, and then the estimate x̂i = t̄2

i
/s2

i
(see (1.41) were then computed for

each participant in the cell. The number of encoding trials per participant was taken to be very

26



27

large; specifically N = 10, 000. This is not a reasonable number in a real-world experiment.

However, the estimates x̂i can be viewed as having two components, a “signal” component

(usually confined to the first few decimal places) and a “noise” component (the remainder of

the estimate). Large values of N were required to separate the signal from the noise in some

cases. The method of signal detection (and the subsequent estimation of α) is best illustrated

by example.

Example 2.1: α = .01: Estimation within each of the first three cells will proceed sequentially.

1. Cell One: p = .8: The estimated values x̂ for each of the 30 participants are displayed

in Table 2.1 to four decimal digits. The rounding of x̂ to one decimal digit is also displayed

(columns three and seven) and to two decimal digits (columns four and eight).

Table 2.1: α = .01, p = .8

n x̂ 1 dec 2 dec n x̂ 1 dec 2 dec

1 .0185 0 .02 16 .0082 0 .01

2 .0100 0 .01 17 .0114 0 .01

3 .0270 0 .03 18 .0106 0 .01

4 .0339 0 .03 19 .0098 0 .01

5 .0099 0 .01 20 .0183 0 .02

6 .0103 0 .01 21 .0117 0 .01

7 .0110 0 .01 22 .0417 0 .04

8 .0096 0 .01 23 .0118 0 .01

9 .0105 0 .01 24 .0177 0 .02

10 .0106 0 .01 25 .0110 0 .01

11 .0092 0 .01 26 .0317 0 .03

12 .0094 0 .01 27 .0079 0 .01

13 .0102 0 .01 28 .0105 0 .01

14 .0220 0 .02 29 .0083 0 .01

15 .0094 0 .01 30 .0100 0 .01

Note that rounding to one decimal digit produces only 0s, which implies that α < .1. Thus

the values rounded to two decimal places are considered. Here xmin = .01 and division by .01
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obviously produces integers for all of the rounded values, so αmax = .01. Consider the resulting

constructed integers j1, . . . , j30 (see (1.34)):

2 1 3 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 4 1 2 1 3 1 1 1 1

If these integers appear to fit a geometric distribution, this supports the idea that α = .01

(in other words, rounding to two decimal digits captures the signal). In order to determine

whether the integers fit a geometric distribution, a chi-square goodness-of-fit test was employed

(Wonnacott & Wonnacott, 1972). The estimate p̂1 based on these integers was p̂1 = 1/ j̄ = .698.

Three bins were used for the chi-square: {X = 1}, {X = 2}, and {X ≥ 3}. The expected values in

the bins (using p̂1) are E1 = 20.94, E2 = 6.32, and E3 = 2.74. (Note that normally it is desired

that expected counts in a bin be at least 5, but in this case having one very small bin was

required in order not to have 0 degrees of freedom (df) for the chi-square test.) The observed

bin counts are O1 = 22, O2 = 4, and O3 = 4. Thus

χ2
obs =

∑

i

(Oi − Ei)
2

Ei

=
(22 − 20.94)2

20.94
+

(4 − 6.32)2

6.32
+

(4 − 2.74)2

2.74
= 1.485 (2.1)

Since 1.485 < 3.84 = χ2
1,.05

it follows that the hypothesis that the integers are geometric is

not rejected. In other words, there appears to be a good fit to the geometric. At this stage,

rounding to three decimal places can be considered to see if a larger value α > .01 will also

provide a good geometric fit. However, inspecting the data to three decimal places shows

several observations which are less than .01 in size, meaning that a larger α cannot work. Thus

it is sufficient to stop at two decimal places and set α̂ = .01 and p̂1 = .698.

2. Cell Two: p = .2: The assumption that α is the same in all cells implies that a starting

point for α̂ in Cell Two is α̂ = .01. Theorem 1.5.2 indicates that it is possible that α̂ may
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decrease as a result of information from Cell Two. Ideally, however, Cell Two will support the

conclusion from Cell One. The table below shows the estimates x̂ and their rounded values.

Table 2.2: α = .01, p = .2

n x̂ 1 dec 2 dec n x̂ 1 dec 2 dec

1 .0297 0 .03 16 .0183 0 .02

2 .0395 0 .04 17 .0104 0 .01

3 .0083 0 .01 18 .0629 .1 .06

4 .0628 .1 .06 19 .0379 0 .04

5 .0481 0 .05 20 .0845 .1 .08

6 .0721 .1 .07 21 .0431 0 .04

7 .0379 0 .04 22 .0110 0 .01

8 .0392 0 .04 23 .1740 .2 .17

9 .0081 0 .01 24 .1034 .1 .10

10 .0781 .1 .08 25 .0132 0 .01

11 .0313 0 .03 26 .0937 .1 .09

12 .0163 0 .02 27 .0670 .1 .07

13 .0608 .1 .06 28 .1293 .1 .13

14 .1229 .1 .12 29 .0296 0 .03

15 .0496 0 .05 30 .0423 0 .04

Note αmax = .01 for the values rounded to two decimal places, and the constructed set of

integers (1.34) is

3 4 1 6 5 7 4 4 1 8 3 2 6 12 5 2 1 6 4 8 4 1 17 10 1 9 7 13 3 4

Then p̂2 = 1/ j̄ = .186. Five bins were selected {X = 1}, {X = 2, 3}, {X = 4, 5}, {X = 6, 7, 8, 9},

and {X ≥ 10}. Expected bin counts are E1 = 5.58, E2 = 8.24, E3 = 5.46, E4 = 6.01, and

E5 = 4.7, whereas observed bin counts are O1 = 5, O2 = 5, O3 = 8, O4 = 8, and O5 = 4. Then

χ2
obs =

∑

i

(Oi − Ei)
2

Ei

= 3.279 (2.2)

Since 3.279 < χ2
3,.05
= 7.81 the data supports the geometric distribution and α̂ = .01. Since

α̂ cannot exceed .01 (from the results of Cell One) it is possible to stop at this step. However,
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this conclusion is also supported by considering the points x̂3 = .0083 and x̂9 = .0081. Thus

α̂ = .01 and p̂2 = .186.

3. Cell Three: p = .05: The table below has the x̂ values and their rounded values:

Table 2.3: α = .01, p = .05

n x̂ 1 dec 2 dec n x̂ 1 dec 2 dec

1 .0114 0 .01 16 .3647 .4 .36

2 .0094 0 .01 17 .4701 .5 .47

3 .9505 1 .95 18 .1082 .1 .11

4 .0478 0 .05 19 .0297 0 .03

5 .0116 0 .01 20 .2735 .3 .27

6 .0375 0 .04 21 .4535 .5 .45

7 .1687 .2 .17 22 .1793 .2 .18

8 .1297 .1 .13 23 .3704 .4 .37

9 .1333 .1 .13 24 .5620 .6 .56

10 .1461 .1 .15 25 .1431 .1 .14

11 .0494 0 .05 26 .0323 0 .03

12 .1177 .1 .12 27 .1110 .1 .11

13 .3650 .4 .36 28 .4198 .4 .42

14 .2053 .2 .21 29 .0194 0 .02

15 .6412 .6 .64 30 .3370 .3 .34

Again rounding to two decimal places gives αmax = .01, and the constructed integers are

1 1 95 5 1 4 17 13 13 15 5 12 36 21 64 36 47 11 3 27 45 18 37 56 14 3 11 42 2 34

Here p̂3 = 1/ j̄ = .044. The selected bins were {1 ≤ X ≤ 5}, {6 ≤ X ≤ 15}, {16 ≤ X ≤ 35},

and {X ≥ 36}. Expected bin counts are E1 = 6.03, E2 = 8.67, E3 = 9.06, and E4 = 6.21,

whereas the observed bin counts are O1 = 9, O2 = 7, O3 = 5, and O4 = 9. This yields

χ2
obs = 4.857 < 5.99 = χ2

2,.05 and so this supports a good fit to the geometric distribution. Thus

α̂ = .01 and p̂3 = .044.

4. Cell Four: additivity Here the estimate of p4 would be generated according to Theorem
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1.5.2; specifically

p̂4 =
(.698)(.186)(.044)

(.698)(.186)+ (.698)(.044) − (.186)(.044)
= .037 (2.3)

Example 2.2: α = .17: The following example shows that this choice for α leads to some

different steps.

1. Cell One: p = .8: Considering the table below, there are no 0s when x̂ is rounded to one

decimal place, so a large value of α (i.e. α ≥ .1) is possible. However, given the observations

rounded to one decimal place, it is evident that αmax = .1.

Table 2.4: α = .17, p = .8

n x̂ 1 dec 2 dec target n x̂ 1 dec 2 dec target

1 .3394 .3 .34 16 .1848 .2 .18* (.17)

2 .1688 .2 .17 17 .1696 .2 .17

3 .1668 .2 .17 18 .1689 .2 .17

4 .1709 .2 .17 19 .1694 .2 .17

5 .3353 .3 .34 20 .1737 .2 .17

6 .1698 .2 .17 21 .5065 .5 .51

7 .3438 .3 .34 22 .1703 .2 .17

8 .1653 .2 .17 23 .1666 .2 .17

9 .1676 .2 .17 24 .1581 .2 .16* (.17)

10 .1687 .2 .17 25 .1700 .2 .17

11 .3489 .3 .35* (.34) 26 .1702 .2 .17

12 .3449 .3 .34 27 .1675 .2 .17

13 .1737 .2 .17 28 .1639 .2 .16* (.17)

14 .1735 .2 .17 29 .3444 .3 .34

15 .1622 .2 .16* (.17) 30 .1741 .2 .17

The constructed sample using αmax = .1 is

3 2 2 2 3 2 3 2 2 2 3 3 2 2 2 2 2 2 2 2 5 2 2 2 2 2 2 2 3 2

It would not be a surprise if this sample were not geometric because it clearly has a small

variance but a 1 does not appear anywhere in the sequence. Computing gives p̂1 = / j̄ = .435.
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Using this and the bins {X = 1}, {X = 2}, and {X ≥ 3}, yields the expected values E1 = 13.05,

E2 = 7.38, E3 = 9.57, and the observed bin counts O1 = 0, O2 = 23, and O3 = 7. The resulting

χ2
obs
= 46.8 >> 10.8 = χ2

1,.001 which leads to strong rejection of the geometric distribution.

Thus α = .1 is rejected and the x̂ are now considered rounded to two decimal places. At this

point the reader may notice a slightly different format to Table 2.4 than in the previous example;

specifically, values marked with an asterisk (*) and a column of “target” values. These values

were constructed by noting that the vast majority of entries in the 2-decimal column were

multiples of .17. The few that were not (those marked with an asterisk) were very close to

being multiples of .17. The target values were the closest values that were actual multiples of

.17, and the deviation from them was considered to be rounding error.

The constructed sample of integers was based on those 2-decimal values that were multiples

of .17 and on the target values (that is, the starred values were replaced by the target values in

construction of the integers). Thus the constructed sample is

2 1 1 1 2 1 2 1 1 1 2 2 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 2 1

Here p̂1 = 1/ j̄ = .789. Using the bins {X = 1}, {X = 2}, and {X ≥ 3} yields E1 = 23.67,

E2 = 4.98, and E3 = 1.35. (Again a very small bin has been used in order to avoid 0 df.) The

observed counts are O1 = 23, O2 = 6, and O3 = 1. The resulting χ2
obs = .319 << 3.84 = χ2

1,.05

which supports the geometric distribution. Inspecting the third decimal place shows that α

cannot exceed .17 so the process can stop here.

2. Cell Two: p = .2: Note the increase in size of the entries (as well as the increase

in the number of starred values) in Table 2.5. This is a consequence of a combination of the

decrease in p with a rather large value of α, thereby shifting the decimal place. The results of
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the previous cell suggest that α = .17 and strongly reject the possibility that α = .1. Therefore

it would not be necessary (and even appropriate) to look at rounding to one decimal place and

trying αmax = .1. However, it is worth noting that if one does this, the constructed sample is

2 20 7 2 5 4 5 9 5 8 10 10 10 3 9 3 2 12 2 12 2 27 7 5 7 14 8 12 10 7

and the geometric is not rejected for the bins {X = 1, 2}, {3 ≤ X ≤ 5}, {6 ≤ X ≤ 10}, and

{X ≥ 11}. It produces χ2
obs = 3.776 < 5.99 = χ2

2,.05. This illustrates the importance of moving

to the next decimal place and seeing if an adequate fit can be found with a larger α. In this

example, the value α = .17 has already been suggested by Cell One.

Table 2.5: α = .17, p = .2

n x̂ 1 dec 2 dec target n x̂ 1 dec 2 dec target

1 .1718 .2 .17 16 .3439 .3 .34

2 1.9780 2 1.98* (2.04) 17 .1689 .2 .17

3 .6893 .7 .69* (.68) 18 1.2104 1.2 1.21* (1.19)

4 .1668 .2 .17 19 .1639 .2 .16* (.17)

5 .5149 .5 .51 20 1.1975 1.2 1.20* (1.19)

6 .3501 .4 .35* (.34) 21 .1669 .2 .17

7 .5105 .5 .51 22 2.7043 2.7 2.70* (2.72)

8 .8523 .9 .85 23 .6800 .7 .68

9 .5117 .5 .51 24 .5073 .5 .51

10 .8482 .8 .85 25 .6753 .7 .68

11 1.0375 1 1.04* (1.02) 26 1.3575 1.4 1.36

12 1.0338 1 1.03* (1.02) 27 .8394 .8 .84* (.85)

13 1.0134 1 1.01* (1.02) 28 1.1878 1.2 1.19

14 .3416 .3 .34 29 1.0199 1 1.02

15 .8520 .9 .85 30 .6869 .7 .69* (.68)

Replacing the starred values by the target values yields the constructed sample

1 12 4 1 3 2 3 5 3 5 6 6 6 2 5 2 1 7 1 7 1 16 4 3 4 8 5 7 6 4

Then p̂3 = .214 and using the bins {X = 1}, {X = 2, 3}, {X = 4, 5, 6}, {X ≥ 7} shows a good fit

to the geometric. Thus α̂ = .17.
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3. Cell Three: p = .05: Table 2.6 clearly shows that there is more rounding error in the x̂

data. Nonetheless, by using the fact that the previous cells suggested α = .17 and inspecting

the rounded data closely, the pattern of multiples of .17 can be seen. Obtaining the constructed

sample (not shown here as the method is the same as in the other cells) produces a good fit to

the geometric distribution for p̂ = .048 and α̂ = .17.

Table 2.6: α = .17, p = .05

n x̂ 1 dec 2 dec target n x̂ 1 dec 2 dec target

1 2.0388 2 2.04 16 6.4932 6.5 6.49* (6.46)

2 6.8843 6.9 6.88* (6.80) 17 1.1897 1.2 1.19

3 2.8786 2.9 2.88* (2.89) 18 .6805 .7 .68

4 3.4337 3.4 3.43* (3.40) 19 4.7299 4.7 4.73* (4.76)

5 2.3750 2.4 2.38 20 .5090 .5 .51

6 3.2403 3.2 3.24* (3.23) 21 8.9972 9.0 9.00* (9.01)

7 4.4132 4.4 4.41* (4.42) 22 4.0587 4.1 4.06* (4.08)

8 .3432 .3 .34 23 1.5416 1.5 1.54* (1.53)

9 3.0509 3.1 3.05* (3.06) 24 10.1482 10.1 10.15* (10.20)

10 3.4346 3.4 3.43* (3.40) 25 4.5766 4.6 4.58* (4.59)

11 .8494 .8 .85 26 3.2146 3.2 3.21* (3.23)

12 .8456 .8 .85 27 2.2134 2.2 2.21

13 1.5450 1.5 1.55* (1.53) 28 1.6987 1.7 1.70

14 2.1734 2.2 2.17* (2.21) 29 9.1720 9.2 9.17* (9.18)

15 1.0206 1.0 1.02 30 9.0183 9.0 9.02* (9.01)

Concluding Remark: Assuming that sufficient data can be obtained so that some of the signal

of the x data can be isolated, the above technique (which utilizes careful data inspection plus

the algorithm to obtain αmax) can recover an accurate estimate of α.
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(2007). A mathematical process account of group and individual differences in memory-

search facilitative stimulus encoding, with application to schizophrenia. In R. W. J.

Neufeld (Ed.), Advances in clinical cognitive science: Formal modeling of processes

and symptoms (pp. 147-177). Washington, DC: American Psychological Association.

Neufeld, R. W. J., Vollick, D., & Highgate, S. (1993). Stochastic modelling of stimulus encod-

ing and memory search in paranoid schizophrenia: clinical and theoretical implications.

In R. L. Cromwell & C. R. Snyder (Eds.), Schizophrenia: Origins, processes, treatment,

and outcome (pp. 176-198). New York: Oxford University Press.

Neufeld, R. W. J., & Williamson, P. C. (1996). Neuropsychological correlates of positive

symptoms: Delusions and hallucinations. In C. Pantelis, H. E. Nelson, & T. R. E. Barnes

(Eds.), Schizophrenia: A neuropsychological perspective (pp. 205-235). New York: John

Wiley & Sons Ltd.

Nicholson, I. R., & Neufeld, R. W. J. (1993). The classification of the schizophrenias accord-



38 C 2. N R

ing to symptomatology: A two-factor model. Journal of Abnormal Psychology, 102,

259-270.

R Core Team (2013). R: A language and environment for statistical computing. R Foundation

for Statistical Computing, Vienna, Austria. URL http://www.R-project.org

Russell, P. N., & Knight, R. G. (1977). Performance of process schizophrenics on tasks

involving visual search. Journal of Abnormal Psychology, 86, 16-26.

Steffy, R. A., & Galbraith, K. (1980). Relation between latency and redundancy-associated

deficit in schizophrenic reaction time performance. Journal of Abnormal Psychology,

89, 419-427.

Steffy, R. A., & Waldman, I. (1993). Schizophrenics’ reaction time: North star or shooting

star? In R. L. Cromwell & C. R. Snyder (Eds.), Schizophrenia: Origins, processes,

treatment and outcome (pp. 111-134). New York: Oxford University Press.

Sternberg, S. (1975). Memory and scanning: New findings and current controversies. Quar-

terly Journal of Experimental Psychology, 27, 1-32.

Townsend, J. T., & Ashby, F. G. (1983). Stochastic modelling of elementary psychological

processes. Cambridge, England: Cambridge University Press.

Townsend, J. T., & Wenger, M. J. (2004). The serial-parallel dilemma: A case study in a

linkage of theory and method. Psychonomic Bulletin & Review, 11(3), 391-418.

Wonnacott, T. H., & Wonnacott, R. J. (1972). Introductory statistics, 2nd Ed. New York:

John Wiley & Sons, Inc.



39

Woodworth, R. S., & Schlossberg, H. (1954). Experimental psychology. New York: Holt,

Rinehart & Winston.



Appendix A

Sampling Schematic

Sampling Method For One Cell of Participants

Trial 1 Trial 2 · · · Trial N Sample mean Sample variance

Participant 1 z11 z12 · · · z1N −→ z̄1 u2
1

Participant 2 z21 z22 · · · z2N −→ z̄2 u2
2

...
...

...
...

...
...

...
...

Participant M zM1 zM2 · · · zMN −→ z̄M u2
M

Then average the sample means and sample variances over the participants to obtain

¯̄z =
1

M

M
∑

i=1

z̄i

and

ū2 =
1

M

M
∑

i=1

u2
i .
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Appendix B

Proofs of Results

Proof of Proposition 1.3.3: Recall that m∗ takes the form m∗ = αE(k′) within cell (*), where

E(k′) varies over the cells. Suppose solutions α,m, g, h have been found such that m∗
1
= αm,

m∗
2
= α(m + h), m∗

3
= α(m + g) and m∗

4
= α(m + g + h) solves (1.28) and (1.29). Then,

using the fill property of E(k′), there exists m0 > m, h0 > h, g0 > g and 0 < α0 < α such

that m∗
1
= α0m0, m∗

2
= α0(m0 + h0), and m∗

3
= α0(m0 + g0). Moreover, additivity holds since

m∗
4
= m∗

3
+m∗

2
− m∗

1
= α0(m0 + g0) + α0(m0 + h0) − α0m0 = α0(m0 + g0 + h0).

Proof of Theorem 1.4.1.1: Suppose there exists α > 0, β > 0 and sequences k′
1
, k′

2
, . . . and

k′′
1
, k′′

2
, . . . satisfying the assumptions of Theorem 1.4.1.1. Then without loss of generality it

can be assumed that α ≤ β. Since P(k′) is a positive distribution, there exists a smallest integer

k′
min
= min{k′ ≥ 1 |P(k′) > 0}. With probability one this integer k′

min
must eventually appear in

the k′
1
, k′

2
, . . . sequence, say, k′m = k′

min
. Then xm has the two representations

xm = k′minα = k′′mβ. (B.1)

Since k′
min
≤ k′′m and α ≤ β, the only way the equality in (B.1) can hold is if α = β, which

completes the proof.

Proof of Proposition 1.4.1.2: Let A be as defined in (1.33). Then A , ∅ since α ∈ A. Moreover,
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A actually contains infinitely many elements since if β ∈ A then β/n ∈ A for each positive

integer n. Let αmax = sup A where “sup” denotes the supremum over all the elements of A. The

goal is to show that αmax ∈ A. Since αmax = sup A it follows that there exists a sequence βn ∈ A

such that βn ↑ αmax. Thus x1/βn forms a decreasing sequence of integers bounded below by 1.

Since the integers are well-ordered, there exists an integer i0 ≥ 1 and an integer n0 ≥ 1 such

that x1/βn = i0 for all n ≥ n0. Hence βn = βn0
for all n ≥ n0. It follows that αmax = βn0

and

hence belongs to A.

Proof of Theorem 1.4.1.5: The “only if” part of this theorem follows from Proposition 1.4.1.3

which states that the set (1.34) is always coprime, and hence αmax = α implies that k′1, . . . , k
′
M

are coprime. Now consider the “if” part of the proof. It is automatic that αmax ≥ α. The

goal is to show that if k′1, . . . , k
′
M is coprime then αmax = α. The procedure will be a proof by

contradiction; namely that if αmax > α then k′1, . . . , k
′
M is cannot be coprime. Now under the

assumption αmax > α there exist positive integers m and n such that

x1

αmax

= n and
x1

α
= m where m > n (B.2)

Consequently αmax/α = m/n. Now writing the two representations

x1 = k′1α, . . . , xM = k′Mα

x1 = k′′1 αmax, . . . , xM = k′′Mαmax

(B.3)

it follows that k′
i
α = k′′

i
αmax and hence k′

i
= (αmax/α)k′′

i
= (m/n)k′′

i
for all i = 1, . . . ,M. Now

divide out the greatest common divisor (gcd) from m and n to produce integers m0 > n0 such

that gcd(m0, n0) = 1. Thus k′
i
= (m0/n0)k′′

i
for all i = 1, . . . ,M. Since m0 and n0 are coprime

and n0 divides the product m0k′′
i

it follows that n0 divides k′′
i

. Hence there exist integers di ≥ 1,
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i = 1, . . . ,M such that

k′1 = m0 d1, k
′
2 = m0 d2, , . . . k

′
M = m0 dM . (B.4)

Note that the initial assumption m > n implies m0 ≥ 2. Thus from (B.4) it is evident that

k′1, . . . , k
′
M

are not coprime.

Proof of Theorem 1.4.2.1: It is important to note that the sample of encoding times ti1, ti2, . . . , tiN

does not consist of independent random variables because the variables are connected through

the specific and unknown values k′
i

and vi corresponding to the ith participant. In general, if

t1, t2, . . . is a random sequence of encoding times obtained from a single individual (with un-

known parameters k′ and v), then t1, t2, . . . comprise what is called an exchangeable sequence

of random variables. A sequence t1, t2, . . . is exchangeable if, for each positive integer n, the

joint distribution of any subset t j1, . . . , t jn depends only on n and not on the subset (e.g.,Chow

& Teicher, 1988). (In other words, the finite-dimensional distributions of the sequence are in-

variant under permutations.) A sequence of random variables is exchangeable if and only if

there exists a σ-algebra G of events such that the random variables are conditionally indepen-

dent given G (de Finetti’s theorem; see Corollary 4, p. 226 of Chow & Teicher, 1988). In the

present caseG is clearly theσ-algebra generated by k′ and v, i.e., if ki and vi are known, then the

variables become independent. Strong laws of large numbers hold for exchangeable sequences

as they do for independent identically-distributed sequences. However, a significant difference

between the results for exchangeable sequences and those for independent sequences is that the

former do not converge to constants but rather to values that depend on the specific sequence.

Combining the first theorem of Kuritsyn (1987) and Theorem 2 (p. 224) of Chow and Teicher

(1988) yields the following
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Lemma Let t1, t2, . . . be an exchangeable sequence of random variables which is conditionally

independent given the σ-algebra G. Suppose E(|t1|
n) < ∞ where n ≥ 1. Let

t̄N(ω) =
1

N

N
∑

i=1

ti(ω) (B.5)

Then

lim
N→∞

t̄N(ω) = E(t1 | G)(ω) almost surely (B.6)

The above result can be applied to prove Theorem 1.4.2.1 by noting that the assumption that

P(k′) has finite mean and variance can be used to prove that t1 has finite mean and variance.

Specifically, the independence of k′ and v yields

E(t1) = E[E(t1 | k
′, v)] = E[k′/v] = E(k′)E(1/v) (B.7)

and

Var(t1) = E[Var(t1 | k
′, v)] + Var[E(t1 | k

′, v)]

= E[k′/v2] + Var(k′/v)

= E(k′)E(1/v2) + E((k′)2)E(1/v2) − [E(k′)E(1/v)]2

(B.8)

Thus both t1 and t2
1

are integrable. Now noting that the sequence t2
1
, t2

2
, . . . is also exchangeable

and that the sample variance can be expressed as s2
N
= 1

N−1
(
∑N

i=1 t2
i
− Nt̄2

N
), the Lemma can be

applied to both t̄ and s2 to conclude that (1.39) and (1.40) hold, thereby proving the theorem.

Proof of Theorem 1.5.1: The maximum likelihood estimate (MLE) of p is first considered.

It will be simpler to maximize the log likelihood log L rather than L itself. Note that for an

admissible α

log L =

(∑

xi

α
− M

)

log(1 − p) +M log p (B.9)
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Thus

∂ log L

∂p
=

(
∑

xi

α
−M

) (

−1

1 − p

)

+
M

p
. (B.10)

Setting
∂ log L

∂p
= 0 gives

M(1 − p) − p
∑

xi

α
+ pM

p(1 − p)
= 0 (B.11)

which easily yields the MLE of p in terms of α as

p̂ =
α

x̄
(B.12)

Now substitute p̂ = α/x̄ back into log L and maximize over α. In this case L is only nonzero

for admissible values of α but it will be convenient to temporarily treat L as continuous in α.

Note that

log L =

(

Mx̄

α
− M

)

log

(

1 −
α

x̄

)

+ M log

(

α

x̄

)

(B.13)

Then

∂ log L

∂α
= M



















(

x̄

α
− 1

)

1
(

1 − α
x̄

)

(

−
1

x̄

)

+ log

(

1 −
α

x̄

) (

−
x̄

α2

)

+
1
α
x̄

1

x̄



















= −M
x̄

α2
log

(

1 −
α

x̄

)

(B.14)

Note that any admissible value of α must satisfy α ≤ xmin (otherwise L = 0). Note from the

second line of (B.14) that
∂ log L

∂α
is positive for 0 < α ≤ xmin. Hence L is increasing as a

function of (admissible) α and so

α̂ = sup{α |α is admissible, α ≤ xmin} (B.15)

The right hand side of (B.15) is clearly the same as (1.33) and so α̂ = αmax.
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Proof of Theorem 1.5.2: First consider just the first two cells. Let x
(1)

1
, . . . , x

(1)

M
denote the

x sample in the first cell, and let x
(2)

1
, . . . , x

(2)

M
denote the x sample in the second cell. Note

that from independence of the cells the joint likelihood factors as the product of the individual

likelihoods

L(α, p1, p2; x
(1)

1
, . . . , x

(1)

M
, x

(2)

1
, . . . , x

(2)

M
) = (1 − p1)

∑

x
(1)
i
α −M pM

1 (1 − p2)

∑

x
(2)
i
α −M pM

2 (B.16)

and hence

log L =















∑

x
(1)

i

α
− M















log(1− p1) +M log p1 +















∑

x
(2)

i

α
− M















log(1− p2) +M log p2 (B.17)

Differentiating log L with respect to p1 does not involve p2 and produces the same solution

p̂1 obtained in (B.12), i.e., p̂1 = α/x̄1. Similarly, differentiating with respect to p2 yields the

solution p̂2 = α/x̄2. Now note that a value of α is admissible only if it is admissible for both

x
(1)

1
, . . . , x

(1)

M
and x

(2)

1
, . . . , x

(2)

M
(otherwise L = 0). Differentiating with respect to α produces

∂ log L

∂α
= −M

x̄1

α2
log

(

1 −
α

x̄1

)

−M
x̄2

α2
log

(

1 −
α

x̄2

)

(B.18)

Thus L is an increasing function of (admissible) α for 0 < α ≤ min(x
(1)

min
, x

(2)

min
). It follows that

α̂ = max















α > 0 |
x

(1)

1

α
, . . . ,

x
(1)

M

α
,

x
(2)

1

α
, . . . ,

x
(2)

M

α
are integers















(B.19)

where the maximum exists and belongs to the set by the same argument used in the proof of

Proposition 1.4.1.2. The result extends by induction to any number of independent cells, so

this proves the first part of the theorem.

Now consider additivity. E(k′) = 1/p for the appropriate p in a given cell. Since p2 < p1

and p3 < p1 (reflecting a larger number of subprocesses in Cells Two and Three as compared

to Cell One), there exist m > 0, h > 0, and g > 0 such that

m =
1

p1

, m + h =
1

p2

, m + g =
1

p3

(B.20)
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Additivity requires that m + g + h = 1/p4. Now

h =
1

p2

−
1

p1

and g =
1

p3

−
1

p1

(B.21)

Therefore, additivity will hold if

1

p1

+

(

1

p3

−
1

p1

)

+

(

1

p2

−
1

p1

)

=
1

p4

(B.22)

that is, if

1

p3

+
1

p2

−
1

p1

=
1

p4

(B.23)

Solving for p4 yields

p4 =
p1 p2 p3

p1 p2 + p1 p3 − p2 p3

(B.24)

which completes the proof of the theorem. (Note that the fill property of the geometric has

been used in order to be able to conclude that any value E(k′) = 1/p is possible.)
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