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Abstract 

 

OBJECTIVE: To compare the currently available simulation modalities in robotic 

surgery.  

METHODS: 40 trainees completed two robotic cardiac surgery tasks and were 

randomized to: a wet lab, a dry lab, a virtual reality lab or a control group with no additional 

training. Participants trained to proficiency determined by two expert robotic surgeons, and 

then repeated the assessments. All assessments were blinded and evaluated using the GEARS 

scoring tool.  

RESULTS: All three training streams improved their performance. The wet lab and 

virtual reality groups met the levels of proficiency for all tasks. The average time to reach 

proficiency was least for the dry lab and most for the virtual reality.  

CONCLUSIONS: This is the first RCT to compare simulation modalities in robotic 

surgery. This work highlights key differences in current training methods and will help 

training programs invest resources in cost-effective, high-yield simulation methods to 

improve training in robotic cardiac surgery. 
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1 Introduction 
Robotic cardiac surgery is advancing at a rate which makes assessing safety, efficacy and 

long-term results difficult
1
. In addition to this, there is a significant deficiency in the 

availability and quality of robotic surgical training
1,2

. The associated high upfront costs 

and increasing demand for improved outcome-based measures, reduces the exposure of 

cardiac surgery trainees to robotic cases and makes experience in robotic cardiac surgery, 

difficult to obtain by standard training practices
1
.  

In this era of rapidly evolving technology, an efficient and reproducible training model 

for robotic surgery is essential. A reliable training program would help to shorten the 

difficult learning curves and allow surgeons in training to reach levels of competency at 

faster rates
1
. One potential form of training that has started to produce these desired 

results is simulation based exercises performed outside of the operating room.  However, 

to date no reliable comparison of the currently available simulation training modalities 

exists
1,2

. In order to understand the challenges training programs face in providing 

adequate exposure for their trainees and how simulation based training offers a 

reasonable solution to these problems, we must first understand the history of robotic 

cardiac surgery and simulation. 

 

 

1.1 History of Robotic Cardiac Surgery 

The development of robotic technologies capable of surgical applications, first began in 

the late 1980’s when researcher working at the National Air and Space Administration 

(NASA) became interested in developing “telepresence”
 3

. The idea of telepresence, 

referred to a variety of technologies that serve to give an individual the appearance of 

being present, when they are in actuality at a remote location
3
. Researchers at NASA 

paired with individuals at Stanford University to develop the first telemanipulators which 

were able to mimic hand movements and were immediately intended for surgical 
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applications
3
. Shortly after this, the United States Army became interested in these 

systems for their potential to decrease war time casualties and supported their early 

development
5
. Their original intention was to create a system where wounded soldiers on 

the battlefield could be loaded onto armored trucks carrying robotic surgical equipment 

and be operated on by a surgeon who was located off the battlefield at a nearby Mobile 

Advanced Surgical Hospital (MASH) unit, through telerobotic surgery in an attempt to 

decrease mortalities associated with delayed time to surgical intervention
5,6

. 

In the following years, several individuals from the original NASA and Stanford 

development teams eventually started commercial ventures for the application of the 

technologies that they developed. This lead to the development of Computer Motion Inc. 

(Santa Barbara, CA), who used the investments from the US military to fund the 

development of the Automated Endoscopic System for Optimal Positioning (AESOP) 

robot, which opened the door for similar technologies to be brought into the operating 

room
5,6

. 

The AESOP robot (Computer Motion Inc., USA) was first used to assist in cardiac 

surgery in 1998
7,8

. Its success led to the development of both the ZEUS (Computer 

Motion Inc., USA) and the da Vinci (Intuitive surgical Inc., USA) robots. Over the years 

these systems continued to advance and through the development of endowrist stabilizers 

and techniques in “off-pump” surgery, robotic total endoscopic coronary artery bypass 

(TECAB) and minimally invasive robotic-assisted mitral valve surgery are now possible 

and carried out routinely at specialized centers
1,2,6

.    

Although advances in robotic cardiac surgery have been made over the years, only a 

small amount of cardiac surgery cases are done robotically and are performed at 

specialized centers with unique experiences
1,2

. The failure for the adoption of robotics in 

cardiac surgery is strikingly different from other surgical specialties, such as gynaecology 

and urology, where the number of robotic-assisted surgeries has increased worldwide 

since 2007, from 80,000 to 205,000 in 2010 with a strong patient preference for robotic 

surgery
9
. There are multiple potential reasons for the delay in acceptance by cardiac 

surgeons, which have been suggested to include; the large up-front costs to obtain a robot 
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and a properly equipped operating room, the need for specialized allied health 

professionals in the operating room (nurses, anesthetists, respiratory therapists, etc.) and a 

steep learning curve for the entire surgical team with limited access to any standardized 

training
1,2,10

.   

 

 

1.1.1 AESOP 

As previously mentioned, the AESOP robot was developed by Computer Motion Inc. (Santa 

Barbara, CA) in the mid-90s
7
. AESOP consisted of a robotic arm that held an endoscope with 

up to four degrees of freedom, controlled entirely by voice commands given by the surgeon.  

The benefit of the AESOP robot was that it eliminated the need for a member of the surgical 

team to hold and constantly position the endoscopic camera for the entire case
6
. In addition to 

freeing up an extra set of hands from the surgical team, this system decreased problems with 

operator fatigue over long laparoscopic cases and eliminated any inherent tremor of the 

operator. The AESOP system returned control of the visual field and the sight of the surgeon 

performing the operation, back to the surgeon
8
. Until the development of AESOP, all 

laparoscopic surgeons needed to rely on assistants to control, position and focus the camera 

on the operating field. The original model required the surgeon to pre-record their voice for 

up to 23 different commands
7
. AESOP proved to be beneficial in many studies and was 

widely adopted in the laparoscopic community with excellent results
5
. At the time of its 

development AESOP could handle 240 cases per year and cost approximately $65,000. 

AESOP was the first widely integrated robotic system in the operating room allowing for all 

participants of the operation (surgeon, assistant, scrub nurse, anesthesiologist) to become 

familiar and more comfortable with the man and machine interface for the first time, paving 

the way for the adoption of future generations of surgical robots in the years to come
5
. 
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1.1.2 ZEUS 

The ZEUS robot, also created by Computer Motion Inc., was the next step in surgical 

robotics that incorporated the endoscopic camera arm from AESOP, with two arms with 

6 degrees of freedom, controlled by the surgeon’s hands
5
. This was the first example of 

the “master-slave” or telemanipulation system that actually allowed surgeons to control 

the robot away from the operating table
5
. For the ZEUS system, the surgeon would sit at 

a console with their hands in the master robotic controls. These telemanipulation controls 

had the capacity to decrease inherent tremors of the surgeon or scale down movements by 

a factor of 2-10 times, resulting in smoother and more accurate movements
5
. While the 

surgery is being performed the operative field is displayed through the AESOP arm, 

controlled by the surgeon who is wearing a headset to give voice commands for each 

movement. The image depicted on the robotic display unit is a 2-dimensional image, 

however the special glasses can be worn with lenses polarized at a different axis for each 

eye, that created the perception of a 3D image of the operating field for the surgeon
5
.  

Numerous initial anatomic animal and cadaver studies carried out with the ZEUS robot 

showed the system to be advantageous for certain complex tasks including various 

anastomoses
1,5

. Initial prototype testing of the ZEUS robot began in 1995 in animals. The 

first clinical uses of the robot were largely performed in cardiac surgery cases and the 

first closed-chest beating-heart coronary artery bypass grafting with this system was 

completed in 1999 at University Hospital of the London Health Sciences Center by Dr. 

Douglas Boyd
4
.  

The ZEUS robot received FDA approval in 2001 and became fairly successful over the 

next few years with a variety of other firsts. This included the first transatlantic 

telesurgery in 2001, where a cholesystectomy was performed on a patient in Stratsbourg, 

France by a team of surgeons in Manhattan, New York
5
. 
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1.1.3 da Vinci 

At the same time that the ZEUS robot was being developed by Computer Motion their 

competitors, Intuitive Surgical Inc. (Sunnyvale, CA), were developing a similar 

telemanipulation system after reworking the original telepresence system created by the 

group at Stanford
5
. This original prototype varied from other robotic systems in that an 

additional joint was added to the end of each instrument, making the instrument capable 

of mimicking the surgeon’s hand and wrist movements exactly with seven degrees of 

freedom
1,2

. The company combined this technology with force-feedback and 3D 

visualization in the second prototype, that they called the da Vinci robot. The system was 

composed of three parts; the surgeon console, the surgical trolley (which contained the 

articulating arms of the robot) and the imaging system
5
. The surgeon console contained a 

binocular stereoscopic vision system that displays images from the robot’s 12mm 

diameter camera. This camera was composed of two 5mm cameras that transmit their 

image to different eyes within the surgeon console. The resulting affect is the production 

of a 3D representation of the surgical field for the surgeon
1,2

.  In addition to this, the 

camera arm also contains the insufflation connections and a light source. The surgeon 

console consists of two handles or joysticks that were used to transmit the surgeon's hand 

movements to the robotic arms, instruments and camera
1.2

. This system also has the 

capacity to scale down movements by a factor of 1 to 5 times and a filtration module to 

eliminate inherent tremor for smoother and more controlled robotic movements
1
. The 

system employs a pedal system to switch control of the arms to allow for camera 

movements and clutching of the control as well as pedals that control monopolar and 

bipolar cutting and coagulation depending on the instrument that is attached.  The da 

Vinci system was originally designed for cardiovascular surgery and the first reported 

case in a human was the closure of an atrial septal defect (ASD) through a mini-

thoracotomy in 1998
10

.  

Heavy competition existed between Computer Motion and Intuitive Surgical with 

Computer Motion filing a patent infringement lawsuit against Intuitive Surgical during 

this time. In 2003, Intuitive Surgical bought out Computer Motion, acquiring all of its 

patents and in doing so formed a monopoly over the surgical robot market
5
. 
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To this date, Intuitive Surgical has continued to introduce advancements in their robot 

and have developed several newer version of the da Vinci system
10

. In 2002, the standard 

model of the da Vinci was introduced. This model differed from the previous model as it 

introduced a fourth robotic arm. This arm was identical to the other surgical arms but its 

addition improved the surgeon’s ability to expose anatomical structures through its 

periodic manipulation as a retractor. This improved robotic efficiency as control of the 

additional arm allowed the surgeon to operate without relying on a bedside assistant to 

help position the tissue correctly using laparoscopic instruments
5
. In 2006 the da Vinci S 

system was introduced. With this newest model, Intuitive Surgical Inc. increased the ease 

of handling the instruments as well as the amplitude of arm and instrument movements. 

This change to the system allowed surgeons to perform surgery involving multiple 

quadrants of the abdomen without repositioning of the robotic ports and facilitated the 

use of the robot in colorectal resections
5
. The next version of the da Vinci system was 

released in 2009.  The da Vinci Si system had improvements involving the manipulators 

as well as relocation of some of the pedal system for more ergonomic positioning
5
. The 

Si system was also equipped with an improved camera system capable of displaying 

images in high definition
5
. One of the biggest advancements made with the release of the 

Si system was the addition of a second console that now allowed for coaching of novice 

surgeons by a mentor during the procedure
5
. This marked a major change in the traditions 

of surgical teaching as now trainees were able to see exactly the same image as their staff 

surgeons and through the robot’s telestration capabilities, the surgeon had the ability 

draw the attention of the trainee to important anatomical structures without obstructing 

their vision
10

. 

 

 

1.2 Current State of Robotic Cardiac Surgery 

Although robotic surgery has existed for nearly two decades recent technological 

advancements as well as an ever increasing push for less invasive procedures has 

increased the popularity of robotic cardiac surgery in recent years
11

. The advancements in 
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robotic technology in conjunction with improved minimally invasive techniques, 

myocardial protection strategies and perfusion systems have demonstrated that robotic 

cardiac surgery is a safe and advantageous alternative to traditional approaches at 

specialized centers
10,11

. Currently the da Vinci system is employed in cardiac surgery for 

coronary revascularization, including; harvesting of the internal thoracic artery (ITA), 

total endoscopic coronary artery bypass (TECAB), and hybrid procedures, as well as in 

robotic-assisted mitral valve surgery
10-14

. In addition to this, reports exist within the 

literature describing the use of the da Vinci robotic system for; ASD closures, resection 

of intracardiac masses, epicardial lead placement and arrhythmia ablation surgery
15-18

. 

Recent publications have presented convincing results that robotic cardiac surgery is 

increasing substantially in popularity worldwide as it is being adopted by more surgeons, 

at more centers, for a wider variety of patients and procedures
11

. Kaneko et al. report the 

experience of one of the initial centers in the world to adopt robotic cardiac surgical 

procedures in their program in the late 1990s
11

. At that time, the difficulties associated 

with the procedures excluded any individual with an ejection fraction <35%, a previous 

cardiac surgery, a previous right-sided thoracotomy or any significant aortoiliac disease, 

from consideration for robotic cardiac surgery
11

. Today, with the progress that has been 

made at this institution and centers like it around the world, the techniques they have 

developed and experiences that have gain have obviated many of these initial concerns. 

The authors highlight that today, none of these original concerns are still considered 

absolute contraindications for consideration of robotic cardiac surgery at their center
11

. 

Furthermore as an indication of improved robotic equipment and surgical techniques, the 

authors report a reduction in total operating times, cardiopulmonary bypass times and 

cross-clamp times for individual cases, improved patient outcomes, and decreased costs. 

These improvements have now made minimally invasive robotic cardiac surgery a viable 

option for a wide variety of patients
11

. 

Over its development the acceptance of robotic techniques for coronary bypass surgery 

has been slower than that of mitral valve surgery
19

. This is largely due to the common 

need for multiple grafts in a variety of regions on the heart which are not always 

accessible from stationary trochar sites placed for robotic surgery. In addition to this, the 

coronary anastomosis still requires carefully placed sutures as no reliable automated graft 



 8 

 

connector has been developed, and lastly the limitations on cardiac stabilization in 

beating-heart surgery
19

. All of these factors have slowed the development of robotic 

multivessel coronary artery bypass grafting. However, to date four different techniques 

are currently used for robotic coronary revascularization; (1) robotic assisted ITA 

harvesting with a direct hand-sewn anastomosis through a left anterior minithoracotomy 

with the used of cardiac stabilizers (2) arrested-heart robotic TECAB, (3) beating-heart 

robotic TECAB, and (4) hybrid procedures using both percutaneous coronary 

intervention (PCI) and one of the previously listed robotic bypass grafting techniques
15

. 

All of these techniques have been described at different specialized centers with excellent 

patient outcomes, some with patency rates as high as 100% at the time of discharge from 

hospital
15

. 

Robotic cardiac surgery continues to evolve at a rapid rate and advancements in this field 

indicate that robotics and minimally invasive approaches will become a major part of the 

surgical disciplines in the future
10

. Many surgeons remain concerned about the increased 

costs as well as the complexity of the procedure to want to adopt these new techniques 

and undergo the necessary retraining, and in doing so many of them have become critics 

of the techniques
19

.  However, it remains clear that developing technologies will advance 

the field of robotic cardiac surgery and provide surgeons with new techniques to help 

treat patients with cardiac diseases
10

.  

 

 

 

1.3 Current training and Exposure 

As these developments in the field of cardiac surgery start to answer skeptics of 

minimally invasive approaches, the need for a more structured and standardized approach 

to training becomes more important
19

.  

The US Food and Drug Administration (FDA) mandated that Intuitive Surgical, Inc. 

provide comprehensive training for all surgeons, as well and any institutional team, 

planning on using the da Vinci system for clinical purposes
19

.  In Canada, the Canadian 
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Surgical Technologies & Advanced Robotics (CSTAR) center at the University of 

Western Ontario was selected as the national training center for the da Vinci robot in 

2013. In the United States, East Carolina University was selected as the original training 

center for the da Vinci, as the divisional chief of the department of cardiac surgery at the 

University was Dr. W. Randolph Chitwood, one of the earliest adopters of the da Vinci 

system and a pioneer in robotic cardiac surgery
19

. The East Carolina University training 

program was developed shortly after their successful completion of their first clinical da 

Vinci procedures and was the first standardized training program for robotic surgery
19

. 

To obtain credentialing, surgical teams underwent intensive training with multiple hands 

on sessions for two days, for the general surgery program and three days for the cardiac 

surgery program
19

. During these sessions, two surgeons could be trained at once, one at 

the surgeon console and the other as the bed-side assistant. The other members of the 

surgical team included two or three operating room nurses and an anesthesiologist. In 

addition to this, a perfusionist was included for the cardiac surgery training
19

.  

The objectives with this training course, for the two surgeons, included comparison of 

surgical robotic methods to those of the traditional methods that they were familiar with 

from previous training and clinical experiences, to gain exposure to the different system 

components, be able to troubleshoot common problems, and finally to master the 

manipulation of the robotic instrumentation and delineate the procedural steps involved 

in specific operations to become both an accomplished robotic surgeon and bed-side 

assistant
19

. The course also focused on team based training and highlights the importance 

of a well functioning team in the operating room. Objectives for this aspect of the course 

focus on applying the sterile drapes, arranging the operating room appropriately and 

general maintenance of the robotic instrumentation
19

. Teams were also exposed to 

troubleshooting of the robot and the emergency shutdown protocols
19

. These sessions 

included didactic teaching sessions, dry lab, wet lab and cadaver training, which all 

occurred under direct supervision of an expert robotic surgeon. The goals of the robotic 

training program are listed in Figure 1. Initially training for mitral valve surgery involved 

wet labs with sheep’s hearts placed in a special thoracic trainer made to mimic the 

geometry of the human chest for robotic instrument port and camera placement. This 
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model was felt to give a realistic representation of the workable valve and annular tissues 

for suturing and mitral valve repairs
19

. Following this, cadavers were used to help 

identify the nuances of port placement, arm position and shoulder mobility
19

. 

Table 1: da Vinci Credentialing Course Levels of Robotic Surgical Training 

 

List of the exercises and techniques used in the da Vinci Credentialing course provided 

by Intuitive Surgical Inc. 

 

This training protocol is provided by Intuitive Surgical Inc. and the only additional 

stipulation for training is that surgeons must be proctored for their initial cases within a 

set period of time after completing this training. Although it represents the minimal 

amount of training that is required by the FDA to receive credentialing for clinical use of 

the robot, it utilizes a variety of different simulation training methods to maximize 

learning over a short training course
19

. It is unreasonable to think that in just three days of 

a robotic cardiac surgery training course anyone would reach a level of proficiency to 

take on the responsibility of operating on an actual patient, but in fact this is what 
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happens
19

. Many of the world leaders in robotic surgery were pioneers, in their respective 

fields, out of necessity as they never had any formal or structured training with any 

robotic system in addition to this course
19

. This deficiency in the training of robotic 

surgeons was highlighted in a 2010 Dutch Health Care Intspectorate, who published a 

report that stated 50% of hospital’s had insufficient criteria for surgeon competence prior 

to starting robotic surgery
20

.  

In addition to this, staff surgeons who have completed this da Vinci credentialing course 

and obtained robotic privileges at their institution, are then expected to teach surgical 

trainees on the job as they are trying to perform these complex operations themselves
19

. 

Currently robotic cardiac surgery is taught by traditional surgical training methods
21

. This 

usually involves a step-wise approach where a trainee is entrusted with a small portion of 

the procedure and allowed to complete it with ongoing feedback and guidance under 

careful watch of the more senior individuals in the operating room
20,21

. Once proficiency 

with this task has been accomplished by the trainee, they are entrusted with another task 

and so on, until they are completing a greater and greater portion of the overall 

procedure
21

. This method of training requires a great deal of time to gain the adequate 

experience needed with each task, as well as a more senior member of the surgical team 

to be present to provide ongoing feedback
20

.  With the increased cost and resources 

invested to create a surgical robotic program as well as the high operating costs, there is 

increased pressure placed on surgeons for improved patient outcomes as administrators 

and tax payers demand a return on their investments. This increased pressure usually 

results in staff surgeons preferring to complete the entire case themselves and very little 

of the procedure being completed by trainees.  
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2 Literature Review 
The following provides a brief overview of the relevant studies that have contributed to 

identifying the benefits of robotic surgery and the current methods used to train surgical 

residents and fellows.  

 

 

2.1 Benefits of Robotic Surgery 

Despite the fact that robotic assistance is used in a small portion of all cardiac surgeries, 

its benefits have been shown at experienced centers. Poston, et al. from the University of 

Maryland showed this in a 2008 publication in the Annals of Surgery
22

. Here the authors 

demonstrated a significant reduction in total intubation time (4.80 ± 6.35 vs. 12.24 ± 6.24 

hours), hospital stay (3.77 ± 1.51 vs. 6.38 ± 2.23 days), and need for blood transfusions 

(0.16 ± 0.37 vs. 1.37 ± 1.35 U) compared to traditional coronary artery bypass grafting 

(CABG) with a sternotomy
22

. Despite increased upfront costs the researchers showed no 

significant differences in total costs at the time of discharge
22

. In this study, minimally 

invasive CABG was also a predictor of earlier return to work by 2.15 days (p = 0.04) 

after adjusting for confounders, and decreased rates of major adverse cardiac and 

cerebrovascular events (MACCE) (HR, 3.9; 95% CI, 1.4 –7.6)
22

.  

As previously mentioned robotic surgery has been more successfully adopted in other 

surgical disciplines. Robotic surgery has been associated with a decreased length of 

hospital stay and reduced blood loss when compared to laparotomy and laparoscopy 

based on a large meta-analyses from the gynecologic oncology literature
9
. Similar 

findings have been seen in urological oncology patients, where robotic surgery has 

demonstrated a distinct benefit with shorter lengths of hospital stay, less blood loss and 

blood transfusions, compared to retropubic and laparoscopic surgery
9
. With these similar 

benefits, it is reasonable to believe that robotics will play a larger role in the field of 

cardiac surgery at some point in the future. As robotic surgical technologies advance, 
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surgical systems will become smaller, more affordable, more efficient and easier to use, 

which addresses most of the concerns and obstacles with implementing a robotic program 

today. However, advancement of these technologies is dependent on continued efforts to 

improve training and outcomes today
19

. 

 

 

2.2 Current Robotic Surgical Training 

Robotic surgical training is being presented with challenges that are both novel and 

unique compared to other surgical techniques of the past
20

. The currently available 

literature indicates that there is an inability to appropriately train novice surgical trainees 

at the same rate that these technologies are being developed. In 2003, Novick et al. 

demonstrated the learning curve associated with telerobotic beating heart CABG in the 

first 90 patients at our center
23

.  Their results showed a steep learning curve associated 

with suboptimal outcomes with the first 18 to 20 patients who underwent robotic off-

pump coronary bypass surgery, which was moderated with ongoing experiences in the 

remainder of the cases
4
. This learning curve was also identified by Schachner et al. in 

2009 when they reported the experience of two junior surgeons in training as they 

progressed to senior roles in a robotic cardiac surgery program and tracked their times for 

pericardial lipectomy, pericadiotomy, left and right internal thoracic artery harvesting and 

coronary suturing as compared to senior surgeons
21

. The authors showed that over time as 

these surgeons progressed to more senior roles, their time to complete these tasks 

decreased and their level of proficiency approached that of a senior surgeon. With this 

information the authors concluded that TECAB can be taught well through a stepwise 

approach, where portions of the entire operation are entrusted to the trainee with 

increasing responsibilities as their surgical skills improve
21

. This method of training 

represents the classic model of education and knowledge acquisition in surgical training, 

and is neither efficient nor does it utilize the impressive advantages of new training 

modalities available in all surgical disciplines such as simulation training
20

. 
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2.3 Simulation Training 

Currently, a wide variety of training methods exist in robotic surgery which include; live 

case observation, skills laboratories, virtual reality simulation, animal or cadaveric 

models, proctoring, mentoring, telestration, and serious gaming, but to date no 

standardized training method exists
20

. This was demonstrated in a 2011, systematic 

review by Schreuder et al. who after analyzing the available information from the robotic 

literature argued for the formal organization of a competency based training system and a 

step-wise approach to procedural training with objective assessments of each step
20

. The 

authors also identified the benefits of virtual reality (VR) simulation training including; a 

high fidelity of training experience, the ease of set-up and the reduced cost, and 

postulated that VR simulation will play an important role in training and learning robotic 

surgery in the near future
20

. 

Simulation appears to offer great benefits to surgical trainees by allowing for repeated 

practice of a specific skill set in a controlled and safe environment
27-31

. This style of 

training is vastly different from the “see one, do one, teach one” mentality of historical 

surgical training which moves the acquisition of surgical skill outside of the operating 

room. This form of training has been necessitated by a lack of exposure in the operating 

room for trainees due to; increasing costs and an ever increasing administrative focus on 

outcomes-based initiatives compounded with older and frailer patients now being 

considered surgical candidates
27

. The three main areas of simulated surgical training 

currently in use are; cadaveric and animal models (wet labs), dry labs and virtual reality 

simulation
27

. Each has its benefits and drawback which will be discussed in greater detail 

here. 
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2.3.1 Wet Lab Training 

Animal and cadaveric surgical models offer the highest fidelity simulated experience 

(also referred to as ‘realism’) for surgical trainees in regards to anatomy and tissue 

handling
32

. Some training centers have increased this experience even further by using 

anesthetized live animals, or reinfusing these models with pulsatile blood flow in order to 

recreate the sense of urgency and a higher risk environment consistent with an actual 

operating room experience
31

. However, providing adequate exposure to these models is 

prohibitively expensive and very labor intensive for tissue preparation to the point where 

only specialized facilities are able to offer such an experience, but repetitive training is 

very limited
31

. Furthermore, because there are no objective measurements or feedback 

with this training, a skilled surgeon is required to be on hand to optimize teaching and 

provide guidance and feedback to ensure the trainee is learning the surgical techniques 

correctly
31

. Wet lab simulation in cardiac surgery has been done previously with 

cadaveric and porcine models
119

. Although the cadaveric model is more anatomically 

correct it is far more expensive compared to the porcine model.  

The porcine model for cardiac and chest wall anatomy (used for internal thoracic artery 

dissection), is a reasonable substitute but some differences do exist. For harvesting of the 

internal thoracic artery (ITA) off of the porcine chest wall, the first difference is that the 

model has far more developed intercostal muscles which must be peeled off in order to 

see the internal thoracic artery and vein pedicle. This requires a significant amount of 

preparation time for each chest wall, usually between 20-30 minutes for an experienced 

lab tech. Removal of this layer requires the removal of the overlying interthoracic fascia 

which is normally scored and used to provide retraction during dissection of the ITA. 

Because this layer of fascia is removed the fat and muscle tissues underneath must be 

handled during dissection which are a bit more delicate. Once this muscle layer has been 

removed and the ITA pedicle exposed, the final difference is that the internal mammary 

veins are much larger in the porcine model than those in a human as compared to the 

artery. This is usually not a concern when the artery is being dissected in a pedicled 

fashion where the ITA is dissected with its two corresponding veins. Overall, this model 

provides a high fidelity representation of the actual human anatomy and the actual 
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experience of dissection out the internal thoracic artery. For the mitral valve 

annuloplasty, porcine heart models have been widely used as they provide nearly 

identical anatomy of the heart and cardiac valves and are of similar size to humans. 

 

 

2.3.2 Dry Lab Training 

A dry laboratory allows for repetitive training of a variety of basic surgical techniques in 

a low risk environment with standardized objectives to be obtained by the trainee without 

direct supervision of a skilled surgeon making it ideal for incorporation into a surgical 

training curriculum
31

. Although the dry lab is an inexpensive and reproducible training 

tool it lacks the realistic experience of the operating room without exposure to relevant 

anatomy or actual tissue handling
31

. The best example of this the ‘Fundamentals of 

Laparoscopic Surgery (FLS)’ which was adapted from the McGill Inanimate System for 

Training and Evaluation of Laparoscopic Skills (MISTELS) and first proposed by Ritter 

et al. in 2007
33

.  This program consists of five different psychomotor tasks unique to 

laparoscopic surgery across a variety of surgical specialties (Peg transfer, Pattern cut, 

Ligation Loop, Extracorporeal suture, Intracorporeal suture)
33

. In this paper, the levels of 

proficiency for these tasks were determined by having; two fellowship-trained advanced 

laparoscopic surgeons, whose practices consisted of mainly minimally invasive surgery, 

but who were not overly familiar with the FLS tasks prior to initiation of the study, 

complete each of the five tasks 5 times. It was decided a priori that these values would be 

pooled and any outlier more than 2 standard deviations from the mean were excluded 

(there were none). The time for proficiency of these tasks was then set as the mean time 

to completion from this data set
33

. This training model has been so popular it has been 

adopted into the general surgery residency training program and provides an inexpensive, 

reliable, objective and reproducible model for laparoscopic skill development that a 

trainee can work on independently outside of the operating room to obtain the basic skills 

needed for any laparoscopic surgery
33

. 
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2.3.3 Virtual Reality Training 

Virtual reality (VR) simulation is a rapidly developing training tool used across a variety 

of different surgical training programs
34

. The benefit of VR is that it offers a reasonably 

realistic experience of the actual tasks performed on the robot in the operating room at an 

off-site location that can be accessed anytime a surgical trainee is available
31

. This allows 

for easily reproducible repetitive practice with little set-up time that is relatively 

inexpensive
33

. VR simulation also offers powerful evaluation software capable of 

providing objective feedback on a variety of potential surgical errors that previously 

could not be measured, alleviating the need for a skilled surgeon to be present
31

. 

Currently the two robotic surgical simulators to dominate the market are the da Vinci 

Surgical Skills Simulator (Intuitive Surgical, Sunnyvale, CA) and the da Vinci-Trainer 

(Mimic Technologies, Inc. WA), both of which run the Mimic software which includes 

the MScore evaluation tool for defining errors and proficiency
31

. 

Similar to the FLS protocol, the scoring system used in the Mimic software is proficiency 

based and derived from the mean performances of experienced surgeons, the standard 

deviation of their performances and a proficiency multiplier
35

. The program is also 

capable of measuring components of each task that previously would have been 

exceedingly challenging to objectively quantify (ex. time, number of drops, number of 

instrument collisions, missed targets, broken vessels, blood loss, excessive force, angle of 

approach, etc.). Users are given a complete breakdown of their performance and each 

individual metric that composed the total score in the MScore summary after finishing an 

exercise. This allows them to see exactly what they did wrong during the exercise, what 

they can improve on and how far they were from a passing score
35

. This powerful tool 

allows for real time objective feedback of a trainee’s performance without the need for a 

skilled surgeon to be present
31

. The MScore software has been validated in multiple 

papers published in the urology and gynaecology literature for its usefulness as a training 

tool, realistic experience, and ability to distinguish experienced from novice users
36-41

.  

Recently, Culligan et. al were able to demonstrate the usefulness of virtual reality 

simulation on robotic surgical training by comparing real operative outcomes between 
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experienced robotic surgeons(>75 cases/year) and surgeons without prior robotic training 

who trained with the virtual reality simulator
38

. For this study the researchers examined 

the available exercises offered through the Mimic Technologies Inc. surgical simulation 

software and with the help of expert robotic surgeons rated each exercise from “not very 

helpful” to “definitely helpful” for a novice robotic surgeon in training. From this they 

selected the 10 exercises that were rated as “definitely helpful” by all of the expert 

surgeons surveyed, to create a simulation protocol that addressed; camera control and 

clutching, endowrist manipulation, basic and advanced needle driving, needle control, 

fourth arm control, dissection and energy control
38

. A group of novice robotic surgeons 

were allowed as much time as needed to reach the level of proficiency that was set by the 

experts for all ten exercises on the simulator. Participants then completed the da Vinci pig 

laboratory required for all new robotic surgeon followed by their first ever supracervical 

hysterectomy within two weeks of completing the training curriculum. Outcomes (time, 

blood loss, and blinded assessment) were compared to a third group of surgeons who had 

robotic certification but were performing less than 75 cases per year
38

.  Time and blood 

loss were found to be significantly improved for the VR trained surgeons compared to the 

control group and similar to that of the experienced surgeons
38

. The researchers also used 

the Global Operative Assessment of Laparoscopic Skills (GOALS) to demonstrate an 

improvement in surgical technique for the test group over the control
38

. The GOALS 

scoring tool was developed and validated in laparoscopic surgery to objectively assess 

intraoperative laparoscopic surgical skills for a variety of laparoscopic procedures
42

. It 

has been shown to be superior to other intraoperative scoring systems and to correlate 

well with scores of the FLS program
42. 

A similar scoring system that is specific to robotic 

surgery exists, based on the GOALS tool principles for laparoscopic surgery
47

. 
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2.4 Methods for Robotic Surgical Proficiency 
Assessment 

GOALS proved to be a user friendly, objective and reproducible tool for the assessment 

of laparoscopic surgical skill, and so it was used as a model for developing a similar tool 

specific for robotic surgery
47

. In 2012, Goh et. al, validated a clinical assessment tool for 

robotic surgical skills known as the Global Evaluative Assessment of Robotic Skills 

(GEARS)
47

. The development of this training tool involved 29 evaluations of 25 trainees 

(ranging from 4-6 years of post-graduate training) and 4 attending surgeons. When 

stratified for year of training, the researchers were able to detect a significant difference 

in the overall score on the assessment tool between 4th and 5th year residents when 

compared to attending surgeons
47

. The author’s of this work validated their findings by 

estimating the internal consistency of each component of the GEARS scoring tool using 

Cronbach’s α analysis (0.90-0.93), which is used to estimate the reliability of a 

psychomotor test. Furthermore the authors used a technique for to assess similarity 

between the groups known as intra-class correlation coefficients to demonstrate 

interobserver reliability. This showed this value to be 0.80 ((95% CI 0.65-0.90), 

indicating low variability among different evaluators using the scoring tool
47

. GEARS is 

composed of six areas of robotic surgery; depth perception, bimanual dexterity, 

efficiency, force sensitivity, autonomy, and robotic control. Each quality is ranked on a 

five-point Likert scale with one being the lowest score and five representing an accurate, 

confident and efficient robotic surgeon
47

. Within this study, expert robotic surgeons were 

capable of obtaining scores greater than 26/30, indicating a high level of proficiency 

where as trainees scored below 20/30 indicating room for improvement with robotic 

skill
47

. The actual GEARS scoring tool is shown in Figure 2.1. 
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GEARS Scoring tool, adapted from Goh et al. 2012 J Urol. 

 

The authors of this paper point out that the well adopted and validated FLS curriculum, 

has been demonstrated to have a high positive correlation to trainee intraoperative 

performance as measured by GOALS and therefore they suggest that the similar robotics 

assessment tool, GEARS, may serve as a guide to developing a robotic training 

simulation curriculum
47

.  

Virtual reality simulation has an added benefit for determining proficiency by using a far 

more complex evaluation tool. As previously mentioned, the MScore software (Mimic 

Technologies Inc. USA), is powerful objective evaluation tool incorporated into the 

virtual reality simulation software. At the completion of each exercise trainees are 

presented with a screen that contains their overall score as well as the scores of different 

Figure 2.1: Global Evaluative Assessment of Robotic Skills (GEARS) Scoring Tool 
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metrics that were recorded for that particular exercise. These metrics may include; time, 

total distance travelled, excessive force, instrument collisions, blood loss, master 

workspace range, etc. Each exercise within the software tracks a different set of these 

parameters that are important to the successful completion of that particular exercise
35

. 

The benefit of this scoring tool comes from its ability to track small errors in robotic 

performance that affect surgical efficiency and overall robotic proficiency. The scoring 

tool was created by having 100 experienced robotic surgeons from six different 

institutions complete the exercises. Surgeons had to have completed over seventy-five 

robotic cases to be designated as ‘experienced’ for these purposes
35

. Each surgeon was 

allowed to complete each exercise as many times as they wanted until they felt that they 

had completed the task to the best of their ability. For each task this took between 10 and 

137 attempts for each individual experienced surgeon to complete
35

. After this work was 

completed, software developers looked at the average scores for each individual metric to 

calculate the default proficiency baseline of each individual metric. The equation for the 

Profociency Baseline Scoring is shown in Figure 2.2. 

 

 

Proficiency Baseline Scoring Equation fof the MScore Software. 

This formula indicates that any individual performing a specific exercise on the virtual 

reality software must perform one standard deviation better than the average score set by 

these experienced surgeons. This must occur for each metric that is tested in the 

particular exercise to contribute to the overall score.  Proficiency baseline scores for 

metrics that use whole numbers such as; drops, instrument collisions, missed targets or 

broken vessels were rounded to the nearest integer
35

. Failure to reach the set proficiency 

Figure 2.2: Proficiency Baseline Scoring for MScore Software 

Figure 2.2: Proficiency Baseline Scoring for MScore Software 
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baseline in any of the tested metrics results in a critical error and failure of the entire 

exercise
35

. 

However, it must also be taken into consideration that some metrics are more important 

than others. For example, a mistake of colliding the instruments or operating with a large 

master control workspace range may decrease the efficiency with which one is able to 

control the robot but it is hardly as critical of a mistake as applying excessive force or 

carrying a needle off screen, which are both potentially dangerous maneuvers. To account 

for this, the different metrics are weighted in their contribution to the overall proficiency 

score. The overall proficiency score is composed of the weighted averages (denoted by 

Wi) of the individual metric scores and is calculated using the formula shown in Figure 

2.3. 

 

 

 

Overall Score calculation for the MScore software using the particular weighting(Wi)for 

each metric whose total sum give the overall score.  

 

Figure 2.3: Overall Score Calculation for MScore Software based on Individual 

Metric Weighting 
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This formula will generate the overall score of each exercise as a percentage from 0-

100%, where a pass based on the standard simulator settings is a proficiency score of 

80%, while passing each individual metric
35

. A passing grade is denoted on the system 

with a green checkmark that signifies a score was reached between 100% and 80% which 

is predefined as the acceptable threshold
35

. If the individual fails to reach this acceptable 

threshold but scores over 50% they will see a yellow triangle for this metric which 

indicates a warning and encourages the individual to attempt to improve this score. A 

yellow triangle on any metric is not considered a fail and the individual can still pass the 

exercise if they obtain an overall score >80%, while failing to reach the acceptable 

threshold on an individual metric in the exercise with the simulator on its default 

settings
35

. Failure to reach the 50% mark will result in a failure of that metric and is 

defined as a critical error. For this the individual will be prompted with a red “X” to 

signify their inability to reach the predetermined level of proficiency for either that metric 

or the overall proficiency score
35

. The simulation software has the ability to set different 

levels of proficiency for the overall score or an individual metric, if a training program 

wishes to do so to individualize the training exercises
35

.  

Although the actual calculation of each individual metric and score may seem 

complicated, the MScore software is a powerful and very user friendly tool that provides 

feedback for trainees on an ongoing basis and allows them to objectively compare their 

results with improvements they make over time or with that of colleagues and experts
31

. 

 

  

3 Methodology 
The purpose of this study is to determine the most effective method for robotic cardiac 

surgery training through a prospective randomized controlled trial comparing wet lab, dry 

lab and virtual reality simulation with an untrained control group. This work forms one of 

the largest trial available of its kind in the current literature and the first ever randomized 

controlled trial (RCT) comparing the currently available robotic training modalities in 
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cardiac surgery. The trial involves a parallel RCT with four different treatment arms 

utilizing both time-based assessments as well as a single-blinded assessment of robotic 

surgical skill with a validated scoring tool for intraoperative robotic surgical skill. 

At the onset of the study, we hypothesized that the Virtual Reality Training curriculum 

would offer trainees the best simulation experience by providing a comprehensive 

evaluation of a variety of important metrics for each exercise and this would allow 

individuals randomized to this group to score the highest on the final assessments. 

 

 

3.1 Trial Design  

Our study used a parallel-group randomized controlled trial design, with four different 

treatment arms. After the initial assessment trainees were randomized to either a; wet lab, 

dry lab, virtual reality curriculum or a control group, that received no additional training. 

All trainees in the 3 training streams were allowed to practice on the da Vinci robot or 

simulator until they reached a level of proficiency that had been previously set by our 

expert robotic surgeons for each specific task. All trainees were then brought back to 

repeat the original assessment. All assessments were recorded, de-identified and coded to 

be assessed by a single blinded investigator to control for inter-observers variability at a 

later date. The flowchart for the study design is shown here in Figure 3.1. 
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Figure 3.1: Parallel RCT Study Flowchart 

 

Study participant flowchart for the current study. 

 

 

3.1.1 Ethics Board Approval  
The Western University Health Science Research Ethics Board (HSREB#106343) 

approved this trial. Documentation of HSREB approval is provided in Appendix B. The 

trial was also registered into the public domain on clinicaltrials.gov (NCT#02357056). 

 

 

3.1.2 Source of Funding  

This trial was supported by a St. Jude Medical resident education grant valued at $3000 

Canadian Dollars, distributed to the department of cardiac surgery at the University of 
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Western Ontario. Internal support for the project was also provided by CSTAR. No other 

sources of external funding were required to support the administrative or completion of 

the study. The authors have no conflict of interest to disclose. 

 

 

3.1.3 Randomization  

Proper randomization of each participant into one of the three training streams or the 

control group was paramount to ensure the best possibility of controlling for differences 

in baseline demographic variables and performances as well as success and progression 

in the training streams. Although a variety of different randomization techniques are 

possible, at the time of enrollment of this study we needed to assess the first few 

participants to look for variability and comparison to the experts in order to complete our 

power calculations. Because of this, we opted for a simple randomization technique 

congruent with the ongoing enrollment. After each participant completed the initial 

assessment they selected one of four identical cards that indicated the training stream that 

they would be allocated to, that were held in an opaque container. This process allowed 

for each individual to be assigned independently of one another and with the same chance 

of ending up in any of the four treatment arms of the study.  

 

 

3.1.4 Blinding 

Blinding in scientific methodology refers to the lack of awareness of the evaluators as to 

the allocation of the treatment groups for the study participants. This helps to control for 

biases with observer evaluations but as well as participant performance and willingness to 

provide examiners with specific information. For this a double-blinded design is usually 

preferred which indicates that both the participants and the investigators are unaware of 
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the treatment allocation. Commonly it is impossible for a double-blinded design for 

studies within the surgical literature as the surgical team or patients are always aware of 

the treatment that they received or the procedure performed. In these instances, a third 

party evaluator is commonly used to assess post-operative changes and this is referred to 

as a single-blinded design. This was the case for the current study, where blinding would 

have been impossible for the study participants who spent considerable amount of time 

training in their specific treatment arm. During the initial and final assessments each 

study participant had every evaluation recorded through the da Vinci video system. This 

was also done with the experts for each of their five attempts of the ITA dissection and 

mitral valve annuloplasty. This produced a short video of the participant’s performance, 

as seen from the surgeon’s console and contained no identifying information. Each video 

was then coded and evaluated at a later date by a single invigilator who was unaware of 

the participant’s training stream, or if they were evaluating one of the experts 

performances.  

 

 

3.2 Recruitment 

Recruiting the correct population for a study is necessary to ensure the results are 

applicable to the larger population. The current study involves basic training in robotic 

cardiac surgery and so our ideal study population was cardiac surgery trainees with 

limited exposure to robotic surgery. At our institution there are not enough cardiac 

surgery trainees to correctly power the study and so enrollment was expanded to include 

surgical trainees from other disciplines. Every attempt was made to include trainees from 

surgical specialties that also use the da Vinci robot. This was to ensure the commitment 

and participation of each trainee to complete the training stream in their own free time as 

no other incentive was given out, other than a unique exposure and opportunity to train 

on the da Vinci system, which is rarely available during surgical training. 
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3.2.1  Eligibility and Exclusion 

Departmental secretaries at our institution for the departments of; cardiac surgery, general 

surgery, thoracic surgery, obstetrics and gynecology, and urology were contacted with 

information for the study and asked to disseminate this information among their residents 

and fellows. Trainees were asked to contact the study investigators if they were interested 

in participating and at this point they were deemed eligible or not. Because this study 

involved basic training in robotic cardiac surgery we wanted to exclude participants with 

significant exposure to the da Vinci console. Therefore, participants were only considered 

for enrollment if they had less than 10 hours of experience at the da Vinci surgeon 

console or any of the da Vinci simulators (da Vinci Skills Simulator, da Vinci trainer, 

etc.). 

 In addition to this, the dry lab training stream was adapted from the FLS program and in 

order to ensure that no trainee was at a disadvantage when starting this stream, we made 

sure that each trainee was familiar with the FLS program prior to enrollment. Because of 

this, any first year surgical residents were not enrolled in the study until they had 

completed the FLS requirements of the Principles of Surgery course that is required for 

all junior surgical residents to complete at our institution. 

 

 

3.2.2  Informed Consent 

Informed consent was obtained from each study participant as outlined in our health 

science research ethics board (HSREB) submission at the time of the initial assessment. 

A copy of the written consent form is provided in Appendix C. Signed original consent 

forms were kept in a locked room in a secure facility at University Hospital. The Western 

HSREB requires that these consent forms be maintained for ten years after completion of 

the enrollment phase of the study. 
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3.3 Initial Evaluation 

After successful enrollment participants were shown a five-minute video of an intra-

operative robotic harvest of the internal thoracic artery and a robotic assisted mitral valve 

annuloplasty. These videos summarized basic operative techniques and the relevant 

anatomy of each procedure. Next, a very brief overview of the standard da Vinci surgeon 

console was given to each participant including uses for; clutch, camera and coagulation 

pedals. Participants were then required to harvest a 10cm length pedicle off a porcine 

chest wall, consisting of the internal thoracic artery (ITA) and the corresponding veins, 

using robotic Debakey forceps and a monopolar spatula cautery.  

Following this, participants were given porcine hearts with the left atrium removed to 

expose the mitral valve, and asked to place the first three sutures of a mitral valve 

annuloplasty. Two 3-0 Ethibond Excel (Ethicon, USA) sutures were passed to the 

participant by an assistant, and placed through both the posteromedial and anterolateral 

trigones of the mitral valve. A third suture was given to the participant and placed 

through the annulus of the mitral valve next to the posteromedial trigone suture. A SJM 

Tailor Flexible Annuloplasty band (St. Jude Medical, USA) was then given to the 

participant and they were required to place both ends of the suture through the band and 

hand the ends back to the assistant.  

Both of these tasks were timed and recorded on the robot’s camera using a Stryker 1288 

HD Camera Control Unit, and coded for blinded assessment at a later date. The technique 

involved and the scoring systems for each task will be discussed in more detail in the 

following chapters. Following the initial assessment, participants were randomized to one 

of four different robotic training streams: wet lab, dry lab, virtual reality simulation, or a 

control group. 
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3.3.1  10cm Dissection of the Internal Thoracic 
Artery  

The internal thoracic artery (ITA) has proven to be the best conduit for coronary artery 

bypass grafting, with patency rates greater than 90% at ten years. Because of its excellent 

patency and the proven survival benefits to patient of grafting the ITA to the left anterior 

descending (LAD) artery, the ITA is grafted in nearly every bypass surgery if it is 

possible, for both open and robotic surgeries
43

. During robotic coronary artery bypass 

grafting, three external ports are placed in the 3
rd

, 5
th

 and 7
th

 intercostals spaces in the left 

anterior axillary line. With the left lung deflated from single lung ventilation, the ITA 

pedicle can be easy seen running under the anterior chest wall (See Figure 3.2) containing 

both the ITA and its two corresponding veins. Dissection of the ITA involves scoring the 

interthoracic fascia on both the medial and lateral sides of the ITA pedicle from where 

the phrenic nerve crosses superiorly, down to the 6
th

 intercostals space inferiorly which is 

where the ITA usually bifurcates into the superior epigastric and musculophrenic artery. 

A pair of robotic DeBakey forceps is used to grasp the interthoracic fascia and provide 

downward traction, while monopolar spatula cautery is used to dissect the pedicle off of 

the chest wall.  The pedicle is then clipped at its most inferior aspect and cut by the 

bedside assistant using laparoscopic instruments through the robotic port placed in the 7
th

 

intercostals space. In order to simulate this complex skill a porcine chest wall model was 

chosen due to availability, cost and anatomic similarities. The other wet lab simulation 

exercise for this task that has been described within the literature is a cadaveric model. 

This model although a perfect replication of the actual anatomy, is prohibitively 

expensive for both our purposes with this study as well as with integration into a 

reproducible training program. The porcine model was composed of pigs between 80-

100kgs, with chest walls and ITA pedicles nearly identical to that of an average human 

patient (See Figure 3.2). The porcine model differs from human anatomy by only a few 

small aspects. Typically the porcine models have much larger internal thoracic veins 

compared to that of humans and identification of the ITA is not always possible. 

However, this does not change the dissection technique when taken as a pedicle as score 

marks are made on the lateral and medial aspects and the entire pedicle is lifted off of the 
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chest wall. The largest difference between the porcine model and the normal human 

anatomy is the overly developed interthoracic muscles of the porcine chest wall. In order 

to identify the ITA pedicle, running along the chest wall, the porcine chests must be 

prepared by paring off these muscles to expose the pedicle underneath. In order to do this 

the interthoracic fascia must be removed as well, although this does not change the 

technique for ITA dissection in the lab, trainees do not have the ability to handle the 

fascia and provide consistent traction on the pedicle while it is being dissected. With the 

facia removed trainees are still able to handle the underlying muscle and fat tissue to 

provide the necessary traction for dissection, however the tough fascial tissue provides 

much stronger tissue for retraction. Figure 3.2 shows first the intraoperative image of an 

actual ITA dissection from the surgeon console, followed by the laboratory simulation of 

this task using a porcine chest wall. It can be seen that the porcine chest model gives a 

fairly high fidelity experience where the ITA pedicle artery and corresponding veins can 

easily be identified in both. 

Figure 3.2: Intraoperative and Wet Lab Images of ITA Dissection 

Intraoperative Wet Lab 

  

Both intraoperative and wet lab images for the ITA dissection are shown here. The left 

image depicts that actual intraoperative image from a human and the right image depicts 

the robotic camera view in the wet lab with a porcine model. Both images clearly 

demonstrate the relevant anatomy and depict the high fidelity of this type of simulation. 

 

In order to assess baseline robotic skill the initial assessment involved dissecting a 10cm 

portion of the porcine ITA. For this, the porcine chest was prepared as previously 

described. The ITA pedicle was identified and two silk stitches were placed 10cm apart. 

The trainees were required to watch a five minute intraoperative video, highlighting the 
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relevant anatomy as well as basic dissection technique. The da Vinci System was set up 

with a monopolar cautery instrument placed in the robotic right or left arm depending on 

the trainee’s preference and a robotic DeBakey forceps placed in the other arm. The 

trainees were allowed to proceed with the dissection without any guidance. Timers were 

started as soon as the first scoring mark was made on the chest wall and all the 

assessments were recorded on video to be evaluated at a later time. The actual scoring of 

the exercise will be discussed in the following chapters. 

   

 

3.3.2  Mitral Valve Annuloplasty 

A downsizing mitral valve annuloplasty is one of the simplest and quickest repairs of 

mitral regurgitation and is often a necessary component of more complex repairs. During 

robotic assisted mitral valve repair a small right sided thoracotomy is made usually in the 

3
rd

 or 4
th

 intercostals space at the mid-axillary line depending on pre-operative imaging. 

Ports are placed in the intercostals spaces above and below this incision and access is 

gained to the mediastinum through left sided single lung ventilation. Lateral access to the 

ascending aorta from this position allows for an antegrade cardioplegia cannula to be 

placed and a minimal access Chitwood clamp is used for cross-clamping the aorta. 

Venous and arterial cannulation is possible through the femoral vessels and access to the 

mitral valve is gained through development of Sondergaard’s groove. After 

administration of cardioplegia, the 4
th

 arm of the da Vinci robot is inserted through the 

thoracotomy with a custom scissoring mitral valve retractor through the left atrium to 

expose the mitral valve. 2-0 Ethibond sutures are then placed in the fibrous trigones 

found at the commisures of the valve. The fibrous trigones are composed of the fibrous 

skeleton of the heart and therefore will not be affected by mitral annular dilation and 

serve as a reference for appropriate mitral ring or band sizing. After sizing is complete 

sequential interrupted sutures are placed around the annulus with the help of the bedside 

assistant. As every suture is placed each end is brought through the annuloplasty band 

and handed back to the assistant who is in charge of keeping all these sutures organized. 
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After all the sutures are placed around the posterior leaflet clockwise from trigone to 

trigone, the sutures are tied by the bedside assistant in an extracorporeal fashion with a 

knot-pusher. The surgeon then assists with the cutting of each suture by the bedside 

assistant. Figure 3.3 shows first the intraoperative image of an actual mitral valve 

annuloplasty for the surgeon console, followed by the laboratory simulation of this task 

using a porcine heart. It can be seen that the porcine heart model gives a fairly high 

fidelity experience where the mitral valve and surrounding structures can easily be 

identified in both. 

 

Figure 3.3: Intraoperative and Wet Lab Images of Mitral Valve Annuloplasty 

Intraoperative Wet Lab 

  

Both intraoperative and wet lab images for the mitral valve are shown here. The left 

image depicts that actual intraoperative image from a human and the right image depicts 

the robotic camera view in the wet lab with a porcine model. Both images clearly 

demonstrate the relevant anatomy and depict the high fidelity of this type of simulation. 

 

In order to assess baseline robotic skills associated with this task, the first three sutures 

were placed in the mitral annulus of a porcine model. For this a pig heart was prepared by 

removing the left atrium and great vessels to expose the mitral valve, in a view very 

similar to the actual intraoperative experience (See Figure 3.3). Although there is some 

variability with regards to leaflet thickness and size, very few differences exist between 

the porcine and human model, making this a very high fidelity model for simulation 

training. The trainees were required to watch a five minute intraoperative video, 
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highlighting the relevant anatomy as well as basic technique of a mitral valve 

annuloplasty. For the initial assessment the da Vinci robot was set up with the needle 

driver and DeBakey forceps in the right or left arm as to the trainee’s preference. A timer 

was started as soon as the first 3-0 suture was handed to the trainee and they were 

required to place this through the anterolateral trigone and then hand it back to the 

assistant. A second suture was then given to the trainee, which was placed through the 

posteriormedial trigone and again handed back to the assistant. A third double ended 

suture was given to the trainee and it was placed in and out on the annulus next to the 

suture placed in the posteriormedial trigone in a horizontal mattress fashion. An 

annuloplasty band (St. Jude Medical) was then brought into the surgical field and the 

trainee was required to place the suture through the band and hand it back to the assistant. 

Lastly the other end of the last stitch was handed to the trainee and they were required to 

pass it though the band and hand it back to the assistant again. This signified the end of 

the exercise and the timer was stopped. The entire exercise was composed of the 

surgeon’s responsibilities for placing the first three sutures of the annuloplasty. No 

guidance was provided to the trainees throughout the exercise and the entire exercise was 

recorded on video to be evaluated at a later time. The actual scoring of the exercise will 

be discussed in the following chapters. 

 

 

3.3.3  Pre-test Questionnaire 

In order to assess the amount of prior surgical training and expose to the da Vinci system 

the participants in the study had prior to starting the study, a questionnaire was completed 

prior to the initial assessment. This questionnaire focused on age, level of surgical 

training, surgical specialty, and previous experience on the da Vinci master console or 

any other robotic simulator. As per the inclusion criteria of the study, all participants had 

less than a total of 10 hours driving the robot’s master controls or using a robotic 

simulation system. This allowed us to assess the validity of our randomization process, 

by distributing participants equally among all training streams so that more senior 
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surgical trainees, or trainees with more robotic experience at baseline were not allocated 

to the same stream, skewing the data. In addition to this we also asked participants, how 

many robotic cases they had been exposed to so far in their training (even if not involved 

in operating the robot), how important they feel robotic surgery will be in their specialty 

in the future and the likelihood that they will incorporate robotic surgery into their own 

practice. Lastly, we used a Likert scale (1-10) to assess how prepared each candidate felt 

to complete a variety of robotic tasks prior to the initial assessment. These tasks included; 

Camera Movement & Clutching, Device Movement, Transferring, Cutting, Suturing, 

Knot Tying, completing a mitral valve annuloplasty and dissecting out the ITA. The pre-

test questionnaire can be found in Appendix D.   

 

3.4 Treatment Arms 

In order to assess and compare the most common forms of simulation based training a 

wet lab, dry lab and virtual reality curriculum were created. A fourth group was created 

to serve as a control, that would receive no addition training after the initial assessment 

and would be brought back to the lab to complete their final assessment after a duration 

of time similar to the duration of training among the other three groups. This was to 

control for two specific confounders in the data. The first was that it was expected that all 

participants would perform better on the second assessment, simply because they had 

gained knowledge and insight as to what was expected of them during the initial 

assessment that they could apply to the final assessment. And secondly, as each 

participant in the study continues to progress during their surgical training for the 

duration of the study they may be exposed to more robotic procedures or gain more 

experience in their regular surgical training that may improve their score on the final 

assessment. 
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3.4.1  Wet Lab 

The wet lab consisted of the same tasks the participant completed in the initial 

assessment. Two expert robotic fellowship trained surgeons, whose practices regularly 

involve minimally invasive surgery, performed the robotic ITA harvest and mitral 

annuloplasty tasks five times each. Each expert surgeon had extensive experience with 

robotic simulation, and was familiar with FLS tasks, but had no significant time 

practicing or training on our wet lab model prior to this assessment. The level of 

proficiency for these two tasks was taken as the pooled mean time for completion of 

these tasks by our expert surgeons, with any value more than two standard deviations 

from the mean excluded to account of any outlying values. If however the study 

participant damaged any tissue through cauterization, avulsion, or inappropriate tissue 

handling, their attempt would not be considered successful even if the target time was 

reached and a score of “0” was applied. Each participant was able to attempt each task 

up to 80 times in order to reach the predetermined level of proficiency. To ensure the 

achievement of proficiency was not a random occurrence, each participant was required 

to pass each task two consecutive times. Both the ITA dissection and mitral valve 

annuloplasty tasks were timed and time-based scores were determined by the following 

equation shown in Figure 3.4, derived from the FLS scoring system. 

Figure 3.4: Wet Lab Time-Based Scoring Equations 

10cm ITA Dissection: 

Score = 1320 - Time(s)  

*Any damage to tissues through cautery, grasping or avulsion resulted in a score 

of 0 

Mitral Valve Annuloplasty: 

Score = 720 - Time(s) 

 *Any damage to tissues, annuloplasty band or sutures resulted in a score of 0 

 

Breakdown of the scoring system for each of the two tasks that made up the initial 

assessments and the wet labs. 
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3.4.2 Dry Lab 

The dry lab training stream consisted of three tasks to address camera movement and 

clutching, transferring and endowrist manipulation, and needle control, needle driving, 

suturing and intracorporeal knot tying.  The first task used a predrawn template with 10 

numbered boxes of varying shapes and sizes, each of which was surrounded by a dot on 

all four sides. Each participant was required to clutch and move the camera through each 

box and focus the image on each such that all four corners of the box could be seen and 

all of the surrounding dots were excluded. The template is shown here in Figure 3.5. 

Figure 3.5: Dry Lab Camera Movement and Clutching Template 

 



 38 

 

Standardized stencil used in the first task of the dry lab where individuals had to move 

from box to box and focus the camera in to exclude the surrounding dots. Each box is 

numbered and contains an arrow pointing the trainee to the next box in the sequence. 

 

The exercise was timed and a score was determined by the equation shown in Figure 3.6, 

derived from the FLS scoring system. 

The second and third tasks of the dry lab used the Peg Transfer and Intracorporeal knot 

tying materials from Tasks 1 and 5 of the standard FLS skills program
8
. The methods for 

these tasks were exactly as what has been previously described by the FLS manual skills 

program with laparoscopic instruments replaced with the daVinci robot.  Both exercises 

were timed and a score was determined by the following equations: 

Figure 3.6: Dry Lab Time-Based Scoring Equations 

Task #1: Camera Movement and Clutching 

Score = 480 - Time(s) – 10(# of Errors) 

Errors: 1 point for each red dot visualized  

1 point for each corner not in view 

 

Task #2: Peg Transfer 

Score = 480 - Time(s) – 10(# of Errors) 

Errors: 1 point for peg dropped  

 

 Task #3: Intracorporeal Knot Tying 

Score = 480 - Time(s) – 10(# of Errors) 

Errors: 1 point per mm needle passed outside of each dot  

1 point per mm between model edges (air knot) 

Score of 0 if: Suture is broken 

 -Incorrect knot 

 -Frayed Suture 

 -Avulsion of model 

 

Breakdown of the scoring system for each of the three tasks that made up the dry labs. 

 

For each of these tasks the predefined errors listed here area adapted directly from the 

FLS curriculum and scoring system. 
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The level of proficiency for these tasks was taken as the pooled mean time for completion 

by our expert surgeons five attempts, with any value more than two standard deviations 

from the mean excluded. Each participant was able to attempt each task up to 80 times in 

order to reach the predetermined level of proficiency. To ensure that the achievement of 

proficiency was not a random occurrence each participant was required to pass each task 

two consecutive times. 

 

 

3.4.3  Virtual Reality 

We established a VR training protocol specific to robotic cardiac surgery using the da 

Vinci Skills Simulator (Intuitive Surgical, USA), a commercially available robotic 

surgical simulation platform. At the time of this study over 50 exercises were available 

on this simulator with the Mimic Technologies software. We surveyed our expert robotic 

cardiac surgeons to assess which of these exercises they felt would be important to 

develop the skills necessary for robotic cardiac surgery. From this we were able to 

generate a list of useful virtual reality simulation exercises and after testing each decided 

on the exercises we felt best tested these skills. From this we created a 9 exercise 

curriculum, specific to the skills required for robotic cardiac surgery. We named our 

virtual reality simulation curriculum the “Western Protocol” which consisted of the tasks 

shown here in Figure 3.7 along with the primary skill tested in each.   
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Table 3.7: Western Protocol for Virtual Reality Training 

Exercise Name – Level Primary Skill Tested 

Camera Targeting -2 

Energy Switching – 2 

Pegboard – 2 

Matchboard – 2 

Ring Walk – 3 

Matchboard – 3 

Energy dissection – 2 

Suture Sponge – 3 

Vertical Defect Suturing 

Camera Control 

Energy Control 

Endowrist Manipulation 

Endowrist Manipulation 

4
th

 Arm Control 

4
th

 Arm Control 

Energy Control 

Needle Driving - Advanced 

Needle Driving - Advanced 

List of all the 9 exercises that were included in our VR training curriculum can be found 

on the left column with the primary skill of each exercise that was tested listed on the 

right column.   

 

Levels of proficiency for each task were set by allowing our expert surgeons to complete 

each exercise as many times as they liked until they felt they had performed to a level 

indicative of their abilities. The MScore software (Mimic Technologies, Inc.) was used to 

calculate a variety of parameters for each skill to give an overall score. The software uses 

an overall score of 80% with no critical errors as a cutoff for a successful attempt at each 

exercise. However, because our expert surgeons were consistently achieving a higher 

average score than this, our level of proficiency for each task was set at 90% or greater 

with no critical errors. Each participant was allowed to repeat each exercise up to 80 

times in order to reach an overall score >90%.  In order ensure successful completion of 

the exercise was not a random occurrence, each participant was required to score >90% 

on each exercise without any critical errors, two consecutive times.  

 

 

3.4.4  Control 

A control group was utilized to assess for an improvement in skill from the initial 

assessment due to reasons other than the training that the other groups received. 

Individuals randomized to this group following the first assessment received no 
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additional training on the robot or any robotic simulation. These individuals were brought 

back and retested on the original robotic ITA harvest and mitral annuloplasty tasks at a 

later date, similar to the duration between the initial assessment and retesting of the other 

groups. 

 

 

3.5 Final Assessment 

Upon achieving the predetermined proficiency score for each task in their respective 

training stream, all individuals were brought back and retested on the original robotic 

ITA harvest and mitral annuloplasty tasks. All attempts were timed and recorded. Times 

for each group were compared to their original assessments and to each other, to 

determine if any significant difference existed between performances. The de-identified 

recordings of the initial and final assessments were objectively assessed for intraoperative 

surgical skills using the GEARS assessment tool in a blinded fashion by a single 

investigator to control for inter-observer variability. 

 

 

3.5.1  10cm Dissection of the Internal Thoracic 
Artery  

For the final assessment, participants repeated the dissection of a 10cm portion of the 

porcine ITA as they had done in the initial assessment. The porcine chest wall was 

prepared as previously described and the ITA pedicle was identified with two silk stitches 

placed 10cm apart. For this assessment the trainees did not watch the orientation video as 

before but were reminded of the task requirements. The da Vinci System was set up with 

a monopolar cautery instrument placed in the robotic right or left arm depending on the 

trainees preference and a robotic DeBakey forceps placed in the other arm. Timers were 
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started as soon as the first scoring mark was made on the chest wall and all the 

assessments were recorded on video to be evaluated at a later time. 

 

 

3.5.2  Mitral Valve Annuloplasty 

The second part of the final assessment repeated the task of the initial assessment where 

the first three sutures of a mitral annuloplasty were placed in a porcine model. As 

previously described, a pig heart was prepared by removing the left atrium and great 

vessels to expose the mitral valve. The trainees were not required to re-watch the 

orientation video, but were reminded of the task’s steps and requirements. Again, the da 

Vinci robot was set up with the needle driver and DeBakey forceps in the right or left arm 

as to the trainee’s preference. A timer was started as soon as the first 3-0 suture was 

handed to the trainee and they were required to place this through the anterolateral 

trigone and then hand it back to the assistant. A second suture was then placed through 

the posteriormedial trigone and a third suture was placed on the annulus next to the suture 

placed in the posteriormedial trigone. The trainee then placed both ends of this suture 

through an annuloplasty band (St. Jude Medical), in the exact same manner as the initial 

assessment. Timers were started as soon as the trainee took control of the first stitch and 

all the assessments were recorded on video to be evaluated at a later time. 

 

3.5.3   Post-test Questionnaire 

Upon completing the specific training stream and final assessment all participants were 

asked to complete a second questionnaire. This questionnaire focused on their experience 

with the training program and how their perception of robotic surgery may have changed. 

Again we asked participants to indicate how much experience they had with the da Vinci 

robot outside of the training program to assess if any trainees were participating in 

robotic surgeries as part of their surgical training while the study was being conducted.  



 43 

 

Next, we enquired as to the trainee’s satisfaction with the experience by using a Likert 

scale (1-10) focusing on Comfort, Easy of set up, Realism, and Reproducibility. Next we 

repeated the same section on trainee preparedness, as what was in the pre-test 

questionnaire, including; Camera Movement & Clutching, Device Movement, 

Transferring, Cutting, Suturing, Knot Tying, completing a mitral valve annuloplasty and 

dissecting out the ITA, in order to assess for changes in the trainee’s perception of these 

tasks due to the training they had received. Lastly, we asked participants of the study to 

rank their overall experience that they had with the training program, provide any specific 

benefits or drawbacks that they found with the training stream that they were assigned to, 

and lastly a section was provided so that they were able to provide any general comments 

and feedback about the whole experience. The post-test questionnaire can be found in 

Appendix E. 

 

 

3.6 Data Collection 

Data collection began once participants had been formally enrolled into the study and had 

undergone the initial assessment. At this time, the data was recorded from the pre-test 

questionnaire and the scores for both the ITA dissection and the mitral valve annuloplasty 

tasks were recorded and kept in a password-protected Microsoft Office Excel spreadsheet 

(Microsoft Corporation, Redmond, WA) with de-identified participant data for analysis. 

All videos from the initial assessment were recorded on a password protected USB key 

and kept with the questionnaire forms in a locked file cabinet, in an office at University 

Hospital, only assessable by with PIN entry.  

Data were recorded during each training session and included scores on each attempt for 

every training exercise as well as the total time spent on each exercise. This data was 

recorded in the same password protected USB key.  

After completing the final assessment, data including final ITA dissection and mitral 

valve annuloplasty scores and video recordings of these attempts, were recorded on the 
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same password protected USB key and kept with the post-questionnaire forms in the 

same locked file cabinet at University Hospital. In this fashion, confidentiality of patient 

information was ensured throughout the duration of the study as outlined in the HSREB 

protocol. 

 

 

3.6.1 Demographics 

The demographic information for each participant was recorded in the pre-test 

questionnaire. This was done prior to the initial assessment and analysis of this 

information after randomization was done to verify that there was an appropriate 

randomization process and all training and control groups are similar. All demographic 

variables pertaining to this study can be found in Table 3.8. 

 

 

Table 3.8: Demographic Variables 

Participant-Specific Demographic Data 

Age 

Gender 

Year of Training 

Hours of Robotic Experience 

List of the baseline demographics that were recorded for every study participant. 
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3.6.2 Primary Outcome Measures 

The benefits of simulation based training and exposure to the da Vinci system does not 

replace the formal training of a surgical residency program, but serves to allow trainees 

an opportunity to become familiar with the operation of the da Vinci system. To assess 

robotic surgical acumen a variety of characteristics can be tested. The most easily 

assessed is time, which gives an indication of the efficiency with which a trainee is able 

to complete a task. However, a more valuable scoring tool such as the GEARS 

assessment provides an objective assessment of global robotic skill. 

 

 

3.6.2.1  Time-Based Scores 

The time-based scores for dissection of 10cm of the porcine ITA pedicle and the first 

three sutures of mitral valve annuloplasty were scored in a similar fashion to the FLS 

scoring system. Here, the time in seconds for successful completion of the task was 

subtracted from a specific number to give a final score. This specific number was the 

total time in seconds that the participant had to complete the test before a score of “0” 

was given. For the ITA dissection, the participant was given 22 minutes (1320 seconds) 

to complete the task and for the mitral valve annuloplasty they were given a maximum of 

12 minutes (720 seconds) to complete the task. Beyond these times, the trainee’s 

performance would have to be so inefficient that a score of zero was appropriate. Lastly, 

if any gross damage was inflicted by the cautery, needle driving or tissue handling with 

either of these exercises, a score of zero was given to the participant for that attempt. All 

times and scores were recorded by a single investigator and recorded on the participants 

pre- and post-test questionnaires which were kept in a locked file cabinet, in an office at 

University Hospital, only accessible by with PIN entry.  
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3.6.2.2  GEARS Assessment Scores 

All initial and final assessment for every participant and the 5 attempts of both the 

annuloplasty and ITA dissection by our two expert surgeons were recorded from the da 

Vinci system on a password protected USB key. Every video was given a random 6 digit 

code that was assigned by the recording system at the time of the test and gave no 

indication to the type of assessment (initial or final) or the individual performing the task 

(expert or trainee). All videos were then reviewed after all 40 trainees had completed all 

required tasks by a single investigator, in order to control for inter-observer variability, 

and scored according to the GEARS scoring tool. These values were all recorded and 

then after analysis was complete, these scores were decoded from our concealed master 

list to reveal which attempt belonged to which training stream.  

 

 

3.6.3  Secondary Outcome Measures 

Secondary outcome measures are usually hypothesis generating data that can hopefully 

give some insight to explain the primary conclusion of a study or provide some 

supporting information. However, secondary outcomes differ from primary in that the 

study is not powered appropriately to detect a significant difference in between them, and 

that is why they can only identify trends but are unreliable to use as a foundation for 

making any significant conclusions. The secondary outcome measures that were 

evaluated during this study were recorded through the pre- and post-test questionnaires. 

These included trainee satisfaction with the training experience as well as their perception 

of how prepared they felt they were before and after training with a variety of robotic 

tasks. Each trainee was also afforded the opportunity to give feedback on the training 

process which has the potential to identify any specific aspect of the process that the 

trainee found beneficial or detrimental that we had not initially included in our surveys. 

In addition to this we tracked the total time it took an individual to complete all of the 

required tasks of their specific training stream to evaluate the efficiency that robotic skill 



 47 

 

can be obtained between different training modalities. Lastly, we recorded the total 

amount of time between the initial and final assessments to make sure one group was not 

exposed to a significantly longer period of clinical training while completing the study 

protocol. 

 

 

3.7 Statistical Analysis 

Statistical analysis is one of the most important aspects of any study as it enables the 

investigators to make reasonable and well-founded conclusions based on the data 

collected. The current study is a prospective RCT with the goal of comparing multiple 

indicators of robotic surgical skill among four independent populations and to compare 

their performances to those of expert robotic surgeons completing the same tasks. The 

sample population was meant to be representative of the population of surgical trainees 

who have very limited exposure to controlling the robot.  

All of the scoring metrics recorded in this study were independently taken and mutually 

exclusive from each other. Data analysis was based on the original random allocation of 

each participant into each training stream they were assigned. Although there was no 

crossover among the groups during the study, one individual from the virtual reality 

stream did not complete the final assessments and another from the dry lab group did not 

finish the final ITA dissection. Both of these individuals were included in the original 

assessments and contributed to overall averages of their respective groups.   
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3.7.1 Sample Size Calculation 

Determining the appropriate sample size prior to commencing this study was necessary in 

order to have valid results and is of particular importance given the prospective 

randomized controlled design of the study. The statistical power of the study refers to the 

probability a test will correctly reject the null hypothesis. This is refered to as a Type II 

error, where a null hypothesis is accepted when there is in fact a difference between the 

two groups. Statistical power is dependent upon three factors; sample size, standard error, 

and level of significance. 

For the current trial, no previous or similar study exists within the literature and in 

addition to this we employed some novel technique with our training protocols. Because 

of this we were unable to predict the standard error and significant changes of our 

primary outcomes of our trainees compared to the experts in our assessments, prior to 

participant enrollment. In order to account for this, we had one of our expert robotic 

surgeons and the first ten trainees complete the original assessments in order to use this 

information to calculate the appropriate sample size. The calculation used to determine 

appropriate sample size is shown in Figure 3.9.  

After obtaining this information as a surrogate “pilot-study”, we were able to use this 

information to estimate the standard deviation (SD), population means (µ) and the level 

of significance needed to complete our sample size calculations. In order to properly 

power this study for both our time-based scoring and GEARS assessment primary 

outcomes, we completed the calculation found in Figure 3.9 for each of these outcomes to 

determine which would require the largest sample size to be able to detect a meaningful 

difference between the training groups and the experts. After completing the necessary 

calculations we determined that a sample size of 5 people in each of the training streams 

would be necessary to detect a significant difference between the trainees’ and the 

experts’ time-based score for dissection of 10cm of the ITA. Similarly, a sample size of 7 

and 8 subjects in each training stream would be necessary to detect a significant 

difference for the mitral valve annuloplasty and the GEARS score, respectively. Based on 

these calculations, a minimum enrollment of 8 subject to each stream would power the 
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study appropriately to detect a significant difference for all three primary outcomes, 

however because a second expert surgeon was required to set levels of proficiency we 

opted to expand enrollment to 10 participants to account for this increased variability. It 

was felt that this number was also not too large it would allow for the unavoidable 

logistical and financial constraints surrounding the study design. 

 A level of significance set at an α value of 0.05, is the standard for reporting RCTs. This 

signifies that there is a 5% chance that the outcome is due to chance alone. Statistical 

power for the study (1-β) was set at 0.90, which indicates that there is a 90% chance of 

identifying a significant difference in the primary outcomes between the two independent 

samples, should one exist. This is superior to the standard for reporting an RCT, where 

power is usually set to 0.80, however in this situation, increasing the sample size of each 

group from 8 to 10 dictated an increase in the power of the study based on our initial 

sampling data. 

 

Figure 3.9: Sample Size Calculations 

 (µ1-µ2)
2 

= Δ
2
 =ƒ(α,P) σ

2 
(1/n1 + 1/n2) 

n1=n2 

Δ
2
 =ƒ(α,P) σ

2 
(2/n1) 

n1=2(σ
2
) ƒ(α,P)/Δ

2
  

n1=[2(164
2
)(1.96+1.28)

2
]/(573-279)

2
  

n1=(53792)(10.49)/294
2
 = 6.53..  

n1=7=n2 

n2=7  

Where, σ = SD, µ = mean, ƒ(α,P) =(1.96 + 1.28)
2
 for α of 0.05 and β of 0.90, Δ = (µ1-µ2) 

= 573-279 (mean time-based annuloplasty scores from our experts and trainees) 

*Equation for determining sample size for significance tests taken from Bland, M. an 

introduction to medical statistics third edition. Oxford University Press. 2000; Chapter 

18.3:336-339. 
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3.7.2  Outcome Comparison 

All measured values within the study were continuous variables. Because we had small 

sample sizes (<50) with continuous variables, we completed a Wilk-Shapiro analysis to 

confirm that the data was normally distributed.  See Figure 3.10 for results. This analysis 

gave a p-value > 0.05 for all outcomes measures and therefore showed that our values 

were not normally distributed. In order, to compare the efficacy among the 3 training 

streams, all three were compared to the control group using a Kruskal-Wallis ANOVA, 

which does not assume normality of the data but gives a more stringent level of 

significance.  This was done as; more than two groups were compared, all samples were 

independent of one another, the data was not normally distributed and all values were 

continuous. We confirmed that the variance between the data collected for each of the 

four groups was similar as seen in Figure 3.11, which shows there is no significant 

difference between the variability of each group based on a Lavene Statistic significance 

>0.05. Each group was then compared to the scores of the experts individually, using a 

Mann U Whitney test, which again does not assume normality of the data but is able to 

compare the means between two groups (training group and experts) for a measured 

variable. 

Table 3.10: Wilk-Shapiro Analysis of Normal Distribution of Data 

Characteristics  Wet Lab 

(n=10)  

Dry Lab 

(n=10)  

Virtual 

Reality  

(n=10)  

Control 

(n=10)  

Experts 

(n=10)  

ITA Score 0.678  0.360  0.023 0.469  0.897  

ITA GEARS  0.651  0.043  0.136  0.104  0.362  

Annuloplasty 

Score  
0.006  0.289  0.023  0.012  0.048  

Annuloplasty 

GEARS  

0.473  <0.001 0.093  <0.001  0.451  
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p Values for our Wilk-Shapiro analysis of each for each set of measured values within the 

study. All groups have at least one p Value < 0.05 indicating that the measured values do 

not have a normal distribution.   

 

Table 3.11: Test of Homogeneity of Variances 

 

Results for the Lavene test are reported here, non-significant p-values indicate that there 

is similar variance in the measured values among the different treatment groups. 

 

 

 

 

4 Results 
 

4.1  Treatment Arm Allocation 

Figure 4.1 displays the flowchart of the study completion and depicts the results of 

randomization. After calculation of the appropriate sample sizes were completed, as 

previously described, 40 surgical trainees who met the inclusion criteria were enrolled. 

After each completed the initial assessment they were randomized in a 1:1:1:1 ratio to 

one of the four groups. Very few candidates who volunteered to participate in the study 

were deemed ineligible based on the inclusion criteria. Only two were excluded from 

consideration for the study as one had significant experience with the robot (>10hrs) and 
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the other felt they could not make the commitment to complete the training given their 

clinical responsibilities. 

Each study participant was allowed as much time as they needed to reach the level of 

proficiency for each task of their training stream, as defined by the average scores of our 

expert surgeons on the same task.  

The vast majority of participants completed the initial assessment, training stream 

requirements and final assessments without any complications. One individual 

randomized to the dry lab group completed the training program and half of the final 

assessment. This person was able to complete the final mitral valve annuloplasty 

assessment, but because we had run out of porcine chest models that day in the lab they 

were not able to complete the final ITA dissection assessment. Unfortunately, this 

individual was a clinical fellow and their work term at our institution ended shortly after 

this and we were unable to reschedule another time in the lab to have them complete the 

final ITA assessment. The only other individual in the study that did not complete the 

entire training program and assessments was a junior resident randomized to the virtual 

reality group. They completed 1-2 training sessions on the robot virtual reality simulator, 

but unfortunately left the province for several months on a clinical elective and the study 

had been completed by the time they returned. Despite these problems, the overall 

completion rate of the entire study was 96.25%, which is excellent for an RCT. There 

was no crossover among the groups within the study, as per the initial prospective 

parallel design. Very few participants had any exposure to the da Vinci robot in a clinical 

setting over the duration of their training during this study. Only 3 clinical fellows from 

the department of cardiac surgery or obstetrics and gynecology actually got any time 

driving the robot in the operating room and this amounted to less than 2 hours for each 

individual. 
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4.2 Demographics 

Table 4.2 outlines the group comparisons for the listed demographic variables collected 

as part of the study protocol. At baseline, it can be seen here that the participants in all 

four training streams are similar for all variables. 

Table 4.2: Demographic Characteristics of Study Participants 

Characteristic 

Wet Lab 

(n=10) 

Dry Lab 

(n=10) 

Virtual Reality 

(n=10) 

Control 

(n=10) 

p 

value 

Mean Age, Years ± SD 31.3 ± 4.0 

 

32.3 ± 5.8 

 

32.7 ± 6.1 

 

29.9 ± 2.4 

 

0.579 

Gender, n (%)      

    Male 8 (80.0) 6 (60.0) 8 (80.0) 6 (60.0) 
0.619 

    Female 2 (20.0) 4 (40.0) 2 (20.0) 4 (40.0) 

Year of Training, Year ± SD 5 ± 2.5 5 ± 2.9 5 ± 3.0 4 ± 2.4 0.801 

Previous Robotic Experience, Hours ± SD 1.7 ± 3.9 0.3 ± 0.7 2.6 ± 3.2 0.8 ± 2.5 0.305 

Figure 4.1: Treatment Allocation Flow Chart 
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Table shows the baseline demographics of all study participants. Within this group 13 

individuals were from the department of Cardiac Surgery, 10 from General Surgery, 9 

from Obstetrics and Gynaecology, 5 from Urology, 2 from Thoracic Surgery and 1 from 

Orthopedic Surgery. 

As can be seen from Table 4.2, there is no statistically significant difference between any 

of the training streams in regards to age, gender, year of training or previous robotic 

experience. This is displayed with all p values being >0.05, based on the Kruskal-Wallis 

ANOVA analysis. 

Table 4.3 outlines the comparison among all training streams with regards to the primary 

outcomes measured at the initial assessment.  

 

Table 4.3: Initial Assessment Scores 

Again, from Table 4.3, there is no statistically significant difference between any of the 

training streams in regards to their performance for the ITA dissection or mitral valve 

annuloplasty in either the time-based scoring or GEARS assessment. This is displayed 

with all p values being >0.05, based on the Kruskal-Wallis ANOVA analysis. 

 

 

 

 

 

Wet Lab 

(n=10) 

Dry Lab 

(n=10) 

Virtual Reality 

(n=10) 

Control 

(n=10) 

p 

value 

10cm ITA Dissection, Score ± SD 488.8 ± 228.6 

 

388.9 ± 295.1 

 

457.6 ± 259.9 

 

451.0 ± 264.1 

 

0.859 

ITA GEARS, Score ± SD 10.3 ± 2.4 

 

9.4 ± 3.4 

 

12.5 ± 5.1 

 

9.2 ± 3.0 

 

0.942 

 Annuloplasty, Score ± SD 381.1 ± 107.8 

 

304.9 ± 197.0 

 

409.5 ± 106.1 

 

402.3 ± 147.2 

 

0.361 

Annuloplasty GEARS, Score ± SD 8.2 ± 1.8 

 

7.8 ± 1.8 

 

7.8 ± 1.9 

 

7.5 ± 2.4 

 

0.178 
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4.3  Primary Outcome Measures 

 

4.3.1   10cm Dissection of the Internal Thoracic 
Artery 

Figure 4.4 shows the time-based scores for the 10cm ITA dissection for each training 

stream at both the initial assessment as well as the final assessment. The expert surgeons 

scored significantly higher than the trainees in the original assessments (1035.8 ± 54.7 vs. 

488.8 ± 228.6, 388.9 ± 295.1, 457.6 ± 259.9, and 451.0 ± 264.1). Kruskal-Wallis 

ANOVA analysis of the initial assessment shows that there was no significant difference 

between the 4 training streams (p = 0.859). However the significant improvement in 

trainee performance is demonstrated by their scores, compared to the experts for the three 

training streams at the final assessment (1076.1±25.8, 859.0±143.2, and 957.3 ± 98.9).  

Despite a moderate improvement, the trainees in the control group achieved scores that 

were significantly lower than that of the experts (1035.8 ± 54.7 vs. 749.1 ± 171.9, p = 

0.008). The wet lab training group actually achieved scores that were significantly higher 

than the expert group (1035.8 ± 54.7 vs. 1076.1±25.8, p = 0.003). While the dry lab and 

virtual reality group both improved their scores from the initial assessment, there was no 

significant difference in their scores at the final assessment when compared to the experts 

by Mann Whitney U analysis (p = 0.191 and 0.624), indicating that they have reached the 

same level of proficiency with this task. 
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Figure 4.4: Time-Based Scores for 10cm ITA Dissection 

 

 

 

4.3.2  Mitral Valve Annuloplasty 

Figure 4.5 shows the time-based scores for the mitral valve annuloplasty for each training 

stream at both the initial assessment as well as the final assessment. The expert surgeons 

 Wet Lab (n=10) 

Dry Lab 

(n=10) 

Virtual Reality 

(n=10) Control (n=10) 

Initial 10cm ITA Dissection, 

Score ± SD, p value 

488.8 ± 228.6 

 

388.9 ± 295.1 

 

457.6 ± 259.9 

 

451.0 ± 264.1 

 

Final 10cm ITA Dissection, 

Score ± SD, p value 

1076.1±25.8 

0.003 

 

859.0±143.2 

0.191 

 

957.3 ± 98.9 

0.624 

 

749.1 ± 171.9 

0.008 

 



 57 

 

scored significantly higher than the trainees in the original assessments (573.0 ± 24.0 vs. 

381.1 ± 107.8, 304.9 ± 197.0, 409.5 ± 106.1, and 402.3 ± 147.2). Kruskal-Wallis 

ANOVA analysis of the initial assessment shows that there was no significant difference 

between the 4 training streams (p = 0.361). However a significant improvement in trainee 

performance is demonstrated by their scores, compared to the experts for the three 

training streams at the final assessment (602.2 ± 11.4, 523.6 ± 48.9, and 580.4 ± 14.4).  

The trainees in the control group again had a moderate improvement in their scores for 

the final assessment but were still significantly lower than that of the experts (573.0 ± 

24.0 vs. 463.8 ± 86.4, p = 0.001). The wet lab training group again achieved scores that 

were significantly higher than the expert group (573.0 ± 24.0 vs. 602.2 ± 11.4, p = 0.031). 

While virtual reality group improved their scores from the initial assessment and no 

significant difference was demonstrated in their scores at the final assessment when 

compared to the experts by Mann U Whitney analysis (p = 0.967), indicating that they 

have reached the same level of proficiency with this task. The dry lab showed a modest 

improvement, but a statistical difference between their final scores and that of the experts 

was found to be significant (p = 0.013) indicating that like the control group, they did not 

reach the level of proficiency set by our experts. 
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Figure 4.5: Time-Based Scores for Mitral Valve Annuloplasty 

 

 

 

4.3.3 GEARS Assessment 

Figure 4.6 shows the combined average GEARS scores for the 10cm ITA dissection and 

mitral valve annuloplasty tasks, for each training stream at both the initial assessment as 

 Wet Lab (n=10) 

Dry Lab 

(n=10) 

Virtual Reality 

(n=10) Control (n=10) 

Initial  Mitral Annuloplasty, 

Score ± SD, p value 

381.1 ± 107.8 

 

304.9 ± 197.0 

 

409.5 ± 106.1 

 

402.3 ± 147.2 

 

Final Mitral Annuloplasty, 

Score ± SD, p value 

602.2±11.4 

0.031 

523.6 ± 48.9 

0.013 

580.4 ± 14.4 

0.967 

463.8 ± 86.4 

0.001 
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well as the final assessment. The expert surgeons scored significantly higher than the 

trainees in the original assessments (24.9 ± 1.7 vs. 9.3 ± 1.7, 8.6 ± 3.3, 10.2 ± 3.0, and 8.4 

± 2.0). Kruskal-Wallis ANOVA analysis of the initial assessment shows that there was no 

significant difference between the four training streams (p = 0.417). Significant 

improvement is seen in the wet lab, dry lab and virtual reality trainee performances as no 

significant difference was detected in their scores compared to that of the experts during 

the final assessment by Mann U Whitney analysis (24.9 ± 2.6, p = 0.704, 22.5 ± 3.7, p = 

0.160, and 22.8 ± 2.7, p = 0.110).  The trainees in the control group did not show a 

significant difference in their performance despite a modest increase in scores, and were 

significantly lower than the expert scores (24.9 ± 1.7 vs. 11.0 ± 4.5, p = <0.001). 

 

Figure 4.6: Average GEARS Scores 

 

 



 60 

 

 

 

4.4  Secondary Outcome Measures 

The secondary outcome measures that were recorded in this work were not entered into 

our original calculations for sample size to power the study appropriately. None the less, 

this data and its analysis allow for hypothesis generation and help to answer questions 

regarding conclusions based on our primary outcomes. As trainees progressed through 

each of the three training streams we kept track of the total amount of time that was spent 

on each exercise in order to reach the levels of proficiency set by our expert surgeons. 

We also recorded the dates of the initial and final assessments to track the total amount of 

time that trainees were involved in the study. After completion of the study we compared 

the relative costs of implementing each of the three training programs to reproduce these 

exercises and train a surgical trainee to the same level of proficiency.    

 

 

4.4.1 Training Times 

Figure 4.7 shows the average total training time spent in each of the three training 

streams (wet lab, dry lab, and virtual reality lab) to meet the levels of proficiency set by 

our expert surgeons. The average time is similar for the completion of the two tasks of 

the wet lab and three tasks of the dry lab, but we found the virtual reality lab to be 

 Wet Lab (n=10) 

Dry Lab 

(n=10) 

Virtual Reality 

(n=10) Control (n=10) 

Initial GEARS, Score ± SD, 

p value 

9.2 ± 1.7  

<0.001 

 

8.6 ± 3.3 

<0.001 

 

10.2 ± 3.0 

<0.001 

8.4 ± 2.0 

<0.001 

Final GEARS, Score ± SD, 

p value 

24.9± 2.6 

 0.704 

22.4 ± 3.7  

0.160 

22.8 ± 3.7 

0.103 

11.0 ± 4.5  

<0.001 
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considerably longer (116.5 ± 32.1min vs. 98.0 ± 52.2min vs. 560.5 ± 167.4min, 

respectively). Kruskal-Wallis ANOVA analysis of these times shows that this difference 

is statistically significant (p <0.001).  

 

Figure 4.7: Average Training Time 

 

 

 

 

Wet Lab 

(n=10) 

Dry Lab 

(n=10) 

Virtual Reality 

(n=10) 

Control 

(n=10) p value 

Total Training Time, 

mins ± SD 

116.5 ± 32.1 

 

 98.0 ± 52.2 

34.0 

560.5 ± 167.4 

 

 - 

34.6 ± 

<0.001 
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4.4.2 Duration of Training 

Figure 4.8 shows the average total duration of time between the initial assessment and the 

final assessment for each of the four groups. The average time was longest in the virtual 

reality group and shortest for the wet lab group (46.7 ± 21.3days and 25.9 ± 13.5days, 

respectively). Both the dry lab and control group had average times that were similar and 

between these two (34.0 ± 32.9 and 34.6 ± 24.1 days). Despite these differences Kruskal-

Wallis ANOVA analysis of these times shows that there is no statistically significant 

difference between these groups (p = 0.116).  

 

Figure 4.8: Duration of Training 

 

 

Wet Lab 

(n=10) 

Dry Lab 

(n=10) 

Virtual Reality 

(n=10) 

Control 

(n=10) p value 

Duration of Training, 

days ± SD 
25.9 ± 13.5 34.0 ± 32.9 46.7 ± 21.3 34.6 ± 24.1 0.116 
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4.4.3 Cost Analysis 

Assuming the institution already has a da Vinci system to operate with, the best costs 

estimates of each of the three simulation training modalities from the current study, for 

the average study participant, amortized over ten trainees, are shown in Figure 4.9. 

 

Figure 4.9: Simulation Costs 

 

Graph shows comparison of total costs between the training streams averaged over the 

total number of trainees who have been trained using each method. 
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*- da Vinci Instruments must be purchased at this price for the first individual trained, but can be used up to 

10 times. The FLS Penrose drains are purchased in a package of 100, but these may be used for several 

trainees. Therefore the total price for these items and the cost for one trainee are both shown. 
¶
 - These items are non-consumables and must only be purchased to train the first trainee and then can be 

reused indefinitely afterwards. Their cost is included in the Totals, but is actually amortized over every 

person who trains. 

 

 

From this is can be seen that the high costs of the da Vinci instruments that are required 

for the wet lab and dry lab training make up the majority of the costs. These instruments, 

which run between $3000 and $3500 each, are disposable and will not be recognized by 

the da Vinci system after their 10
th

 use. Intuitive Surgical Inc.  has proclaimed that the 

intentional designing of the instruments this way, was to keep costs down by using less 

expensive materials that would only need to be used ten times, and to avoid high 

maintenance costs of indefinitely reusable instruments whose durability may be tested 

over time. It may be possible to allow for multiple individuals to be trained on the same 

day without shutting down the system, in order to reduce costs, however this requires 

increased coordination between trainees and the training facility staff, and makes this 

form of training less desirable. From the data it can be seen that the virtual reality 

simulator becomes cheaper than the wet lab simulation after the 70
th

 person is trained, 

and cheaper than the dry lab after the 115
th

. 

 
Materials 

Number 

Required 
Cost Total 

Wet Lab 

-da Vinci Robotic Instruments (DeBakey 

Forceps, Needle Driver, Monopolar 

Spatula cautery) 

-Porcine Chest plate 

-Porcine Heart 

-Lab Assistant 

-AV/Robotic Tech 

-Lab Space 

-3-0 Ethibond Sutures 

-1 of each 

  (10 uses) 

 

-3 

-1 

-2hrs 

-2hrs 

-2hrs 

-1 box 

-$9629* 

  ($962.90) 

 

-$60 

-$10 

-$50 

-$120 

-$40 

-$210.19
 

$1,453.09 

Dry Lab 

-da Vinci Robotic Instruments (DeBakey 

Forceps, Needle Driver) 

-3-0 Silk SH Sutures 

-FLS Peg Transfer 

-FLS Suture Block 

-FLS Penrose Drains 

 

-Lab Assistant 

-AV/Robotic Tech 

-Lab Space 

 

-1 of each 

  (10 uses) 

-1 box 

-1 

-1 

-100 

  (10) 

-2hrs 

-2hrs 

-2hrs 

 

-$6445* 

  ($644.50) 

-$64.76 

-$105
¶
 

-$39
¶
 

-$79.20* 

 ($7.90) 

-$50 

-$120 

-$40 

 

$941.56 

Virtual Reality 
-da Vinci Surgical Simulator (Intuitive 

Surgical, Inc.) 

-1 -$100000
¶ 
 

$11,000.00 
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5 General Conclusions and Discussion 

Analysis of the data that was recorded for participant characteristics, shows that there was 

no significant difference among the groups in regards to age, gender, year of training or 

time of previous expose to the da Vinci system. This taken with the information that no 

statistical difference could be detected in any of the three primary outcomes between 

participants in the four different treatment arms during the initial assessment, indicates 

that our randomization was appropriate and no group was at an advantage or 

disadvantage compared to the others at the commencement of their robotic training.  

With regards to our time-based primary outcomes for both the 10cm ITA dissection and 

mitral valve annuloplasty it can be seen that individuals in the wet lab group performed 

better on their final assessments than any of the other groups and actually were found to 

be significantly better than our experts. This is a reasonable result as it would be expected 

that the exercise that is most similar to the actual operative experience would yield the 

most efficient method of training. Not only were the wet labs the most similar to the 

actually operative experience, they were the model used for our initial and final 

assessments. Exposure to these models allowed trainees in the wet lab group to become 

familiar with the relevant anatomy and robotic instrumentation, delineate the steps 

involved in each procedure, and repeat them as necessary to develop a safe and efficient 

technique for their completion. This represents perfectly the three phases of simulation 

training (familiarization, delineation and repetition), and in this setting it is the ideal 

method for simulation based training in robotic cardiac surgery.  

The virtual reality group improved their scores from the initial assessment and met the 

same levels of proficiency set by our experts for time-based scores as no statistical 

difference could be detected between the two groups for both the ITA dissection and the 

mitral valve annuloplasty. Although they did not reach the same scores of the wet lab, 

this method of training certainly allows for the acquisition of robotic skill through the 

familiarization of the robotic instrumentation and its manipulation. The merits of virtual 

reality are demonstrated by the fact that the level of proficiency set by our experts was 

met for all primary outcomes, despite the fact that these individuals were never exposed 
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to the porcine tissues or the technique involved in either of these robotic tasks for the 

entire duration of their training. Their ability to reach these scores on the final assessment 

came from an understanding of the robot’s functions as a competent technician of the 

robot. The major advantage of this type of training comes from the powerful scoring tool 

built into the simulation software. This tool provides ongoing feedback for the trainees to 

improve robotic proficiency by monitoring a variety of different metrics (ie. total distance 

travelled, work space range, excessive force, etc.) in addition to the time of completion. 

This gives the trainee a better idea of what they have done wrong during an exercise other 

than performing it too slow, which is the only insight gained from the time-based scoring 

systems of the dry lab group. This allows trainees to not only become more efficient with 

repeated practice but allows them to do so while avoiding bad habits of robotic 

performance. This scoring tool and the multiple metrics required to pass each task 

explains the significantly longer amount of time needed to reach proficiency for our 

subjects in the virtual reality group. For each exercise trainees not only had to be efficient 

to meet time goals, as in the wet lab and dry lab groups, but they needed to meet these 

goals in addition to a variety of others which required significantly more time to be spent 

practicing these individual tasks and learning how to complete them successfully. 

 The dry lab group improved their time based scores on the final assessment but trainees 

were only able to reach the level of proficiency set by our experts for the dissection of the 

internal thoracic artery and not for the annuloplasty stitches. It can be seen from the 

reported data that the average scores for each exercise was the lowest in the dry lab 

compared with the other two training groups for all outcomes. All this information taken 

together indicates that even though the levels of proficiency were met in some cases, the 

average trainee had deficiencies in the training that they received compared to the wet lab 

and the virtual reality groups. The dry lab group did however make rapid improvements 

in their scores over a very short training period and had the shortest average training time 

of all the three training streams at a mere 98.0mins to complete each of the required 

exercises to the level of proficiency set by our experts. 

Lastly, the control group showed minor improvements in between the initial and final 

assessments, but without any extra exposure to the robot they were not able to meet the 
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level of proficiency set by our experts for any of the three primary objectives. The largest 

improvement we did see in their scores came in the final assessment of their ITA 

dissection where they improved on average from 451.0 to 749.1 for their time-based 

score. This improvement likely represents an improved familiarization with the ITA 

anatomy and dissection technique after completing the same task prior to randomization 

at the initial assessment weeks before. It is very likely that the same is responsible for the 

improvement in scores with the mitral valve annuloplasty task as well, however this 

improvement may not be as dramatic, as the ITA anatomy and its dissection technique 

seemed to be more of an abstract concept that trainees from surgical specialties outside of 

cardiac surgery had more difficulty grasping at first. The inclusion of the untrained 

control group allowed us to control for these occurrences and to make sure that the 

improvement we saw on the final assessment for the three training streams was not due to 

the exposure to the surgical techniques and robotic instrumentation that the subject 

received at the time of their initial assessment. Furthermore, because we had enrolled 

trainees who were concurrently progressing through surgical residency programs at the 

same time that they were participating in this study, we were unable to prevent them from 

gaining exposure to robotic cases in their clinical duties during the completion of their 

robotic training. In addition to this, surgical trainees may continue to acquire and improve 

upon their surgical skills as they gain more clinical experiences in the operating room 

while this study was being completed. The addition of the untrained control group in this 

study allowed us to control for any of these potential confounders. Because there was no 

significant difference in the total duration of training between the four treatment arms 

from the initial to the final assessment, and the control group failed to reach all levels of 

proficiency despite ongoing clinical experiences and potential exposure to robotic cases 

outside of the study, it is reasonable to assume that the improvements seen in the three 

training groups that allowed them to reach the levels of proficiency above the control 

group was due to the experience and skill they gained during the training exercises of this 

study. 

The findings of this study after its successful completion indicate that our original 

hypothesis was incorrect. Trainees seemed to perform significantly better with the wet 

lab training as compared to the VR lab. Despite the more stringent criteria for reaching 
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levels of proficiency with the robot, this could not replace the benefits of gaining 

experience handling the actual tissues and delineating the exact steps of the procedure as 

in the wet lab. In addition to this, individuals in the wet lab were exposed to some degree 

of anatomical variability in their training which was not possible with the other 

simulation methods.  

Although two of the three primary outcomes for the study were time-based scores, the 

more important marker of overall surgical proficiency is likely the GEARS score. This 

scoring tool is not specific to any one robotic surgical procedure in particular, but it does 

account for the overall efficiency of robotic surgery which is a reflection of the total time 

it takes to complete that task. In addition to this the GEARS scoring tool also focuses on 

depth perception, bimanual dexterity, force sensitivity, autonomy and robotic control. 

These aspects of robotic surgery have been shown in the literature to be important in 

evaluating overall robotic proficiency
47

. As our results show, all three of the training 

groups showed a drastic improvement in their average GEARS score between the initial 

and final assessments. This highlights how these aspects apply to all robotic procedures 

and can be learned in any of the three training streams that are compared here. Despite 

the significantly better time-based scores the wet lab had compared to the experts at the 

final assessment, they were not significantly better in the GEARS score but had reach the 

level of proficiency along with the wet lab and virtual reality group as no statistical 

difference was detected between any of the groups’ GEARS score and that of the experts. 

The very modest increase in the GEARS score for the control group on the final 

assessment is far less than the increase seen in their time-based scores. This likely 

represents an improved familiarity with the anatomy and techniques gained from the 

initial assessment improving time-based scores as previously discussed, without an 

improvement in technical expertise to affect the GEARS score to the same degree. 

Because being more familiar with the procedural techniques involved in the assessments 

will be reflected in the efficiency and autonomy sections of the GEARS scoring tool, this 

helps explain why the control’s final GEARS scores improved slightly. 

The current study demonstrates the high cost of this type of training, which must be taken 

into consideration when developing a reliable training program. The largest cost that 
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applies to the wet lab and dry lab training is the cost of the robotic instruments, which 

range between $3000 and $3500 each. The fact that these instruments are only capable of 

10 uses before they must be replaced makes these two training methods even more 

expensive. Setting aside these costs, the actual operating costs for the consumable items 

that must be replaced, or the operating costs for each trainee was $490.19 for each 

individual in the wet lab group, and $282.66 for the dry lab. The virtual reality simulator 

has a much higher upfront cost of $110,000, but this is a one-time investment and can be 

shared among different specialties at the center who are using the robot for clinical 

purposes. Given the cost of the instruments for both the wet and dry lab training, the 

virtual reality simulator becomes cheaper than the wet lab after the 70
th

 person completes 

the training and cheaper than the dry lab once the 115
th

 person is trained.  

 

 

5.1  Clinical Relevance 

Exposure to robotic surgery in the operating room is becoming ever more difficult for 

surgical trainees due to increasing health care costs and a demand for improved patient 

outcomes. This leads to less of the procedure being entrusted to trainees and more being 

completed by the staff surgeons. Robotic cardiac surgery is only performed at a few 

specialized centers and comparatively small numbers of these cases are performed 

compared to traditional “open” procedures with a sternotomy. Within 2015 and 2016 

Intuitive Surgical Inc. loses many key patents in their portfolio, including the original 

patents obtained from IBM and Computer Motion Inc which helped form the company, 

which will weaken their monopoly on the surgical robot market
11

. This increased market 

competition has the potential to lower the barriers to entry for new robotic programs, as 

well as decrease the high operating costs and make robotic surgical cases more common 

in cardiac surgery as well as other specialties. These current problems and the timing of 

changes that are on the horizon, highlight the need for an efficient, cost-effective and 

reproducible training program in robotic surgery as urgently as possible. Simulation 



 70 

 

based training helps fill this need and allows for the acquisition of robotic surgical skills 

outside of the operating room.  

Robotic simulation training in isolation does not replace the traditional clinical training 

methods that are currently in use but can be employed to supplement these methods for 

more in-depth training, acquiring greater robotic surgical skills at a faster rate. Liu et al. 

have reported that surgical education and the acquisition of robotic skill is effected by a 

combination of clinical, educational and technical expertise, with each adding to the 

overall training experience in surgical robotics as seen in Figure 5.1. 

Figure 3: Expertise Effecting Robotic Training 

 

Diagram showing the equal parts of clinical, education and technical expertise that are 

required to be a competent robotic surgeon. 

 

With this in mind, it can be understood how simulation based training in itself without 

any clinical and educational context can only supplement the technical expertise portion 

of this training. And therefore, simulation training, particularly training of simple or non-

procedural tasks, allows trainees to become proficient technicians of the robotic system 
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but not complete robotic surgeons as they still require the necessary clinical and 

educational experience. However, technical skill is not a trivial thing and it is difficult to 

obtain by the current training methods, as previously discussed.  

A simulation based training curriculum, like the ones compared in the current study, 

would allow trainees to gain experience with the robotic system and be allowed to 

operate the technical aspects of the robot before ever entering into the operating room, 

allowing them to use the limited exposure that they have with these operations to help 

focus on the procedural steps involved and make better use of their limited time. 

From the data reported in the current study, it can be seen that wet lab training in porcine 

models gives the highest fidelity simulation experience when compared to the actual 

operative experience. This perfectly explains how this simulation modality allows for the 

greatest acquisition of robotic skill and does so in a very rapid time frame. However, the 

feasibility of implementing a wet lab as a reproducible training model is not as desirable. 

The first concern with this modality is the cost and difficulty in acquiring these tissues. 

Cadaveric models, despite giving the most realistic experience, can be very expensive 

and are in a very limited supply. The porcine model that we chose to use in the current 

study was far easier to obtain and cheaper than a cadaver model. However, the internal 

thoracic artery dissection that required a porcine chest had to be purchased from an 

abattoir that was willing to be a supplier. The porcine chest wall model, infringes on the 

pork side-ribs that are the most lucrative part of the animal for these businesses. Because 

of the fact that many of these companies have to supply regular customers with ongoing 

orders, they are unwilling to provide the tissues for educational or research purchases as 

it takes away from their necessary quotas and they are unwilling to jeopardize certain 

customer contracts, even for an inflated price. If you are able to find a supplier, who is 

willing to supply these tissues the next concern with these models is the difficult 

preparation. In many cases, the porcine chests that were obtained for this study did not 

include the internal thoracic artery pedicle as the abattoir had cut too thin a section from 

the sternum in order to leave as much side rib as possible and had cut medial to the 

pedicle or damaged it with the saw. For the chest models that did contain the desired ITA 

pedicle a clear difference can be seen between human and pig chest anatomy. The 
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porcine chest has thick, overdeveloped intercostals and inner thoracic muscles which lay 

overtop of the ITA pedicle. Unlike humans, who have readily visible ITA pedicles 

usually running under only a thin layer of inner thoracic fascia, the porcine chest usually 

has several centimeters of thick muscles which must be removed to expose the ITA 

pedicle underneath to give a similar view of what is seen in humans intraoperatively. 

Once the porcine tissues have been obtained and properly prepared for a robotic training 

session, the next concern is the need for a specialized center that can be used to perform 

the training. At the University of Western Ontario, we have the Canadian Surgical 

Technologies & Advanced Robotics (CSTAR) centre, which is focused on researching, 

developing and testing in robotics. This center offer the simulation training of minimally 

invasive surgical technologies and techniques and is one of only eight international 

centers certified for training of the da Vinci robotic system. This center has the personnel 

and expertise to handle the acquisition, storage, preparation and disposal of these tissues 

but it is obvious that most centers do not have such resources. It must also be pointed out 

that due to health and safety concerns regarding sterility and contamination any wet lab 

simulation exercises must be completed on a robotic unit that is dedicated for research or 

training purposes and not on the units used on actual patients in the operating room. 

Because of the high costs of the actual robot, this makes it even more unlikely to be 

feasible for a reliable and reproducible training program as most centers do not have the 

luxury of having multiple robotic systems for a variety of different purposes. Lastly, the 

anatomical tissue variation in the animal and cadaver models, require small differences in 

the surgical approach and techniques for the skills learned. This necessitates the 

participation of a trained staff surgeon who is able to use their experience, familiarity and 

expertise to provide ongoing guidance and feedback for the trainee in order to develop 

the correct skill and proper habits. For all of these logistical reasons combined with the 

higher relative costs of this type of simulation, it can be seen how other methods of 

simulation may be preferred at the cost of not being as effective of a training modality. 

These considerations make virtual reality simulation more attractive as a reliable training 

method.  This study has shown that virtual reality simulation gives results that are similar 

to the wet lab group and allows for proficiency to be reached in both the time-based 

scores, as well as the GEARS assessments. In contrast to the wet lab no tissues need to be 
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acquired, prepared or disposed of, robotic instruments are not necessary and no set up of 

the robot or any other materials is required. VR simulation can occur at almost any time 

the trainee is available, as most of the time the robot is not in use and no other personnel 

(staff surgeons or lab technicians) are required. After completion of this study the 

limitations identified with robotic virtual reality simulation training, seem insignificant 

compared to the other training methods given the fact that we have shown its potential in 

allowing trainees to reach a satisfactory level of proficiency compared to our expert. 

However, these shortcomings include first the high upfront cost, which is not as 

unreasonable given the comparative costs of the other training modalities as shown in this 

analysis. Secondly, it was observed that the mechanical movements of the actually robot 

are not always represented properly in the virtual reality simulations. The virtual reality 

environment has a fluid motion to the movements of the robotic instruments as well as 

tissues and objects that are not necessarily representative of the gears and mechanical 

parts that move in the actual robot. A good example of this is the fact that the MScore 

system tracks instrument collisions for every task, which many times is not noticed by the 

trainee completing the assignment, particularly on very fine transferring tasks such as 

those that include needle-handling. Conversely, when the robot is used in the wet or dry 

labs, a collision of the instruments usually results in increased vibrations that travel 

through the entire system destabilizing the instruments as well as the camera view for 

short periods of time. Similar effects are seen with fast, whipping movements of the 

camera or instruments with the actual robot, which are not seen in the virtual reality 

simulation exercises. Although this does change the actual experience, the clinical 

significance of this may not be that important, as was demonstrated in this study by the 

improvement in performance of the trainees in this group. Overall, virtual reality 

simulation gave the trainees an excellent simulation experience, due to the ease of set-up, 

ability for repetitive practice and the powerful scoring tool to provide ongoing feedback 

without compromising the effectiveness of the training.  
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5.2 Strength of the Study 

The work presented here is the first prospective randomized controlled trial to ever 

compare the currently available simulation modalities used in robotic surgical training. 

Although individual validation studies exist within the literature for each simulation 

method tested here, the vast majority of them deal with only one method of simulation 

and sample sizes in the single digits. In addition to this very few of these studies are 

actually comparison trials where more than one method of simulation training is being 

compared to another. The current study, with forty surgical trainees enrolled, makes it 

one of the largest studies of its kind to ever be completed. This speaks to the difficulty in 

conducting this type of research both in the resources necessary to complete it, as well as 

the recruitment of multiple surgical trainees willing to donate their free time to train on 

the robot. At the University of Western Ontario we are one of very few centers 

internationally that would be capable of this type of work. Having not only a world class 

robotic cardiac surgery program with experts to provide guidance and feedback, but also 

a center such as CSTAR in which there is access to virtual reality simulators and both 

animal and inanimate models can be used to train on a da Vinci system designated 

specifically for research and training purposes, is necessary for completion of a project of 

this scale. The small sample sizes and the difficulty we had in recruiting some trainees, or 

at least scheduling them for training sessions after they were enrolled is not uncommon in 

this type of work. As can be seen from our demographic characteristics from each group 

the average participant in the study was a senior resident in a surgical program (PGY 4 or 

5). The average work week for these individuals is usually around 100 hours, with 

frequent call shifts making scheduling training session in the lab exceedingly difficult. 

Because of these factors, this study was very ambitious from the very beginning and after 

its successful completion it is unlikely that this work will be reproducible at any other 

center without the investment of significant resources. 

The conclusion of this study was quite successful in that we had a 96.25% completion 

rate for all our trainees at the final assessment. This is far greater than the average 

reporting guidelines of most RCTs at 80%. Of the 40 participants, who had to complete 

two tasks of the final assessment we had 38 complete the entire training session and the 



 75 

 

two final tasks. One other individual completed the training and one of the two final tasks 

as his Canadian work permits expired and his fellowship was cut short before his last 

session in the lab and one other individual was unable to complete his training after he 

was randomized due to clinical responsibilities. 

Our sample size of 10 participants in each treatment arm was powered appropriately to 

detect differences in the scores between novice trainees at baseline and the scores of our 

expert surgeons. Also the inclusion and exclusion criteria for the study, made our sample 

populations consist of surgical residents from a variety of specialties and increases the 

external validity and applicability of this study to the general population in surgical 

training who desire to become more proficient with robotic surgery.  

The methodology of the study was created entirely from validated and well founded 

protocols of highly accepted simulation methods. The time-based scoring system used for 

the ITA dissection as well as the mitral annuloplasty was designed after the FLS scoring 

system and the exact same protocol was followed in order to set the level of proficiency 

by our experts for these two tasks as what was done for the FLS program. The peg 

transfer and intracorporeal knot tying exercises were taken directly from the FLS protocol 

with the exact same scoring system and predefined errors that were applicable to the 

robot.  Again the levels of proficiency were generated in the exact same manner as the 

FLS program. The virtual reality curriculum was generated in the same fashion as the 

‘Morristown Protocol’ published by Culligan et al. We defined the tasks and proficiency 

scores in advance based on our expert performances in a similar fashion and found that 

these levels were similar to those found on the same exercises as reported in that 

publication. The study uses an untrained control group to compare the three other training 

streams. This proved to be very important as we not only showed that familiarization 

with the robot occurs fairly rapidly and each training method is beneficial to some 

degree. The control group also showed a mild improvement in all cases, indicating that 

even the very short time spent on the robot for the initial assessment has some benefits in 

providing familiarization with the robotic instrumentation, its manipulation and the 

delineation of the steps involved in the tested robotic tasks.   
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Lastly, the use of the well validated, objective scoring tool, GEARS score, in a blinded 

fashion, helps increase the reproducibility and external validity of this work. The GEARS 

score proved to be very easy to use when evaluating deidentified videos of each robotic 

assessment. The breakdown of overall surgical proficiency into these six different aspects 

allowed the investigators to make reliable evaluations of major components of robotic 

skill, independent of the actual procedure being attempted. The addition of this scoring 

tool to the time-based scoring system helps give a more robust picture of the overall 

surgical proficiency that was acquired through each training stream. 

 

 

5.3 Limitations of the Study 

Attempting to complete an RCT comparing different training modalities used in robotic 

cardiac surgery proved to be difficult to recruit our ideal sample population, which would 

have been cardiac surgery trainees. Given our sample size calculations, it was necessary 

to expand our enrollment and include individuals from all surgical training programs in 

order to appropriately power our study. This may have altered some of the data on our 

final assessments, particularly in regards to the dissection of the internal thoracic artery 

task. This proved to be a more difficult procedure for individuals who were not from the 

department of cardiac surgery and who were not familiar with the anatomy of the ITA 

pedicle or the technique for its dissection. Analysis of the data indicates that the 

individuals who were cardiac surgery residents and fellows did better among their groups 

for the three training streams, but not for the control group. This difference indicates that 

the individuals in the training streams likely gained the technical skills to operate the 

robot efficiently but may not have appreciated the nuances of the task at the time of the 

final assessment. The fact that this was not the case for the few cardiac surgery trainees in 

the control group, indicates that even though they may have the knowledge and 

experience to appreciate this task they did not acquire the technical skills to manipulate 

the robot as the individuals in the three training streams did. Ideally all participants in the 

study would have been cardiac surgery trained to help minimize the differences in 
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clinical knowledge and experiences among the groups however, having representation 

from a wide variety of surgical specialties may indicate that these results are applicable to 

all robotic surgical training and not just specific to robotic cardiac surgery.  

Another limitation with regards to this study is the differences in anatomy of the wet lab 

when compared to humans and the variability among these models. In regards to the 

anatomical differences, the porcine chest wall model is not entirely similar to that of a 

human. The ITA pedicle has significantly larger veins that run along the artery as 

compared to the human where all three vessels are of similar size. This difference is 

minimized by utilizing the pedicled dissection technique of the vessels as opposed to the 

skeletonised technique, where only the artery is dissected off the chest wall and the veins 

are left in place. As mentioned previously the preparation of the chest wall requires 

stripping off of large intercostals and inner thoracic muscles to expose the pedicle 

underneath. Unfortunately, this results in stripping off of the inner thoracic fascia which 

is generally used to score the borders of the dissection in humans and can be used to 

provide traction during the dissection. With this removed the dissection technique was 

slightly more difficult as individuals had to be even more careful not to avulse fat and 

muscle tissue surrounding the ITA pedicle. With regards to the variability between 

porcine models, this may have lead to artificially increased or decreased times based on 

the difficulty of the particular anatomy of the model used for the assessment. Although 

this is indicative of real life, it is not ideal for standardizing a technique and scoring 

system in a study like this. This highlights the relative importance that should be placed 

on the time-based scoring system, which is easily effected by this variability, and the 

GEARS scoring tool, which is not. In addition to this it shows the need for an expert to be 

present at all times in the wet lab, to provide ongoing guidance and feedback.  
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5.4 Final Remarks and Further Direction 

This study serves to highlight the benefits and limitations of different training methods 

currently used in robotic surgical training. We have shown that even limited exposure to 

the robot can have significant benefits in the ability of surgical trainees if they are guided 

properly.  

With the current state of robotic surgery and its training, simulation based exercises must 

be incorporated into training programs in order to keep up with the advancements in 

robotic technology and allow for an improved experience during each robotic operation 

that trainees are exposed to. Training programs must evaluate their own institutional 

resources and the restrictions applied on the availability of robotic equipment for trainees 

to use for training purposes, in order to determine the optimal simulation training that 

they can offer. If a center has the ability to provide all forms of simulation training, the 

results of the current study would highly favor the high fidelity wet lab simulation, under 

the guidance of an expert robotic surgeon for the fastest acquisition of robotic skill and 

the ability to reach the highest levels of proficiency. However, from the considerations 

that must be made for this type of expensive training, virtual reality simulation offers a 

reasonable alternative with a better overall training experience and still allows the trainee 

to become familiar with the manipulation of the robot’s instrumentation and reach levels 

of proficiency similar to that of expert robotic surgeons. 

At our own institution we have a large number of fellows who come from training centers 

across the world to train with our experts in robotic cardiac surgery. These fellowships 

usually run between 6 to 12 months. Based on those numbers they will get exposure to 

25-50 robotic cardiac cases. With this limited exposure we can improve their experience 

and the training that they receive by making the most of each robotic operation. Because 

our institution already has the da Vinci Surgical Simulator (Intuitive Surgical Inc. USA), 

the implementation of the virtual reality training curriculum can be easily instituted. By 

requiring all trainees of the robot to complete the robotic virtual reality training 

curriculum that we have created here on their own time prior to coming to their first 

robotic cardiac surgery operating room, we will optimize the training they can receive in 
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the short number of cases they will see, starting from the first day. If this curriculum is 

completed, trainees would start their first robotic operation of their fellowship as 

satisfactory technicians of the robot and be able to focus on learning and mastering the 

procedural steps involved in the operation instead of taking several sessions with the 

robot to learn how to control the camera and instruments. Having the simulator available 

as their training progresses is also a nice option for the continued acquisition and 

development of surgical robotic skill. 

The methods for simulation based training that are examined here apply to traditional 

non-robotic surgeries as well. The use of wet lab, dry labs and virtual reality simulation 

has been impl emented in all surgical specialties, some of which are highlighted in this 

work, such as in laparoscopic surgical training. Simulation lends itself nicely to robotic 

training as the surgeon is already removed from the operating table and the exact same 

images and operating field that they would experience in an actual operation can be 

created in a simulation exercise. In addition to simulation training, the robot has other 

features which improve the learning experience for trainees such as the telestration 

feature. With this feature, the surgeon and trainee are looking at the same image in their 

two consoles and the surgeon can highlight areas of interest and speak directly through 

the console’s microphone system to the trainee in another console. All of these aspects of 

robotic surgical training add to our ability to train new surgeons and augment the 

traditional learning curves in surgery. As robotic surgery becomes more mainstream in 

different surgical specialties, all of these aspects will need to be employed and the need 

for a reliable robotic training program becomes paramount. This work will serve to guide 

training programs invest resources in cost-effective, high yield simulation exercises to 

improved training of new robotic cardiac surgeons. 
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Appendices 

Appendix A: List of Abbreviations  

 

ANOVA Analysis of variance 

AESOP Automated Endoscopic System for Optimal Positioning 

CSTAR Canadian Surgical Technologies & Advanced Robotics 

CABG  Coronary artery bypass grafting 

dVSS  da Vinci Surgical Skills Simulator 

dV-Trainer da Vinci-Trainer 

FDA  Food and Drug Administration 

FLS  Fundamentals of Laparoscopic Surgery 

GOALS Global Operative Assessment of Laparoscopic Skills 

GEARS Global Evaluative Assessment of Robotic Skills 

HSREB Health science research ethics board 

ITA  Internal thoracic artery 

IBM  International Business Machines 

LAD  Left anterior descending artery 

MISTELS McGill Inanimate System for Training and Evaluation of Laparoscopic 

Skills 

MACCE Major adverse cardiac and cerebrovascular events 

MASH Mobile Advanced Surgical Hospital 

NASA  National Air and Space Administration 

PCI  Percutaneous coronary intervention 

PGY  Post Graduate Year 

RCT  Randomized controlled trial 

TECAB Total endoscopic coronary artery bypass 

VR  Virtual reality 
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Appendix D: Pre-test Questionnaire 

Evaluation of Robotic Cardiac Surgery Training Modalities 

Pre-Test Questionnaire 

 Age: Date: 

Residency  

Training  

Program: 

Current 

Year of 

training: 

Video #: 

 

1) Is robotic surgery used in your surgical discipline?       

 Yes    

 No 

If yes, what percentage of total cases are robotic or robot assisted? 

 

2) How many surgical robotic cases have you seen in your training so far? 

 

3) How many hours of experience do you have using the daVinci controls (robot or 

simulator) in a clinical, training or research setting prior to today? 
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4) Please rate how well you are prepared for the following: 

 

                                   Not at all prepared                                     Very prepared   

                                   

Camera movement                          1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 

 

Device movement 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 

 

Transferring  1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 

 

Cutting 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 

 

Suturing 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 

 

Knot Tying 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 

 

Mitral Annuloplasty 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 

 

ITA Dissection 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 

  
 

5) Do you expect robotic surgery to be used in your discipline in the future? 

 Yes    

 No 

If yes, what percentage of total cases will be robotic or robot assisted? 

 

 

6) Do you expect to use robotics in your future surgical career? 

 Yes    

 No 

If yes, what percentage of total cases will be robotic or robot assisted? 
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7) Other comments in regards to the training experience: 
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Appendix D: Post-test Questionnaire  

Evaluation of Robotic Cardiac Surgery Training Modalities 

Post-Test Questionnaire 

Age Video #: Date: 

Residency  

Training  

Program: 

Current 

Year of 

training: 

Randomized Robotic 

Training 

 Dry Lab 

 Simulation 

 Wet Lab 

 

8) How satisfied were you with your training experience?  

 

                                   Not at all satisfied                                     Very satisfied     

                                 

Comfort               1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 

 

Ease of Set-up 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 

 

Realism 

 

1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 

Reproducibility 1– 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 
 

9) Please rate how well you were prepared after the training period for: 

                               

                                   Not at all prepared                                     Very prepared   

                                   

Camera movement                          1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 

 

Device movement 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 

 

Transferring  1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 

 

Cutting 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 

 

Suturing 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 

 

Knot Tying 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 

 

Mitral Annuloplasty 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 

 

ITA Dissection 1– 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 
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10) How realistic do you think the exercise was compared to the actual operative 

experience? 

 

              Not at all realistic                                                    Very realistic 

1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 

11) Please rate your overall experience with the training program you were assigned 

to:  

                   Negative                                                       Positive 

                                1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 

12) Do you think this training modality is an effective method for surgeons in 

training? 

 Yes    

 No 

If no, please elaborate on any specific concerns and how this could be improved: 

 

13) Please list any specific benefits in regards to the training modality you were 

assigned to:                  

 

 

 

14) Please list any specific drawbacks in regards to the training modality you were 

assigned to today:                  

 

 

 

15) Other comments in regards to the training experience: 
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