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Abstract 

Skin-derived precursors (SKPs) are defined as multipotent spheroid-forming cells 

cultured from the dermis that express markers of neural crest origin. Recent evidence 

suggests that tissue fibrosis can occur through the differentiation of progenitor cells into 

smooth muscle-like myofibroblasts. CCN2, a marker and mediator of fibrosis, is highly 

expressed during myofibroblast differentiation and is required for skin fibrogenesis. Here, 

I clarify the cellular origin of SKPs, and the molecular contribution of CCN2 in the 

myofibroblastic differentiation of SKPs. Using lineage tracing, I show that SKPs 

originate primarily from Col1a2-expressing dermal fibroblasts. Furthermore, I show that 

differentiation of SKPs into myofibroblasts requires the FAK and SRF-mediated 

induction of CCN2: Col1a2-specific deletion of CCN2 impairs the ability of SKPs to 

differentiate into α-SMA-expressing myofibroblasts. Taken together, these results 

suggest that collagen-producing fibroblasts possess inherent plasticity, and that CCN2 is 

a downstream mediator of the ability of SKPs to differentiate into myofibroblasts. 
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1.1 Overview of Skin-derived Precursors 

Skin-derived precursors (SKPs) are multipotent spheroid-forming cells that can be 

cultured from dermal tissue (Biernaskie et al., 2009). Traditionally grown from 

dissociated dermal cells cultured in media containing both epidermal grown factor (EGF) 

and basic fibroblast growth factor (bFGF), SKPs express neural progenitor cell markers 

such as Nestin and Sox2, and are capable of self-renewal and differentiation into neural, 

glial and mesodermal lineages (Fernandes and Miller, 2009; Kang et al., 2011). This 

differentiation potential, coupled with relative ease of access in the skin has made SKPs 

an intriguing source of cells for cell replacement therapies and tissue-engineering (Chen 

at al., 2012). However, it is contentious whether SKPs represent an endogenous precursor 

cell population within the dermis or whether they are a result of culture-induced 

dedifferentiation of resident mesenchymal cells (Fernandes et al., 2008). 

1.1.1 SKPs: A Brief History 

By the year 2000, it had been reported that adult stem cells, defined by their 

capability to self-renew and differentiate into multiple cell types, could be isolated from 

several sources of mammalian tissue including the central nervous system, bone marrow, 

retina and skeletal muscle (Prokcop, 1997; Jackson et al., 1999; Gage, 2000; Tropepe et 

al., 2000). These adult progenitors were mostly found to be biased to generate 

differentiated cells of the same lineage; i.e. neural stem cells into neurons and glial cells, 

bone marrow-derived mesenchymal stem cells into mesodermal cells and hematopoetic 

stem cells into blood cells. However, transplantation studies had also shown that at least a 
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fraction of these cells had the potential to differentiate into cells outside of their lineage 

as well. For instance, neural stem cells cultured in vitro and subsequently transplanted 

into blastocysts could contribute to all of the germ layers in embryonic tissues, while 

transplanted bone marrow stem cells could contribute to brain, liver and skeletal muscle 

tissue while expressing tissue-specific markers (Clarke et al. 2000; Ferrari et al., 1998; 

Petersen et al., 1999; Mezey et al., 2000). Since using adult tissues bypasses the ethical 

issues posed by the use of embryonic stem cells, and can also allow for autologous 

transplantation, the potential of adult stem cells for cell replacement therapies was 

immediately recognized.   

Neural stem cells were particularly promising for the treatment of spinal cord 

injuries, as neural progenitors generated from embryonic stem cells had been found to 

promote recovery in the injured nervous system (Brustle et al., 1999). However, the only 

accessible source for human neural stem cells at that time was from fetal tissue 

(Bjorklund et al., 2000). Thus, it was a landmark discovery in 2001 when Miller and 

coworkers found that adult dermal tissue could be cultured to generate self-renewing 

cells, coined “skin-derived precursors” (SKPs) that could be differentiated into neurons, 

glial cells, adipocytes and smooth muscle cells (Toma et al., 2001). Indeed, it was 

subsequently shown that transplanted schwann cells generated from SKPs were capable 

of promoting functional recovery in a rat model of spinal cord injury, suggesting that 

SKPs were viable as an accessible source of neural progenitor cells (Biernaskie et al., 

2007). Due to the unique differentiation potential of SKPs, it was hypothesized that these 

cells represented a population of endogenous adult dermal precursors similar to 

embryonic neural crest cells.  
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1.1.2 SKPs exhibit properties of neural crest cells 

The embryonic neural crest is a transient, migratory population of precursor cells 

that originates at the dorsal tip of the developing neural tube (Shakova and Sommer, 

2008). As neural crest cells migrate from the neural tube, they interact with their 

microenvironment to differentiate into a variety of cell types including peripheral 

neurons, schwann cells, vascular smooth muscle cells, melanocytes, adipocytes and 

connective tissue cells (Biernaskie, 2010). Neural crest derivatives give rise to most of 

the peripheral nervous system and are present in adult cardiovascular tissue, craniofacial 

bones, cartilage and skin. Furthermore, at least some neural crest-derived cells in adult 

tissues retain their capacity for self-renewal and differentiation, and are referred to as 

neural crest-derived progenitor cells (NCPCs) (Shakova and Sommer, 2008). 

Intriguingly, SKPs were demonstrated to be capable of differentiating into neural crest-

derivative cell types and were found to express neural crest-associated genes such as 

Slug, Snail, Twist, Pax3 and Sox9 (Fernandes et al., 2004). In adult skin, these genes 

were exclusively expressed in the hair follicle dermal papilla (DP), which made the DP a 

prime candidate for the niche from which SKPs are derived (Fernandes et al., 2004).  

Paradoxically however, even though hair follicle DP cells from murine trunk skin 

expressed neural crest markers, lineage tracing studies revealed that these cells were not 

in fact derived from the neural crest. In contrast, it was found that the neural crest gave 

rise to both hair follicle DP and dermal fibroblasts in facial skin (Fernandes et al., 2004). 
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1.1.3 Origin of SKPs: The Controversy 

The skin is a complex and regenerative tissue thought to contain several 

endogenous precursor cell populations including melanocytic stem cells, blood vessel-

associated hematopoietic and endothelial precursors as well as epidermal and 

mesenchymal stem cells (Fernandes et al., 2008). Particularly, the hair follicle DP 

consists of a population of Sox2-expressing precursor cells that can control hair follicle 

growth, can migrate and contribute to wound repair, and can differentiate into adipocytes, 

osteoblasts, smooth muscle cells, and neurons in vitro (Clavel et al., 2012; Johnston et al., 

2013; Driskell et al., 2011). Building upon their previous finding that SKPs and DP cells 

express similar markers, it was proposed by Miller and coworkers in 2009 that Sox-2 

expressing DP cells represent a major endogenous niche for SKPs cultured from murine 

trunk skin (Biernaskie et al., 2009). This was concluded on the basis that bulk cultured 

SKPs and SKPs cultured from Sox2-GFP sorted dermal cells exhibited a similar genome-

wide expression profile, and that transplanted SKPs could home to a DP niche and induce 

hair follicle formation (Biernaskie et al., 2009). However, previous evidence suggested 

SKP spheroids could also be cultured from non-follicular skin, indicating that the skin 

contains other cell populations outside of the hair follicle can give rise to SKPs (Toma et 

al., 2005). Furthermore, it has subsequently been shown that monolayer non-follicular 

dermal cultures can be detached and reseeded in SKP growth medium to form SKPs (Hill 

et al., 2012). Most recently, a study using lineage tracing analysis suggested that dermal 

cells of embryonic mesenchymal origin give rise to SKPs cultured from murine trunk 

skin (Krause et al., 2014). However, in spite of all these observations, it remains unclear 
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what adult cell type cultured SKPs are derived from, and whether they are derived from 

an endogenous Sox2-expressing cell population. 

1.1.4 A Case for the Fibroblast 

Fibroblasts, the most common cell type found in connective tissue, are 

characterized by their ability to produce extracellular matrix components including type I 

collagen. In the last decade, numerous studies have been published suggesting that 

fibroblasts can be reprogrammed into induced pluripotent stem cells with a cocktail of 

transcription factors (i.e. Oct4, Sox2, c-Myc and Klf-4) (Yamanaka, 2012). Intriguingly, 

fibroblasts can be directly reprogrammed into neural stem cells by overexpression of 

Sox2 alone (Ring et al., 2012). Moreover, it has also been shown that the embryonic 

NIH/3T3 fibroblast cell line can be cultured as neurospheres with neuronal differentiation 

potential without the addition of any epigenetic modifier (Wang et al., 2011). Thus, 

fibroblasts can be readily induced to be stem cell-like. Indeed, it is a point of controversy 

whether fibroblasts and mesenchymal stem cells can be considered to be the same cell 

type (Junker et al., 2010).  

Mesenchymal stem cells, also known as mesenchymal stromal cells or 

multipotent stromal cells (MSCs) are plastic adherent cells with fibroblastic morphology 

characterized by their ability to differentiate into mesodermal tissues such as bone, 

cartilage and fat (Dominici et al., 2006). MSCs have been reported to suppress immune 

responses both in vitro and in vivo and have been used in clinical trials to treat graft 

versus host disease with success (Le Blanc et al., 2004). Originally isolated from the bone 

marrow, MSC-like cells have been cultured from various tissues including skin, muscle, 
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placenta, cord blood, adipose tissue and more (da Silva Meirelles et al., 2006). However, 

both the mesodermal differentiation potential and immune suppressing properties of 

MSCs have previously been reported for fibroblasts (Lysy et al., 2007; Korn et al., 1981). 

Furthermore, the markers currently defined for MSCs (positive for CD73, CD105 and 

negative for the hematopoietic markers CD14, CD34 and CD45) are shared by fibroblasts 

as well (Haniffa et al., 2009). As it stands, it is unclear whether there are distinct 

boundaries between the identity of fibroblasts and MSCs. Taken together, the fibroblast 

represents a cell type that may currently be underappreciated for its plasticity, and has not 

been thoroughly investigated as a potential origin of cultured SKPs. 

1.1.5 SKPs as a model for disease 

Regardless of their cellular origin, the fact that SKPs exhibit transcriptional and 

functional properties of neural crest precursors makes them an intriguing model to study 

diseases thought to be caused by NCPCs in vivo. For instance, SKPs have been used to 

study the origin of neurofibromas, which are complex tumours involving the uncontrolled 

proliferation of supporting cells around nerve fibers (Le at al., 2009). It was demonstrated 

that SKPs, only when deleted for the Nf1 gene, form neurofibromas when autologously 

transplanted into the sciatic nerve of mice, suggesting that neurofibroma tumours are 

caused by dysregulated NCPCs (Le et al., 2009).  

Neural crest-derived cells have also been implicated in tissue fibrosis. In a model of 

renal fibrosis, it was shown that resident connective tissue cells of neural crest origin 

transdifferentiated into myofibroblasts, were highly proliferative, and predominantly 

contributed to the fibrotic phenotype induced by unilateral ureteral obstruction (Asada et 
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al., 2011).  In the skin, it was shown that Sox2-expressing progenitor-like cells contribute 

to the myofibroblast population during bleomycin-induced skin fibrosis, a model of 

scleroderma (Liu et al., 2013). Since SKPs are transcriptionally and functionally similar 

to DP cells, investigating the molecular mechanisms of SKP differentiation thus 

represents a novel in vitro model to study this fibrogenic phenomenon. 

1.2 Overview of Tissue Fibrosis 

Tissue fibrosis is implicated in approximately 45% of all deaths in the western world, 

and is a common final pathway in diabetes, cardiovascular disease, interstitial lung 

diseases, chronic kidney disease, liver cirrhosis, scleroderma and more. (Wynn, 2007) 

Fibrotic diseases are characterized by excessive scarring, which results from excessive 

production, deposition, and contraction of the extracellular matrix (Leask, 2004). No 

effective treatments currently exist for any fibrotic condition. Consequently, fibrotic 

diseases currently represent one of the largest groups of diseases for which there is no 

therapy (Leask, 2004). Fibrosis can occur in nearly all organs including the skin, heart, 

lung, liver and kidney, typically as a result of damage or inflammation (Hinz, 2007).  

1.2.1 The Myofibroblast 

Fibrosis is mediated by the excessive accumulation of specialized mesenchymal cells 

called myofibroblasts at the site of injury (Leask and Abraham, 2004). Myofibroblasts are 

a differentiated, contractile, and invasive form of fibroblasts characterized by the 

formation of stress fibers expressing the contractile protein α-smooth muscle actin (α-

SMA) (Hinz et al., 2003). Expression of α-SMA increases intracellular mechanical stress 
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and is associated with a greatly enhanced adhesive capability via the “supermaturation” 

of cellular focal adhesions with the extracellular matrix (Hinz et al., 2003). 

Myofibroblasts are essential for tissue repair during wound healing, but are abnormally 

present and pathologically persistent in fibrotic diseases, resulting in excessive matrix 

deposition, scarring and the destruction of normal tissue architecture (Hinz et al., 2007). 

Elucidating the origins of myofibroblasts in fibrotic diseases and understanding the 

mechanisms behind their formation is paramount to developing effective treatments 

(Quaggin and Kapus, 2011). 

1.2.2 Origin of Myofibroblasts in Fibrosis 

During the normal wound healing response, local fibroblasts undergo transforming 

growth factor-beta (TGF-β) induced differentiation into myofibroblasts in order to 

contract the wound edges and gradually reduce its size (Leask and Abraham, 2004).  

After tissue repair is complete, these myofibroblasts undergo apoptosis. Due to the 

presence of myofibroblasts in both tissue repair and fibrotic diseases, it has traditionally 

been hypothesized that fibrosis occurs due to the failure to terminate the tissue repair 

response (Gabbiani, 2003). However, evidence suggests that myofibroblasts in 

pathological tissue fibrosis are not derived solely from resident fibroblasts, and it is now 

appreciated that these myofibroblasts may originate from multiple sources including the 

differentiation of resident mesenchymal progenitor cells, epithelial-to-mesenchymal 

transition, and the recruitment of bone marrow-derived fibrocytes (Hinz, 2007; Figure 

1.1). Recently, studies using genetic fate-mapping approaches have identified various 

populations of progenitor cells including pericytes, fibrocytes, and neural crest-like 
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precursors as being major sources of myofibroblasts in models of kidney, liver, lung and 

skin fibrosis (Hung et al., 2013; Iwaisako et al., 2012; Lin et al., 2008, Asada et a., 2011).   

 

Figure 1.1 Differentiated myofibroblasts originate from various origins. 

Myofibroblasts in fibrotic diseases have been speculated to originate from several sources 

including the differentiation of locally residing mesenchymal cells such as fibroblasts, 

hepatic stellate cells (HSC) and smooth muscle cells (SMC) as well as from epithelial to 

mesenchymal transition (EMT), and the accumulation and differentiation of bone-marrow 

derived fibrocytes. (Adapted with permission from Figure 2. The myofibroblast: One 

function, multiple origins. Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat 

ML, Gabbiani G. Am J Pathol. 2007;170(6):1807-1816. doi: 

10.2353/ajpath.2007.070112.) 
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1.2.3 Inducers of Myofibroblast Differentiation 

The most well characterized inducer of myofibroblastic differentiation is TGF-β, a 

multifunctional protein involved in a broad spectrum of biological responses. In its 

canonical signaling pathway, TGF-β binds to its cognate receptors and phosphorylates 

Smad proteins, driving changes in gene expression and the induction of a contractile 

phenotype in a variety of cell types (Leask and Abraham, 2004). However, targeting 

TGFβ directly has been shown to be an ineffective treatment for fibrotic diseases. In a 

clinical trial with scleroderma patients, treatment with a TGF-β neutralizing antibody 

resulted in serious adverse effects, likely due its important anti-inflammatory role 

(Denton et al., 2007; Yanagita, 2012). As such, downstream mediators of the pro-fibrotic 

transcriptional program have been investigated as potential therapeutic targets. Previous 

studies have shown that the differentiation of dermal and lung fibroblasts is dependent on 

adhesion-mediated signaling through the activation of the non-receptor tyrosine kinase 

focal adhesion kinase (FAK) (Shi-wen et al., 2012; Lagares et al., 2012). When activated 

by phosphorylation, FAK forms a complex with c-Src (Src), a member of Src-family 

tyrosine kinases, and induces a signaling cascade involved in cytoskeleton reorganization, 

matrix contraction, and profibrotic gene expression (Liu et al., 2007). Recent studies have 

also identified myocardin-related transcription factor-A (MRTF-A), also known as 

MLK1, as a transcriptional coactivator induced by Rho GTPases that physically 

associates with serum response factor (SRF) to induce gene expression associated with 

myogenic differentiation and cytoskeletal reorganization (Scharenberg et al., 2014). 

Knockdown of MRTF-A has been shown to impair fibroblast-to-myofibroblast 

differentiation in vitro, and chemical inhibition of the MRTF-A/SRF pathway has also 
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recently been shown to prevent bleomycin-induced skin fibrosis (Crider et al., 2011; 

Haak et al., 2014). How the FAK/Src and SRF pathways are interrelated has not been 

fully elucidated. However, one proposed model suggests that the formation of focal 

adhesions between integrins and the extracellular matrix, and the subsequent activation of 

the FAK/Src complex is an initiating factor that drives actin polymerization through 

RhoA (Olsen and Nordheim, 2010). Under this model, the polymerization of globular 

actin into filamentous actin liberates globular actin-coupled MRTF-A, which induces the 

nuclear transcription factor SRF and in turn activates a cascade of pro-fibrotic and 

contractile signaling (Figure 1.2).  
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Figure 1.2 Serum response factor (SRF) is activated by actin microfilament 

dynamics resulting from altered adhesive signaling. Formation of focal adhesions 

between integrins and the extracellular matrix activates the FAK/Src complex. FAK/Src 

is capable of activating Rho signaling, which results in the incorporation of globular (G)-

actin into filamentous (F)-actin and the liberation of myocardin-related transcription 

factor (MRTF). MRTF enters the nucleus to activate SRF and initiates a cascade of pro-

fibrotic gene expression. (Adapted with permission from Figure 1. Linking actin 

dynamics and gene transcription to drive cellular motile functions. Olson EN, Nordheim 

ANat Rev Mol Cell Biol. 2010;11(5):353-365. doi: 10.1038/nrm2890; 

10.1038/nrm2890.) 
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1.2.4 CCN2 (CTGF) 

The CCN (CYR61, CTGF, NOV) family consists of six matricellular proteins 

characterized by four conserved cysteine-rich domains: the insulin-like growth factor-

binding domain, the Von Willebrand factor type C domain, the thrombospondin type 1 

and a C-terminal domain with a cysteine knot motif. As matricellular proteins, members 

of the CCN family are dynamically expressed, non-structural proteins secreted into the 

extracellular matrix (ECM) that have regulatory roles. CCN2, also known as connective 

tissue growth factor (CTGF), is a marker and mediator of fibrosis that represents an 

intriguing anti-fibrotic target (Leask et al., 2009). Other members of the CCN family 

include CCN1 (Cyr61), which has an in vitro effect similar to CCN2, CCN3 (Nov) which 

is a natural inhibitor of both CCN1 and CCN2, and CCN4-6 (WISP1, WISP2, WISP3) 

which are Wnt-induced signaling proteins associated with diverse cellular functions (Liu 

et al., 2014; Leask, 2009). CCN2 is highly induced during both wound healing and 

fibrosis. Interestingly however, conditional deletion of CCN2 in skin prevents bleomycin-

induced myofibroblast formation, skin thickening, and collagen production but does not 

affect wound repair kinetics, suggesting that CCN2 has fibrosis-specific effects (Liu, 

2011). CCN2 is activated during myofibroblast differentiation and is part of the 

profibrotic gene program induced by various mechanisms including TGFβ, FAK, SRF 

and mechanical stress (Leask, 2004; Graness et al., 2006; Muehlich et al., 2007).  To 

exert its effects, CCN2 is secreted by cells into the ECM, and acts in an autocrine and 

paracrine fashion through integrins, growth factor receptors, and heparin sulfate-

containing proteoglycans to modulate cellular responses to growth factors and ECM 

proteins (Chen et al., 2004; Figure 1.3). Known effects of CCN2 vary depending on cell 
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type and microenvironment, but include cell adhesion, migration, transdifferentiation, 

collagen deposition, proliferation and angiogenesis (Leask and Abraham, 2006). 

Characteristically expressed by myofibroblasts, CCN2 is not expressed basally in the skin 

except within the hair follicle DP, concomitantly with Sox2 (Liu et al., 2013). Our lab has 

shown that genetic ablation of CCN2 within these Sox2-expressing cells reduces 

bleomycin-induced skin fibrosis by preventing their recruitment and differentiation into 

myofibroblasts within the fibrotic lesion (Liu et al., 2013). It is thus of interest to 

investigate the role of CCN2 in the myofibroblastic differentiation of SKPs in order to 

elucidate the mechanisms behind how precursor cells may contribute to fibrosis.  

 

Figure 1.3 The matricellular protein CCN2 contains four cysteine-rich domains and 

regulates pro-fibrotic signaling. Like other CCN family members, CCN2 contains a 

insulin-like growth factor-binding domain, a Von Willebrand factor type C domain, a 

thrombospondin type 1 and a C-terminal domain with a cysteine knot motif. CCN2 is 

associated pro-fibrotic responses such as myofibroblast activation and excessive 

extracellular matrix deposition as well as enhanced cell adhesion and migration.  

(Adapted with permission from Figure 2. Could aging human skin use a connective tissue 

growth factor boost to increase collagen content? Oliver N, Sternlicht M, Gerritsen K, 

Goldschmeding R. J Invest Dermatol. 2010;130(2):338-341. doi: 10.1038/jid.2009.331; 

10.1038/jid.2009.331.) 
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1.3 Rationale, Objectives and Hypotheses 

Sox2-expressing hair follicle stem cells have been shown to be capable of 

differentiation into α-SMA-expressing myofibroblasts during skin fibrosis, while SKPs 

cultured from dermal tissue express Sox2 and are transcriptionally similar to hair follicle 

dermal papilla cells. Thus, SKPs represent a unique model to study this fibrogenic 

phenomenon. However, the adult cells in the dermis from which SKPs are derived from 

are unclear. Overall, the aims of this project were to (1) clarify the cellular origin of SKPs 

from murine trunk skin and (2) elucidate the mechanism behind the differentiation of 

SKPs into myofibroblast-like cells. Given that SKPs have been shown to originate from a 

mesenchymal lineage, and that embryonic fibroblast cell lines are capable of generating 

neurospheres, I hypothesized that adult dermal fibroblasts retained this plasticity and are 

a major origin of SKPs.  Furthermore, since CCN2 has been shown to be required for 

Sox2-expressing cells to contribute to fibrosis in vivo, I hypothesized that CCN2 was also 

a mediator of the ability of SKPs to differentiate into myofibroblasts. 
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2 Materials and Methods 
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2.1 Generation of Transgenic Mice 

2.1.1 LacZ Reporter Mice 

Mice hemizygous for a tamoxifen-dependant Cre recombinase under the control 

of a fibroblast-specific Col1a2 promoter were bred with mice harbouring an inducible 

LacZ transgene integrated into the ubiquitous Gt(ROSA)26Sor locus to generate Col1a2-

Cre(ER)T;Rosa26LacZ mice, as previously described (Liu and Leask, 2013). Expression 

of the LacZ gene is prevented by a loxP-flanked (“floxed”) DNA STOP sequence until 

the STOP sequence is excised by Cre recombinase. Thus, upon activation of Cre by 

tamoxifen, cells expressing Col1a2 are permanently labeled by expression of LacZ.   

2.1.2 Double Fluorescent Reporter Mice 

Mice hemizygous for a tamoxifen-dependent Cre recombinase under the control 

of either a Col1a2 or Sox2 promoter were bred with mice harbouring a double-

fluorescent reporter transgene (mTmG) integrated into the ubiquitous Gt(ROSA)26Sor 

locus to generate Col1a2-Cre(ER)T;Rosa26mTmG or Sox2-Cre(ER)T;Rosa26mTmG 

mice, as previously described (Liu et al. 2013). The mTmG transgene results in 

expression of membrane-targeted tdTomato prior to Cre-mediated excision and 

membrane-targeted GFP after excision. Thus, upon activation of Cre by tamoxifen, cells 

expressing Col1a2 or Sox2 in the respective mouse lines are permanently labeled by 

expression of green fluorescent protein (GFP), while all other cells are labeled by 

expression of tandem dimer (td) Tomato (Muzumdar, 2007).   
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2.1.3 Conditional CCN2 KO Mice 

Mice hemizygous for a tamoxifen-dependent Cre recombinase under the control 

of a Col1a2 promoter (Col1a2-CreER(T)) were bred with mice harbouring 

a floxed CCN2 allele to generate mice hemizygous for Col1a2-CreER(T) and 

heterozygous for the floxed CCN2 allele.  These mice were interbred to generate mice 

hemizygous for Col1a2-Cre(ER)T and homozygous for the floxed CCN2 allele (Col1a2-

Cre(ER)T;CCN2fl/fl), as previously described (Liu et al., 2011). In the floxed CCN2 mice, 

exon 4 of CCN2 is flanked by loxP sites and is excised upon Cre-mediated recombination 

to eliminate gene function (Liu et al., 2011).  

2.1.4 Induction of Cre Recombinase 

A stock solution of tamoxifen (4-hydroxytamoxifen, Sigma, St. Louis, MO) in 

ethanol (100 mg/ml) was diluted to a concentration of 10 mg/ml in corn oil (Sigma). 

Three week old littermate mice were given 0.1 ml intraperitoneal injections of the 

tamoxifen solution to induce Cre recombinase, or corn oil alone as a vehicle control for 

five consecutive days. Col1a2-CreER(T);CCN2fl/fl mice injected with tamoxifen will 

henceforth be referred to as Col1a2-CreER(T);CCN2-/-, while littermate mice injected 

with corn oil with be referred to as Col1a2-CreER(T);CCN2fl/fl. 

2.1.5 Genotyping 

Polymerase chain reaction and subsequent agarose gel electrophoresis with 

ethidium bromide staining was used to genotype the DNA of all experimental animals for 

appropriate expression of Cre (Forward primer sequence 5′–
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ATCCGAAAAGAAAACGTTGA-3′; Reverse primer sequence 5′–

ATCCAGGTTACGGATATAGT-3′), LacZ (Fw 5’ – CGTGGCCTGATTCATTCC – 3’; 

Rv 5’ –ATCCTCTGCATGGTCAGGTC –3’), mTmG (Fw 5’-

CTCTGCTGCCTCCTGGCTTCT-3’; Rv 5`-TCAATGGGCGGGGGTCGTT-3` and 5`-

TCAATGGGCGGGGGTCGTT-3` and 5`-CGAGGCGGATCACAAGCAATA-3`) and 

floxed CCN2 (5’ – AATACCAATGCACTTGCCTGGATGG – 3’ 5’ – 

GAAACAGCAATTACTACAACGGGAGTGG – 3’; Figure 2.1) as previously described 

(Liu et al., 2013; Liu and Leask, 2013). All animal protocols were approved by the 

animal care committee at Western University. 

 

Figure 2.1 Agarose gel electrophoresis of DNA from CCN2+/+ and CCN2fl/fl mice. 

DNA was extracted from mouse ear notch samples and amplified by polymerase chain 

reaction using the forward and reverse primers 5’ – 

AATACCAATGCACTTGCCTGGATGG – 3’ and 5’ – 

GAAACAGCAATTACTACAACGGGAGTGG – 3’. Amplified DNA was subjected to 

agarose gel electrophoresis and visualized with ethidium bromide to detect (A) wild type 

(1003 bp) and (B) homozygous floxed (878 bp) CCN2 alleles. 

A 
B 
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2.2 Cell Culture 

2.2.1 Isolation of SKPs (Direct Method) 

SKPs were isolated from the dermis of mice as previously described (Fernandes et 

al, 2004). Briefly, two large flaps of dorsal skin were excised from each mouse and 

incubated with a 2 mg/ml collagenase solution (Worthington Biochemical, New Jersey, 

USA, cat # LS004176) for 3 hours in a 37 °C, 5% CO2 tissue-culture incubator. Dermal 

tissue was then separated from the epidermis and mechanically digested with a transfer 

pipette. Debris was removed after low-speed centrifugation, and cells were subsequently 

pelleted by centrifugation at 250 g for 5 minutes.  Cell pellets were re-suspended in SKP 

growth medium, filtered with a 40 µm cell strainer (VWR, cat # 21008-949) and 

transferred to 75cm2 flasks (VWR, Mississauga, ON, Canada, cat # 82050-856). SKP 

growth medium contained DMEM-F12 (3:1) (cat #s 10566-016 and 11765-062) 

supplemented with 2% B-27 (cat # 17504044), 1% N-2 (cat # 17502-048), 40 ng/ml EGF 

(cat # PHG0311), 40 ng/ml bFGF (cat # PHG0021) (all from Life Technologies) and 1% 

chick embryo extract (Cedar Lane, Hornby, ON, Canada, cat # C3999). Every 2-3 days, 

40 ng/ml EGF and 40 ng/ml bFGF were added the culture medium. SKPs were passaged 

after 2 weeks of growth by mechanical dissociation with a P1000 pipette and reseeding 

into 100 mm x 15 mm petri dishes (VWR, cat # 25384-088) at a concentration of 50 000 

cells/ml. 
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2.2.2 Directed Differentiation of SKPs into Myofibroblast-like Cells 

After passaged SKPs had grown for 2 weeks, spheroids were transferred to 15 ml 

conical tubes (VWR, cat # 21008-931), centrifuged at 250 g for 5 minutes and gently 

resuspended in DMEM:F12 (3:1). Spheroids were then plated on 6 well culture plates 

(VWR, cat # 82050-842) that had been coated overnight with poly-L-lysine (Sigma, cat # 

P4707) and laminin (Life Technologies, cat # 23017-015). At this point, when applicable, 

cells were treated with the Src-family kinase inhibitor PP2 (10 µM, EMD Millipore), 

FAK inhibitor PF228 (10 µM, Sigma), or MRTF-A/SRF inhibitor CCG-1423 (50 µM, 

Sigma) and incubated for 30 minutes at 37°C. To induce differentiation, cells were 

treated with 0.5% FBS (Life Technologies, cat # 16000-044) and incubated for 24 hours 

at 37°C before analysis. 

2.2.3 Culture of MDFs 

Mouse dermal fibroblasts (MDFs) were cultured from the dorsal skin of mice as 

previously described (Liu et al., 2011). Briefly, two large flaps of dorsal skin were 

excised from each mouse and incubated with a 2 mg/ml collagenase solution for 3 hours 

in a 37 °C, 5% CO2 tissue-culture incubator. Dermal tissue was then separated from the 

epidermis and mechanically digested with a transfer pipette. Debris was removed after 

low-speed centrifugation, and cells were subsequently pelleted by centrifugation at 250 g 

for 5 minutes.  Cell pellets were re-suspended in fibroblast growth medium consisting of 

Dulbecco’s Modified Eagle’s Medium (DMEM, Life Technologies, Burlington, ON, 

Canada, cat # 11965-092) supplemented with 10% FBS and transferred to 75cm2 flasks. 

Growth medium was replaced every 2-3 days. Upon reaching approximately 90% 

 



23 

 

confluence, adherent cells were detached by incubation with 0.25% trypsin/EDTA (Life 

Technologies, cat # 25200-072) in DMEM at 37 °C for 5 minutes and split into 100 mm 

x 20 mm culture dishes (VWR, cat # 82050-916) containing fresh growth medium. 

2.2.4 Generation of MDF-SKPs 

To generate SKPs from monolayer MDFs (MDF-SKPs), MDFs were first grown 

to approximately 90% confluence in 100 mm x 20 mm culture dishes and incubated with 

0.25% trypsin/EDTA in DMEM as outlined above. Cells were then transferred to 15 ml 

conical tubes containing SKP base medium and centrifuged at 250 g for 5 minutes to 

produce cell pellets.  The pellets were then re-suspended in SKP growth medium at a 

concentration of 50 000 cells/ml and seeded in 6 well culture plates at 3 ml per well. 40 

ng/ml of EGF and 40 ng/ml bFGF were added the culture medium every 2-3 days. 

2.2.5 Multi-lineage Differentiation of MDF-SKPs 

Differentiation was induced as previously described for SKPs (Fernandes and 

Miller, 2009). 6 well culture plates (VWR, cat # 82050-842) were coated overnight with 

poly-L-lysine (Sigma, cat # P4707) and laminin (Life Technologies, cat # 23017-015) 

and subsequently washed twice with sterile water.  MDF-SKP spheroids were transferred 

from the uncoated 6 well plates from which they were grown into 15 ml conical tubes and 

centrifuged at 250 g for 5 minutes to generate a cell pellet. The cell pellets were gently 

re-suspended in differentiation medium and seeded onto the poly-L-lysine and laminin 

coated 6 well plates. For neural-directed differentiation, cells were plated in SKP base 

medium supplemented with 5% FBS and 40 ng/ml bFGF for 5 days. Cells were then 
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cultured for 5 additional days in fresh SKP base medium supplemented with 5% FBS and 

40 ng/ml nerve growth factor (NGF; Life Technologies, cat #13257-019). For generalized 

differentiation and detection of myofibroblasts, spheroids were plated in SKP base 

medium supplemented with 5% FBS for 5 days. 

2.2.6 Additional Information 

All cell culture media used were also supplemented with 1% antibiotic-

antimycotic solution (Life Technologies, cat # 15240-062). 

2.3 Immunocytochemistry and cell microscopy 

Immunocytochemical analysis of both spheroids and adherent cells were 

performed directly on 6 well cell culture plates. Briefly, cells were fixed with 4% 

paraformaldehyde (Sigma) for 10 minutes, washed with phosphate buffered saline (PBS; 

Sigma), and permeabilized with PBS + 0.5% Triton X-100 (PBS-T; Sigma) for 10 

minutes. Cells were then incubated with blocking solution consisting of PBS-T + 10% 

donkey serum (Jackson Immunoresearch, West Grove, PA, USA) for 30 minutes at room 

temperature and incubated overnight at 4°C with primary antibody diluted in blocking 

solution. Cells were then washed with PBS and incubated with secondary antibody 

diluted in blocking solution for 1 hour. Finally, cells were incubated with Hoescht dye 

(Sigma) and washed again with PBS. The following primary antibodies were used: anti-

α-SMA monoclonal (1:500, Sigma), anti-βIII-Tubulin monoclonal (1:1000, 

PhosphoSolutions, Aurora, CO, USA), anti-GFP monoclonal (1:100, Santa Cruz 

Biotechnology, Dallas, TX, USA), anti-Nestin monoclonal (1:100, Santa Cruz 
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Biotechnology), anti-Sox2 polyclonal (1:100, Santa Cruz Biotechnology), anti-CCN2 

polyclonal (1:100, Santa Cruz) and anti-Ki67 polyclonal (1:1000, Abcam). The following 

secondary antibodies were used: Alexa Flour 488-conjugated donkey anti-rabbit 

(1:1000), Alexa Flour 488-conjugated donkey anti-goat (1:1000), Alexa Flour 594-

conjugated donkey anti-mouse (1:1000) and Alexa Flour 594-conjugated donkey anti-

rabbit (1:1000); all were purchased from Jackson Immunoresearch. A Leica 

Microsystems DM16000B fluorescent microscope and DFC360FX camera were used for 

all cell imaging, including the detection of GFP and tdTomato expression in live cells 

from mTmG reporter mice. 

2.4 Histology  

Dorsal skin samples were fixed for 24 hours in 4% paraformaldehyde. Tissue 

samples were subsequently cryoprotected in 30% sucrose (Sigma) overnight, embedded 

in Tissue-Tek Optimal Cutting Temperature compound (VWR, cat # 25608-930) and 

frozen at -80°C for one hour. Sections (10 µm) were cut immediately afterwards using a 

Leica CM1900 UV cryostat (Leica, Concord, ON, Canada) and collected on Superfrost 

Plus slides (Fisher Scientific, Ottawa, ON, Canada). To detect GFP and tdTomato 

expression in mTmG reporter mice, slides were then washed in PBS, mounted using 4′,6-

diamidino-2-phenylindol (DAPI, Vector Labs, Burlington, ON, Canada), and 

photographed using a Zeiss Imager M1 fluorescence microscope (Toronto, ON, Canada) 

and Northern Eclipse software (Empix, Mississauga, ON, Canada). 
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2.5 X-Gal Staining 

For X-Gal staining to detect LacZ expression in skin tissue cryosections or 

cultured SKP spheroids, samples were fixed for 5 minutes with fixative solution 

consisting of 4% paraformaldehyde and 0.5% glutaraldehyde (Sigma). Samples were then 

washed with PBS, and incubated overnight at 37°C with X-Gal staining solution (Life 

Technologies, cat # K1465-01). Samples were subsequently washed again with PBS 

before analysis. X-Gal stained SKP spheroids were imaged using a Leica EC3 camera 

and a Leica S6-D microscope; cryosections were imaged using a Leica DFC295 camera 

and DM1000 microscope. 

2.6 Cell Viability Assay 

The viability of MDF-SKPs at 3, 9 and 15 days after trypsinization of MDFs was 

assayed in the following media conditions: DMEM-F12(3:1) supplemented with 2% B27, 

1% N2, 1% chick embryo extract, 40 ng/ml EGF and 40 ng/ml bFGF (Full), DMEM-F12 

(3:1) supplemented with 2% B27 and 40 ng/ml bFGF (B27+FGF), DMEM-F12 (3:1) 

supplemented with 40 ng/ml bFGF (FGF), DMEM-F12 (3:1) supplemented with 40 

ng/ml EGF (EGF) or DMEM-F12 (3:1) alone (Base). PrestoBlue reagent (Life 

Technologies, cat # A-13261) was used according to the manufacturer’s instructions to 

quantify cell viability. Cells from three mice were assayed in triplicate for each timepoint 

and treatment. One-way ANOVA was used to determine significant differences (p<0.05) 

at each time point. 
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2.7 Real Time RT-PCR 

RNA was extracted using the TRIzol (Life Technologies) and chloroform (Sigma) 

method as previously described. RNA samples were analyzed with a Nanodrop 

Spectrophotometer (Thermo Scientific, Waltham, MA, USA) to determine RNA 

concentration and integrity. Only samples with a measured 280/260 ratio above 1.8 were 

used for real time RT-PCR analysis and 40 ng RNA samples were run in triplicate. RNA 

was reverse transcribed and amplified in a 15 μl reaction using TaqMan Assays on 

Demand primers, 6-carboxyfluroscein-labeled TaqMan MGB probe and Reverse 

Transcriptase qPCR One-step Mastermix (Quanta, VWR, Mississauga, ON, Canada). 

ABI Prism 7900 HT sequence detector (Perkin-Elmer-Cetus, Vaudreuil, QC, Canada) 

was used according to the manufacturer's instructions to detect amplified sequences. 

Expression values were standardized to control values from 18S primers using the ΔΔCt 

method. Statistical analysis on three independent experiments was done using Student's t-

test on GraphPad Prism. 

2.8 Western Blot 

To harvest protein, cells were first washed with PBS for 5 minutes and then lysed 

with Radioimmuno-precipitation Assay (RIPA) lysis buffer (150 mM NaCl, 50 mM Tris–

HCl pH 7.5, 1 % Triton-X, 1 % deoxycholate, 0.1 % SDS, 2 mM EDTA; all from Sigma) 

supplemented with a protease inhibitor (Roche). Cell lysates were sonicated three times 

for 10 seconds at 10 minute intervals before being centrifuged for 12 minutes at 12 000 

RPM to remove debris.  Lysates were quantified by a bicinchronic protein assay (BCA, 

Thermo Scientific) according to the manufacturer’s instructions. Equal quantities of 
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protein (25 μg) were brought to an equal volume with RIPA buffer, mixed with 6x 

loading dye (Thermo Scientific) and boiled at 99°C for 5 minutes.  Protein mixtures were 

subsequently loaded onto 10x sodium dodecyl sulfate (SDS) gels and run at 120V for ~2 

hours using the XCell SureLock™ Mini-Cell electrophoresis system (Invitrogen) in the 

presence of 1X Running buffer (5 mM Tris; 40 mM Glycine; 0.02% SDS) according to 

the manufacturer’s instructions.  Resultant gels were transferred to a nitrocellulose 

membrane using the iBlot dry-transfer system (Invitrogen, Burlington, ON, Canada) 

according to the manufacturer’s instructions. Membranes were then blocked for 1 hour in 

5 % non-fat dry milk in Tris-buffered saline with 0.01 % Tween-20 (TBST, Sigma), and 

incubated with anti-α-SMA (1:2500; Sigma), anti-CCN2 (1:100; Santa Cruz), anti-PCNA 

(1:500 Abcam), or anti-β-actin (1:5000, Sigma) antibodies diluted in the same solution 

overnight at 4 °C. Blots were washed 3 times for 5 min with TBST, incubated with the 

appropriate horse radish peroxidase (HRP)-conjugated secondary antibodies (Jackson 

Immunoresearch, West Grove, PA, USA) for 1 hour at room temperature and then 

developed with SuperSignal™ West Pico Chemiluminescent Substrate (Thermo 

Scientific) according to the manufacturer’s instructions.  Membranes were finally 

visualized using X-ray film (Sigma), and scanned to a digital format (Hewlett-Packard). 

Relative densities of bands were quantified using ImageJ 1.46 software (National 

Institutes of Health, Bethesda, MD, USA). 

2.9 Genome-wide expression profiling 

Expression profiling was conducted at the London Regional Genomics Centre (David 

Carter, Robarts Research Institute, London, Canada), essentially as previously described 
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(Guo et al., 2014), for two independent sets of Col1a2-CreER(T);CCN2fl/fl and Col1a2-

CreER(T);CCN2-/- SKPs treated with 0.5% FBS for 24 hours. RNA samples were 

collected using the TRIZol and chloroform method and quality was assessed using a 

bioanalyzer (Agilent Technologies, Palo Alto, CA). 200 ng of total RNA was used to 

prepare single-stranded complimentary DNA using the Ambion® WT Expression Kit as 

per the manufacturer’s instructions (Affymetrix, Santa Clara, CA, USA). Target 

preparation was subsequently performed using the GeneChip® WT Terminal Labeling 

and Controls Kit. Resultant single stranded, end labeled cDNA was hybridized for 16 h at 

45°C to a GeneChip® Mouse Gene 2.0 ST Array. All liquid-handling steps were 

performed by a GeneChip Fluidics Station 450, and GeneChips were scanned with the 

GeneChip Scanner 3000 7G (Affymetrix) using Command Console, version 1.1. Probe-

level (.CEL file) data were generated using Affymetrix Command Console, version 1.1. 

Probes were summarized to gene-level data in Partek Genomics Suite, version 6.5 

(Partek, St. Louis, MO) using the RMA algorithm. Partek was used to determine gene-

level analysis of variance (ANOVA) p values and fold changes. Genes with a fold change 

greater than |1.4| with a p value less than 0.01 were filtered and analyzed using functional 

annotation clustering (DAVID Functional Annotation Software) 
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3 Results 
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3.1 SKP spheroids express neural stem cell markers 
Sox2 and Nestin 
To confirm that the SKPs isolated in our culture conditions were similar to those 

described elsewhere in the literature, SKP spheroids I isolated directly from the dermis of 

mouse dorsal skin were, after two weeks of culture, subjected to indirect 

immunofluorescence analysis using anti- α-SMA, anti-Sox2 and anti-Nestin antibodies.  I 

define SKPs cultured by this method as ‘directly-cultured SKPs’. All spheroids 

consistently showed cells with nuclear Sox2 expression, cytoplasmic Nestin expression, 

and α-SMA expression along the outer edges of the sphere (Figure 3.1), as has been 

reported by others (Biernaskie et al., 2009). Sox2 and Nestin are markers expressed by 

multipotent neural stem cells cultured in vitro and are also expressed by hair follicle stem 

cells in the skin (Driskell et al., 2011). 
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Figure 3.1 SKP spheroids express α-SMA, Sox2 and Nestin. SKP spheroids were fixed 

in 4% paraformaldehyde and subjected to immunofluorescence staining with primary 

antibodies against α-SMA and the previously described SKP markers, Sox2 and Nestin. 

Nuclei were stained with Hoechst dye (blue). Representative images are shown.  

100 µm 
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3.2 Few SKPs are derived from Sox2-expressing cells 

Although SKP spheroids expressed Sox2, it was unclear whether they originated 

from cells expressing Sox2 in vivo or whether Sox2 expression was being induced in 

vitro. To test this, I performed lineage tracing using mice induced to permanently express 

GFP in Sox2-expressing cells (or tdTomato in all other cells). Three week old Sox2-

CreER(T);Rosa26mTmG mice were injected with tamoxifen at 3 weeks of age for 5 

consecutive days. Mice were subsequently sacrificed and dorsal skin was either used to 

culture SKPs or was flash frozen and cryosectioned. Fluorescence microscopy was used 

to detect GFP and tdTomato expression in cryosections and cultured SKPs. Although 

histological analysis of skin tissue sections revealed Sox2-GFP expression in the dermal 

papilla (DP) and dermal sheath (DS) of the hair follicle, consistent with previous studies 

(Driskell et al., 2011), SKPs cultured from these mice contained very few GFP+ cells. 

(Figure 3.2) 

 



34 

 

 

 

 

Figure 3.2 Few SKP spheroids are derived from Sox2-expressing cells. Sox2-

CreER(T);Rosa26mTmG reporter mice were injected with tamoxifen at 3 weeks of age 

for 5 consecutive days and subsequently sacrificed. Dorsal skin was either used to culture 

SKPs or was flash frozen and cryosectioned. Fluorescence microscopy was used to detect 

GFP and tdTomato expression in cryosections and cultured SKPs. Representative images 

are shown. 
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3.3 SKP spheroids are largely derived from Col1a2-
expressing dermal fibroblasts  
To determine if SKPs originated from type I collagen-expressing dermal 

fibroblasts, I performed lineage tracing by using mice induced to permanently express 

LacZ in Col1a2-expressing cells. Three week old Col1a2-CreER(T);Rosa26LacZ mice 

were injected with either tamoxifen to induce reporter expression or corn oil (Control) at 

3 weeks of age for 5 consecutive days. Mice were subsequently sacrificed and dorsal skin 

was either used to culture SKPs or was flash frozen and cryosectioned. X-Gal staining 

solution was used to detect β-galactosidase expression in both cryosections and cultured 

SKPs. Histological analysis revealed widespread β-galactosidase expression in dermal 

fibroblasts within the connective tissue, consistent with previous studies using this 

reporter (Ponticos et al., 2003); SKPs cultured from these mice also stained strongly with 

X-Gal (Figure 3.3). 
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Figure 3.3 SKP spheroids are largely derived from Col1a2-expressing dermal 

fibroblasts. Col1a2-Cre(ER)T;Rosa26LacZ mice were injected with either tamoxifen or 

corn oil (Control) at 3 weeks of age for 5 consecutive days. Mice were subsequently 

sacrificed and dorsal skin was either used to culture SKPs or was flash frozen and 

cryosectioned. X-Gal staining solution was used to detect β-galactosidase expression in 

both cryosections (upper) and cultured SKPs (lower). Representative images are shown. 
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3.4 Col1a2-expressing dermal fibroblasts grown in 
monolayer are converted to Sox2+, Nestin+ SKP 
spheroids after re-seeding in SKP medium 
To test whether mouse dermal fibroblasts (MDFs) could be cultured in monolayer 

and subsequently converted to SKPs, MDFs from C57/BL6 mice were cultured in 

DMEM supplemented with 10% FBS. After cells were cultured to approximately 90% 

confluence, the monolayer was trypsinized, pelleted, and re-seeded in the aforementioned 

SKP proliferation medium consisting of a mixture of DMEM:F12 (3:1), 2% B-27, 1% N-

2, 1% Chick Embryo Extract, 40 ng/ml bFGF and 40 ng/ml EGF. Within 48 hours, 

spheroids identical in appearance to directly-cultured SKPs began to form (Figure 3.4A). 

To confirm that MDF-SKPs were ultimately derived from Col1a2-expressing cells in the 

MDF monolayer, lineage tracing was performed using Col1a2-CreER(T);Rosa26mTmG 

reporter mice that had been injected with tamoxifen at 3 weeks of age for 5 consecutive 

days and subsequently sacrificed. It was found that the majority of cells in the MDF 

monolayer expressed GFP, as did the majority of cells in the resultant MDF-SKPs 

(Figure 3.4B). Following the protocol for direct SKP culture, 40 ng/ml bFGF and 40 

ng/ml EGF were added to the culture medium every 2-3 days, and cells were grown for 

two weeks before analysis. Indirect immunofluorescence analysis of spheroids revealed 

nuclear localization of Sox2 and cytoplasmic localization of Nestin, consistent with the 

expression pattern of directly-cultured SKPs (Figure 3.4C). Furthermore, real time RT-

PCR analysis revealed significantly upregulated mRNA expression of Sox2 and Nestin in 

MDF-SKPs compared to MDFs from the same mice (Figure 3.4D).  
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Figure 3.4 Col1a2-expressing dermal fibroblasts grown in monolayer are converted 

to Sox2+, Nestin+ SKP spheroids via re-seeding in SKP medium. Primary mouse 

dermal fibroblasts (MDFs) were cultured in DMEM supplemented with 10% FBS. When 

grown to approximately 90% confluence, the monolayer was trypsinized and re-seeded in 

serum-free SKP proliferation medium consisting of a 3:1 mixture of DMEM/F12 (3:1) 

supplemented with B27/N2/Chick Embryo Extract/bFGF/EGF. (A) Representative phase 

contrast images of monolayer MDFs and resultant MDF-SKPs grown for 48 hours. (B) 

Lineage tracing of MDFs and MDF-SKPs cultured from Col1a2-

CreER(T);Rosa26mTmG mice reporter mice. (C) Indirect immunoflourescence 

performed on MDF-SKPs against Sox2 and Nestin. (D) Real time RT-PCR analysis 

comparing Sox2 and Nestin mRNA expression in monolayer MDFs and MDF-SKPs. 

Error bars represent ± SEM (*= p<0.05; Student’s t-test; N=3) 
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3.5 bFGF is sufficient to induce formation and growth 
of Sox2+, Nestin+ MDF-SKPs  
In order to determine the component(s) within SKP growth medium essential for 

the formation and proliferation of SKPs, MDFs were trypsinized and reseeded in either 

full SKP growth medium or DMEM-F12 (3:1) supplemented with either B27 + bFGF, 

bFGF alone, EGF alone, or no supplementation, as described in full detail in the materials 

and methods section (Figure 3.5A). Cell growth at 3, 9 and 15 days after re-seeding was 

assessed with PrestoBlue cell viability reagent (Figure 3.5B).  At the 3 day time point, 

MDFs reseeded in full SKP proliferation medium, B27+bFGF, bFGF alone and EGF 

alone all formed spheroids while those reseeded in B27 alone or base medium did not. 

MDFs reseeded in full SKP proliferation medium and B27+FGF formed significantly 

larger spheroids than those reseeded in FGF or EGF alone. At day 9, spheroids in the full, 

B27+FGF and FGF groups experienced significant growth from day 3 (P<0.01; P<0.01; 

P<0.05; Two-Way ANOVA), while the EGF group did not grow significantly (P>0.05; 

Two-Way ANOVA). By day 15, the FGF group had grown as much as the full and 

B27+FGF groups, while the viability of the EGF group had declined. Real time RT-PCR 

analysis showed that MDF-SKPs grown with bFGF treatment alone were induced to 

express significantly increased levels of Sox2 and Nestin mRNA over parental MDFs 

(Figure 3.5C).  
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Figure 3.5 bFGF is sufficient to induce formation and growth of Sox2+, Nestin+ 

MDF-SKPs. (A) Primary MDFs were trypsinized and re-seeded in serum-free 

DMEM/F12 medium containing either B27+N2+Chick Embryo Extract+bFGF+EGF 

(Full), B27+bFGF, bFGF, EGF, B27, or without any supplement (Base) and imaged at 3, 

9 or 15 days. (B) Cell viability at 3, 9 and 15 days was assessed by PrestoBlue assay 

(Different letters indicate significant differences within time points; One-Way ANOVA; 

N=3), (C) Real time RT-PCR was used to compare Sox2 and Nestin mRNA expression in 

monolayer MDFs and MDF-SKPs grown in bFGF alone for 15 days. Error bars represent 

± SEM. (*= p<0.05;***=p<0.001; Student’s t-test; N=3). 
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3.6 Neuronal and myofibroblast-like progeny of MDF-
SKPs can be traced to a fibroblastic origin 
To trace whether Col1a2-expressing cells could differentiate into other cell types 

after forming MDF-SKPs, MDFs were cultured from Col1a2-CreER(T);Rosa26mTmG 

reporter mice that had been injected with tamoxifen at 3 weeks of age for 5 consecutive 

days. MDFs were grown to 90% confluence and converted to MDF-SKPs via 

trypsinization and reseeding in DMEM-F12 (3:1) supplemented with 40 ng/ml bFGF. 

MDF-SKPs were grown for 2 weeks with the addition of 40 ng/ml bFGF every 2-3 days. 

For neural differentiation, cells were plated in SKP base medium supplemented with 5% 

FBS and 40 ng/ml bFGF for 5 days. Cells were then cultured for 5 additional days in 

fresh SKP base medium supplemented with 5% FBS and 40 ng/ml nerve growth factor. 

Indirect immunofluorescence analysis was subsequently performed using anti- GFP 

antibody and an antibody detecting the neural-specific marker BIII-Tubulin (Fernandes 

and Miller, 2009) (Figure 3.6A). For generalized differentiation and detection of 

myofibroblasts, spheroids were plated in SKP base medium supplemented with 5% FBS 

for 5 days. Immunocytochemistry was subsequently performed against the GFP and the 

myofibroblast marker α-SMA (Figure 3.6B). Numerous βIII-Tubulin/GFP and α-

SMA/GFP double positive cells were detected, indicating that cells originally expressing 

Col1a2 had differentiated into neural and myofibroblast-like cells. 
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Figure 3.6 Neuronal and myofibroblast-like progeny of MDF-SKPs can be traced to 

a fibroblastic origin. MDFs were cultured Col1a2-CreER(T);Rosa26mTmG reporter 

mice. Upon reaching confluence, MDFs were subsequently trypsinized and re-seeded in 

serum-free DMEM/F12 medium containing 40ng/mL bFGF. Resultant MDF-SKPs were 

differentiated in the presence (A) or absence (B) of nerve growth factor.  

Immunofluorescence staining was performed against βIII Tubulin/GFP and α-SMA/GFP 

to detect neuronal and myofibroblast-like cells ultimately derived from Col1a2-

expressing fibroblasts.  Representative images are shown. 
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3.7 SKPs are induced to express α-SMA, CCN2 and 
CCN1 when treated with 0.5% FBS for 24 hours 
To confirm that I could induce directed differentiation of SKPs into smooth 

muscle or myofibroblast-like cells as described by others (Steinbach et al., 2011), SKPs 

were cultured directly from the dermis of Col1a2-Cre;CCN2fl/fl (control) mice. Once-

passaged spheroids were plated onto poly-L-lysine and laminin coated 6 well plates in 

medium containing DMEM/F12 (3:1) supplemented with or without 0.5% FBS. Resultant 

cells were imaged by phase contrast microscopy (Figure 3.7A) before being harvested for 

RNA. Real time RT-PCR analysis revealed that FBS-treated SKPs showed significantly 

elevated expression of the myofibroblast marker α-SMA and the pro-fibrotic 

genes/myofibroblast markers CCN2 and CCN1 (Figure 3.7B).  
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Figure 3.7 SKPs are induced to express α-SMA, CCN2 and CCN1 when treated with 

0.5% FBS for 24 hours. Directly cultured SKP spheroids were grown for two weeks and 

plated onto poly-L-lysine and laminin coated 6 well plates in medium containing 

DMEM/F12 (3:1) supplemented with or without 0.5% FBS for 24 hours. (A) 

Representative phase contrast images of SKPs treated or not with FBS. (B) Real time RT-

PCR results for expression of the myofibroblast marker α-SMA and the pro-fibrotic 

genes CCN2 and CCN1 in SKPs treated or not with FBS. Error bars represent ± SEM. 

(*= p<0.05;**=p<0.01,***=p<0.001; Student’s t-test). 
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3.8 Chemical inhibition of FAK/Src and MRTF-A/SRF 
pathways prevents myofibroblastic SKP differentiation 
and suppresses the activation of CCN1 and CCN2 
After exposure to serum, SKPs were adherent to tissue culture plates and 

exhibited radial spreading from the central spheroid. Since enhanced adhesive signaling 

is known to be associated with myofibroblast formation, I tested whether inhibition of 

pathways activated by adhesive signaling could prevent the differentiation of SKPs into 

myofibroblasts. Upon the binding of integrins to the extracellular matrix during adhesion, 

focal adhesion kinase (FAK) forms a complex with c-Src (a member of Src-family 

kinases) to activate downstream signaling. Through Rho GTPases, FAK/Src signaling 

can subsequently activate serum response factor (SRF), which induces the expression of 

pro-fibrotic genes (Olson and Nordheim, 2012; Figure 1.2).  To determine whether 

FAK/Src and SRF signaling pathways were involved in myofibroblastic SKP 

differentiation, SKP spheroids cultured from the dermis of Col1a2-Cre;CCN2fl/fl (control) 

mice were pre-treated with DMSO or chemical inhibitors of Src-family kinases (PP2, 10 

µM), FAK (PF228, 10 µM), or SRF (CCG-1423, 50 µM) for 30 minutes before 24h 

incubation with 0.5% FBS to induce myofibroblastic differentiation (or DMSO and no 

FBS as a control).  FBS-treated SKPs pre-treated with PP2, PF228 and CCG-1423 

exhibited significantly reduced α-SMA, CCN2 and CCN1 mRNA expression levels 

compared to FBS-treated SKPs pretreated with DMSO and were similar to baseline levels 

observed in SKPs untreated with FBS (Figure 3.8).  
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Figure 3.8 Chemical inhibition of Src-family kinases, focal adhesion kinase, and 

serum response factor prevents myofibroblastic differentiation of SKPs and 

suppresses the activation of CCN1 and CCN2. SKP spheroids were pre-treated with 

DMSO, PP2, PF228, or CCG-1432 for 30 minutes before 24h treatment with or without 

(negative control) 0.5% FBS. RNA was harvested and subjected to real-time PCR 

analysis for α-SMA, CCN2, and CCN1 expression. Three replicate trials were performed; 

representative phase contrast microscopy images are shown (scale bar = 300 µm). Error 

bars represent ± SEM. (*= p<0.05;**=p<0.01,***=p<0.001; One-way ANOVA). 
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3.9 CCN2 knockdown in SKPs impairs myofibroblastic 
differentiation without affecting proliferation 
CCN2 is a marker and mediator of fibrosis, and is associated with the 

differentiation of precursor cells into myofibroblasts (Leask et al., 2009; Liu et al., 2013; 

Rosin et al., 2013; Li et al., 2010). Since CCN2 was highly expressed during serum-

induced SKP differentiation, and was suppressed when differentiation was prevented by 

FAK/Src and SRF inhibition, I tested whether CCN2 played a direct role in the 

differentiation of SKPs into myofibroblasts. SKPs from Col1a2-CreER(T);CCN2fl/fl 

(control) and Col1a2-CreER(T);CCN2-/- (conditional CCN2 KO) mice were treated with 

0.5% FBS for 24h. Indirect immunofluorescence analysis showed that the majority of 

cells differentiating from FBS-treated CCN2fl/fl SKPs spheroids co-expressed CCN2 and 

α-SMA. In contrast, no CCN2 immunoreactivity was detected in cells from CCN2-/- 

SKPs, coinciding with an apparent reduction of cells staining for α-SMA+ stress fibers 

(Figure 3.3A). Real time PCR analysis showed a significant knockdown of CCN2 and 

reduced α-SMA expression in CCN2-/- SKPs compared to CCN2fl/fl SKPs after treatment 

with FBS (Figure 3.3B). To assess a potential role for CCN2 on cellular proliferation, 

indirect immunofluorescence analysis was performed using an anti-Ki67 antibody, and 

the percentage of positive nuclei in differentiated cells were compared between FBS-

treated CCN2fl/fl and CCN2-/- SKPs; no significant difference was observed (Figure 

3.3C).  Densitometry analysis on a western blot performed on cell lysates also showed a 

reduction in α-SMA protein in FBS-treated CCN2-/- SKPs compared to CCN2fl/fl, and 

showed no significant reduction in Proliferating Cell Nuclear Antigen (PCNA) (Figure 

3.3D).
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Figure 3.9 Col1a2-specific CCN2 KO reduces myofibroblastic SKP differentiation. 

SKPs cultured from Col1a2-CreER(T);CCN2fl/fl or Col1a2-CreER(T);CCN2-/- mice were 

treated with 0.5% FBS for 24h. (A) Indirect immunofluorescence was performed with 

anti-α-SMA, anti-CCN2 and anti-Ki67 antibodies. (B) Real time RT-PCR analysis was 

performed to assess expression of α-SMA and CCN2 mRNA. Error bars represent ± 

SEM. (*= p<0.05;**=p<0.01;***=p<0.001; One-way ANOVA; N=3). (C) Ki67-positive 

nuclei were counted and expressed as a percentage of total differentiated cells (N=3; 

average of 10 fields). (D) Western blot analysis was performed to assess expression of α-

SMA (42 kDa), CCN2 (38 kDa) and PCNA (29 kDa) protein using β-Actin (42 kDa) as a 

loading control. Densitometry was performed using ImageJ software. Error bars represent 

± SD. (*= p<0.05;**=p<0.01;***=p<0.001; One-way ANOVA; N=3). 

 

 



50 

 

3.10 CCN2 knockdown results in changes in 
extracellular matrix, cytoskeleton, cell adhesion and cell 
motion-related gene expression. 
Since knockout of CCN2 had a direct effect on the ability of SKPs to differentiate 

into α-SMA-expressing cells, I sought to further elucidate the downstream effectors of 

CCN2 by assessing genome-wide changes in gene expression. To do this, microarray 

analysis was performed to compare the transcriptional profiles of Col1a2-

CreER(T);CCN2fl/fl and Col1a2-CreER(T);CCN2-/- SKPs in response to a 24 hour 

treatment with 0.5% FBS. 143 differentially expressed genes were identified (fold change 

> |1.4|, p<0.05, N=2; Supplemental Table 1). Cluster analysis was performed using 

DAVID Functional Annotation Tool on these genes. Altered gene clusters included genes 

related to the extracellular matrix, cytoskeleton, cell adhesion and cell motion (Table 

3.1). Notably, four genes in the cytoskeleton cluster identified to be downregulated were 

associated with contractile proteins (Acta1, Acta2, Myl9, Tagln). In the extracellular 

matrix cluster, two ECM-degrading matrix metallopeptidases were upregulated (Mmp1a, 

Mmp9), while a tissue inhibitor of metallopeptidases (Timp3), and a collagen gene 

(Col12a2) were downregulated.  In the cell adhesion and migration clusters, genes 

previously as being essential for myofibroblast differentiation such as Integrin alpha-11 

(Itga11), Thymus cell antigen 1 (Thy-1) and Epidermal growth factor receptor (Egfr) 

were identified to be downregulated (Rayego-Mateos et al., 2013; Rege and Hagood 

2006; Talior-Volodarsky et al. 2012). 

Real time PCR was subsequently performed on separate RNA samples of Col1a2-

CreER(T);CCN2fl/fl and Col1a2-CreER(T);CCN2-/- SKPs in response to FBS to verify the 
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differential expression of five genes: Mmp9, Timp3, Itga11, Thy-1 and Egfr. Consistent 

with the microarray results, expression of Itga11, Egfr, Thy1 and Timp3 was significantly 

decreased while expression of Mmp9 was significantly increased. (Figure 3.10) 
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Table 3.1 Cluster analysis of differential gene expression in CCN2-/- vs CCN2fl/fl 

SKPs in response to 24h 0.5% FBS treatment. 

 

Gene Name Gene Symbol Fold Change 

Extracellular Matrix 
matrix metallopeptidase 9 Mmp9 1.83033 

matrix metallopeptidase 1a Mmp1a 1.77374 
connective tissue growth factor Ctgf -3.03684 

tissue inhibitor of metalloproteinase 3 Timp3 -1.77853 
ADAMTS-like 1 Adamtsl1 -1.69146 

collagen, type XII, alpha 1 Col12a1 -1.42349 
aggrecan Acan -1.41547 

Cytoskeleton 
myosin, light chain 9 Myl9 -2.38173 

actin, alpha 2, smooth muscle Acta2 -1.64337 
transgelin Tagln -1.52242 

actin, alpha 1, skeletal muscle Acta1 -1.52047 
A kinase anchor protein 12 Akap12 -1.51423 

nexilin Nexn -1.41814 
Cell Adhesion 

connective tissue growth factor Ctgf -3.03684 
sorbin and SH3 domain containing 1 Sorbs1 -1.96531 

LIM and senescent cell antigen like domains 2 Lims2 -1.68726 
Multiple EGF-like-domains 10 Megf10 -1.59757 
thymus cell antigen 1, theta Thy1 -1.58788 

contactin 1 Cntn1 -1.50956 
dermatopontin Dpt -1.45043 

integrin alpha 11 Itga11 -1.41949 
Cell Motion 

connective tissue growth factor Ctgf -3.03684 
nerve growth factor receptor Ngfr -1.50912 

epidermal growth factor receptor Egfr -1.42589 
integrin alpha 11 Itga11 -1.41949 
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Figure 3.10 Real time RT-PCR verification of CCN2-sensitive genes. SKPs were 

isolated from Col1a2-CreER(T);CCN2fl/fl and Col1a2-CreER(T);CCN2-/- mice and 

differentiated for 24 hours in 0.5% FBS. RNA was harvested and subjected to real time 

RT-PCR analysis to compare genes identified by microarray as being differentially 

expressed (Itga1, Egfr, Thy1, Mmp9 and Timp3). Error bars represent ± SEM. (*= 

p<0.05, **=p<0.01; Student’s t-test; N=3). 
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4 Discussion 
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4.1 Summary of Results 
Consistent with literature, I found that SKPs cultured from murine trunk skin 

expressed the neural stem cell markers Sox2 and Nestin (Figure 3.1). By tracing the fate 

of adult cells expressing Col1a2 and Sox2, I found that the vast majority of SKPs 

cultured from murine trunk skin were derived from type I collagen-producing fibroblasts 

and not Sox2-expressing hair follicle cells (Figure 3.2, Figure 3.3). Moreover, I found 

that Col1a2-expressing fibroblasts could be cultured in monolayer and subsequently 

induced to become Sox2+, Nestin+ SKPs when detached and reseeded in serum-free 

medium containing bFGF (Figure 3.4, Figure 3.5). After being converted to SKPs, these 

type I collagen-producing fibroblasts were capable of both neuronal and myofibroblast-

like differentiation (Figure 3.6). To investigate the mechanisms behind myofibroblastic 

differentiation, I first demonstrated that treatment of SKPs with 0.5% FBS for 24 hours 

induced the expression of the myofibroblast marker α-SMA and the pro-fibrotic genes 

CCN1 and CCN2 (Figure 3.7). I then showed that chemical inhibition of focal adhesion 

kinase, Src-family kinases, and serum response factor all prevented myofibroblastic 

differentiation along with the activation of CCN1 and CCN2 (Figure 3.8). To determine 

if CCN2 played a direct role during differentiation, I used SKPs cultured from mice 

conditionally deleted for CCN2 in Col1a2-expressing cells. Consistent with my finding 

that SKPs were largely derived from Col1a2-expressing fibroblasts, SKPs from these 

mice did not express CCN2 at either the mRNA or protein level (Figure 3.9). Moreover, 

the knockdown of CCN2 resulted in a reduced ability of SKPs to differentiate into α-

SMA expressing cells (Figure 3.9), and was associated with changes in extracellular 

matrix, cell adhesion and cell migration clusters of gene expression (Table 3.1, Figure 

 



56 

 

3.10). Taken together, my results support two major conclusions: (1) bFGF induces SKP 

formation from dermal fibroblasts cultured in serum-free medium, and (2) CCN2 is a 

mediator of the differentiation of SKPs into α-SMA-expressing myofibroblast-like cells. 
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4.2 Research Significance and Future Studies 

4.2.1 bFGF induces SKP formation from dermal fibroblasts cultured 
in serum-free medium 

SKPs from murine dorsal skin have traditionally been thought of as originating 

from a hair follicle dermal papilla niche. Indeed, both SKPs and dermal papilla cells 

exhibit neural crest properties, and microdissected dermal papilla cells form SKP-like 

spheroids when grown in SKP growth medium (Biernaskie et al., 2009).  However, the 

data presented here provide strong evidence that the ability to form Sox2-expressing 

SKPs in culture is not restricted to a population of endogenous Sox2-expressing precursor 

cells. I have shown using lineage tracing techniques that murine cells that express Col1a2 

at 3-4 weeks of age (adult dermal fibroblasts) comprise the majority of cells in SKP 

spheroids whereas cells that express Sox2 (in the dermal papilla and dermal sheath) make 

up a small minority.  This suggests that adult dermal fibroblasts can be induced to express 

neural stem cell markers and possess an inherent plasticity similar to the potential found 

in the embryonic NIH/3T3 fibroblast cell line cultured as neurospheres (Wang et al., 

2011). My results also support and build upon the recent study by Krause et al. showing 

that murine trunk SKPs are derived from an embryonic mesenchymal origin (Krause et 

al., 2014). Here, I provide evidence that the mesenchymal-derived, SKP-forming cells in 

the adult dermis are largely type I collagen-expressing cells: i.e. fibroblasts.  

I have also shown that dermal fibroblasts cultured in monolayer can subsequently 

be converted to proliferating, multipotent, Sox2+, Nestin+ SKPs by detachment and 

reseeding in serum-free medium supplemented with bFGF alone. I found that the addition 

of B-27 combined with bFGF increased initial spheroid size, but that B-27 alone was not 
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sufficient to induce formation of spheroids. Furthermore, supplementation with EGF 

alone resulted in the formation of small spheroids that did not grow.  Taken together, this 

data suggests that bFGF is the crucial factor in previously defined neurosphere media that 

facilitates the formation and growth of SKP spheroids from fibroblasts. FGFs are 

involved in diverse cellular processes including proliferation, differentiation, adhesion, 

migration, survival and apoptosis (Turner and Grose, 2010). Endogenously, FGFs are a 

large family of secreted molecules that are multifunctional and important for a wide 

variety of developmental processes as well as tissue repair (Turner and Grose, 2010). 

FGFs bind to their cognate tyrosine kinase receptors, the FGFRs, to activate signal 

transduction through pathways including Ras/MAP kinase, Akt and phospholipase Cγ 

(Goetz and Mohammadi., 2013). It has been shown that bFGF is an essential component 

of embryonic stem cell culture medium that serves to maintain stem cells in a self-

renewing and undifferentiated state (Greber et al., 2011). In the context of this study, 

whether bFGF acts directly or indirectly to induce changes in morphology and gene 

expression associated with SKPs remains uncertain. Here, I have shown that bFGF allows 

fibroblasts to survive and proliferate in suspension in serum-free conditions, and that 

these cells are SKPs. It is thus possible that the simple alteration from cell-ECM/plastic 

to cell-cell adhesions unmasks the neural precursor potential of fibroblasts. In addition to 

promoting survival and proliferation in suspension conditions, bFGF may also play a role 

in directly inducing changes in gene expression. Indeed, previous studies have shown that 

bFGF is capable of inducing Sox2 expression in osteoblasts and Nestin expression in 

glioma cells (Mansukhani et al., 2005; Chang et al., 2013).  
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The question of why dermal fibroblasts possess the potential to become neural 

precursor-like is intriguing, given that they are derived from a mesenchymal and not 

neural crest origin (Krause et al., 2014). The answer may lie in whether the conversion of 

fibroblasts to SKPs in culture recapitulates any in vivo phenomena. The formation of the 

hair follicle dermal papilla could be such a process. Dermal papilla and dermal sheath 

cells are recognized as specialized fibroblasts, and have been thought to be derived from 

the dermal mesenchyme even though they paradoxically express neural crest markers 

(Yang and Cotsarelis, 2010). Consistent with this notion, it has previously been 

demonstrated by lineage tracing using a PDGFRα reporter targeting fibroblasts that the 

DP and DS are derived in part from dermal fibroblasts both during development and 

during adult hair follicle neogenesis (Collins et al., 2012). It thus seems likely that the 

conversion of fibroblasts to SKPs in vitro and the conversion of fibroblasts to DP cells in 

vivo share similar mechanisms, given that SKPs and DP cells are transcriptionally 

similar. Interestingly, at least 4 FGFs and all four FGF receptors are expressed in the hair 

follicle, with FGFR1 being localized specifically to the DP and DS (Kawano et al., 2005). 

This raises the possibility that the FGF-mediated formation of SKPs from dermal 

fibroblasts models the formation of the hair follicle DP.  

The role of the hair follicle DP in hair development has been studied for decades 

and is known to be important for hair follicle morphogenesis by functioning as a 

signaling center for epidermal-mesenchymal cross-talk (Driskell et al., 2011). 

Particularly, hair follicle formation is initiated when epidermal stem cells receive cues 

from the underlying DP (Rendl et al., 2005). Early experiments by Oliver and coworkers 

demonstrated that a combination of DP and epithelial cells implanted under the epidermis 
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of an adult rat ear were capable of forming hair follicle-like structures (Oliver, 1970). 

Furthermore, it was shown that the tissue origin of the implanted DP specified hair 

follicle type regardless of the epithelial component (Ibrahim and Wright, 1982). Later 

studies have identified Wnt, bone morphogenic protein (BMP) and FGF signaling 

pathways as being important mediators of DP cell function during hair follicle cycling 

(Greco et al., 2009; Kishimoto et al., 2000; Rendl et al., 2008). The hair inductive ability 

of DP cells has significant implications for treatment of conditions involving hair loss. In 

theory, being able to expand these cells would represent a method of generating a large 

quantity of de novo hair follicles (Driskell et al., 2011). Early studies reported that 

monolayer cultured DP cells were capable of hair follicle neogenesis after implantation, 

but that this ability was lost upon passaging (Jahoda et al., 1984). Recent studies have 

shown that culturing DP cells in medium containing bFGF results in the formation of 

spheroids that are capable of hair follicle induction upon repeated passaging, and that the 

spheroids partially model the intact DP (Osada et al., 2007; Higgins et al., 2010). These 

findings beg the question of whether SKPs formed from fibroblasts are also capable of 

hair follicle induction, given that they are induced to express DP markers. Since dermal 

fibroblasts represent a much more abundant and easily accessible source of cells 

compared to isolated DP cells, future investigations are warranted to determine if adult 

fibroblasts can be cultured, expanded, converted to SKPs, and subsequently implanted to 

form hair follicles. 
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4.2.2 CCN2 is a mediator of the differentiation of SKPs into α-SMA-
expressing myofibroblast-like cells  

Several lineage tracing studies have been performed in recent years to elucidate the 

origins of myofibroblasts in fibrotic diseases, resulting in various populations of 

progenitor cells being identified as key contributors to the myofibroblast population in 

models of kidney, liver, lung and skin fibrosis (Kramann et al., 2015). Our group has 

previously identified Sox2-expressing cells located in the hair follicle dermal papilla 

(DP) as a migratory precursor cell population that contributes to bleomycin-induced skin 

fibrosis in a CCN2-dependent manner (Liu et al., 2013). Given that SKPs and DP cells 

are transcriptionally similar, we tested the ability of SKPs to differentiate into a-SMA-

expressing myofibroblast-like cells. Here I have shown that the serum-induced 

myofibroblastic differentiation of SKP spheroids is dependent on FAK, Src-family kinase 

and SRF signaling pathways, that those pathways activate CCN1/CCN2, and that the 

deletion of CCN2 in SKPs impairs myofibroblastic differentiation.  

My finding that chemical inhibition of FAK, Src-family kinase or SRF pathways 

prevented serum-induced myofibroblastic differentiation of SKPs and activation of 

CCN2 mirrors previous studies showing that these inhibitors prevent TGFβ-induced 

fibroblast-to-myofibroblast differentiation (Shi-wen et al., 2012; Haak et al., 2014). The 

CCN2 promoter contains a CArG-like box that is inducible by SRF, and it has been 

shown that overexpression of SRF results in significantly increased CCN2 protein 

synthesis (Muehlich, 2007). These results thus support the notion that FAK/Src and SRF 

signaling is important for fibrosis. However, it remains to be elucidated whether FAK/Src 
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exerts its pro-fibrotic effect directly through SRF, or if it also acts through SRF-

independent pathways.  

In addition, I also found that CCN1 (Cyr61) was induced during SKP differentiation 

and suppressed by FAK/Src and SRF inhibition. CCN1 is a matricellular protein that is 

structurally similar to CCN2 and like CCN2 is involved in a wide range of cellular and 

biological processes. CCN1 has been studied primarily for its critical role during 

angiogenesis; however, its role in fibrogenesis is currently unclear. Unpublished 

preliminary results in our lab suggest that CCN1 acts synergistically with CCN2 during 

fibrosis by regulating collagen crosslinking. Further studies are warranted to determine if 

CCN1 is involved in myofibroblast differentiation, and to determine whether targeting 

CCN1 and CCN2 simultaneously in potential anti-fibrotic treatments may be more 

effective than targeting either protein alone. 

My finding that SKPs deleted for CCN2 exhibit impaired myofibroblastic 

differentiation suggests that CCN2 plays a direct role in the activation of contractile 

machinery in neural crest-like precursor cells, and is consistent with the notion that 

CCN2 primes cells to be more susceptible to fibrotic stimuli (Tong et al., 2009). These 

results are in agreement with previous studies implicating the involvement of CCN2 in 

the myofibroblastic transdifferentiation of precursor cells in fibrosis. In a model of skin 

fibrosis, it was shown that CCN2 expression is required by DP cells for their recruitment 

and differentiation into myofibroblasts within the fibrotic lesion (Liu et al., 2013). In a 

model of myocardial fibrosis, it was demonstrated that CCN2 mediates the accumulation 

of bone-marrow derived fibrocytes and enhances their differentiation into a myofibroblast 

phenotype responsible for ECM deposition (Rosin et al., 2013). In a model of liver 
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fibrosis, it was shown that silencing CCN2 inhibits the activation of pericyte-like hepatic 

stellate cells to express α-SMA (Li et al., 2010). Interestingly, it has even been shown 

that CCN2 is required for the transdifferentiation of epithelial cells into α-SMA-

expressing myofibroblast-like cells (Sonnylal et al., 2013). Taken together, although the 

precursor populations that contribute to fibrosis in different organs are likely 

heterogeneous, CCN2 expression appears to be commonly associated with the 

dysregulation of precursor cells during the fibrotic response. Thus, targeting CCN2 

directly may represent an effective anti-fibrotic treatment that avoids altering potential 

pleiotropic effects of more upstream mediators.  Indeed, a CCN2 neutralizing antibody 

currently in clinical development has been shown to be effective in preventing and 

reversing lung fibrosis (Lipson et al., 2012).  

The gene expression profiling results here provide an interesting insight on how 

CCN2 may exert its effects. Notably, several genes associated with matrix degradation 

were differentially expressed in CCN2-/- cells, consistent with the idea that CCN2 is pro-

fibrotic and normally suppresses matrix breakdown (Brigstock, 2009). Furthermore, fives 

genes in the cytoskeleton cluster found to be downregulated in CCN2-/- cells 

corresponded to genes encoding contractile proteins, suggesting that CCN2 activates 

multiple genes associated with the myofibroblast phenotype. Altered expression of 

several genes associated with cell adhesion and migration were also identified, which 

may represent downstream targets of CCN2. I used real time RT-PCR to verify the 

differential expression of five genes of interest, Integrin alpha-11 (Itga11), Epidermal 

growth factor receptor (Egfr), Thy-1, Matrix metallopeptidase 9 (Mmp9) and 

Metalloproteinase inhibitor 3 (Timp3). Itga11 is a major collagen receptor on fibroblastic 
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cells and has been shown to control myofibroblast differentiation in multiple fibroblast 

types in vitro (Talior-Volodarsky et al. 2012).  Egfr has been identified as a novel ligand 

for CCN2 (Rayego-Mateos et al., 2013), and its loss has been shown to result in 

resistance to TGF-β induced myofibroblast differentiation (Midgley et al., 2013). Thy-1 

is a cell surface protein known to be a marker of fibroblasts and has been shown to be a 

functional signaling protein in myofibroblasts that acts downstream of FAK/Src (Rege 

and Hagood 2006). Mmp9 is a matrix metalloproteinase involved in the breakdown of 

extracellular matrix components, and has been shown to have anti-fibrotic effects by 

cleaving excessive matrix deposition (Cabrera et al., 2007). Its upregulation in CCN2-/- 

cells is consistent with previous findings that a notochord-specific CCN2 knockout 

increases Mmp9 mediated Aggrecan degradation (Bedore et al., 2013). In conjunction, 

Timp3, an endogenous inhibitor of metalloproteinases, was verified to be significantly 

downregulated. Taken together, CCN2 likely mediates myofibroblast differentiation via 

altered adhesive signaling and extracellular matrix interactions.  
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4.3 Conclusions 
My results support a number of conclusions (summarized in Figure 4.1). First, 

although SKPs express Sox2, SKPs are largely derived from type I collagen-producing 

adult dermal fibroblasts and not an endogenous Sox2-expressing precursor population. 

Second, adult dermal fibroblasts possess inherent plasticity to become neural crest 

precursor-like when cultured in serum free medium containing bFGF. Third, bulk 

cultured SKPs can effectively be targeted for genetic knockout using the Col1a2 

promoter. Fourth, the myofibroblastic differentiation of SKPs is regulated by the 

FAK/Src and SRF-induced activation of CCN2. Fifth, CCN2 promotes the expression of 

contractile genes and is associated with adhesive signaling and extracellular matrix 

interactions. Overall, my results support the notion that fibroblasts possess a high degree 

of inherent plasticity, and that CCN2 is a mediator of progenitor cell dysregulation in 

fibrosis. 
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Figure 4.1 Schematic overview for the formation and differentiation of fibroblast-

derived SKPs. Col1a2-expressing dermal fibroblasts (isolated either directly from tissue 

or from trypsinized monolayer) are induced to become SKP spheroids when cultured in 

serum-free medium supplemented with bFGF. Treatment of floating SKP spheroids with 

serum induces adhesion, radial spreading and proliferation. Activation of FAK/Src and 

SRF result in the expression of CCN2, which contributes to myofibroblastic 

differentiation through the regulation of ECM, adhesive and cytoskeletal genes. Through 

a pathway yet to be elucidated, NGF induces SKP differentiation into BIII-tubulin-

expressing neuronal cells.  
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Supplementary Content 
Supplemental Table 1. Full list of differentially expressed genes in CCN2-/- vs 

CCN2fl/fl SKPs in response to 24h 0.5% FBS treatment (Fold change >|1.4|, p<0.05, 

N=2). 

 

Gene Name Gene Symbol Fold Change 
connective tissue growth factor Ctgf -3.03684 
G protein-coupled receptor 133 Gpr133 -2.59341 

myosin, light polypeptide 9, regulatory Myl9 -2.38173 
adenylate cyclase activating polypeptide 1 receptor 1 Adcyap1r1 -2.32733 
cytochrome P450, family 4, subfamily a, polypeptide 

12B Cyp4a12b -2.2033 

deleted in bladder cancer 1 (human) Dbc1 -1.97189 
sorbin and SH3 domain containing 1 Sorbs1 -1.96531 

granzyme D Gzmd -1.94857 
carbonic anhydrase 2 Car2 -1.94609 

mesenchyme homeobox 1 Meox1 -1.90741 
fibrinogen-like protein 2 Fgl2 -1.72611 

growth differentiation factor 6 Gdf6 -1.72287 
growth arrest and DNA-damage-inducible 45 gamma Gadd45g -1.71392 

caspase 1 Casp1 -1.70599 
CAP, adenylate cyclase-associated protein, 2 Cap2 -1.70117 

ADAMTS-like 1 Adamtsl1 -1.69146 
LIM and senescent cell antigen like domains 2 Lims2 -1.68726 

keratin 20 Krt20 -1.64377 
actin, alpha 2, smooth muscle, aorta Acta2 -1.64337 

netrin 4 Ntn4 -1.63965 
granzyme C Gzmc -1.6267 

suppressor of cytokine signaling 2 Socs2 -1.619 
leucine rich repeat containing 7 Lrrc7 -1.61398 

programmed cell death 4 Pdcd4 -1.60282 
multiple EGF-like-domains 10 Megf10 -1.59757 

chemokine (C-X-C motif) ligand 14 Cxcl14 -1.5954 
thymus cell antigen 1, theta Thy1 -1.58788 

olfactory receptor 508 Olfr508 -1.57938 
cytidine monophospho-N-acetylneuraminic acid 

hydroxylase Cmah -1.56904 

angiopoietin-like 7 Angptl7 -1.54256 
protease, serine, 23 Prss23 -1.54228 
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guanylate cyclase 1, soluble, alpha 2 Gucy1a2 -1.53184 
Kruppel-like factor 8 Klf8 -1.5313 

transgelin Tagln -1.52242 
actin, alpha 1, skeletal muscle Acta1 -1.52047 

sodium channel, voltage-gated, type VII, alpha Scn7a -1.51807 
thyrotroph embryonic factor Tef -1.51688 

pregnancy-associated plasma protein A Pappa -1.51427 
A kinase (PRKA) anchor protein (gravin) 12 Akap12 -1.51423 

contactin 1 Cntn1 -1.50956 
nerve growth factor receptor (TNFR superfamily, 

member 16) Ngfr -1.50912 

neuropilin (NRP) and tolloid (TLL)-like 1 Neto1 -1.5051 
family with sequence similarity 115, member E Fam115e -1.50396 

tryptase beta 2 Tpsb2 -1.48961 
gasdermin A Gsdma -1.48833 

ATP-binding cassette, sub-family D (ALD), member 2 Abcd2 -1.47299 
microtubule-associated protein 2 Mtap2 -1.46933 

zinc finger protein 804A Zfp804a -1.46281 
dermatopontin Dpt -1.45043 

UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-
acetylgalactos Galntl4 -1.43733 

grancalcin Gca -1.43729 
sialic acid binding Ig-like lectin G Siglecg -1.43559 

serine (or cysteine) peptidase inhibitor, clade A, 
member Serpina3f -1.43511 

glycogen synthase kinase 3 beta Gsk3b -1.4341 
epidermal growth factor receptor Egfr -1.42589 

collagen, type XII, alpha 1 Col12a1 -1.42349 
procollagen-proline, 2-oxoglutarate 4-dioxygenase P4ha3 -1.42252 

potassium voltage-gated channel, Shal-related family, 
member 3 Kcnd3 -1.42012 

chemokine (C-C motif) receptor 2 Ccr2 -1.41957 
integrin alpha 11 Itga11 -1.41949 

nexilin Nexn -1.41814 
aggrecan Acan -1.41547 

adducin 2 (beta) Add2 -1.40559 
NK3 homeobox 2 Nkx3-2 -1.40425 

FBJ osteosarcoma oncogene Fos -1.40291 
beta galactoside alpha 2,6 sialyltransferase 1 St6gal1 1.40081 

serine (or cysteine) peptidase inhibitor, clade B, 
member 8 Serpinb8 1.40261 

glutathione reductase Gsr 1.40276 
microRNA 1931 Mir1931 1.40561 

SH2 domain containing 5 Sh2d5 1.40666 
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neuronal pentraxin 1 Nptx1 1.40714 
CD40 antigen Cd40 1.40782 

sphingomyelin phosphodiesterase, acid-like 3B Smpdl3b 1.40808 
NADH dehydrogenase subunit 6 ND6 1.41157 

DnaJ (Hsp40) homolog, subfamily B, member 14 Dnajb14 1.41384 
inhibitor of kappaB kinase epsilon Ikbke 1.41435 

very low density lipoprotein receptor Vldlr 1.41583 
R-spondin family, member 4 Rspo4 1.4179 

dCTP pyrophosphatase 1 Dctpp1 1.4207 
N-deacetylase Ndst3 1.42107 

dachshund 1 (Drosophila) Dach1 1.42518 
interleukin 6 Il6 1.42645 

neuron specific gene family member 1 Nsg1 1.42668 
C1q and tumor necrosis factor related protein 7 C1qtnf7 1.42827 

ATP-binding cassette, sub-family B (MDR Abcb1b 1.429 
vomeronasal 1, receptor 49 Vmn1r49 1.43768 

hephaestin Heph 1.44032 
monooxygenase, DBH-like 1 Moxd1 1.44101 

LanC lantibiotic synthetase component C-like 3 Lancl3 1.44567 
stanniocalcin 1 Stc1 1.44612 

uridine phosphorylase 1 Upp1 1.45219 
ring finger protein 183 Rnf183 1.45498 

sialophorin, pseudogene Spn-ps 1.46061 
olfactory receptor 1106 Olfr1106 1.4607 

microRNA 542 Mir542 1.46371 
hepatitis A virus cellular receptor 2 Havcr2 1.47387 

membrane-spanning 4-domains, subfamily A, member 
4B Ms4a4b 1.47755 

integrin alpha 2 Itga2 1.47766 
phosphatidylinositol 3-kinase, catalytic, beta 

polypeptide Pik3cb 1.47773 

G protein-coupled receptor 83 Gpr83 1.48097 
processing of precursor 7, ribonuclease P family Pop7 1.48696 

histone cluster 2, H2bb Hist2h2bb 1.48878 
a disintegrin and metallopeptidase domain 4 Adam4 1.49567 

serum/glucocorticoid regulated kinase 3 Sgk3 1.5069 
nucleoporin 62 C-terminal like Nup62cl 1.50967 

family with sequence similarity 69, member A Fam69a 1.51222 
rhomboid 5 homolog 2 Rhbdf2 1.51386 

alpha 1,4-galactosyltransferase A4galt 1.52659 
phosphofructokinase, liver, B-type Pfkl 1.5281 

leprecan-like 1 Leprel1 1.53976 
selectin, endothelial cell Sele 1.54627 
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retinoid X receptor gamma Rxrg 1.56503 
protease, serine, 35 Prss35 1.5675 

interleukin 23 receptor Il23r 1.57132 
olfactory receptor 127 Olfr127 1.57277 

natriuretic peptide type B Nppb 1.58215 
chitinase 3-like 1 Chi3l1 1.58554 

lymphocyte antigen 75 Ly75 1.58564 
neuropilin 2 Nrp2 1.58913 

olfactory receptor 1254 Olfr1254 1.60115 
Eph receptor A2 Epha2 1.60637 

catenin (cadherin associated protein), alpha-like 1 Ctnnal1 1.61247 
microRNA 1950 Mir1950 1.61265 

schlafen 3 Slfn3 1.61404 
polymerase (RNA) II (DNA directed) polypeptide K Polr2k 1.63419 

histone cluster 2, H3b Hist2h3b 1.63421 
zinc finger protein 704 Zfp704 1.64953 

transmembrane protein 22 Tmem22 1.65184 
aquaporin 8 Aqp8 1.65994 

forkhead box C2 Foxc2 1.66963 
histone cluster 2, H3c2 Hist2h3c2 1.67196 

transmembrane protein 132D Tmem132d 1.67454 
transmembrane protein 26 Tmem26 1.67611 

solute carrier family 38, member 1 Slc38a1 1.70908 
matrix metallopeptidase 1a (interstitial collagenase) Mmp1a 1.77374 

matrix metallopeptidase 9 Mmp9 1.83033 
Rac/Cdc42 guanine nucleotide exchange factor (GEF) 6 Arhgef6 1.86586 

MAS-related GPR, member A9 Mrgpra9 1.91651 
dehydrogenase/reductase (SDR family) member 9 Dhrs9 1.9195 

UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase, 
pol B3galt2 2.06128 

solute carrier organic anion transporter family, 
member 4a1 Slco4a1 2.06643 

protamine 1 Prm1 2.09748 
complement component 3 C3 2.33929 

fatty acid binding protein 4, adipocyte Fabp4 2.56557 
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