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Abstract 

Streptococcus pyogenes is a human-specific globally prominent bacterial pathogen that 

secretes extremely potent exotoxins known as superantigens. Superantigens function to 

overstimulate T lymphocytes, capable of inducing excessive cytokine responses, potentially 

leading to toxic shock syndrome. Each strain of S. pyogenes encodes multiple distinct 

superantigens, yet the reasons why S. pyogenes retains multiple superantigens has remained 

elusive. Using a murine model of acute nasopharyngeal infection, the role of each 

superantigen encoded by S. pyogenes MGAS5005 was evaluated using isogenic 

superantigen-deletion or -complemented strains, and passive immunization with 

superantigen-neutralizing antibodies. The superantigen SpeG, and likely SpeJ, were not 

required for infection. However, SpeA and SmeZ were both required for infection of HLA-

DQ8 transgenic mice, and thus, are not functionally redundant. This supports the theory that 

S. pyogenes superantigen expression varies depending on host factors, and provides insight 

into superantigen function in non-severe infections. 
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Streptococcus pyogenes, superantigens, acute nasal infection, redundancy, pharyngitis, T 
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Chapter 1 : Introduction 
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1 Introduction 

 

1.1 Streptococcus pyogenes 

Streptococcus pyogenes, also known as Group A streptococci by Lancefield designation, 

is a Gram-positive bacterial species known for growing in pairs or chains of spherical 

(coccoid) cells and for producing β-haemolysis on blood agar plates [1]. Although 

humans are the only natural reservoir and host of S. pyogenes, the species is truly a 

versatile pathogen that is able to live and cause infections in a variety of tissue types [2]. 

Currently, there is no accepted vaccine for S. pyogenes [3-5]. Though several candidates 

targeting various S. pyogenes virulence factors have been tried, only two vaccine 

candidates have progressed to human clinical trials. Both vaccines were based on the M 

protein (discussed below) [6]. 

1.2 S. pyogenes genome 

The S. pyogenes genome exists as a single circular chromosome approximately 1.85 Mb 

in length [2]. Interspersed in the core chromosome are a number of mobile genetic 

elements (MGE) such as integrative and conjugative elements (ICE) and prophage DNA, 

the locations and composition of which may differ from strain to strain [7]. Although 

MGEs in S. pyogenes account for ~10% of total DNA, these element account for ~75% of 

the genetic variation between individual strains [7]. S. pyogenes also contains 13 two-

component systems and several stand-alone response regulators which collectively 

regulate expression of the genome [8]. 

1.3 S. pyogenes virulence factors 

The S. pyogenes spectrum of infections can be attributed to its wide range of virulence 

factors, which lead to adherence, immune system evasion, deliberate stimulation or 

degradation of host components, and direct cell lysis. The virulence factors discussed 

below do not represent an exhaustive list, but represent a selection of well-studied 

factors.  
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1.3.1 M protein 

Serological specificities between S. pyogenes strains are based on differences in M 

protein [9]. Encoded by the emm gene, that is located on an ancient pathogenicity island 

(acquired before speciation) [10], the surface-bound M protein is made of long fibrils 

formed into a relatively-conserved C-terminal coiled-coil with an N-terminal 

hypervariable non-helical region [10-13]. M proteins have been shown to have binding 

sites for a number of human proteins including fibronectin, glycosaminoglycans, 

fibrinogen, C4b-binding protein (C4BP), plasminogen, and factor H [14-20]. By binding 

these different molecules, M proteins contribute to bacterial aggregation, host cell 

adherence, as well as evasion of complement and phagocytosis [11]. Through N-terminal 

hypervariable region sequencing, it has been determined that there are more than 200 

emm types, which vary in sequence and size [11, 21, 22]. Certain emm types have been 

associated with specific streptococcal diseases including emm1 (M1) strains which have 

been associated with invasive infections; emm types 3, 5, 6, 18, and 89 have been 

associated with pharyngitis; and emm types 1, 5, 6, 14, 18, and 24 which have been 

referred to as “rheumatogenic” for their association with acute rheumatic fever (ARF) [6, 

23-27]. emm types can also have certain geographic associations and may be prevalent in 

specific areas of the world [28], while others are distributed globally [29].   

1.3.2 Hyaluronic acid capsule 

S. pyogenes produces a hyaluronic capsule, which has been demonstrated to provide the 

bacteria with increased resistance to phagocytosis [30, 31]. The repeating units of β1,4-

linked glucuronic acid connected via β1,3-linked N-acetylglycosamine form a 

glycosaminoglycan fiber which is indistinguishable from those produced in human 

connective tissue [32]. The genes for the enzymes responsible for capsule production are 

highly conserved, and are as follows: hasA encodes the hyaluronate synthase, hasB 

encodes UDP-glucose dehydrogenase, and hasC encodes UDP-glucose 

pyrophosphorylase [30, 32]. These genes constitute a three gene operon regulated by a 

promoter located upstream of hasA. Difference in capsule production can be attributed to 

cis-acting promoter elements, growth phase, and environmental signals, but ultimately, 

this operon is regulated by the control of virulence (CovR/S; formerly CsrR/S) two-
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component system [30, 32, 33]. It has been suggested that downregulation of capsule 

synthesis leads to an asymptomatic carriage state [34] while increased capsule production 

leads to symptomatic infections. While emm18 (M18) strains are typically associated 

with the “less severe” rheumatic fever and pharyngeal infections [30], the has operon 

promoter in the M18 strain was three times more active compared to the has operon 

promoter of a poorly-encapsulated strain [33]. This hyper-encapsulation by the M18 

strain is due to premature truncation in the RocA protein [35]; interestingly, the RocA 

truncation was also associated with increased capsule expression in an M3 strain [36]. In 

addition to the link between capsule expression and “less severe” infections, Turner et al. 

noticed increased capsule expression by invasive S. pyogenes isolates [37], and Levin et 

al. demonstrated an increase in lethality using a hyper-encapsulated strain in a murine 

model of systemic infection [30]. This strain had a deletion in the covR gene to increase 

capsule expression, and since the CovR/S two-component system is now known to 

regulate more genes than the hyaluronic acid capsule production, it is possible that the 

extreme phenotype observed was due to effects from other virulence factors as well.  

Interestingly, the hyaluronic acid capsule has been shown to readily interact with human 

CD44, in turn inducing membrane ruffling, actin cytoskeleton rearrangement, and 

disruption of tight junctions [38]. Similarly, in a cynomolgous macaque model of S. 

pyogenes pharyngitis, expression of the has operon positively correlated to expression of 

vesicle formation and clathrin adaptor genes, downstream of CD44, for endocytosis [39]. 

It has also been proposed that S. pyogenes uses its capsule to directly invade 

keratinocytes [40]. These studies support the belief that S. pyogenes employs its capsule 

to evade phagocytosis, invade human tissues, potentially persist intracellularly, and 

promote infection. 

1.3.3 Streptococcal pyrogenic exotoxin B  

Streptococcal pyrogenic exotoxin B (SpeB) is a secreted cysteine protease that is known 

to cleave a number of S. pyogenes factors and host molecules. SpeB is secreted as a 

zymogen, then transitions through several intermediates to its active form via 

autocatalysis at multiple cleavage sites in the zymogen pro-domain [41]. Mature SpeB 

then cleaves more zymogen to its active form. SpeB has been shown to cleave E-cadherin 
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and occludin, two components of tight junctions, potentially facilitating translocation of 

the bacteria across the epithelial barrier and contributing to an invasive disease phenotype 

[42]. SpeB is able to degrade the S. pyogenes virulence factors M1, streptolysin O (SLO), 

SpeF DNAse (also known as DNAse B), glycolytic enzymes, secreted inhibitor of 

complement (SIC), streptokinase, and host immune mediators including C1 inhibitor, as 

well as several complement proteins (C3b and the membrane attack complex) [43-45], 

presumably as a method of modulating host inflammatory responses in vivo [43]. Aziz 

and colleagues [43] propose that S. pyogenes alters SpeB expression upon infection in 

vivo and therefore modulates virulence factor degradation. Carroll and Musser [41] 

suggest that SpeB is regulated in a complex manner with both environmental signals such 

as pH and salt concentration, as well as intrinsic regulators of transcription, translation, 

and post-transcriptional modifications; for example, at the level of transcription alone 

there are at least 12 regulatory factors involved including regulator of protease B (RopB), 

the multiple gene regulator protein Mga, and the CovR/S two-component system [46].  

1.3.4 CovR/S and virulence factor regulation 

The control of virulence response regulator and sensor kinase (CovR/S) two-component 

system regulates up to 15% of S. pyogenes genes, including virulence factors [47]. 

Originally identified as capsule synthesis regulator regulator component and sensor 

component (CsrR/CsrS) [30], CovR/S contains the canonical parts of a two component 

system including a cytoplasmic response regulator (CovR) and a membrane-located 

sensor kinase (CovS) [47, 48]. One proposed model indicates that CovS senses 

environmental signals such as pH, osmolarity, and temperature [49]. Under normal 

conditions, CovS phosphorylates CovR, leading to the repression of the expression of 

virulence genes such as the hyaluronic capsule, SpeB, streptokinase, and streptolysin S 

(SLS) during exponential growth [49, 50]. Under mild stress conditions, CovR is 

inactivated by CovS, leading to the de-repression (and thus, expression) of genes required 

for virulence and growth under stress [49]. Strains with a mutation in covR have been 

associated with invasive infections, and may even be selected for in vivo [51]. covR 

mutations are typically amino acid substitutions where the final protein loses CovS 

binding activity but still retains some DNA binding activity [51, 52]. covS mutations 
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acquired in vivo can be separated into two categories: mutations from mouse-passaged 

strains are typically frameshift mutations that remove function of the resulting protein, 

while mutations from clinical isolates are usually point mutations in which the resulting 

CovS protein retains some function [52]. Interestingly, strains that have a mutation in 

covS do not produce SpeB, while strains with mutations in both covR and covS do, 

indicating that CovS attenuates the repression of SpeB in a process facilitated by CovR 

[51]. M1 strains that cause invasive disease have also been associated with mutations in 

covS [52]. It should be noted, however, that different mutations within the same gene can 

produce differing effects with regards to virulence factor secretion profiles [51]. 

The other main participant in virulence factor regulation is the Mga regulator protein. 

Gene regulation by Mga can be either direct or indirect [46]. Regulation of mga itself is 

growth phase dependent as its expression is active during early and late exponential 

phases and turned off in stationary phase, indicating its importance in establishment of 

infection [53]. Its gene product, Mga, regulates a number of iron and amino acid uptake 

genes and genes for ribosomal proteins, as well as virulence genes including the emm 

gene, M protein expression, scpA which encodes C5a peptidase (discussed below), fba 

encoding fibronectin binding protein, and sic (encoding SIC) in response to 

environmental conditions [46, 53]. Although typically thought to be solely an activator of 

transcription, its repressor function has also been described, particularly with respect to 

transport, binding, and metabolism of sugar substrates [46]. 

Interestingly, CovR represses the gene for the response regulator TrxR of the TrxR/S 

two-component system, which typically activates the Mga regulon [54]. This link 

highlights the complexity of S. pyogenes virulence gene regulation, the networks of 

which are just beginning to be understood.  

1.3.5 Other S. pyogenes virulence factors 

Streptokinase, regulated by the CovR/S two-component system [55], is an enzyme 

secreted by S. pyogenes that cleaves plasminogen to plasmin [56]. It has found alternative 

use as an anticoagulant in supplemental therapy for patients with myocardial infarction 

[56]. Mice transgenic for human plasminogen are more susceptible to, and have higher 
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mortality from skin infections by S. pyogenes than non-transgenic mice [18]. Because of 

the expression of streptokinase by S. pyogenes, plasminogen has been suggested to be an 

essential host factor for establishment of S. pyogenes infection [18]. S. pyogenes is 

thought to use streptokinase in order to increase plasminogen cleavage to plasmin, which 

then results in increased degradation of the extracellular matrix as well as fibrin deposits 

to enhance dissemination of S. pyogenes. Interestingly, S. pyogenes also carries other 

plasminogen-binding proteins which aid in virulence by promoting adhesion and invasion 

into host epithelial cells, as well as preventing phagocytic engulfment and killing in blood 

[57]. 

Sda1 is a deoxyribonuclease (DNAse) utilized solely by the M1T1 globally disseminated 

clone of S. pyogenes [58]. While most S. pyogenes strains carry at least one DNAse, Sda1 

is encoded by a unique allele (sda1) in a bacteriophage element, and seems to have a 

chimeric nature when compared to other similar DNAses [58]. Although the longer 

amino acid sequence of Sda1 correlates with increased DNAse activity [58] and escape 

from neutrophil extracellular traps [59], transfer of the bacteriophage containing sda1 to a 

strain that originally lacked it did not lead to increased virulence in an invasive model of 

S. pyogenes infection [60]. 

S. pyogenes uses C5a peptidase to degrade host C5a, a chemokine produced in the 

complement cascade and used to recruit neutrophils to the site of infection [61, 62]. C5a 

peptidase is encoded by the scpA gene and is a surface protein which cleaves C5a 

between the lysine at position 68 and the asparagine at position 69, interfering with the 

epitope required for recognition by neutrophil C5a receptors [63]. Similar to other 

virulence factors of S. pyogenes, C5a peptidase demonstrates strict specificity for its 

substrate C5a [63, 64].  

S. pyogenes cell envelope proteinase (SpyCEP) is a surface-associated proteinase 

produced by S. pyogenes that cleaves interleukin (IL)-8 at its C-terminus, thus reducing 

the number of neutrophils recruited to the site of infection [65]. Invasive disease isolates 

of S. pyogenes have been found to have higher SpyCEP expression compared to 
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pharyngeal isolates [65]; this may be due to its regulation by the CovR/S two-component 

system [37]. 

S. pyogenes employs two cytolysins: streptolysin O (SLO) and SLS. SLO is a secreted, 

oxygen-labile, thiol-activated toxin that binds cholesterol in cell membranes [66]. SLO 

aids in pathogenesis of S. pyogenes infections by polymerizing in membranes to form 

pores that lyse erythrocytes, macrophages, lymphocytes, and platelets [66-68].  

Alternatively, the classic β-haemolysis, or complete lysis, of red blood cells produced by 

S. pyogenes colonies on blood agar plates is due to the oxygen-stable toxin SLS [69]. 

Encoded in a nine-gene operon (sagA - sagI) [70], SLS is typically expressed and 

secreted in stationary phase; however, with mutations in the covR/S locus, SLS is 

secreted during earlier stages [50]. SLS functions to form pores in membranes of 

lymphocytes, neutrophils, platelets, and red blood cells causing osmotic cell lysis, and 

aiding in virulence [68, 69].  

1.3.6 Superantigens 

Superantigens are non-enzymatic proteins that are secreted and range in size from ~22-29 

kDa [71]. Named due to their “peculiarly strong and specific reactivity”, superantigens 

are immunostimulatory toxins produced by some bacterial species [72]. They generally 

function by contacting the β-chain variable (Vβ) region of the T cell receptor (TCR) on T 

lymphocytes and the peptide-presenting major histocompatibility complex (MHC) class 

II molecules of antigen presenting cells (APC) causing large-scale immune activation 

(Figure 1) [71, 73]. These toxins are present in a number of bacterial species including 

Mycoplasma arthritidis, Yersinia pseudotuburculosis, coagulase negative staphylococci, 

and group G and C streptococci; however, the most notorious superantigens are from 

Staphylococcus aureus and Streptococcus pyogenes. Although superantigens are mainly 

known for their ability to activate and expand T lymphocyte populations, they are also 

known for their pyrogenic (fever-causing) and/or emetic (vomit-inducing) activity [74].  

1.3.6.1 Streptococcal superantigens  

Currently, there are 14 superantigens expressed by streptococcal species: streptococcal 

pyrogenic exotoxin (Spe) A, SpeC, SpeG-SpeP, streptococcal mitogenic exotoxin Z  
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Figure 1. Antigen presentation complexes with and without superantigen interactions. (A) 

Conventional antigen presentation complex with TCR α-chain (grey), TCR β-chain (red), 

MHC class II α-chain (green), MHC class II β-chain (blue), and the antigen peptide 

(black). (B) Streptococcal pyrogenic exotoxin A (SpeA; yellow) interacting with the TCR 

β-chain (red) and MHC class II α-chain (green) of the antigen presentation complex. Also 

depicted are the TCR α-chain (grey), MHC class II β-chain (blue), and antigen peptide 

(black).   

A B
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(SmeZ), and streptococcal superantigen A (SSA) [75]. However, only 11 of these – 

SpeA, SpeC, SpeG-SpeM, SmeZ and SSA – are found in S. pyogenes; the others are 

found in group C and group G streptococcal species [75]. Research groups have used the 

presence or absence of superantigen genes to “profile” different S. pyogenes strains in 

order to distinguish epidemiological distribution patterns [76, 77]. 

Superantigens target and expand T lymphocyte populations expressing specific Vβ 

regions. For example, SpeA targets human T lymphocytes expressing Vβ9, -12, and -14 

[78], while SpeJ targets Vβ2, -3, -12, -14, and -17 [79]. SmeZ, which is an extremely 

potent superantigen, is able to activate human peripheral blood mononuclear cells 

(PBMC) at concentrations as low as 1 fg/mL [80], and targets T lymphocytes expressing 

Vβ8 [81-83]. Superantigen contribution to streptococcal disease is discussed below.  

Although named with superantigen nomenclature, SpeB does not have superantigen 

activity nor sequence similarity to superantigens [41].  Original purifications of the 

enzyme were crude and likely contained SmeZ as an unknown contaminant. 

Interestingly, SpeB can degrade SmeZ, as well as SpeA and SpeG but to a lesser extent, 

while SpeJ is completely resistant to SpeB cleavage [84]. Similarly, SpeF was also 

mislabeled, and is a streptodoronase (streptococcal DNAse) originally named mitogenic 

factor (MF), but is now more commonly known as DNAse B [85]. Although DNAse B is 

heat stable like superantigens, it has no mitogenic activity [85, 86].   

1.3.6.2 Superantigens from other species  

M. arthritidis secretes a T lymphocyte mitogen (MAM) that targets murine Vβ6- and 

Vβ8-expressing lymphocytes, as well as human T lymphocytes expressing Vβ17 [87]. 

Interestingly, MAM has direct interactions with both TCR Vα and Vβ chains [88].  

Y. pseudotuberculosis also expresses a T lymphocyte mitogen, Y. pseudotuberculosis 

mitogen (YPM), targeting human TCR Vβ3, Vβ9, Vβ13.1 and Vβ13.2 [71]. The YPM 

protein toxins are smaller in size at 14.5 kDa [71]. The superantigens from both M. 

arthritidis and Y. pseudotuberculosis have been found to exacerbate in vivo infections 

[89]. 
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S. aureus produces several superantigens that contribute to numerous staphylococcal 

diseases including (but not limited to) staphylococcal food poisoning and staphylococcal 

TSS [73, 90].  They can be classified as toxic shock syndrome toxin 1 (TSST-1), the 

staphylococcal enterotoxins (SE) A-E, G, H, I, R, and T, as well as the SE-like (SEl) 

proteins SElJ-Q, S, U, V, and X [90].  The SEs each demonstrate emetic (vomit-

inducing) activity and have been linked to staphylococcal foodborne illness [91], though 

this is attributed to a cysteine loop structure separate from the T lymphocyte stimulating 

activity [92]. Conversely, the SEl toxins do not have emetic activity, or have yet to 

formally demonstrate emetic activity [90]. SEH instead activates and expands T 

lymphocytes expressing Vα10, -14, and -17 TCR [93]. 

The only viral superantigens currently known are from the rabies virus and mouse 

mammary tumour viruses (MMTV). The nucleocapsid N protein of the rabies virus 

functions as a superantigen expanding (and causing eventual deletion of) T lymphocytes 

bearing human Vβ8 [94]. One of the recently proposed models for the mechanism by 

MMTV superantigens includes the protein binding to two MHC class II molecules and 

the TCR, bringing the TCR CDR3 into contact with the MHC class II α-chain [95]. 

MMTV superantigens are not thought to play a role in virus tumour formation, but 

instead are thought to be important for maintaining cell division and infection among T 

and B lymphocytes [96].  

1.3.6.3 Superantigen genetics, expression, and structure 

Since prophage elements can encode up to 10% of the S. pyogenes genome, many of the 

genetic differences seen between strains can be attributed to the presence or absence of 

these and other MGE [97-99].  Several S. pyogenes superantigens are encoded on 

prophage elements including SpeA, C, H, I, K, L, M, and SSA, while SpeG, J, and SmeZ 

are each encoded on the core chromosome [7, 97, 99, 100]. All strains of S. pyogenes 

annotated in the NCBI genomes database contain at least one superantigen, most with 

between two and seven superantigens with a median of four [77].  

Superantigens contain an N-terminal signal sequence for secretion [90, 101] and are 

secreted in late stationary phase [102]. Once expressed, superantigens are generally very 
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hardy proteins, with most being unusually resistant to heat, and some are resistant to 

proteolysis, acidity, and desiccation [103].  

Most virulence factors in S. pyogenes are regulated by Mga or CovR/S as previously 

discussed; however, regulation of superantigens is much less clear. Although expression 

has been linked to late stationary phase of the bacteria, a number of environmental factors 

including temperature, osmolarity, pH, and nutrient conditions could influence 

superantigen regulation. As some superantigen genes reside in active prophage elements, 

induction of the bacteriophage due to internal or external environmental signals 

(chemicals or UV light) may affect superantigen expression [97]. For example, SpeC 

expression and its bacteriophage production were both detected upon co-culture of S. 

pyogenes with the human pharyngeal cell line Detroit 562 cells [104]. SpeA expression 

can be induced by human transferrin and lactoferrin, two iron-binding proteins important 

for iron transport and sequestration in the host; although induction of SpeA expression 

was dependent on the level of iron-saturation, indicating that SpeA expression may be 

triggered as a response to low iron in the host [105]. Interestingly, strains with mutations 

in either or both of the covR and covS genes have increased speA transcript production 

[51]. Regulation of superantigens in vivo is a complex – and likely multifactorial – 

process that has yet to be fully elucidated. 

Structures for several staphylococcal and streptococcal superantigens reveal similar 

tertiary structure, but fewer sequence similarities. The common N-terminal mixed β-

barrel domain composed of antiparallel β-sheets, connected to a C-terminal β-grasp motif 

(an α-helix against a β-sheet) [106] indicates evolutionary conservation of the ability to 

bind both the TCR and MHC class II molecule [107]. Upon grouping superantigens (from 

all bacterial species) based on amino acid sequences, five distinct evolutionary groups are 

formed [90]. The sole member of group I is TSST-1 secreted by S. aureus, which upon 

binding the TCR and peptide-MHC (pMHC) (HLA-DR1) synapse contacts the 

polymorphic regions of the MHC class II α- and β-chain as well as peptide in the binding 

groove, indicating TSST-1 interaction with MHC class II molecules may be dependent on 

both the antigen presented and the specific MHC class II [108]. TSST-1 largely targets T 

lymphocytes bearing Vβ2+ TCR [78].  Notable superantigens of group II include 
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staphylococcal SEB and SEC, along with streptococcal superantigens SpeA and SSA. 

Group II interactions with the pMHC are through a low-affinity N-terminal site and seem 

to be peptide independent [109], while TCR interactions are largely conformation-

dependent [110]. Group III superantigens are all staphylococcal, including SEA, where 

the C-terminal β-grasp domain interacts with pMHC in a zinc-dependent manner [111]. 

They also contain both high-affinity and low-affinity MHC class II binding sites, 

allowing them to crosslink MHC class II molecules on the cell surface for optimum 

activity [112]. Both group II and group III superantigens contain a “cysteine loop” 

structure associated with staphylococcal foodborne illness [92]. Group IV consists of 

only streptococcal superantigens (SpeC, G, H, J, L, M, and SmeZ) that contain a high-

affinity, zinc-dependent binding site [113]. SpeC, specifically, contacts specific residues 

of Vβ2.1 CDR1 and CDR2 in an energetically favourable interaction [114, 115]. 

Superantigens in group IV also contain a conserved “hydrophobic ridge” between the two 

β-sheets of the β-barrel domain and a shorter “cysteine loop”, both of which are 

important for MHC class II binding [116]. Group V contains staphylococcal 

superantigens, and the streptococcal superantigen SpeI. These toxins require the zinc-

dependent binding site [117], and also contain a unique “α3-β8” loop domain between the 

third α-helix and eighth β-sheet important for T lymphocyte activation [118]. Despite 

tertiary structural similarities between superantigens, each protein, even within groups, 

can have different interactions with MHC class II molecules and TCR. Not surprisingly, 

superantigens from Y. pseudotuberculosis and M. arthritidis cluster independent from the 

five main evolutionary groups of superantigens upon alignment [90]. 

1.3.6.4 Activation of immune cells by superantigens 

To understand how superantigens interact with and activate the host immune system, we 

must first understand canonical antigen presentation and T lymphocyte activation. When 

the human immune system encounters conventional protein antigens, the foreign proteins 

are processed and presented by APC in the context of MHC class II molecules to T 

lymphocytes bearing complementary TCR. Recognition of the peptide antigen is based 

on specific contacts and conformational changes by the TCR complementarity 

determining region (CDR) 3 [119]. The CDR1 and CDR2 loops of the TCR α- and β-
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chains form stabilizing interactions with the α-helices of the MHC class II molecules α- 

and β-chains of the pMHC class II complex [119, 120]. Conversely, superantigens 

contact both the MHC class II molecule and the TCR and bridge the antigen presentation 

complex, a process that can be irrespective of the specific antigen presented in the 

context of the MHC class II molecule [115, 121]. Superantigens bind both the MHC class 

II α-chain and the TCR outside of the antigen-binding groove, contacting the TCR in a 

less-specific manner that is critically dependent on the germline encoded CDR2 variable 

region of the β-chain (Vβ) [122], giving theses toxins their hallmark Vβ specificity [78]. 

The exception to this rule is SEH, which is the only known superantigen to activate T 

lymphocytes in a Vα-specific manner [93]. While conventional antigen presentation 

results in the activation of ~0.01% of naïve T lymphocytes [107], superantigens are able 

to activate entire Vβ subsets of T lymphocytes comprising up to 20% of the T 

lymphocyte population [73].  Of note, superantigens can activate both CD4+ and CD8+ T 

lymphocytes [88], in addition to γδ T lymphocytes [123].  

Although there are multiple proposed models of molecular architecture detailing how 

TCR-triggering works (TCR aggregation, conformational change of parts in the TCR 

complex, or impediment of inhibitory molecules), TCR:pMHC recognition of 

conventional antigens leads to phosphorylation of immunoreceptor tyrosine-based 

activation motifs (ITAM) on the cytoplasmic tails of CD3 molecules by CD4- and CD8-

coreceptor-associated protein tyrosine kinases Lck and Fyn [124]. Phosphorylated ITAM 

on CD3 cytoplasmic tails allows subsequent recruitment of the kinase ZAP70 [125]. A 

phosphorylation cascade and a non-linear framework of signaling follows, including the 

phosphorylation of adaptor proteins linker for the activation of T lymphocytes (LAT) and 

Src-homology 2 domain-containing linker protein of 76 kDa (SLP-76) which serve as 

docking sites for further signaling. Phospholipase C (PLCγ1), recruited to dock on 

phosphorylated LAT, is phosphorylated to produce its active form and cleaves 

phosphatidylinositol 4,5-bisphosphate (PIP2) to produce inositol triphosphate (IP3) and 

diacylglycerol (DAG) [125, 126].  

IP3 is an important messenger in calcium (Ca2+) signaling, activating Ca2+-dependent 

channels on the endoplasmic reticulum and leading to intracellular Ca2+ release. This, in 
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turn, leads to the activation of Ca2+ and calmodulin-dependent transcription factors. For 

example, intracellular Ca2+, along with signals through the Ras pathway, activate 

calcineurin, which in turn dephosphorylates the nuclear factor of activated T lymphocyte 

(NFAT) protein, allowing its translocation to the nucleus. NFAT in complex with 

activator protein 1 (AP-1) ensures transcription of genes necessary for T lymphocyte 

activation such as interleukin-2 (IL-2) [125]. Alternatively, NFAT activity lacking AP-1 

results in the transcription of genes promoting a state of T lymphocyte unresponsiveness 

[127]. Alternatively, DAG induces a pathway involving the guanine-nucleotide exchange 

factor Ras, which through a phosphorylation cascade of mitogen-associated protein 

kinases (MAPK), eventually leads to AP-1 transcription complex activation. DAG also 

binds to and activates the protein kinase C θ (PKC-θ), which has a role in integrin-based 

signaling in addition to regulating the nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB) pathway. PKC-θ phosphorylates caspase recruitment domain 

(CARD)-containing and membrane-associated guanylate kinase (MAGUK)-containing 

scaffolding protein (Carma1), which then associates with Bcl-10 and mucosa-associated 

lymphoid tissue lymphoma translocation gene 1 protein (MALT1) [128]. This complex 

then polyubiquitinates the inhibitor of NF-κB (IκB) kinase (IKK) complex regulatory 

subunit (IKKγ), sending it for degradation and allowing access to IκB [129]. The 

catalytic subunits of the IKK complex then phosphorylate IκB, facilitating its degradation 

and liberating NF-κB, which is capable of translocating into the nucleus to enable 

transcription of genes indicative of T lymphocyte activation. In summary, antigen 

recognition by the T lymphocyte leads to downstream events including cytoskeletal 

rearrangement, integrin signaling, and intracellular Ca2+ release, and downstream 

expression of genes indicative of cell activation [125, 126]. Costimulation, by recognition 

of the T lymphocyte CD28 molecule by CD80 or CD86 on APC, serves to enhance each 

of the activating signals produced; alternatively, TCR engagement without costimulation 

leads to anergy [130].  

In contrast, T lymphocyte activation by some superantigens including staphylococcal 

enterotoxins (SE) A, SEB, SEC1, SEE, and TSST-1, as well as streptococcal 

superantigens SpeC, SpeI, SpeJ, and SmeZ, can proceed in a CD4-independent manner 

[131]. These toxins do not require CD4-dependent Src-family kinase (Lck, Fyn)-
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mediated signaling (including ZAP-70, LAT, and PLCγ1) [132]. Instead, they can initiate 

an alternative signaling pathway dependent on G protein Gα11, the activation of PLCβ, 

subsequent Ca2+ release, translocation of NFAT and NF-κB, and expression of IL-2 

[132]. Although the alternative pathway and canonical Lck-dependent pathways do share 

crosstalk and converge at the level of ERK-1/2 in the MAPK cascade, and superantigens 

are capable of activating T lymphocytes through the Lck-dependent pathway, activation 

of the alternative pathway is sufficient to activate T lymphocytes [132]. Superantigen-

induced T lymphocyte activation is an APC-dependent process, and costimulation with 

CD28 serves to increase the strength of the stimulated T lymphocyte response [133]. 

Although the canonical T lymphocyte marker of activation is IL-2, superantigens have 

also been known to induce the expression of TNF-β, and interferon-γ from T 

lymphocytes, in addition to TNF-α, and IL-1 from APC [106, 134, 135]. 

Post-superantigen activation, T lymphocyte populations can expand, remain unresponsive 

to normal antigenic and superantigen stimulation (anergy), or be deleted via apoptosis. 

Upon encountering superantigens in vivo, T lymphocytes bearing appropriate TCR will 

be activated and proliferate for up to four days, peaking around 24 hours [136]. In the 

following days, T lymphocytes may be rendered unresponsive to further superantigen 

stimulation [137]. This unresponsive state can last for several weeks, although recovery is 

possible [138]. It is also pertinent to remember that in vitro studies may not always reflect 

the in vivo state, as Heeg et al. (1995) determined that while anergy was detected in vitro, 

cells were still responsive in vivo [139].  

Just as TCR Vβ chains are important for superantigen binding, so too are MHC class II 

molecules. Humans express MHC class II molecules from the highly polymorphic HLA 

locus – DP, DQ, and DR [140]. The MHC expressed, and polymorphisms within it 

(haplotype), affect the binding ability of the superantigen, the magnitude of response 

evoked [141], and potentially even the clinical outcome of the patient [142]. Specifically, 

expression of the DRB1*14/DQB1*0503 haplotype were associated with higher risk of 

developing invasive streptococcal disease, while the DRB1*1501/DQB1*0602 haplotype 

conferred a protective effect in human severe streptococcal infections [142]. Nooh and 

colleagues (2006) also determined that a lower cytokine response was elicited when 
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superantigens activated APC expressing DQ6 alleles (DQB1*06) than when APC 

expressed DR4/DQ8 alleles (DRB1*0402/DQB1*0302), and that HLA-DQ6-expressing 

mice survived longer in a mouse model of streptococcal sepsis [143]. It has been 

suggested that MHC class II molecules may play a role in modulating human 

superantigen responses, and thus may affect disease severity [143]. 

1.4 S. pyogenes infections 

S. pyogenes uses its numerous virulence factors to survive in their hosts. In a relationship 

between organisms, classification of  ‘commensal’ is applicable when one organism 

benefits without affecting the other, while a ‘pathogenic’ organism causes detriment to its 

host. Humans infected with S. pyogenes can be symptomatic or asymptomatic carriers of 

the bacterium. Meta-analysis of 209 studies concluded that approximately 12% of 

children between the ages of 5 and 18 years were found to be pharyngeal carriers for S. 

pyogenes, while the carriage rates for children under 5 years of age are much lower 

(3.8%) [144]. Asymptomatic carriage of S. pyogenes can last for up to a year [145], and 

has been implicated in transmission of S. pyogenes [146, 147]. Though globally there are 

S. pyogenes strains resulting in cases of documented resistance to antibiotics including 

tetracycline, erythromycin as well as other macrolides, there has yet to be a case where 

recorded resistance to penicillin G has been observed [7, 148-153]. As such, penicillin G 

remains the most effective treatment for S. pyogenes infections [151]. S. pyogenes is an 

extremely successful human pathogen that uses its arsenal of virulence factors to cause a 

number of different infections with varying clinical manifestations. S. pyogenes-

associated diseases can be classified as direct infections, immune-mediated diseases, and 

toxin mediated diseases.  

1.4.1 Direct infections 

1.4.1.1 Pharyngitis 

Perhaps the most common and well-known infection caused by S. pyogenes is pharyngitis 

or “strep throat”. In 2005, it was estimated that there are more than 616 million incident 

cases of S. pyogenes pharyngitis per year, worldwide [4]. Additionally, it is estimated that 

the cost of S. pyogenes pharyngitis cases among children is more than $224 million 
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annually in the United States alone [154]. S. pyogenes usually establishes its niche in the 

pharynx and the crypts of the palatine tonsils and the infection proceeds with a sore throat 

and fever [155]. Other symptoms may include headache, abdominal pain, nausea, and 

vomiting, while the diagnosis is confirmed with a rapid antigen test and a S. pyogenes-

positive throat culture [154]. Spread of infection is thought to be by droplet contact from 

infected or asymptomatically colonized individuals or by fomites [156, 157]. Pharyngeal 

infections are treated with penicillin V (oral), amoxicillin (oral), or benzathine penicillin 

G (intramuscular; IM); however, incidence of penicillin allergy dictates other treatment 

options including cephalexin (oral), cefadroxil (oral), clindamycin (oral), azithromycin 

(oral), and clarithromycin (oral) [158]. Prophylaxis with benzathine penicillin G, or 

erythromycin for those with a penicillin allergy, showed a 5-fold decrease in S. pyogenes 

pharyngeal infections when compared to those not given the prophylaxis [159]. 

Preventing S. pyogenes pharyngitis, or timely antibiotic treatment of infection, also serve 

to protect those from post-streptococcal infection sequelae (discussed below). There have 

not yet been any superantigens definitively associated with human pharyngitis infections. 

1.4.1.2 Skin infections 

Erysipelas and cellulitis, in addition to impetigo and ecthyma (pyoderma) are all skin 

infections caused by S. pyogenes. Erysipelas and cellulitis, while not as common as 

pyoderma, are no less severe. Both conditions have symptoms of inflammation 

(erythema) and pain, sometimes accompanied by fever, high leukocyte counts, 

inflammation of the lymphatic channels, and enlarged lymph nodes [160]. Erysipelas is 

characterized by a distinct raised area of affected and inflamed skin. The majority of 

cases are caused by S. pyogenes, though other types of streptococci may be the causative 

agent [160]. In cellulitis, the distinction between affected and unaffected skin is less 

clear. While S. pyogenes is one cause of cellulitis, it should be noted that a number of 

other bacterial species, including Staphylococcus aureus, can also cause this condition 

[160]. In the instance of pyoderma, there are more than 111 million cases due to S. 

pyogenes annually [4]. Pyoderma presents as contagious pustules that rupture, forming 

honey-coloured scabs and is treated by topical or oral antibiotics [160, 161]. Expression 

of specific collagen-binding and fibronectin-binding proteins contributes to the ability of 
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S. pyogenes to cause skin infections [2]. S. pyogenes skin infections are also associated 

with the development of post-streptococcal immune sequelae (discussed below).  

1.4.1.3 Invasive infections 

It is estimated that there are over 600,000 new invasive infections and 163,000 deaths 

from S. pyogenes invasive infections each year [4]. Invasive infections are defined as the 

isolation of S. pyogenes from an otherwise sterile site. S. pyogenes can cause 

bacteraemia, sepsis, puerperal sepsis, and necrotizing fasciitis. Streptococcal bacteraemia, 

defined as bacteria in the blood, can lead to the life-threatening condition of severe 

sepsis. Streptococcal severe sepsis is characterized by organ impairment as well as 

coagulation abnormalities, and can then lead to septic shock (discussed below as 

streptococcal toxic shock syndrome) [162]. Puerperal sepsis refers to sepsis following 

childbirth and is a particularly dangerous condition as the disease progresses rapidly and 

can become critical within hours to days [163]. Necrotizing fasciitis is discussed below.  

1.4.2 Immune-mediated diseases 

Immune-mediated post-streptococcal immune sequelae can result following untreated 

pharyngitis or other S. pyogenes infections. These diseases include acute post-

streptococcal glomerulonephritis (APSGN), paediatric autoimmune neuropsychiatric 

disorders associated with streptococcal infections (PANDAS), and ARF. 

Acute post-streptococcal glomerulonephritis (APSGN) is a disorder of the kidneys as a 

result of immune complex deposition in the glomeruli. Symptoms of APSGN, which 

include proteinuria, edema, hypertension, and low levels of complement from the serum, 

usually appear 10 days post-pharyngeal infection and 14-21 days post-pyoderma 

infection [164].  As with other S. pyogenes diseases, there are specific emm-types 

associated with APSGN, deemed “nephritogenic” strains [6]. It is estimated that there are 

over 470,000 cases of APSGN annually, with approximately 5,000 deaths [4]. 

There have been proposed links between S. pyogenes infections and prepubescent 

neuropsychiatric manifestations including obsessive-compulsive disorder (OCD) and 

Tourette’s syndrome, which are cumulatively referred to as PANDAS [165]. Symptoms 
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are proposed to originate due to anti-neuronal antibodies; however, these links, and even 

the existence of PANDAS are highly controversial [6].  

There are high rates of ARF in developing countries, as well as indigenous populations in 

developed countries. ARF is the leading cause of heart disease in children in the 

developing world [166]. In Australia, high prevalence is attributed to social determinants 

such as poverty, low employment, poor nutrition and education, overcrowded living 

conditions, and decreased access to medical care [166]. ARF is diagnosed according to 

the Jones criteria: carditis, migratory polyarthritis, chorea, along with subcutaneous 

nodules and erythema marginatum [26]. ARF is an autoimmune response to the heart, 

joints, subcutaneous tissues, brain, and skin that can develop following an upper 

respiratory tract S. pyogenes infection [166]. Molecular mimicry of S. pyogenes antigens 

M protein and hyaluronic acid capsule leads to the development of antibodies to epitopes 

on or within S. pyogenes that cross-react with similar epitopes in human tissues [27]. 

ARF can lead to rheumatic heart disease (RHD) development and long-term heart 

damage, where the affected individual may eventually need a heart valve replacement. 

Ralph et al. have developed a continuous quality improvement strategy for prevention 

and management of ARF and RHD, using prophylactic intramuscular (IM) injections of 

benzathine penicillin G [167]. This is a common strategy following S. pyogenes 

infections [166, 168, 169].  

1.4.3 Toxin-mediated diseases 

Necrotizing fasciitis is classified as the progressive breakdown of fat, subcutaneous 

tissue, fascia, and muscle, which may or may not include the destruction of the skin itself 

[170, 171]. A key symptom for necrotizing fasciitis is severe pain [172]. Production of 

proteases, phospholipases, and other enzymes cause disintegration of the affected tissue 

[6]. Necrotizing fasciitis has also been associated with a lack of neutrophils at the site of 

infection [172], a condition in part caused by SpyCEP [65], as well as the production of 

superantigens causing widespread immune system activation and contributing to local 

tissue damage [6]. 

Scarlet fever cases usually present with fever, pharyngitis, and rash with sandpaper 
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texture, with or without strawberry tongue (glossitis with hyperplastic fungiform 

papillae) and circumoral pallor [152]. Children between 2 and 10 years of age are the 

most commonly affected population, typically with a median age of 4 years of age [152, 

153, 173]. Scarlet fever remains a relevant disease as outbreaks were reported in China 

(Beijing, Shanghai, and Hong Kong) in 2011 [152, 174, 175] and increasing numbers of 

cases were reported in the United Kingdom in early 2014 [173]. The superantigens SSA, 

SpeA, and SpeC have also been associated with scarlet fever isolates of S. pyogenes 

[153].  

Superantigens are known mediators for toxic shock syndrome (TSS), a condition in 

which symptoms include disseminated intravascular coagulation, vasodilation, 

myocardial suppression, acute respiratory distress syndrome, multiple organ failure, and 

potentially death [73]. Superantigen-induced activation of numerous immune cells causes 

a ‘cytokine storm’, and further activation of the immune system [73, 90]. These immune-

reactive toxins are most commonly produced by S. aureus or S. pyogenes in TSS. 

Clinically, TSS has been associated with TSST-1 production during S. aureus infections 

[73], but streptococcal TSS (STSS) has been linked to the superantigen SpeA, as well as 

SpeC [176], SpeJ, and streptococcal mitogenic exotoxin Z (SmeZ) [177]. Interestingly, 

lack of neutralizing anti-superantigen antibodies are considered a risk-factor for TSS 

[177], and more than 60% of patients with STSS have bacteraemia [73].  

1.5 Superantigen redundancy  

Multiple alleles of some superantigens exist in nature. As of 2014, 91 unique 

streptococcal superantigen gene sequences had been annotated [75]. SmeZ is likely the 

superantigen with the highest number of variant forms; interestingly, most forms remain 

equally potent, regardless of their antigenic differences [82]. Some forms are inactive due 

to a single base pair deletion that truncates the protein [82, 178].  

Additionally, most S. pyogenes strains contain more than one superantigen [77, 179]. 

Considering many superantigens are encoded in prophage elements [7, 97], and MGE 

enable transfer of genes between strains, S. pyogenes strains can naturally acquire extra 

genes including superantigens [7, 180]. Each strain usually contains a different 
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superantigen repertoire and although this feature has been harnessed for epidemiological 

purposes by searching for superantigen presence or absence in the genomes of clinical 

isolates [76, 77], the question of why each strain maintains a unique superantigen profile 

remains unanswered.  

1.6 Superantigens in murine models 

Certain host factors, including CD44 and human plasminogen, enhance S. pyogenes 

nasopharyngeal infection in murine models [18, 181]. Additionally, different mice have 

different susceptibilities to infection, as emphasized by Aziz et al. [182], indicating that 

MHC class II molecules are important for infection. In addition, mice expressing human 

MHC class II molecules serve as better models of S. pyogenes disease as they are more 

sensitive to superantigens [80, 183-185].  

Previous nasopharyngeal murine models have demonstrated that S. pyogenes resides in 

the tonsil homologue nasal-associated lymphoid tissues (NALT) [186]. It has been 

proposed that S. pyogenes enters the NALT via membranous cell (M cell) transfer across 

the epithelium, similar to Peyer’s patches in the intestines [186]. However, our current 

mouse model demonstrated that S. pyogenes cells localize to the murine nasal turbinates 

(but not the NALT) following nasal inoculation. Using this model, we established that 

human MHC class II molecules are necessary for acute nasopharyngeal infection by S. 

pyogenes strain MGAS8232 and that the establishment of infection by that strain was 

also dependent on expression of the superantigen SpeA [183]. 

1.7 Rationale and Hypothesis 

With continued research, the role for superantigens in invasive streptococcal diseases has 

become clearer in the past few years. Alternatively, the role of superantigens in less 

severe infections has remained undefined, though we know they are being expressed in 

vivo during nasopharyngeal infections [183] (McCormick Lab, unpublished data). Also 

unclear is the reason why strains frequently carry more than one superantigen; however, 

one proposed theory is that different superantigens allow for infection of humans 

expressing different MHC class II molecules [183]. Thus, I hypothesize that encoding 
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different superantigens allows S. pyogenes to infect a wider host range. I also hypothesize 

that different superantigens, in addition to SpeA, can promote infection. 

1.8 Specific Aims 

The specific aims for this project were to i) generate isogenic superantigen-

complemented strains to determine if a single superantigen could modify a host’s 

susceptibility to infection and ii) generate a series of isogenic superantigen-knockout and 

-complemented strains to determine if superantigens other than SpeA are functionally 

redundant and if so, iii) determine which superantigens are important for establishment of 

a non-severe nasopharyngeal infection by S. pyogenes.
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Chapter 2 : Materials and Methods 
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2 Materials and Methods 

 

2.1 Bacterial growth conditions 

2.1.1 Escherichia coli growth conditions 

Escherichia coli XL1-Blue cultures were grown aerobically with shaking in Luria Bertani 

(LB; EMD Millipore; Etobicoke, ON, Canada) or Brain Heart Infusion (BHI) broth at 

37°C. Solid media was created by adding 1.5% (w/v) agar (Thermo Fisher Scientific; 

Ottawa, ON, Canada).  For cultures possessing pG+host5, media was supplemented with 

150 µg/mL Erythromycin (Erm; Thermo Fisher Scientific). Supplementation of 150 

µg/mL Ampicillin (Amp; EMD Millipore) was required for pBluescript containing 

clones. A complete list of plasmids used in this study can be found in Table 1. Stock 

cultures of E. coli were frozen in LB or BHI liquid media supplemented with 25% 

glycerol. A complete list of bacterial strains used in this study can be found in Table 2.  

2.1.2 S. pyogenes growth conditions 

Streptococcus pyogenes liquid cultures were grown in stationary Todd Hewitt Broth 

(Becton Dickinson [BD] Biosciences; Mississauga, ON, Canada) supplemented with 1% 

(w/v) yeast extract (BD Biosciences) (THY) at 37°C. For solid media, 1.5% (w/v) agar 

(Thermo Fisher Scientific) was added. Cultures containing the pG+host5 plasmid were 

grown in media supplemented with 1 µg/mL Erm. Stock cultures of S. pyogenes were 

frozen in THY supplemented with 25% glycerol. 

2.1.3 S. pyogenes growth curves 

Prior to growth evaluation, cultures were grown from -80°C freezer stocks overnight and 

subcultured twice (1%) in THY at 37°C. For automated growth curves, cultures were 

adjusted to an optical density at 600 nm (OD600) value of 0.02 prior to placement in a 

100-well Bioscreen plate. The OD600 value for each well was measured every 30 minutes 

by a Bioscreen C MBR (Piscataway, NJ, USA). For manual growth curves, 1 mL of 

culture with an OD600 value of 0.9 was added to a pre-warmed 100 mL bottle of THY.  
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Table 1. Plasmids used in this study. 

Plasmid Descriptiona Source 

pBluescript SK+ E. coli expression vector, expression is under the 

Lac promoter, multiple cloning site (MCS) is in 

the lacZ gene; Ampr 

Stratagene (Aligent 

Technologies, Santa 

Clara, CA, USA) 

pBluescript::smeZ pBluescript with the smeZ gene from MGAS5005 

inserted in the MCS; Ampr 

This study 

pG+host5 Gram-negative origin of replication, and 

temperature-sensitive Gram-positive origin of 

replication; Ermr 

[187] 

pG+host5::I-

SceI::IntMGAS8232 

pG+host5 with the I-SceI restriction enzyme cut 

site inserted; 1 kb of homologous DNA to the tsf 

and pepO region of MGAS8232 with its own 

MCS is inserted in the I-SceI site; Ermr 

[183] 

pG+host5::I-

SceI::IntMGAS8232::speJ 

Plasmid for complementation of speJ from 

MGAS5005 between tsf and pepO of 

MGAS8232; Ermr 

This study 

pG+host5::I-

SceI::MGAS5005∆smeZ  

Plasmid for the deletion of smeZ in MGAS5005; 

Ermr 

This study 

pG+host5::I-

SceI::IntMGAS5005 

pG+host5 with the I-SceI restriction enzyme cut 

site inserted; 1 kb of homologous DNA to the tsf 

and pepO region of MGAS5005 with its own 

MCS is inserted in the I-SceI site; Ermr 

[188] 

pG+host5::I-

SceI::IntMGAS5005::speA 

Plasmid for complementation of speA between tsf 

and pepO of MGAS5005; Ermr 

This study 

pG+host5::I-

SceI::IntMGAS5005::speJ 

Plasmid for complementation of speJ between tsf 

and pepO of MGAS5005; Ermr 

This study 

pG+host5::I-

SceI::IntMGAS5005::smeZ 

Plasmid for complementation of smeZ between tsf 

and pepO of MGAS8232; Ermr 

This study 

aAbbreviations: Ampr – Ampicillin resistance, Ermr – Erythromycin resistance 
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Table 2. Bacterial strains used in this study. 

Strain Description Source 

E. coli XL1 Blue Cloning strain Novagen, 
Stratagene 

S. pyogenes MGAS5005 emm1 (M1) invasive isolate from Ontario, 
Canada 

[189] 

S. pyogenes MGAS5005∆speA MGAS5005 with speA deletion [188] 

S. pyogenes MGAS5005∆speG MGAS5005 with speG deletion [188] 

S. pyogenes MGAS5005∆speJ MGAS5005 with speJ deletion [188] 

S. pyogenes MGAS5005∆smeZ MGAS5005 with smeZ deletion [188] 

S. pyogenes 
MGAS5005∆speA/smeZ 

MGAS5005 with speA and smeZ deletions [188] 

S. pyogenes 
MGAS5005∆speA/speJ/smeZ 

MGAS5005 with speA, speJ, and smeZ 
deletions 

[188] 

S. pyogenes 
MGAS5005∆speA/speJ/smeZ:: 
speJ 

MGAS5005∆speA/speJ/smeZ with speJ 
complement 

This study 

S. pyogenes 
MGAS5005∆smeZ::smeZ  

MGAS5005∆smeZ with smeZ complement This study 

S. pyogenes 
MGAS5005∆speA/smeZ::speA  

MGAS5005∆speA/smeZ with speA complement This study 

S. pyogenes 
MGAS5005∆speA/smeZ::smeZ 

MGAS5005∆speA/smeZ with smeZ complement This study 

S. pyogenes MGAS5005∆smeZ  
(new) 

MGAS5005 with smeZ deletion This study 

S. pyogenes 
MGAS5005∆speA/smeZ (new) 

MGAS5005 with speA and smeZ deletions This study 

S. pyogenes 
MGAS5005∆smeZ::smeZ (new) 

MGAS5005∆smeZ with smeZ complement This study 

S. pyogenes 
MGAS5005∆speA/smeZ::speA 
(new) 

MGAS5005∆speA/smeZ with speA complement This study 

S. pyogenes 
MGAS5005∆speA/smeZ::smeZ 
(new) 

MGAS5005∆speA/smeZ with smeZ complement This study 

S. pyogenes MGAS8232 emm18 (M18) rheumatic fever isolate from an 
outbreak in USA 

[190] 
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S. pyogenes MGAS8232∆SAg MGAS8232 with speA, speC, speG, speL, speM, 
and smeZ deletions 

[183] 

S. pyogenes 
MGAS8232∆SAg::speJ 

MGAS8232∆SAg with speJ complement This study 
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OD600 values were measured every hour in a spectrophotometer (DU® 530 Life Science 

UV/Vis Spectrophotometer, Beckman Coulter Canada LP; Mississauga, ON, Canada). 

2.2 Deoxyribonucleic acid isolation 

2.2.1 Plasmid isolation from E. coli 

Plasmids were extracted from overnight cultures of E. coli using either the Spin Miniprep 

Kit (Qiagen; Toronto, ON, Canada), or E. Z. N. A. kit (Omega Bio-Tek; Norcross, GA, 

USA). Plasmid concentrations were measured with a NanoDrop Spectrophotometer 

(Thermo Fisher Scientific). 

2.2.2 Genomic DNA isolation from S. pyogenes 

S. pyogenes genomic DNA was isolated by pelleting 2 mL of overnight culture. The 

pellet was resuspended and washed twice with 0.2 M sodium acetate (Thermo Fisher 

Scientific), followed by resuspension in Tris Ethylene Glucose buffer (100mM Tris 

(Amresco; Solon, OH, USA), 1 mM ethylenediaminetetraacetic acid (EDTA; Bioshop 

Canada Inc., Burlington, ON, Canada), 25% glucose (Sigma Aldrich; Oakville, ON, 

Canada)). Mutanolysin (Sigma Aldrich) and lysozyme (Sigma Aldrich) were added, and 

samples were left at 37°C for one hour. Samples were then centrifuged and the 

supernatants were poured off. Pellets were resuspended in lysis buffer (0.2% sodium 

dodecyl sulphate (SDS; EMD Millipore) and 50mM EDTA), followed by the addition of 

ribonuclease (RNAse) A (Sigma Aldrich) and Proteinase K (MP Biomedicals, LLC; 

Solon, OH, USA). Samples were then left at 65°C for two hours. Upon cooling, 

potassium acetate (EMD Millipore) was added to a concentration of 0.6M and samples 

were centrifuged at 20,800 × g at 4°C for 10 minutes. Supernatants were removed, added 

to 500 µL ice cold 95% ethanol, and then centrifuged for 10 minutes at 4°C at 20,800 × g. 

Supernatants were drained and pellets were washed with 70% ethanol, prior to drying. 

DNA was resuspended in autoclaved MilliQ water. Plasmid concentrations were 

measured with a NanoDrop Spectrophotometer (Thermo Fisher Scientific). 
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2.3 Amplification of DNA 

2.3.1 Standard polymerase chain reaction protocol 

All primers used in this study (Table 3; Sigma Genosys; Oakville, ON, Canada) were 

resuspended in Tris-EDTA buffer (MilliQ water, 10 mM Tris, 1 mM EDTA, pH 7.5-8) or 

MilliQ water to a concentration of 100 µM. Primers were used at 100 nM for Polymerase 

Chain Reactions (PCR). DNA was amplified using either Phusion High-Fidelity DNA 

polymerase (Thermo Fisher Scientific) or Pfu polymerase. Reactions were run in a Peltier 

Thermocycler PTC-200 (MJ Research, Waterdown, MA, USA).  

2.3.1.1 Reactions with Phusion polymerase 

For Phusion reactions, 2 mM magnesium chloride (MgCl2; Thermo Fisher Scientific), 3 

mM deoxyribonucleotide triphosphate (dNTP) mixture (Hoffmann-La Roche; 

Mississauga, ON, Canada), 10 pM each of the forward and reverse primers, 0.6 µL of 

template DNA, and Phusion polymerase were mixed into 1 × high fidelity (HF) buffer 

(Thermo Fisher Scientific). Cycling for Phusion reactions proceeded as follows: 98°C for 

10 minutes, 98°C for 30 seconds, primer-specific annealing temperature for 30 seconds, 

72°C for 15 seconds/kb of expected gene product for 36 cycles, 72°C for previous time 

plus one minute (final extension), 4° until reactions were removed.  

2.3.1.2 Reactions with Pfu polymerase 

Reactions to amplify DNA with Pfu polymerase contained 2 mM magnesium chloride 

(MgSO4; Sigma Aldrich), 3 mM dNTP mixture, 10 pM each of the forward and reverse 

primers, 0.6 µL of template DNA, and Pfu polymerase were mixed into 1 × Pfu buffer 

containing 200 mM Tris-hydrochloric acid (HCl; Caledon Laboratories Ltd.; 

Georgetown, ON, Canada), 100 mM potassium chloride (Sigma Aldrich), 1% triton X-

100 (Bio-Rad Laboratories Ltd.; Mississauga, ON, Canada), and 1mg/mL bovine serum 

albumin (BSA; Sigma Aldrich). Cycling for Pfu reactions proceeded as follows: 95°C for 

10 minutes, 95°C for 30 seconds, primer-specific annealing temperature for 30 seconds, 

74°C for 1 minute/kb of expected gene product for 36 cycles, 74°C for previous time plus 

two minutes (final extension), 4°C until reactions were removed. 
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Table 3. Primers used in this study 

Primer Sequence (5’-3’)a Purpose 

BamHI-Upstream 
smeZ 

GGGGGATCCGGGGAATTATGCCAATTGTC
TCTA 

Generation of knockout 
construct 

Erm For TTACTTATTAAATAATTTATAGCTATTGAA
AAGAGA 

Screening for loss of 
plasmid 

Erm Rev ATGAACGAGAAAAATATAAAACACAGTC Screening for loss of 
plasmid 

KpnI-Downstream 
smeZ 

GGGGGTACCGGGCAATTGTTTAACTGGTT
AATTAG 

Generation of knockout 
construct 

M13 For GTAAAACGACGGCCAGTGAG Sequencing and screening 

M13 Rev CAGGAAACAGCTATGACCATG Sequencing and screening 

pepO Seq Rev CCAGCCCACTTAGTCAAT Sequencing 

pepO RT Rev CGAAGAAGGCAACGAAAAAG Sequencing and screening 

PstI-Upstream smeZ CCCCTGCAGAAAAATAAGTTTTGTTTTTTT
CATAAATAG 

Generation of knockout 
construct 

PstI-Downstream 
smeZ 

CCCCTGCAGTTAGATATAGAAATTGACTC
CTAATTC 

Generation of knockout 
construct 

smeZ Int II For CATGCCTGCTCAAACAAGATT Sequencing and screening 

smeZ Screen II Rev ATACGACTCCATCTCATTATAGC Sequencing and screening 

smeZ RT For TTTCTCGTCCTGTGATTGGA Sequencing and screening 

smeZ RT Rev AATGGGACGGAGAACATAGC Sequencing and screening 

speA RT For AAAGTTGCCATCTCTTGGTTC Sequencing and screening 

speA RT Rev CAAGAGGTATTTGCTCAACAAGAC Sequencing and screening 

speJ RT For GCTCTCGACCTCAGAATCAA Sequencing and screening 

speJ RT Rev CTTTCATGGGTACGGAAGTG Sequencing and screening 

tsf RT For GGCGTTATGGACGCTAAAAA Sequencing and screening 

a Underlined nucleotides indicate restriction enzyme recognition site 
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2.4 Sequencing of DNA 

DNA Sequencing was completed by the Sequencing Facility at the John P. Robarts 

Research Institute in London, Ontario, Canada. Primers used for sequencing can be found 

in Table 3. 

2.5 Molecular Cloning 

Standard cloning techniques, with the following modifications, were used to generate 

superantigen deletion and complement strains.  

2.5.1 Plasmid vector generation 

Standard cloning techniques were used to generate cloning vectors, using restriction 

enzymes purchased from New England Biolabs Ltd. (Whitby, ON, Canada). Blue/white 

screening with pBluescript was used as an intermediate step in cloning the smeZ 

complementation vector. The smeZ PCR product was bluntly ligated into EcoRV-cut 

pBluescript to form pBluescript::smeZ and transformed into RbCl2-competent E. coli 

XL1 Blue (see below). The pG+host5::I-SceI::IntMGAS5005 and pG+host5::I-

SceI::IntMGAS8232 vectors for SAg complementation had previously been engineered 

to contain 500 bp each upstream and downstream of the tsf/pepO region of the indicated 

strain, with a new MCS (including SalI or SpeI restriction enzyme sites) in between. Each 

SAg gene was amplified from the original chromosome by PCR using primers containing 

either a SalI or SpeI restriction enzyme site, and inserted into this new MCS. T4 DNA 

ligase was used to seal the plasmid prior to transformation. Superantigen knockout 

vectors were generated by amplifying 500 bp regions of DNA homologous to the 

upstream and downstream areas of the target gene. These fragments were each cut using 

a PstI restriction enzyme site and ligated together using T4 DNA ligase (New England 

Biolabs Ltd.). The resulting fragment and the pG+host5-based vector backbone were then 

cleaved at KpnI and BamHI sites and ligated together prior to transformation into E. coli.  

2.5.2 Rubidium chloride competent E. coli  

E. coli XL1-Blue cells were grown in 100 mL Psi broth (5 g/L Bacto yeast extract (BD 

Biosciences), 20 g/L Bacto Tryptone (BD Biosciences), 5 g/L magnesium sulfate, pH 
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7.6) at 37°C to an OD550 of 0.48. After sitting on ice for 15 minutes, the culture 

underwent centrifugation at 4°C for 5 minutes at 5000 × g. The pellet was resuspended in 

40 mL TfbI (30 mM potassium acetate, 100 mM rubidium chloride (Amresco), 10 mM 

calcium chloride (Sigma Aldrich), 50 mM manganese chloride (Sigma Aldrich), 15% 

glycerol, pH 5.8) and placed on ice for 15 minutes. Following centrifugation at 4°C for 5 

minutes at 5000 × g, the pellet was resuspended in TfbII (10 mM 3-(N-morpholino) 

propanesulfonic acid (Sigma Aldrich), 75 mM calcium chloride, 10 mM rubidium 

chloride, 15% glycerol, pH 6.5) and aliquots were frozen at -80°C until use. 

2.5.3 Transformation into rubidium chloride-competent E. coli 

Ligated vectors were transformed into RbCl2-competent E. coli using a heat-shock 

method. Cells were thawed on ice and 5 µL of the plasmid or ligation to be transformed 

was added and incubated on ice for 30 minutes. Cells with DNA were heat-shocked for 

45 seconds, followed by incubation on ice for two minutes. The transformation was 

relocated to a tube with 800 µL of LB broth and left shaking at 37°C for one hour. Cells 

were plated on LB or BHI agar with the appropriate antibiotic and left to grow overnight 

at 37°C. For blue/white screening (pBluescript plasmid derivative transformations), 5-

bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal; Gold Biotechnology Inc.; St. 

Louis, MO, USA) dissolved in N,N-dimethylformamide (DMF; EMD Millipore), was 

mixed with isopropyl β-D-1-thiogalactopyranoside (IPTG) and liquid LB. This mixture 

was applied to LB plates and allowed to dry prior to transformation plating. 

2.5.4 Generation of Electrocompetent S. pyogenes  

A bottle of pre-warmed THY with 0.6% glycine (Thermo Fisher Scientific) was 

inoculated 2% (v/v) with an overnight culture of S. pyogenes and left in the 37°C 

incubator. After two hours, 5 mg of hyaluronidase (Sigma Aldrich) was added, and the 

culture was left to grow for another three hours. Cells were spun at 7000 × g for 15 

minutes at 20°C. The supernatant was removed and the pellet was washed once with 15% 

(v/v) glycerol and spun at 7000 × g for 15 minutes at 20°C. Upon resuspension in 15% 

glycerol, aliquots were stored at -80°C.  
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2.5.5 Transformation of S. pyogenes by electroporation 

Electrocompetent cells were thawed on ice, prior to the addition of 2 µg of vector DNA 

All plasmids utilized in this experiment were based on the pG+host5 vector and were used 

with Erm. Upon relocation to a 2 mm cuvette (VWR; Mississauga, ON, Canada), the 

transformation was electroporated in a Bio-Rad Gene Pulser XCell machine (Bio-Rad 

Laboratories Ltd.) with the following settings: 2500 V, 25 µF, and 600 Ω. Cells were 

immediately transferred to THY broth for 1 hour at 30°C. A sub-inhibitory concentration 

of Erm (0.01 µg/mL) was added and the cells were returned to 30°C for four hours. Cells 

were then plated on THY plates with Erm (1 µg/mL). Plates were placed in the 30°C 

incubator for up to three days.  

2.5.6 S. pyogenes temperature shift knockout and complement protocol 

Double homologous recombination using the temperature-sensitive origin of replication 

of the pG+host5-based vectors was used to either complement a superantigen gene (with 

its natural promoter) into, or to knock out the smeZ gene from, the S. pyogenes genome. 

A schematic of the complementation protocol can be found in Figure 2, while a 

schematic of the knockout protocol can be found in Figure 3. Each protocol followed the 

following similar general steps. Following electroporation of the plasmid of interest into 

the S. pyogenes target strain, colonies recovered the next day were started in THY Erm (1 

µg/mL) liquid cultures and were left at 30°C overnight. Cultures were then streaked on 

THY plates with Erm (1 µg/mL) left to grow at 40°C overnight.  Liquid THY Erm (1 

µg/mL) cultures were started from the 40°C colonies, and were left at 40°C overnight. 

Again, cultures were streaked on THY plates with Erm (1 µg/mL) left to grow at 30°C 

overnight. Colonies were used to start liquid THY Erm (1 µg/mL) cultures and were left 

at 30°C overnight. Liquid 30°C cultures were subcultured 0.1% (v/v) into fresh THY for 

5 days at 37°C to cure the remaining plasmid. Cultures were then streaked on THY plates 

and patched onto both THY and THY plates with Erm (1 µg/mL). Cured cultures 

(susceptible to Erm) were then grown in liquid THY culture for DNA isolation and to 

screen by PCR for both loss of the Erm gene (Erm For and Erm Rev primers), and 

integration (using tsf For and pepO Rev primers which lie outside of the homologous 

recombination region) or knockout (using primers up- or downstream of the deletion  
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Figure 2. Schematic of cloning strategy for double-crossover insertion of a superantigen 

gene of interest into the S. pyogenes chromosome. The gene of interest, flanked by tsf and 

pepO (500 bp of each gene) was cloned into the vector pG+host5 with a temperature 

sensitive origin of replication; the resulting plasmid was named using the nomenclature 

of pG+host5::I-SceI::chromosome::gene of interest. The plasmid was then electroporated 

into the target strain of S. pyogenes and single-crossover colonies (with the gene of 

interest integrated) were selected for by growth at the non-permissive temperature of 

40°C. Double-crossover events were obtained by growth at 30°C, followed by 

subculturing at 37°C for 5 days without erythromycin. 
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Figure 3. Schematic of cloning strategy for double-crossover deletion of smeZ from the 

MGAS5005 or MGAS5005∆speA chromosome. A truncated version of the smeZ gene 

from S. pyogenes MGAS5005, with flanking regions of MGAS5005 flaR and Spy_1703 

with dppA (500 bp up and downstream of smeZ) were cloned into the temperature 

sensitive backbone of the vector pG+host5; the resulting plasmid was named pG+host5::I-

sceI::∆smeZ. The plasmid was electroporated into MGAS5005 and MGAS5005∆speA 

and single-crossover colonies (with the smeZ deletion construct integrated) were selected 

for by growth at the non-permissive temperature of 40°C. Double-crossover events were 

obtained by growth at 30°C, followed by subculturing at 37°C for 5 days without 

erythromycin. 

 

  

MGAS5005

MGAS5005∆smeZ

smeZflaR dppA

SPY_1703

smeZ

flaR dppA

SPY_1703

smeZflaR

SPY_1703

MGAS5005

Growth at 30°C with Erm
then at 37°C for 5 days without Erm

ErmR

ori

Growth at 40°C with Erm
for a single crossover event

pG+host5::I-sceI::∆smeZTemperature sensitive 
origin of replication

SPY_1703

flaR dppA

flaR

SPY_1703

dppA ErmR ori flaR smeZ dppA

SPY_1703

smeZflaR

SPY_1703

dppA ErmR ori flaR

SPY_1703

dppA

OR

dppA



 

37 

region) of the superantigen gene of interest. At each stage of liquid culture, aliquots were 

used to isolate the S. pyogenes genome to screen with PCR for the correct intermediate 

step. Following successful cloning (ensured by sequencing analysis as mentioned above), 

clones were passaged through five days of growth in 0.2 µm-filtered THY + 10% human 

plasma (HP) at 37°C prior to freezing in glycerol stocks. 

2.6 Isolation of streptococcal supernatant proteins 

2.6.1 Trichloroacetic acid (TCA) precipitation of streptococcal supernatant proteins 

Cultures were subcultured into 100 mL bottles of THY and grown for 12 hours (until late 

exponential phase). Once the bacteria were pelleted, supernatants were separated and 

incubated for 30 minutes with 50% TCA (Sigma Aldrich) to reach a final concentration 

of 6%. Precipitated supernatants were then centrifuged for 15 minutes at 10,000 × g at 

4°C. Pellets were washed with ice-cold acetone (Thermo Fisher Scientific), centrifuged 

for 15 minutes at 10,000 × g at 4°C, and left to dry.  Precipitated proteins were 

resuspended in 8M urea (BioShop Canada Inc.).  

2.7 Protein visualization 

2.7.1 Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

Proteins were visualized by sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS PAGE) on 12% or 15% (v/v) acrylamide gels as indicated. Proteins were mixed 

with Laemmli buffer (125 mM Tris pH 6.8, 50% glycerol, 4% SDS, 5% β-

mercaptoethanol (EMD Millipore), and 0.1% (w/v) bromophenol blue) and boiled for 5 

minutes prior to loading. Gels were run for one hour at 200 V in electrophoresis buffer 

(25 mM Tris, 250 mM glycine, 0.1% (w/v) SDS) and stained with coomassie stain (0.1% 

(w/v) coomassie brilliant blue R-250 (Bio-Rad Laboratories Ltd.) in 45% (v/v) methanol 

(EMD Millipore) and 10% (v/v) acetic acid), and destained for visualization (45% (v/v) 

methanol and 10% (v/v) acetic acid).  

2.7.2 Western blot 

When necessary, proteins were transferred onto a polyvinylidine difluoride (PVDF) 

membrane (EMD Millipore) for Western blot. The membrane was first incubated in 
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methanol for 5 minutes, followed by immersion in Western blot transfer buffer (39 mM 

glycine, 48 mM Tris, 0.037% (w/v) SDS, 20% (v/v) methanol) for 5 minutes. The protein 

gel was placed on the membrane and the pair were placed between pieces of filter paper. 

This set was placed between two sponges in the transfer apparatus. Proteins were 

transferred overnight at 10V with a cold block. Equilibration of the PVDF membrane in 

transfer buffer for 30 minutes at room temperature was followed by blocking with 5% 

(w/v) skim milk (Equality) in 1 × tris buffered saline (TBS; 100 mM Tris, 1.5 M sodium 

chloride, pH 7.5) for 30 minutes. The primary antibody was always an anti-superantigen 

antibody (Table 4; ProSci Incorporated; Poway, CA, USA), and was diluted 1:8,000 in 

1% skim milk in TBS, followed by one hour incubation. PVDF membranes were 

subjected to three five-minute washes with TBS with 0.01% (v/v) tween-20 (TBS-T). 

IRDye800-conjugated goat anti-rabbit (Rockland Inc.; Limerick, PA, USA) was used as a 

secondary, and was diluted 1:10,000 in 1% skim milk in TBS and incubated for one hour 

at room temperature. Membranes were imaged on a Li-Cor Odyssey (Li-Cor Biosciences; 

Lincoln, NB, USA).  

2.8 In vivo experiments 

2.8.1 Mice 

Mice were housed in the West Valley Barrier Facility at the University of Western 

Ontario, Canada under specific pathogen-free conditions and the care of Animal Care and 

Veterinary Services staff. All experiments involving animals were completed in 

accordance with the Canadian Council on Animal Care Guide to Care and Use of 

Experimental Animals, and was approved by the Animal Use Subcommittee at the 

University of Western Ontario (Appendix A).  

A list of the types of mice used in this study may be found in Table 5. Humanized mice 

transgenic for HLA-DR4 and HLA-DQ8 (HLA-DR4/DQ8 mice) were a generous gift 

from Dr. Malak Kotb [143] and are bred in-house. Mice transgenic for human HLA-DQ8 

were bred from the HLA-DR4/DQ8 heterozygous breeding. FVB mice were purchased 

specifically for each experiment. 
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Table 4. Antibodies used in this study 

Antibody Target Purpose Source 

Rabbit anti-SpeA Polyclonal SpeA Passive 
immunization 

ProSci Inc., [188] 

Rabbit anti-SpeCA Polyclonal SpeC Passive 
immunization, 
Western blot 

ProSci Inc., [188] 

Rabbit anti-SmeZ Polyclonal SmeZ Passive 
immunization 

ProSci Inc., [188] 

IRDye800 goat anti-
rabbit 

Polyclonal rabbit 
IgG 

Western blot Rockland Inc. 
(Limerick, PA, USA) 

Goat anti-mouse 
HRPB 

Polyclonal 
murine IgG 

Antibody 
quantification 

Clone A3673, Sigma 
Aldrich 

A Anti-SpeC antibody cross-react with SpeJ [79], and therefore was used to detect SpeJ 
B HRP – horseradish peroxidase 
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Table 5. Mice used in this study 

Strain Name Characteristics MHC Class II Source 

C57Bl/6 Inbred black mouse H2b Jackson 
Laboratories 
(Bar Harbor, 
ME, USA) 

HLA-
DR4/DQ8 

Bred from heterozygous 
HLA-DR4/DQ8 × HLA-
DR4/DQ8 cross 

Human HLA- 
DR4 and HLA-
DQ8 

Gift from Dr. M. 
Kotb [143]; 
McCormick lab 
breeding colony 

HLA-DQ8 Bred from heterozygous 
HLA-DR4/DQ8 × HLA-
DR4/DQ8 cross, and also 
inbred from homozygous 
HLA-DQ8 × HLA-DQ8 
cross  

Human HLA-
DQ8 

McCormick lab 
breeding colony 

FVB Inbred white mouse H2q Jackson 
Labs/Charles 
River 
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2.8.2 In vivo murine model and complete nasal turbinates removal 

S. pyogenes strains were grown from freezer stock and subcultured twice in THY prior to 

growth to early exponential phase (OD600 between 0.2 and 0.3). Cells were then washed 

and resuspended in Hank’s balanced saline solution (HBSS) (Hyclone; Logan, UT, USA) 

with ~1.5 × 108 colony forming units (CFU) per 15 µL dose. Two days prior to 

inoculation, mice were provided with water containing 2 mg/mL neomycin (Neo) to 

drink ad libitum. On the day of inoculation, mice were anesthetized under 4% isofluorane 

and administered ~1.5 × 108 CFU (total) by pipetting 7.5 µL of bacterial suspension 

dropwise onto each nare, allowing natural inhalation of S. pyogenes. Mice were 

monitored during recovery, and placed back in their cages and monitored daily. Forty-

eight hours post-inoculation, mice were again anesthetized under 4% isofluorane. With 

the mouse on its back, its nose still receiving anaesthesia, and its limbs secured under T-

shaped pins (not punctured), a midline vertical incision was made through the fur, dermis, 

and peritoneum, extending from the bottom of the rib cage and diaphragm down to the 

genitalia. Lateral incisions from the original midline incision were also made (dorsally), 

ensuring not to damage other tissues. Internal organs (intestines and fat pads) were 

moved aside to reveal the inferior vena cava, from which the mouse was exsanguinated 

using a 25-gauge heparinized needle. The mouse was then decapitated and the lower jaws 

and upper cheeks were removed using straight blade operating scissors. T-shaped pins 

were used to secure the upper part of the head prior to removal of the upper incisors and 

nose tip. The palate was peeled away and disposed of. Both sets of upper molars were 

removed by inserting opened curved iris scissors around each side of the maxilla, and 

rolling outward away from the head. The complete nasal turbinates (cNT) are off-white, 

mucoid tissue which lay bilateral to the septum and are approximately the size of a grain 

of rice [188]. This tissue was removed using curved tweezers and a scooping motion and 

placed in 500 µL of ice-cold, sterile HBSS until further processing. The cNT tissue was 

manually homogenized using 1 mL glass homogenizers, serially diluted (10-fold) in 

sterile HBSS, and plated on Trypticase Soy Agar plus 5% sheep blood plates (TSAII + 

5% SB plates; BD Biosciences). Blood samples were diluted 1:10 with sterile HBSS and 

100 µL of each sample was spread plated on TSAII + 5% SB plates. Plates were left for 

48 hours at 37°C. Counts less than 3 CFU/10 µL were considered below the detectable 
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limit.  

For experiments where the mice were passively immunized, 500 µL of the appropriate 

anti-superantigen antibody was injected into the intraperitoneal cavity (intraperitoneally; 

i.p.) at both 24 and two hours prior to inoculation. Anti-superantigen antibodies (ProSci 

Inc.) had been previously titred and used in the McCormick Laboratory [188]. Mice were 

monitored at regular intervals and the remainder of the experiment proceeded as detailed 

above. 

2.9 Detection of in vitro superantigen production 

2.9.1 Splenocyte activation assays 

Mice were anesthetized under 4% isofluorane prior to spleen removal. Spleens were 

placed immediately into 5 mL ice-cold 1 × phosphate buffered saline (PBS; 137 mM 

sodium chloride (Amresco), 2.7 mM potassium chloride (Sigma Aldrich), 10 mM sodium 

phosphate (dibasic; EMD Millipore), 2mM potassium phosphate (monobasic; Thermo 

Fisher Scientific)). Spleens were processed into single-cell suspension with a glass 

homogenizer or pressed through a cell strainer, then treated with ammonium-chloride-

potassium (ACK) lysis buffer (154.95 mM ammonium chloride, 9.99 mM potassium 

bicarbonate, 0.099 mM EDTA) until erythrocytes were lysed. 1 × PBS was added to 

dilute out the ACK buffer and cells were spun for 7 minutes at 447 × g.  Splenocytes 

were washed with Roswell Park Memorial Institute medium (RPMI-1640; Life 

Technologies Inc.) and spun for 7 minutes at 447 × g). Cells were resuspended in 

complete RPMI (cRPMI; RPMI-1640 supplemented with 0.1 mM minimal essential 

medium non-essential amino acids (Life Technologies Inc.), 10% heat-inactivated fetal 

bovine serum (Sigma Aldrich), 100 units/mL penicillin (Life Technologies Inc.), 100 

µg/mL streptomycin (Life Technologies Inc.), 1 mM sodium pyruvate (Life Technologies 

Inc.), and 2 mM L-glutamine (Life Technologies Inc.)), and seeded at 2 x 105 cells/well 

in a 96-well plate. Splenocytes were activated with varying 10-fold dilutions of either 

recombinant superantigens (rSAg), or supernatants from S. pyogenes cultures. T 

lymphocyte activating controls were also used: ionomycin (500 ng/mL; Sigma Aldrich) 

and phorbol 12-myristate 13-acetate (PMA; 10 ng/mL; Sigma Aldrich). Cells were 
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activated for 18 hours in a 37°C + 5% carbon dioxide (CO2) incubator. Supernatants were 

removed analyzed for IL-2 production using ELISA. 

2.9.2 Human peripheral blood mononuclear cell activation assays  

Human peripheral blood mononuclear cells (PBMC) were isolated from blood acquired 

from healthy volunteers, with ethics approval (Appendix B). Whole blood was mixed 1:1 

with pre-warmed RPMI-1640, and added to room temperature Ficoll (GE Healthcare; 

Fairfield, CT, USA) (2:1, Ficoll : diluted blood). Tubes were centrifuged for 30 minutes 

without the brake at 913 × g.  The PBMC (buffy coat) layer were carefully moved to a 

new tube where they were then washed three times with RPMI with spins gradually 

decreased in intensity; the first at 514 × g, the second at 329 × g, and the third at 185 × g, 

each with the brake. Cells were resuspended in cRPMI and seeded at 2 x 105 cells/well in 

a 96-well plate. PBMC were stimulated with varying 10-fold dilutions of either rSAg or 

supernatants from S. pyogenes cultures. Multiple T lymphocyte activating controls were 

also used: 500 ng/mL ionomycin, 10 ng/mL PMA, and 500 ng/mL phytohaemagglutinin 

(PHA; Sigma Aldrich). Cells were activated for 18 hours in a 37°C + 5% carbon dioxide 

(CO2) incubator. Supernatants were analyzed for IL-2 production using ELISA.  

2.9.3 Enzyme-linked Immunosorbent Assays 

Murine interleukin-2 (IL-2) in supernatants from splenocyte activation assays was 

measured using the mouse IL-2 ELISA Ready-Set-Go! kit (eBioscience Inc.; San Diego, 

CA, USA). Human IL-2 was measured using the Human IL-2 ELISA Set (BD 

Biosciences). Costar 96-well EIA/RIA plates (Thermo Fisher Scientific) were coated 

overnight using either the supplied capture buffer (murine IL-2 kit) or carbonate capture 

buffer (15 mM sodium carbonate, 35 mM sodium hydrogen carbonate, 3 mM sodium 

azide, pH 9.5) (human kit only) with the appropriate capture antibody. Kit instructions 

were followed in both cases with the following exceptions: the primary antibody-biotin 

and avidin-horseradish peroxidase (HRP) conjugates were incubated together for 30 

minutes in assay diluent prior to adding to plates, and 3-3’-5-5’-tetramethylbenzidine 

(TMB; BD Biosciences) substrate was allowed to incubate for 30 minutes prior to 

stopping with 1M sulphuric acid (Caledon Laboratories Ltd.). All plates were read by a 
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Synergy H4 plate reader (BioTek Instruments Inc.; Winooski, VT, USA) at OD450 with a 

reference value of OD570. The detection limit for the murine IL-2 ELISA was 3.125 

ng/mL, while for the human IL-2 ELISA it was 7.8 ng/mL. 

ELISA to measure murine serum antibody titre (following passive immunization) were 

conducted by adding 1 µg of rSAg per well in carbonate capture buffer in 96-well Costar 

EIA/RIA plates and allowing overnight incubation at room temperature. Plates were then 

washed twice with MilliQ water and patted dry on Whatman paper. To block, 200 µL of 

1% (w/v) bovine serum albumin (BSA; Sigma Aldrich) and 0.02% (v/v) tween-20 in 1 × 

PBS was added to each well and left to incubate for two hours at room temperature. 

Plates were then washed twice with MilliQ water as above. The first well of each set of 

dilutions had 2 µL of serum (from terminal bleed) added to 200 µL of 0.1% BSA and 

0.02% tween-20 in 1 × PBS to create a 1:100 dilution. Samples were serially diluted 1:1 

in the plate, creating two-fold dilutions up to 1:204,800. Following two hours of 

incubation, serum samples were removed and plates were washed three times with 1 × 

PBS with 0.05% (v/v) tween-20 (PBS-T) then three times with MilliQ water. Plates were 

patted dry on Whatman paper prior to the addition of 100 µL of goat anti-mouse 

horseradish peroxidase conjugate (clone A3673; Sigma Aldrich) diluted 1:10,000 in 0.1% 

BSA and 0.02% tween-20 in 1 × PBS and incubation for two hours at room temperature. 

Five washes with PBS-T and five washes with MilliQ water were performed prior patting 

dry with Whatman paper and addition of 100 µL TMB for 15 minutes. The colorimetric 

reaction was stopped with the addition of 1M sulphuric acid. Plates were read by the 

Synergy H4 plate reader at OD450 with a reference value of OD570. 

2.10 Statistical Analyses 

Data from in vivo experiments are displayed as mean ± standard error of the mean 

(SEM). Data were analyzed using unpaired students’ t test and values of p < 0.05 were 

deemed significant. Analyses were performed in Prism v6.0 (Graphpad; La Jolla, CA, 

USA). 
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Chapter 3 : Results 
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3 Results 

 

The S. pyogenes strain MGAS5005 was isolated from cerebrospinal fluid of a patient 

from Ontario, Canada in 1996 [51, 189]. This strain is a clonal variant of the globally 

disseminated M1T1 strain known for causing a number of invasive infections [29]. The 

MGAS5005 genome encodes four superantigens; SpeG, SpeJ, and SmeZ are all 

chromosomally encoded, while SpeA was acquired on a bacteriophage element (Figure 4) 

[191]. By contrast, S. pyogenes strain MGAS8232, a rheumatic fever (non-invasive) 

isolate, carries six superantigens: SpeA, SpeC, SpeL, and SpeM (bacteriophage-encoded), 

as well as chromosomally encoded SpeG and SmeZ (Figure 4) [190]. Prior work from 

our laboratory established that both SpeA and human MHC class II molecules (HLA-

DR4/DQ8) were critical for establishing nasopharyngeal infection in mice [183]. In this 

thesis, I sought to evaluate the importance of superantigens in the nasopharyngeal 

infection model from the contemporary MGAS5005 strain, which encodes a different 

repertoire of superantigens compared to MGAS8232. 

3.1 Evaluation of individual superantigen deletion MGAS5005 strains for 
nasopharyngeal infection in mice 

Previously generated single superantigen deletion mutant strains of S. pyogenes 

MGAS5005 were evaluated in the nasopharyngeal infection model in HLA-DR4/DQ8 

(Figure 5). Briefly, HLA-DR4/DQ8 mice were nasally inoculated with ~1.5 × 108 CFU of 

one of the different superantigen deletion strains from the MGAS5005 background. After 

48 hours, the complete nasal turbinates (cNT) were removed, homogenized, and plated 

on TSAII + 5% SB plates. Individually, deletion of the speA or speG genes did not 

reduce the number of S. pyogenes recovered from the cNT of HLA-DR4/DQ8 mice, 

while MGAS5005ΔspeJ and MGAS5005ΔsmeZ both appeared to have reduced ability to 

infect HLADR4/DQ8 mice (Figure 5).  

Previous research from our lab indicated that S. pyogenes are able to produce an efficient 

infection in the cNT of FVB mice similar to the infection seen in HLA-DR4/DQ8 mice 

[188]. However, this phenotype was dependent on the strain of S. pyogenes where  
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Figure 4. Schematics of the circular S. pyogenes strain core chromosome depicting 

superantigen location in reference to the origin of replication (ori). (A) Strain 

MGAS8232 encodes six superantigens: SpeA, C, G, L, M, and SmeZ (B) Strain 

MGAS5005 encodes four superantigens: SpeA, G, J, and SmeZ. 
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Figure 5. Evaluation of superantigen-knockout strains of MGAS5005 in HLA-DR4/DQ8 

transgenic mice. Individual mice were nasally inoculated with ~1.5 × 108 bacterial CFU 

with the indicated strains and nasopharyngeal CFU were assessed at 48 hours. Each 

symbol represents an individual mouse; horizontal lines depict the mean of each group. * 

denotes p < 0.05 as determined by Student’s t test. 
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MGAS8232 were not recovered in high numbers 48 hours post-inoculation, while S. 

pyogenes MGAS5005 were recovered from cNT of FVB mice in similar amounts to the 

HLA-DR4/DQ8 mice (Figure 6). FVB mice are inbred white mice of Swiss ancestry that 

were originally named for their susceptibility to Friend virus B [192]. They are 

traditionally used for the generation of transgenic mouse lines and possess murine MHC 

class II haplotype H2q [192]. As per our nasopharyngeal infection model, FVB mice were 

inoculated with 1.5 × 108 CFU of the different S. pyogenes strains. After 48 hours (Figure 

6), high numbers of S. pyogenes were recovered from cNT of mice inoculated with S. 

pyogenes MGAS5005 wild-type strain and similar to the results in HLA-DR4/DQ8 mice, 

there was no impact on infection by the speA or speG individual deletion strains. 

Alternatively, MGAS5005 lacking speJ or smeZ were reduced in the ability to establish 

nasopharyngeal infection in FVB mice since (Figure 6). Two additional strains, 

containing a double deletion of speA and smeZ, and a triple deletion of speA, speJ and 

smeZ were also evaluated. Each strain poorly infected both HLA-DR4/DQ8 mice and 

FVB mice.  

These collective data indicated that the superantigens SpeJ and SmeZ may each be 

individually important for establishment of infection by S. pyogenes MGAS5005 in the 

HLA-DR4/DQ8 and FVB mice. Conversely, SpeA and SpeG, individually, were not 

important. Considering previous research from our lab in which one single superantigen 

was critical for formation of a nasopharyngeal infection [183], we hypothesized that SpeJ 

or SmeZ could be important for MGAS5005 infection in the FVB mice.  

3.2 Generation of speJ-complemented strains of S. pyogenes  

To first evaluate the role of SpeJ for establishment of acute nasopharyngeal infection, 

speJ was complemented into MGAS5005ΔspeA/speJ/smeZ. Double homologous 

recombination the pG+host5 system was used to insert the speJ gene into the 

MGAS5005ΔspeA/speJ/smeZ chromosome between the tsf and pepO genes. This region 

was chosen because it is a null region between two terminators, and additionally, the 

speA gene has been successfully complemented in this location [183]. Proper integration  
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Figure 6. Evaluation of superantigen-knockout strains of MGAS5005 and MGAS8232 in 

FVB transgenic mice. Individual mice were nasally inoculated with ~1.5 × 108 bacterial 

CFU with the indicated strains and nasopharyngeal CFU were assessed at 48 hours. Each 

symbol represents an individual mouse; horizontal lines depict the mean of each group. 

*** denotes p < 0.001 as determined by Student’s t test.  
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of speJ into the tsf/pepO region was demonstrated by PCR (Figure 7) and was confirmed 

with sequencing. 

Concurrently, speJ from S. pyogenes MGAS5005 was also complemented into S. 

pyogenes MGAS8232ΔSAg, a strain mutated to lack all superantigens, and furthermore, 

did not originally encode speJ. Similar to the creation of 

MGAS5005ΔspeA/speJ/smeZ+speJ, complementation of speJ in between tsf and pepO of 

MGAS8232ΔSAg was accomplished using double homologous recombination with a 

vector based on the pG+host5 plasmid backbone. The successful speJ complements were 

confirmed by PCR (Figure 8) using primers internal and external to the homologous 

cloning region prior to further confirmation with sequencing.  

Both speJ-complemented strains were subjected to in vitro testing to ensure the inherent 

characteristics of the strains were not altered during cloning. In vitro growth curves were 

conducted for each MGAS8232 strain and there were no notable differences 

distinguished (Figure 9). Manual growth curves of MGAS5005, 

MGAS5005ΔspeA/speJ/smeZ, and MGAS5005ΔspeA/speJ/smeZ+speJ displayed some 

differences in the rate of growth rates with the MGAS5005 strain entering exponential 

phase marginally earlier than the other two strains (Figure 10). To evaluate SpeJ 

expression in vitro, supernatants from cultures in stationary phase were subjected to TCA 

precipitation prior to analysis using SDS-PAGE and Western blot analysis. Since anti-

SpeC antibodies are cross-reactive with SpeJ [79, 177], polyclonal rabbit anti-SpeC 

antibody was used to detect SpeJ. Although recombinant SpeJ was detected by Western 

blot, SpeJ secreted by S. pyogenes was undetectable in culture supernatants from wild-

type MGAS5005, or the speJ-complemented strains (Figure 11). In the MGAS8232 lane, 

the detected band is SpeC as it is one of the six naturally encoded superantigens of 

MGAS8232 [183].  
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Figure 7. Complementation of speJ into MGAS5005ΔspeA/speJ/smeZ. (A) Schematic of 

the gene organization and primer locations for the speJ complemented 

MGAS5005ΔspeA/speJ/smeZ strain (MGAS5005ΔspeA/speJ/smeZ+speJ). The tsf and 

pepO genes are labeled. The tsf RT For and pepO RT Rev primers fall outside of the 500 

bp homologous region used for recombination. (Not to scale.) (B) Confirmation of 

integration of speJ from MGAS5005 into the tsf/pepO region of 

MGAS5005ΔspeA/speJ/smeZ. PCR was performed on MGAS5005ΔspeA/speJ/smeZ 

genomic DNA and MGAS5005ΔspeA/speJ/smeZ+speJ genomic DNA with three sets of 

primers:, speJ RT Rev and pepO RT Rev (1), and tsf  RT For and speJ RT For (2), and tsf  

RT For and pepO RT Rev (3). PCR products were visualized on a 1% agarose gel stained 

with ethidium bromide. Ladder band sizes are adjacent to the gel in base pairs. 
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Figure 8. Complementation of speJ from S. pyogenes MGAS5005 into S. pyogenes 

MGAS8232ΔSAg. (A) Schematic of the gene organization and primer locations for the 

speJ complemented MGAS8232∆SAg (MGAS8232∆SAg+speJ). The tsf and pepO genes 

are labeled. The tsf RT For and pepO RT Rev primers fall outside of the 500 bp 

homologous region used for recombination. (Not to scale.) (B) Confirmation of 

integration of speJ into the tsf/pepO region of S. pyogenes MGAS8232∆SAg. PCR was 

performed on S. pyogenes MGAS8232∆SAg genomic DNA and MGAS8232∆SAg+speJ 

genomic DNA with three sets of primers: tsf RT For and pepO RT Rev (1), speJ RT Rev 

and pepO RT Rev (2), and tsf RT For and speJ RT For (3). PCR products were visualized 

on a 1% agarose gel stained with ethidium bromide. Ladder band sizes are adjacent to the 

gel in base pairs. 
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Figure 9. MGAS8232ΔSAg+speJ displays a similar growth rate to parent strains 

MGAS8232 and MGAS8232ΔSAg. Growth of strains was evaluated at 37°C where OD600 

was measured in 30 minute intervals. Nine replicates of each culture were measured. 

Data represented as mean ± standard error of the mean (SEM). 
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Figure 10. Manual growth curve of MGAS5005, MGAS5005ΔspeA/speJ/smeZ, and 

MGAS5005ΔspeA/speJ/smeZ+speJ at 37°C. Optical density at 600 nm (OD600) 

measurements of triplicate cultures were taken every hour. 
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Figure 11. Expression of SpeJ by S. pyogenes is not detectable by Western Blot analysis 

from culture supernatants in vitro. Cultures of the indicated strains were grown for 12 

hours prior to TCA precipitation. Precipitated proteins were resuspended in 8M urea, 

visualized alongside recombinant SpeJ on SDS-PAGE. Western blotting was performed 

with rabbit anti-SpeC antibody and detected with anti-rabbit IRDye. Molecular weight 

sizes are adjacent to the gel in kilodaltons.  
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3.3 Genetic SpeJ complementation does not enhance S. pyogenes acute infection in 
the cNT of HLA-DR4/DQ8 or FVB mice 

Although in vitro expression of SpeJ was undetectable by Western blot analysis, the speJ-

complemented strains were further evaluated in the nasopharyngeal infection model since 

in vivo expression patterns may differ. The number of bacteria recovered from cNT of 

HLA-DR4/DQ8 mice infected with MGAS5005ΔspeA/speJ/smeZ+speJ was not different 

than the number of bacteria recovered from the cNT of mice infected with 

MGAS5005ΔspeA/speJ/smeZ (Figure 5), indicating that complementation of speJ did not 

provide an advantage to S. pyogenes for establishment of a nasopharyngeal infection in 

this transgenic mouse strain.  

Strains complemented with speJ were also evaluated in FVB mice to assess importance 

the contribution of SpeJ to nasopharyngeal infection to this mouse strain. A similar 

number of S. pyogenes were recovered from FVB mice inoculated with 

MGAS5005ΔspeA/speJ/smeZ+speJ compared to mice inoculated with the base strain 

MGAS5005ΔspeA/speJ/smeZ (Figure 6). In addition, the number of S. pyogenes 

recovered from cNT of FVB mice inoculated with MGAS8232ΔSAg+speJ was also not 

different from the number isolated from MGAS8232ΔSAg-inoculated mice. Thus, the 

addition of the speJ gene into the MGAS5005ΔspeA/speJ/smeZ genome and the 

MGAS8232ΔSAg genome did not enhance the ability of the strain to infect FVB mice.  

3.4 SpeJ is produced in vitro but does not stimulate murine splenocytes 

After the unexpected results with the in vivo experiments in which the acquisition of speJ 

did not aid the S. pyogenes strains in establishment of infection in HLA-DR4/DQ8 or 

FVB mice, recombinant superantigens were evaluated in their ability to stimulate FVB 

splenocytes. Since superantigens are known to activate T lymphocytes, IL-2 secretion 

was used to measure levels of T lymphocyte activation. Curiously, each of the 

recombinant superantigens encoded by MGAS5005 produced only low levels of IL-2 

from FVB splenocytes (Figure 12). Additionally, each strain was grown in vitro and 

bacterial supernatants were evaluated for their ability to activate FVB (Figure 13) and 

HLA-DR4/DQ8 splenocytes (Figure 14). As expected, neat (undiluted) supernatants 

induce secretion of low amounts of IL-2 (in comparison to other dilutions) due to the  
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Figure 12. Recombinant superantigens do not activate FVB splenocytes. Splenocytes 

were harvested and stimulated with 10-fold dilutions of recombinant superantigen. 

Eighteen hours post-activation, supernatants were assayed for murine IL-2 production by 

ELISA.  
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Figure 13. S. pyogenes strain supernatants do not activate FVB splenocytes. Splenocytes 

were harvested and stimulated with 10-fold dilutions of supernatants from stationary 

phase cultures. Eighteen hours post-activation, supernatants were assayed for murine IL-2 

production by ELISA.  
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Figure 14. Supernatants of speJ-complemented S. pyogenes strains do not activate HLA-

DR4/DQ8 splenocytes. Splenocytes were harvested and stimulated with 10-fold dilutions 

of supernatants from stationary phase cultures. Eighteen hours post-activation, 

supernatants were assayed for murine IL-2 production by ELISA.  
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presence of cytolysins which decrease splenocyte viability. There were no differences 

between supernatants from MGAS5005, MGAS8232, or any of the superantigen 

knockout or complement strains in the level of FVB splenoctye activation as measured by 

murine IL-2 secretion. These results were not altogether unexpected as S. pyogenes is a 

human specific pathogen and murine cells are typically less sensitive to superantigens 

than human T lymphocytes [184, 185]. The HLA-DR4/DQ8 splenocytes were stimulated 

by supernatants from wild-type MGAS5005, and less so by supernatants from 

MGAS8232, but were not stimulated by supernatants of any other strain evaluated, 

including the speJ-complemented strains.  

Although SpeJ protein and the speJ-complemented strains did not activate the murine 

splenocytes, human lymphocytes are reactive to SpeJ [79]. In order to determine whether 

the genetically complemented strains were actually producing SpeJ protein, the same 

supernatants were incubated with human PBMC to evaluate level of T lymphocyte 

activation by measuring human IL-2 secretion (Figure 15). Neat (undiluted) supernatants 

induce secretion of low amounts of IL-2 (in comparison to other dilutions) due to the 

presence of cytolysins which decrease PBMC viability. As expected, supernatants from 

wild-type strains MGAS5005 and MGAS8232 activated the PBMC producing levels of 

IL-2 similar to the positive control PHA. This activation was decreased upon deletion of 

speJ from MGAS5005, and was effectively abrogated upon further deletion of speA and 

smeZ from MGAS5005, and all superantigens from MGAS8232. Interestingly, 

complementation of speJ was able to restore T lymphocyte activation to levels 

comparable to approximately half of the amount of IL-2 secreted with wild-type strains, 

indicating that SpeJ is indeed being produced by these strains in vitro. Thus, the 

MGAS5005ΔspeJ strain was independently rebuilt from wild-type MGAS5005 strain and 

evaluated in vivo. This new strain produced similar results of decreased CFU recovered 

from cNT of mice, compared to the wild-type parent strain (data not shown). Given these 

findings, and since the phenotype could not be functionally restored in vivo by genetic 

complementation, we concluded that deletion of speJ caused a polar effect, altering the 

regulation of one or more genes up- or downstream of speJ, thus hindering the bacteria 

from establishing an infection. Further work in this thesis will focus on other 

superantigens and will exclude SpeJ.  
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Figure 15. SpeJ is produced by both S. pyogenes MGAS5005ΔspeA/speJ/smeZ+speJ and 

S. pyogenes MGAS8232ΔSAg+speJ in vitro. Human PBMC were isolated from whole 

blood, and stimulated with 10-fold dilutions of supernatants from stationary phase 

cultures. Eighteen hours post-activation, supernatants were removed and human IL-2 

production was measured by ELISA. 
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3.5 Evaluation of other superantigens in acute nasopharyngeal infection 

Each of the S. pyogenes MGAS5005 superantigen deletion strains was evaluated for its 

ability to activate human PBMC (Figure 16). Interestingly, each single superantigen 

deletion strain, and the strain with both speA and smeZ deleted, demonstrated similar 

activity to the wild-type S. pyogenes MGAS5005 strain. This is presumably because 

while one superantigen is deleted, the strain still carries three other superantigens, each of 

which is active with human cells. There was however, a noted reduction in activity of the 

S. pyogenes MGAS5005 supernatants when speA, speJ, and smeZ all were deleted.  

Each of the single superantigen deletion strains was evaluated in the HLA-DR4/DQ8 

mice (Figure 5) and the strain lacking the gene for SmeZ, S. pyogenes 

MGAS5005ΔsmeZ, displayed a reduction in ability to cause an infection indicating that 

SmeZ may be important for HLA-DR4/DQ8 infection. This phenotype was also seen in 

FVB mice (Figure 6). In order to determine whether the effects of the loss of smeZ could 

be restored, the smeZ gene was complemented back into the S. pyogenes 

MGAS5005ΔsmeZ and S. pyogenes MGAS5005ΔspeA/smeZ genomes to generate strains 

S. pyogenes MGAS5005ΔsmeZ+smeZ and MGAS5005ΔspeA/smeZ+smeZ, respectively. 

Similar to the speJ complements, smeZ was complemented into the null region between 

tsf and pepO, using the temperature sensitive vector system described earlier. 

Successfully integrated clones were confirmed with PCR and sequencing (Figure 17). 

Simultaneously but separately, the MGAS5005ΔspeA/smeZ strain was complemented 

with the speA gene in the same tsf and pepO region as the other complements to generate 

MGAS5005ΔspeA/smeZ+speA.  These clones were evaluated in the FVB nasopharyngeal 

infection model (Figure 6), where complementation of smeZ into 

MGAS5005ΔspeA/smeZ, although not statistically significant, showed a trend towards 

restoration of the number of S. pyogenes recovered from the cNT closer to wild-type 

levels. The MGAS5005ΔspeA/smeZ+speA strain was also used in FVB nasopharyngeal 

infection and the number of S. pyogenes recovered was comparable to the number 

obtained without speA complemented. This was an expected result as the main murine 

target for SpeA, Vβ8+-T lymphocytes [193], are missing in FVB mice. The 

MGAS5005ΔsmeZ+smeZ clone was not tested in the FVB mice because concurrently in  
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Figure 16. Human PBMC are activated by supernatants from S. pyogenes MGAS5005 

and single-superantigen mutant strains. PBMC were isolated from whole blood, and 

stimulated with 10-fold dilutions of supernatants from stationary phase cultures. Eighteen 

hours post-activation, supernatants were assayed for human IL-2 production by ELISA. 
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Figure 17. Generation of original smeZ-complemented strains. Confirmation of the 

integration of smeZ from MGAS5005 into the tsf/pepO region of both MGAS5005ΔsmeZ 

and MGAS5005ΔspeA/smeZ. Polymerase chain reaction (PCR) was performed on 

MGAS5005ΔsmeZ, MGAS5005ΔsmeZ::smeZ, MGAS5005ΔspeA/smeZ, and 

MGAS5005ΔspeA/smeZ+smeZ genomic DNA with primers tsf  RT For and pepO RT 

Rev (outside of the integration site). PCR products were visualized on a 1% agarose gel 

stained with ethidium bromide. Ladder band sizes are adjacent to the gel in base pairs. 
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the lab, the MGAS5005ΔspeA/speJ/smeZ strain had been sent to sequencing and results 

determined that there were ten single nucleotide polymorphisms (SNP) in the area 

surrounding the smeZ gene deletion, thus rendering the strains containing the smeZ 

deletion non-isogenic. Consequently, the deletion vector was re-created to be specific to 

the upstream and downstream regions of smeZ from MGAS5005, and strains containing a 

deleted smeZ gene were re-derived. MGAS5005ΔsmeZ strain was regenerated on the 

MGAS5005 background, while MGAS5005ΔspeA/smeZ was regenerated on the 

MGAS5005ΔspeA base strain. Each newly created deletion was confirmed by PCR and 

sequencing (Figure 18). When evaluating these new strains in the FVB mice (strains 

labeled “new”), there were drastically different results for the new 

MGAS5005ΔspeA/smeZ, where the strain’s ability to cause an acute nasopharyngeal 

infection was not hindered (Figure 6). Infection with the new MGAS5005ΔsmeZ strain 

produced high numbers of CFU recovered from cNT, though the results were more 

variable. Cloning was also underway to regenerate the speA- and smeZ-complemented 

strains, which was completed successfully and confirmed with sequencing (Figure 19).  

While generating the new deletion and complement strains, the single mutant strains were 

evaluated in HLA-DQ8 mice (Figure 20), as previous research indicated that MGAS5005 

can also infect these mice [188]. Deletion of speA and speG, each individually, did not 

have an effect on the ability of S. pyogenes to establish a nasopharyngeal infection. The 

result with SpeA was interesting, considering recombinant SpeA clearly activates HLA-

DQ8 splenocytes (Figure 21). The new isogenic MGAS5005 smeZ deletion strain showed 

variance with high numbers of S. pyogenes recovered from two mice, and a low number 

recovered from one mouse. The most surprising results were the high and varying 

numbers of S. pyogenes recovered from HLA-DQ8 mice that had been infected with the 

new MGAS5005ΔspeA/smeZ strain. This was an unexpected result as previous deletion 

of more than one superantigen in tandem in other murine models resulted in a poor 

establishment of infection by the bacteria [183]. Previously (Figures 5 and 6), the original 

double deletion strain was not effective at causing infections; however, consistently high 

numbers of S. pyogenes, similar to wild type counts, were recovered from the cNT of 

mice inoculated with the new MGAS5005ΔspeA/smeZ strain.  
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Figure 18. Generation of new smeZ deletion strains. Genomic DNA from 

MGAS5005ΔsmeZ and MGAS5005ΔspeA/smeZ, as well as parent strains MGAS5005 

and MGAS5005ΔspeA were amplified by polymerase chain reaction (PCR) with primers 

upstream and downstream of the smeZ gene. PCR products were visualized on a 1% 

agarose gel stained with ethidium bromide. Ladder band sizes are adjacent to the gel in 

base pairs. 
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Figure 19. Generation of new smeZ- and speA-complemented strains. Confirmation of the 

integration of (A) smeZ from MGAS5005 into the tsf/pepO region of MGAS5005ΔsmeZ 

and (B) speA or smeZ from MGAS5005 into the tsf/pepO region of 

MGAS5005ΔspeA/smeZ. Polymerase chain reaction (PCR) was performed on 

MGAS5005ΔsmeZ, MGAS5005ΔsmeZ+smeZ, MGAS5005ΔspeA/smeZ, 

MGAS5005ΔspeA/smeZ+speA, and MGAS5005ΔspeA/smeZ+smeZ genomic DNA with 

primers tsf  RT For and pepO RT Rev (outside of the integration site). PCR products 

were visualized on a 1% agarose gel stained with ethidium bromide. Ladder band sizes 

are adjacent to the gel in base pairs. 
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Figure 20. Evaluation of superantigen-knockout strains of MGAS5005 in HLA-DQ8 

transgenic mice. Individual mice were nasally inoculated with ~1.5 × 108 bacterial CFU 

with the indicated strains in HLA-DQ8 mice. Nasopharyngeal CFU were assessed at 48 

hours. Each symbol represents an individual mouse; horizontal lines depict the mean of 

each group. 
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Figure 21. Recombinant SpeA and SmeZ activate HLA-DQ8 splenocytes. Splenocytes 

were harvested and stimulated with 10-fold dilutions of rSAg. Eighteen hours post-

activation, supernatants were assayed for murine IL-2 production by ELISA. 
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3.6 MGAS5005ΔspeA/smeZ phenotype was not MHC class II-dependent 

There were high and variable numbers of S. pyogenes MGAS5005ΔspeA/smeZ recovered 

from the cNT of both FVB and HLA-DQ8 mice (Figures 6 and 20). Since MGAS5005 

does not efficiently infect C57Bl/6 mice using the nasopharyngeal cNT model (due to the 

lack of human MHC class II molecules), each of the MGAS5005 superantigen deletion 

strains were evaluated in C57Bl/6 mice to confirm that the phenotype seen in the HLA-

DQ8 mice with MGAS5005ΔspeA/smeZ was dependent on MHC class II molecules. 

Surprisingly, MGAS5005ΔspeA/smeZ was recovered at higher levels compared to the 

wild-type MGAS5005 strain (Figure 22), indicating that the phenotype seen in the HLA-

DQ8 mice was not dependent on MHC class II molecules, and therefore not 

superantigen-dependent. Further investigation with the single superantigen mutant strains 

determined that the MGAS5005ΔspeA strain also had a significant increase in the number 

of S. pyogenes recovered when compared to MGAS5005, indicating that this phenotype 

was also not superantigen-dependent. The number of S. pyogenes recovered from the 

MGAS5005ΔsmeZ infection, however, was not different than the number recovered from 

MGAS5005 infection. 

3.7 SpeA and SmeZ are both important for MGAS5005 infection 

Since the previous experiments were all dependent on genetic manipulation of S. 

pyogenes strain, an alternate, non-genetic experiment was proposed to determine the 

superantigen requirements for MGAS5005 nasopharyngeal infection of HLA-DQ8 mice. 

Mice were passively immunized with rabbit serum containing anti-superantigen 

polyclonal antibodies prior to inoculation with S. pyogenes MGAS5005 using the 

standard infection protocol (Figure 23). Four different treatment groups of anti-

superantigen serum were utilized: anti-SpeA and anti-SmeZ combination to determine if 

both SpeA and SmeZ together are important for infection establishment; anti-SpeC as a 

negative control (MGAS5005 does not express SpeC); anti-SpeA/anti-SpeC combination 

as a control for anti-SpeA serum; and anti-SmeZ/anti-SpeC combination as a control for 

anti-SmeZ serum. The combinatorial controls were utilized instead of single antibody 

treatments (eg. anti-SpeA serum only) to maintain consistency of volume of treatments, 

as well as to ensure prospective effects were not due to double the amount of targeted  
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Figure 22. MGAS5005ΔspeA/smeZ and MGAS5005ΔspeA infect C57Bl/6 mice in an 

MHC class II-independent manner. Individual mice were nasally inoculated with ~1.5 × 

108 bacterial CFU with the indicated strains in C57Bl/6 mice. Nasopharyngeal CFU were 

assessed at 48 hours. Each symbol represents an individual mouse; horizontal lines depict 

the mean of each group.  * denotes p < 0.05, ** denotes p < 0.01 as determined by 

Student’s t test.  
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Figure 23. Both SpeA and SmeZ are important for establishment of acute infection of 

HLA-DQ8 mice with S. pyogenes MGAS5005. Mice were passively immunized at 24 

and two hours pre-inoculation with 500 µL (i.p.) of one of four antibody combinations: 

anti-SpeC only, anti-SpeA and anti-SpeC, anti-SmeZ and anti-SpeC, or anti-SpeA and 

anti-SmeZ. Infection with ~1.5 × 108 bacterial CFU of MGAS5005 then proceeded, with 

sacrifice at 48 hours post-inoculation. Nasopharyngeal CFU were assessed at 48 hours. 

Each symbol represents an individual mouse; horizontal lines depict the mean of each 

group. * denotes p < 0.05, ** denotes p < 0.01 as determined by Student’s t test. 
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superantigen-specific antibodies. As expected, S. pyogenes were able to establish an 

infection in mice that received passive immunization with antibodies to SpeC, a 

superantigen not expressed by MGAS5005. Passive immunization with the anti-SpeA 

and anti-SmeZ combination inhibited the infection by S. pyogenes in the cNT. Perhaps 

the most interesting result was that mice that were passively immunized with either an 

anti-SpeA and anti-SpeC combination or an anti-SmeZ and anti-SpeC combination had 

significantly less bacteria recovered from their cNT tissue, indicating that both SpeA and 

SmeZ superantigens are likely required for establishment of infection by S. pyogenes 

MGAS5005 in HLA-DQ8 mice. Antibody titres at time of sacrifice were determined by 

performing ELISA on serum acquired during the terminal bleed (Figure 24). Serum from 

each mouse contained antibodies that were administered via passive immunization, 

confirming proper administration of antibodies. The cNT data from this experiment 

implies that more than one superantigen could be required for S. pyogenes pharyngeal 

infection establishment. 
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Figure 24. Terminal bleed antibody titres from passively-immunized HLA-DQ8 mice. 

Mice were passively immunized 24 and 2 hours prior to inoculation with MGAS5005. 

Forty-eight hours post-infection, mice were sacrificed and serum was assayed by ELISA 

to determine anti-superantigen antibody titers. 
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Chapter 4 : Discussion 



 

79 

4 Discussion 

 

S. pyogenes has evolved to be an effective human-specific pathogen, employing several 

virulence factors to establish infections and maintain its survival. Although most 

virulence factors function to inactivate or avoid the innate immune system, superantigens 

deliberately activate the adaptive immune system. These toxins are extremely potent and 

can activate T lymphocytes in picogram quantities. Both MHC class II molecules, and a 

single superantigen, SpeA, were found to be critical for effective nasopharyngeal 

infection by S. pyogenes MGAS8232 [183]. A different strain of S. pyogenes, 

MGAS5005, was able to cause efficient nasopharyngeal infection in FVB mice [188]; 

however, since MGAS8232 was unable to cause a nasopharyngeal infection in these 

mice, and both strains have a different superantigen profile, we postulated that the 

different superantigens expressed by each strain may have contributed to this effect. 

Although superantigen research in previous years has determined various superantigen 

structures, functions, and roles in diseases such as STSS, the questions of why all S. 

pyogenes strains encode multiple, genetically distinct superantigens, if they are 

functionally redundant, and whether the bacteria use superantigens to aid in the 

establishment of infections within a wider range of the human population (based on MHC 

class II expression), still remain unanswered. In this study, the contribution of each of the 

four superantigens encoded in the S. pyogenes strain MGAS5005 to the establishment of 

non-severe infection was assessed in a model of murine acute nasopharyngeal infection.  

S. pyogenes MGAS5005 encodes for four independent superantigens: SpeA, SpeG, SpeJ 

and SmeZ [191]. Although most streptococcal superantigens are variable traits in S. 

pyogenes, the speG gene appears to be chromosomally encoded and is found in nearly all 

strains of S. pyogenes. Recombinant SpeG has been shown to be functionally active with 

human PBMC [81], although recombinant SpeG did not activate HLA-DR4/DQ8 [183] 

or FVB (Figure 12) splenocytes. The S. pyogenes strain with speG as the only remaining 

superantigen encoded caused very limited activation of human PBMC (Figure 16) and 

deletion of speG did not alter the infection phenotype in all three murine models tested 
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(FVB, HLA-DR4/DQ8, and HLA-DQ8 mice). These experiments indicate that although 

SpeG is functional and expressed by MGAS5005, this superantigen does not appear to be 

a functionally dominant superantigen in MGAS5005. Although a very similar toxin can 

be identified in group G streptococci [194] and SpeG is not thought to play a critical role 

in pathogenesis of human infections [195], this superantigen may still be a contributor to 

establishment of human infections, albeit in a more limited capacity.  

Initial data with the MGAS5005ΔspeJ strain had indicated that this superantigen may be 

important for establishment of infection in FVB mice by S. pyogenes MGAS5005 (Figure 

6). Additionally, S. pyogenes strain MGAS8232, a strain that lacks the speJ gene, was 

unable to establish a nasopharyngeal infection in FVB mice, and thus, we hypothesized 

that transferring the speJ gene of MGAS5005 into S. pyogenes MGAS8232 would 

provide MGAS8232 the ability to cause an infection in FVB mice. Thus, isogenic speJ-

deletion and speJ-complemented strains were generated and utilized to evaluate the 

importance of SpeJ in acute nasopharyngeal infection establishment. Although genetic 

manipulation was successful, complementation of speJ into S. pyogenes 

MGAS8232ΔSAg, a strain lacking all encoded superantigens, did not increase the 

number of bacteria recovered from the cNT of FVB mice compared to mice that were 

infected with S. pyogenes MGAS8232 (Figure 6). In addition, complementing speJ into a 

strain in which three superantigen genes (including speJ) had previously been deleted did 

not restore the ability of S. pyogenes to establish an acute nasopharyngeal infection in any 

of the mouse strains tested (Figures 5 and 6). Recombinant SpeJ was not capable of 

activating HLA-DQ8 or FVB splenocytes (Figures 21 and 12), nor were supernatants 

from speJ-complemented strains able to activate murine splenocytes (Figure 13). 

Interestingly, it was confirmed that SpeJ was expressed in vitro by both 

MGAS5005ΔspeA/speJ/smeZ+speJ and MGAS8232ΔSAg+speJ strains, as supernatant 

from culture growth caused activation of human PBMC (Figure 15). Real-time 

quantitative PCR was performed on post-infection murine cNT samples in order to 

quantify the number of speJ transcript messenger ribonucleic acids (mRNA), though 

results were inconclusive (data not shown). Attempts to quantify SpeJ protein from the 

post-infection cNT by capture ELISA were also inconclusive (data not shown). Each of 

these findings may have been the result of low numbers of bacteria in the cNT of mice 
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inoculated with speJ-complemented strains (Figure 6). The speJ deletion strain was 

generated multiple times and revealed similar results in vivo. Although in these 

experiments the genes were complemented in trans in an attempt to prevent polar effects, 

we now conclude that the deletion of speJ likely introduced a polar effect that was not 

corrected upon complementation. Since a polar effect is suspected, quantifying gene or 

RNA expression using microarray or RNA-seq could reveal expression changes between 

the S. pyogenes MGAS5005 wild-type strain, deletion, and complemented strains. 

Alternatively, the speJ gene could be replaced by a mutated, non-functional version of 

the gene. Structure models could be utilized to predict which amino acids are important 

for MHC class II or TCR binding. We have previously generated a toxoid gene for SpeA, 

SpeAY100A (containing a tyrosine to alanine mutation at position 100) that demonstrated 

reduced activity on murine splenocytes when compared to wild-type SpeA, and was 

successfully complemented into the S. pyogenes genome (albeit at a different location 

than the original speA gene) [183]. Replacing the native speJ with a non- or less-

functional gene may eliminate the polar effects experienced with the speJ deletion strain. 

Results from the experiments in this thesis suggest that SpeJ is not the important 

superantigen for MGAS5005 nasopharyngeal infection establishment in these models.  

Interestingly, experiments with an 86-day pharyngeal model in cynomolgous macaques 

using the same strain of S. pyogenes, MGAS5005, revealed that temporally, SpeJ is the 

first superantigen expressed, followed by SmeZ and SpeA [196]. Early expression of 

SpeJ also correlated with low CFU counts [196], indicating that it is perhaps important in 

initial establishment of pharyngeal infection in the macaque model. The failure of mouse 

T cells to respond to SpeJ may be due to the lack of murine equivalent TCR Vβ chains. 

SpeJ targets human T lymphocytes expressing Vβ2, -3, -12, -14, and -17 [79], and as a 

consequence, mouse T lymphocytes may not have been reactive to SpeJ, a proposed 

situation similar to what occurs with SpeC, that targets human Vβ2 [114, 197] but does 

not interact with the murine TCR and is incapable of activating mouse T lymphocytes 

[198]. Alternatively, SpeJ may not bind HLA-DR4 or HLA-DQ8.  

Deletion of speA from S. pyogenes MGAS5005 did not impact the ability of MGAS5005 

to establish an infection in FVB mice. This was a predicted result in the FVB mouse 
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model, as these mice are missing the TCR gene for murine Vβ8 [199], one of the main 

targets of SpeA [193]. Based on previous evidence of how important SpeA of S. 

pyogenes MGAS8232 is for establishing a nasopharyngeal infection in HLA-DR4/DQ8 

mice [183], and considering the fact that the speA allele from S. pyogenes MGAS5005 

only differs by one nucleotide, and thus one amino acid (Gly in MGAS8232 vs. Ser in 

MGAS5005 at position 110) as annotated in the NCBI genomes database, it was expected 

that SpeA would be important for MGAS5005 infection in HLA-DR4/DQ8 mice. In 

HLA-DR4/DQ8 mice and HLA-DQ8 mice, the number of S. pyogenes recovered from 

infections in which speA was deleted was not different from the number recovered from 

wild-type MGAS5005 infections (Figures 5 and 19, respectively). However, upon 

evaluating the strain in the C57Bl/6 mice, there was a significant increase in the number 

of bacteria recovered from the murine cNT (Figure 22). This effect was also seen with the 

double speA and smeZ deletion strain, which indicated that the previous high numbers of 

S. pyogenes recovered from cNT were likely not MHC class II-dependent, and thus not 

superantigen-dependent. The molecular basis of this finding, although very interesting, is 

currently not clear. Consequently, a new MGAS5005ΔspeA strain will need to be 

generated, in addition to a new speA/smeZ double deletion strain generated on the S. 

pyogenes MGAS5005ΔsmeZ background. It is only logical to assume that the effects seen 

in the C57Bl/6 model by the speA/smeZ double deletion strain were due to whatever 

change happened in the speA deletion strain, as that is the parent strain of 

MGAS5005ΔspeA/smeZ.  

The smeZ deletion strains were recreated as the original strains contained multiple SNPs 

in the regions surrounding the deletion. New strains were tested in the FVB and HLA-

DQ8 model, yet, as previously mentioned, high numbers of the double deletion strain 

were recovered from cNT. Since there were difficulties encountered with the genetic 

manipulations in this study, an experiment using the wild-type MGAS5005 strain and 

neutralizing antibodies to different superantigens was accomplished as a non-genetic-

based experiment. An experiment in which both SpeA and SmeZ were neutralized, both 

individually and in tandem, revealed that in HLA-DQ8 mice, both superantigens were 

required for S. pyogenes MGAS5005 to establish the nasopharyngeal infection phenotype 

(Figure 23), thereby nullifying our hypothesis that the SpeA and SmeZ are functionally 
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redundant. The use of multiple superantigens simultaneously is interesting and helps to 

provide new understanding as to why many strains encode multiple superantigens [77]. 

Future experiments could examine temporal expression since S. pyogenes gene 

expression can be phase-dependent, for example shifting from a SpeB+/SpeA- phenotype 

to a SpeB-/SpeA+ phenotype in murine tissue [43].  

Evidently, a superantigen-independent change occurred in regulation of S. pyogenes 

MGAS5005ΔspeA/smeZ and MGAS5005ΔspeA genes to allow for better bacterial 

recovery 48 hours post infection from the C57Bl/6 mice. There are a number of different 

candidates for this including changes in capsule expression, SpeB, or other genes 

altogether. S. pyogenes produces an anti-phagocytic capsule composted of hyaluronic 

acid. It should be noted that capsule expression is quickly reduced following culture in 

artificial media, on fomites, and during convalescent throat carriage [200]. Flores et al. 

[34] suggest that down-regulation of capsule synthesis contributes to an asymptomatic 

carriage state for S. pyogenes, while increased capsule expression has been associated 

with more severe infections [37]. Though India ink assays were briefly attempted to 

visualize differences in hyaluronic acid capsule production among the superantigen-

deletion strains, results were inconclusive (data not shown). Quantitative real-time PCR 

focused on the hasA, hasB, and hasC genes is recommended for an accurate evaluation of 

whether capsule expression differences are responsible for the ‘gain of function’ mouse 

infection phenotypes. Alternatively, ELISA for capsule expression has been previously 

used successfully for quantification [69] and is an option for future consideration. 

Following cloning techniques, strains were cultured for five days in THY + 10% HP to 

simulate animal passage. It is possible, however, that a mutation was selected for in the 

MGAS5005ΔspeA strain during this process. Potentially, a mutation in one of the 

CovR/S two-component system genes could affect bacterial fitness. Longevity of 

nasopharyngeal infection was shorter for mice inoculated with strains with a mutated 

CovR/S system than those with a wild-type allele, yet an increase in the number of viable 

bacteria recovered from the ipsilateral lymph node, signifying invasive infection [201]. 

Similar to the speJ-complemented strains, whole genome sequencing of the 

MGAS5005ΔspeA/smeZ and MGAS5005ΔspeA clones will determine where changes in 

sequence occurred. Though this will be useful, it is expected that there will be changes 
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after several rounds of replication during the genetic deletion/complementation 

experiments, and thus, determining exactly which SNPs or mutations are responsible for 

the demonstrated phenotypic change may be challenging. RNA-seq or microarray 

experiments are recommended to quantify gene expression levels of the speA and 

speA/smeZ double deletion strain. These experiments would also provide information on 

a number of other genes and expression patterns as well. When combined with the 

genomic sequences, these data may provide insight into how these strains were able to 

better infect in the C57Bl/6 murine model compared to the wild-type MGAS5005 parent 

strain.   

One of the limitations of this study was the mouse model itself. Simply stated, this is 

merely a model of what could potentially be happening in humans. There are challenges 

to this model, including the human MHC class II requirement, and lack of other known 

human-specific host factors such as plasminogen [18] and human T cell receptors. Future 

work with the acute nasopharyngeal infection model includes extending the infection 

timeline. Currently, we know that six days post-inoculation, there are very low levels of 

S. pyogenes in the cNT [183]. Other murine nasopharyngeal models have demonstrated 

bacterial shedding and persistence in the nasopharynx 15 to 20 days post-infection [201]. 

S. pyogenes also has been known to have differential expression of genes in vivo as the 

infection progresses [196], and thus, examining the contributions of superantigens to S. 

pyogenes persistence and carrier status, perhaps using non-human primates, would 

contribute to understanding of how and why superantigens are utilized. Alternatively, 

different mouse models could suffice as well. Immunodeficient NOD.Cg-Prkdcscid 

Il2rgtm1Wjl/SzJ (NSG) mice, if engrafted with a human immune system – such as in the 

case of BLT mice which are engrafted with human hematopoietic stem cells, liver, and 

thymus [202] – would be an interesting model as the MHC class II molecules and T cell 

repertoire would be human, and all of the streptococcal superantigens would be active.  

Despite the fact that our experiments did not show that one superantigen is capable of 

modifying a host’s susceptibility to infection, we are still in favour of the theory that 

superantigens help determine host range of each S. pyogenes strain. Superantigens, when 

they bind and activate T lymphocytes, do not need to be processed and presented in the 
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context of MHC class II molecules like traditional antigens to trigger immune activation; 

however, it is possible to produce anti-superantigen neutralizing antibodies [203]. 

Considering the fact that neutralizing antibodies can be effective at preventing infection 

establishment (Figure 23) and may be a beneficial adjunct therapy for some superantigen-

associated diseases [204, 205], we continue to postulate that S. pyogenes carries multiple 

superantigens to maximize its host range within humans. While the number and 

frequency of Vβ targets in a host typically does not change, each strain possesses 

multiple superantigens, or potentially antigenically distinct alleles in the case of SmeZ 

[82]. The benefits of antigenic variation are obvious; however, expression of previously 

unencountered superantigens would provide the same effect – evasion of the host 

humoral immune system. Alternatively, the MHC class II expressed by the host may 

contribute to a host’s susceptibility to infection and may affect patient outcomes [142]. 

Since superantigens bind MHC class II molecules to function [73], and binding affinities 

(and therefore, downstream activation effects) are dependent on the MHC class II 

polymorphisms [141], it is possible that having a different repertoire of superantigens to 

target different MHC class II polymorphisms could increase the host range of S. pyogenes 

within humans.  

The versatility of S. pyogenes to face and overcome almost all aspects of the human 

immune system [206] including complement evasion and degradation, chemokine 

destruction, resistance to antimicrobial peptides, direct phagocyte killing, and binding of 

immunoglobulins are testament to the extreme host specificity and targeted evolution of 

the organism. S. pyogenes also has the ability to induce changes in human gene 

expression, as within 24 hours of nasopharyngeal infection in cynomolgus macaques, 

expression of host genes for cytokine biosynthesis and inflammatory response had 

decreased [39]. Interestingly, the number of differentially expressed genes correlated 

directly with the number of CFU and pharyngitis score assigned to each host [39].  

The various infections and disease manifestations caused by S. pyogenes indicates that 

the bacterium may exhibit different lifestyles. Although this organism can cause very 

severe infections, including death in some cases, death of the host is not an ideal 

circumstance for the bacteria. Instead, we continue to believe that host colonization 
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(either in the form of a non-severe or an asymptomatic infection) is the preferred 

lifestyle, and host immune over-activation is a consequence of attempting to achieve this 

desired state, albeit in a “the best defense is a good offense” manner.  

Superantigen expression is likely a dynamic and multi-factorial process that is dependent 

on a variety of host genetic and environmental elements. As these exotoxins are secreted 

in both severe and non-severe infections, they remain an excellent therapeutic target for 

future consideration and research.  
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