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 Abstract 

Suspended dross particles in galvanizing bath can interact with moving rolls that guide the strip 

and eventually accumulate on it. They can cause the roll to function improperly and reduce the 

surface quality of galvanized steel sheet. 

In this research, a turbulent flow simulation of a continuous sheet galvanizing bath is carried 

out using the computational fluid mechanics in Ansys FLUENT to determine the flow profile 

inside a galvanizing bath. Multiphase flow modeling has been performed to understand the 

particle-surface interactions by coupling the particulate models for solid phase with 

computational fluid dynamics for fluid phase. 

A strong fluid flow along the roll axis, which captures a significant number of dross particles, 

was found in the 3D bath simulation. It was observed that surface region in which particles 

agglomerate on the roll reported by the industry is the same as where particles collisions with 

the roll were observed in the simulation. 

Keywords 

CFD simulation, multiphase flow, galvanizing bath, dross particle, groove pattern  
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Chapter 1  

1.1 Introduction 

Zinc has been used as one of the most important materials to improve the corrosion 

durability and performance of steel. This improvement is provided by the process of 

coating of steel. Hot-dip coating has been found to be one of the most economical methods 

for steel protection from the corrosion phenomenon.  

Galvanized steel sheets are produced in a complex metallurgical process known as 

continuous hot-dip galvanizing process. Galvanized steel can be found in almost every 

industry that uses steel including utilities, paper industry, household appliances, 

construction materials and any other industry where the final products are subject to 

outdoor exposure. However, the most important product in the market is the galvanized 

steel used in automotive industry. Almost 75% of all galvanized steel sheet is produced for 

auto body and the remaining percentage is used for other purposes [1].  

Some of the unique properties of galvanized steel are: corrosion resistance, low initial cost, 

long life, formability, reliability, recyclability, light weight and high strength.  

1.2 Galvanizing Process Description 

Continuous hot-dip galvanizing is a complex metallurgical process which involves 

continuous submersion of steel sheet in a molten zinc bath resulting in coating of the steel 

sheet. Galvanizing process consists of 4 basic steps: surface preparation, Annealing, 

galvanizing and inspection. The most critical part in the industrial galvanizing line is where 

the actual metallurgical reaction between the steel and the zinc takes place. This study 

focuses on the galvanizing bath. Figure 1-1 displays a schematic continuous hot-dip 

galvanizing line. 

In a typical hot-dip galvanizing line [2], the steel strip is first uncoiled and then welded to 

the previous sheet coil to keep the production continuous. After the cleaning process in the 

pre-treatment section, the strip is rinsed and dried to enter to the furnace to increase its 

strength and formability. The strip is now ready to enter to the hot-dip galvanizing bath.  
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Figure 1- 1: Continuous hot-dip galvanizing line 

The most critical part in the industrial galvanizing line is where the actual metallurgical 

reaction between the steel and the zinc takes place. 

As shown Figure 1-2, a galvanizing bath contains a snout, a sink roll, two guide rolls which 

are supported by bearings. In the galvanizing bath, steel is submerged into the molten zinc 

at speeds ranging between 1 to 3m/s through snout. The strip speed depends on the design 

of the galvanizing line and its application. The steel strip reacts with the molten zinc alloy 

at a temperature between 450°C and 480°C to form a protective coating layer on the steel 

surface.  

Generally, once the strip exits the bath, the excess molten zinc is removed from the strip 

by the wiping air knives. Air knives produce high pressure jets of air (or nitrogen gas) to 

control the coating thickness. Then the product goes to the post treatment section. 

In the galvanizing bath, intermetallic compounds in the form of dross particles are 

generated through chemical reactions in the bath. These particles can collide with the bath 

hardware components and eventually agglomerate. One of the main reasons for roll failure 

is dross build-up on the surface of the sink roll. The main locations of agglomeration 

reported by industry are at the bottom of the bath and on the surface of the sink roll.  
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Figure 1- 2: Geometry of galvanizing bath 

This degradation can stop the operation of the galvanizing line and reduce the coating 

quality of the steel sheets. Dross build-up increases the maintenance cost and shut down 

time for replacement of the defective hardware components. The cost of re-running a 

galvanizing line due to failure is roughly estimated to be around $1000 per hour [3] in 

addition to loss of production, energy and profit. 

1.3 Dross Particle 

Isolated intermetallic particles known as dross are generated in the galvanizing bath 

through chemical reactions between molten zinc, aluminum, and iron. These particles can 

reduce the surface quality of galvanized steel sheet [4].  

As shown in Figure 1-2, the steel sheet to be galvanized is guided by the guide rolls and 

sink roll in the bath. The coating quality of the steel sheets is affected by the surface of the 

moving sink roll in the bath, since these floating dross particles tend to agglomerate on the 

sink roll. Therefore, the quality and the performance of the sink roll surface correspond to 

the quality of the steel produced. 

snout 

--------------------------------------

- 

Sink roll 

Strip 

Guide Rolls Snout 
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The density of the dross particles depends on the Al content in the bath. The dross particle 

rich in Al, is known as top dross and the one rich in Zn and low in Al, is known as bottom 

dross. 

Top dross has chemical formulations of Fe2Al5Znx or Fe2Al5-xZnx, size of 10-20 𝜇𝑚 and 

density of 4600 kg/m3 forms mainly at the top of the bath. Whereas, bottom dross known 

as Fe2Zn7Aly /FeZn10Aly with size of 100 𝜇𝑚 and a density of 7200 kg/m3 is generated at 

the bottom of the bath [5].  

Varadaranjan and Kang [3] discuss how dross particles can agglomerate on the roll surface 

and on the sink roll pinion arm resulting in surface coating imperfections.    

1.4 Primary sources of dross formation  

Dunbar [7] and Kim et al. [8] suggested that possible source of the dross formation is the 

reactions of the zinc with iron fines on the strip surface. However, further studies prove 

that the dissolution of iron from the surface of steel strip is the main source of dissolved 

iron [9] .  

Main sources of dross formation in the bath can be categorized as:  

 Any small fluctuations in temperature will result in dross generation since local 

decreases in the bath temperature reduce the solubility of the iron which make the 

molten zinc supersaturated with iron [10]. Direct continuous contact of steel strip and 

molten zinc causes the molten zinc to be saturated with iron. Thus, any iron in excess 

of the zinc’s solubility limit is converted into dross particles [4].  

 The turbulent flow inside the bath will cause the dross particles to be deposited (due 

to their inertial forces) on the bath hardware surfaces, mainly on the sink roll surface 

[11].   

1.5 Goal of this project 

Studying fluid flow patterns in the hot-dip galvanizing bath has a great importance in 

understanding the particle-surface interaction. The surface quality and the performance of 

the moving rolls are relevant to the quality of the produced steel sheet.  
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The goal of this project is to model dross particle agglomeration in a galvanizing bath 

through CFD studies. Since we cannot model the complex particle agglomeration on the 

sink roll, we study particle trajectories and particle-surface interactions. This research is 

aimed at understanding the dross particle trajectories and also how they collide with the 

roll surface in a continuous hot-dip galvanizing bath line using CFD techniques. In order 

to study the particle build-up mechanism, which is very complex, a hypothesis has been 

made. The hypothesis was based on the assumption that the location of the particles 

collision with the roll surface is indicative of where dross particles agglomerate on the roll. 

Three-dimensional simulations of the bath fluid flow in a galvanizing bath have been 

undertaken; so as to:  

1. Study the bulk flow pattern inside the bath 

2. Enable near roll surface studies; i.e. at locations in the immediate proximity as well 

as at a distance from the strip-roll contact 

3. Study different groove geometries on the moving sink roll 

4. Study the bath fluid flow at the free surface of the bath 

 

1.6 Outline of thesis 

The remaining chapters of the thesis are as follows: 

 Chapter 2 

 

The literature review shows the validity of using CFD for the study of 3D bath flow 

in the galvanizing bath. In this chapter, previous numerical simulations and 

experimental studies on the galvanizing bath have been presented and summarized.  

 

 Chapter 3 

 

In this chapter, governing equations for fluid flow solution of the galvanizing bath 

have been explained. Different approaches of multiphase flow modeling including 

particle equation of motion, are also mentioned.   
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 Chapter 4 

 

In this chapter, two different levels of fluid flow study have been performed: 

general fluid flow structure in the bath and detailed flow behaviour in the near 

vicinity of the roll. To understand how dross particles interact with the hardware 

components, it is important to elaborate on the tracking of dross particles  

 

 Chapter 5 

 

Based on an extensive literature review on the influence of the groove geometry on 

particle build-up, it was found that there have been few studies on the effect of the 

groove. Hence, this section is aimed at better understanding of groove. A CFD 

simulation has been conducted for some grooves using simplified transverse fluid 

flow. A simplified block-strip study has been performed in order to determine the 

fluid flow behaviour at the groove entrance and potential effects on particles. 

 

 Chapter 6 

 

Normally, the bath surface is modeled very simply as a zero normal velocity 

boundary condition. In this chapter, the free surface (liquid-air) fluid is modeled. 

This study will allow us to understand the fluid flow at the meniscus at the strip 

entry and exit region as well as modeling of wave motion at the free surface. Air-

entrainment is also discussed with the relevant formulations. 

 

 Chapter 7 

 

Conclusions of the present study along with the contributions made and some 

recommendations for future work.  
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Chapter 2  

2 Literature Review 

This literature survey provides a general review on the use of CFD in fluid flow modeling 

of the galvanizing bath. Numerical simulations have been conducted for the fluid flow in 

some continuous galvanizing baths. There are also a number of experimental studies using 

cold models that examine the flow field inside the bath. Some of these studies are presented 

in this section.  

2.1 Previous Studies 

A half-scale water model of an industrial bath was reported by Gagné et al.  [11] using 

Plexiglas material with a circulating rubber belt to simulate the steel strip motion. Fluid 

flow patterns within the bath were observed by tracking the polymeric particle motion 

using a video camera. 

Kurobe et al. [12] performed an experimental study by using polystyrene particles as top 

and bottom dross particles, and NaCl solution as the molten zinc to examine the particle 

motion in the bath. They showed that dross particles become concentrated in the “V-

section” above the sink roll, between the steel strip entry and exit region.  

Shin et al. [13] made a one-tenth transparent scale cold water model to understand the bath 

flow structure using PIV techniques. They focused on the flow inside the snout and 

concluded that flow of zinc in front of strip is dominated by the flow entering the snout, 

caused by the rotating sink roll. 

Ouellet et al. [14] conducted an experimental study on a 1/5 scale water model. They used 

Particle Image Velocimetry (PIV) technique to validate their numerical simulation results 

as shown in the literature. Toussaint et al. [15] performed an experimental study to 

determine the fluid flow pattern using hot visible liquid as molten zinc model.  

Numerical simulations have been also widely used to model the fluid flow inside the bath. 

Ajersch et al. [16] studied the turbulent flow and temperature distribution in a galvanizing 
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bath through three dimensional numerical simulations. They showed that there are some 

regions with high temperature gradients close to the inductors and the melting ingot. Willis 

et al. [17] carried out numerical simulations for the fluid flow and temperature distribution 

for two certain bath geometries. They supported their hypothesis saying that the 

temperature distribution has to be uniform to inhibit dross formation and that flow 

conditions are related to intermetallic precipitation in the bath.  

Willis et al. [18] performed a multiphase flow study using massless particle and observed 

the number of particles settling at the bottom of the bath increased with particle size. Pare 

et al. [19] tracked solid particles with different densities starting from center of the bath to 

the back of the strip. They concluded that the particle trajectory lines vary depending on 

the particle density and initial position they are released. Paik et al. [20] examined the 

composition difference in top and bottom dross particles. They showed that smaller 

particles have different composition of aluminum and iron in compared with the larger 

particles.  

In some other studies the amount of Al and the temperature profile in the bath were studied. 

These parameters were measured through computer programs for bath management 

purposes, such as DEALTM (Determining Effective Aluminum) and MAPTM (Modeling 

Aluminum Pick-up) [21].  

Previous studies can be summarized as: 

1. It was concluded that due to the direct contact of steel strip with the bath fluid, 

formation of intermetallic particles was found to be inevitable.  

2. According to previous studies, the strip velocity motion determines the roll 

rotational velocity which affects the fluid flow behaviour close to the strip and near 

the sink roll. 

3. It can be generally stated that, the fluid flow near the ingot region is dominated by 

thermal effects in the bath. Whereas at the area close to the strip and moving rolls, 

the flow is affected by the motion of the steel strip and sink roll.  
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4. It has been found that the galvanizing line speed does not change the bulk flow 

pattern significantly but modifies the velocity field in the snout region, near the 

strip and near the sink roll.  

5. It was shown that dross particles become more concentrated in the “V-section” on 

top of the roll, between the steel strip entry and exit region. This is due to the 

rotation of roll with the same direction of the strip motion. 

6. It was concluded that temperature gradient is one of the main reason of dross 

particles. Local decreases in temperature near the melting ingot will reduce the 

solubility of iron and aluminium. Therefore, any excess aluminium due to the 

temperature variation will result in increasing of dross formation. 

7. It was studied that proper bath management techniques such as controlling of bath 

temperature can help us in minimization of the dross particle formation rate in the 

galvanizing bath throughout the production of high quality coatings. 

2.2 Summary 

The present work is aimed at advancing the understanding of dross particle agglomeration 

on the sink roll in a galvanizing bath. Due to the complexity of the agglomeration 

mechanism in the bath, particle trajectories and particle-surface interactions are modeled 

in this study. Therefore, the novelty of this research can be summed up as: 

1. Analysing the fluid flow behaviour in the near vicinity of the roll where it meets 

the strip.  

2. Studying the particle-surface interaction within the bath, as an important key in 

understanding the dross build-up on the roll surface 
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Chapter 3  

3 Numerical Setup 

In this section the governing equations for solution of the bath fluid flow and particle are 

presented. To achieve our goals and track the particles motion in a complex multiphase 

flow system, first the fluid flow has to be fully understood. Once the bath fluid flow is 

modeled, then solid particles can be released into the bath and coupled with the continuous 

phase. Particle trajectories and their collisions with the hardware components will be 

studied in this research. The following sections describe the governing equations in a hot-

dip galvanizing bath. 

3.1 Multiphase flow 

Studying the dynamic behavior of multiphase (liquid–solid) flows is crucial due to its 

relevance to a wide range of applications in industries such as agglomeration processes, 

fluidized bed and dip-coating. There are two popular modeling approaches which are used 

for multiphase (liquid-solid) flow problems. They include macroscopic continuum-

continuum approach introduced by an Eulerian-Eulerian model, and microscopic 

continuum-discrete approach defined by an Eulerian-Lagrangian model [22].  

3.1.1 Eulerian- Lagrangian approach 

In Eulerian-Lagrangian approach, the particles are defined as a discrete phase made of 

spherical particles dispersed in the fluid. In general, the detailed flow field is solved first, 

and then solid particles are released to the fluid. Particle trajectories can be determined by 

the integration of Newton’s second law for each individual particle [23]. In the continuum-

discrete approach, the fluid behavior is determined by solving the Navier-Stokes equations, 

whereas solid particle motion is defined using the Newton’s law of motion for individual 

particles with their coupling of Newton’s third law of motion [24]. This approach, unlike 

the previous one, can provide detailed information about the particles trajectories and the 

transient forces between the particles as well as between the particles and fluid to the extent 

that many such methods have been developed over the past decades. 
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3.2 Governing equations 

The fluid flow in the galvanized bath can be defined using the Navier–Stokes equation with 

some assumptions. The conservation equations which can be applied in the galvanizing 

bath are continuity and momentum equations: 

,          (3-1) 

 .         (3-2) 

Where  is the fluid density which is constant, u is fluid velocity,  is the pressure,  is 

the viscosity coefficient, and f is defined as the body force per unit mass [25]. 

The assumptions [9] made to model the fluid flow in the bath are: 

 The molten zinc flow in the bath is turbulent 

 The bath liquid behaves as a Newtonian fluid  

 The bath flow field is isothermal. (No temperature gradient is in the bath) 

 The fluid flow is steady state 

 The level of the liquid in the bath remains constant 

According to the literature review mentioned in chapter 2, the fluid flow in the bath is fully 

turbulent. In a turbulent flow, the field properties become random functions of location and 

time. Velocity and pressure values can be decomposed into their mean and fluctuation 

values. Averaging the Navier-Stokes equation can result in a new form of equations 

referred as Reynolds equation [26]. 

         (3-3) 

In this equation, and P are the mean velocity and mean pressure respectively and  is 

the velocity fluctuation component. The last term in Equation (3-3) is related to turbulent 

stress and sometimes called as Reynolds stress, .  
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             (3-4) 

One of the most common turbulence models that has extensively been used in numerical 

modeling and simulation software is 𝑘-𝜀 model. The model is based on the assumption that 

Reynolds stresses are linearly related to the mean deformation [25]. 

       (3-5) 

Here,  is the turbulent viscosity that defines the kinetic energy of turbulence 

fluctuation, k and turbulence dissipation rate, 𝜀. Two more equations are required to be 

solved in terms of turbulence kinetic energy, 𝑘 and turbulence dissipation, 𝜀 [25].  

𝜌 ( 
𝜕𝑘

𝜕𝑡
 +  𝒖 .  ∇𝑘) = ∇ .  [( 𝜇 +

𝜇𝑇

𝜕𝑘
 )  ∇𝑘 ] + 𝑃 + 𝐺 −  𝜌𝜀   (3-6) 

𝜌 ( 
𝜕𝜀

𝜕𝑡
 +  𝒖 .  ∇𝜀) = ∇ .  [( 𝜇 +

𝜇𝑇

𝜕𝜀
 )  ∇𝑘 ] + 𝐶𝜀1  

𝜀

𝑘
 (𝑃 + 𝐺) − 𝐶𝜀2𝜌

𝜀2

𝑘
  (3-7) 

Where P= 𝜇𝑇  [(∇𝑢 + ∇𝑢𝑇)] is the shear production and 𝐺 is for the effect of the buoyancy 

ter. 𝐶𝜀1, 𝐶𝜀2 , 𝐶𝜇,, 𝜎𝜀  and  𝜎𝑘 are all the model constants which are known [27]. 

3.2.1 Particle Equation of motion 

The particulate phase is represented by a number of computational particles whose 

trajectories are computed by simultaneously integrating: 

𝑑𝑋𝑝
 
 

𝑑𝑡
= 𝑈𝑝      (3-8) 

𝑑𝑈𝑝
 
 

𝑑𝑡
= 𝐹𝐷(𝑈𝑓 − 𝑈𝑝) + 

𝑔(𝜌𝑝−𝜌 )

𝜌𝑝
+ 𝐹𝑥                  (3-9) 

Here 𝑈𝑝 is the particle velocity, 𝐹𝐷(𝑈𝑓 − 𝑈𝑝) is the drag force per unit particle mass and 

where Fx is an additional acceleration (force/unit particle mass) term. [29, 30]   
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3.3 Particle Transport Mechanisms 

1- Brownian diffusion 

Brownian motion can be described as random interactions of the particles. Brownian 

diffusion can be a dominant transport mechanism when the particle diameters are less 

than 0.1 𝜇𝑚 [30, 31]. 

2- Turbulent diffusion 

Turbulent diffusion is the collisions of particles with the turbulent structure through semi-

organized pattern. The velocity fluctuations of the fluid flow influence the diffusive flux 

of the particles and will contribute to momentum transport in turbulent flows [32, 33]. 

3- Turbophoresis  

This mechanism moves the particles toward the direction of lower turbulence level [30]. 

Caparolani et al. [34] studied this mechanism and concluded that turbophoresis can 

increase the particle deposition rate due to the high turbulence gradients. 

 

4- Drag Force 

When there is a relative motion between the solid particles and the fluid, drag force will 

affect the particle motion by reducing the particle speed.  

𝐹𝐷 =
1

2
 ρ𝐶𝑑A𝑝(𝑈𝑓 − 𝑈𝑝 )

2     (3-10) 

𝑈𝑓  is the fluid velocity, 𝑈𝑝  is the particle velocity, A𝑝 is particle projected area and 𝐶𝐷 is 

the drag force coefficient. For small Reynolds number referred as Stokes regime, the 

solution for the drag coefficient can be found as: 

  𝐶𝐷 = 24 / 𝑅𝑒𝑝            (3-11) 

For a transition region one of the most common correlations is: 

  𝐶𝐷 =  24 / 𝑅𝑒𝑝 (1 + 0.15 𝑅𝑒𝑝
0.687 )      for    𝑅𝑒𝑝<400       (3-12) 
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Above 𝑅𝑒𝑝=1000 in which referred to as the Newton regime, the flow is considered fully 

turbulent. The drag coefficient at this regime remains constant [35]. 

 𝐶𝐷 = 0.44     (3-13) 

5- Gravitational force  

Gravitational force is the resulting force due to the particle weight and buoyancy. This 

force in unit of particle mass can be written as: [35] 

𝐹𝐺 = 
𝜌𝑝− 𝜌𝑓 

𝜌𝑝 
 g            (3-13) 

In this study, only drag and gravitational forces, including buoyancy are considered. 

Brownian force is neglected due to the size of top dross particles. Turbulent diffusion is 

neglected because the fluid is dilute. Since isothermal condition is assumed, 

thermophoretic force is not accounted for the simulation in this work. 
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Chapter 4  

4 3-D fluid flow study in the bath 

In this chapter, a fluid flow study has been performed at two different scales: general flow 

structure and detailed fluid flow behaviour in the near vicinity of the roll-strip.   

4.1 Fluid flow studies 

To study the fluid flow behavior within the galvanizing bath, computational fluid dynamics 

method has been used available in Ansys FLUENT. The computational domain of the 

galvanizing bath is described followed by boundary conditions and problem set-up.  

4.2 Computational Domain 

Galvanizing bath consists of a continuous steel strip which rotates around a sink roll 

through the snout, and two stabilizing rolls. In this study, the geometry of the bath has been 

selected based on an industrial galvanizing line described in the literature [18]. Different 

components of the galvanizing bath are shown in Figure 4-1. Some types of galvanizing 

baths, particular geometries of grooves are machined on the roll surface. These particular 

grooves prevent the sliding of the strip from the roll, which will be discussed in further 

chapters.  
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Figure 4- 1: Geometry of the studied galvanized bath 

4.3 Numerical Procedure   

To determine the velocity distributions in the bath CFD software, Ansys FLUENT (Version 

14.5) is employed to simulate the flow. 

The isothermal incompressible Navier-Stokes equations are solved using 𝑘-𝜀 turbulent 

model with realizable mode for better accuracy and steady-state conditions. The convective 

terms in the momentum equation as well as in the 𝑘-𝜀 equations were discretized according 

to second order up wind scheme.  

In this study the boundary conditions have been defined based on the industrial galvanizing 

bath mentioned in the literature [18]. The steel strip has a velocity of 3 m/s with an angle 

of 27 degree. The rolls’ angular velocities are defined in accordance with the strip velocity. 

The sink roll rotates with uniform velocity of 7.5 rad/s, and guide rollers rotate at speed 

of 24 rad/s. Top surface is defined as a free surface. All other surfaces are stationary walls 

with no slip condition. Operating and bath data are shown in Table 4-1. 
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Table 4- 1: Configuration and operating conditions [18] 

Hardware Component Size 

Snout depth 0.2 

Strip width (m) 1.5 

Roller depth (m) 1 

Large roll diameter (m) 0.80 

Guide rollers diameter (m) 0.25 

Bath height (m) 2.4 

Bath width (m) 3.8 

Bath length (m) 4.1 

Strip entry angle (°) 27 

Strip velocity (m/s) 3 

4.4 Mesh Grid Generation 

ICEM CFD is employed to generate the mesh for the galvanizing bath using tetrahedral 

elements. In ICEM CFD there are two main methods for creating volume elements 

depending the complexity of the computational domain. In the first method, which is 

usually named as blocking method, parts are defined and created in some blocks associated 

with the problem domain. Proper points of the domain have been created using Geometry 

tab, Create Point and Explicit Coordinates option. Curves are associated with the points 

drawn from Geometry tab. Surfaces of the block from the appropriate curves are drawn 

afterwards. By determining the location where the fluid is located, the fluid volume 

elements can be identified by populating the fluid through each block. This method of grid 

generation is very simple and efficient for simple geometries, especially where boundary 

layers on the wall are required. 

As demonstrated in Figure 4-1, the galvanizing bath consists of three cylinders, a snout, 

pinion arms and a steel strip which is considered a complex geometry. Therefore, using 

blocking method for grid generation is almost impossible.  

In an alternative way, lines and curves of each part are drawn properly according to the 

problem information. The parts where higher mesh resolution is needed are defined with 
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smaller surface elements. By generating the surface mesh elements, all of the bath hardware 

components will have their particular mesh resolution depending on where need to be 

studied as displayed in Figure 4-2. The last step is to populate the surface elements within 

the computational domain to cover it with volume elements.  

 

Figure 4- 2: Surface elements in the galvanizing bath 

Figure 4-3 shows a cross section of surface elements at the middle of the bath using ICEM 

CFD. The final mesh contains approximately 1.5 million tetrahedral elements with 3 

million faces.  

Generally, obtaining the proper and accurate results in computational fluid dynamics 

studies depend on different factors such as the model, numerical scheme, discretization 

order and type, proper definition of boundary conditions. One of the significant parameters 

for obtaining accurate and correct simulation results is generating an appropriate grid.  
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Figure 4- 3: Cross section of the initial mesh within the bath 

In this study, initially a coarse mesh is generated to determine the general fluid flow 

structure within the bath as depicted in Figure 4-2. However, in order to analyse the fluid 

flow at near roll-surface, a finer mesh including high resolution volume elements is 

required.  

One of the major challenges which adds more complexity in to the mesh generation process 

was to generate very fine elements with acceptable mesh quality (aspect ratio more than 

30%) at the wedge area where roll and strip converge. This is because of the attachment of 

a flat surface to a curved surface, results in the formation of skewed (poor-quality) 

elements. These elements might be one of the reasons for inaccurate fluid flow solution 

within this area. Therefore, many efforts have been performed in order to increase the local 

mesh resolution of the skewed volume elements at the wedge area. This includes quality 

improvement by iteration method, creating high resolution surface elements on the 

hardware components, creating patches at the wedge area and creating prism layers.  

Figure 4-4 displays high resolution surface elements on the hardware components. Tiny 

elements at the wedge area compared to the other larger elements far away from the roll 

are shown in a bath cut plane in Figure 4-2. 
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Figure 4- 4: Improved surface elements of the bath hardware components 

Bath length scale issue and poor mesh quality at the wedge area are the main challenges. 

Bath length scale issue refers to the bath geometry scale compared to the near-roll surface 

scale which makes the simulation vey time costly. The other challenge is resolving the 

mesh resolution at the wedge is very close to the roll and strip. Figure 4-5 is a schematic 

view of the wedge area. 

Since at the wedge area, a curved surface is attached to a flat surface, very tiny elements 

are required to be generated at the extreme vicinity of each roll. The local mesh quality was 

resolved by iterating method for minimum cell length ratio of 30%.  

 

Figure 4- 5: Wedge area near the roll 
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To study the fluid flow pattern in the near vicinity of the roll, very fine fluid cell elements 

are formed around the sink. The following steps have been undertaken to generate a 

suitable mesh grid with a fine resolution near the roll: 

1. Defining the surface mesh set-up 

2. Creating tetrahedral (robust) mesh with the smoothing procedure 

3. Creating Delaunay mesh along with the smoothing procedure 

4. Defining prism set-up 

5. Creating prism layer, smoothing the mesh 

6. Improving the mesh resolution 

7. Checking the mesh and exporting it to the solver 

Figure 4-6 demonstrates the cross section of tiny elements around the roll surface compared 

to the other cells far away from the roll. A closer view of the grid is depicted in Figure 4-

7. It is obvious that due to the costly calculation time, creating tiny elements in the whole 

domain is not necessary, especially when the study concentration is known.  

 

Figure 4- 6: Cross section of the mesh grid at the middle of the bath 
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Figure 4- 7: Close-up view of the mesh grid close to the sink roll 

Prism layers are also used to create a mesh with higher aspect ratio at the wedge area shown 

in Figure 4-8. Creating smaller surface elements or using prism layers could not totally 

remove the skewed elements within the area of interest. Therefore, in an innovative 

approach all the four areas consist of skewed elements are separated and referred to as 

patch areas. As displayed in Figure 4-9, these areas are filled with tiny fluid elements to 

reduce the mesh skewedness.  

 

Figure 4- 8: Displaying the prism layers on the roll and strip surface  
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Figure 4- 9: Improvement of volume elements at the wedge area 

4.5 Simulation Conditions 

The dynamic behavior of the fluid inside the bath is simulated using realizable 𝑘-𝜀 method 

in Ansys FLUENT. This is due to its reliability as a RANS model for free stream turbulence 

modeling and inexpensive computational cost [36]. The fluid property in a fixed 

temperature condition has been set for the simulation [37]. The simulation has been 

continued with the convergence rate of 1.0E-5 for the continuity, velocity components, 𝑘 

and 𝜀 . Constant bath fluid properties are used for the calculations at 460℃; density ρ=6600 

kg/m3 and viscosity μ=0.004 Pa.s. [38]. 

In this study standard wall function (SWF) has been defined for law of the wall in the 

modeling. Therefore, 𝑌+ parameter is checked to be in the valid regime which is 

30<𝑌+<300. 𝑌+ is a non-dimensional wall distance for a wall-bounded flow. 

𝑌+ =
𝑌 𝑢∗

𝑣
       (4-1) 

In this equation, 𝑢∗ is the friction velocity at the nearest wall, 𝑌 is the distance to the nearest 

wall and 𝑣 is the local kinematic viscosity of the fluid. 𝑌+ is often referred to simply as y 

plus and is commonly used in boundary layer theory and in defining the law of the wall. 

http://www.cfd-online.com/Wiki/Friction_velocity
http://www.cfd-online.com/Wiki/Kinematic_viscosity
http://www.cfd-online.com/Wiki/Law_of_the_wall
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Table 4- 2: Parameters used for the CFD study of liquid phase 

Material Liquid Zinc 

Fluid density (kg/m3) 6600 

Fluid viscosity (kg/ms) 0.004 

Fluid turbulence model 𝑘-𝜀 

Discretization method Second order 

Time Steady-state 

Convergence rate 1e-5 

Cell type Tetrahedral 

Number of cells 1.5, 2.5 and 5M 

Processing style 8 parallel processes 

4.6 Bath fluid flow results  

The following results are obtained from simulation of fluid flow in the galvanizing bath. 

Velocity contours at the middle of the bath are shown in Figure 4-10. Fluid flow behaviour 

within the bath at selected cross sections are depicted in Figure 4-11 and 12.  

 

Figure 4- 10: Velocity contours inside the galvanizing bath 
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Figure 4- 11: Displaying of the cut-planes in the bath 

 

Figure 4- 12: Top view of the defined cut-planes in the bath 

Figure 4-13 displays the velocity vectors at the mid plane of the bath (Z=0). The rotation 

of the rolls and submerging the strip down to the bath create a vortex at the top of the sink 

roll, which conforms to the literature. 

X=0m 
Z=0m 

Z=0.75m 

y=0m 
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Figure 4- 13: Velocity vectors at the middle of the bath 

According to the bath water model experiments performed by Gagné et al. [11] and 

numerical simulations conducted by Ilinca et al. [16], the fluid flow pattern structure shows 

a good agreement. 

Ouellet’s [14] numerical study, which was validated by PIV experimental method 

discussed in chapter 3, also conforms to the obtained simulations results from the 3-D bath 

model in the vortex formed on top of the sink roll at the center line of the galvanizing bath.  

Figure 4-14 shows the velocity vectors at the X-Z plane, where it cuts the sink roll from the 

center. The flow structure is symmetric as expected. It displays two vortices on each side 

of the roll near the steel strip. Velocity contours at this plane also depicted in Figure 4-15, 

which indicate the velocity gradient at the strip-roll area. A better view of the velocity 

vectors is demonstrated in Figure 4-16. It shows how fluid flow inside the wedge area 

toward the roll ends and eventually leaving from the strip region.  
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Figure 4- 14: Velocity vectors at the X-Z cut-plane (y=0) 

 

Figure 4- 15: Velocity contours at the X-Z cut-plane (y=0) 

 

Figure 4- 16: A close-view of the velocity vectors at the X-Z cut-plane 
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Figure 4- 17: Velocity vectors at the Y-Z cut-plane 

Figure 4-17 displays the velocity field at the wedge area. It can be seen that the zinc fluid 

becomes trapped by the moving converging surfaces and then is pushed out into the open 

area along the roll in Y-Z plane where the strip ends.  

The reason that the fluid is being pushed out toward both ends is that there are two 

converging surfaces moving in the same direction. According to the no-slip condition that 

was defined for walls, the fluid on each wall will have the same velocity as the walls. Since 

the moving strip and roll converge, the fluid will have different flow patterns as it travels 

away from the roll symmetry line. The zinc fluid is then pushed out from the roll center to 

strip edges, where it can flow freely. (Note: the width of the strip is less than the sink roll.) 

The velocity vectors on the steel strip are shown in Figure 4-18. It displays the direction 

changing of the velocity vectors where it reaches the strip edge. Figure 4-19, the fluid flow 

is depicted in a 3-D view of the roll. Velocity vectors in Figure 4-18 depict how the fluid 

flows on the moving strip. Figure 4-19 shows that the flow with higher velocity is located 

at the extreme vicinity of the roll and strip end.  
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Figure 4- 18: Velocity vectors on the strip 

 

 

Figure 4- 19: Fluid flow direction at the wedge area 

4.7 Particle-surface study 

Based on the reports form industries, suspended dross particles in hot-dip galvanizing bath, 

can interact with the surface of the moving roll and eventually accumulate on it. To 

understand how dross particle interact with the hardware components, it is important to 

elaborate on tracking of dross particles in an industrial galvanizing bath. 

This study examines particle-surface interactions near the sink roll surface in a galvanizing 

bath using computational fluid dynamics. The bath fluid is studied using multiphase liquid-
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solid models. Particle trajectories has been studied for better understanding of our project 

objective which is the particle build-up mechanism on the roll surface. It is based on the 

hypothesis that particles agglomerate at the same location as they collide with the roll 

surface in the bath. The advantages and drawbacks of different multiphase models will be 

briefly described.  

4.8 Previous studies 

Numerical simulations can help us in better understanding of the fluid flow and in 

improving the knowledge of dross particle tracking in a galvanizing bath. Some methods 

have been proposed to remove the agglomerated bottom dross from the bath [39]. 

Fundamental fluid flow studies in a galvanizing bath have been carried out by different 

researchers [40].  

It is evident from the previous study that the 3-D fluid flow in the bath becomes 

concentrated near the sink roll, where it meets the strip. This is significant because it 

addresses the dross particle interaction locations on the roll, where the particles most likely 

agglomerate on the roll surface.  

Tracking of massless particles is studied in an experimental work performed by Willis et 

al. [17,18]. They observed number of particles settle at the bottom of the bath increased 

with particle size. Pare et al. [19] tracked particles with different densities at different 

locations: starting from center of the bath and back of strip. They found that the particle 

path lines depend on their densities and the initial position they are released. Kurobe et al. 

[41] used polystyrene particles and NaCl aqueous solutions to model dross and bath liquid, 

results showed that the particles become concentrated on top of the moving roll, where the 

strip enters and exits. In another study, the behavior of dross particles are examined by 

Gagné et al. [11] in a half scale galvanizing bath model. They observed the trajectories of 

polymeric particles with a video camera to determine the fluid flow pattern in the bath. 

In some numerical studies, different multiphase models have been used to simulate the 

particle trajectories in several studies. In a study by Ibsen et al. [42], different multiphase 

flow models are compared with the experiment data. They concluded that the discrete 
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phase model is in a better agreement with the experimental observations, compared to the 

simulation results of continuum-continuum approach. Chu et al. [43] reported a detailed 

comparison of Eulerian-Eulerian model with discrete particle model for a fluidized bed. 

Rosato et al. [44] proposed a method for particles tracking such a way that particles are 

displaced step-wise. Then the fluid effect is studied through the computational domain.  

4.9 Mathematical Models 

There are two popular modeling approaches used for multiphase (liquid-solid) flow 

problems. They include macroscopic continuum-continuum approach introduced by 

Eulerian-Eulerian model which focuses on the behavior of bulk fluid flow and microscopic 

continuum–discrete approach defined by Eulerian-Lagrangian model [45].  

4.9.1 Eulerian-Eulerian Approach 

This approach treats both solid and liquid phases as a continuum. The method is relatively 

fast, since it requires less numerical computations compared to continuum-discrete 

approach [45]. In this approach, general behavior of the fluid phase is detailed and the 

detail information of the solid phase is not considered .Consequently, dilute multiphase 

flows consisting of small numbers of particles cannot be modeled using this approach. 

According to the nature of the current study, the Eulerian-Lagrangian approach is of main 

interest and will be discussed in the following sections. 

4.9.2 Eulerian-Lagrangian Approach 

In the continuum-discrete approach, the fluid behavior is determined by solving the Navier-

Stokes equations, whereas the solid particle motion is defined using Newton’s law of 

motion for individual particles with their coupling of Newton’s third law of motion. This 

approach, can provide detailed information about the particles trajectories and the transient 

particle- particle and particle-fluid forces [45,46]. Many such methods have been 

developed over the past decades that can be divided into two models: Discrete Phase Model 

(DPM) and Discrete Element Method (DEM).  
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The main advantage of DPM model is the fast computational time, since it does not 

consider the collision effect that might be significant in some multiphase flows and mixing 

processes. 

In the present work, the details of DPM and DEM multiphase models are briefly elaborated. 

For particle modeling, coupling of liquid with the particles is presented for three different 

cases: DPM for massless particles, DPM for particles with mass and DEM for particles 

with mass.  

To simulate the particle trajectories in a galvanizing bath, there is no need to develop new 

codes for these complex models, since they are validated and available in CFD modeling 

software such as Ansys FLUENT, EDEM or OpenFOAM. Developing complex multi-

scale geometry with turbulent multiphase flow is very time consuming. Thus, Ansys 

FLUENT has been employed as a platform. This model is extended using a DEM solver, 

incorporating a User Defined Function code to evaluate the particle-surface interactions 

and quantify the presence of particles in the extreme vicinities of the moving roll.  

4.10 CFD Modeling 

The liquid and fluid phase modeling is described in the following sections. 

4.10.1 Liquid phase modeling 

The continuum fluid phase in the presence of a secondary particulate phase is solved for 

each computational cell from the continuity and modified Navier-Stokes equations as 

shown in equations 4-1 and 4-2. [43]. 

∂(𝜀𝑓)

𝜕𝑡
+ ∇. (𝜀𝑓𝑢𝑓) = 0         (4-1) 

𝜕(𝜌𝑓𝜀𝑓𝑢𝑓)

𝜕𝑡
+ 𝛻. (𝜌𝑓𝜀𝑓𝑢𝑓𝑢𝑓) = −𝜀𝑓𝛻𝑝−𝐹𝑓

𝑝 + 𝜀𝑓𝛻. 𝜏 + 𝜌𝑓𝜀𝑓𝑔 (4-2) 

Where 𝜀𝑓 is the volume fraction occupied by the fluid, 𝜌𝑓 is the fluid density, 𝒖𝑓 is the 

fluid velocity, 𝜏 is the stress tensor for the fluid phase 𝐹𝑓
𝑝
 is the particle-fluid interaction, 
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force which represents the particle drag force, the pressure gradient force, and the viscous 

force. 

4.10.2 Particulate Modeling 

In this work, two different multiphase models including Discrete Phase Model (CFD-

DPM) and Discrete Element Method (CFD-DEM) are employed to study particle motion 

near the moving surfaces. 

It is clear that due to the fluid and particle-particle interactions and particle-particle 

interactions, simulation of the hydrodynamic of liquid–solid flow is quite complex. 

However, many efforts with the development of advanced computational techniques and 

high speed processors have been made, in order to study the complex multiphase flows 

including high density mesh grid and steady/unsteady discrete phase motion. These models 

are mainly achieved by coupling the discrete phase model (DPM) for solid phase with 

computational fluid dynamics (CFD) for fluid phase known as CFD-DPM. In this model 

the detailed dynamic behavior for both phases and forces of particles are still unknown 

[45]. Therefore the new approach, known as CFD-DEM approach, is proposed to 

understand the physics of liquid–solid flows. Both DPM and DEM models are continuum-

discrete approaches which use Lagrangian particle tracking. This work studies the two 

different multiphase models CFD-DPM and CFD-DEM to understand particle motion near 

the moving surfaces.  

4.11 Discrete Phase Modeling 

Lagrangian particle tracking is based on a translational force balance that is defined for an 

individual solid particle. Each particle represents a parcel of particles which is subject to 

gravity, drag force, buoyancy. DPM capabilities allow us to simulate the particle motion 

without considering the particle-particle collision effects. Therefore, if the particle-particle 

or particle-wall collisions are insignificant, this method can be employed to simulate the 

particle behavior in the multiphase flow. Because of the assumptions and simplifications, 

DPM approach is valid only for dilute multiphase flows [47].  
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4.12 Discrete Element Modeling 

DEM is a time-driven particle modeling approach which first proposed by Cundall and 

Strack [48]. The applications of the DEM approach vary depending on the flow geometry, 

the accounting of forces acting on each particle and in the method of coupling between the 

discrete and liquid phase. Coupling of CFD with DEM can provide detailed information 

about particles trajectories by solving system of N-Lagrangian equation of motion for each 

particle as given in equation 4-3. 

𝑀
𝑑𝑣

𝑑𝑡
= 𝐹𝑡𝑜𝑡𝑎𝑙       (4-3) 

M is a matrix of particle mass, 𝑣 is a y vector of the interacting particles and 𝐹𝑡𝑜𝑡𝑎𝑙 is a sum 

of the forces such as hydrodynamic (gravitational, drag and buoyant) terms and non-

hydrodynamic (cohesive, colloidal and electrostatic and van-der-Waals) [49]. The main 

disadvantage of DEM approach is its high computational time to solve the full matrix for 

the transient solutions related to each particle. 

After computing the total force acting on each particle, Newton’s equation of motion can 

be integrated numerically to determine the particle velocity and integrating again, the 

position of all particles at the current time will be known as shown in equations 4-4 and 4-

5 [45].  

𝑚
𝑑𝑣𝑖

𝑑𝑡
= ∑ (𝐹𝑐,𝑖𝑗

𝑝 + 𝐹𝑔,𝑖 +𝑁
𝑗 𝐹𝑓,𝑖

𝑝 )    (4-4) 

𝐼𝑖
𝑑𝜔𝑖

𝑑𝑡
= ∑ (𝑇𝑖,𝑗

𝑝𝑁
𝑗 )     (4-5) 

Where 𝑚𝑖 , 𝐼𝑖, 𝑣𝑖 and 𝜔𝑖 are the mass, moment of inertia, translational and rotational 

velocity of particle i. The forces are: gravitational force 𝐹𝑔,𝑖, contact forces 𝐹𝑐,𝑖𝑗
𝑝

 , 𝐹𝑓,𝑖
𝑝  is the 

particle-fluid interaction force and 𝑇𝑖,𝑗
𝑝

 is the torque between particle 𝑖 and 𝑗. Due to the 

nature of the present work and relatively large particles, non-direct contact forces such as 

Brownian force, van der Waals force and electrostatic force are ignored. 
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4.13 Collision Modeling 

Collision force can affect the interaction between the particles and between particles and 

walls. The collision force is calculated based on a soft-sphere method using DEM which 

allows the particle to overlap, during collisions normally less than 0.5% of the particle 

diameter [50]. This overlap is used to calculate elastic, plastic and frictional forces between 

particles [48]. Very small time step are required to achieve precise information at each 

collisions which will lead to high computational time. Many efforts have been carried out 

to reduce the computational time by simplifying these models. However, the most common 

linear model is the linear spring–dashpot model which was proposed by Cundall and Strack 

[48]. In this collision model, spring represents the elastic deformation while dashpot 

accounts for the viscous dissipation.  

Particle collisions are modeled using Hertzian contact model [51]. The collision force has 

a normal and a tangential component in which the normal force acts in a direction 

connecting the center of particles and is defined as: 

    (4-5) 

A linear normal damping force is also assumed in this work [36]. The linear spring-dashpot 

model is used for the tangential component of collision force.  

    (4-6) 

K𝑡 and 𝐶𝑡   are the tangential spring and dashpot coefficients, 𝜇𝑠 is the static coefficient of 

friction. 𝛿𝑖 is the overlap between particles in contact in normal (𝑛) and tangential (𝑡) 

directions. Tsuji et al. [52] assumed that tangential dissipation coefficient is in the same 

order of magnitude as the normal damping coefficient Ct = Cn. In this work the tangential 

damping coefficient is assumed similar to the normal one. 

4.14 Coupling between the phases and time step size 

To accounting for interaction effects, four-way coupling between the two phases is required 

which is computationally expensive and sometimes risky to converge. Fluid affects the 
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particles and particles affect the fluid in addition to the effects of particle-particle collisions 

[48]. CFD-DEM runs the CFD and DEM solvers either simultaneously or in consecutively 

with the interval of usually 50-100 time-steps. Time-step for DEM needs to be extremely 

small to capture the inter-particle collisions than the time-step for CFD. Therefore, DEM 

solver has to run several time steps before transferring the solid particle data to CFD solver. 

The coupling is numerically achieved such a way that at each time step, DEM will provide 

the solid phase information such as position and velocity for each particle. Solver uses the 

particle data and the volume fraction in each computational cell to update the fluid flow 

field by calculating the momentum exchange terms between the phases. Incorporation of 

the resulting forces into DEM will result in the particle motion for the next time step. Then 

the particle affects the fluid phase from the particles, so that Newton's third law of motion 

is satisfied [36].  

4.15 Simulation Conditions 

For the liquid phase, the dynamic behavior of the molten zinc inside the bath is already 

simulated. Realizable 𝑘-𝜀 method is used due to its reliability as a RANS model for free 

stream turbulence modeling and for being relatively computationally inexpensive.  

The discrete element method is used to track particles with different concentration near the 

sink roll surface. Ansys FLUENT has a number of different DEM collision models 

available [36]. In this work, linear Hook law model, which is a combination of a contact 

force and a damping force was selected to calculate the normal and tangential force for 

both collisions. The contact forces due to particle-particle or particle-wall collisions are 

evaluated in terms of the normal and tangential coefficients of restitution Bottom dross 

particles are assumed as identical spheres with constant radius (100 microns) and density 

(7230 kg/m3) [5]. Table 4-3 shows the parameters used in this simulation for the liquid and 

the solid phase in the galvanizing bath. 

 

 



37 

 

 Table 4- 3: Parameters used for the DPM and DEM studies of solid phase 

Parameter DPM DEM 

Particle Shape (𝑚) Sphere Sphere 

Particle Size (𝜇𝑚) 100 100 

Particle Density (𝑘𝑔/𝑚^3) 7230 7230 

Number of Particles 1, 200 and 1000 200 and 1000 

Particle Type Massless/ Inert Inert 

Injection Location 
In front of the strip 

and on top of the roll 

In front of the strip 

and on top of the roll 

Particle-particle  

Collision 

Particle-particle 

Collison is Neglected 

Overlap- Soft-sphere 

Dynamic Friction Coefficient 0.25 m 0.25 m 

Interaction with the Fluid Phase 1-way 4-way 

Application Dilute particle flows Dilute/Dense flows  

Normal Coefficients of 
Restitution 

- 0.9 

Coefficient of Dynamic Friction - 0.3 

Solid Phase Time Step (s) - 1e-5 

 

4.16 Particle-surface study results  

As shown previously, it is evident that there is an insignificant influence of the moving 

hardware on fluid flow in the bulk of the zinc bath. However, further studies of the V-

section showed the fluid tendency to move from the center of the roll toward its both ends.  

To simulate the particle-fluid modeling and study the particle motion in the galvanizing 

bath, particles are required to be injected from a specified location. According to the 

literature, the main place where the particles are generated is in the snout region. However, 

in this work for better understanding dross particles are released (linear uniform injection) 

from two different locations: snout region 10mm away from the strip entrance and 10mm 

from the top of the roll far away from the strip as depicted in Figure 4-20. 
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Figure 4- 20: Locations for particle injections in the galvanizing bath 

Figures 4-21 and 4-22 display the particle trajectories obtained from DEM simulation for 

injection 1 and injection 2. It is observed that the released particles are dragged to the bath 

due to the strip high velocity motion. It can be concluded that particles with mass released 

from different locations follow the bulk fluid flow inside the bath. It was discovered that 

dross particles starting from the snout region remain in the V-section and move toward the 

sink roll top surface. This is due to the small difference in densities (9%) of the bath fluid 

and dross particle. The circulating motion of fluid in this region moves the dross particles 

toward the top surface of sink roll.  

 

 

Injection 1 

Injection 2 
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Figure 4- 21: Injection 1- From snout region in front of the strip 

 

Figure 4- 22: Injection 2-From top of the sink roll 

For better understanding of the particle trajectories in DPM simulation, single particles are 

tracked at different locations at the snout region. The following results are obtained from 

single particle motion at three certain locations at the strip entrance: very close to the center 

of the roll, middle of the strip and at the strip edge.  
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Figure 4- 23: DPM Particle trajectory for a particle close to the middle of the roll  

 

Figure 4- 24: DPM Particle trajectory for a particle closer to strip edge  

 

Figure 4- 25: DPM Particle trajectory for single particle released from strip edge 

The same condition is repeated for massless particle at three locations near the strip-roll.  
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Figure 4- 26: DPM massless-particle trajectory at middle of the roll 

 

Figure 4- 27: DPM massless particle trajectory for a particle closer to the strip edge 

 

Figure 4- 28: DPM massless particle trajectory for a particle at the strip edge 

According to the particle trajectories for a single particle in massless and with mass 

conditions, it is observed that depending on the location of particle, the particle trajectories 

vary. It can be concluded that in both cases if the generated dross is moving at the vicinity 

of the middle of roll (far from the strip edge), it will be reflected in the groove-less roll. 
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While, in the case where particle is moving near the steel strip edge, it is deviated from the 

V-section toward the roll ends. Results show that for the same amount of calculation time, 

particles-with-mass have shorter trajectories due to the drag force compared to the 

massless-particles. Since the roll is longer than strip, the location of particle-surface 

interaction could indicate whether the initial hypothesis is correct. This hypothesis 

indicates that the location in which particles agglomerate is the same as the location where 

particles collide with the roll.  

To study the effect of the particle-surface and particle-particle collisions, an unsteady-state 

DEM simulation has been carried out for the bath. The particle trajectories are studied for 

1000 particles after they are released from the top of the steel strip and completely coupled 

with the fluid bath. It was observed that the particles are circulating inside the bath and the 

particle motion pattern varies for each particle. As depicted in Figure 4-29, a very thin layer 

around the sink roll is defined with 0.5mm distance from the roll to study the number of 

particles located very close to the roll by incorporating a written UDF code. In the modified 

DEM model, the distance of each particle is calculated to the roll at each time-step. Figure 

4-30 shows the cumulative number of particles that collided with the roll and those which 

are tracked in the defined layer at each time-step (0.005s). The number of the particles- 

that are tracked in the mentioned region and the number of particles collided with the roll- 

are identified at each time step. They are then added with the data obtained from the 

previous time step. 

  

 

 

 

 

 

 

Figure 4- 29: Defined layer around the sink roll 

Sink roll 
Sink roll 

Layer thickness 

t= 0.5mm 
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Figure 4-30: Cumulative number of particles at the extreme vicinity of the roll 

4.17 Conclusions 

In this work the detailed information about fluid flow in the galvanizing bath has been 

analysed using CFD modeling. Based on the simulation results obtained, it is concluded 

that the zinc fluid becomes trapped at the wedge area and then flows out the open area 

where the strip ends.  

The 3-D liquid- solid flow inside the bath was simulated using different multiphase fluid 

models. Most of the injected dross particles are observed to become trapped inside the 

vortices in the center of V-section. The circulating motion of flow in this region drags these 

bottom dross particles toward the top surface of the sink roll. Findings revealed that the 

particle fate in the bath strongly depends on its location at the V-section region. Simulation 

results show that the particles generated far from the strip edge (at the vicinity of the roll 

centre) will remain in the V-section and move toward the sink roll top surface. 

However, the particles which are initially near the strip entrance region, near the steel strip 

edge, are pushed out toward the roll ends due to the fluid pumping action. This resulted in 

the collisions of particles with the roll surface in the bath. According to reports from the 
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industry on the location where dross particles agglomerate on the roll, it can be concluded 

that the simulated results of the location of particle-surface interaction and particle 

agglomeration are consistent.  

It was also observed that inclusion of particle-particle and particle-surface collision forces 

did not affect the particle trajectories significantly, since the volume fraction in this study 

was very small (less than 0.01%). However, at each time-step (0.005s), from the 1000 

injected particles approximately 18 particles collided with the roll surface and 20 particles 

were tracked near the vicinity of the roll, respectively.  
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Chapter 5  

5 Groove Geometry Study 

Dross particle build-up has been reported from the galvanizing bath industries that use 

grooves on the roll surface. Based on an extensive literature review on the influence of the 

groove geometry on particle build-up, it was found that there has not been any studies on 

the performance of the groove in the galvanizing bath. Hence, this section is aimed at better 

understanding the groove performance in a galvanizing bath. To this end, a CFD simulation 

has been conducted for some grooves using simplified transverse fluid flow. Due to the 

similarity of the current research objective, a comprehensive study of groove parameter 

effects on hydroplaning phenomenon has been performed. Detail information is presented 

in Appendix.  

5.1 Groove Role 

In order to prevent the steel strip from slipping on the roll surface, grooves are machined 

on the roll surface, with different geometries and patterns. Grooves on the roll can be 

designed and manufactured in a spiral or radial patterns with different width, depths or 

spacing. A sink roll with spiral groove pattern on an industrial is studied as presented in 

the literature.  

Grooves in the context of tires can help in expulsion of the fluid from the wedge area by 

providing escape channels [53-56]. There are other parameters that can affect the dross 

build-up phenomenon on the roll surface. These include the groove geometry of the roll 

and the roll hardness. In this chapter, the groove geometry effect on the fluid flow 

behaviour is of interest. 

5.2 Groove Geometry Pattern 

Various groove geometries are being used on the roll surface in galvanizing bath. Figure 

5-1 demonstrates the details of three of them, selected from the industry. These grooves 

can be either radial or spiral on the roll with different spiral angles on the roll surface. 

 



46 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 5- 1: Groove geometry details 
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5.3 Modeling Challenges 

The geometry of the zinc bath itself is too complex to study with regards to fluid flow and 

particle-surface interactions, with the presence of the tiny grooves on the roll surface that 

are immersed in the molten zinc. 

One of the major challenges in this study is the length scale in the model. The galvanizing 

bath has dimensions of meters, whereas the roll surface groove geometries are in 

millimeters. In order to meet the main project objective — which is to simulate the dross 

particle interactions with the roll surface, including the grooves — the mesh grid has to be 

generated at very high density, especially within the groove channels very close to the roll. 

For the molten zinc fluid regions away from the roll, the mesh tetrahedral elements could 

gradually increase in size. An ideal mesh grid consisting of very tiny volume elements for 

an industrial galvanizing bath is very computationally expensive. Therefore, to examine 

the fluid flow behaviour on these groove geometries, a two dimensional CFD modeling has 

been conducted using transverse turbulent flow.  

5.4 Modeling of Roll Groove Surface  

ICEM software was employed in order to generate three different mesh grids as shown in 

Figure 5-2. For more accurate solution, the grid resolution is increased near the surface. 

5.5 Problem set-up 

Based on the simulation results from the 3-D bath study in chapter 4, it was concluded that 

pumping action moves the fluid toward both roll ends. To model this flow, a turbulent 

transverse flow is studied over the mentioned groove patterns with the known boundary 

conditions. According to the data from the 3-D bath model, a constant velocity of 0.1 m/s 

with k–ε turbulent model is used for each geometry surface.  
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Figure 5- 2: Mesh grid for geometry 1, 2 and 3, from top to bottom  

 

 

 

30mm 
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Table 5- 1: Boundary types and conditions data 

Part Boundary Type Boundary Conditions 
Turbulent Specification 

Method 

Inlet Velocity Inlet Vx = 0.1 m/s 
Turbulent intensity= 10% 

Hydraulic diameter= 10mm 

Outlet Pressure outlet Gauge pressure P=0 atm 
Turbulent intensity= 10% 

Hydraulic diameter= 10mm 

Groove Wall 
No slip condition 

Fixed (v = 0) 
N/A 

Top 
surface 

Moving- free 
surface  

No gradient in  
Y-direction 

N/A 

 

5.6 Results and discussion 

The simulation results of fluid flow, with the constant velocity inlet of V = 0.1 m/s for each 

groove, are shown in Figure 5-3, 5-4 and 5-5. Due to the different groove geometries, 

different flow fields inside each groove are observed in the profiles on the pictures on the 

right. It can be concluded that the flow patterns are similar in geometries 1 and 3. Stream 

function graphs also show the flow circulation inside grooves 1 and 3. These pictures show 

that, in geometry 2, the fluid can smoothly penetrate into the groove, so there is no vortex 

inside the groove. In another parametric study, the effect of the inlet height and inlet 

velocity on flow profile in each grooved surface are studied. However, these latter 

parameters did not change the flow field in the groove geometries. 
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Figure 5- 3: Flow path and velocity profile in geometry 1 

 

 

Figure 5- 4:  Flow path and velocity profile in geometry 2 

     

Figure 5- 5:  Flow path and velocity profile in geometry 3 

a: velocity contours 

c: stream functions 

b: velocity contours-close-up 

d: velocity vectors 

a: velocity contours 

c: stream functions 

b: velocity contours close-up 

d: velocity vectors 

a: velocity contours 

c: stream functions 

b: velocity contours-close-up 

d: velocity vectors 
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5.7 Near- roll study 

The flow profile near the roll plays an important role in dross particle interaction with the 

roll surface. Comparing the scale of the groove geometry of the roll surface with the size 

of bath, it can be concluded that determining the flow field very close to the roll requires 

further studies. 

Fluid flow near the nip region of the roll and strip can be approximated as a fluid flow very 

close to a stationary block and a moving strip. In this case, the moving strip on top of the 

block creates a drag flow which resembles the flow passing over the center of the roll.  

Figure 5-6 shows simplified roll-strip model in relation with the fluid flow near the groove 

in the galvanizing bath. This objective has been studied for the case of grooveless block 

and grooved blocks (Figure 6-7) with different tilting angles to study the effect of the 

groove geometry on flow profile at the entrance of the nip region. 

 

 

 

 

 

Figure 5- 6: Roll-strip models and tire-road model 

 

 

 

 

Figure 5- 7: Strip-block approximation model 

   

Fixed block 

Moving strip Moving strip 
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5.8 Strip-Block studies- Grooveless Block 

To study a simple strip-block problem without considering the groove effect on the flow 

field, a 2-D and 3-D geometry were studied as shown in Figure 5-8 and 5-9.  

 

 

 

 

 

 

Figure 5- 8 : 2-D strip-block geometry 

 

Figure 5- 9: 3D strip-block geometry 2 
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In the first simulations, the gap between the strip and roll was set at 5mm and 1mm in order 

to observe the fluid flow in that region. Then, it was reduced to 0.25mm since it has been 

concluded in section 5-6 that roll and strip are almost in continuous contact with each other. 

The velocity profiles are shown for two cases, 𝛿=5mm and 1mm (Figures 5-10 and 5-11). 

According to the velocity profiles, it can be clearly seen that in the case of larger gap, flow 

can penetrate into the channel easily compared to the tighter gap. The vortex directions are 

different in each case. 

        

 Figure 5- 10: Velocity profile at the entrance of the nip area- δ=1mm 

 

                      

Figure 5- 11: Velocity profile at the entrance of the nip area- δ=5mm 

5.9 Strip-Block Studies- Grooved Block 

This model is performed to study the effect of the groove geometry on the flow profile at 

the entrance of a drag flow (Figure 5-12). The straight groove parallel to the moving strip 

direction resembles the radial pattern groove at the center of the roll. To approximate the 

effect of different groove pattern on flow profile other than radial, the spiral case is also 

studied as shown in Figure 5-13. 
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Figure 5- 12: Straight groove in the cavity study- δ=0.25mm 

 

Figure 5- 13: Tilted groove in the cavity study- δ=0.25mm 

Different groove angles are then considered on the block. Schematic of these groove angles are 

shown in Figure 5-14 to 5-15. 

3m/s 

𝜃 = 0° = 0° 

𝜃 = 15° = 0° 

𝛿=0.25mm 

𝛿=0.25mm 

𝑆𝑝𝑖𝑟𝑎𝑙 

𝑅𝑎𝑑𝑖𝑎𝑙 

3m/s 
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Figure 5- 14: Tilted groove position for θ=7°- Top view 

 

Figure 5- 15: Tilted groove position for θ=15°- Top view 

 

Figure 5- 16: Tilted groove position for θ=30°- Top view 

𝜃 = 7° = 0° 

𝜃 = 15° = 0° 

𝜃 = 30° = 0° 
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Figure 5- 17: Tilted groove position for θ=45°- Top view 

To create a proper mesh grid, mesh resolution has to be fine enough, especially inside the 

groove and in the gap region. As explained in prior sections, one of the project challenges 

was creating high resolution grid at the nip region and inside the groove channel. Since the 

groove geometry 2 is made from intersection of 3 circles (Figure 5-18), the surface 

elements at both ends of the groove are always skewed with poor quality. To maintain the 

mesh grid quality at the mentioned area, the groove geometry is modified by deleting the 

two regions at both groove ends as shown in Figure 5-19. 

 

 

 

 

Figure 5- 18: Groove geometry 2- Intersection of 3 circles 

𝜃 = 45° = 0° 
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Geometry 2 
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Figure 5- 19: Modified geometry 

Simulation is performed using turbulent flow for each case. Velocity profile of each case 

is shown in the following pictures. The flow profile at the entrance of the nip region is 

depicted to see any significant phenomenon at the roll center for the straight groove and 

tilted groove. Pictures on the left show the plane that the velocity profiles are shown onto 

it and the pictures on the right show the velocity profiles at the nip region entrance for each 

case. According to the velocity profiles which are shown for each case it can be concluded 

that the flow at the entrance of the gap appears similar for all of the cases. 

 

Figure 5- 20: Velocity Profile for groove angle θ=0° 

 

 

 

Removed area Removed area 
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Figure 5- 21: Velocity Profile for groove angle θ=7° 

 

 

 

 

 

 

Figure 5- 22: Velocity Profile for groove angle θ=15° 

 

 

 

 

 

 

 

Figure 5- 23: Velocity Profile for groove angle θ=30° 
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Figure 5- 24: Velocity Profile for groove angle θ=45° 

5.10 Conclusions 

Building upon the bath modeling results, 2-D modeling of the flow over groove geometries 

shows that the flow patterns are similar in geometries 1 and 3. In the strip-block study, the 

velocity profile are depicted at the entrance of the nip region in each tilted groove. It was 

found that the velocity field at the nip section for different groove angles are similar. 
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Chapter 6  

6 Free Surface Study 

Advanced high performance steel requires stability in the coating process. In this chapter, 

using computational fluid dynamics, the bath liquid-air is modeled at the free surface. The 

purpose of this work is the study of fluid behaviour at the interface between the liquid and 

air. Excess zinc falls down to the bath after being picked up by the strip which creates a 

wave motion on the free surface of the bath. This wave on the bath free surface can pick 

up the suspended dross particles, which in turn can affect the process stability. Process 

stability is significant to produce high quality homogeneous coating in a hot- dip 

galvanizing bath. This study is aimed at modeling the local fluid at the meniscus of the 

strip and simulating the wave motion at the free surface.  

6.1 Air entrainment  

Extensive research has been conducted to study the critical velocity at air-entrainment. The 

critical velocity is the velocity when air entrainment begins. Correlation between the 

critical velocity, surface tension and viscosity has been well investigated. Equation 6-1 

shows this correlation. 

𝑉𝑐 = 𝑘 (𝜎 𝜇⁄ )𝑛      (6-1) 

Where, 𝑉𝑐 , 𝜎 and 𝜇 are the critical velocity at air-entrainment, surface tension (N/m) and 

is the viscosity ( kg/m.s), respectively. Table 6-1 shows the summary of some experimental 

studies in determining this correlation. 

 

 

 

 

Figure 6- 1: Stages leading to air-entrainment [57] 
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Table 6- 1: Correlation between critical velocity, surface tension and viscosity 

Work by Type of surface 

Regression 
equation 

Regression 
coefficient  

(𝑟) 𝑘              𝑛 

Kennedy [58] 2.5cm wide polyester tapes 1.2 0.71 0.99 

Guttof [59] 
16.0cm wide gelatine subbed 

polyester tape 
1.51 0.74 0.99 

Perry [60] Magnetic tape 0.95 0.71 0.99 

Wilkinson [57] Pre-wetted rotating drum 1.72 0.91 0.99 

Burley [61] 
Various tape width and angles 

of entry 
1.14 0.77 0.99 

With the known parameters such as surface tension and fluid viscosity: 𝜎(zinc-

air@465℃)=0.789N/m and 𝜇=0.004 kg/m.s, the critical velocity is calculated for the 

galvanizing bath, 𝑉𝑐= 50-100m/s. Hence, it can be concluded that 𝑉𝑠𝑡𝑟𝑖𝑝 ≪ 𝑉𝑐 inside the 

bath due to the strip motion. 

6.2 Free-Surface Modeling 

To model the fluid motion at the free surface of a galvanizing bath, the Volume of Fluid 

multiphase model has been used. Ansys FLUENT is employed using realizable k-e 

turbulent model and accounting the surface tension effects on the free surface.  

6.3 VOF Multiphase Model 

“Volume of Fluid” multiphase modeling is an Eulerian-Eulerian method of surface-

tracking technique which can be used for two or more immiscible fluids. In this approach 

liquid and gas phases are treated as interpenetrating continua. This model is helpful where 

the study of interface between two fluids is of interest such as free-surface flows, sloshing 

and the motion of liquid after a dam break and the prediction of jet breakup. 

In this approach, the concept of phasic volume fraction is defined because the volume of a 

phase cannot be occupied by the other phases. It can be concluded that volume fractions 

are assumed to be functions of space and time [62].  
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Continuity and the Navier Stokes equation are solved in the computational domain to 

conserve mass and momentum. The volume fraction of the fluids in each grid cell is tracked 

in the domain.  

Interface tracking between the liquid and solid phases is conducted by the solution of 

continuity equation for the volume fraction of one of the phases. The continuity equation 

for the qth phase is written in equation 6-2 [62]. 

1

𝜌𝑞
[
𝜕

𝜕𝑡
 (𝜀𝑞𝜌𝑞) + ∇. (𝜀𝑞𝜌𝑞𝑣𝑞⃑⃑⃑⃑ ) = ∑ (𝑚̇𝑝𝑞 − 𝑚̇𝑞𝑝)

𝑛
𝑝=1 ]       (6-2) 

Here, 𝜌 and 𝑣  are density and velocity respectively. p and q are arbitrary phases, 𝑚̇ is the 

mass transfer and 𝜀 is the volume fraction. When 𝜀 equals 1 it means the cell is fully 

occupied by the liquid and when has no value, it refers to an empty cell for that fluid. The 

values between 0 and 1 indicate that the cell contains the interface between the qth fluid 

and one or more other fluids. 

In Ansys FLUENT, this equation can be solved in an implicit or explicit scheme. When 

the implicit scheme is used for time discretization, volume fraction values are calculated at 

each time step. Whereas in the explicit scheme, volume fraction data are used for the 

previous time step. 

6.4 Surface Tension 

The continuum surface force is used for surface tension effect first proposed by Brackbill 

et al. [63]. This model is available in Ansys FLUENT. It implements the addition of surface 

tension as a source term in the momentum equation. 

6.5 Computational Domain 

Multiphase Volume of Fluid is used in computational domain consisting of zinc and air. 

According to the bath geometry displayed in Figure 6-2, a two-dimensional domain is 

studied. ICEM CFD has been employed to generate the grid mesh. Figure 6-3 and 6-4 

demonstrate the mesh resolution near the strip surface and at the liquid interface. The fine 

mesh has been used in the solver after performing grid independence test. 
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Figure 6- 2: Bath geometry 

 

Figure 6- 3: Interface grid display  

 

Figure 6- 4: Gird display of the galvanizing bath 
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6.6 Problem setup and boundary conditions 

VOF multiphase model 𝑘-𝜀  realizable turbulent model has been used for the fluid and 

continuous moving wall with constant velocity and no-slip condition for the strip. 

Simulation has been undertaken in the transient condition using explicit discretization 

scheme. Molten zinc is considered for the primary phase with density and viscosity of 

𝜌=6600kg/m3 and 𝜇=0.004kg/m.s. Secondary phase is occupied by air with density and 

viscosity of 𝜌=1.225kg/m3 and 𝜇=1.79e-05kg/m.s, respectively. 

Continuum surface force model has been used for the liquid-gas phase interaction. Other 

boundary conditions have been set according to full bath model: moving strip velocity: 

3m/s, main roll rotational velocity 7.5rad/s and guide rolls: 24 rad/s. Left, right and bottom 

walls are assumed as fixed walls with no-slip conditions, top wall: outflow. Time steps are 

variable between 0.1-1ms. 

6.7 Start-up procedure 

In order to validate the VOF model in Ansys FLUENT two well-known cases have been 

simulated and compared with the literature: plunging tape problem [57-65] and wave 

generation in a tank with moving oscillatory wall problem [66,67].  

In order to start the simulation, a procedure known as pre-wetting or start-up has been 

performed to prevent any probable jump of the fluid due to the high velocity of the moving 

objects in the bath. Hence, the velocity of the moving hardware is increased in three phases: 

from 0-0.03m/s, then from 0.03-0.3 and from 0.3-3m/s which is the actual operating bath 

condition. 

6.8 Results and discussions 

Because of the continuous strip motion into the bath and the surface tension between the 

air and zinc fluid, a curved shape meniscus is generated where the strip leaves the bath. On 

the other hand, at the strip exit region the outward meniscus is formed. This shape becomes 

steady when the process is in a steady state condition. Excess zinc then falls back to the 



65 

 

bath by passing over the meniscus surface. Therefore, the fluid film has a wavy shape along 

the strip. 

The phase boundary between air and zinc fluid is shown as colored phase fractions. Here 

blue and red colors indicate the air and molten zinc, respectively. The spectrum shown in 

these plots refers to the volume fraction at the interface. 

As shown in the calculation for the air- entrainment in section 6-1, it was found that there 

is no air entering the bath from the strip entry region.  

To determine the general fluid flow structure, meniscus formation and to model the fluid 

fallback and wave motion at the interface, initially the guide rolls and snout are not 

accounted for the simulation. Separately, simulation is undertaken including the effects of 

the snout and the guide rolls with the detailed data for the velocity field near the interface 

of the bath. Figure 6-5 displays an instantaneous volume fraction at a certain time t=0.05s. 

At this time, the fluid starts to be picked up by the strip leaving the bath.  Better views of 

the fluid structures on the strip are displayed in Figure 6-6 at t=0.29s. They show the 

formed fluid meniscus where the strip leaves the bath in addition to the curved shape of the 

fluid at the strip entrance region. Figure 6-7 indicates the motion of the wave at the interface 

caused by the fallback of excess fluid on the strip at t=0.59s. Figure 6-8 depicts the zoom-

in of the fluid at the meniscus at t=2.78s. 

 

Figure 6- 5: Volume fraction in the bath at t=0.05s 
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Figure 6- 6: Volume fraction at the bath at t=0.29s 

 

Figure 6- 7: Volume fraction at the bath at t=0.59s 

 

Figure 6- 8: Fluid behaviour at the meniscus at t=2.78s 
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The thickness of the fluid film on the strip becomes more stable after being dragged by the 

strip. A coarse approximation of coating thickness of fluid film is measured (t=500𝜇m) as 

shown in Figure 6-9.  

      

Figure 6- 9: Coating layer formed on the strip  

The following figures show the velocity vectors in the computational domain for the fluid 

and gas phase. Fluid vectors with fixed and various lengths are displayed to indicate the 

direction of the flow. The mesh density was increased near the interface and near the strip 

in order to capture the fluid flow at the interface and the film motion near the meniscus. 

Figure 6-10 displays the velocity vectors for the bath fluid where the strip exits the bath. It 

should be noted that for better understanding of the direction of the velocity vectors, these 

vectors are plotted with constant size. 

 

Figure 6- 10: Liquid velocity vectors on the strip where it leaves the bath 
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The liquid flow is depicted separately in Figure 6-11 to show the influence of the wave 

motion along the interface. Fluid flow pattern is depicted for the liquid phase near the 

interface at the top of the roll. This is the area of interest as shown in 6-2 and 6-3. 

 

 

 

 

 
 

Figure 6- 11: Liquid velocity vectors for the fluid on top of the roll  

between the strip entry and exit region 

According to the observations from industry, the wave motion on the interface tends to 

pick-up the top dross particles and creates coating problems for the strip which is 

submerging to the bath at the entry region. Therefore, it is significant to study the effect of 

the snout and guide rolls in terms of the wave created on the interface. Simulation has been 

carried out for the case including guide rolls and the snout. Velocity vectors within the bath 

on top of the roll are shown in Figure 6-12 for the liquid phase. Better views for the velocity 

field in the bath are shown through Figure 6-13-6-14. Based on the results, it can be seen 

that in the presence of the guide rolls and snout, the fluid direction below the interface is 

different from the results have been achieved from the case without considering the guide 
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rolls. The larger velocity vectors at the interface are due to the wave motion at the free 

surface and transient effect of the problem. 

It was shown that the guide roll on the left side of the strip which is closer to the free 

surface, has more influence on the interface. The vortex, which resulted from the motion 

of the left guide roll, can create a flow in direction toward the strip. This flow is in the 

opposite direction with the wave motion from the excess fluid on the strip.  

 

Figure 6- 12: Velocity vectors for the liquid- close to the guide roll 

 

 

 

  

Figure 6- 13:  Liquid velocity vectors for the fluid on top of the roll  

between the strip entry and exit region 
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Figure 6- 14: Velocity vectors for the liquid at the snout region 

6.9 Conclusions 

A study has been conducted to understand whether there is probable air-entrainment in the 

bath due to the high velocity of the strip into the bath. Calculations showed there is no air 

entrainment due to the high surface tension and low viscosity of the zinc fluid.  

The fluid flow at the free surface of galvanizing bath is modeled using Ansys FLUENT 

software in two dimensions. VOF multiphase model flow is used with k-e model and 

applying the defined boundary conditions. 

It is concluded that the simulation results are qualitatively in accordance with the 

observations from the industry. Based on the results, the meniscus is formed once the 

process became steady. Coating layer on the strip is formed after resolving the mesh grid 

at the moving strip and at the interface. This model was able to predict the fluid film 

thickness on the strip.  

This process was accomplished by the pre-wetting process in the domain which let the fluid 

flow be stable in the bath. It was observed that due to the fallback from the excessive 

coating on the strip, a short wave motion is created which moves toward the strip entry 

region. The velocity vectors are shown at this region for each phase. In order to study the 

effect of the snout and guide rolls on the created wave at the interface, simulation has been 

carried out with and without presence of guide rolls and snout. It was observed that in the 

case that the guide rolls and snout exist, the vortex resulted from the rotation of the left 
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guide roll creates a fluid flow in direction toward the strip and in the opposite direction of 

the wave motion. Snout can deviate the interaction of the top dross particle with the strip 

at the entry region. Therefore, it can be concluded that the presence of the guide rolls and 

snout can mitigate the wave motion is going toward the strip entrance area. This is 

significant because based on the reports from industry this wave motion on the interface 

can pick-up the top dross particles and create coating problems for the strip at the entry 

region. 

It should be noted that for the simplicity, this simulation has been performed in two 

dimensions. Hence, the actual three dimensions flow is not studied. Also, in this study, the 

effect of wiping gas jet on the excessive coating on the strip was not accounted for.  
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Chapter 7  

7 Summary 

Based on the extensive literature review it was concluded that previous studies have been 

focused on the bulk turbulent flow pattern in the galvanizing bath, analysis of the effect of 

operating parameters on the flow field, dross concentration in the “V-section” and dross 

particle size and chemistry in the bath.  

In summary, this new study is focused on analysing the fluid flow behaviour at the extreme 

vicinity of the roll where it meets the strip and studying the particle-surface interaction 

within the bath, as an important key in understanding the dross build-up on the roll surface. 

The detailed information about fluid flow in the galvanizing bath has been analysed using 

CFD modeling. Based on the 3-D fluid flow studies in the bath, it was concluded that the 

fluid flow in the bath becomes concentrated near the sink roll, where it meets the strip. This 

is significant because it addresses the dross particle interaction locations on the roll, where 

the particles most likely agglomerate on the roll surface. 

Studying the dynamic behavior of multiphase (liquid–solid) flows was found to be crucial 

due to its relevance to agglomeration processes in hot dip-galvanizing process. The 3-D 

liquid- solid flow inside the bath was simulated using different multiphase fluid models. 

As expected, most of the injected dross particles are observed to become trapped inside the 

vortices in the center of V-section. The circulating motion of flow in this region drags these 

bottom dross particles toward the top surface of the sink roll. Findings revealed that the 

particle fate in the bath strongly depends on its location at the V-section region. Simulation 

results show that the particles far from the strip edge (near the vicinity of the roll centre) 

will remain in the V-section and move toward the sink roll top surface. However, particles 

which are moving from the strip entrance region, near the steel strip edge, are pushed out 

toward the roll ends. Resulting in collisions of particles with the roll surface. According to 

the reports from the industry on the location where dross particles agglomerate on the roll, 

it can be concluded that the observed locations of particle-surface interaction and particle 

agglomeration are consistent with observations in industry.  
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A 2-D modeling of the flow over some groove geometries has been undertaken. Based on 

the results it was concluded that the flow patterns in the second studied groove might be 

more efficient in terms of providing escape channels for the multiphase flow near the strip-

edge region.  

The fluid flow at the free surface of galvanizing bath in two dimensions is modeled using 

Volume of Fluid multiphase approach. It was concluded that the presence of the guide rolls 

and snout can alter the wave motion toward the strip entrance area. This is significant 

because based on the reports from industry this wave motion on the interface can pick-up 

the top dross particles and create coating problems for the strip at the entry region. 
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Appendix A 

The purpose of this study is to determine the groove geometry parameters which affect the 

hydroplaning. Hydroplaning functionality with respect to the groove geometry was found 

to be useful to approximate the roll-strip model. Both tire-road model and roll-strip model 

contain two moving surface flow. The former contains air-water and the latter contains 

particle-molten zinc. The effects of a groove geometry (depth, width and spacing) and 

pattern (radial/spiral V.S longitudinal and transverse) on the fluid flow at the contact region 

are studied.  

Hydroplaning 

Hydroplaning is a major safety concern, which occurs when a layer of water prevents direct 

contact of tire and road. The main cause of hydroplaning is loss of traction and contact 

force between the tire and wet road. Hydroplaning commences when the vehicle speed 

becomes high enough that the hydrodynamic pressure of the water between its tires and the 

road rises and equals the tire inflation pressure [1,2]. Increased hydroplaning velocity 

means longer contact of tire and wet road. 

Hydroplaning phenomenon has been studied numerically and experimentally to understand 

the effect of groove geometry on tire skid resistance in the past decades. Width refers to 

the opening distance of the groove in the horizontal coordinate, depth refers to the 

maximum distance of the groove in vertical coordinate and spacing refers to the distance 

between centers of two grooves. According to previous studies by Horne et. al. [3,4], tire 

grooves can help in expulsion of water from the tire-road contact region by providing 

escape channels, thus reducing the hydroplaning risk. Different groove patterns are found 

to have different influence on hydroplaning velocity. Maycock [5] and Gengenbach [6] 

have performed extensive experimental studies to understand the hydroplaning velocity as 

a function of width, depth and groove spacing. They all show that tire groove geometry has 

a tremendous effect on tire skid resistance. The results show that the groove width is the 

most effective parameters compared to depth and spacing. It was found that the tire groove 

width has 23.7% effect in hydroplaning velocity increase. Groove spacing and groove 

depth parameters showed 20.1% and 5.8% increase, respectively. 
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In this study, hydroplaning phenomena for a tire with suitable groove geometry can take 

place at a higher speed and in a longer time due to the lower hydrodynamic uplift force. A 

summary of the hydroplaning studies is displayed in Table A-1. 

Table A- 1: Summary of previous studies on hydroplaning  

 Authors Article Name/Main Learning 

1 
Kim, T.W. and 

Jeong, H.Y. 

Hydroplaning Simulations for Tires using FEM, FVM and an asymptotic 

method, International Journal of Automotive Technology, Vol. 11, No.6, pp. 

901−908 ,2010 

Hydroplaning velocity and Lift force are studied  for two tread patterns 

2 
Okano, T. and 

Koishi, M 

Hydroplaning Simulation using MSC. Dytran., THE YOKOHAMA RUBBER CO., 

LTD, 2-1 Oiwake Hiratsuka Kanagawa 254-8601, Japan 

Hydroplaning Velocity for wider groove is the highest (MSC DYTRAN) results 

were verified by experimental studies 

3 

Ong., G. P., 

Fwa, T. F.  and 

ASCE,M. 

Transverse Pavement Grooving against Hydroplaning., I: Simulation Model, 

Journal of Transportation Engineering ASCE, June 2006 

Hydroplaning on transverse groove pavement surface studied. The deeper 

and wider grooves are found to be more effective 

4 

Kumar S.S, 

Anupam, K, 

Scarpas, T., 

Kasbergen,C 

Study of Hydroplaning Risk on Rolling and Sliding Passenger Car, 5th 

International Congress, Sustainability of Road Infrastructures, 2012 

Hydroplaning simulation for a rolling and sliding tire for a range of water 

depth condition. Simulation validation with experimental data 

5 

Kumar,S.S., 

Anupam, K 

and 

T. F. FWA 

Analyzing Effect of Tire Groove Patterns on Hydroplaning Speed, Journal of 

the Eastern Asia Society for Transportation Studies, Vol.8, 2009 

Effect of Tire Longitudinal, transverse and block treads Groove Patterns on 

Hydroplaning Velocity. The tires with wider, deeper with less spacing were 

more effective 

 

Tire Grooving Effect on Hydroplaning 

Okano et al. [7] studied the tire longitudinal groove effect on hydroplaning. As: A smooth 

tire, a tire with 9mm longitudinal groove width and one with 18mm as shown in Figure A-

1. Figure A-2 shows the flow behaviour around tire contact area and also water jet extrusion 

from longitudinal groove. Comparing the fluid simulation results for the three tires with 
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different groove width, it can be clearly seen that the tire with wider grooves (18mm), can 

provide higher fluid velocity (in the same direction of the fluid flow) than the tire with 

9mm groove width and the smooth tire. The comparison of the experimental results with 

the simulation results is depicted in Figure A-3. 

 

Figure A- 1: Different Groove width in longitudinal pattern [7] 

 

Figure A- 2: Flow profile through different Groove width [7] 
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Figure A- 3: Comparison of the experimental data with modeling results [8] 

Kumar et al. 2009 have studied the hydroplaning phenomena for a tire running on a wet 

surface. The tire experiences multiphase flow at the velocity U in respect to the tire, as 

shown in Figure A-4. They studied the effects of tire groove geometry on hydroplaning 

and showed that how hydroplaning varies with different groove width, depth and spacing. 

(Figures A-5-A-7) 

 

Figure A- 4: Schematic of tire-road model in moving tire’s reference frame [2] 



86 

 

 

Figure A- 5: Effect of tire groove width on hydroplaning speed [2] 

 

Figure A- 6: Effect of tire groove space on hydroplaning speed [2] 

 

Figure A- 7: Effect of tire groove depth on hydroplaning speed [2] 
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As results are shown, it can be concluded that among the studied parameters, groove width 

is the most effective parameter, in terms of increasing hydroplaning speed. 

Based on the tire-road studies, it can be concluded that: 

• Tire grooves can drag the water through and increase the hydroplaning speed. 

• Block and transverse patterns show better performance than longitudinal in terms 

of hydroplaning speed up to 53.7% and 29%, respectively. 

• Groove width is the most effective parameter. Groove width had 23.7% increase 

over the groove width range studied. 

• Groove spacing showed 20.1% and groove depth showed 5.8% increase over the 

groove width and depth range studied. 

• Based on the tire-road analogy, wider groove (groove #2) is selected among other 

patterns for the galvanizing bath roll.  

Another important lesson from tire-road analogy is that the strip should be in direct contact 

with the roll. It can be concluded that to keep the production rate of galvanized steel 

constant, the line tensioning force has to be more than the hydrodynamic uplift force. The 

following section will study the strip-roll separation using a force analysis.  
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