
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

6-5-2015 12:00 AM

Hardware Implementations for Symmetric Key Cryptosystems Hardware Implementations for Symmetric Key Cryptosystems

Hayssam El-Razouk, The University of Western Ontario

Supervisor: Arash Reyhani-Masoleh, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Electrical and Computer Engineering

© Hayssam El-Razouk 2015

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the VLSI and Circuits, Embedded and Hardware Systems Commons

Recommended Citation Recommended Citation
El-Razouk, Hayssam, "Hardware Implementations for Symmetric Key Cryptosystems" (2015). Electronic
Thesis and Dissertation Repository. 2927.
https://ir.lib.uwo.ca/etd/2927

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F2927&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=ir.lib.uwo.ca%2Fetd%2F2927&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/2927?utm_source=ir.lib.uwo.ca%2Fetd%2F2927&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

HARDWARE IMPLEMENTATIONS FOR SYMMETRIC KEY

CRYPTOSYSTEMS

(Thesis format: Monograph)

by

Hayssam El-Razouk

Graduate Program in Electrical and Computer Engineering

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

c⃝ Hayssam El-Razouk 2015

Abstract

The utilization of global communications network for supporting new electronic applica-

tions is growing. Many applications provided over the global communications network involve

exchange of security-sensitive information between different entities. Often, communicating

entities are located at different locations around the globe. This demands deployment of cer-

tain mechanisms for providing secure communications channels between these entities. For

this purpose, cryptographic algorithms are used by many of today’s electronic applications to

maintain security. Cryptographic algorithms provide set of primitives for achieving different

security goals such as: confidentiality, data integrity, authenticity, and non-repudiation. In gen-

eral, two main categories of cryptographic algorithms can be used to accomplish any of these

security goals, namely, asymmetric key algorithms and symmetric key algorithms. The secu-

rity of asymmetric key algorithms is based on the hardness of the underlying computational

problems, which usually require large overhead of space and time complexities. On the other

hand, the security of symmetric key algorithms is based on non-linear transformations and

permutations, which provide efficient implementations compared to the asymmetric key ones.

Therefore, it is common to use asymmetric key algorithms for key exchange, while symmetric

key counterparts are deployed in securing the communications sessions. This thesis focuses on

finding efficient hardware implementations for symmetric key cryptosystems targeting mobile

communications and resource constrained applications.

First, efficient lightweight hardware implementations of two members of the Welch-Gong

(WG) family of stream ciphers, the WG(29, 11) and WG-16, are considered for the mobile

communications domain. Optimizations in the WG(29, 11) stream cipher are considered when

the GF
(
229

)
elements are represented in either the Optimal normal basis type-II (ONB-II) or

the Polynomial basis (PB). For WG-16, optimizations are considered only for PB representa-

tions of the GF
(
216

)
elements. In this regard, optimizations for both ciphers are accomplished

mainly at the arithmetic level through reducing the number of field multipliers, based on novel

trace properties. In addition, other optimization techniques such as serialization and pipelining,

are also considered.

After this, the thesis explores efficient hardware implementations for digit-level multipli-

cation over binary extension fields GF (2m). Efficient digit-level GF (2m) multiplications are

advantageous for ultra-lightweight implementations, not only in symmetric key algorithms,

but also in asymmetric key algorithms. The thesis introduces new architectures for digit-level

GF (2m) multipliers considering the Gaussian normal basis (GNB) and PB representations of

the field elements. The new digit-level GF (2m) single multipliers do not require loading of the

two input field elements in advance to computations. This feature results in high throughput fast

ii

multiplication in resource constrained applications with limited capacity of input data-paths.

The new digit-level GF (2m) single multipliers are considered for both the GNB and PB. In

addition, for the GNB representation, new architectures for digit-level GF (2m) hybrid-double

and hybrid-triple multipliers are introduced. The new digit-level GF (2m) hybrid-double and

hybrid-triple GNB multipliers, respectively, accomplish the multiplication of three and four

field elements using the latency required for multiplying two field elements. Furthermore, a

new hardware architecture for the eight-ary exponentiation scheme is proposed by utilizing the

new digit-level GF (2m) hybrid-triple GNB multipliers.

Keywords: Digit-Level Multipliers, Finite Fields, Finite Field Exponentiation, Gaussian

Normal Basis, Hybrid-Double Multiplication, Linear Feedback Shift Registers, Normal Basis,

Optimal Normal Basis, Polynomial Basis, Pseudo Random Key Generators, Serial Multiplica-

tion, Stream Ciphers, Trace Function, WG Transformation.

iii

Co-Authorship

I would like to thank Dr. Guang Gong, from the electrical and computer engineering depart-

ment at the University of Waterloo, for her constructive inputs during the different discussions

and throughout the writing / revision phases of the published / accepted versions of chapters 3

and 4 of this thesis.

iv

Dedications

To my great parents, to my lovely wife Shaima, to my little precious girl Quds, and to all my

bigger family.

v

Acknowledgements

First of all, all praise and thanks are due to my Lord.

I would like to thank my parents, my wife Shaima, my beautiful daughter Quds, and my

sisters for all their support, and prayers.

I would like to thank my supervisor, Dr. Arash Reyhani-Masoleh, for his continuous and

non-stopping support and guidance throughout the course of my PhD studies.

I would also like to thank the examiners, Dr. Anestis Dounavis, Dr. Abdelkader Ouda, Dr.

Marc Moreno Maza, and Dr. Majid Ahmadi, for putting the time and effort to read my PhD

thesis and provide their constructive comments.

Last but not least, I would like to thank my colleges, Behdad Husseini, Depanwita Gan-

gopadhyay, Ebrahim Hassan, and Sasan Khoshroo, for all the constructive and fruitful discus-

sions we had.

vi

Contents

Abstract ii

Co-Authorship iv

Dedications v

Acknowledgements vi

List of Figures xii

List of Tables xiv

Nomenclature xvi

1 Introduction 1
1.1 Objectives . 2

1.2 Motivations and Significance . 2

1.3 Thesis Outline . 4

2 Background on GF (2m) and WG Stream Ciphers 5
2.1 Preliminaries on Algebraic Structures . 5

2.2 Finite Fields . 7

2.2.1 Fields . 7

2.2.2 Finite Fields . 7

2.3 Modular Arithmetic . 7

2.4 Polynomial Rings . 9

2.5 Binary Extension Fields GF (2m) . 11

2.6 Polynomial Basis (PB) Representation . 11

2.7 Gaussian Normal Basis (GNB) Representation 11

2.8 Addition over GF (2m) . 12

2.9 Multiplication over GF (2m) . 12

vii

2.9.1 GF (2m) Multiplication in the PB Representation 13

2.9.1.1 Multiplication of Two Arbitrary GF (2m) Elements Repre-

sented in the PB . 13

2.9.1.2 Efficient Multiplication of a GF (2m) Element Represented in

the PB by αq . 15

2.9.1.3 Previous Work on PB Multiplication 15

2.9.2 GF (2m) Multiplication in the GNB Representation 17

2.9.2.1 Formulation for the BL-PISO GF (2m) Multiplication in the

GNB Representation . 17

2.9.2.2 Multiplication by the Normal Element β 18

2.9.2.3 Previous Work on GNB Multiplication 18

2.10 Exponentiation and Inverse over GF (2m) . 19

2.11 Trace Mapping . 20

2.12 Welch-Gong (WG) Stream Ciphers . 21

2.12.1 Stream Ciphers . 21

2.12.2 WG Stream Ciphers . 22

2.12.2.1 A General Block Diagram 22

2.12.2.2 Phases of Operation . 23

2.12.2.3 WG(29, 11) and WG-16 . 23

2.12.2.4 Parameters of the WG(29, 11) 24

2.12.2.5 Parameters of the WG-16 25

3 Implementations of the WG Stream Ciphers Using ONB-II 26
3.1 Optimized Hardware Design of the MOWG(29, 11, 17) Cipher 27

3.1.1 Reducing the Hardware Complexity of the MOWG Transformation . . 27

3.1.2 Improving the Critical Path of the MOWG Transform 28

3.1.2.1 Formulation . 29

3.1.2.2 Modified KIA Algorithm . 30

3.1.3 Architecture . 30

3.1.4 The Finite State Machine . 32

3.1.5 Space and Time Complexities . 33

3.1.5.1 Space Complexity . 33

3.1.5.2 Time Complexity . 35

3.2 Low Complexity WG Cipher . 36

3.2.1 Properties of the Trace Function for Type-II ONB 36

3.2.2 Optimizing the WG Transform’s Hardware for the Run Phase 38

viii

3.2.3 Serializing the Computation of the Initial Feedback Signal 39

3.2.3.1 Architecture and Operation of the Modified FSM 40

3.2.3.2 Architecture and Operation of the Serialized Key Initializa-

tion Module . 42

3.2.4 Space and Time Complexities . 44

3.2.4.1 Space Complexity . 44

3.2.4.2 Time Complexity . 46

3.3 Results and Comparisons . 46

3.3.1 Results from FPGA and ASIC Implementations 46

3.3.2 Discussion . 49

3.4 Conclusion . 51

4 Implementations of the WG Stream Ciphers Using PB 52
4.1 Architectures of the WG(29, 11) Stream Cipher 54

4.1.1 Formulation of WGT29 . 54

4.1.2 Design Parameters . 54

4.1.2.1 Field Polynomial and Squaring Matrices 55

4.1.2.2 Characteristic Polynomial of the LFSR 55

4.1.2.3 Trace Vector . 57

4.1.2.4 Trace of Multiplication of Two Field Elements 57

4.1.3 Architecture and FSM . 59

4.1.3.1 Architecture of the WG(29, 11) Cipher 59

4.1.3.2 The Finite State Machine (FSM) 62

4.1.4 Serialized Implementation of the PB Based WG(29, 11) 62

4.1.4.1 Architecture of the Serialized WG(29, 11) 62

4.1.4.2 FSM for the Serialized PB based WG(29, 11) 64

4.1.5 Pipelined Implementation of the PB Based WG(29, 11) 66

4.1.5.1 Architecture of the Pipelined PB Based WG(29, 11) 66

4.1.5.2 FSM for the Pipelined PB Based WG(29, 11) 67

4.2 Architectures of the WG-16 Stream Cipher . 68

4.2.1 Formulations of WGP16 and WGT16 69

4.2.2 Squaring Matrices and Trace Vector 70

4.2.2.1 Squaring Matrices . 70

4.2.2.2 Trace Vector . 71

4.2.3 Trace of the Multiplication of Two Field Elements for the PB Based

WG-16 . 71

ix

4.2.4 Architecture and FSM . 71

4.2.4.1 Architecture of the WG-16 Cipher 71

4.2.4.2 The Finite State Machine 74

4.2.5 Serialized Implementation of the PB Based WG-16 74

4.2.5.1 Architecture of the Serialized WG-16 74

4.2.5.2 FSM for the Serialized WG-16 75

4.2.6 Pipelined Implementation of the PB Based WG-16 77

4.2.6.1 Architecture . 77

4.2.6.2 FSM for the Pipelined WG-16 78

4.3 Implementation Results and Comparisons . 78

4.3.1 ASIC Implementations . 79

4.3.2 Results and Comparisons . 79

4.4 Conclusion . 81

5 Digit-Level Architectures for GF (2m) Multiplication in the GNB 83
5.1 Proposed DL-FSIPO Single GNB Multipliers 86

5.1.1 Proposed MSD DL-FSIPO Single GNB Multiplier 86

5.1.1.1 Formulations . 86

5.1.1.2 Architecture . 89

5.1.1.3 Space and Time Complexities 90

5.1.1.4 Bit-Level Case . 92

5.1.2 Proposed LSD DL-FSIPO Single GNB Multiplier 93

5.1.2.1 Formulations . 93

5.1.2.2 Architecture . 96

5.1.2.3 Space and Time Complexities 97

5.2 Proposed DL-PISO Single GNB Multiplier . 98

5.2.1 Architecture . 98

5.2.2 Space and Time Complexities . 100

5.3 Proposed Digit-Level Hybrid-Double and Hybrid-Triple GNB Multipliers . . . 101

5.3.1 Proposed MSD DL-SIPO Hybrid-Double GNB Multiplier 101

5.3.2 Proposed DL-PIPO Hybrid-Triple GNB Multiplier 103

5.3.3 Space and Time Complexity Analysis 105

5.3.4 Hybrid Versus Single Digit-Level GNB Multipliers 106

5.4 Proposed Architecture for Field Exponentiation 107

5.5 Conclusion . 109

x

6 Digit-Level Architectures for GF (2m) Multiplication in the PB 110
6.1 Proposed MSD DL-FSIPO PB Multiplier . 111

6.1.1 Formulations . 111

6.1.2 Architecture . 114

6.1.3 Space and Time Complexities . 116

6.2 Proposed LSD DL-FSIPO PB Multiplier . 118

6.2.1 Formulations . 119

6.2.2 Architecture . 124

6.2.3 Space and Time Complexities . 126

6.3 Comparisons . 131

6.4 Conclusion . 136

7 Summary and Future Work 137
7.1 Summary of Contributions . 137

7.2 Future Work . 138

Bibliography 139

Curriculum Vitae 146

xi

List of Figures

2.1 A stream cipher is used for providing privacy over an insecure channel between

two communicating entities. 21

2.2 A general block diagram of a WG stream cipher. 22

3.1 Proposed MOWG transformation. 28

3.2 Proposed design of the MOWG(29, 11, 17) cipher. 31

3.3 FSM of the MOWG. 32

3.4 The proposed design of the WG transformation. 39

3.5 Modified FSM after adding the new 3-bit one-hot counter. 41

3.6 Block diagram of the SKIM module. 42

3.7 The proposed WG transformation after integration with the SKIM module. . . . 43

3.8 Serial Implementation of MOWG/WG Stream Ciphers. 49

4.1 Contributions of this work. 53

4.2 The matrix S for WG(29, 11). 56

4.3 Architecture of the WG(29, 11) stream cipher. 60

4.4 Architecture of the 210 − 1 module. 61

4.5 FSM for the PB based implementation of the WG(29, 11) stream cipher. 62

4.6 Architecture of the serial WGP29/WGT29 implementation. 64

4.7 a) Architecture of the FSM for the serialized implementation of the WG(29, 11).

b) Generating the Clock Enable Control Signals and the Multiplexers’ Selectors. 65

4.8 Pipelined version of the WGT29. 66

4.9 Architecture of the FSM for the pipelined version of the WG(29, 11). 67

4.10 Clock enable control signals for the pipelined version of the WG(29, 11). 68

4.11 The matrix S for WG-16. 70

4.12 a) Architecture of the WG-16. b) Generation of the signal Y s (s = 25 − 1). c)

Generation of the signal (Ai+31)1057. 72

4.13 Architecture of the serial implementation for the PB based design of the WG-16. 75

4.14 Generating the Clock Enable Control Signals and the Multiplexers’ Selectors

for the serial version of the WG-16. 76

xii

4.15 Pipelined version of the WG-16 transform. 77

4.16 Generating the clock enable signals and, ctrl0 and ctrl1 signals for the pipelined

version of the WG-16. 79

5.1 Summary of contributions. 84

5.2 (a) Architecture of the proposed MSD DL-FSIPO single GNB multiplier. (b)

Architecture of ∇ j. (c) Architecture of β j. 89

5.3 Architecture of the proposed LSD DL-FSIPO single GNB multiplier. 96

5.4 (a) The proposed architecture of the MSD DL-PISO single GNB multiplier. . . 99

5.5 Architectures of the proposed MSD DL-SIPO hybrid-double GNB multiplier.

(a) Low area design. (b) High speed design. 102

5.6 Architectures of the proposed MSD DL-PIPO hybrid-triple GNB multiplier.

(a) Low area design. (b) High speed design. 104

5.7 Architecture of the proposed eight-ary field exponentiation scheme. 108

6.1 (a) Architecture of the proposed MSD DL-FSIPO PB multiplier. (b) Detailed

architecture of △ j. (c) Architecture of ⊗ module. 115

6.2 The state of the corresponding GF
(
23

)
MSD DL-FSIPO PB multiplier for Ex-

ample 6.1.3, throughout the different iterations of the computation. (a) initial

state. i = 0. (b) state after first clock cycle. i = 1. (c) state after second clock

cycle. i = 2. (d) state after third clock cycle. 117

6.3 (a) Architecture of the proposed LSD DL-FSIPO PB multiplier. (b) Detailed

architecture of △′j at i-th iteration. 125

6.4 The state of the corresponding GF
(
23

)
LSB BL-FSIPO PB multiplier for Ex-

ample 6.2.3, throughout the different iterations of the computation. (a) initial

state. i = 0. (b) state after first clock cycle. i = 1. (c) state after second clock

cycle. i = 2. (d) state after third clock cycle. 126

6.5 Multiplying an arbitrary GF (2m) element by the constant α−q wherep (x) =

xm+
∑ω−2

i=1 xti+1 is the field’s generating irreducible polynomial with ω nonzero

terms and q ≤ t1 (condition of (6.11)). 129

6.6 Normalized throughput as a function of the digit size for the serial inputs load-

ing case. 132

6.7 Normalized throughput as a function of the digit size for the parallel inputs

loading case. 133

xiii

List of Tables

1.1 Comparison of strength of AES, RSA, DSA, and ECDSA [18]. 1

2.1 Addition over GF (5). 9

2.2 Subtraction over GF (5). 9

2.3 Multiplication over GF (5). 10

3.1 Phase of operation in the proposed MOWG as a function of the state of the

2-bit binary counter. 33

3.2 Count of 1-bit registers and logic gates in the different components of the pro-

posed MOWG design. 34

3.3 Signals s0 and s1 as a function of the output of the 3-bit one-hot counter. 42

3.4 Multiplexers outputs and next states of Register 1 and Register 2 as a function

of s0 and s1. 44

3.5 Count of 1-bit registers and logic gates in the components of the proposed

WG(29, 11). 45

3.6 Results obtained from ASIC implementations. 47

3.7 Results obtained from FPGA implementations. 47

4.1 The space and time complexities of the different squaring matrices used in the

WG(29, 11). 57

4.2 Computation of the IF = WGP29 signal over 3 clock cycles during the initial-

ization phase. 61

4.3 Phase of operation in the proposed PB based WG designs as a function of the

state of the 2-bit binary counter. 63

4.4 Steps for computing the WGP29 and WGT29 in the serial implementation of

the WG(29, 11) design. 63

4.5 Space and propagation delay complexities of the different squaring matrices

used in the WG-16. 70

4.6 Computation of the WGP16 signal over 3 clock cycles. 73

4.7 Computing WGP16 and WGT16 in the serial implementation of WG-16. . . . 76

xiv

4.8 Results obtained for area and speed from the ASIC implementations. 82

5.1 Steps for multiplication of the two GF
(
23

)
elements A = B = β22

= (0, 0, 1). . . 88

5.2 Space complexity of digit-level single GNB multipliers. 91

5.3 Time complexity of digit-level single GNB multipliers. 91

5.4 Space and time complexity readings for the case of type-4 GNB of GF
(
2163

)
digit-level single multipliers. 92

5.5 Steps for multiplication of the two GF
(
23

)
elements A = B = β22

= (0, 0, 1). . . 95

5.6 Space complexity of the digit-level hybrid-double and hybrid-triple GNB mul-

tipliers. 105

5.7 Time complexity of the digit-level hybrid-double and hybrid-triple GNB mul-

tipliers. 105

6.1 Example 6.1.3 for multiplying the two GF
(
23

)
elements A = α = (0, 1, 0) and

B = α2 = (1, 0, 0) using (6.1) and (6.2). 114

6.2 Example 6.2.3 for multiplying the two GF
(
23

)
elements A = α = (0, 1, 0) and

B = α2 = (1, 0, 0) using (6.6) and (6.7). 122

6.3 Space and time complexities of the different digit-level GF (2m) PB multipliers. 131

6.4 Space and time complexities for the NIST recommended field GF
(
2233

)
de-

fined by the irreducible trinomial x233 + xt1 + 1, where t1 = 74 and the digit size

is d = 1. 134

6.5 Space and time complexity estimates for the multipliers which are listed in

Table 6.4 based on on the standard 65nm CMOS library measures. 135

xv

Nomenclature

3GPP The 3rd generation partnership project

4G Fourth generation mobile communications domain

AES Advanced encryption standard

ASIC Application specific integrated circuits

CMOS Complementary metal-oxide-semiconductor technology

DL Digit-level

Double field multiplication Multiplication of three field elements

DSA Digital signature algorithm

DSS Digital signature standard

ECDSA Elliptic curve digital signature algorithm

FF Flip-Flop

FLT Fermat’s Little Theorem

FPGA Field programmable gate array

FSIPO Fully-serial-in-parallel-out

FSM Finite state machine

GF(2) The binary finite field with elements 0 and 1

GF(2m) Galois Field with 2m elements

GNB Gaussian normal basis

xvi

i.e. That is

IP Inner product

IP-networks Internet protocol networks

LFSR Linear feedback shift register

LSB Least significant bit first

LSD Least significant digit first

LTE Long term evolution

m-sequence Maximal length sequence

MOWG Multiple output-bits version of the WG stream cipher

MPD Maximum propagation delay

MSB Most significant bit first

MSD Most significant digit first

MUX Multiplexer

NB Normal Basis

NIST National institute of standards and technology

ONB-II Optimal normal basis of type 2

PB Polynomial Basis

PD Propagation delay

PIPO Parallel-in-parallel-out

PISO Parallel-in-serial-out

PRSG Psuedo random sequence generator

RFID Radio frequency identification

ROM Read-only memory

Single field multiplication Multiplication of two field elements

xvii

SIPO Serial-in-parallel-out

SNOW 3G The stream cipher SNOW 3G, which is included in the 4G net-

work domain’s cipher suite

SSL Secure sockets layer

TLS Transport layer security

TP Throughput: number of output bits per second

Tr(A) The trace of a field element A, which is a mapping from GF(2m)

to either 0 or 1

Triple field multiplication Multiplication of four field elements

w.r.t With respect to

WEP Wired equivalent privacy

WG Welch-Gong

WG Stream Cipher Welch-Gong transform based Stream Cipher

WG(29, 11) WG stream cipher with an LFSR of length 11 over GF(229)

WG(m, l) WG stream cipher with an LFSR of length l over GF(2m)

WGP Welch-Gong (WG) permutation

WGT Welch-Gong (WG) transform

WPA Wi-Fi protected access

XOR Logical binary exclusive OR operation

XST Xilinx synthesis tool

ZUC The stream cipher ZUC, which is included in the 4G network

domain’s cipher suite

xviii

Chapter 1

Introduction

Cryptographic algorithms play essential role in communications systems security. In general,

the different deployed cryptosystems are divided into two categories of asymmetric key and

symmetric key [82]. Schemes from the former category require relatively high space and time

complexities for their hardware implementations. Hence, asymmetric key cryptosystems are

usually deployed in key set-up mechanisms. On the other hand, schemes from the latter cat-

egory offer hardware implementations which require relatively lower complexities in terms of

space and time. Hence, symmetric key cryptosystems are usually used for providing security

services during communications sessions. The lower implementation cost of symmetric key

systems is due to the simpler underlying mathematical constructs, in addition to the smaller

key sizes required by these cryptosystems to achieve certain security levels compared to the

asymmetric key ones. Table 1.1 presents a comparison of key sizes required by AES, RSA,

DSA, and ECDSA in order to achieve some security levels (in terms of bits of security). In

this table, k indicates the key size for AES, while it refers to the size of the modulus in RSA.

l and n, respectively, indicate the size of public and private keys for DSA. For ECDSA, f is

considered to be the key size.

Bits of Security AES RSA DSA ECDSA

128 k = 128 k = 3072 l = 3072, n = 256 256 ≤ f ≤ 383

192 k = 192 k = 7680 l = 7680, n = 384 384 ≤ f ≤ 511

256 k = 256 k = 15360 l = 15360, n = 512 f ≥ 512

Table 1.1: Comparison of strength of AES, RSA, DSA, and ECDSA [18].

Efficient hardware implementations of the deployed cryptosystems are necessary for their

practical use. In other words, the implementation of a given cryptosystem should comply

with the performance requirements of the underlying communications system. Therefore, this

1

research focuses on finding efficient hardware implementations for symmetric key cryptosys-

tems, targeting mobile and resource constrained applications, as it is stated in the following

section.

1.1 Objectives

The goal of this research is to introduce efficient hardware implementations for symmetric key

cryptosystems targeting the mobile communications domain and resource constrained applica-

tions, as follows.

First, this research aims for lightweight hardware implementations for the two classes

of the Welch-Gong (WG) family of stream ciphers, WG(29, 11) and WG-16. The targeted

lightweight implementations will provide trade-offs between space and time complexities for a

set of lightweight applications. Specifically, the WG-16 implementations are intended for the

Long term evaluation (LTE) 4G mobile communications domain.

After this, the research focuses on finding new finite field constructs for higher throughput

in resource constrained applications. New architectures for higher throughput digit-level field

multiplications will be investigated for resource constrained applications. The issue of reduced

throughput in digit-level GF (2m) multiplication of two elements (single multiplication), due to

inputs preloading in applications where the input data-path has limited capacity and the value

of m (dimension of the binary extension field) is large, will be addressed. This issue will be

considered for both GNB and PB representations. Furthermore, new architectures for higher

throughput concurrent multiplications of three (hybrid-double multiplication) and four (hybrid-

triple multiplication) field elements will also be explored for the GNB representations. New

field exponentiation architectures based on the eight-ary scheme [42] will be considered as a

practical application of the hybrid-triple multipliers.

The following section highlights the motivations and significance of the research.

1.2 Motivations and Significance

This section states the importance and significance of the underlying research.

Stream ciphers are symmetric key cryptosystems which are attractive for protecting the

wireless communications domain [24]. This is because stream ciphers prevent error propaga-

tion at the receiving end. In this context, a stream cipher is required to provide the desired

security, generate key-stream sequences with good randomness properties, and show efficient

performance [24]. In addition, stream ciphers can also be used as random number generators

2

for other algorithms (for example, generating random numbers for the Digital signature stan-

dard ”DSS” [12]). In this type of applications, the randomness of the generated key sequences

is very critical. This thesis considers the two classes of WG(29, 11) and WG-16 stream ciphers.

In addition of resistance to all known attacks, to the best of the author knowledge, these two ci-

phers provide a set of desired randomness properties which can not be offered by other existing

ciphers [40, 68]. Therefore, new lightweight hardware implementations of the WG(29, 11) and

WG-16 stream ciphers are introduced. The new designs provide trade-off between randomness

properties and performance for a selection of cryptosystems. In particular, the new hardware

implementations of the WG-16 cipher provide different space options while complying with

the throughput requirements of the 4G domain. This, makes the WG-16 cipher an interesting

candidate for securing the 4G mobile domain.

The thesis then considers efficient digit-level GF (2m) multipliers. Digit-level field multi-

pliers trade-off space complexity with lower throughput. Hence, digit-level field multipliers

are important for resource constrained applications. Any improvement in such operation is

considered of great value to a wide range of applications, such as: symmetric and asymmet-

ric crypto algorithms, error coding, random number generation, and digital signal processing.

In this context, this research proposes new architectures for single (multiply two elements),

hybrid-double (multiply three elements), and hybrid-triple (multiply four elements) digit-level

GF (2m) multipliers, as follows.

New GNB and PB single multipliers are introduced, targeting higher throughput for digit-

level field multiplications in resource constrained applications. In particular, for cases where

the input data-path has limited capacity, higher throughput is achieved through removing the

requirement for inputs preloading.

In addition, new hybrid-double and hybrid-triple GNB multipliers are introduced. The new

hybrid architectures improve the throughput of concurrent multiplications where three and four

field elements are multiplied at the same time. Also, these hybrid multiplier architectures are

advantageous for improving throughput of the important operations of field inversion [51]. It

is noted that, the hybrid-triple multiplier is proposed for the first time in the literature.

As another practical application for the hybrid-triple multipliers, field exponentiation is

an essential operation in asymmetric key cryptography (such as Diffie-Hellman key exchange

algorithm [29]) and symmetric key cryptography (WG for example). The proposed hybrid-

triple GNB multipliers are utilized in constructing new eight-ary exponentiation schemes. This

results in hardware exponentiation architectures which run at same latencies as the existing

eight-ary designs, however, without requiring any initial phase for precomputations, or any

storage of intermediate variables.

The following section outlines the rest of the thesis.

3

1.3 Thesis Outline

The thesis is outlined as follows. Chapter 1 highlights the objectives, motivations, and sig-

nificance, and, outlines the remaining chapters. Chapter 2 presents a brief overview about

binary extension fields and WG stream ciphers, as it suffices for understanding the rest of this

thesis. Chapter 3 introduces efficient hardware implementations for the WG(29, 11) stream

cipher based on the Optimal Normal Basis Type-II (ONB-II) representation of the feild ele-

ments. Chapter 4 introduces efficient hardware implementations for the WG(29, 11) and WG-

16 stream ciphers based on the Polynomial Basis (PB) representation of the feild elements.

Chapter 5 proposes new architectures for digit-level single, hybrid-double, and hybrid-triple

field multiplications and exponentiation based on the Gaussian Normal Basis (GNB) represen-

tation. Chapter 6 proposes new architectures for digit-level single field multiplications based

on the Polynomial Basis (PB) representation. Chapter 7 highlights the contributions of this

thesis and lists some future works.

4

Chapter 2

Background on GF
(
2m)

and WG Stream
Ciphers

This chapter starts by a brief introduction on binary extension fields and Welch-Gong (WG)

stream ciphers.

Arithmetic operations over binary extension fields are extensively encountered in the next

four chapters. This chapter presents necessary background about binary extension fields, as it

suffices for the purpose of clarifying contents of the remaining chapters. Other references can

be consulted for more reading about finite fields, for example, [82, 59]. For the purpose of this

work, in the following sections, some preliminary definitions are first given. This is followed

by introducing finite fields, modular arithmetic, polynomial rings, and binary extension fields.

After this, the two representations of Polynomial basis (PB) and Gaussian normal basis (GNB)

of binary extension fields elements are discussed. Then, field operations over binary extension

fields are reviewed. At the end of the sections which are dedicated for reviewing GF (2m), from

this chapter, the trace mapping is presented. It is noted that, the material presented throughout

the above-mentioned sections is a summary based on reviews done over [82, 59, 5].

After introducing GF (2m), the chapter introduces WG Stream Ciphers. First, a brief intro-

duction to stream ciphers is given. This is followed by an overview on WG stream ciphers,

where the chapter talks about general WG stream ciphers block diagrams and phases of opera-

tion, after which the two classes of WG(29, 11) and WG-16 are discussed.

2.1 Preliminaries on Algebraic Structures

Before starting the presentation about finite fields, the following definitions are required.

Definition 2.1.1 The algebraic structure (G, ⋆) which consists of a set G and a binary opera-

5

tion ⋆ is said to be a semigroup if:

• ⋆ is closed over G, that is: for any g1, g2 ∈ G, then, g1 ⋆ g2 ∈ G.

• ⋆ is associative over G, that is: for any g1, g2, g3 ∈ G, then, (g1 ⋆ g2)⋆g3 = g1⋆(g2 ⋆ g3).

Definition 2.1.2 The algebraic structure (G, ⋆) forms a group if it is a semigroup, and:

• G contains an identity element e with respect to ⋆, where: for any g1 ∈ G, then, g1 ⋆ e =

e ⋆ g1 = g1.

• For each element g1 ∈ G, there exists an inverse element g2 ∈ G with respect to ⋆, where:

g1 ⋆ g2 = g2 ⋆ g1 = e.

Definition 2.1.3 The algebraic structure (G, ⋆) is called an abelian group if it is a group, and:

• ⋆ is commutative over G, that is: for any g1, g2 ∈ G, then, g1 ⋆ g2 = g2 ⋆ g1.

Definition 2.1.4 The algebraic structure (R,+, ·) which consists of a set R and the two binary

operations + (additive) and · (multiplicative) is called a ring if:

• (R,+) is an abelian group. The additive identity element is usually denoted by 0. The

additive inverse of any element r1 ∈ R is denoted by −r1.

• (R, ·) is a semigroup.

• · is distributive over +, that is: for any r1, r2, r3 ∈ R, then, r1 · (r2 + r3) = r1 · r2 + r1 · r3,

and, (r2 + r3) · r1 = r2 · r1 + r3 · r1.

Definition 2.1.5 A homomorphism is a map between two algebraic structures (such as groups,

rings, and so on) through which the operations are preserved. For example, for the two

groups (G, ⋆) and (H,△), the mapping ϕ : G → H is a homomorphism if ∀g1, g2 ∈ G =⇒
ϕ (g1 ⋆ g2) = ϕ (g1)△ϕ (g2). If in addition, ϕ is surjective1 (onto) and one-to-one, then ϕ is an

isomorphism.

The following section introduces finite fields.

1every element in H has at least one corresponding element in G

6

2.2 Finite Fields

2.2.1 Fields

An algebraic structure (F,+, ·), constructed from a set F and the two binary operations + and ·
forms a field if:

• (F,+) is an abelian group.

• (F − {0} , ·) is an abelian group. The multiplicative identity element is usually denoted

by 1. The multiplicative inverse of any element f1 ∈ F is denoted by f −1
1 .

• Multiplication is distributive over addition.

• There exist no zero divisors over F, that is, for any f1, f2 ∈ F, if f1 · f2 = 0, then, either

f1 = 0 or f2 = 0.

2.2.2 Finite Fields

A finite field, known as Galois Field, and denoted by GF (q) (or Fq), is a field
(
Fq,+, ·

)
, where

Fq is a set with finitely q elements. The order of GF (q), that is the number of field elements

q, is a positive integer which is either a prime or a power of a prime (including powers of 2).

In GF (q), there is a zero element, while the remaining q − 1 elements form the multiplicative

group of the field (all elements which have multiplicative inverses). For a given order q, there

might be more than one representation of the corresponding finite field GF (q). However, all

finite fields of a given order are isomorphic (have same structure).

In simple words, a finite field is a set with finitely many elements over which one can

perform the operations of addition, subtraction, multiplication, and division, while staying in

the same set.

The following section introduces modular arithmetic and highlights the relation between

the algebraic structure
(
Zp,+, ·

)
and finite fields of the form GF (p), where Z denotes the set of

integers, p is a prime number, and Zp is the set of positive integers less than p (including 0).

2.3 Modular Arithmetic

This section gives a brief presentation about modular arithmetic. Modular addition and mul-

tiplication are carried out as they are done over the set of integers Z, however, followed by

reducing the result modulo an integer m > 0. The integer m is referred to as the modulus.

7

Applying the ”modulo m” operator to a given integer v ∈ Z, written as v mod m, returns the

remainder out of dividing v by m (long division). For example, let v = 7 and m = 3. Then,

7 mod 3 = 1, since 7 = 2 × 3 + 1. If there exists a v
′ ∈ Z such that v mod m = v

′
mod m, one

can also write v ≡ v
′ (mod m). The latter expression is read as: v is equivalent (or is congruent)

to v
′
, modulo m. In this expression, ≡ is known as the equivalence (or congruence) operator.

If v ≡ 0 (mod m), that is, v mod m = 0, then, m divides v, which is simply written as m | v. If

v ≡ w (mod m), that is, v mod m = w mod m, then, m | |v − w|, where |·| denotes the absolute

value operator. The following are some properties of congruences modulo an integer m > 0:

• ∀v ∈ Z, v ≡ v (mod m).

• ∀v,w ∈ Z, v ≡ w (mod m) =⇒ w ≡ v (mod m).

• ∀v,w, x ∈ Z, if v ≡ w (mod m) and w ≡ x (mod m), then v ≡ x (mod m).

• ∀v,w, x, y ∈ Z, if v ≡ w (mod m) and x ≡ y (mod m), then v ± w ≡ x ± y (mod m).

• If n is a non-zero positive integer such that n | m, therefore ∀v,w ∈ Z where v ≡
w (mod m), then v ≡ w (mod n).

• Let n be a non-zero positive integer such that the greatest common divisor of m and n is

1, that is, gcd (m, n) = 1. Therefore, ∀v,w ∈ Z, if v ≡ w (mod m) and v ≡ w (mod n),

then v ≡ w (mod mn).

Now, denote by Zm the set of residue classes modulo m. That is, Zm = {0, . . . ,m − 1}
consists of integers modulo m. In general, not all elements of Zm have multiplicative inverses.

This is the reason why (Zm,+, ·) forms a commutative ring and not a finite field. Only elements

of Zm which are relatively prime to m have multiplicative inverses. Therefore, if m = p is a

prime, then, multiplicative inverses exist for all non-zero elements in Zp. In this case, Zp is an

abelian group under multiplication, and hence,
(
Zp,+, ·

)
forms a finite field (since

(
Zp,+

)
is also

an abelian group, · is distributive over +, and there are no zero divisors in Zp). Operations over

the finite field
(
Zp,+, ·

)
are isomorphic to those over GF (p). The following is an illustrative

example for arithmetic operations over GF (5). After this, next section introduces polynomial

rings.

Example 2.3.1 The field GF (5) contains the elements {0, 1, 2, 3, 4}. The additive and multi-

plicative identities are 0 and 1, respectively. Arithmetic operations are performed modulo 5,

as it is shown for the cases of addition, subtraction, and multiplication, in Tables 2.1, 2.2, and

2.3, respectively. Notice from Table 2.3 that all non-zero elements have multiplicative inverses.

8

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

Table 2.1: Addition over GF (5).

− 0 1 2 3 4

0 0 4 3 2 1

1 1 0 4 3 2

2 2 1 0 4 3

3 3 2 1 0 4

4 4 3 2 1 0

Table 2.2: Subtraction over GF (5).

2.4 Polynomial Rings

The algebraic structure (R,+, ·) forms a ring if (R,+) is an abelian group, (R, ·) is a semigroup,

and multiplication is distributive over addition. A polynomial ring is a structure (R [x] ,+, ·)
such that R [x] =

{∑n
i=0 rixi | n ≥ 0, ri ∈ R

}
represents the set of all polynomials in the variant x

with coefficients from R, where addition and multiplication, respectively, are defined as follows

n
′∑

i=0

r
′

i x
i +

n”∑
i=0

r”
i xi =

max
(
n
′
,n”

)∑
i=0

(
r
′

i + r”
i

)
xi,

and  n
′∑

i=0

r
′

i x
i

 ·
 n”∑

i=0

r”
i xi

 = n
′
+n”∑

i=0

∑
j+k=i

r
′

j · r”
k

 xi.

Notice that, while exact division applies to fields, only long division is applicable to rings.

This is because field elements have inverses, while this is not the case for elements of a ring.

Therefore, in order to have long division in a polynomial ring, coefficients need to be from a

field and not a ring. Otherwise, long division might not be possible over a polynomial ring.

The following is an example showing operations done over elements of the polynomial ring
(GF (2) [x] ,+, ·).

9

· 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

Table 2.3: Multiplication over GF (5).

Example 2.4.1 Let f (x) = x4+1 and g (x) = x3+x+1 be two elements from the polynomial ring

(GF (2) [x] ,+, ·). GF (2) is the binary finite field with elements 0 and 1, which is isomorphic

to (Z2,+, ·). Notice that, over GF (2): 1 + 1 = 0 + 0 = 0 and 0 + 1 = 1 + 0 = 1, while

0 · 0 = 0 · 1 = 1 · 0 = 0 and 1 · 1 = 1. Then, one conducts addition, multiplication, and division

over these two elements as follows:

1) Addition:

f (x) + g (x) =
(
x4 + 1

)
+

(
x3 + x + 1

)
=x4 + x3 + x.

2) Multiplication:

f (x) · g (x) =
(
x4 + 1

)
·
(
x3 + x + 1

)
=x7 + x5 + x4 + x3 + x + 1.

3) Division (long division):

x4 + 1 =
(
x3 + x + 1

)
· (x) +

(
x2 + x + 1

)
,

where q (x) = x is the quotient of f (x)/g(x) and r (x) = x2 + x + 1 is its remainder.

Notice that in the latter operation, the degree of r (x) is less than that of g (x), written as

deg (r (x)) < deg (g (x)). In general, 0 ≤ deg (r (x)) < deg (g (x)). If there exists a g (x) such

that r (x) = 0, then, in this case g (x) | f (x), and hence, f (x) is reducible over GF (2). If there

is no such g (x) which divides f (x), then, f (x) is an irreducible polynomial over GF (2).

The following section introduces binary extension fields GF (2m) and shows how irre-

ducible polynomials are used to construct such fields.

10

2.5 Binary Extension Fields GF (2m)

An extension field over the finite field GF (p) is referred to as GF (pm). GF (p) is denoted as

the ground field. Specifically, for p = 2, GF (2m) is denoted as the binary extension field (over

GF (2)). A GF (2m) can be viewed as a vector space over GF (2) of dimension m. Hence, a

GF (2m) is isomorphic to Z2[x]/p(x) under polynomial addition and multiplication, where Z2[x]/p(x)

denotes the set of polynomials in variant x with coefficients from Z2 taken modulo an irre-

ducible polynomial p (x) of degree m. There are 2m elements in GF (2m). Each one of these

elements is uniquely represented by m bits (elements of GF (2) with value 0 or 1) with respect

to a basis. A basis is a set of m linearly-independent elements Γ = {γi ∈ GF (2m) | 0 ≤ i < m}
[59]. Then, an element A ∈ GF (2m) is represented with respect to Γ as A =

∑m−1
i=0 aiγi, where

ai ∈ GF (2) for 0 ≤ i < m are the binary coordinates of A w.r.t Γ. The following two sections

introduce two of the most common representations of the elements of GF (2m).

2.6 Polynomial Basis (PB) Representation

The most straight forward representation for the elements of GF (2m) is obtained from the

isomorphism of GF (2m) to Z2[x]/p(x). Here, p (x) is an irreducible polynomial of degree m over

Z2. That is, coefficients of the terms of p (x) are either 0 or 1. Therefore, following this

construction, elements of GF (2m) include the binary representations of all polynomials in x of

degree less than or equal to m − 1.

A PB follows the form
{
αm−1, . . . , α, 1

}
and is constructed by finding a root α ∈ GF (2m) of

an irreducible polynomial p (x) of degree m over GF (2) [72]. Then, using this PB, an element

A in GF (2m) is represented as A =
∑m−1

i=0 aiα
i, where ai is either 0 or 1 for 0 ≤ i < m. In vector

representation, the element A can also be refered to as A = (am−1, . . . , a0) [5].

2.7 Gaussian Normal Basis (GNB) Representation

On the other hand, a Normal basis (NB) is constructed by finding an element β ∈ GF (2m) such

that the m elements β20
through β2m−1

are linearly-independent [59]. Then, the set
{
β20
, . . . , β2m−1

}
forms a NB where β is called a normal element. In the NB, an element A is represented as

A =
∑m−1

i=0 aiβ
2i

, with ai ∈ {0, 1} representing the i-th coordinate of A with respect to the NB, for

0 ≤ i < m. In vector representation, the element A can also be represented as A = (a0, . . . , am−1)

[5].

Gaussian normal bases (GNBs) is a special subset of NBs which offer field operations with

smaller area and time overhead compared to the general NB, when realized in hardware. A

11

GNB exists for all GF (2m) which satisfy the following conditions [15, 52, 70]:

1. m is not divisible by 8, and

2. there exists a prime integer p = Tm+1, with T > 0 is an integer, such that gcd
(

Tm
k ,m

)
=

1, and k is the order of 2 modulo-p (that is 2k ≡ 1 (modp)).

and hence, T is called the type of the GNB. It is noted that for odd values of m the type T should

be even (since p is an odd prime). It is also noted that, smaller values of T results in more

efficient hardware implementations of field multiplications. Similar to the NB representation,

any element A ∈ GF (2m) can be represented w.r.t the GNB as A =
∑m−1

i=0 aiβ
2i
= (a0, . . . , am−1),

where ai ∈ {0, 1}.
Common GF (2m) arithmetic operations include addition, multiplication, exponentiation,

and inversion. The following three sections present more details about arithmetic operations

over GF (2m) considering the two cases of PB and GNB representations.

2.8 Addition over GF (2m)

Field addition of two arbitrary GF (2m) elements, say A and B, is accomplished by a bit-wise

Exclusive-OR (XOR) operation on the corresponding coordinates of the added elements, re-

gardless whether a PB or a GNB representation is used. That is:

A + B =
m−1∑
i=0

(ai + bi) γi,

where ai and bi are the binary coordinates of A and B with respect to a given basis Γ =

{γ0, . . . , γm−1}.

2.9 Multiplication over GF (2m)

On the other hand, the field multiplication of two arbitrary GF (2m) elements A and B is ac-

complished as follows:

AB =
m−1∑
i=0

m−1∑
j=0

aib jγiγ j,

which is more expensive than field addition, and its complexity depends on the underlying rep-

resentation Γ = {γ0, . . . , γm−1}. It is known that the PB representation offers efficient hardware

implementations of field multiplications, compared to the NB / GNB representation [71]. The

following two sections give brief literature reviews of GF (2m) multiplications in the PB and

GNB representations, respectively, as it suffices for the purpose of this thesis.

12

2.9.1 GF (2m) Multiplication in the PB Representation

Two popular schemes for the multiplication of two GF (2m) elements in the PB representation

are: the two-step classic multiplication scheme and the Matrix-vector scheme [28]. The first

scheme starts by performing polynomial multiplication of the two input field elements, then,

the result is reduced modulo the irreducible defining field polynomial [89]. The following is

an example illustrating this multiplication scheme.

Example 2.9.1 This example constructs the field GF
(
23

)
using the irreducible polynomial

p (x) = x3 + x + 1 over GF (2). Denote by α the root of p (x) over GF
(
23

)
. By using α,

the polynomial basis
{
α2, α, 1

}
is constructed. Based on this polynomial basis, any element

A from the 23 = 8 elements of GF
(
23

)
is defined by a unique set of 3 binary coordinates as

A = a2α
2 + a1α + a0. For example, by considering the GF

(
23

)
elements α2 + α + 1 and α,

then, one has
(
α2 + α + 1

)
× (α) = α3 + α2 + α = α2 + 1 over GF

(
23

)
. The latter result is

obtained after reducing x3 + x2 + x by p (x) = x3 + x + 1 (also, it can be obtained by noticing

that p (α) = 0, which results in α3 = α + 1).

In the second scheme, known as the Mastrovito multiplier [62, 84, 44, 72], one performs

the field multiplication in terms of vector by matrix multiplication, in which both steps of

the former scheme are combined into a single step. In the following, the multiplication of two

arbitrary GF (2m) elements represented in the PB, based on the vector by matrix method, is first

briefly reviewed. This is followed by reviewing efficient ways for the hardware realizations of

the fixed multiplication of an arbitrary GF (2m) element by αq, where q is a positive integer.

After this, a quick review over previous work on PB multiplication is presented.

2.9.1.1 Multiplication of Two Arbitrary GF (2m) Elements Represented in the PB

This section, reviews the multiplication of two arbitrary GF (2m) elements represented in the

PB based on the vector by matrix method. The formulations presented in this section are

utilized in Section 6.2.1 to accomplish the multiplication of an arbitrary GF (2m) element by

the constant αm−1. Here, α is a root of the irreducible polynomial p (x) = xm+
∑ω−2

i=1 xti+1 which

generates the field GF (2m). ω = H (p (x)) is the Hamming weight of the field polynomial,

denoting the number of nonzero terms in p (x). First, the following notations are defined.

Definition 2.9.2 Define v [↑ i] and v [↓ i] to be the operations of up and down i-bit shifts, re-

spectively, of a given m-bit vertical vector v =
[

v0 . . . vm−1

]T
, where the emptied positions

are filled with zeros (T denotes vector transposition). That is,

v [↓ i] =
[

0 . . . 0 v0 . . . vm−i−1

]T

13

and

v [↑ i] =
[

vi . . . vm−1 0 . . . 0
]T
.

Let C = (cm−1, . . . , c0) denotes the result of multiplying two arbitrary GF (2m) elements

A = (am−1, . . . , a0) and B = (bm−1, . . . , b0), represented in the PB. Therefore, the m binary

coordinates of C = AB mod p (α), represented by the vertical m-bit vector c =
[
c0 . . . cm−1

]T
,

are obtained as follows [75]

c =d +
ω−2∑
j=0

e
′ [↓ t j

]
, (2.1)

where

d =


a0 0 . . . 0

a1 a0 . . . 0
...

...
. . .

...

am−1 am−2 . . . a0




b0

b1
...

bm−1


, (2.2)

e
′
=

n−1∑
i=0

e [↑ li] ,

and

e =



0 am−1 . . . a2 a1

0 0 . . . a3 a2
...
...
. . .

...
...

0 0 . . . 0 am−1

0 0 . . . 0 0





b0

b1
...

bm−2

bm−1


. (2.3)

Here, t0 = 0, n is the number of nonzero entries in column zero of the (m − 1) × m binary

reduction matrix Q [72], and li denotes the row location of the i-th nonzero entry in this column,

0 ≤ i < n. The following are some remarks on the values of n and li.

Remark 2.9.3 Let p (x) = xm+
∑ω−2

i=1 xti+1 be the generator irreducible polynomial of GF (2m)

with ω nonzero elements, then [33, 75]:

• l0 = 0 regardless of the structure of p (x).

• If p (x) is a trinomial of the form xm + x + 1, then: n = 1 and l0 = 0.

• If p (x) is a trinomial of the form xm + xt1 + 1 with 1 < t1 ≤ m+1
2 , then: n = 2 with l0 = 0

and l1 = m − t1.

• If p (x) is a general irreducible polynomial with tω−2 ≤ m+1
2 , then: n = ω−1−

⌊
1
t1

⌋
, l0 = 0,

and li = m − ti for 1 ≤ i ≤ ω − 2 −
⌊

1
t1

⌋
.

14

2.9.1.2 Efficient Multiplication of a GF (2m) Element Represented in the PB by αq

It is noted that, one can obtain a general formulation for the multiplication of an arbitrary

element A = (am−1, . . . , a0) ∈ GF (2m), represented in the PB, by αq, using (2.1), (2.2), and (2.3)

(see Section 6.2.1). However, this section lists some conditions, originally presented in [81]

and [57], for the efficient hardware realization of such constant field multiplication. Here, q is

a positive integer and α is the root of the field’s irreducible polynomial p (x) = xm+
∑ω−2

i=1 xti +1

with ω nonzero terms.

Theorem 2.9.4 [81] Assume p (x) = xm+
∑ω−2

i=1 xti +1 is the field irreducible polynomial which

defines GF (2m). Let α denotes the root of p (x). Therefore, for q < m− tω−2, the coordinates of

αm+q are obtained as follows

αm+q mod p (α) =

ω−2∑
i=1

αti + 1

αq. (2.4)

Theorem 2.9.5 [57] Assume p (x) = xm+
∑ω−2

i=1 xti +1 is the field irreducible polynomial which

defines GF (2m). Denote by α the root of p (x). Let A = (am−1, . . . , a0) be an arbitrary GF (2m)

element represented in the PB. Therefore, for q ≤ m − tω−2, the coordinates of Aαq mod p (α)

are obtained in a single step using q (ω − 2) two-inputs XOR gates with a propagation delay

equivalent to
⌈
log2 (q + 1)

⌉
XOR gate delays, as follows:

Aαq mod p (α) =
m−1∑
i=0

aiα
i+q mod p (α)

=

m−q−1∑
i=0

aiα
i+q+

m−1∑
i=m−q

ai

ω−2∑
j=1

αt j + 1

αi−(m−q). (2.5)

2.9.1.3 Previous Work on PB Multiplication

In general, the different proposed designs for implementing PB multiplication fall under one

of the two categories of parallel and serial computations. For achieving high throughput, the

parallel implementation is used where all the output bits of the multiplication are generated in

a single clock cycle [19, 62, 84, 44, 72, 27, 22]. For achieving low space complexity, digit-

level serial computations are considered. In digit-level serial multiplication schemes, the space

complexity is reduced at the expense of increasing the number of clock cycles required for

generating the m output bits (computational latency) to k =
⌈

m
d

⌉
clock cycles (in general),

where d is the digit size [78, 20, 46, 75, 79, 50, 66].

15

In a digit-level serial implementation, the multiplication input / output bits are entered /

generated either in parallel, or serially in the order of one digit per a clock cycle. For example,

digit-level serial-in-parallel-out (DL-SIPO) multipliers generate the output bits in parallel after

k clock cycles [20]. In this DL-SIPO scheme, one input is loaded in parallel (in advance to

computations), while the other input enters serially one digit per a clock cycle during compu-

tations. The serial input of the DL-SIPO multiplier enters in either a most-significant-digit first

(MSD) or least-significant-digit first (LSD) order. Parallel-in-serial-out is another digit-level

multiplication scheme (DL-PISO), in which both inputs are preloaded in parallel in advance to

computations [75]. After this, the output digits of the DL-PISO multiplier are generated over k

clock cycles, one digit per a clock cycle. A third digit-level multiplication scheme is known as

parallel-in-parallel-out (PIPO) requires preloading of both inputs in advance to computations.

The output of the PIPO multiplier is generated in parallel after a number of clock cycles from

inputs preloading. For example, the PIPO PB multiplication architecture presented in [50] has

a latency of 2tω−2 + 1 clock cycles to generate the m output bits in parallel, where tω−2 denotes

the second highest nonzero term of the field irreducible polynomial p (x) = xm +
∑ω−2

i=1 xti + 1

with ω nonzero terms. The authors of [50] show that their serial PIPO PB multiplier offers the

lowest latency for cases where m ≥ 2tω−2 − 1, however, the corresponding space complexity is

quadratic in m.

In addition, serial-serial finite field multipliers with two serially-entered inputs and serial

output have also been proposed. For example, in 1992, the authors of [46] presented a bit-

level most-significan-bit-first (MSB) serial-serial PB multiplier which generates the m output

bits serially over 2m clock cycles. In [46], the inputs to the multiplier enter serially bit-by-

bit, starting with the MSB, over the first m clock cycles. After reading the serial inputs, the

m output bits are then generated serially, one bit per a clock cycle, starting with the MSB. In

2009, the authors of [14] proposed a generic serial-serial multiplication/reduction architecture

for GF (q), where q can be a prime p, a power of a prime pm, and where it is possible to have

p = 2. For the case of GF (2m), which is the focus of this thesis, the serial-serial multipli-

cation/reduction scheme proposed in [14] reads both of its multiplication inputs serially, one

digit at a time, in either least or most-significant first order. The final result is generated digit-

by-digit without using any dedicated parallel-in-serial-out register, starting with the (k + 1)-th

clock cycle, where an additional correction step is required in case of the least-significant first

input order. Then, using the scheme in [14], all the m output bits are produced serially, after

a total of 2k clock cycles. It is noted that, the serial-serial multiplier in [14] is not a dedicated

multiplication scheme in the sense that it works for any irreducible polynomial by reading it as

one of its inputs. In order to allow for scalability, and to make the field multiplication generic,

the serial-serial multiplier in [14] requires additional multiplexers and storage Flip-Flops (FF),

16

in addition to a number of control signals.

2.9.2 GF (2m) Multiplication in the GNB Representation

Although multiplication is realized more efficiently in hardware based on the PB representa-

tion [71]; however, NBs are considered advantageous for use in the hardware designs of binary

extension fields’ arithmetic [71] due to the free cost of squaring operations, which are imple-

mented as cyclic shifts [5]. In particular, the special subset of Gaussian normal bases (GNBs)

offer field operations with smaller area and time overhead compared to the general NB. Hence,

GNBs are often used for efficient hardware implementations of field multiplication, for exam-

ple see the IEEE standard [5] and the National institute of standards and technology (NIST)

standard [12].

The original multiplication scheme under the NB representation has been proposed by

Massey and Omura [61]. In this scheme, all the output bits of the product are computed,

one bit at a time, through applying some function to different cyclic shifts of the two input

elements. This scheme is referred to as bit-level (BL) parallel-in-serial-out (PISO) multiplica-

tion. This section, briefly reviews formulations for the BL-PISO multiplication of two GF (2m)

elements represented in the GNB. Also, this section shows how the multiplication of a field

element by the normal element β is accomplished. In addition, a brief summary about existing

GNB multiplication is given.

The following, starts by reviewing formulations for the BL-PISO GNB multiplication of

two arbitrary GF (2m) elements.

2.9.2.1 Formulation for the BL-PISO GF (2m) Multiplication in the GNB Representation

Here, the formulations for accomplishing bit-level PISO multiplication of two GF (2m) ele-

ments represented in the GNB are presented. As mentioned earlier, by finding an element

β ∈ GF (2m) such that N =
{
β20
, . . . , β2m−1

}
is a basis, then, N is a NB and β is a normal ele-

ment. For any m > 1 not divisible by 8, if there exists a prime number p = mT + 1 such that

gcd (mT/k,m) = 1 where 2k ≡ 1 (modp), then, N is a Gaussian normal basis (GNB) of type T ,

where T is an even integer if m is odd. Any element A ∈ GF (2m) can be represented w.r.t the

GNB as A =
∑m−1

i=0 aiβ
2i
= (a0, . . . , am−1), where ai ∈ {0, 1}.

Let PA (V) = AV = (p0, . . . , pm−1) denotes the result of multiplying A by V = (v0, . . . , vm−1).

Then, by using the following formulation, one obtains the l-th coordinate of PA (V), for 0 ≤ l <

17

m [70]

pl =alv((l+1)) +

m−1∑
i=1

a((l+i))

 T∑
j=1

v((l+R[i, j]))

 , (2.6)

where ((q)) = q mod m and 0 ≤ R
[
i, j

]
< m, for 1 ≤ i < m and 1 ≤ j ≤ T , is an integer entry

of an (m − 1) × T matrix R which corresponds to the position of the j-th 1 in the i-th row of

the GNB’s multiplication matrix M [70]. This scheme for computing the l-th coordinate of the

field multiplication requires m AND gates and at most (m − 1) T XOR gates, with a propagation

delay of TA +
(⌈

log2 m
⌉
+

⌈
log2 T

⌉)
TX [16], where TA and TX denote the propagation delay in a

two-inputs AND gate and a two-inputs XOR gate, respectively.

The following section, shows how the GNB multiplication by the normal element β is

accomplished.

2.9.2.2 Multiplication by the Normal Element β

Here, the formulation for accomplishing field multiplication of an arbitrary GF (2m) element

V = (v0, . . . , vm−1) represented in the Gaussian normal basis
{
β, . . . , β2m−1

}
of type T by the nor-

mal element β = (1, 0, . . . , 0) is presented. By substituting for (a0, . . . , am−1) with (1, 0, . . . , 0)

in (2.6), and considering all values of l = 0, . . . ,m − 1, one obtains [70]

Pβ (V) =v1β +

m−1∑
i=1

 T∑
j=1

v((i+R[m−i, j]))

 β2i
, (2.7)

which requires at most (m − 1) (T − 1) XOR gates, with a propagation delay of
⌈
log2 T

⌉
TX. It

is noted that, one can reduce the number of XOR gates required for realizing (2.6) or (2.7) by

a value △X through applying signal reuse techniques (see [69, 25] for example), where △X is

obtained through simulation.

2.9.2.3 Previous Work on GNB Multiplication

Massey and Omura [61] proposed the original scheme for multiplication in the NB representa-

tion. After this, a number of designs were proposed in an attempt to optimize the throughput

and / or space complexities of the NB multiplier [86, 47, 55, 71, 73, 13]. Generally, the differ-

ent proposed designs can be divided into three categories of parallel, bit-level, and digit-level

computations. For high throughput usage, the parallel implementation generates all the output

bits of the multiplication in one clock cycle [86, 47, 55, 71]. In GF (2m), this is achieved by

a gate complexity which is quadratic in m. For area critical applications, bit-level schemes

are adopted [86, 36, 13]. In this scheme, the space complexity is generally proportional to m,

18

while the multiplication process requires m clock cycles to generate the final output. To trade-

off between space and throughput, digit-level multipliers are deployed [73, 37]. In a digit-level

scheme, the space complexity is traded-off with the number of required clock cycles in such

a way that d-bits, 2 ≤ d < m, are processed in parallel during each one of the k =
⌈

m
d

⌉
clock

cycles of computations.

Similar to the PB digit-level multipliers, there are three schemes in terms of types of inputs

and output for the digit-level (DL) GNB multipliers. The first scheme of serial multipliers is

the parallel-in-parallel-out (PIPO) [38, 13, 73]. In this scheme, the inputs are preloaded to the

input registers first, and then, the m output bits are produced in parallel after k clock cycles.

In the remaining two schemes, one or both input(s) / output are fed / generated serially

during each iteration of computations, where the serial input(s) / output follow either a least

significant digit first (LSD), or a most significant digit first (MSD) order. The second scheme is

the serial-in-parallel-out (SIPO) [20, 36]. There are two variants of this scheme, one with only

one serial input [20], while the other has two serial inputs [36]. For clarity of reference, the

two serial inputs variant is denoted as fully-serial-in-parallel-out (FSIPO). Both of the SIPO

and the FSIPO multipliers generate the m output bits in parallel after k clock cycles. The SIPO

requires to preload one of its inputs in advance to computations, while the other input enters

the multiplier during computations. On the other hand, a FSIPO multiplier does not require

any preloading of the operands, since it reads both inputs as computations are carried out.

The third scheme is the parallel-in-serial-out (PISO), in which the two operands are preloaded

into the input registers before the computation starts, followed by generating the k output digits

serially, one digit per a clock cycle [61, 37, 76].

By combining one DL-PISO and one DL-SIPO architectures, a DL-PIPO hybrid-double

GNB multiplier has been recently proposed by the authors of [16], which performs two field

multiplications using the same latency required for a single field multiplication (i.e. k iter-

ations). It is noted that the authors of [16] have shown the hybrid-double multiplier to be

useful for applications where two dependent field multiplications are involved, such as double

exponentiation.

2.10 Exponentiation and Inverse over GF (2m)

Field exponentiation and inversion, are usually realized in the form of repeated rounds of

“square and multiply” operations [5]. Squaring is the operation of multiplying an element

by itself. Field exponentiation of an element A, say Ae, is computed as [42]:

Ae =Πm−1
i=0 Aei2i

,

19

where the integer exponent e, 2 ≤ e < 2m − 1, is represented in its radix two expansion as∑m−1
i=0 ei2i with ei ∈ {0, 1} for all i = 0, 1, . . . ,m − 1. Field inversion is a special case of the ex-

ponentiation, in which the exponent has a fixed value e = 2m − 2, according to Fermat’s Little

Theorem (FLT) [30]. As it is mentioned earlier, the NB representation requires larger space

overhead, compared to the PB, in order to realize field multiplications in hardware. However,

NBs offer free of cost squaring operations, which is not the case for PBs. In NB representation,

for any A = (a0, . . . , am−1) ∈ GF (2m), one simply obtains A2 = (am−1, a0 . . . , am−2). In hard-

ware, this is realized as a simple right cyclic shift. Therefore, many hardware designs favor

using NBs for implementing exponentiation and inversion over PBs. More specifically, the

subclass of Gaussian normal basis representation (GNB) which offers more efficient hardware

implementations for the field multiplications than the general NBs [5], is usually deployed for

exponentiation and inversion.

The next section introduces trace mappings of GF (2m) elements.

2.11 Trace Mapping

Trace, is a mapping, which maps a GF (2m) element, say A, to the ground field GF (2), and is

denoted by Tr (A). The Trace of the element A is computed using the following formulation

[5]:

Tr (A) =
m−1∑
i=0

A2i
. (2.8)

In the NB representation, (2.8) is reduced to the modulo-2 sum of the coordinates of A, that is

[5]:

Tr (A) =
m−1∑
i=0

ai.

On the other hand, in the PB representation, (2.8) is computed in the form of an inner product

of the row vector representing A with the constant column vector τ = (τm−1, . . . , τ0), as follows

[5]:

Tr (A) =
m−1∑
i=0

aiτi.

The coordinates of the constant vector τ are precomputed as τi = Tr
(
αi

)
, for 0 ≤ i < m, with

α representing the root of the defining irreducible polynomial p (x) of GF (2m).

20

2.12 Welch-Gong (WG) Stream Ciphers

2.12.1 Stream Ciphers

Stream ciphers are symmetric key cryptosystems which are used for providing privacy through

applying encryption and decryption mechanisms to a given message’s text. Stream ciphers are

attractive for implementing protection in the wireless air-link domain, due to the individual

processing of the input message digits, which results in preventing error propagation at the

receiving end. For example, stream ciphers are used in different wireless communications

applications, such as, blue-tooth [8], network protocols (WEP and WPA) [43], and 3GPP Long

Term Evolution (LTE) security suite [11, 7]. To accomplish individual processing of the input

message’s digits, stream ciphers encrypt (or decrypt) an input message by bit-wise XORing

the corresponding bits of the message with a generated key-stream bits, bit by bit, where the

key-stream is generated by means of a Pseudo random sequence generator (PRSG). Figure 2.1

presents two entities communicating over an insecure channel where a stream cipher is used

for accomplishing privacy of transmitted data.

Insecure Channel

Figure 2.1: A stream cipher is used for providing privacy over an insecure channel between

two communicating entities.

21

2.12.2 WG Stream Ciphers

The Welch-Gong (WG) stream ciphers, is a family of stream ciphers with good randomness

properties [39, 68, 67, 24]. The randomness properties provided by the member ciphers of this

family are proved mathematically, which include long period, balanced 0-1 distribution, ideal

tuple distribution, exact linear complexity, cross correlation with an m-sequence has only three

values, delta like autocorrelation functions, and high non linearity, for which no other existing

ciphers could provide [40, 68].

2.12.2.1 A General Block Diagram

Figure 2.2 presents a block diagram showing an architecture of a general WG stream cipher.

As it is shown in this figure, a WG stream cipher is built from a Finite state machine (FSM), a

Linear

Feedback

Initial Feedback

C Z

A
i
A

m

2

1

WGPm

WGTm

Tr

m

m m

m

m

m

1i l

Decim.

m

m

Figure 2.2: A general block diagram of a WG stream cipher.

Linear feedback shift register (LFSR) which consists of l elements from the field GF (2m), and

a WG transform (WGTm). Hence, the WG cipher is denoted by either WG(m, l) or WG-m. The

FSM controls the operation of the cipher. The linear feedback function, which is represented

by the LFSR’s characteristic polynomial C (Z) in the figure, is primitive over GF (2m), and

therefore, the LFSR generates m-sequences having periods of 2ml − 1. The output of the LFSR,

which is taken from the leftmost cell, is filtered by an m-bit WG transform WGTm. Notice that,

the LFSR output might first go through decimation (that is exponentiation) before entering the

transform. The WG transform consists of a permutation module (WGPm) followed by a trace

mapping.

22

2.12.2.2 Phases of Operation

There are three phases of operation in a WG stream cipher: loading phase, initialization phase,

and run phase. During the loading phase, which takes l clock cycles to complete, the initial

state is written to the cells of the LFSR, where the only input to the LFSR is “Initial Vector”

in figure 2.2. Then, the initialization of the cipher starts and continues for 2l clock cycles,

during which the input to the LFSR is the bitwise XOR of the “Linear Feedback” and “Initial

Feedback” signals in figure 2.2. After this, the cipher enters the run phase, where a single key-

stream bit is generated at each clock cycle. The only input to the LFSR during the run phase is

the “Linear Feedback” signal.

2.12.2.3 WG(29, 11) and WG-16

The eSTREAM project [6] is the most significant effort for finding secure stream ciphers [67].

The WG(29, 11) [39] is a stream cipher submitted to the hardware profile of phase 2 of this

project. The WG(29, 11) offers the proved randomness properties of the WG family of ciphers

[40, 39, 68, 24]. The two attacks [88, 77] were launched on WG(29, 11) during this project.

However, it is noted that the revised version of the cipher [68] does not suffer the chosen IV

(Initial Value) attack in [88, 64]. Also, as per design, the number of key-stream bits per a single

key/IV pair is strictly less than the number of key-stream bits required to perform a linear span

attack introduced in [77], [68].

In the literature, there is a number of proposed WG(29, 11) hardware designs [39, 67, 68,

56]. The original submission uses normal basis (NB) representation [39] and hence all of pre-

sented designs until now have used the NB representation [39, 68, 56, 58]. The authors of [39]

adopt a direct design using computation in the Optimal normal basis (ONB), which requires 7

multiplications and an inversion over GF
(
229

)
. The inversion using Itoh-Tsujii algorithm re-

quires
(⌊

log2 (28)
⌋
+ H (28) − 1

)
= 4 + 3 − 1 = 6 multiplications and 28 squarings in GF

(
229

)
,

where H (28) denotes the Hamming weight of 28 [45]. In [68], the authors replaced the in-

version operation with a computation of the power 2k − 1 which requires 4 multiplications for

k =
⌈

29
3

⌉
= 10 and reduced the other 7 multiplications of the WG transformation in [39] by

one through signal reuse. In [56], the author uses a look-up table based approach which uses

229 bits of ROM. In [58], the authors propose a multiple-bit output version of the WG cipher,

called MOWG. The MOWG reduces the hardware cost through signal reuse by removing one

multiplier from the WG permutation in [68], while it generates d ≤ 17 output bits. Further-

more, [58] improves the hardware cost and throughput of the cipher through pipelining with

reuse techniques. The keystream sequences generated by the MOWG cipher possess many of

the WG keystream randomness properties [58].

23

Another initiative for designing secure stream ciphers is the LTE mobile technology. LTE

is being established as the fourth generation (4G) mobile technology, where a flat all Internet

Protocol infrastructure has been adopted [34]. This has changed the threat model of the 4G

mobile domain to include the security issues which are applied to the IP-networks [34]. Ac-

cordingly, there is a continuous effort demonstrated by the security specification group of the

third generation partnership project (3GPP-TSG) [1] to address these security threats [34]. The

cipher suite of 4G LTE consists of two stream ciphers, SNOW 3G and ZUC, and the block

cipher AES in the counter mode [11, 7]. It is noted that the randomness of the key-streams

generated by the 4G LTE cryptographic algorithms is hard to analyze and, more importantly,

some weaknesses concerning these ciphers have already been discovered [87, 21]. Further-

more, some security flaws in the LTE integrity protocols have been recently recognized [90].

The authors of [34] propose confidentiality and integrity protection schemes for securing the

4G network domain against the attack in [90]. These schemes are based on the WG-16 stream

cipher. The WG-16 offers the proved randomness properties of the WG family of ciphers [34].

In addition, it is secure and resists to all known attacks [34]. The only WG-16 hardware design,

which uses NB, is presented in [35]. This design is based on composite field arithmetic and

properties of the trace function in the tower field representation.

2.12.2.4 Parameters of the WG(29, 11)

The permutation for the WG(29, 11) is

WGP29 = 1 ⊕ Y ⊕ Y210+1 ⊕ Y220+210+1⊕
Y220−210+1 ⊕ Y220+210−1, (2.9)

where Y = 1 ⊕ Ai+10 and Ai+10 is the LFSR’s output. The WG transform is given as follows

[39, 68, 58]

WGT29 = Tr (WGP29) . (2.10)

The linear feedback characteristic polynomial of the WG(29, 11)

C(Z) = Z11 ⊕ Z10 ⊕ Z9 ⊕ Z6 ⊕ Z3 ⊕ Z ⊕ β, (2.11)

is a primitive polynomial of degree 11 over GF
(
229

)
, where β = α464730077 is the generator

of the Type-II Optimal NB (ONB-II, that is GNB of type 2) and α is a root of the defining

polynomial of GF
(
229

)
given by [68]

g (x) = x29 + x28 + x24 + x21 + x20 + x19 + x18 + x17

+ x14 + x12 + x11 + x10 + x7 + x6 + x4 + x + 1. (2.12)

24

2.12.2.5 Parameters of the WG-16

The WG-16 permutation is [34]

WGP16 =1 ⊕ Y ⊕ Y211+1 ⊕ Y211+26+1

⊕ Y−211+26+1 ⊕ Y211+26−1, (2.13)

where Y = (Ai+31)1057 ⊕ 1 and Ai+31 is the output of the LFSR. In [35], WGP16 is computed as

1 ⊕ Y ⊕ Y211+1 ⊕ Y211(211−1)+1 ⊕ Y26 (
Y211+1 ⊕ Y211−1

)
, (2.14)

where

Y211−1 =Y((1+2)(1+22)+24)(1+25)+210
.

It is noted that (2.14) requires 10 multiplications (including 2 for computing (Ai+31)1057). The

WG transform is WGT16 = Tr (WGP16). The characteristic polynomial of the WG-16’s

LFSR2 is [34]

C(Z) = Z32 ⊕ Z31 ⊕ Z22 ⊕ Z9 ⊕ ω11 (2.15)

which is primitive over GF
(
216

)
, where ω is the root of the GF

(
216

)
’s field polynomial

g (x) =x16 + x5 + x3 + x2 + 1. (2.16)

2For the field polynomial (2.16), the multiplication with the constant ω11 in (2.15) requires only 33 XOR gates
and a delay of 2TX .

25

Chapter 3

Implementations of the WG Stream
Ciphers Using ONB-II

In this chapter, a novel method for computing the trace of a product of two field elements is

presented, when the representation is the type-II ONB. Also, two designs are proposed. One

for the MOWG(29, 11, 17) cipher (where 29 corresponds to GF
(
229

)
, 11 is the number of

stages in the LFSR, and 17 is the number of output bits) and the other one for the WG(29, 11)

cipher (which was initially proposed in [39]), demonstrated by ASIC and FPGA implementa-

tions. The proposed designs optimize the area by reducing the number of multiplications in

the MOWG/WG transforms. This is done through signal reuse for the MOWG(29, 11, 17) and

through utilizing the new trace properties for the WG(29, 11). The ASIC and FPGA imple-

mentations of the proposed WG(29, 11) design show significant area and power consumption

reduction and an improved speed compared to [68]. Notice that, in an FPGA implementation

one has a predetermined space resources. In this context, reducing area consumption in an

FPGA implementation is in terms of decreasing the number of used look-up tables. This in

return would leave more resources for implementing other modules on the FPGA chip.

Throughout this chapter, ⊕ represents the bit-wise addition operator (XOR) in GF (2m).

A2p
= A ≫ p and A2−p

= A ≪ p, represent the right and left cyclic shift, respectively, of

the coordinates of A = (a0, . . . , am−1) ∈ GF (2m), w.r.t NB, p-times. In the NB representation,

the addition of 1 = (1, . . . , 1) ∈ GF (2m) to another GF (2m) element can be done by comple-

menting the bits of that element. C (Z) = Zl ⊕ ∑l−1
i=0 CiZi, Ci ∈ GF (2m) is the characteristic

polynomial of an l-stages LFSR over GF (2m), from which the recurrence relation is obtained

as

A j+l =

l−1∑
i=0

CiAi+ j, (3.1)

26

where j ≥ 0, Ai ∈ GF (2m), and (A0, A1, . . . , Al−1) is the initial state of the LFSR.

Also, throughout this chapter, the 29-bit WG transformation and permutation introduced in

Chapter 2 are rewritten as follows

WGT29 (Ai+10 ⊕ 1) = Tr (WGP29 (Ai+10 ⊕ 1)) , (3.2)

and

WGP29 (X) =1 ⊕ X ⊕ Xr1 ⊕ Xr2 ⊕ Xr3 ⊕ Xr4

=

(
1 ⊕ X ⊕ X2k+1 ⊕ X22k+(2k+1) ⊕ X2k(2k−1)+1 ⊕ X22k+(2k−1)

)
(3.3)

where r1 = 2k + 1, r2 = 22k + 2k + 1, r3 = 22k − 2k + 1, r4 = 22k + 2k − 1, and k =
⌈

29
3

⌉
[58].

It is noted that a version of this chapter appears in [31]. The chapter is organized as follows.

Sections 3.1 and 3.2 presents the new hardware designs of the MOWG(29, 11, 17) cipher and

the WG(29, 11) cipher, respectively. Results based on FPGA and ASIC implementations of the

new designs are discussed in Section 3.3. Section 3.4 concludes the chapter.

3.1 Optimized Hardware Design of the MOWG(29, 11, 17)

Cipher

This section presents a hardware design of the MOWG(29, 11, 17) cipher. In this design, the

MOWG transform uses 7 multipliers, compared to 8 multipliers in [58]. Also, in an attempt

to improve the overall speed of the cipher, the LFSR is reconstructed in order to remove the

inverters from the critical paths during the run phase/initialization phase. In what follows, the

reduced area MOWG transform design is first introduced, followed by presenting the LFSR and

key initialization algorithm (KIA) changes for speed improvement. Then, the proposed archi-

tecture and finite state machine are discussed, and the section ends up by deriving formulations

for the space and time complexities.

3.1.1 Reducing the Hardware Complexity of the MOWG Transforma-
tion

The hardware cost of the MOWG(29, 11, 17) cipher is dominated by its transform’s field multi-

pliers. Any decrease in the number of these multipliers would minimize the area of the overall

cipher. This section presents the architecture of the MOWG transform, where the number of

field multipliers is reduced by 1 through signal reuse, compared to [58].

27

The architecture of the proposed MOWG transform is shown in Figure 3.1. In this figure,

X = Ai+10 + 1 is the bit-wise complement of the LFSR’s output, r1 = 2k + 1, r2 = 22k + 2k + 1,

r3 = 22k − 2k + 1, r4 = 22k + 2k − 1, and k =
⌈

29
3

⌉
= 10. By taking X22k

as a common factor of the

exponent terms 22k +
(
2k + 1

)
and 22k +

(
2k − 1

)
in equation (3.3), the architecture in this figure

can easily be obtained, where the WG permutation given by (3.3) is now computed as follows

WGP29 =
(
1 ⊕ X ⊕ X2k+1 ⊕ X2k(2k−1)+1 ⊕ X22k (

X(2k+1) ⊕ X(2k−1))). (3.4)

In the MOWG(29, 11, 17), k = 10 and, hence, the signal X2k−1 requires 4 multiplications and 4

squaring operations (which is free of cost in ONB) [58]. Also, in addition to the multiplication

operations involved in computing the signal X(2k−1), (3.4) requires three more multiplications to

generate the signals X2k+1, X2k(2k−1)+1, and X22k
(
X(2k+1) ⊕ X(2k−1)

)
. Therefore, the architecture

of Figure 3.1 requires a total of 7 GF
(
229

)
multiplications. The inverter symbol denoted by (1)

in this figure requires 29 NOT gates to generate X = Ai+10 ⊕ 1 from the LFSR’s output signal

Ai+10. The signal X⊕Xr1⊕Xr2⊕Xr3⊕Xr4 is obtained as the addition in GF(229) of X, Xr1 = X2k+1,

Xr2 ⊕Xr4 = X22k
(
X(2k+1) ⊕ X(2k−1)

)
, and Xr3 = X2k(2k−1)+1. The signals X2k

and X22k
are obtained

by right cyclic shifts of X, k and 2k times, respectively. X2k+1 is generated by multiplying X

with X2k
in GF

(
229

)
. X2k(2k−1) is the right cyclic shift of X(2k−1), k times, and X2k(2k−1)+1 is

generated by multiplying X2k(2k−1) with X in GF
(
229

)
. In Figure 3.1, the coordinates of the

output of X⊕Xr1 ⊕Xr2 ⊕Xr3 ⊕Xr4 in GF(229) are complemented by the inverter symbol denoted

by (2) to generate all 29 bits of the WGP29 function of (3.4), which forms the Initial Feedback.

Seventeen bits of the WGP29 are the output of the MOWG(29, 11, 17) in the run phase [58].

MOWG

Transformation

10

20

10

10
2

X

1
r

X

2
r

X

3
r

X

10
2
X

29

29 17
2

1

29

29

Initial

Feedback

=

WGP29

r

X 4

Figure 3.1: Proposed MOWG transformation.

3.1.2 Improving the Critical Path of the MOWG Transform

The time delay through the MOWG transform dominates the delay of the overall cipher (see

Section 3.1.5.2). This section shows how to slightly reduce the delay through this transform.

28

This is accomplished by removing inverter (1), and by reallocating inverter (2) away from the

critical paths of the run phase and key initialization phase. This reduces the delay of the critical

path by an amount equivalent to the delay of two inverters. However, the MOWG transform

delay is still the dominant, due to the delays of 5 serially connected field multipliers. First, the

required mathematical formulation is derived, then required changes to the KIA algorithm are

presented.

3.1.2.1 Formulation

During the key initialization phase and the run phase, inverter (1) in Figure 3.1 generates the

complement of Ai+10. Notice that this cell holds the feedback from the LFSR during the run

phase, and the bit-wise XOR of the LFSR feedback and the MOWG transform feedback during

the key initialization phase. Therefore, to remove inverter (1), it requires the direct storage of

the complement of these values in both phases. In other words, it is required to reconstruct

the LFSR such that it generates a sequence B =
{
Bi = 1 ⊕ Ai, 0 ≤ i < 2319 − 1

}
, where Bi ∈

GF
(
229

)
and {Ai} is the sequence generated by (2.11) over GF

(
229

)
. Sequence B is referred to

as the complement sequence of {Ai}. The following proposition shows how this is accomplished

for an LFSR with a general feedback polynomial of degree l over GF (2m).

Proposition 3.1.1 Let B be the complement sequence of a sequence A =
{
Ai, 0 ≤ i < 2ml − 1

}
,

where Ai ∈ GF (2m) and A is generated by (3.1). Then, B is generated by the following recur-

rence relation

B j+l =

 l−1∑
i=0

CiBi+ j

 ⊕  l−1∑
i=0

Ci

 ⊕ 1

 , (3.5)

where j ≥ 0, and the initial state of B is Bi = 1 ⊕ Ai, for 0 ≤ i ≤ l − 1.

Proof By definition

B j+l = A j+l ⊕ 1, (3.6)

j ≥ 0. Using (3.1) in (3.6), one gets B j+l =
∑l−1

i=0 CiAi+ j⊕1, and by noticing 2Ci = 0 one obtains

B j+l =

l−1∑
i=0

Ci(Ai+ j ⊕ 1) ⊕
l−1∑
i=0

Ci ⊕ 1

=

l−1∑
i=0

CiBi+ j ⊕
l−1∑
i=0

Ci ⊕ 1.

Thus, the assertion is true.

29

By noticing that X = 1 ⊕ Ai+10 in (3.4), then, from Proposition 3.1.1, one can see that X

is Bi+10. Notice that the term
(∑l−1

i=0 Ci

)
⊕ 1 in (3.5) is a constant term. Hence, its addition in

GF
(
229

)
is realized with a number of NOT gates equal to its Hamming weight. For the LFSR of

the MOWG(29, 11, 17), replacing the coefficients of (2.11) in (3.5) gives
(∑l−1

i=0 Ci

)
⊕ 1 = β⊕ 1,

which has a Hamming weight equal to 28.

Inverter (2), on the other hand, realizes the addition of the field element 1 in (3.4). Notice

that this addition of the term 1 can be implemented in different ways. One way is to add it to

one of the terms X, Xr1 , Xr2 ⊕Xr4 , or Xr3 prior to the summation of these terms. Doing so would

reallocate inverter (2) from its current position. However, it is required that this reallocation

does not result in a delay higher than the current maximum delay of the MOWG transform. For

this reason, the inverter is relocated to complement X before it is added to Xr1 . This is the path

at the top of Figure 3.1, which has the lowest delay with only two GF
(
229

)
adders between

inverters (1) and (2).

The following section presents necessary changes required in the KIA algorithm of the

MOWG(29, 11, 17) cipher.

3.1.2.2 Modified KIA Algorithm

Modifying the LFSR of MOWG(29, 11, 17) according to (3.5), requires its left most stage to

hold the complement of the Initial Vector during the loading phase. Therefore, it is required to

complement the Initial Vector input before it is loaded to the modified LFSR. This can easily

be implemented by inserting 29 inverters at the multiplexer’s input which receives the Initial

Vector in Figure 2.2.

Next, the proposed architecture of the MOWG(29, 11, 17) cipher is presented.

3.1.3 Architecture

Here, the overall proposed architecture of the MOWG(29, 11, 17) cipher is presented, as shown

in Figure 3.2. In this figure, a double-headed arrow, under a component, corresponds to a 29-

bit register which is inserted for pipelining purposes (see Section 3.3.2 for more details). The

Finite State Machine (FSM) controls the input to the LFSR for each phase of operation. In

the same figure, due to the bit-wise complement operator denoted by (a), the LFSR receives

the complemented Initial Vector during the loading phase. Hence, after 11 clock cycles, the

initial state of this LFSR, (B0, B1, . . . , B10), is basically the complement of the initial state of

the LFSR in Figure 2.2, i.e. Bi = Ai ⊕ 1, 0 ≤ i < 11. When the key initialization phase starts,

the bit-wise XOR of the Initial Feedback and the Linear Feedback applies to the input of the

LFSR. Note that the Linear Feedback in Figure 3.2 is generated by (3.5), which is equivalent

30

……...

b

10i
B

9i
B

1i
B

i
B

10
1 1

i
X B

10i
X B

Initial

Vector

FSM

2

M
U

X

Linear

Feedback

MOWG

Transformation

10

20

10
2

10
2 1

X

17

Initial Feedback = WGP29

a

29

29

29

29

29

29

29

10

1
r

X

2
r

X
r

X 4

3
r

X

Figure 3.2: Proposed design of the MOWG(29, 11, 17) cipher.

to Bi = Ai ⊕ 1, 11 ≤ i < 33 (complement of corresponding one in Figure 2.2). However,

the Initial Feedback signal in Figure 3.2 has the same value as the one generated in Figure

3.1. This means that the input to the LFSR during the key initialization phase in Figure 3.2

is complemented w.r.t the one in Figure 2.2. Throughout the run phase, the only input to the

LFSR is the Linear Feedback signal Bi = Ai ⊕ 1, 33 ≤ i < 2319 − 1. This sets the MOWG

transform of Figure 3.2 to generate the same key-stream bits of Figure 3.1. It is clear that the

maximum delay of the MOWG transformation is reduced by an amount equivalent to the delay

of two inverters, as compared to the one in Figure 3.1. The revised LFSR in Figure 3.2 has

additional H (β ⊕ 1) = 28 inverters, compared to Figure 2.2. This is due to the new constant

term β ⊕ 1 in the feedback polynomial.

The following section presents the finite state machine.

31

3.1.4 The Finite State Machine

This section exposes the architecture of the FSM and describes how it schedules the input to

the LFSR throughout the three phases of operation.

Figure 3.3 shows the components of the FSM. The FSM has two inputs, namely clk and

11-bit one-hot

counter

0 1 2 10

clk

2-bit binary

counter

0 1

FSM

resetop0

1 1 1

op1

1

Figure 3.3: FSM of the MOWG.

reset, 1-bit each, while there are two outputs denoted as op0 and op1. The reset input is pulled

down before each run of the cipher. This forces the 11-bit one-hot counter to initialize to
(1, 0, . . . , 0), i.e. output 0 is the only bit set to a high logic level. Also, when the reset signal is

low, the 2-bit binary counter resets its state to (0, 0). Due to the 1-bit Register connected to the

AND gate at the reset input of the 11-bit one-hot counter, this counter starts incrementing one

clock cycle after the reset signal gets pulled up. This assures that the 11-bit one-hot counter

returns to its initial state after 11 clock cycles. Then, it triggers the 2-bit binary counter to

increment which starts the initialization phase. The output of the 2-bit binary counter controls

the cipher’s phase of operation. This is done by generating the op0 and op1 signals according

to Table 3.1. The op0 and op1 signals select one of the three inputs of the multiplexer in

Figure 3.2 and connect it to the input of the LFSR, during each phase. It is noted that the

loading phase takes 11 clock cycles, then starts the key initialization phase which takes 22

clock cycles, followed by the run phase. During the run phase, the clock inputs of the 11-bit

32

2-bit counter
op1 op0 phase of operation

bit 1 bit 0

0 0 0 0 Load Key and IV

1 0 0 1 Key Initialization

0 1 0 1 Key Initialization

1 1 1 0 Running Phase

Table 3.1: Phase of operation in the proposed MOWG as a function of the state of the 2-bit

binary counter.

one-hot counter and the 2-bit binary counter become idle.

In what follows, space and time complexities of the proposed MOWG(29, 11, 17) are stud-

ied.

3.1.5 Space and Time Complexities

This section provides the space and time complexities of the MOWG design in Figure 3.2.

3.1.5.1 Space Complexity

The space complexity is evaluated in terms of number of gates in each component, in order

to obtain the overall hardware cost. Let NR, NA, NX, NO, and NI denote the number of 1-bit

Registers, AND gates, XOR gates, OR gates, and Inverters, respectively.

MOWG Transform The transform dominates the hardware complexity of the MOWG de-

sign, as it consists of 7 field multipliers and 4 GF
(
229

)
adders. A GF

(
229

)
adder requires 29

XOR gates. Also, the multiplier in [71] is used for implementation, which has 841 AND gates

and 1218 XOR gates. Therefore, the total hardware cost of the transformation is as listed in

Table 3.2.

LFSR The LFSR has 11-stages of 29-bit shift registers, and a feedback polynomial. The

feedback polynomial is composed of 1 field multiplier (with a constant)1, 5 GF
(
229

)
addi-

tions, and H (β ⊕ 1) = 28 Inverters. Therefore, the hardware complexity of the LFSR is as

summarized in Table 3.2.

1A multiplication with a constant can be further optimized so that it contains few XOR gates.

33

Component NR NA NX NO NI

MOWG Transform - 5887 8642 - -

LFSR 319 841 1363 - 28

FSM (Figure 3.3) 14 3 1 - 1

29-bit
- 174 - 87 2

4-to-1 MUX

Table 3.2: Count of 1-bit registers and logic gates in the different components of the proposed

MOWG design.

4-to-1 29-bit Multiplexer The 4-to-1 29-bit multiplexer is composed of a binary tree of three

2-to-1 29-bit multiplexers and 2 NOTs (selectors). Each 2-to-1 29-bit multiplexer is built from

29 parallel 2-to-1 1-bit multiplexers. A 2-to-1 one bit multiplexer consists of two AND gates

and one OR gate. Therefore, the total cost of the 4-to-1 29-bit multiplexer is as summarized in

Table 3.2.

FSM From Figure 3.3, there are 3 AND gates, 1 XOR gate and 1 Inverter in the FSM. The

11-bit one-hot counter is simply an 11-stages circular shift register with set/reset inputs having

the output of the last shift register fed to the input of the first one. The 2-bit binary counter is

built from two JK Flip Flops. The two inputs of the first FF are pulled to high logic and its

output drives the two inputs of the second FF (one can also use D FF instead of the JK FF to

design the 2-bit binary counter). Thus, one can find the total number of one-bit registers in the

FSM as

NR = 11 + 2 + 1 = 14.

Table 3.2 summarizes the number of gates in the FSM.

In addition to the above-mentioned components, the MOWG cipher contains two 29-bit

bit-wise complement operators (inverter symbol (a) and inverter symbol (b) in Figure 3.2)

and a GF
(
229

)
adder (computing the bit-wise XOR of Initial Feedback signal and the Linear

Feedback signal). Let NMOWG
O , NMOWG

I , NMOWG
R , NMOWG

A , and NMOWG
X denote the number of

OR gates, Inverters, 1-bit Registers, AND gates, and XOR gates in the MOWG of Figure

3.2, respectively. Therefore, by adding the corresponding number of gates in this GF
(
229

)
adder and in inverter symbols (a) and (b) to the number of gates in the FSM, the 4-to-1 29-bit

multiplexer, the LFSR, and the MOWG transform (see Table 3.2) one obtains

NMOWG
O = 87, NMOWG

I = 89, NMOWG
R = 333,

NMOWG
A = 6905, NMOWG

X = 10035.

34

3.1.5.2 Time Complexity

Here, the formulation for the critical path delay of the MOWG cipher (Figure 3.2) is derived.

There are three critical paths in the MOWG:

• Critical path of the LFSR.

• Critical path along the MOWG transformation during the key initialization phase.

• Critical path along the MOWG transformation during the run phase.

The LFSR’s path has one multiplication and five finite field additions. This results in a propa-

gation delay of

TA +
(
1 +

⌈
log2 (6)

⌉
+

⌈
log2 (29)

⌉)
TX = TA + 9TX, (3.7)

where TA and TX denote the propagation delay of an AND and an XOR, respectively. The delay

through a finite field multiplier is TA +
(
1 +

⌈
log2 (29)

⌉)
TX [71]. On the other hand, the delays

through the two MOWG transform paths have 5 multipliers in series, which corresponds to a

delay of

5 (TA + 6TX) = 5TA + 30TX. (3.8)

From (3.7) and (3.8), it is clear that the longest path of the MOWG cipher passes through its

transformation.

From Figure 3.2, the critical path of the proposed MOWG during the run phase includes

the delays of a 29-bit Register, 5 field multipliers in series, and 3 GF
(
229

)
adders. This results

in the delay stated in (3.9):

TRunPh =5TA + 33TX + TR, (3.9)

where TRunPh denotes the maximum time delay through the MOWG during the run phase. In

the same figure, the critical path of the MOWG during the key initialization phase includes the

delays of 4 GF
(
229

)
adders, 5 field multipliers, a 29-bit Register, and a 4-to-1 29-bit multi-

plexer. Notice that the delay through the 4-to-1 29-bit multiplexer is equivalent to the delay

through 2 2-to-1 1-bit multiplexers in series. This is equivalent to the sum of the delays through

2 AND gates, 2 OR gates, and 2 Inverters. Therefore, the delay of the MOWG during the key

initialization phase is

TKIPh =7TA + 34TX + TR + 2TO + 2TI (3.10)

Comparing (3.9) and (3.10), it is clear that TKIPh > TRunPh.

35

3.2 Low Complexity WG Cipher

This section proposes a new design of the WG(29, 11). The proposed WG design considers

Figure 3.2 with an added trace to the output of the WGP29 as the starting point for optimiza-

tion. Properties of the trace function when the elements of GF (2m) are represented in ONB of

type-II (which exists for m = 29 [52]) are first introduced. The proposed WG design utilizes

these properties in order to minimize the hardware complexity of its transform. Note that the

proposed design eliminates some necessary signals for the generation of the Initial Feedback,

which is required to conduct the key initialization phase of the cipher. Missing of the Initial

Feedback signal is recovered by introducing a serialized scheme to generate it. At the end of

this section, the hardware and the time complexities of the new implementation are provided.

3.2.1 Properties of the Trace Function for Type-II ONB

This section presents a method for computing the trace of a multiplication of two field elements

when the representation is in the type-II ONB. Also, two corollaries are deduced from the

proposed method.

Fact 3.2.1 [65] Let {β, β2, β22
, . . . , β2m−1} be a type-II ONB for GF (2m). Then

Tr(β2i
) = 1, i = 0, 1, · · · ,m − 1,

and

Tr(β2i
β2 j

) = 0 ∀i , j; i, j = 0, 1, · · · ,m − 1.

In other words, a type-II ONB is a self-dual basis. Thus Proposition 3.2.2 is achieved as

follows.

Proposition 3.2.2 In a type-II ONB, the trace of the field multiplication of any two GF (2m)

elements A = (a0, a1, . . . , am−1) and B = (b0, b1, . . . , bm−1) is computed as the inner product of

A and B, that is:

Tr (AB) =
m−1∑
i=0

aibi. (3.11)

Proof The proof is completed by considering the following derivation:

Tr(AB) = Tr(
m−1∑
i=0

aiβ
2i

m−1∑
j=0

b jβ
2 j

)

=
∑

0≤i, j<m

aib jTr(β2i+2 j
) =

m−1∑
i=0

aibi,

where the last result is obtained using Fact 3.2.1.

36

Proposition 3.2.2 implies that the trace of a field multiplication of two elements represented

in type-II ONB is easily implemented in hardware using m AND gates and m − 1 XOR gates.

Corollary 3.2.3 In type-II optimal normal basis, the two relations below are valid for any two

elements A and B in GF (2m)

Tr (AB) =Tr ((A ≫ n) (B≫ n)) =
m−1∑
i=0

ai−nbi−n, (3.12)

and

Tr (AB) =Tr ((A ≪ n) (B≪ n)) =
m−1∑
i=0

ai+nbi+n, (3.13)

where n is a positive integer and the indices of a and b are computed modulo m.

Proof Let A and B be any two elements in GF (2m) and n an arbitrary positive integer. It is

well known that

Tr
(
X2±n)

=Tr (X)2±n
= Tr (X) ,

for any X ∈ GF (2m). Therefore, by replacing X with AB one obtains

Tr (AB) =Tr
(
A2±n

B2±n)
. (3.14)

Using Proposition 3.2.2, the proof is completed by realizing that the squaring operation X2,

and the square root operation X2−1
, are simply the right cyclic shift and the left cyclic shift of

the coordinates of X (or AB) w.r.t the ONB, respectively.

According to Corollary 3.2.3, the trace of the field multiplication of any two elements A

and B, represented in type-II ONB, does not change if an n-bit cyclic shift (left or right) is

applied to both elements in the same direction.

Corollary 3.2.4 Let C be a common factor of two or more GF (2m) elements AC, BC, ..., etc,

then, the following relation holds:

Tr (AC) + Tr (BC) + · · · =
m−1∑
i=0

(ai + bi + · · ·) ci. (3.15)

Proof Let A, B, ..., etc, be any two or more arbitrary elements from the finite field GF (2m).

Then,

Tr (AC) + Tr (BC) + · · · = Tr ((A ⊕ B ⊕ · · ·) C)

=

m−1∑
i=0

(ai + bi + · · ·) ci,

where the last result follows from Proposition 3.2.2, and C ∈ GF (2m).

37

The following section applies the new trace properties of this section in order to optimize

the hardware implementation of the WG transform.

3.2.2 Optimizing the WG Transform’s Hardware for the Run Phase

Here, it is shown how Proposition 3.2.2 and Corollaries 3.2.3 and 3.2.4 are used to further

reduce the number of field multiplications in the WG transform in Figure 3.2 (with trace).

Before proceeding, it is important to mention that by applying (3.11), one can generate the

trace of the field multiplication of two elements A and B directly from A and B. However, the

result of the multiplication operation, i.e. C = AB, will be lost. Therefore, it is important to

apply (3.11) to the multiplication terms in (3.4) which are not used anywhere else. From Figure

3.2, the two signals Xr2 ⊕Xr4 and Xr3 are used only as inputs to the trace function (after they are

bit-wise XORed), while the signal Xr1 is required in generating Xr2 ⊕ Xr4 . The first two signals

are generated as follows  Xr2 ⊕ Xr4 =X22k (
Xr1 ⊕ X2k−1

)
,

Xr3 =XX2k(2k−1).
(3.16)

Therefore, applying the trace function to (3.16) one gets Tr (Xr2 ⊕ Xr4) =Tr
(
X22k (

Xr1 ⊕ X2k−1
))
,

Tr (Xr3) =Tr
(
XX2k(2k−1)) . (3.17)

Using (3.17), the WG transformation becomes

WGT29 =Tr (1 ⊕ X ⊕ Xr1) + Tr
(
XX2k(2k−1)) + Tr

(
X22k (

Xr1 ⊕ X2k−1
))
. (3.18)

Applying a right cyclic shift of 2k-stages to X and X2k(2k−1) in the term Tr
(
XX2k(2k−1)

)
of

(3.18) does not change the value of the trace, i.e.

Tr
(
XX2k(2k−1)) =Tr

(
(X)22k (

X2k(2k−1))22k)
. (3.19)

Using (3.19) in (3.18) gives

WGT29 =Tr (1 ⊕ X ⊕ Xr1) + Tr
(
X22k

X23k(2k−1)) + Tr
(
X22k (

Xr1 ⊕ X2k−1
))
. (3.20)

Taking X22k
as a common factor in (3.20) one obtains

WGT29 =Tr (1 ⊕ X ⊕ Xr1) + Tr
(
X22k (

Xr1 ⊕ X2k−1 ⊕ X23k(2k−1))) . (3.21)

Notice that by applying Corollary 3.2.4 to (3.21), only one multiplication operation is required

to generate Xr1 = X2k+1 (excluding the generation of the signal X2k−1). Figure 3.4 captures the

38

WG

Transformation

+

1

10
2

10i
X B

1

1

1Tr

1X
29

29

29

IP

29

29

1
r

XX

Tr 4
r

X2
r

X 3
r

X

1
r

X

Figure 3.4: The proposed design of the WG transformation.

resulting architecture of the WG transform in (3.21). In this figure, the block denoted by “IP”

generates the inner product of the two 29-bit inputs, while ⊕ adds the 29-bits at its input over

GF (2). This architecture uses 5 field multipliers, i.e., 4 multipliers less than the WG transform

presented in [68].

In Figure 3.4, the key stream bits are obtained by XORing Tr (1 ⊕ X ⊕ Xr1) and

Tr (Xr2 ⊕ Xr3 ⊕ Xr4). Tr (1 ⊕ X ⊕ Xr1) is the GF (2) addition of the coordinates of 1 ⊕ X ⊕ Xr1

w.r.t the ONB. On the other hand, notice that the signals Xr3 and Xr2 ⊕ Xr4 do not exist in the

WG transform. This is because Tr (Xr2 ⊕ Xr3 ⊕ Xr4) is generated directly from X22k
, Xr1 , X2k−1,

and X23k(2k−1) using an inner product operation, as it is stated in (3.21). This absence of the two

signals Xr3 and Xr2 ⊕ Xr4 resulted in the elimination of the Initial Feedback signal. The next

section proposes a recovery method for generating the Initial Feedback signal, which is only

used in the key initialization phase.

3.2.3 Serializing the Computation of the Initial Feedback Signal

This section presents a method for the recovery of the Initial Feedback signal through serial-

ized computation. To accomplish the multiplication operations during this serial computation,

the existing finite field multiplier which is used in generating the signal Xr1 in Figure 3.4, is uti-

lized. The proposed scheme generates the Initial Feedback signal by serially computing it over

three consecutive clock cycles. Denote this complete round of the serialized Initial Feedback

computation (three clock cycles) as an “extended key initialization round. And the single clock

cycle version of this computation (as in the MOWG design) as a “simple round”. Therefore,

with serialization, the entire key initialization phase requires 3 × 22 = 66 clock cycles instead

39

of 22 clock cycles (that is, 22 extended rounds instead of 22 simple rounds). It is noted that

this only affects the key initialization phase without increasing the number of cycles required

for the run phase.

The expansion of the key initialization round from 1 to 3 clock cycles is established through

the support of a new FSM’s control signal, namely, lfsr clk (Figure 3.5). This signal controls

the clock input of the LFSR and triggers it to shift once every three clock cycles. Also, in order

to compute the Initial Feedback signal over three stages, a new hardware module denoted as

the Serialized Key Initialization Module (SKIM) will be introduced (Figure 3.6). This module

uses the available signals and the field multiplier which is used in the generation of Xr1 , in

Figure 3.4. This module schedules the proper inputs to the field multiplier in each stage of

the serial computation by means of some multiplexers. The output of these multiplexers are

controlled by two new signals generated by the FSM, namely, s0 and s1 (Figure 3.5). The

intermediate results, between two consecutive stages of the computation, are stored in internal

29-bit Registers of the SKIM module. In the following, the FSM changes required for the

support of the serialization process are first introduced. Then, the architecture and operation of

the SKIM module and its integration to the WG transform in Figure 3.4, are discussed.

3.2.3.1 Architecture and Operation of the Modified FSM

Here, the new architecture and operation of the FSM are described. The architecture, which

is shown in Figure 3.5, generates the new set of control signals lfsr clk, s0, and s1. These are

required for the serial computation of the Initial Feedback signal. Before each run of the cipher,

the FSM resets its 11-bit one-hot counter to (1, 0, . . . , 0) and its 2-bit binary counter to (0, 0)

(where the leftmost bit and the rightmost bit, within the brackets, denote the lowest output bit

and the highest output bit of the corresponding counter, respectively). This is done by means

of pulling down the reset inputs. When the reset signal is released, the 2-bit binary counter

becomes ready. At the same time, the 11-bit one-hot counter’s reset input stays pulled down

for an extra clock cycle. This is due to the 1-bit Register connected to the input of the AND

gate which drives its reset input. This assures that the (1, 0, . . . , 0) state of the 11-bit one-hot

counter consumes a clock cycle, at the beginning of the loading phase. After 11 clock cycles,

from the release of the reset signal, the 11-bit one-hot counter returns to the (1, 0, . . . , 0) state.

At this point it triggers the clock input of the 2-bit binary counter. The 2-bit binary counter

changes its state to (1, 0), triggering the start of the key initialization phase. Then, the clk

signal starts triggering the clock input of the 3-bit one-hot counter. However, the counting will

start one clock cycle later, when the output of the 1-bit Register connected to the 3-bit one-hot

counter’s reset input pulls up. This in turn assures that the 3-bit one-hot counter consumes one

40

11-bit one-hot

counter

3-bit 1-hot

counter

0 1 2 10 0 1 2

clk

2-bit binary

counter

0 1

FSM

resetop0lfsr_clk s0

1 1

……

……

1 1

in
0

in
1

op1

1

s1

1 1

sel 0

Figure 3.5: Modified FSM after adding the new 3-bit one-hot counter.

clock cycle, before incrementing its initial state of (1, 0, 0), at the start of the key initialization

phase. During this phase, the first output bit of the 3-bit one-hot counter drives the clock input

of the 11-bit one-hot counter. Therefore, it takes 33 clock cycles for the 11-bit one-hot counter

to complete 11 counts. Hence, it takes 33 clock cycles for the 2-bit binary counter to increment.

Therefore, it requires 66 clock cycles for the 2-bit binary counter to increment twice in order

to start the running phase. When the running phase starts, with the 2-bit binary counter’s state

at (1, 1), the 11-bit and the 3-bit one-hot counters stop counting, as their clock inputs become

idle.

Notice that during the key initialization phase, the lfsr clk is driven by the first output of the

3-bit one-hot counter. Hence, the LFSR shifts once every three clock cycles. The two signals

s0 and s1 are derived from the 3-bit one-hot counter’s output according to Table 3.3. Notice that

this table is realized without any additional hardware by setting s0 to be the second output, and

s1 to be the third output, of the 3-bit one-hot counter, respectively. Therefore, (s0, s1) produces

the three patterns of (0, 0), (1, 0), and (0, 1) during the first stage, the second, and the third

stage of an extended key initialization round, respectively. During the running phase, (s0, s1)

will generate (0, 0). The following section shows how these patterns are used to accomplish

the proper functionality in the key initialization phase as well as in the running phase.

41

3-bit one-hot counter
s1 s0

bit 2 bit 1 bit 0

0 0 1 0 0

0 1 0 0 1

1 0 0 1 0

Table 3.3: Signals s0 and s1 as a function of the output of the 3-bit one-hot counter.

3.2.3.2 Architecture and Operation of the Serialized Key Initialization Module

Here, the SKIM module, which performs the serialized computation of the Initial Feedback

signal over an extended key initialization round (three clock cycles), is presented.

Figure 3.6 is a block diagram describing the architecture of this module. The Initial Feed-

2
2
k

X

X

2 2 1
k k

X

2
k

X

Initial Feedback

MUX

in0

in1

in2

in3

s
e
l1

s
e
l0

MUX

in0

in1 s
e

l0

1

2

MUX

in0

in1

s
e

l0

(running phase)

2 1
k

X

1

1

1

1
s

0
s

1

1X
29

clk

29

29

29
29

29

29

29

29

29

29

29

29

29

1

2

3

1
r

X

Figure 3.6: Block diagram of the SKIM module.

back signal in this figure is connected to the LFSR’s input multiplexer as shown in Figure 2.2.

Also, Xr1 connectivity is shown in more details in Figure 3.7. In this figure, the block denoted

by “IP” generates the inner product of the two 29-bit inputs, while ⊕ adds the 29-bits at its input

over GF (2). The double-headed arrows under a component (correspond to inserted registers)

and the dotted arrow output (Initial Feedback), are used for pipelining (see Subsection 3.3.2).

The numbers under a register specify the clocking of that register within the pipelined scheme,

during initialization phase. During the extended key initialization round, the two signals s0 and

s1 in Figure 3.6 change values in each stage as mentioned in the previous section. These two

42

s0

s1

In
itia

l F
e

e
d

b
a

c
k

in0

in1

sel0

in2

in3

sel1

in0

in1

sel0

1

in0

in1

sel0

Output

Sequence

+

102
.

30

10i
X B

1

1

1
1

1

1

10
1 1

i
X B

29

29 29

29

29

29

29

29

29

29

29

29

29

1
r

X

IP

29

MUX
1

MUX
2

MUX
3

10

10

20

Initial Feedback
(for pipelining)

1 2

1
2 1 2 3

4

3,5,7

3,5,7

3,5,7

4,6,8

4,6,8

2

Figure 3.7: The proposed WG transformation after integration with the SKIM module.

signals control the outputs of the three multiplexers MUX1, MUX2, and MUX3 according to

Table 3.4. In each stage of the extended key initialization round, the SKIM module computes

a partial value of the Initial Feedback signal and stores it in Register 2 (see Figure 3.6).

During the first clock cycle, s0 and s1 are both at low logic levels. Hence, MUX1, MUX2,

and MUX3 generate the signals X2k
, X, and X ⊕ 1 at their outputs, respectively. The output

of the multiplier becomes Xr1 = X2k+1 and that of the GF
(
229

)
adder is Xr1 ⊕ X ⊕ 1. Upon

receiving a new clock signal, i.e. at the start of the second clock cycle, Register 1 and Register

2 update their states with the output signal of the multiplier and the output of the GF
(
229

)
adder,

respectively. Also, X2k−1 is stored in a 29-bit register. At the same time s0 pulls up forcing the

outputs of MUX1, MUX2, and MUX3 to become Xr1 ⊕ X2k−1, X22k
, and Xr1 ⊕ X ⊕ 1 (the state of

Register 2 when the clock signal arrived), respectively. With these settings of the multiplexers

and the registers, the multiplier output changes to Xr2 ⊕ Xr4 = X22k
(
Xr1 ⊕ X(2k−1)

)
and that of

the GF
(
229

)
adder to Xr4 ⊕Xr2 ⊕Xr1 ⊕X ⊕ 1, denoting Register 1’s and Register 2’s next states,

respectively, when the third clock signal arrives. When the third clock cycle starts, s0 changes

to low logic level while s1 changes to high logic level, which forces MUX1, MUX2, and MUX3

to generate X2k(2k−1), X, and Xr4 ⊕Xr2 ⊕Xr1 ⊕X⊕1 at their outputs, respectively. The multiplier

43

Stage s0 s1
Output Next State

MUX1 MUX2 MUX3 Register 1 Register 2

1 0 0 X2k
X X ⊕ 1 Xr1 Xr1 ⊕ X ⊕ 1

2 0 1 Xr1 ⊕ X(2k−1) X22k
Xr1 ⊕ X ⊕ 1 Xr4 ⊕ Xr2 Xr4 ⊕ Xr2 ⊕ Xr1 ⊕ X ⊕ 1

3 1 0 X2k(2k−1) X Xr4 ⊕ Xr2 ⊕ Xr1 ⊕ X ⊕ 1 Xr3 Xr4 ⊕ Xr3 ⊕ Xr2 ⊕ Xr1 ⊕ X ⊕ 1

Table 3.4: Multiplexers outputs and next states of Register 1 and Register 2 as a function of s0

and s1.

and the GF
(
229

)
adder outputs become Xr3 = X2k(2k−1)+1 and Xr4 ⊕ Xr3 ⊕ Xr2 ⊕ Xr1 ⊕ X ⊕ 1,

respectively.

At the arrival of the fourth clock signal (the beginning of a new extended key ini-

tialization round) s0 and s1 both change back to low logic levels, the LFSR is clocked

and latched with the result of the bit-wise XOR of the computed Initial Feedback signal
(Xr4 ⊕ Xr3 ⊕ Xr2 ⊕ Xr1 ⊕ X ⊕ 1) and the LFSR’s Linear Feedback signal. At the arrival of the

67-th clock signal, the LFSR would have been clocked 22 times and the running phase starts.

Throughout the run phase, both s0 and s1 stay at logic level 0; therefore MUX1 generates

the signal X2k
and MUX2 generates the signal X. With these values, the multiplier generates

Xr1 and the WG transform in Figure 3.7 produces a stream bit, for each cycle.

The following section, studies the space and time complexities of the proposed WG(29, 11)

cipher.

3.2.4 Space and Time Complexities

This section begins with presenting the hardware complexity of the proposed WG implemen-

tation, followed by its time complexity.

3.2.4.1 Space Complexity

The space complexity of the WG transform is reduced, while that of the WG’s FSM is slightly

increased, compared to the corresponding ones in the proposed MOWG. Please refer to Tables

3.2 and 3.5 for a comparison of the number of gates in the transform and FSM of the MOWG

and WG, respectively. In what follows, the hardware complexities of the WG transform and its

FSM are first summarized. Then, the overall hardware cost of the WG design is obtained.

WG Transformation The space complexity of the WG transform has been improved com-

pared to the MOWG transform. This is mainly because the number of field multipliers in the

WG transform is reduced by 2 w.r.t that in the MOWG transform. On the other hand, compared

44

to the MOWG transformation in Figure 3.2, the design in Figure 3.7 has the following addi-

tional components: a GF
(
229

)
adder, a 29-bit GF (2) addition, three 29-bit Registers, an XOR

gate, an OR gate, one 4-to-1 29-bit multiplexer, two 2-to-1 29-bit multiplexers with 2 selector

NOTs, and an inner product. A 29-bit GF (2) adder consists of 28 XOR gates. A 2-to-1 29-bit

multiplexer consists of 29 parallel 2-to-1 1-bit multiplexers. The inner product has 29 AND

gates and 28 XORs. Refer to Subsection 3.1.5.1 for details about the hardware of the other

components listed above. By adding the hardware of the additional components to the gate

count in the MOWG transform (Table 3.2), and then subtracting the hardware cost of two field

multipliers, the total hardware cost of the proposed WG transform is obtained as listed in Table

3.5.

Component NR NA NX NO NI

WG Transform 87 4524 6292 146 4

FSM (Figure 3.5) 18 7 1 3 2

Table 3.5: Count of 1-bit registers and logic gates in the components of the proposed

WG(29, 11).

FSM The FSM depicted in Figure 3.5 has additional two AND gates, two OR gates, a 2-

to-1 1-bit multiplexer (with 1 selector NOT), 1-bit Register, and a 3-bit one-hot counter, as

compared to Figure 3.3. Similar to the 11-bit one-hot counter, the 3-bit one-hot counter is

simply composed of a three stages circular shift register with set/reset inputs having the output

of the last register fed to the input of the first register. By adding the gates in the mentioned

components to the number of gates of the FSM in Figure 3.3 (Table 3.2), the total hardware

cost of the FSM in Figure 3.5 is as shown in Table 3.5.

The LFSR and the 4-to-1 MUX of the WG have same complexities as the ones in the

MOWG (Table 3.2). Moreover, the WG design contains two 29-bit bit-wise complement oper-

ations (inverter symbol (a) and inverter symbol (b) in Figure 3.2) and a GF
(
229

)
adder (com-

puting the bit-wise XOR of Initial Feedback signal and the Linear Feedback signal). Let NWG
O ,

NWG
I , NWG

R , NWG
A , and NWG

X denote the number of OR gates, Inverters, 1-bit Registers, AND

gates, and XOR gates in the proposed WG cipher, respectively. Therefore, by adding the cor-

responding number of gates in the GF
(
229

)
adder and in inverter symbols (a) and (b) to the

number of gates in the 4-to-1 multiplexer, and the LFSR (see Table 3.2), and as well, to the

45

number of gates in the FSM and the WG transform (see Table 3.5) one obtains

NWG
O = 236, NWG

I = 94, NWG
R = 424,

NWG
A = 5546, NWG

X = 7685.

3.2.4.2 Time Complexity

Here, the propagation delay along the critical path of the proposed WG design is derived.

Notice that the LFSR is not a candidate for the critical path, since it still has less multipliers

contributing to its propagation delay, compared to the WG transform. In what follows, the

formulation of the longest path during the key initialization phase is presented. After this, the

longest path during the running phase is proved to be the critical path of the cipher.

From Figure 3.7, one can see that the critical path during the key initialization phase extends

between the LFSR (not shown in the figure) and the output of the module generating X2k−1.

Hence, the propagation delay through longest path during key initialization phase of the WG is

TKIPh =24TX + 4TA + TR. (3.22)

The longest path of the WG cipher during the run phase can also be seen in Figure 3.7 extending

between the LFSR and the cipher’s output, passing through the X2k−1 module. Therefore, the

propagation delay of this run phase longest path is easily obtained by adding the delays of its

components as follows

TRunPh =32TX + 5TA + TR. (3.23)

From (3.22) and (3.23), the critical path of the cipher is (3.23).

3.3 Results and Comparisons

The following sections compare the proposed designs of the MOWG(29, 11, 17) and the

WG(29, 11) ciphers with the corresponding previous implementations in [58], [68], and [56].

Also, further optimizations and general applicability of the proposed algorithms are discussed.

3.3.1 Results from FPGA and ASIC Implementations

The proposed WG and MOWG designs, together with the WG in [68], have been realized using

ASIC and FPGA implementations. The ASIC speed and area results are for the 65nm CMOS

technology based on Synopsys Design Compiler’s estimate of area and clock speed prior to

place-and-route, with medium effort for optimizations. The power consumption readings have

46

Cipher

Transform

Technology

Primary # Clocks in Bits/Cycle
Area

Latency
Speed

Throughput Throughput Dynamic
Energy

Architecture Optimization
Init. Phase (Run Phase) (nsec) (Mbps)

Per Area Power

Type Target (KGate) (MHz) (Kbps/Gate) (mW) (mJ/Gbit)

WG-7 @2MHz [60]

Look-up Table

4-bit

- 10084 -

Code Lines = 1097,

- - 0.098 - - -
microcontroller

(software)
MARC4

Exp/Ret = 7/4
ATAM893 - D

WG-7 @8MHz [60]

Look-up Table

8-bit

- 10074 -

SRAM = 0,

- - 0.28 - - -
microcontroller

(software) ATmega family Flash = 1100

WG [68] Multiplier-based CMOS 65nm Area 22 1 33.2 6.94 144 144 4.34 7.28 50.6

WG [56]
Look-up Table

- - - 1

319 Registers +

- - - - - -9000 XORs +

(ROM) 229 ROM bits

MOWG [58]
Multiplier-based

CMOS 90nm - 22 -
187

- 1000 8500
45

- -
(Pipelined with Reuse) (Kµm2) (Kbps/µm2)

WG (Figure 3.7) Multiplier-based CMOS 65nm Area 66 1 19.9 4.45 224 224 11.2 4.45 19.8

MOWG (Figure 3.2) Multiplier-based CMOS 65nm Area 22 17 26 6.62 151 2567 98.73 5.89 2.3

Table 3.6: Results obtained from ASIC implementations.

Cipher

Transform

Family

Synthesis Primary # Clocks in Bits/Cycle

LUTs

Latency Speed Throughput Throughput Total Energy

Architecture
Tool

Optimization
Init. Phase (Run Phase) (nsec) (MHz) (Mbps)

Per Area Power
(J/Gbit)

Type Target (Kbps/LUT) (mW)

WG [68] Multiplier-based
Virtex 4

Xilinx XST Area 22 1 6449 33.3 30 30 4.65 380 12.67
(xc4vfx12sf363-10)

MOWG [58]
Multiplier-based Stratix II Mentor Graphics

- 22 - 4184 - 218 1853 443 - -
(Pipelined with Reuse) (EP2S15F484C) PrecisionRTL

WG (Figure 3.7) Multiplier-based
Virtex 4

Xilinx XST Area 66 1 4044 29.4 34 34 8.41 187 5.5
(xc4vfx12sf363-10)

MOWG (Figure 3.2) Multiplier-based
Virtex 4

Xilinx XST Area 22 17 5512 28.6 35 595 108 342 0.57
(xc4vfx12sf363-10)

Table 3.7: Results obtained from FPGA implementations.

been conducted under 140 MHz frequency for all the designs. The FPGA designs have been

synthesized using Xilinx Synthesis Tool (XST) [2]. The FPGA area and speed results are for

Xilinx Virtex4 series FPGA device xc4vfx12sf363-10. All FPGA results are for post place-

and-route and the power consumption results have been recorded for a frequency of 29 MHz

for all the designs.

The reported ASIC and FPGA results are listed in Tables 3.6 and 3.7, respectively. In Table

3.6, the WG-7 results (another member of the WG family based on an LFSR over GF
(
27

)
) are

from software implementations presented in [60]. KGate is the area equivalence in terms of

number of NAND gates ×103 (estimated area of one NAND gate is 2.08 (µm)2). The results for

the WG(29, 11) hardware implementation proposed by [56] are based on theoretical analysis.

“Exp” and “Ret” denote the depth of the expression and return stacks, respectively. In Tables

3.6 and 3.7, Throughput is the # bits per cycle × speed (Mbps = 106bit/second). Gbit = 109bit.

Also, the readings shown from the MOWG design in [58] were reported for the pipelined-

with-reuse version of the transform. The following paragraphs analyze the reported results and

compare the proposed WG and MOWG designs to other listed ones.

The reported results show that the proposed WG takes longer to finish its initialization

47

phase compared to the one in [68] (293 nsec (ASIC)/1.94 msec (FPGA) in the proposed scheme

compared to 152 nsec (ASIC)/0.73 msec (FPGA) in [68]). This is not significant because

initialization is executed only once per a run. The reported results also show that the proposed

WG is superior to the one in [68] in terms of throughput, area, and power consumption. The

proposed WG has lower latency, by 36% (ASIC) and 12% (FPGA), w.r.t the one in [68]. And

accordingly, the speed/throughput of the proposed WG is increased by 55% (ASIC) and 13%

(FPGA), compared to [68]. Also, notice that the normalized throughput (proposed) is twice

the one in [68]. This is due to the higher throughput and the significant reduction in area (area

reduced by 40% for ASIC and by 37% for FPGA) of the proposed WG compared to the one

in [68]. Moreover, one can see that the proposed WG consumes less power (39% ASIC, 51%

FPGA) and uses less than half the energy reported for [68].

The WG design in [56] requires 2m ROM bits for a general WG over GF (2m). On the other

hand, the area of the proposed WG is dominated by its field multipliers, which have space com-

plexity quadratic in m. Specifically, for the WG(29, 11), 229-bits of ROM are required in [56]

(in addition to 9000 XORs and 319 registers). There are no results in [56] about the running

speed of the presented WG. According to a similar study on ROM-based and multiplier-based

MOWG designs by [58], ROM based ASIC implementations are always larger and slower than

using field multipliers, for m > 11.

The proposed MOWG design is expected to offer better area and speed compared to the one

presented in [58]. The proposed MOWG has 8 multipliers compared to 9 in [58]. Therefore,

its area is expected to be scaled down by a ratio close to 8/9 w.r.t the one in [58]. It is noted

that the results from [58] are reported for the pipelined-with-reuse version of the transform.

Applying pipeline-with-reuse techniques to the proposed MOWG would result in speed and

area readings similar to the ones reported in [58]. For the non-pipelined and the pipelined

(without reuse) versions, however, the proposed MOWG is expected to show lower area and a

slightly higher speed/throughput, and lower latency, compared to the corresponding versions

from [58]. This is due to the removed multiplier and the removed inverters from its critical

path (see Figure 3.2). Notice that a 6-stage pipeline of the proposed MOWG offers 6-times the

throughput which is reported for its non-pipelined version in Tables 3.6 and 3.7 (see Section

3.3.2). That is, almost double the throughput provided by the pipeline-with-reuse MOWG in

[58].

The proposed WG offers higher clock speed, and better area and power consumption, com-

pared to the proposed MOWG. However, the proposed MOWG has higher throughput and

better energy per bit. Most important, the WG has more good randomness properties than the

MOWG cipher [68, 58]. Therefore, when security and randomness are critical for the appli-

cation, the proposed WG design is preferred. If instead, throughput and area are the critical

48

criteria for the application, then, in this case, the proposed WG design is superior for low area

applications, while the proposed MOWG serves better for high throughput applications. It is

noted that one can apply serialization or pipelining to the WG/MOWG transforms for achiev-

ing lower area or higher throughput, if it is demanded by the application. This is discussed in

the next section.

3.3.2 Discussion

This section discusses the serialization and pipeline techniques as further optimizations to

the proposed WG and MOWG. Also, the applicability of the proposed techniques to general

MOWG/WG ciphers, when field elements are represented in the NB, is considered.

For low throughput applications, smaller area can be achieved by serial computation of

the MOWG/WG transforms. Figure 3.8 presents how this is done using one multiplier. In

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

12345678

1

2

3

XX

2
R
G

2
R
G

2
R
G
2
0

2
XX

2
RG

1
RG

3
RG

10
2

X
2

X
2
2

2
RG

4
2

X
5
2

2
RG

1 2
RG RG

10
2

2
RG

1
X

3
R
G

3
R
G0 0 0 0

29

29

29

29

29

29

29

29

29 29

29 29

29

29

17

2929292929292929

2929292929292929

29

Initial Feedback

MOWG Output

30

2929

29

1 X

WG Output
+

1

1
1

IP

20
2

X

Register Clock Cycle

Clocking of Registers

1

2

3

1

2 - 5

1,6,7

29

Figure 3.8: Serial Implementation of MOWG/WG Stream Ciphers.

this figure, the dotted square is used, only, for generating the WG stream bits. The rest of

the diagram is common for MOWG and WG. The initialization round takes 8 cycles for both

transforms. During run phase of the MOWG, 17 output bits are generated every 7 cycles. For

49

the WG, a stream bit is produced every 6 cycles. The maximum propagation delay is equivalent

to 17 levels of gate delays. Compared to 38 levels in (3.23) (WG) and 46 levels in (3.10)

(MOWG), the clocks of the serial WG and MOWG are 2.2 and 2.7 times faster, respectively.

Therefore, the throughput of the serial versions of the WG and the MOWG ciphers are almost
2/6 and 3/7 of the corresponding original ones in Figures 3.2 and 3.7, respectively. The total gate

counts for the serial versions of the transforms are 4155 (WG) and 4011 (MOWG). Compared

to 11053 gates in the WG transform (Section 3.2.4.1) and 14529 gates in the MOWG transform

(Section 3.1.5.1), then, the area of the serial versions of the WG/MOWG transforms are almost
2/5 and 2/7 of their original architectures, respectively. If even lower area is demanded, a digit-

level field multiplier [76, 74] can be deployed, adding more cycles for each multiplication.

The proposed schemes can achieve higher throughput through pipelined transforms. The

LFSR should be reconstructed using the Galois-style feedback, or simply by placing the mul-

tiplication with β in between cells Bi+1 and Bi. Otherwise, the LFSR’s speed will constrain the

pipelining. Figure 3.2 shows how to achieve a 6-stage pipeline of the MOWG transform using

19 29-bit registers. The pipelined MOWG critical path has 7 levels of logic gate delays. The

corresponding throughput and run phase latency are 17/(TA+6TX) and 6 (TA + 6TX), respectively.

Since (3.10) has 46 levels of logic gate delays, thus, the throughput of the pipelined MOWG

is almost 6 times higher. Similarly, Figure 3.7 shows a 6-stage pipeline of the WG transform.

From this figure, one can find the pipelined WG’s latency and throughput as 6 (TA + 6TX) and
1/(TA+6TX), respectively (the latency during initialization is higher, i.e., 8 (TA + 6TX)). Com-

pared to the throughput which results from (3.23), this is almost 5 times higher. For even

higher throughput, the unfolding technique presented in [26] can be deployed. Simply, the

MOWG/WG LFSR is unfolded to generate n outputs (2 ≤ n ≤ 11) per a cycle. Hence, by

implementing the same number of transforms, the throughput will be n-times higher at the

expense of a proportional area increase.

Notice that Equation (3.4) is a general form of the WG permutation (for any

MOWG(m, l, d)). Since squarings are cyclic shifts in the NB, then, only the architecture of

the power 2k − 1 will vary for different values of k =
⌈

m
3

⌉
. By having the WGPm, the MOWG

transform is just a proper selection of d bits from the WGPm [58]. Also, notice that the compli-

ment LFSR in (3.5) is general for any GF (2m). Similarly, except for the power 2k−1, Equation

(3.21) is general for any WG(m, l). However, (3.11) is only applicable to GF (2m) where self-

dual NB exist. Therefore, if there is not self-dual NB [15], the inner product which is used

to compute Tr
(
X22k

(
Xr1 ⊕ X2k−1 ⊕ X23k(2k−1)

))
in Figures 3.4 and 3.7 should be replaced with a

field multiplication followed by a trace.

It is interesting to investigate the WG implementation in the PB. It is known that the PB

offers area efficient multipliers, compared to the NB representation. However, there is a penalty

50

due to the additional space and propagation delay introduce by the squaring operations. This

is considered in the next chapter.

3.4 Conclusion

Two new designs for the MOWG(29, 11, 17) and the WG(29, 11) ciphers have been proposed.

As compared to the MOWG presented in [58], the proposed MOWG reduces the number of

field multipliers in the transform by one through signal reuse. Also, it increases the speed by

eliminating two inverters delay from the critical path. This is accomplished by reconstructing

the key/IV loading algorithm and the feedback polynomial of the LFSR. The proposed WG

is an optimization of the proposed MOWG with trace (WG version). It is obtained through

using the new properties of the trace function for type-II ONB, accompanied with serialized

computation of the Initial Feedback signal during key initialization phase.

The proposed designs have been implemented on ASIC and FPGA. The ASIC implemen-

tations show that the proposed WG implementation achieves better results compared to [68]

for area, speed, and power consumption. The WG improves the power consumption by a 39%

reduction, area by a 40% reduction, and speed by an increase of 55%. Similarly, the FPGA

implementations show that the proposed WG achieves better results for area, speed, and power

consumption compared to [68]. The power consumption is reduced by 51%, the area is reduced

by 37%, and the speed is increased by 13%.

Based on these results, the proposed implementations of the MOWG(29, 11, 17) cipher and

the WG(29, 11) cipher are promising candidates for high speed and limited resources platforms,

respectively, where throughput, area, and power consumption are of critical importance and the

guaranteed randomness properties are required.

51

Chapter 4

Implementations of the WG Stream
Ciphers Using PB

Previous chapter presented an optimized WG(29, 11) design based on the Type-II Optimal

Normal Basis (ONB-II). Using the novel trace property presented in the previous chapter, the

design requires only 6 field multipliers. In this chapter, PB representation is considered for the

fist time in the WG stream ciphers. A novel method for computing the trace of the multipli-

cation of two field elements represented in the PB is proposed. It is noted that the proposed

trace method is applicable to any GF (2m), while the one presented in the previous chapter

only applies to fields where self-dual bases exist. Based on the trace method proposed here,

a PB-based hardware design of the WG(29, 11), which uses 6 multipliers, is presented. Also,

pipelined and serialized instances of this standard design are presented (see Figure 4.1). The

reported results for the 65nm CMOS ASIC realization of the proposed standard WG(29, 11)

design shows smaller area and, slightly improved normalized throughput, compared to the best

result presented in the previous chapter.

The only WG-16 hardware design, which uses NB, is presented in [35]. This design is

based on composite field arithmetic and properties of the trace function in the tower field rep-

resentation. In this chapter, a new formulation of the WG-16 permutation which requires 8

multiplications compared to 10 in the formulation of [35] is proposed. Furthermore, a new for-

mulation for the trace function of the multiplication of two field elements is derived, based on

which a PB-based WG-16 design is proposed using only 6 multipliers for its transform. Also,

pipelined and serialized versions of this standard design, are presented and for each design

both the traditional PB and Karatsuba multipliers are considered (see Figure 4.1). According

to the conducted ASIC (CMOS 65 nm) implementations, the proposed pipelined instance of

the WG-16 offers double the throughput, while it slightly reduces the area, compared to the

52

results reported in [35].

The goal of this chapter is to show hardware implementations for WG ciphers, which in

return, provides trade-offs between randomness properties and performance for a selection of

ciphers for a particular application. In particular, it is shown that the proposed WG-16 im-

plementations comply with the throughput requirements of the 4G domain. The contributions

of this chapter which include a novel trace method and nine new designs of the WG stream

ciphers are summarized in Figure 4.1. In this figure, the standard WG(29, 11) implementation

shows lower space and slightly improved normalized throughput, compared to the one in pre-

vious chapter. Also, the pipelined instance of the proposed WG-16 reports higher throughput

and lower area compared to the corresponding ones in [35].

Novel method for the trace function

of the multiplication of two field

elements represented in the PB

PB based Design

for the WG-16

PB based Design

for the WG(29,11)

Standard

Version

Serial

Version

Pipelined

Version

Standard

Version

Serial

Version

Pipelined

Version

Implemented

Using PB

Multiplier

Implemented

Using Karatsuba

Multiplier

Implemented

Using PB

Multiplier

Figure 4.1: Contributions of this work.

It is noted that, throughout this chapter, ⊕ represents the addition operator in GF (2m). Also,

C (Z) = Zl ⊕∑l−1
i=0 CiZi, Ci ∈ GF (2m) is the characteristic polynomial of an l-stages LFSR over

GF (2m), from which the feedback recurrence relation can be derived as A j+l =
∑l−1

i=0 CiAi+ j,

where j ≥ 0, Ai ∈ GF (2m), and (A0, A1, . . . , Al−1) is the initial state of the LFSR.

It is noted that a version of this chapter appears in [32]. The chapter is organized as follows.

Section 4.1 presents the proposed WG(29, 11) hardware designs based on the PB. Section

4.2 presents the proposed WG-16 hardware designs based on the PB. Results based on ASIC

implementations are discussed in Section 4.3. Section 4.4 concludes the chapter.

53

4.1 Architectures of the WG(29, 11) Stream Cipher

The WG(29, 11) uses exponentiation over GF
(
229

)
, and therefore, an ONB was assumed to be

more efficient for hardware design, compared to other representations, due to the free cost of

squaring operations [39, 68]. As it is shown, the previous chapter uses new properties of the

trace function for type-II ONB in order to build the cipher using only 6 field multiplications,

which is the most optimal WG(29, 11) design so far.

In this section, three PB-based designs for the WG(29, 11) are proposed. These designs

include a standard architecture, its serial version, and its pipelined version. The serial version

is suitable for low-area applications whereas the pipelined one is proposed for high-speed ap-

plications. To the best of the author knowledge, this is the first implementation of the WG

cipher based on the PB representation. The parameters of the cipher are chosen carefully for a

low area design. Also, for further area reduction, the proposed implementation uses properties

of the trace function for PB in order to optimize the WG transform. The proposed scheme

offers smaller area and a slightly higher normalized throughput, compared to the best results

presented in the previous chapter, at the expense of a small decrease in the speed. In this sec-

tion, first, the WG transform formulations are derived. This is followed by finding the design

parameters. After that, the proposed architecture of the WG(29, 11) is introduced.

4.1.1 Formulation of WGT29

Since replacing
(
Y220−210+1

)
with

(
Y220−210+1

)220

in (2.9) does not affect Tr (WGP29), therefore
WGT29 =

Tr
(
1 ⊕ Y ⊕ Y

(
Y25)25

)
+

Tr

((Y25)25
)210 (

Y
(
Y25)25

⊕ Y210−1 ⊕
(
Y210−1

)230
) . (4.1)

It is noted that (4.1) shows the order of computing the squarings in the transform. To reduce
propagation delay due to squarings in the PB, Y210−1 is computed as follows:

Y210−1 =

(((
Y25+1

)2+1) (
Y25+1

)24
) ((

Y25+1
)2+1)22

. (4.2)

The following section introduces the WG(29, 11)’s design parameters.

4.1.2 Design Parameters

This section presents the design parameters for the proposed PB implementation of the

WG(29, 11). In what follows, the field polynomial, the squaring matrices, the LFSR’s char-

54

acteristic polynomial, the trace vector, and the formulation for directly computing the trace of

the multiplication of two field elements are presented.

4.1.2.1 Field Polynomial and Squaring Matrices

To compute (4.1) and (4.2), field multiplications and squarings are used. In the original design

of the WG(29, 11) [39] and all reported schemes to date [68, 31], NB representation is used.

The squaring is obtained by cyclic shift in NB and hence it is free in hardware implementation.

However, such an operation in PB is not free. On the other hand, field multiplication using PB

requires lower complexity than the one using NB. In PB, the complexities of these operations

depend on the irreducible polynomial that constructs the finite field. It is known that irreducible

trinomials define PBs offering field multiplications with low space and time complexities [72,

63, 5]. For GF
(
229

)
, the following two trinomials are irreducible over GF (2)

t1 (x) = x29 + x2 + 1, (4.3)

and its reciprocal function t2 (x) = x29
(
t1

(
x−1

))
= x29 + x27 + 1. Between t1 and t2, t1 offers

operations with lower space complexities. Specifically, the t1-based PB multiplier requires

292 = 841 ANDs and 292 − 1 = 840 XORs with a propagation delay of TA + 7TX [72],

where TA and TX are the delays in an AND and an XOR, respectively. In the following, the

complexities of the squarings using the PB defined by (4.3) are obtained.

Let A be an arbitrary element of GF (2m) represented in the PB, and let V = A2. Denote

by a = (a0, . . . , am−1) and v = (v0, . . . , vm−1), the row vectors holding the bits which represent

A and V w.r.t the PB, respectively. Then, v = aS, where S is the binary m × m squaring

matrix whose entries are either 0 or 1 [5]. In general, W = A2e
is obtained as w = aSe.

This formulation involves m inner products aSe
j, where Se

j denotes the j-th column vector of

Se, 0 ≤ j < m. Let NX denote the number of XOR gates. Then, the hardware realization

of aSe requires NX =
∑

H
(
Se

j

)
>1,0≤ j<m

(
H

(
Se

j

)
− 1

)
and TSe =

⌈
log2 (θ)

⌉
TX, where TSe is the

propagation delay for computing aSe, H (Ω) is the Hamming weight of a vector Ω, and θ =

maxH
(
Se

j

)
>1

{
H

(
Se

j

)
| 0 ≤ j < m

}
.

For the PB defined by (4.3), the squaring matrix S is shown in Figure 4.2. Table 4.1 lists the

space and time complexities, before and after signal reuse, for the different squaring matrices

used in the WG(29, 11)’s implementations. In this table, PD denotes propagation delay.

4.1.2.2 Characteristic Polynomial of the LFSR

A primitive characteristic polynomial of degree 11 over GF
(
229

)
is required in order for the

WG(29, 11) to produce key-streams with maximal period of 2319 − 1 [39, 68]. For space effi-

55

Figure 4.2: The matrix S for WG(29, 11).

ciency, the following primitive pentanomial is selected

Z11 ⊕ Z6 ⊕ Z2 ⊕ Z ⊕ α, (4.4)

where α ∈ GF
(
229

)
is a root of the defining polynomial (4.3). The primitive property of

the polynomial has been verified using the “is primitive()” method provided by the Sage

Notebook online tool [3]. Let
{
Ai, 0 ≤ i < 2319 − 1

}
denote the sequence generated by (4.4).

According to previous chapter, the following recurrence relation generates the sequence{
Bi = Ai ⊕ 1, 0 ≤ i < 2319 − 1

}
B j+11 =

(
B j+6 ⊕ B j+2 ⊕ B j+1 ⊕ αB j

)
⊕ α, j ≥ 0, (4.5)

where {Bi = Ai ⊕ 1, 0 ≤ i ≤ 10} is the initial state of the LFSR. By constructing the LFSR based

on (4.5) instead of (4.4), then, one obtains Y = 1⊕ Ai+10 = Bi+10 in (4.1) and (4.2). In addition,

notice that (4.5) requires only three field additions, one field multiplication with α (a constant1),

and one NOT gate (for addition of α).

1For the field polynomial (4.3), one can easily find that the multiplication with the constant α requires only
one XOR gate with a propagation delay TX .

56

No Sig. Reuse Sig. Reuse

XOR PD XOR PD

S, S30 15 TX 15 TX

S2 37 2TX 30 2TX

S4 118 3TX 65 3TX

S5 182 4TX 97 4TX

S10 374 5TX 214 5TX

S20 338 5TX 200 5TX

Table 4.1: The space and time complexities of the different squaring matrices used in the

WG(29, 11).

4.1.2.3 Trace Vector

Let the elements in GF (2m) be represented in the PB which is defined by an irreducible poly-

nomial f (x) of degree m over GF (2). Then, the trace of an element A ∈ GF (2m) is ob-

tained as Tr (A) = aτT , where a = (a0, a1, . . . , am−1) (ai’s are coordinates of A w.r.t PB),

τ = (τ0, τ1, . . . , τm−1) is a unique and constant m-bit vector such that τi = Tr
(
αi

)
∈ GF (2) , 0 ≤

i < m and f (α) = 0 [5]. Therefore, for the PB
{
α28, . . . , α, 1

}
defined by (4.3), one obtains

τi = 1 for i ∈ {0, 27} and τi = 0 otherwise. Thus,

Tr (A) = a0 + a27. (4.6)

4.1.2.4 Trace of Multiplication of Two Field Elements

Previous chapter presented a method for the direct computation of the trace of the multiplica-

tion of two elements represented in the type-II ONB. In the following, a formulation for the

direct computation of the trace of the multiplication of two field elements represented in PB

is constructed. This method is then used to optimize the space complexity of the PB based

implementations of the WG(29, 11) and the WG-16 (see Sections 4.1.3 and 4.2.4).

Proposition 4.1.1 Consider the m-bit trace vector τ = (τ0, . . . , τm−1), τi = Tr
(
αi

)
, where α

is the root of the defining polynomial of GF (2m) over GF (2) [5]. For any two field elements

A = (am−1, . . . , a0) and B = (bm−1, . . . , b0), let C = AB ∈ GF (2m). Then:

Tr (C) =
m−1∑
i=0

τi

i∑
j=0

ai− jb j +

m−1∑
i=0

τi

m−2∑
k=0

qk,i

m−1∑
j=k+1

am− j+kb j, (4.7)

57

where Q(m−1)×m =
[
qk,i

]
is the reduction matrix and, U(m−1)×m =

[
uk, j

]
and Lm×m =

[
li, j

]
are as

follows [72]

U =



0 am−1 am−2 · · · a2 a1

0 0 am−1 · · · a3 a2
...
...

...
. . .

...
...

0 0 0 · · · am−1 am−2

0 0 0 · · · 0 am−1


,

and

L =



a0 0 0 · · · 0 0

a1 a0 0 · · · 0 0

a2 a1 a0 · · · 0 0
...

...
...
. . .

...
...

am−2 am−3 am−4 · · · a0 0

am−1 am−2 am−3 · · · a1 a0


.

Proof Let b = (b0, . . . , bm−1) and c = (c0, . . . , cm−1) be row vectors holding the bits of B and C,

respectively, then, from [72] one has

cT = LbT +QT UbT , (4.8)

where QT is the transpose of Q. Therefore:

Tr (C) = cτT =
(
LbT

)T
τT +

(
QT UbT

)T
τT

=

m−1∑
i=0

m−1∑
j=0

li, jb jτi +

m−1∑
i=0

m−1∑
j=0

m−2∑
k=0

qk,iuk, jb jτi

=

m−1∑
i=0

τi

i∑
j=0

li, jb j +

m−1∑
i=0

τi

m−2∑
k=0

qk,i

m−1∑
j=k+1

uk, jb j,

where the last result is obtained by noticing that li, j = 0 for j > i and uk, j = 0 for j ≤ k [72],

and by replacing li, j and uk, j with the corresponding entries from L and U, respectively, one

obtains (4.7).

The hardware realization of (4.7) requires n ANDs, n − 1 XORs, and a propagation delay

of TA +
⌈
log2 (n)

⌉
TX, where n =

∑
τi,0 (i + 1) +

∑
τi,0,qk,i,0 (m − k − 1) is the upper bound of

the number of terms
(
ai− jb j

)
and

(
am− j+kb j

)
in (4.7). It is noted that if τ and Q have low

Hamming weights, then, the computation of Tr (AB) using (4.7) becomes more efficient (in

terms of space) than the straight forward method. In what follows, the realization of (4.7) for

the WG(29, 11) is derived.

58

Corollary 4.1.2 Let
{
α28, . . . , α, 1

}
be the PB of GF

(
229

)
over GF (2) which is defined by (4.3).

Then, the trace of the multiplication of two field elements A =
∑28

i=0 aiα
i and B =

∑28
i=0 biα

i is

computed as follows:

Tr (AB) = (a0 + a27) b0 +

25∑
j=1

(
a27− j + a29− j

)
b j+

(a1 + a26) b28 +

27∑
j=26

(
a27− j + a29− j + a54− j

)
b j. (4.9)

Proof It is noted that τ has only two nonzero components, τ0 and τ27 (see Section 4.1.2.3).

The Q (reduction) matrix for the field polynomial (4.3) have been computed and it has been

found that the only nonzero entries in the 1-st and the 28-th columns of this matrix are q0,0,

q27,0, q25,27, and q27,27. Hence, (4.9) results from substituting these values in (4.7).

It is noted that the realization of (4.9) requires 29 AND and 59 XOR gates with a time delay

of TA + 6TX.

4.1.3 Architecture and FSM

4.1.3.1 Architecture of the WG(29, 11) Cipher

The PB (defined by (4.3)) based architecture of the WG(29, 11), according to the WGT29

formulations in (4.1) and (4.2), and the linear recurrence (4.5), is shown in Figures 4.3 and

4.4. In these two figures, Tr (•) generates the trace of a GF
(
229

)
element (see Section 4.1.2.3).

Tr (⋆) generates the trace of the multiplication of two GF
(
229

)
elements using (4.9). Y is

the output of the LFSR represented by (4.5). Y210−1 is generated based on (4.2). An arrow

represents a register which is inserted for pipelining (see Section 4.1.5). A number n under a

register means it is clocked at end of the n-th clock cycle during each computation of the initial

feedback in the initialization phase. A zero under a register indicates that the register’s clock

input is always enabled during the run phase. r1 = 210+1, r2 = 220+210+1, r3 = 220−210+1, and

r4 = 220+210−1. The squaring matrices are implemented using the signal reuse constructions,

the complexities of which are presented in Table 4.1. The complement operator, i.e. ∼, invert

the first bit of the input, which requires only one NOT gate. Notice that αBi, which is required

for generating the LFSR feedback signal, is stored in the right most cell of the LFSR (i.e. B
′

i) as

shown in Figure 4.3. This is done to reduce the propagation delay through the LFSR feedback

by one multiplier. This construction avoids having the LFSR’s critical path constraining the

speed of the cipher when pipelining is applied to the transform.

59

c
trl0

c
trl1

Tr

1

FSM

LF

29

……...
10iB

6iB
1iB

'

iB
2iB……...

b

Y

10i
Y B

Y
r
4

Output

Sequence

10
2

1

1

1
1

29

29

29

29

29

29

29

29

29

29

Y

29
10S

Tr

Runnig Phase

Critical Path

1

29

29
29

5
2

Y

29

Y

(run ph.)

29

10
2

1
r

*Tr

29

29

29 29 29 29

29

29

29

29

1

2

3

WG

Transform

Y
r
3Y

r
2

Tr Y
r
1

Y

11

IF
(init. ph.)

29

29

1

2

3

2929

p
h
0

p
h
1

a

IV
29 29

129

29

1

20
2

29 29

1

30S

5S

10S

Tr

Figure 4.3: Architecture of the WG(29, 11) stream cipher.

The finite state machine (FSM) controls the cipher during three different phases of opera-

tion (see Section (4.1.3.2)). During the load phase, the LFSR shifts at each clock cycle, where

its leftmost cell is loaded with 1 ⊕ IV (IV is the initial vector).

It is noted that the initial feedback signal IF = WGP29, which is needed for initialization

phase, is missing in Figure 4.3. This is a result of computing WGT29 according to (4.1) using

(4.9). Let q = 210 − 1, r1 = 210 + 1, r2 = 220 + r1, r3 = 220 − q, and r4 = 220 + q. Therefore,

the WGP29 in (2.9) can be written as 1 ⊕ Y ⊕ Yr1 ⊕ Yr2 ⊕ Yr3 ⊕ Yr4 , and is recovered using

serial computation over 3 clock cycles as described in Table 4.2. In this table, ctrl0 and ctrl1

are generated by the FSM. WGP29 is the next state of Register 2 in stage 3. Rows of the table

are listed in order of computation stages (first to last). It is noted that, next state of Register 3

is always Yq (Figure 4.3). During the initialization phase, the LFSR shifts once every 3 clock

60

10
2

Y
Y

29

5
S

29

29 29

S
2
S

4
S

29

29

29

29

29

52
Y

0,1

0,1

0,2 0,3

0,4 0,5

0,3

0,4 0,5

0,5

0,6 0,7

0,6

Figure 4.4: Architecture of the 210 − 1 module.

cycles and loads its leftmost cell with IF ⊕ LF, where LF = LF ⊕ 1 and LF is the original

linear feedback given by (4.4).

ctrl0 ctrl1
Output Next State

MUX # 1 MUX # 2 MUX # 3 Register 1 Register 2

0 0 Y210
Y Y ⊕ 1 Yr1 Yr1 ⊕ Y ⊕ 1

1 0 Yr1 ⊕ Yq Y220
Yr1 ⊕ Y ⊕ 1 Yr4 ⊕ Yr2

Yr4 ⊕ Yr2⊕
Yr1 ⊕ Y ⊕ 1

0 1 Y210q Y

Yr4 ⊕ Yr2⊕
Yr3

Yr4 ⊕ Yr3⊕

Yr1 ⊕ Y ⊕ 1
Yr2 ⊕ Yr1⊕

Y ⊕ 1

Table 4.2: Computation of the IF = WGP29 signal over 3 clock cycles during the initialization

phase.

In the running phase, the LFSR updates its state in each clock cycle, where Bi+10 is loaded

with LF. In Figure 4.3, the keystream bits are obtained from XORing Tr (1 ⊕ Y ⊕ Yr1) with

Tr
(
Yr2 ⊕ (Yr3)220 ⊕ Yr4

)
. Tr (1 ⊕ Y ⊕ Yr1) is the result of XORing Tr (1 ⊕ Y) and Tr (Yr1).

Tr (1 ⊕ Y) and Tr (Yr1) are produced by applying operator Tr (•) to 1⊕Y and Yr1 , respectively.

The operator Tr (•) generates its output according to (4.6). Yr1 is generated by multiplying

Y with Y210
in GF

(
229

)
(by setting ctrl0 = ctrl1 = 0 for the running phase in Figure 4.3).

Y is the output Bi+10 of the LFSR and Y210
is obtained from the squarer S5 operating on Y25

,

which in turn, is available from the generator of Y210−1 (see Figure 4.4). 1 ⊕ Y is the addi-

tion of Y ∈ GF
(
229

)
with the unity element 1 = (0, . . . , 0, 1) represented w.r.t. PB. Thus,

1 ⊕ Y results from inverting the least significant bit of Bi+10 by the complement operator ∼.

Tr
(
Yr2 ⊕ (Yr3)220 ⊕ Yr4

)
is generated by applying (4.9) to Y220

and
(
Yr1 ⊕ Yq ⊕ Y230q

)
. The sig-

nal Y220
is the result of S10 operating on Y210

. Signal Yr1 ⊕ Yq ⊕ Y230q is the bitwise XOR of Yr1 ,

Yq, and Y230q, where Y230q is obtained from S30 operating on Yq and Yq is generated as presented

in Figure 4.4.

61

4.1.3.2 The Finite State Machine (FSM)

The architecture of the FSM is shown in Figure 4.5. The FSM controls the inputs to the LFSR

3-Bit 1-hot

Counter
c
lk

2-Bit Binary

Counter

FSM

re
s
e
t

p
h
0

lfs
r_

c
lk

1 1 1 1

in
0

in
1

p
h
1

1

sel 0

c
trl0

c
trl1

11-Bit 1-hot

Counter

……

……

re
s
e
t

re
s
e
t

re
s
e
t

c
lo

c
k

a
0

a
1

a
2

a
1

0

b
0

b
1

c
0

c
1

c
2

c
lo

c
k

c
lo

c
k

Figure 4.5: FSM for the PB based implementation of the WG(29, 11) stream cipher.

during the three phases of operation through signals ph0 and ph1. As presented in Table 4.3 for

the column of Figure 4.3 the loading phase takes 11 clock cycles followed by the initialization

phase which stays for 33 + 33 = 66 clock cycles, then starts the run phase. The FSM is

built from a 2-bit binary counter, an 11-bit 1-hot counter, and a 3-bit 1-hot counter. The first

counter generates ph0 and ph1. The 11-bit counter triggers the clock of the 2-bit counter, every

11 counts, during loading and initialization. The 3-bit counter, generates ctrl0 and ctrl1, and

triggers the clock of the 11-bit counter as well as the clock of the LFSR, every 3 counts, during

initialization.

4.1.4 Serialized Implementation of the PB Based WG(29, 11)

4.1.4.1 Architecture of the Serialized WG(29, 11)

Here, a serialized WGP29/WGT29 design is presented for area constrained applications. The

serial WG(29, 11) which is proposed in this section has the same LFSR, compared to the stan-

dard design in Figure 4.3; however, the WG transform and the FSM are modified. Figure

4.6 presents the proposed serial WGP29/WGT29 architecture. In this figure, Y = Bi+10 is the

LFSR’s output (see Figure 4.3), r1 = 210 + 1, r2 = 220 + 210 + 1, r3 = 220 − 210 + 1, and

62

2-bit
ph1/ph0

phase Number of Clock Cycles for the Proposed Designs

counter of Figure Figure Figure Figure Figure Figure

a1 a0 operation 4.3 4.6 4.8 4.12a 4.13 4.15

0 0 0/0 Load 11 11 11 32 32 32

0 1 1/1 Init. 33 88 132 96 288 416

1 0 1/1 Init. 33 88 132 96 288 416

1 1 0/1 Run - - - - - -

Table 4.3: Phase of operation in the proposed PB based WG designs as a function of the state

of the 2-bit binary counter.

r4 = 220 + 210 − 1. In this architecture, only one multiplier is used. The computations of the

different variables used in (4.1) and (4.2) are accomplished sequentially according to Table 4.4.

Clock Cycle

1 2 3 4

N
ex

tS
ta

te Register 1 Yr1 Yr1 Yr1 Yr1

Register 2 - Y2+1 Y
∑3

i=0 2i
Y

∑4
i=0 2i

Register 3 1 ⊕ Y ⊕ Yr1 1 ⊕ Y ⊕ Yr1 1 ⊕ Y ⊕ Yr1 1 ⊕ Y ⊕ Yr1

Clock Cycle

5 6 7

N
ex

tS
ta

te Register 1 Yr1 Yr1 Yr1

Register 2 Yq Yq Yq

Register 3 1 ⊕ Y ⊕ Yr1
1 ⊕ Y⊕ 1 ⊕ Y ⊕ Yr1⊕

Yr1 ⊕ Yr2 ⊕ Yr4 Yr2 ⊕ Yr3 ⊕ Yr4

Table 4.4: Steps for computing the WGP29 and WGT29 in the serial implementation of the

WG(29, 11) design.

It is noted that no changes are required for the loading phase of the serial WG(29, 11).

However, in the architecture of Figure 4.6, an initialization round takes 7 clock cycles to gen-

erate the WGP29 signal. The LFSR is updated at the 8-th clock cycle. During the run phase,

a stream bit is produced every 6 cycles. During these two phases, the multiplexers provide the

inputs to the multiplier and the adder. The multiplexers’ inputs are multiplexed by selectors

63

1

2

3

4

5

6

7

1234

2
R

3
R

10
2
Y

4
2
Y

1 2
R R

29

29

29

29

29

29

29

29 29

29 29

29

29

29292929

29

Initial Feedback

2929

Output

1

1

20
2
Y

Register Clock Cycle

Clocking of Registers

1

2 - 5

1,6,7

29

2
R

1
R

1

2

3

*Tr
30
S

2
9

2
9

m41 2
3
R

m0 m1 m2

m4

m3

2
Y

.Tr
29 1

1

1

1Tr Y
r
1

Y

Tr

Y
r
4

Y
r
3

Y
r
2

Y

2
0

2

YY

Y

Y

Selector
Clock Cycle

Enabled

1,3,5,7

2,4,6

4,5,6,7

m0

m1

m2

3,4,5m3

6,7m4

2
2
R
2

10
2
R
2

5
2
R
2

.Tr

Figure 4.6: Architecture of the serial WGP29/WGT29 implementation.

m0 - m4. The 3 registers are clocked as it is specified by the clocking table in Figure 4.6. The

clocking of the different registers is enabled by means of clock enable signals (see Section

4.1.4.2). In this design, the lfsr clk signal in Figure 4.7a is required in order to clock the LFSR

once every 1 clock cycle, 8 clock cycles, and 6 clock cycles, during loading, initialization, and

run phases, respectively. This means that the initialization phase takes a total of 8 × 22 = 176

clock cycles. The number of clock cycles needed for different phases of Figure 4.6 are pre-

sented in the corresponding column of Table 4.3. Moreover, the signal EO in Figure 4.7a is

used to enable the keystream output every 6 clock cycles during the run phase. These selectors,

clock enables, lfsr clk, and EO signals are generated through the FSM, as it is presented next.

4.1.4.2 FSM for the Serialized PB based WG(29, 11)

Figure 4.7a is a block diagram for the FSM which is used for the serialized PB based

WG(29, 11). Also, Figure 4.7b shows the details of generating the Clock Enable Control Sig-

nals and the Multiplexers’ Selectors. For the clock enable signals, the number at the output

of an OR gate indicates the number of the enabled clock cycle during the initialization phase.

m0, m1, m2, m3, and m4 are the selectors for the multiplexers. The FSM controls the inputs

to the LFSR during the three phases of operations. As shown in Table 4.3 for Figure 4.6, the

64

8-Bit 1-hot

Counter

c
0

c
1

c
7

clk

2-Bit Binary

Counter

FSM

resetph0lfsr_clk

1 1 1 1

in
0

in
1

ph1

1

sel 0

……

……

EO

1

6-Bit 1-hot

Counter

d
0

d
1

d
5……

……

s

in
2

sel 1

s

a
0

b
0

b
1

a
1

a
2

a
1

0

re
s
e

t

re
s
e

t

re
s
e

t

re
s
e
t

11-Bit 1-hot

Counter

……

……

(a)

c
0

c
5

1,6,72-5

c
6

1

c
0

m2

c
1

c
3

c
5

c
7

d
4

m1

d
1

d
3

m0

Clock Enable Signals Multiplexer Selectors

p
h
1

d
0

p
h
1

m4

d
1

d
2

d
3

d
4

c
1

c
2

c
3

c
4

m3

c
2

c
3

c
6

c
7

d
2

d
3

c
4

c
5

c
6

c
7 c
2

c
3

c
4

c
6

d
2

d
3

c
5

c
6

(b)

Figure 4.7: a) Architecture of the FSM for the serialized implementation of the WG(29, 11).

b) Generating the Clock Enable Control Signals and the Multiplexers’ Selectors.

loading phase takes 11 clock cycles followed by the initialization phase which stays for 176

clock cycles, then starts the run phase. The FSM is built from a 2-bit binary counter, an 11-bit

1-hot counter, an 8-bit 1-hot counter, and a 6-bit 1-hot counter. The 2-bit counter generates

ph0 and ph1 according to Table 4.3. The 11-bit counter triggers the clock of the 2-bit counter,

every 11 counts, during the loading and initialization. The 8-bit counter, generates the clock

enable signals and the multiplexers’ selectors (see Figure 4.6), and triggers the clock of the

11-bit counter as well as the clock of the LFSR, every 8 counts, during initialization. In the run

phase, the 6-bit counter, generates the clock enable signals and the multiplexers’ selectors, and

triggers the clock of the LFSR, every 6 counts. From the starting of the run phase, the 6-bit

counter enables the output of the cipher every 6 counts.

65

4.1.5 Pipelined Implementation of the PB Based WG(29, 11)

4.1.5.1 Architecture of the Pipelined PB Based WG(29, 11)

Figures 4.8 and 4.4 present the pipelined version of the PB based implementation of the

WGT29.

c
trl0

c
trl1

Y 1

10iY B

in0

in1

in0

in1

102

1

1

1 1

29

29

29

29

29
29

29

29

Y

29

10S

10S

Tr

Tr

1

10S

29

29

(run ph.)

29

1r

*Tr

29

WG

Transform

11

IF

(init. ph.)

29

in0

in1

in2

29

1

2

3

30S

0,1
0,2

0,6,

8,10

0,7

7,9,11

0,3
0,4
0,5

0,5

0,7
0,6

0

1 00
0

0

0

0

0,6,8,10

0,6,8,10

29

Figure 4.8: Pipelined version of the WGT29.

The pipeline has been constructed with 10-stages during the run phase and 12-stages dur-

ing the initialization phase, in order to achieve a critical path with only one multiplier. In these

figures, the double headed arrows point to the locations where the registers are inserted, for the

pipeline. The numbers under these arrows indicate the clock cycles, during each initial feed-

back computation throughout initialization, during which the registers will be clock-enabled.

A zero below a register means that its clock input will always be enabled during the run phase.

The clocking of the different registers in the transform is controlled by means of clock enable

signals (see Section 4.1.5.2).

It is noted that no changes are required for the loading phase. However, during the initial-

66

ization and the run phases, an input signal now requires 12 and 10 clock cycles, respectively,

to propagate to the output of the transform/permutation. Therefore, for the initialization phase,

the lfsr clk signal in Figure 4.9 triggers the LFSR once every 12 cycles. This means that the

initialization phase takes a total of 12 × 22 = 264 clock cycles as presented in Table 4.3 for

Figure 4.8. Also, the multiplexers’ outputs in Figure 4.8 are controlled through the signals ctrl0

and ctrl1 (Figure 4.10) during the initialization and the run phases. For the run phase, an output

enable signal, EO in Figure 4.9, is used to enable the keystream output after the first 10 clock

cycles. The following section presents the FSM and show how the different control signals are

derived.

4.1.5.2 FSM for the Pipelined PB Based WG(29, 11)

c
lk

FSM

re
s
e
t

p
h

0

lfs
r_

c
lk

1 1 1 1

in
0

in
1

p
h
1

1

sel 0

s

EO

1

c9

2-Bit Binary

Counter

b
0

b
1

re
s
e
t

12-Bit 1-hot

Counter

c
0

c
1

c
1
1……

……

re
s
e
ta

0
a
1

a
2

a
1
0

re
s
e
t

11-Bit 1-hot

Counter

……

……

Figure 4.9: Architecture of the FSM for the pipelined version of the WG(29, 11).

Figure 4.9 presents the architecture of the FSM which is used for the pipelined version of

the PB based implementation of the WG(29, 11). Figure 4.10 shows the details of generating

the clock enable signals and, ctrl0 and ctrl1 signals. The numbers at the output indicate the

clock cycles, during each initial feedback computation throughout initialization, during which

the register will be clock-enabled. A 0 at the output means the clock input will be always

enabled during the run phase. Signals s and ci, 0 ≤ i ≤ 11, are shown in Figure 4.9. Similar

to the previously introduced FSMs in this chapter, the FSM controls the inputs to the LFSR

during the three phases of operations through generating the signals ph0 and ph1. According

to column of Figure 4.8 in Table 4.3, the loading phase takes 11 clock cycles, followed by

67

Figure 4.10: Clock enable control signals for the pipelined version of the WG(29, 11).

the initialization phase which stays for 264 clock cycles, followed by the run phase. The

FSM is built from a 2-bit binary counter, an 11-bit 1-hot counter, and 12-bit 1-hot counter.

The 2-bit counter generates ph0 and ph1 according to Table 4.3. The 11-bit counter triggers

the clock of the 2-bit counter, every 11 counts, during the loading and initialization. The

12-bit counter, generates the clock enable signals and the multiplexers’ selectors (ctrl0 and

ctrl1, see Figure 4.8), and triggers the clock of the 11-bit counter as well as the clock of the

LFSR, every 12 counts, during initialization. In the run phase, signal s in Figure 4.9 and

the 12-bit counter, generate the clock enable signals and the multiplexers’ selectors (fixed at

ctrl0=ctrl1=0), respectively. The 12-bit counter enables the output of the cipher after 10 counts

from the start of the run phase. The LFSR is triggered with each clock cycle in the run phase.

4.2 Architectures of the WG-16 Stream Cipher

The WG-16 cipher has been proposed by the authors of [34] for securing the 4G’s confiden-

tiality and integrity protection schemes against the attack in [90]. The only WG-16 hardware

design, which uses NB, is presented in [35]. This design is based on composite field arithmetic

and properties of the trace function in the tower field representation.

Here, a new formulation of the WG-16 permutation is proposed. This formulation requires

8 multiplications compared to 10 in the formulation of [35]. Based on this formulation, and

using the trace property in (4.7), this section presents six hardware architectures of the WG-16,

based on the PB representation for the first time. The six designs include a standard archi-

tecture, its serial version, and its pipelined version using two different types of multipliers for

each version. The serial version can be used for low-area applications whereas the pipelined

one is suitable for high-speed applications. The pipelined instance of the proposed scheme of-

68

fers almost twice the throughput which is reported by the implementations in [35], at a slightly

smaller area. In what follows, the formulation of the WG-16 transform followed by the for-

mulations used for squaring and trace function are derived. In addition, the formulation for

direct computation of the trace of the multiplication of two field elements, in the PB, is ob-

tained. Then, the proposed standard architecture of the WG-16 is shown. The section ends by

presenting serialized and pipelined versions of the standard design.

4.2.1 Formulations of WGP16 and WGT16

The WGP16’s formulation in (2.14) requires 10 multiplications when the field elements are

represented in the PB. In the following, a new formulation is derived which requires 8 multi-

plications.

Proposition 4.2.1 The WG permutation of the WG-16 stream cipher is computed as follows

WGP16 =1 ⊕ Y ⊕ Y211+1 ⊕ Y211(25−1)+26

⊕ Y211+1
(
Y26 ⊕ Y2(25−1)) , (4.10)

where Y = (Ai+31)1057 ⊕ 1, Ai+31 is the output of the LFSR described by (2.15), and Y25−1 is

computed as follows

Y25−1 =
(
Y22+1

)2+1
Y24
. (4.11)

Proof Let e1 = 211 + 1, e2 = 211 + 26 + 1, e3 = −211 + 26 + 1, and e4 = 211 + 26 − 1 in (2.13).

By noticing that e3 + 216 − 1 ≡ e3

(
mod 216 − 1

)
, then, one obtains

e2 = e1 + 26, e3 = 211s + 26, e4 = e1 + 2s,

where s = 25 − 1, and the proof is completed by taking Ye1 as a common factor between Ye2

and Ye4 .

The WG transform is obtained by taking the trace of (4.10). Equation (4.10) requires 8 GF
(
216

)
multiplications: 1 for computing Y211+1, 3 for computing Y25−1, 1 for computing Y211(25−1)+26

, 1

for computing Y211+1
(
Y26 ⊕ Y2(25−1)

)
, and 2 for computing 1 ⊕ Y = (Ai+31)1057. In addition to

this, (4.10) requires 7 squarings and 5 GF
(
216

)
additions. For the transform, the computation

of the trace of WGP16 is required. Section 4.2.3 presents a method which reduces the number

of multiplications in the WGT16 to only 6 through computing Tr
(
Y211(25−1)Y26

)
directly from

Y211(25−1) and Y26
, and Tr

(
Y(211+1)

(
Y26 ⊕ Y2(25−1)

))
directly from Y(211+1) and Y26 ⊕ Y2(25−1),

without performing the multiplications.

69

4.2.2 Squaring Matrices and Trace Vector

Similar to the WG(29, 11), in what follows, the squaring matrices and the trace vector for the

field polynomial (2.16) are presented.

4.2.2.1 Squaring Matrices

Figure 4.11 shows the squaring matrix S for the field polynomial (2.16). One can find the

Figure 4.11: The matrix S for WG-16.

required squaring operations for the WG-16 permutation from (4.10) and (4.11). Table 4.5 lists

the space and propagation delay complexities of the different squaring matrices used in the

WG-16 implementation (before and after signal reuse). In this table, PD denotes propagation

delay.

No Sig. Reuse Sig. Reuse No Sig. Reuse Sig. Reuse

XOR PD XOR PD XOR PD XOR PD

S 30 3TX 21 3TX S6 99 4TX 63 4TX

S2 82 3TX 45 3TX S9 89 4TX 58 4TX

S4 103 4TX 64 4TX S10 102 4TX 60 4TX

S5 89 4TX 58 4TX S11 115 4TX 62 4TX

Table 4.5: Space and propagation delay complexities of the different squaring matrices used in

the WG-16.

70

4.2.2.2 Trace Vector

The trace vector for the PB
{
α15, . . . , α, 1

}
defined by (2.16) is τ = (τ0, . . . , τ15) where τi = 1

for i ∈ {11, 13} and τi = 0 otherwise (see Section 4.1.2.3). Thus, for A ∈ GF
(
216

)
Tr (A) = a11 + a13. (4.12)

4.2.3 Trace of the Multiplication of Two Field Elements for the PB Based
WG-16

The following is the realization of (4.7) when applied to WG-16.

Corollary 4.2.2 Consider the GF
(
216

)
defined by (2.16) where

{
α15, . . . , α, 1

}
is its PB. Then,

the trace of the multiplication of two field elements A =
∑15

i=0 aiα
i and B =

∑15
i=0 biα

i is computed

as follows:

Tr (AB) =
11∑
j=0

(
a11− j + a13− j

)
b j +

13∑
j=12

a13− jb j+

9∑
j=7

a22− jb j + (a12 + a15) b10+

13∑
j=11

(
a22− j + a25− j + a26− j

)
b j+

15∑
j=14

(
a22− j + a25− j + a26− j + a29− j

)
b j. (4.13)

Proof τ has only two nonzero components, τ11 and τ13 (see Subsection 4.2.2.2). By computing

the Q (reduction) matrix for the field polynomial (2.16), one finds that the only nonzero entries

for the 12-th and the 14-th columns of this matrix are q6,11, q8,11, q9,11, q11,11, q8,13, q10,13, q11,13,

and q13,13. Hence, by replacing these values of τi and qk,i in (4.7), one gets (4.13).

It is noted that the realization of (4.13) requires 23 AND and 47 XOR gates and introduces a

propagation delay of TA + 7TX.

4.2.4 Architecture and FSM

4.2.4.1 Architecture of the WG-16 Cipher

Let e1 = 211 + 1, e2 = 211 + 26 + 1, e3 = −211 + 26 + 1, e4 = 211 + 26 − 1, and s = 25 − 1.

Figures 4.12a , 4.12b, and 4.12c present the proposed architecture of the WG-16 according to

71

the WGP16 formulations in (4.10) and (4.11), and the linear recurrence (2.15), based on the

PB defined by (2.16).

c
trl0

c
trl1

Tr

1

FSM

in0

in1

Output

Sequence

5
2

1

1

1
1

16

16

16

16

16

16

16

16

11S

6S

Tr

Run Phase

Critical Path

Tr

1
S

16

11S

16

16

(run ph.)

16

*Tr

16

16

1

2

WG

Transform

Y
e
2

11

(init. ph.)

……...
31iA

22iA

1057

31
1 iY A

11

Initial

Vector

Linear Feedback

Initial Feedback

16

……...
9iA……...

16

1057

16

161616 16

1616

16

16

Y

1
*Tr

1

1

Y
e
3

Y
e
4

Y
e
1

in0

in1

in2

in0

in1

in2

3

16

1iA

16

16

p
h

0

1

16

1
16

16

2

3

'

iA

4 16

ph1

AND

16

2

Tr Y Y
e
1

16

(a)

YY

S

S

S

(b)

i+31
i+31

1057

(c)

Figure 4.12: a) Architecture of the WG-16. b) Generation of the signal Y s (s = 25 − 1). c)

Generation of the signal (Ai+31)1057.

72

In Figure 4.12a, Tr (•) generates the trace of a GF
(
216

)
element. Tr (⋆) generates the trace

of the multiplication of two GF
(
216

)
elements. Figure 4.12b shows the used architecture for

generation of the signal Y s (s = 25 − 1). Figure 4.12c shows the architecture for the generation

of the signal (Ai+31)1057. The squaring matrices in the three figures are implemented using the

signal reuse constructions of Table 4.5. In figures 4.12b, and 4.12c, a double-headed arrow

points to the location where a register is inserted for pipelining purposes (see Section 4.2.6.1).

In Figure 4.12a, the FSM controls the components of the cipher during the different phases

of operation. This is accomplished through signals lfsr clk, ph0, ph1, ctrl0 and ctrl1 (see

Section 4.2.4.2 for details).

During the load phase, the LFSR shifts at each clock cycle while its leftmost cell is loaded

through the Initial Vector input.

It is noted that the signal Ye2⊕Ye4 is missing in Figure 4.12a. This is due to the generation of

Tr (Ye2 ⊕ Ye4) directly from Y211+1 and
(
Y26 ⊕ Y2s

)
using (4.13). As a result, the Initial Feedback

(WGP16) signal, which is needed for the initialization phase, does not exist. This is recovered

by generating WGP16 over 3 clock cycles, during initialization, as presented in Table 4.6. In

ctrl0/ctrl1
Output Next State

MUX # 1 MUX # 2 MUX # 3 Register 1 Register 2 Register 3

0/0 Y Y211
Y ⊕ 1 Ye1 Ye1 ⊕ Y ⊕ 1 Y26 ⊕ Y2s

1/0 Ye1 Y26 ⊕ Y2s Ye1 ⊕ Y ⊕ 1 Ye2 ⊕ Ye4
Ye4 ⊕ Ye2⊕

Y26 ⊕ Y2s

Ye1 ⊕ Y ⊕ 1

0/1 Y26
Y211 s

Ye4 ⊕ Ye2⊕
Ye3

Ye4 ⊕ Ye3⊕
Y26 ⊕ Y2s

Ye1 ⊕ Y ⊕ 1
Ye2 ⊕ Ye1⊕

Y ⊕ 1

Table 4.6: Computation of the WGP16 signal over 3 clock cycles.

this table, the control signals ctrl0 and ctrl1 are generated by the FSM. WGP16 is the next state

of Register 2 in stage 3. Rows are listed in order of computation stages (first to last). It is

noted that, next state of Register 4 in Figure 4.12a is always Y s. During the initialization phase,

the lfsr clk signal triggers the LFSR every 3 clock cycles. The leftmost cell is loaded with the

result from the field addition of the LFSR feedback and WGP16 (Initial Feedback).

In the running phase, the LFSR updates its state at each clock cycle. The only feedback

is the LFSR feedback. The keystream bits are obtained by XORing the signals Tr (1 ⊕ Y),

Tr (Ye1), Tr (Ye3), and Tr (Ye2 ⊕ Ye4). Tr (1 ⊕ Y) and Tr (Ye1) are produced from 1 ⊕ Y and

Ye1 using (4.12). Ye1 is generated by multiplying Y with Y211
in GF

(
216

)
. Y is generated by

complementing the least significant bit of (Ai+31)1057, and Y211
is obtained from the squarer S11

operating on Y . 1⊕Y is simply (Ai+31)1057. Tr (Ye3) is generated by applying (4.13) to Y211(25−1)

73

and Y26
. The signal Y26

is the result of S6 operating on Y . The signal Y211(25−1) is the result of S11

operating on Y25−1. Tr (Ye2 ⊕ Ye4) is generated by applying (4.13) to Y211+1 and
(
Y2(25−1) ⊕ Y26

)
.

The signal Y2(25−1) is the result of S operating on Y25−1, while signal Y2(25−1)⊕Y26
is the bitwise

XOR of Y2(25−1) and Y26
.

4.2.4.2 The Finite State Machine

The FSM for the PB based WG-16 is similar to the one used for the PB based implementation

of the WG(29, 11) (see Section 4.1.3.2). However, the WG-16’s FSM replaces the 11-bit 1-hot

counter with a 5-bit binary counter and, the clocking of the 2-bit binary counter occurs after

a complete 32 counts for the 5-bit counter. As can be seen from column of Figure 4.12a in

Table 4.3, the loading phase takes 32 clock cycles. This is followed by the initialization phase

which stays for 192 clock cycles, where each initialization round is extended to 3 clock cycles

(for computing WGP16) by means of the 3-bit 1-hot counter. During this phase, the LFSR is

clocked 64 times, once every 3 clocks, by means of the 3-bit 1-hot counter. After this starts the

run phase. Also, the 3-bit counter controls the multiplexers’ selectors, ctrl0 and ctrl1, during

initialization and run phases.

4.2.5 Serialized Implementation of the PB Based WG-16

4.2.5.1 Architecture of the Serialized WG-16

The serialized computation of the WG-16 transform results in a lower space complexity, com-

pared to the standard design in Figure 4.12a. Figure 4.13 presents the proposed architecture

for the serial WG-16.

In this architecture, X = Ai+31 and Y = 1 ⊕ X1057. The WGP16 is computed over 8 cycles

(initialization phase) while the WGT16 is computed over 6 cycles (run phase). The design uses

only one field multiplier. The computations are accomplished according to Table 4.7.

It is noted that no changes are required for the loading phase, as a result of applying the

serial computation. In this architecture, an initialization round takes 8 clock cycles to generate

the WGP16 signal. The LFSR is updated at the 9-th clock cycle. During the run phase, a stream

bit is produced every 6 cycles. During these two phases, the multiplexers provide the inputs

to the multiplier and adder. The multiplexers’ inputs are multiplexed through selectors m0 -

m3 during computations. The 4 registers are clocked as it is specified by the clocking table in

Figure 4.13. The clocking of the different registers is enabled by means of clock enable signals

(see Section 4.2.5.2). In this design, the FSM’s signal lfsr clk is required in order to clock

the LFSR once every 1 , 9 , and 6 clock cycles, during loading, initialization, and run phases,

74

1

2

3

4

5

6

7

8

12345678

1

2

4

X

1
R
G

2
R
G

2
R
G

2RG

1RG

3
RG

10
2

X

22

1
RG

16

16

16

16

16

16

16

16

16 16

16 16

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

16

Initial Feedback

Register Clock Cycle

Clocking of Registers

1

2

3

1,2

3 - 5

6 - 8

16

1
R
G

52
X

42
1

RG

2

2
RG

1
1

21
R
G

1
RG

3
R
G

2

1
RG 2

2
RG

1
1

22
R
G

6

2

1
RG

6

3

4
RG

16

Tr

1

Output

Sequence

1

1
1

16

6S

Tr

Tr

1
S

16

16

*Tr

Y

e
2

1
*Tr

1

1

Y

e
3
Y

e
4

Tr Y Y

e
1

16 16

11S

16

4 6 - 8

m0 m1 m2

m0

m1

m2

1
6

1
6

4
R
G

1
R
G

m3

1RG

Selector
Clock Cycle

Enabled

1,3,5,7

2,4,6

4,5,6,7

m0

m1

m2

6,7m3

12

Figure 4.13: Architecture of the serial implementation for the PB based design of the WG-16.

respectively. This means that the initialization phase takes a total of 9 × 64 = 576 cycles.

Moreover, an output enable signal EO is used to enable the keystream output every 6 cycles

during the run phase. These selectors, clock enables, lfsr clk, and EO signals are generated

through the FSM, as it is presented next.

4.2.5.2 FSM for the Serialized WG-16

The FSM for the serialized WG-16 is a modified version of the one in Section 4.1.4.2. The FSM

of the serial WG-16 is obtained by replacing the 11-bit 1-hot counter with a 5-bit binary counter

and the 8-bit 1-hot counter with a 9-bit 1-hot counter. The 2-bit binary counter generates ph0

and ph1, and is clocked once every 32 counts from the 5-bit binary counter. As it is shown

in column of Figure 4.13 in Table 4.3, the initialization phase takes 576 clock cycles. Each

initialization round takes 9 clock cycles. The LFSR is clocked at the arrival of the 9-th clock

cycle by means of the 9-bit 1-hot counter. During the run phase, the LFSR is clocked once

every 6 clock cycles by means of the 6-bit counter. The cipher’s output is enabled once every

6 clock cycles during the run phase, through the 6-bit counter. The clock enable signals which

control the clocking of the registers in Figure 4.13, and the multiplexers’ selectors m, m1, m2,

and m3 are derived from the signal ph1, the outputs of the 9-bit 1-hot counter (initialization),

75

Clock Cycle

1 2 3 4

N
ex

tS
ta

te Register 1 X210+1 X1057 X1057 X1057

Register 2 - - Y22+1 Y
∑3

i=0 2i

Register 3 - - - -

Register 4 - - - -

5 6 7 8

N
ex

tS
ta

te

Register 1 X1057 X1057 X1057 X1057

Register 2 Y s Y s Y s Y s

Register 3 - Ye1 Ye2 ⊕ Ye4 Ye3

Register 4 - 1 ⊕ Y ⊕ Ye1
1 ⊕ Y ⊕ Ye1⊕ 1 ⊕ Y ⊕ Ye1⊕

Ye2 ⊕ Ye4 Ye2 ⊕ Ye3 ⊕ Ye4

Table 4.7: Computing WGP16 and WGT16 in the serial implementation of WG-16.

and outputs of the 6-bit 1-hot counter (run phase), as it is shown in Figure 4.14. In the figure,

c
5

c
6

6-83-5

c
7

c
2

c
3

c
4

1,2

c
0

c
1

d
5

d
2

d
3

d
4

m2

c
1

c
3 c
5

c
7

d
5

d
4

c
2

c
3

c
6

c
7

d
2

d
3

m1

d
1

d
3

d
5

m0

Clock Enable Signals Multiplexer Selectors

p
h

1

d
0

d
1

p
h

1

c
6

m3

c
7c
4

c
5

c
6

c
7

Figure 4.14: Generating the Clock Enable Control Signals and the Multiplexers’ Selectors for

the serial version of the WG-16.

for the clock enable signals, the number at the output of an OR gate indicates the number of

the enabled clock cycle during the initialization phase. Signal s is shown in Figure 4.7a, while

signals ci, 0 ≤ i ≤ 8 and di, 0 ≤ i ≤ 5, are the outputs of the 9-bit and the 6-bit 1-hot counters,

respectively.

76

4.2.6 Pipelined Implementation of the PB Based WG-16

4.2.6.1 Architecture

A pipelined version of the PB based implementation of the WG-16 is presented in Figures

4.15, 4.12b, and 4.12c. The critical path of this architecture has only one multiplier. This

c
trl0

c
trl1

in0

in1

52

1

1

1
1

16

16

16

16

16

16

11S

6S

.Tr

.Tr

1

S

16
11S

16

16

16 *Tr

WG

Transform

11

(init. ph.)

Initial Feedback

= WGP

16

16

1057

16 1
*Tr

1

1

in0

in1

in2

in0

in1

in2

16

1
16

16

2

3

0,4
0,5

0,8

0
,4

8,10,12

0,7,9,

11

0,8

0,7,9,

11

0

0

0
0

0

0
0

0

0

8,10,12

0,6

0
,5

0
,4

0
,5

0
,6

0
,6

0,7

31iA

1057

31
1 iY A

Y

Y

Figure 4.15: Pipelined version of the WG-16 transform.

is accomplished through a pipeline which has 11-stages during the run phase and 13-stages

during the initialization phase. In these figures, the double headed arrows point to the locations

where the registers are inserted, for the pipeline. Also, the numbers under an arrow specify the

corresponding clock cycles which trigger it during each WGP16 computation throughout the

initialization phase (13 clock cycles for each computation). A zero under an arrow indicates

that the register is enabled during the run phase. The clocking of the different registers in the

transform is controlled by means of clock enable signals (see Section 4.2.6.2).

77

No changes are required for the loading phase. During the initialization and the run phases,

an input signal requires 13 and 11 clock cycles, respectively, to propagate to the output of the

transform/permutation. Therefore, for the initialization phase, the lfsr clk signal triggers the

LFSR once every 13 cycles. This means that the initialization phase takes a total of 13 × 64 =

832 clock cycles. Also, the multiplexers’ outputs in Figure 4.15 are controlled through signals

ctrl0 and ctrl1 during the initialization and the run phases. For the run phase, an output enable

signal EO is used to enable the keystream output after the first 11 clock cycles. The following

section presents the FSM and show how the different control signals are derived.

4.2.6.2 FSM for the Pipelined WG-16

The FSM for the pipelined version of the WG-16 is obtained from the one introduced in Section

4.1.5.2, where a 5-bit binary counter and a 13-bit 1-hot counter replace the 11-bit 1-hot counter

and the 12-bit 1-hot counter, respectively. The 2-bit binary counter is clocked once every time

the 5-bit binary counter completes 32 counts, during load and initialization. From column of

Figure 4.15 in Table 4.3, the loading phase takes 32 clock cycles followed by the initialization

phase which stays for 832 clock cycles, then starts the run phase. The 13-bit 1-hot counter

expands the initialization phase to a total of 832 clock cycles. At the end of each computation

of the WGP16 (13 clock cycles), the LFSR is shifted once. The WGP16 computations are

controlled through the two signals ctrl0 and ctrl1, which are generated by the 13-bit counter

(Figure 4.16). Signal ctrl0 is set during clock cycles 8 and 9, while signal ctrl1 is set during

clock cycles 10, 11, and 12. These two signals always reset throughout the run phase. Signals

ph0 and ph1 select the LFSR’s input. These are derived from the output of the 2-bit binary

counter according to Table 4.3. After 11 clock cycles from the start of the run phase, the output

of the cipher is enabled by means of the 13-bit counter. The clock enable signals are derived

from the outputs of the 13-bit counter during initialization and from the outputs of the 2-bit

counter (signal s is shown in Figure 4.9) during the run phase, as can be seen from Figure 4.16.

In this figure, signals ci, 0 ≤ i ≤ 12 and di, 0 ≤ i ≤ 5, are the outputs of the 13-bit and the 6-bit

1-hot counters, respectively.

4.3 Implementation Results and Comparisons

This section presents speed and area results based on ASIC implementations for the nine dif-

ferent proposed designs. The space and speed trade offs concerning the standard, pipelined,

and serial versions of the proposed PB based WG(29, 11) and WG-16 designs, are examined

and compared to the counterparts.

78

Figure 4.16: Generating the clock enable signals and, ctrl0 and ctrl1 signals for the pipelined

version of the WG-16.

4.3.1 ASIC Implementations

Table 4.8 presents the speed and area readings for the nine WG designs which have been pro-

posed, based on the ASIC implementations. In this table, GE denotes Gate Equivalence in

terms of number of NAND gates and TP denotes the throughput. The ASIC implementations

provide speed and area results for the 65nm CMOS technology with medium effort for opti-

mizations using Synopsys Design Vision [4]. The results are based on Design Vision’s estimate

of area and clock speed prior to place-and-route. The PB realizations are accomplished using

the multiplier presented in [72] for both the WG(29, 11) and the WG-16. The WG-16 has

been also realized using the Karatsuba multiplier [53]. We use the VHDL implementations

presented in [28] for these two multipliers. Table 4.8 presents the area and speed results for

the ASIC implementations of the different designs. The results for the hardware design of the

WG(29, 11) which is proposed in [56] are based on theoretical analysis. In addition, the re-

sults for the WG(29, 11) design in [68] are reported in previous chapter of this thesis. For the

WG-16 which is presented in [35], the results are reported for post place and route.

4.3.2 Results and Comparisons

As shown in Table 4.8, the space complexity of the proposed standard WG(29, 11) is re-

duced, w.r.t the ones previously presented in [68] and the previous chapter, and the normal-

ized throughput is improved. While the proposed standard WG(29, 11) design shows higher

throughput compared to the one in [68], it reports a slightly lower throughput compared to

the type-II ONB based design presented in the previous chapter. The WG design presented in

[56] requires a number of ROM bits which is exponential in m (the dimension of the binary

extension field). For the WG(29, 11), this realization requires 229-bits of ROM in addition to

79

9000 XORs and 319 registers, as can be seen from Table 4.8. On the other hand, the space

complexities of the proposed designs are based on the area of the multiplier, which is quadratic

in m. For high speed applications, the throughput which is reported in Table 4.8 for the pro-

posed pipelined version of the PB based WG(29, 11) design is almost 4.5 times compared to

the proposed standard one. This comes at an expense of almost 23% increase in the space

complexity. On the other hand, for area constrained applications, the serial version shows up

to 59% decrease in the space complexity compared to the standard design, according to the

results in Table 4.8. This comes at the expense of reducing the throughput to the half.

In Table 4.8, the Karatsuba based PB implementations of the standard, pipelined, and serial

WG-16 show optimal readings for throughput, space, and normalized throughput, compared

to the same realizations using the multiplier in [72]. In the same table, in comparison with

the pipelined WG-16 implementations presented in [35], the proposed pipelined PB based

WG-16 demonstrates almost 2.5 times the throughput with even less space complexity. In

addition, for low area applications, the serial version shows up to 42% decrease in the space

complexity compared to the standard design. This comes at an expense of around 40% decrease

in throughput. On the other hand, for high speed requirements, the pipelined version of the PB

based WG-16 design increases the throughput by almost 7 times compared to the standard one.

This comes at an expense of almost 33% increase in space complexity.

Moreover, for WG-16, which is proposed by the authors of [34] to overcome the security

flaws in the LTE integrity protocols [90], the reported results of the proposed design in Ta-

ble 4.8 clearly show that the different realizations offer bit rates greater than 100 Mbps and,

hence, satisfy the LTE’s peak bit rate requirements [49]. Although SNOW 3G [54] and ZUC

[10] show better normalized throughput readings compared to our WG-16 designs in Table

4.8, the reported space complexities for the proposed WG-16 (specially, serial instances) are

competitive to SNOW 3G and ZUC. Hence, WG-16 is an interesting, low area, candidate for

the 4G domain. Table 4.8 also lists the 1-bit output versions of Grain and Trivium which show

better performances compared to the proposed designs of the WG-16. On the other hand, our

pipelined version of the WG-16 has higher throughput, and normalized throughput, while our

serial WG-16 instance shows a very close area complexity, compared to Mickey128.

If even higher throughput is demanded, one can apply the unfolding technique which is

presented in [26] to the proposed pipelined WG(29, 11) and WG-16. In this technique, by

implementing multiple transforms, the throughput will increase proportionally. Digit-level

field multipliers [66] can be considered if lower area is demanded; however, at the expense of

adding more cycles for each multiplication.

80

4.4 Conclusion

This chapter proposed for the first time new architectures for efficient computations of the WG

stream ciphers using polynomial basis. The proposed architectures require fewer multiplica-

tion operations as compared to the WG counterparts. Moreover, an area efficient method for

the direct computation of the trace of the multiplication of two GF (2m) elements have been

derived. Unlike the trace method presented in previous chapter which applies only to type-II

ONB, the trace method proposed in this chapter applies to any PB. Based on the proposed trace

properties, two classes of PB based designs (standard architecture) have been proposed, one

for the WG(29, 11) stream cipher and the other one for the WG-16 stream cipher. In addition, a

serialized version and a pipelined version, has been proposed for each of the proposed standard

designs.

Nine different proposed designs have been realized through ASIC implementations using

the 65nm CMOS technology. The ASIC implementations show that the proposed PB based

WG(29, 11) design achieves better area and normalized throughput results compared to all

WG(29, 11) counterparts which use NB. Also, it has been shown that the proposed pipelined

PB based WG-16 provides almost double the throughput which is offered by the implementa-

tions presented in [35], at even smaller area. In addition, the throughput readings reported for

the different designs of the WG-16 stream cipher meet the requirements for the peak bit rate

specifications of the 4G mobile technology.

Based on these results, the proposed WG(29, 11) and WG-16 designs using PB are competi-

tive candidates, compared to the previously proposed implementations, for securing mobile and

communication systems [23, 11, 7]. Specifically, the proposed WG-16 designs are promising

for the 4G communications where the guaranteed randomness properties and security aspects

are of significant importance.

81

Im
plem

entation
B

asis

W
G

M
ultiplier

Technology
G

E
Speed

T
P

N
orm

alized

Transform
T

hroughput

A
rchitecture

(M
H

z)
(M

bps)
(K

bps/G
ate)

SN
O

W
3G

[9]
-

-
-

90nm
34000

-
1900

55.88

SN
O

W
3G

[54]
-

-
-

130nm
25016

249
7900

315.97

Z
U

C
[10]

-
-

-
65nm

10000
-

1500
150

G
rain128

(1-bitoutputversion)[41]
-

-
-

130nm
1857

926
926

499

Trivium
(1-bitoutputversion)[41]

-
-

-
130nm

2599
358

358
138

M
ickey128

[41]
-

-
-

130nm
5039

413
413

82

W
G

(29,11)[68]
O

N
B

Standard
[71]

65nm
33200

144
144

4.34

W
G

(29,11)[56]
-

L
ook-up

Table
(R

O
M

)
-

-
319

R
egisters

+
9000

X
O

R
s
+

2
29

R
O

M
bits

-
-

-

W
G

(29,11)[31]
O

N
B

Standard
[71]

65nm
19900

224
224

11.26

W
G

(29,11)(T
his

w
ork,Figure

4.3)
PB

Standard
[72]

65nm
17165

202
202

11.77

W
G

(29,11)(T
his

w
ork,Figure

4.6)
PB

Serialized
[72]

65nm
7050

610
101

14.32

W
G

(29,11)(T
his

w
ork,Figure

4.8)
PB

Pipelined
[72]

65nm
21190

917
917

43.28

W
G

-16
[35]

N
B

Pipelined
(M

16/
I8)

-
65nm

12031
552

552
45.88

W
G

-16
[35]

N
B

Pipelined
(M

8/
I8)

-
65nm

12352
558

558
45.17

W
G

-16
(T

his
w

ork,Figure
4.12a)

PB
Standard

[72]
65nm

9103
189

189
20.76

W
G

-16
(T

his
w

ork,Figure
4.12a)

PB
Standard

[53]
65nm

8060
193

193
23.94

W
G

-16
(T

his
w

ork,Figure
4.15)

PB
Pipelined

[72]
65nm

11795
1149

1149
97.41

W
G

-16
(T

his
w

ork,Figure
4.15)

PB
Pipelined

[53]
65nm

10681
1370

1370
128.26

W
G

-16
(T

his
w

ork,Figure
4.13)

PB
Serialized

[72]
65nm

5267
680

113
21.45

W
G

-16
(T

his
w

ork,Figure
4.13)

PB
Serialized

[53]
65nm

5026
714

119
23.67

Table
4.8:R

esults
obtained

forarea
and

speed
from

the
A

SIC
im

plem
entations.

82

Chapter 5

Digit-Level Architectures for GF
(
2m)

Multiplication in the GNB

This chapter, focuses on field multiplication based on the GNB representation for binary ex-

tension fields of odd values of m. This includes the five fields recommended by NIST for

Elliptic curve digital signature algorithm (ECDSA) [12]. For clarity of reference, in what fol-

lows, the multiplication of two field elements is referred to as single multiplication, while the

multiplication of two or more elements is denoted by hybrid multiplication.

This chapter, proposes three new digit-level architectures for the single GNB multiplica-

tion, which follow different input/output order schemes. Two new digit-level architectures for

the FSIPO single GNB multiplication are proposed, one follows an MSD order of its inputs

while the other follows an LSD order. It is worth mentioning that a FSIPO multiplier does not

require any preloading of the operands, which is not the case for the other input schemes (see

Chapter 2). This makes the FSIPO multipliers advantageous for achieving high throughput in

applications where the data path capacity, for inputs preloading, is small and m is large. Also,

an area efficient version of the MSD DL-PISO single GNB multiplier, which was originally

presented in [70], is proposed.

In addition to above three single multipliers, a new DL-SIPO hybrid-double GNB multi-

plier, and for the first time in literature, a DL-PIPO hybrid-triple GNB multiplier, are proposed

by combining the proposed DL-PISO and DL-FSIPO single multipliers. The proposed digit-

level hybrid-triple multiplication scheme accomplishes three field multiplications using the

latency required for a single digit-level multiplication, at the expense of more area.

Furthermore, and based on the new hybrid-triple GNB multiplier, a digit-level eight-ary

field exponentiation architecture is proposed. Compared to the existing digit-level eight-ary

schemes [83, 42], the proposed architecture offers almost the same latency while it does not

83

require any precomputation or storage of the field element’s odd powers which are less than 8.

The following, summarizes the contributions of this chapter.

Contributions

The contributions of this chapter are summarized in Figure 5.1. In this chapter, seven new

digit-level architectures are proposed for the GF (2m) single, hybrid-double, and hybrid-triple

multiplication, in addition to a new digit-level architecture for the GF (2m) eight-ary field expo-

nentiation (see Figure 5.1), based on the GNB representation when m is odd. The contributions

of this chapter are explained as follows:

MSD/LSD DL-FSIPO
Single GNB

Multipliers (Figures
5.2a and 5.3)

Area Efficient MSD
DL-PISO Single
GNB Multiplier
(Figure 5.4a)

Low Area / High
Speed MSD DL-

SIPO Hybrid-Double
GNB Multipliers

(Figures 5.5a and
5.5b)

Low Area / High
Speed DL-PIPO

Hybrid-Triple GNB
Multipliers

(Figures 5.6a and
5.6b)

Eight-ary Field
Exponentiation

Architecture (Figure 5.7)

Figure 5.1: Summary of contributions.

• Two new architectures are proposed for MSD/LSD DL-FSIPO single GNB multipliers

(Figures 5.2a and 5.3). It is noted that these multipliers do not require preloading of in-

puts. Therefore, they are advantageous to achieve high throughput in applications where

the parallel preloading of the inputs is not possible due to limited sizes of the data path,

especially when m is large. For the single bit digit size case, one obtains a bit-level ver-

sions of the proposed MSD/LSD DL-FSIPO single GNB multipliers. It is noted that Feng

[36] proposed the original most significant bit (MSB), bit-level (BL), FSIPO NB multi-

plication scheme. However, the MSB version which is obtained from the proposed MSD

DL-FSIPO single GNB multiplier is based on a slightly modified formulation compared

to the one in [36]. Also, while there are no space and/or time complexities formulations

84

presented in [36], the formulations for the space and time complexities of the proposed

MSD/LSD DL-FSIPO single GNB multiplication architectures are derived. For GF
(
25

)
,

the bit-level versions of the proposed FSIPO multipliers (based on the type-2 GNB) re-

quire smaller space and time complexities compared to the GF
(
25

)
multiplier which is

presented in [36]. Moreover, this work proposes reduction of the number of XOR gates

through applying sub-expression sharing techniques to the multiplication by β.

• An area efficient MSD DL-PISO single GNB multiplier is proposed (Figure 5.4a), where

the number of XOR gates of the original MSD DL-PISO GNB multiplier in [70] is

reduced based on applying the sub-expression sharing presented in [17].

• Low area/high speed designs for an MSD DL-SIPO hybrid-double GNB multiplier are

proposed (Figure 5.5), constructed by combining the proposed MSD DL-FSIPO and DL-

PISO single GNB multipliers (see Figure 5.1). It is noted that the proposed hybrid-double

GNB multiplier is the first DL-SIPO scheme proposed for the hybrid-double GNB-based

multiplication, while the one presented in [16] follows a DL-PIPO scheme. This in turn

allows for proposing a digit-level hybrid-triple multiplier, as it is stated next.

• Low area/high speed designs for a DL-PIPO hybrid-triple GNB multiplier are proposed

(Figure 5.6). As shown in Figure 5.1, the proposed DL-PIPO hybrid-triple GNB multi-

pliers are constructed by combining the proposed MSD DL-PISO single and the MSD

DL-SIPO hybrid-double GNB multipliers. It is noted that, as far as the author know, the

proposed digit-level PIPO hybrid-triple GNB multipliers are the first such multipliers, in

the open literature, which perform three digit-level field multiplications using the latency

of only one multiplication, at the expense of more area.

• Finally, a digit-level architecture which accomplishes field exponentiation based on

radix-8 representation of the exponent is proposed (Figure 5.7). The proposed scheme

has almost the same latency which is offered by the exiting digit-level eight-ary expo-

nentiation schemes [83, 42], however, it does not require any precomputations or storage

of the field element’s odd powers which are less than 8.

The chapter is organized as follows. Section 5.1, presents the proposed MSD/LSD DL-

FSIPO single GNB multiplication schemes. Section 5.2 explains the proposed MSD DL-PISO

single GNB multiplier. Section 5.3 presents the proposed MSD DL-SIPO hybrid-double and

the DL-PIPO hybrid-triple GNB multiplication schemes. Section 5.4 introduces the new digit-

level eight-ary field exponentiation architecture. Section 5.5 concludes the chapter.

85

5.1 Proposed DL-FSIPO Single GNB Multipliers

The following, starts by presenting the proposed MSD DL-FSIPO single GNB multiplier, fol-

lowed by the LSD one. In addition to their proofs, the proposed digit-level formulations pre-

sented in this section, i.e. (5.1), (5.2), (5.3), and (5.4), have been verified through simulations

using the Sage tool [3]. It is noted that the proposed multipliers in this section do not require

preloading of inputs, and perform the multiplication operation as the input digits enter the mul-

tiplier. This is advantageous, especially for large m (> 160 in [12]), to achieve high throughput

in applications where the parallel preloading of the inputs is not possible due to limited sizes

of the data path.

5.1.1 Proposed MSD DL-FSIPO Single GNB Multiplier

In this section, a digit-level MSD architecture is proposed for the FSIPO single GNB multipli-

cation. In what follows, the formulations for the MSD DL-FSIPO single multiplication in the

GNB is first derived, followed by presenting the proposed architecture of the MSD DL-FSIPO

single GNB multiplier and, the section ends by analyzing the space and time complexities.

5.1.1.1 Formulations

This section, derives formulations for digit-level multiplication of two GF (2m) elements rep-

resented in the GNB, where the two inputs of the multiplier are entered serially, digit-by-digit,

in an MSD first order. In what follows, the proposed MSD first recursive construction of field

elements when represented in the GNB is shown.

Lemma 5.1.1 Given a digit size 0 < d < m, a field element A = (a0, . . . , am−1) ∈ GF (2m)

represented in the GNB, is constructed recursively, starting from the most significant digit Ak−1

(total of k =
⌈

m
d

⌉
digits A0 through Ak−1), as follows:

A(i) =Ak−1−i +
(
A(i−1)

)2d

(5.1)

where i takes values from 0 upto k − 1, A(−1) = 0, A = A(k−1), and Ak−1−i =
∑d−1

j=0 ad(k−1−i)+ jβ
2 j

is

the (k − 1 − i)-th digit of A = (A0, . . . , Ak−1) with ad(k−1−i)+ j = 0 for d (k − 1 − i) + j ≥ m.

Proof By substituting for i = 0, . . . , k − 1 in (5.1), one gets

A(k−1) =A0 +

(
A1 + · · ·

(
Ak−2 + (Ak−1)2d)2d

· · ·
)2d

=

0∑
i=k−1

A2d(k−1−i)

k−1−i ,

86

and by noticing that Ak−1−i =
∑d−1

j=0 ad(k−1−i)+ jβ
2 j

one obtains

A(k−1) =

0∑
i=k−1

d−1∑
j=0

a j+d(k−1−i)β
2 j+d(k−1−i)

=

d−1∑
j=0

a jβ
2 j
+

d−1∑
j=0

a j+dβ
2 j+d
+ · · ·+

d−1∑
j=0

a j+d(k−1)β
2 j+d(k−1)

=

m−1∑
j=0

a jβ
2 j
,

where the last result is achieved since a j+d(k−1) = 0 for j + d (k − 1) ≥ m.

Then, the multiplication of the GF (2m) elements A and B is obtained as follows.

Proposition 5.1.2 Let E = AB be the multiplication of the two elements A, B ∈ GF (2m) rep-

resented in the GNB. By using construction (5.1), one obtains E = A(k−1)B(k−1), where k =
⌈

m
d

⌉
and d is the digit size, by the following recurrence starting at i = 0 upto k − 1

A(i)B(i) =
∑d−1

j=0

((
ad(k−1−i)+ j

(
Bk−1−i +

(
B(i−1)

)2d)
+

bd(k−1−i)+ j

(
A(i−1)

)2d)2− j

β
)2 j

+
(
A(i−1)B(i−1)

)2d

. (5.2)

Proof A(i)B(i) is obtained by substituting for A(i) and B(i) in A(i)B(i), using (5.1), as

A(i)B(i) =

(
Ak−1−i +

(
A(i−1)

)2d) (
Bk−1−i +

(
B(i−1)

)2d)
=Ak−1−i

(
Bk−1−i +

(
B(i−1)

)2d)
+

Bk−1−i

(
A(i−1)

)2d

+
(
A(i−1)B(i−1)

)2d

,

and by substituting for Ak−1−i =
∑d−1

j=0 ad(k−1−i)+ jβ
2 j

in Ak−1−i

(
Bk−1−i +

(
B(i−1)

)2d)
, and for Bk−1−i =∑d−1

j=0 bd(k−1−i)+ jβ
2 j

in Bk−1−i

(
A(i−1)

)2d

the following is obtained

A(i)B(i) =
∑d−1

j=0 ad(k−1−i)+ jβ
2 j

(
Bk−1−i +

(
B(i−1)

)2d)
+

d−1∑
j=0

bd(k−1−i)+ jβ
2 j (

A(i−1)
)2d

+
(
A(i−1)B(i−1)

)2d

which yields

A(i)B(i) =
∑d−1

j=0

((
ad(k−1−i)+ j

(
Bk−1−i +

(
B(i−1)

)2d)
+

bd(k−1−i)+ j

(
A(i−1)

)2d)2− j

β
)2 j

+
(
A(i−1)B(i−1)

)2d

.

87

It is noted that the correctness of (5.2) has also been verified using simulations with the Sage

tool [3].

In (5.2), the multiplication of A by B (elements of GF (2m)) represented in the GNB, is

reduced recursively to a number of bit-wise AND operations, field additions, multiplications

with the normal element β, and cyclic shifts for computing the powers 2− j, 2 j, and 2d. Notice

that the addition of the digit Bk−1−i to
(
B(i−1)

)2d

in (5.2) is a free of cost concatenation. This is

because the most significant digit of B(i−1) is 0d for 0 ≤ i < k, where 0d denotes a string of zeros

of length d.

Since it is already given that A(−1) = B(−1) = 0, therefore by using (5.2), starting at i = 0, and

proceeding up to i = k−1 (k clock cycles), the final result of the multiplication E = A(k−1)B(k−1)

is obtained. At each step, the (k − 1 − i)-th digit of A and B, i.e. Ak−1−i and Bk−1−i, in addition to

A(i−1), B(i−1), and A(i−1)B(i−1), are used for computing A(i) and B(i), and A(i)B(i) according to (5.1)

and (5.2), respectively. The following example illustrates the proposed multiplication scheme.

Example 5.1.3 Table 5.1 shows the steps of multiplying the GF
(
23

)
elements A = B = β22

=

(0, 0, 1), which are represented in the type-2 GNB
{
β, β2, β22

}
(that is, Optimal normal basis

type-2), according to (5.1) and (5.2), for the case of d = 2 (i.e., k = 2). Note that k = 2

i A1−i = a2−2iβ + a3−2iβ
2 B1−i = b2−2iβ + b3−2iβ

2 A(i−1) B(i−1)

0 A1 = a2β + a3β
2 = β B1 = b2β + b3β

2 = β A(−1) = 0 B(−1) = 0

1 A0 = a0β + a1β
2 = 0 B0 = b0β + b1β

2 = 0 A(0) = A1 +
(
A(−1)

)22

= β B(0) = B1 +
(
B(−1)

)22

= β

X1−i = B1−i +
(
B(i−1)

)22

Y1−i =
(
A(i−1)

)22

Z1−i = a2−2iX1−i + b2−2iY1−i W1−i = a3−2iX1−i + b3−2iY1−i

0 X1 = B1 +
(
B(−1)

)22

= β Y1 =
(
A(−1)

)22

= 0 Z1 = a2X1 + b2Y1 = β W1 = a3X1 + b3Y1 = 0

1 X0 = B0 +
(
B(0)

)22

= β22
Y0 =

(
A(0)

)22

= β22
Z0 = a0X0 + b0Y0 = 0 W0 = a1X0 + b1Y0 = 0

A(i−1)B(i−1) A(i)B(i) = Z1−iβ +
(
W2−1

1−iβ
)2
+

(
A(i−1)B(i−1)

)22

0 A(−1)B(−1) = 0 A(0)B(0) = Z1β +
(
W2−1

1 β
)2
+

(
A(−1)B(−1)

)22

= β2

1 A(0)B(0) = β2 A(1)B(1) = Z0β +
(
W2−1

0 β
)2
+

(
A(0)B(0)

)22

= β23
= β

Table 5.1: Steps for multiplication of the two GF
(
23

)
elements A = B = β22

= (0, 0, 1).

and a3 = b3 = 0. Also, (5.2) is rewritten as A(i)B(i) = Z1−iβ +
(
W2−1

1−iβ
)2
+

(
A(i−1)B(i−1)

)22

,

where Z1−i = a2−2iX1−i + b2−2iY1−i, W1−i = a3−2iX1−i + b3−2iY1−i, X1−i = B1−i +
(
B(i−1)

)22

, and

Y1−i =
(
A(i−1)

)22

, for 0 ≤ i < 2.

Next, the proposed architecture of the MSD DL-FSIPO single GNB multiplier is presented.

88

5.1.1.2 Architecture

Figure 5.2a presents the architecture of the proposed MSD DL-FSIPO single GNB multiplier.

d

d

<Z>

d

mm

m

m

m-d

m-d

m

d-1 m

m

1

1

m-d

in1

in2

in3

in4

j

m

1

1

m-d

in1

in2

in3

in4

0

m

1

1

m-d

in1

in2

in3

in4

<X>
0 m-d-1

<Y>
0 m-d-1

k 1
B

i k 1
B

0
B

k 1
A

i k 1
A

0
A

0 m-1

(a)

(b)

(c)

Figure 5.2: (a) Architecture of the proposed MSD DL-FSIPO single GNB multiplier. (b)

Architecture of ∇ j. (c) Architecture of β j.

This architecture is constructed based on (5.1) and (5.2). In Figure 5.2a, d denotes the digit

size, k =
⌈

m
d

⌉
denotes the total number of cycles of computations, and 0 ≤ i < k refers to the i-th

clock cycle. Part (b) of the same figure presents the architecture of ∇ j which is used in Figure

5.2a, 0 ≤ j < d, where for 0 ≤ i < k: in1 = Bk−1−i +
(
B(i−1)

)2d

, in2 = ad(k−1−i)+ j, in3 = bd(k−1−i)+ j,

89

and in4 =
(
B(i−1)

)2d

. Also, part (c) shows the architecture of β j which is used in Figure 5.2b,

0 ≤ j < d.

Initially, the (m − d)-bits shift registers ⟨X⟩ and ⟨Y⟩, and the m-bits register ⟨Z⟩, are cleared

(i.e., initialized by A(−1), B(−1), and A(−1)B(−1), respectively). Then, at each i-th iteration of the

following k iterations, ⟨X⟩, ⟨Y⟩, and ⟨Z⟩ update their states from A(i−1), B(i−1), and A(i−1)B(i−1)

to A(i), B(i), and A(i)B(i), respectively, as follows. The two GF (2m) input elements A and B are

entered to registers ⟨X⟩ and ⟨Y⟩, respectively, one digit per a clock cycle, following a most

significant digit first order starting with the (k − 1)-th digits (according to (5.1)). At the i-th

iteration, ⟨X⟩ and ⟨Y⟩ perform a d-fold right shift (not cyclic) and, the (k − 1 − i)-th digits of A

and B are written to the least significant d-bits of ⟨X⟩ and ⟨Y⟩, respectively. At the same time,

register ⟨Z⟩ accumulates the result of the field addition
∑d−1

j=0 ∇ j +
(
A(i−1)B(i−1)

)2d

, where

∇ j =

((
ad(k−1−i)+ j

(
Bk−1−i +

(
B(i−1)

)2d)
+

bd(k−1−i)+ j

(
A(i−1)

)2d)2− j

β
)2 j

is generated as shown in Figures 5.2b and 5.2c. According to (5.2), this results in writing A(i)B(i)

to ⟨Z⟩. Then, after k clock cycles, i.e. i = k − 1, one obtains ⟨Z⟩ = A(k−1)B(k−1) = AB. It is

noted that the proposed architecture implements Bk−1−i+
(
B(i−1)

)2d

in (5.2) by concatenating the

d-bits of Bk−1−i to the least significant digit of
(
B(i−1)

)2d

(the concatenations are shown by thick

vertical lines in Figure 5.2, two in Figure 5.2a and one in Figure 5.2b). This concatenation is

possible since the least significant digit of
(
B(i−1)

)2d

is simply 0d for all 0 ≤ i < k (notice from

(5.2) that A(k−1) and B(k−1) are not used in generating A(k−1)B(k−1)).

In the following, the space and time complexities of the proposed MSD DL-FSIPO single

GNB multiplier are studied.

5.1.1.3 Space and Time Complexities

The space complexity of the proposed MSD DL-FSIPO single GNB multiplier is listed in Table

5.2. This includes the count of logic gates, Flip Flop (FF), and preloading multiplexers (for

parallel inputs preloading). In this table, d is the digit size. T is the GNB type. P and S denote

either the corresponding input/output is loaded/generated in parallel or in serial, respectively.

It is noted that this table shows the space complexity of the proposed MSD DL-FSIPO single

GNB multiplier before applying sub-expression sharing. From Figure 5.2b, one can see that

each ∇ j module, 0 ≤ j < d, consists of m+m−d = 2m−d two input AND gates, and therefore,

the total number of two input AND gates in the d ∇ j modules of Figure 5.2a is d (2m − d). The

total number of two input XOR gates in the
∑

module of Figure 5.2a (a GF (2m) adder which

90

Multiplier FF AND XOR
2 : 1 1-bit Input Input

Output
MUX 1 2

DL-PISO [61] 2m d [T (m − 1) + 1] d [T (m − 1)] 2m P P S

DL-PISO [37] 2m dm d [T (m − 1)] 2m P P S

DL-PISO1 [16] 2m dm ≤ d
[
(T − 1)

(
(m − 1) − d−1

2

)]
+ d (m − 1) 2m P P S

DL-PIPO [17] 3m dm d
[

(m−1)(T−1)
2 + m

]
2m P P P

DL-SIPO1 [16] 2m dm ≤ d (T − 1)
[
(m − 1) − d−1

2

]
+ dm m S P P

M/LSD DL-FSIPO2

3m − 2d d (2m − d) ≤ d [(2m − d) + (T − 1) (m − 1)] 0 S S P
(Figures 5.2 & 5.3)

MSD DL-PISO1

2m dm ≤ d
[
(T − 1)

(
(m − 1) − d−1

2

)]
+ d (m − 1) 2m P P S

(Figure 5.4a)
1 without applying group sub-expression elimination. 2 without applying sub-expression elimination.

Table 5.2: Space complexity of digit-level single GNB multipliers.

adds d + 1 field elements) is dm. In addition, each ∇ j module, 0 ≤ j < d, has ≤ (m − d) +
(T − 1) (m − 1) XORs out of which are ≤ (T − 1) (m − 1) contributed by the multiplications

by β (before sub-expression elimination, see Section 2.9.2.2). Therefore, the total number of

XORs in the MSD DL-FSIPO single GNB multiplier is ≤ d [(2m − d) + (T − 1) (m − 1)]. In

addition, while register ⟨Z⟩ has m FFs, only m − d FFs are required for each one of registers

⟨X⟩ and ⟨Y⟩, since the (k − 1)-th digit in these two registers is always zero throughout the

computations. Hence, the total number of FFs is 2 (m − d) + m = 3m − 2d. One can also

see that there are no preloading multiplexers required for the proposed MSD DL-FSIPO single

GNB multiplier.

On the other hand, Table 5.3 reports the time complexity of the proposed digit-level MSD

FSIPO single GNB multiplier, in terms of the propagation delay of the corresponding levels

of two input XOR and AND gates through the critical path. As seen from Figure 5.2a, the

Multiplier
Propagation Serial Preloading Computation

Delay Latency Latency

DL-PISO [61] TA +
(⌈

log2 (T (m − 1) + 1)
⌉)

TX k k

DL-PISO [37] TA +
(⌈

log2 m
⌉
+

⌈
log2 T

⌉)
TX k k

DL-PISO [16] TA +
(⌈

log2 m
⌉
+

⌈
log2 T

⌉)
TX k k

DL-PIPO [17] TA +
(⌈

log2 (d + 1)
⌉
+

⌈
log2 T

⌉)
TX k k

DL-SIPO [16] TA +
(⌈

log2 (d + 1)
⌉
+

⌈
log2 T

⌉)
TX k k

M/LSD DL-FSIPO
TA +

[
1 +

⌈
log2 (d + 1)

⌉
+

⌈
log2 T

⌉]
TX 0 k

(Figures 5.2 & 5.3)

MSD DL-PISO
TA +

(⌈
log2 m

⌉
+

⌈
log2 T

⌉)
TX k k

(Figure 5.4a)

Table 5.3: Time complexity of digit-level single GNB multipliers.

critical path of the proposed architecture passes through one ∇ j module and the
∑

module. The

91

propagation delay of a ∇ j module, 0 ≤ j < d, is TA +
(
1 +

⌈
log2 (T)

⌉)
TX, where

⌈
log2 (T)

⌉
TX

is the propagation delay through β j (due to the multiplication with β, see Section 2.9.2.2).

Therefore, by adding the delay of the
∑

module (a GF (2m) adder which adds d + 1 field

elements), which is
⌈
log2 (d + 1)

⌉
TX, the total propagation delay of the proposed multiplier

becomes TA +
[
1 +

⌈
log2 (d + 1)

⌉
+

⌈
log2 T

⌉]
TX.

5.1.1.4 Bit-Level Case

It is noted that the original bit-level FSIPO multiplication scheme was presented by Feng [36]

for an MSB order of the inputs. By considering a single-bit digit size, one obtains a bit-level

MSB FSIPO single GNB multiplier from the proposed digit-level architecture. The obtained

proposed MSB BL-FSIPO single GNB multiplier offers a maximum propagation delay of TA+

3TX, while it requires 13 FFs, 9 ANDs, and 13 XORs (for the case of GF
(
25

)
and T = 2). On

the other hand, the GF
(
25

)
multiplier presented in [36] has a maximum propagation delay of

TA+6TX and requires 13 FFs, 9 ANDs, and 15 XORs. Moreover, in this work, the formulations

for the space and time complexities of the proposed MSD DL-FSIPO single GNB multiplier are

derived, while there are no such formulations presented in [36]. In addition, this work further

reduces the space complexity of the proposed architecture through applying sub-expression

sharing techniques to the multiplication by β (see [69, 25] for example).

Table 5.4 estimates the corresponding space and time complexity readings for the case of

bit-level (d = 1) versions of the different multipliers in Tables 5.2 and 5.3, considering the type-

4 GNB of GF
(
2163

)
, based on the 65nm CMOS standard library’s statistics. It is noted that,

Multiplier
MPD Serial Input Loading Parallel Input Loading

ns Total Gates Latency TP/G @ 1 GHz Total Gates2 Latency TP/G @ 1 GHz

BL-PISO [61] 0.43 3329.75 326 150 3981.75 164 250

BL-PISO [37] 0.43 2722.25 326 184 3374.25 164 295

BL-PIPO [17] 0.15 2849.5 326 175 3501.5 164 284

LSB BL-SIPO [16] 0.15 2724.25 326 184 3050.25 164 326

M/LSB BL-FSIPO1 (Figures 5.2 & 5.3, d = 1) 0.19 3854.5 163 259 3854.5 163 259
1 without elimination. If we apply the elimination in [69], savings is 127 XORs = 254 GE. 2 with MUXs.

Table 5.4: Space and time complexity readings for the case of type-4 GNB of GF
(
2163

)
digit-

level single multipliers.

the NAND gate equivalence (GE) is obtained for a two input AND, two input XOR, D-type FF,

and a 2 : 1 1-bit MUX through synthesis using the Synopsys Design Vision tool [4] to be 1.25,

2, 3.75, and 2, respectively. Similarly, the maximum propagation delay (MPD) is obtained

for a two input AND and two input XOR to be 0.03ns and 0.04ns, respectively. In this table,

latency denotes the number of clock cycles required for computing the m-bits of output. TP is

92

throughput and TP/G denotes throughput (@ 1 GHz) per total GE measured in Kbps/Gate. As

one can see from this table, the bit-level version of the proposed DL-FSIPO single GNB multi-

plier offers half the latency and provides the best normalized throughput compared to the other

multipliers in the case of serial loading of inputs. Moreover, one can further reduce the space

complexity of the proposed architecture through applying sub-expression sharing techniques

to the multiplication by β. For example, applying the elimination algorithm proposed in [69],

saves 127 XORs which is equivalent to 254 GE.

In the following section, new LSD DL-FSIPO single GNB multiplier is introduced.

5.1.2 Proposed LSD DL-FSIPO Single GNB Multiplier

This section, presents the LSD DL-FSIPO single GNB multiplier. The section starts by deriv-

ing the formulations for the LSD DL-FSIPO single multiplication scheme. Then, it presents

the architecture of the proposed multiplier. The section concludes by studying space and time

complexities.

5.1.2.1 Formulations

Here, the formulations are derived for digit-level multiplication of two GF (2m) elements based

on the GNB representation, where the two inputs of the multiplier are entered in an LSD first

order. First, the following shows how one constructs the elements of GF (2m) when represented

in the GNB, digit by digit, starting from the least significant digit.

Lemma 5.1.4 Given the digit size 0 < d < m, an arbitrary GF (2m) element A = (a0, . . . , am−1)

represented in the GNB is constructed, recursively, starting with its least significant digit, as

follows:

A(i) =
(
Ai + A(i−1)

)2−d

(5.3)

where i takes values starting from 0 upto k − 1, k =
⌈

m
d

⌉
, A = A(k−1), A(−1) = 0, and Ai =∑d−1

j=0 adi+ j−rβ
2 j

is the i-th digit of A such that adi+ j−r = 0 for di + j − r < 0 given r = kd − m

which represents the number of left padded zeros.

Proof By substituting for i = 0, . . . , k − 1 in (5.3), one gets

A(k−1) =

(
Ak−1 + · · ·

(
A1 + (A0)2−d)2−d

· · ·
)2−d

=

k−1∑
i=0

A2−d(k−i)

i ,

93

and by noticing that Ai =
∑d−1

j=0 adi+ j−rβ
2 j

the following is obtained

A(k−1) =

k−1∑
i=0

d−1∑
j=0

adi+ j−rβ
2 j−d(k−i)

=

 k−1∑
i=0

d−1∑
j=0

adi+ j−rβ
2 j+di


2−dk

.

Now, let l = di + j, and notice that dk = m + r (since r = kd − m), then

A(k−1) =

m+r−1∑
l=0

al−rβ
2l

2−m−r

=

m−1∑
l=−r

alβ
2l+r

2−r

=

m−1∑
l=0

alβ
2l
,

where the last result is achieved since al = 0 for l < 0.

Then, the multiplication of two GF (2m) elements A and B represented in the GNB and con-

structed by (5.3), is obtained as follows.

Proposition 5.1.5 Let E = AB be the multiplication of two elements A, B ∈ GF (2m) repre-

sented in the GNB. Therefore, using construction (5.3), E = A(k−1)B(k−1) is obtained by the

following recurrence

A(i)B(i) =

[d−1∑
j=0

((
adi+ j−r

(
Bi + B(i−1)

)
+ bdi+ j−rA(i−1)

)2− j

β
)2 j

+ A(i−1)B(i−1)
]2−d

, (5.4)

where i takes values starting from 0 upto k − 1, k =
⌈

m
d

⌉
, and A(−1) = B(−1) = A(−1)B(−1) = 0.

Proof A(i)B(i) is obtained by substituting for A(i) and B(i) in A(i)B(i), using (5.3), as

A(i)B(i) =
[(

Ai + A(i−1)
) (

Bi + B(i−1)
)]2−d

=
[
Ai

(
Bi + B(i−1)

)
+ BiA(i−1) + A(i−1)B(i−1)

]2−d

,

and by substituting for Ai =
∑d−1

j=0 adi+ j−rβ
2 j

in Ai

(
Bi + B(i−1)

)
, and for Bi =

∑d−1
j=0 bdi+ j−rβ

2 j
in

BiA(i−1) one gets

A(i)B(i) =

[d−1∑
j=0

adi+ j−rβ
2 j (

Bi + B(i−1)
)
+

d−1∑
j=0

bdi+ j−rβ
2 j

A(i−1) + A(i−1)B(i−1)
]2−d

94

which yields

A(i)B(i) =

[d−1∑
j=0

((
adi+ j−r

(
Bi + B(i−1)

)
+

bdi+ j−rA(i−1)
)2− j

β
)2 j

+ A(i−1)B(i−1)
]2−d

.

In (5.4), and similar to (5.2), the multiplication of A by B (elements of GF (2m)) represented in

the GNB, is reduced recursively to a number of bit-wise AND operations, field additions, mul-

tiplications with the normal element β, and cyclic shifts for computing the powers 2− j, 2 j, and

2−d. It is noted that the field addition of the term Bi in (5.4) is realized through concatenation.

The concatenation is possible since the least significant digit of B(i−1) is always 0 for 0 ≤ i < k

(only B(k−1) has a non zero LSD; however, B(k−1) is not used in computing A(k−1)B(k−1)).

Since it is already given that A(−1) = B(−1) = 0, therefore, starting at i = 0, and proceeding

up to i = k − 1, one obtains the final result of the multiplication AB = A(k−1)B(k−1). As one can

see from (5.4), at each step, the i-th digits in A and B, i.e. Ai and Bi, together with A(i−1) , B(i−1),

and A(i−1)B(i−1), are used for computing A(i)B(i). The following example illustrates the proposed

multiplication scheme for the case of GF
(
23

)
where d = 2 and the elements are represented in

the GNB type-2.

Example 5.1.6 Table 5.5 shows how one multiplies the GF
(
23

)
elements A = B = β22

=

(0, 0, 1), which are represented in the type-2 GNB
{
β, β2, β22

}
(that is, Optimal normal basis

type-2), using (5.3) and (5.4) for the case of d = 2. Note that, in this case k = 2, and r = 1. For

i Ai = a2i−1β + a2iβ
2 Bi = b2i−1β + b2iβ

2 A(i−1) B(i−1)

0 A0 = a−1β + a0β
2 = 0 B0 = b−1β + b0β

2 = 0 A(−1) = 0 B(−1) = 0

1 A1 = a1β + a2β
2 = β2 B1 = b1β + b2β

2 = β2 A(0) =
(
A0 + A(−1)

)2−2

= 0 B(0) =
(
B0 + B(−1)

)2−2

= 0

i Xi = Bi + B(i−1) Yi = A(i−1) Zi = a2i−1Xi + b2i−1Yi Wi = a2iXi + b2iYi

0 X0 = B0 + B(−1) = 0 Y0 = A(−1) = 0 Z0 = a−1X0 + b−1Y0 = 0 W0 = a0X0 + b0Y0 = 0

1 X1 = B1 + B(0) = β2 Y1 = A(0) = 0 Z1 = a1X1 + b1Y1 = 0 W1 = a2X1 + b2Y1 = β
2

i A(i−1)B(i−1) A(i)B(i) =

(
Ziβ +

(
W2−1

i β
)2
+ A(i−1)B(i−1)

)2−2

0 A(−1)B(−1) = 0 A(0)B(0) =

(
Z0β +

(
W2−1

0 β
)2
+ A(−1)B(−1)

)2−2

= 0

1 A(0)B(0) = 0 A(1)B(1) =

(
Z1β +

(
W2−1

1 β
)2
+ A(0)B(0)

)2−2

=

((
β2

)2
)2−2

=
(
β22

)2−2

= β

Table 5.5: Steps for multiplication of the two GF
(
23

)
elements A = B = β22

= (0, 0, 1).

95

this example, rewrite A(i)B(i) =

(
Ziβ +

(
W2−1

i β
)2
+ A(i−1)B(i−1)

)2−2

, where Zi = a2i−1Xi + b2i−1Yi,

Wi = a2iXi + b2iYi, Xi = Bi + B(i−1), and Yi = A(i−1), for 0 ≤ i < 2.

Next, the proposed architecture of the LSD DL-FSIPO single GNB multiplier is presented.

5.1.2.2 Architecture

Here, the architecture of the proposed LSD DL-FSIPO single GNB multiplier is introduced.

This architecture is shown in Figure 5.3, which is constructed based on (5.3) and (5.4). In this

d

m

m

m
m

d-1 m

m

m-d

in1

in2

in3

in4

j

m

m-d

in1

in2

in3

in4

0

m

m-d

in1

in2

in3

in4

d

m-d

<X>
0 m-d-1

d

m-d

<Y>
0 m-d-1

<Z>

m

0 m-1

B
ik 1

B
0

B

A
ik 1

A
0

A

Figure 5.3: Architecture of the proposed LSD DL-FSIPO single GNB multiplier.

figure, the digit size is d, 0 < d < m, and i denotes the i-th clock cycle of the computations,

0 ≤ i < k where k =
⌈

m
d

⌉
. Architectures of ∇ j and β j (which is a component of ∇ j) blocks,

0 ≤ j < d, are shown in Figures 5.2b and 5.2c, respectively, where in Figure 5.2b, and at

iteration 0 ≤ i < k, one has: in1 = Bi + B(i−1), in2 = adi+ j−r, in3 = bdi+ j−r, and in4 = A(i−1).

First, the (m − d)-bits shift registers ⟨X⟩ and ⟨Y⟩, and the m-bits register ⟨Z⟩ are cleared (in

other words, ⟨X⟩, ⟨Y⟩, and ⟨Z⟩ are loaded with A(−1), B(−1), and A(−1)B(−1), respectively). After

this, at the i-th iteration, 0 ≤ i < k, registers ⟨X⟩, ⟨Y⟩, and ⟨Z⟩ change states from A(i−1), B(i−1),

and A(i−1)B(i−1) to A(i), B(i), and A(i)B(i), respectively, as follows. At iteration i, ⟨X⟩ and ⟨Y⟩
perform a d-fold left shift (not cyclic) and, at the same time, the i-th digits of the field elements

96

A and B are written to the most significant d-bits of ⟨X⟩ and ⟨Y⟩, respectively, according to

(5.3). Moreover, and at the same time, register ⟨Z⟩ accumulates the d-fold left cyclic shift of∑d−1
j=0 ∇ j + A(i−1)B(i−1), where the architecture of ∇ j is captured in Figure 5.2b and implements

((
adi+ j−r

(
Bi + B(i−1)

)
+ bdi+ j−rA(i−1)

)2− j

β
)2 j

for in1 = Bi + B(i−1), in2 = adi+ j−r, in3 = bdi+ j−r, and in4 = A(i−1). Therefore, after the i-th

clock cycle, ⟨Z⟩ = A(i)B(i), as one can see from (5.4). After k clock cycles one gets ⟨Z⟩ =
A(k−1)B(k−1) = AB. It is noted that, since the least significant digit of B(i−1) is always 0d for

0 ≤ i < k, where 0d denotes a string of zeros of length d, the proposed architecture implements

Bi + B(i−1) in (5.4) by concatenating Bi to the least significant digit of B(i−1).

In the following, the space and time complexities of the LSD DL-FSIPO single GNB mul-

tiplier are studied.

5.1.2.3 Space and Time Complexities

The space complexity of the proposed LSD DL-FSIPO single GNB multiplier is listed in Table

5.2, in terms of the count of logic gates, FFs, and preloading multiplexers (for the case of

parallel inputs preloading). In Section 5.1.1.3, it was found that each ∇ j module, 0 ≤ j < d,

has 2m − d AND gates and ≤ (m − d) + (T − 1) (m − 1) XOR gates. Figure 5.3, on the other

hand, shows that the number of two input XOR gates in the
∑

module (a GF (2m) adder which

adds d + 1 field elements) is dm. And hence, the total number of two input AND gates is

d (2m − d), while the total number of XOR gates adds up to ≤ d [(2m − d) + (T − 1) (m − 1)].

In addition, one can notice that, while register ⟨Z⟩ has m FFs, registers ⟨X⟩ and ⟨Y⟩ have m − d

FFs each, since their least significant digits will always be zero throughout the k clock cycles

of computations. This adds up to a total of 3m − 2d FFs. It is also noted that no preloading is

required for the proposed LSD DL-FSIPO single GNB multiplier.

The time complexity of the proposed LSD DL-FSIPO single GNB multiplier is also re-

ported in Table 5.3, in terms of levels of the propagation delay of two input XOR and AND

gates through its critical path. Similar to the proposed MSD DL-FSIPO single GNB multiplier

(see Section 5.1.1.3), Figure 5.3 shows that the propagation delay of the proposed LSD archi-

tecture is equivalent to the sum of the propagation delays through one ∇ j module and the
∑

module. Hence, the maximum propagation delay in the proposed LSD DL-FSIPO single GNB

multiplier is TA +
[
1 +

⌈
log2 (d + 1)

⌉
+

⌈
log2 T

⌉]
TX, as shown in Table 5.3.

It is noted that, the proposed multiplication algorithms in Propositions 5.1.2 and 5.1.5 are

different than the one presented in [48]. Propositions 5.1.2 and 5.1.5 build a GF (2m) element

recursively digit-by-digit, starting from the MSD and LSD, respectively. This behaviour results

97

in a DL-FSIPO GNB multiplication scheme. The algorithm presented in [48] takes opposite

action by recursively shrinking a GF (2m) element bit-by-bit, starting from the LSB. The latter

behavior constructs a BL-PIPO GNB multiplication scheme, but not a DL-FSIPO GNB one.

In addition, the authors of [48] present a bit-parallel GNB multiplier extended from their algo-

rithm. Bit-parallel multipliers do not require any input or output registers for their processing

and usually target high throughput applications by generating the output in one clock cycle at

the expense of a space complexity which is quadratic in m for the scheme in [48]. On the other

hand, this chapter focuses on digit-level multiplications for resource constrained applications

which requires input / output registers and trade-off space complexity against larger number of

clock cycles.

It is worth mentioning that, although the presented DL-FSIPO multiplication algorithms

are different from the one in [48], however, they meet at the bit-parallel level. Accordingly,

one might construct a multiplexer based DL-FSIPO GNB multipliers through applying parti-

tioning to the bit-parallel architecture presented in [48] (the proposed DL-FSIPO single GNB

multipliers are AND / XOR based). In this case, similar efforts to those presented in this chap-

ter need to be taken in order to optimize number of FFs and number of XOR gates within the

fixed multiplication by β. Also, notice that, the underlying multiplication algorithm needs to

be theoretically aligned / proved according to the proposed formulations. Otherwise, it would

be more natural to construct a DL-PIPO GNB multiplier by partitioning of the architecture

in [48], which reflects the underlying multiplication algorithm presented in [48]. In fact, the

missing of reference to Feng’s original work [36] throughout [48] indicates that authors of [48]

were determined to use a DL-PIPO algorithm.

5.2 Proposed DL-PISO Single GNB Multiplier

In this section, the proposed architecture of the area efficient MSD DL-PISO single GNB

multiplier is presented. This multiplier is an area-optimized instance of the one presented by

the authors of [70], which is based on (2.6), and hence, the reader is referred to [70] for more

details about the formulations. The area reduction is accomplished through applying the group

sub-expression sharing algorithm presented in [17]. In what follows, the architecture of the

proposed multiplier is first shown, followed by analyzing its space and time complexities.

5.2.1 Architecture

Here, an area efficient architecture is presented for the MSD DL-PISO single GNB multiplier,

as it is shown in Figure 5.4a. Part (b) of this figure depicts the architecture of the Rd block

98

<Y>

m

<X>

m

m

m
m

m

d(m-1)

d

IP
d

m
d

d

m
m

m
IP

m
m

m
IP

R

z0

z1

zd-1
(i)

(i)

(i)

Y
(i)

X
(i)

(a)

m

m-1m

m

m

d-1
m

1
m

0
m

m-1

m-1

R

R

R

(b) (c)

Figure 5.4: (a) The proposed architecture of the MSD DL-PISO single GNB multiplier.

before applying sub-expression sharing. Part (c) shows the architecture of the IP block. The

architecture in this figure differs from the LSD DL-PISO single GNB multiplier, which is

presented in [16], in that it generates the multiplication output in the order of most significant

digit first. This is accomplished through generating the d output bits z(i)
d−1 through z(i)

0 , during

iteration i, where 0 ≤ i < k and k =
⌈

m
d

⌉
, as follows. In Figure 5.4a, a bit z(i)

n denotes the

left most (least significant) coordinate of P2−n

X(i)

(
Y (i)

)
, where 0 ≤ n < d and , X(i) = A2(i+1)d−t

and

Y (i) = B2(i+1)d−t
(t = k × d − m) denote the contents of registers ⟨X⟩ and ⟨Y⟩ at the i-th iteration

of the computations. It is noted that z(i)
n , the left most coordinate of P2−n

X(i)

(
Y (i)

)
, is obtained

according to (2.6) as follows

z(i)
n =x(i)

n y(i)
n+1 +

m−1∑
u=1

x(i)
((n+u))

 T∑
v=1

y(i)
((n+R[u,v]))

 . (5.5)

99

In (5.5), x(i)
j and y(i)

j , respectively, denote the j-th coordinates (cells) of registers ⟨X⟩ and ⟨Y⟩
during the i-th iteration. In the same formulation, (()) denotes the reduction modulo-m. There-

fore, by initializing registers ⟨X⟩ and ⟨Y⟩ such that X(0) = A2d−t
and Y (0) = B2d−t

, one obtains the

most significant digit of the output. It is noted that the t-fold left cyclic shift in A2d−t
and B2d−t

is implemented in order to allow for appending zeros to the t most significant bits of the first

output digit (most significant digit), i.e.,
(
z(0)

d−t, . . . , z
(0)
d−1

)
. This is required for compatibility of

integration with the proposed MSD DL-FSIPO single GNB multiplier (see Section 5.3). Then,

at the i-th iteration, 0 ≤ i < k, one has X(i) = A2(i+1)d−t
and Y (i) = B2(i+1)d−t

, due to the d-fold

right cyclic shifts which are applied to ⟨X⟩ and ⟨Y⟩ at each clock cycle, as shown in Figure

5.4a. According to this, bit z(i)
n of the i-th output digit in Figure 5.4a maps to the output bit

em−(d(i+1)−t)+n of the multiplication result E = AB. For all 0 ≤ n < d, the inner product in (5.5)

is realized through an IP block in Figure 5.4a, while the d instances (for 0 ≤ n < d) of the

m − 1 bits of
∑m−1

u=1

(∑T
v=1 y((n+R[u,v]))

)
β2u

are generated through the Rd block, which is shown in

Figure 5.4b. This figure shows the architecture of Rd before applying the group sub-expression

sharing algorithm presented in [17], where each R block represents the matrix multiplication of

the lower m− 1 rows of the multiplication matrix M by the corresponding m-bits input vertical

vector.

The following is the space and time complexity analysis of the proposed MSD DL-PISO

single GNB multiplier.

5.2.2 Space and Time Complexities

Here, the space and time complexities of the proposed MSD DL-PISO single GNB multiplier

in Figure 5.4a are discussed. In this figure, an IP block consists of m AND gates and m−1 XOR

gates, as it is shown in Figure 5.4c. Furthermore, for area efficiency, the Rd block of Figure 5.4a

realizes a group sub-expression shared version of the d R blocks in Figure 5.4b based on the

algorithm presented in [17]. It is noted that one can find the number of eliminations due to this

sharing through simulation. Therefore, the architecture of Figure 5.4a requires a total of 2m

FFs, dm ANDs, and ≤ d
[
(T − 1)

(
(m − 1) − d−1

2

)]
+ d (m − 1) XORs, as presented in Table 5.2,

where ≤ (T − 1) (m − 1) is the number of XOR gates in each R block before sub-expression

sharing (see Section 2.9.2.2) and the term d(d−1)
2 is due to the elimination of common rows

between different R matrices which are used in implementing the d R blocks [16].

For the time complexity, one can see that the critical path of Figure 5.4a has a propaga-

tion delay equals to TA +
(⌈

log2 T
⌉
+

⌈
log2 m

⌉)
TX, as presented in Table 5.2, where the delay

through the area optimized Rd block is
⌈
log2 T

⌉
TX [16], and that through an IP module is

TA +
⌈
log2 m

⌉
TX.

100

In the following, the proposed MSD DL-FSIPO and DL-PISO single GNB multipliers are

combined to construct an MSD DL-SIPO hybrid-double and a DL-PIPO hybrid-triple, GNB

multipliers.

5.3 Proposed Digit-Level Hybrid-Double and Hybrid-Triple
GNB Multipliers

A hybrid-double digit-level GNB multiplication architecture has been recently proposed by

the authors of [16], which performs two field multiplications (multiplication of three field ele-

ments) using the same latency required for a single field multiplication (i.e. k =
⌈

m
d

⌉
iterations

for a digit size d). To accomplish this, the authors of [16] have extended the LSB BL-PISO

GNB multiplier in [70] and the LSB BL-SIPO GNB multiplier in [20] to the digit-level, then,

by combining these two digit-level single GNB multipliers, they constructed their DL-PIPO

hybrid-double GNB multiplier.

In this section, four new architectures for GF (2m) digit-level hybrid multiplications are pre-

sented, two for an MSD DL-SIPO hybrid-double multiplication (a low area and a high speed

designs) and, for the first time, another two (low area / high speed designs) for a DL-PIPO

hybrid-triple multiplication (multiplication of four field elements), when the field elements

are represented in the GNB. In order to construct the proposed hybrid-double multiplier, the

MSD DL-PISO single GNB multiplier presented in Section 5.2.1 is combined with the pro-

posed MSD DL-FSIPO single GNB multiplier of Figure 5.2a. On the other hand, the proposed

hybrid-triple multiplier is constructed by combining the MSD DL-PISO single GNB multiplier

presented in Section 5.2.1 with the MSD DL-SIPO hybrid-double GNB multiplier proposed in

this section1.

In the following, the proposed architectures of the MSD DL-SIPO hybrid-double GNB

multiplier are first presented, followed by those of the proposed DL-PIPO hybrid-triple GNB

multiplier. This section concludes by analyzing the space and time complexities of the two

proposed hybrid multipliers.

5.3.1 Proposed MSD DL-SIPO Hybrid-Double GNB Multiplier

This section presents the architecture of the proposed MSD DL-SIPO hybrid-double GNB

multiplier. It is noted that the hybrid-double GNB multiplier proposed by the authors of [16]
1It is noted that one can build an LSD DL-SIPO hybrid-double architecture, as well as a DL-PIPO hybrid-triple

architecture, by combining the LSD DL-PISO GNB multiplier presented in [16] with the LSD DL-FSIPO GNB
multiplier which is proposed in this chapter.

101

follows a DL-PIPO scheme of its inputs/outputs, while the proposed architecture in this work

is the first DL-SIPO scheme for the digit-level hybrid-double GNB multiplication. Figure 5.5

shows two versions of the proposed MSD DL-SIPO hybrid-double GNB multiplier, one for a

low area design (Figure 5.5a) and the other for a high speed design (Figure 5.5b). The appended

(Figure 5.4a)

MSD

(Figure 5.2a)

(a)

d
<W>

d d-t m

E

MSD

t
t

d

m

(Figure 5.4a)m

A

B

(Figure 5.2a)

dC ||0d

(b)

Figure 5.5: Architectures of the proposed MSD DL-SIPO hybrid-double GNB multiplier. (a)

Low area design. (b) High speed design.

0d (zero digit) in input C of part (b) of this figure balances the timing due to pipelining. It is

noted that the most significant t-bits - where t = k × d − m, k =
⌈

m
d

⌉
, and d is the digit size - of

the first output digit (most significant digit) of the MSD DL-PISO single GNB multipliers in

Figure 5.5 are set to zero through the MS D signal. As can be seen from the figure, the low area

MSD DL-SIPO hybrid-double GNB multiplier is built from MSD DL-PISO and DL-FSIPO

single GNB multipliers with the output of the former connected to one input of the latter. On

the other hand, the high speed version follows from the low area version by inserting the d-bits

register ⟨W⟩ between the output of the DL-PISO, and the input of the DL-FSIPO, single GNB

multipliers, as can be seen from Figure 5.5b. This, in turn, shortens the propagation delay of

the multiplier’s critical path, which results in reaching higher operating frequencies compared

to the low area version. However, it adds one extra clock cycle to the latency. Each one of the

two versions of the proposed MSD DL-SIPO hybrid-double GNB multiplier takes three inputs,

102

two of which are m-bits wide each (inputs A and B in Figure 5.5), while the third one has only

d-bits (input C in Figure 5.5).

Initially, A and B are loaded to the input registers of the MSD DL-PISO single GNB multi-

plier, while the input/output registers of the MSD DL-FSIPO single GNB multiplier are cleared

out. In the low area version, at the i-th clock cycle, 0 ≤ i < k, the MSD DL-PISO single GNB

multiplier generates the (k − 1 − i)-th output digit for the multiplication AB, while the MSD

DL-FSIPO single GNB multiplier generates E(i) = (AB)(i) C(i) (according to (5.1) and (5.2)).

After k iterations, the output register of the MSD DL-FSIPO single GNB multiplier holds the

result of the double multiplication, i.e., E(k−1) = (AB)(k−1) C(k−1). In the high speed version, an

extra clock cycle is required at the beginning to store the MSD output digit of the DL-PISO

single GNB multiplier to register ⟨W⟩.
In the following, the proposed architectures for the DL-PIPO hybrid-triple GNB multiplier

are introduced.

5.3.2 Proposed DL-PIPO Hybrid-Triple GNB Multiplier

This section, presents the proposed architectures for the DL-PIPO hybrid-triple GNB multi-

plier. To the best of the author knowledge, this is the first digit-level hybrid GNB multiplier

proposed in the literature which performs three GF (2m) multiplications using the same latency

of a single digit-level field multiplication (multiplying of four field elements of A, B, C, and D

together). Figures 5.6a and 5.6b present two variants of the proposed DL-PIPO hybrid-triple

GNB multiplier. Figure 5.6a is a low area design, while Figure 5.6b shows a high speed de-

sign. The most significant t-bits, t = k × d − m, of the first output digit of the MSD DL-PISO

single GNB multipliers in these figures are set to zero through the MS D signal. In Figure 5.6a,

the low area DL-PIPO hybrid-triple GNB multiplier is constructed from one MSD DL-PISO

single, and one low area MSD DL-SIPO hybrid-double, GNB multipliers with the output of

the former connected to the serial input of the latter. The high speed DL-PIPO hybrid-triple

GNB multiplier instance uses a high speed MSD DL-SIPO hybrid-double GNB multiplier.

Also, it has a d-bits register ⟨V⟩ inserted between the output of the MSD DL-PISO single GNB

multiplier and the input of the high speed MSD DL-SIPO hybrid-double GNB multiplier (see

Figure 5.6b). This leads to shorter critical path, and hence, results in reaching higher operat-

ing frequencies compared to the low area instance; however, at the expense of one extra clock

cycle.

Each one of the two proposed hybrid-triple GNB multiplier’s versions takes four m-bits

inputs, denoted by A, B, C, and D, and generates an m-bits output, i.e. E = ABCD. Initially,

A, B, C, and D are loaded to the input registers of the MSD DL-PISO single GNB multipliers

103

m

m
m

(Figure 5.5a)

A

B
E

m

m

C

D
d d-t

MSD

t
t
d

(Figure 5.4a)

(a)

m

m

A

B

m

m d

C

D
<V>

m

E

d d-t

MSD

t
t
d

(Figure 5.4a)

(Figure 5.5b)

(b)

Figure 5.6: Architectures of the proposed MSD DL-PIPO hybrid-triple GNB multiplier. (a)

Low area design. (b) High speed design.

(including the one in the DL-SIPO hybrid-double GNB multiplier), while the input/output

registers of the MSD DL-FSIPO single GNB multiplier (in the hybrid-double multiplier) are

cleared out. In the low area version, at the i-th clock cycle, 0 ≤ i < k, the MSD DL-PISO

single GNB multipliers generate their (k − 1 − i)-th output digits for AB and CD at the same

time, while the output register of the MSD DL-SIPO hybrid-double multiplier computes E(i) =

(AB)(i) (CD)(i) (according to (5.1) and (5.2)). After k iterations, the output register of the low

area DL-PIPO hybrid-double GNB multiplier holds E(k−1) = (AB)(k−1) (CD)(k−1) = ABCD. On

the other hand, the high speed version generates its final output after k+1 clock cycles, since an

extra clock cycle is required, at the beginning, to store the MSD output digit of CD in register

⟨V⟩ and the MSD output digit of AB in register ⟨W⟩ (see Figure 5.5b).

Next, the space and time complexities for the different proposed architectures of the digit-

level hybrid-double and hybrid-triple GNB multipliers are given.

104

5.3.3 Space and Time Complexity Analysis

Here, the space and time complexities of the proposed digit-level hybrid-double and hybrid-

triple GNB multipliers which are presented in Sections 5.3.1 and 5.3.2, respectively, are de-

rived. Table 5.6 shows the space complexities of the proposed hybrid GNB multipliers, while

Table 5.7 presents their corresponding time complexities.

Multiplier D-FF AND XOR1 2 : 1 MUX

DL-PIPO Hybrid-Double2 (low area) [16] 4m 2dm + t ≤ d (T − 1) [2 (m − 1) − (d − 1)] + d (2m − 1) 3m

DL-PIPO Hybrid-Double2 (high speed) [16] 4m + d 2dm + t ≤ d (T − 1) [2 (m − 1) − (d − 1)] + d (2m − 1) 3m

MSD DL-SIPO Hybrid-Double (low area) (Figure 5.5a) 5m − 2d d (3m − d) + t ≤ d (T − 1)
[
2 (m − 1) − d−1

2

]
+ d (3m − (d + 1)) 2m

MSD DL-SIPO Hybrid-Double (high speed) (Figure 5.5b) 5m − d d (3m − d) + t ≤ d (T − 1)
[
2 (m − 1) − d−1

2

]
+ d (3m − (d + 1)) 2m

DL-PIPO Hybrid-Triple (low area) (Figure 5.6a) 7m − 2d d (4m − d) + 2t ≤ d (T − 1) [3 (m − 1) − (d − 1)] + d (4m − (d + 2)) 4m

DL-PIPO Hybrid-Triple (high speed) (Figure 5.6b) 7m d (4m − d) + 2t ≤ d (T − 1) [3 (m − 1) − (d − 1)] + d (4m − (d + 2)) 4m
1 without sub-expression elimination. 2Note: the authors of [16] did not count for the t ANDs which are required for appending zeros .

Table 5.6: Space complexity of the digit-level hybrid-double and hybrid-triple GNB multipli-

ers.

Multiplier
Propagation Serial Loading Computation

Delay of Inputs Latency Latency

DL-PIPO Hybrid-Double (low area) [16] TPIS O + TS IPO k k

DL-PIPO Hybrid-Double (high speed) [16] max {TPIS O,TS IPO} k k + 1

MSD DL-SIPO Hybrid-Double (low area) (Figure 5.5a) TPIS O + TFS IPO + TA k k

MSD DL-SIPO Hybrid-Double (high speed) (Figure 5.5b) max {TPIS O,TFS IPO + TA} k k + 1

DL-PIPO Hybrid-Triple (low area) (Figure 5.6a) TPIS O + TFS IPO + TA k k

DL-PIPO Hybrid-Triple (high speed) (Figure 5.6b) max {TPIS O,TFS IPO + TA} k k + 1

Table 5.7: Time complexity of the digit-level hybrid-double and hybrid-triple GNB multipliers.

In table 5.6, t = k × d − m, k =
⌈

m
d

⌉
, and d is the digit size. T is the GNB type. In

Table 5.7, TPIS O = TA+
(⌈

log2 T
⌉
+

⌈
log2 m

⌉)
TX denotes the delay in the DL-PISO single GNB

multiplier, TS IPO = TA+
(⌈

log2 (d + 1)
⌉
+

⌈
log2 T

⌉)
TX denotes the delay in the DL-SIPO single

GNB multiplier, and TFS IPO = TA +
(
1 +

⌈
log2 (d + 1)

⌉
+

⌈
log2 T

⌉)
TX denotes the delay in the

DL-FSIPO single GNB multiplier.

Using the construction of Figure 5.5a, one obtains the space complexity of the low area

version of the proposed MSD DL-SIPO hybrid-double GNB multiplier which is listed in Table

5.6. This is done by adding the corresponding space complexities of the MSD DL-PISO and

DL-FSIPO single GNB multipliers, in addition to the t AND gates which are used for padding

the most significant digit with zeros. Similarly, one can find the space complexity of the low

area version of the proposed DL-PIPO hybrid-triple GNB multiplier. This is done by adding

105

the corresponding gate count in its MSD DL-PISO single and DL-SIPO hybrid-double GNB

multipliers, in addition to the t AND gates in Figure 5.6a, as can be seen from Table 5.6.

Moreover, the space complexities of the high speed versions of the proposed hybrid-double

and hybrid-triple GNB multipliers are achieved by adding d and 2d FFs, respectively, to the

space complexities of the corresponding low area versions.

In addition, from Figures 5.5a and 5.6a, one finds that the low area architectures of the pro-

posed MSD DL-SIPO hybrid-double GNB multiplier and the proposed DL-PIPO hybrid-triple

GNB multiplier offer maximum propagation delays which are equivalent to TPIS O+TFS IPO+TA.

In the latter formulation, TPIS O and TFS IPO denote the propagation delay through the MSD DL-

PISO single GNB multiplier and the MSD DL-FSIPO single GNB multiplier, respectively. On

the other hand, due to the insertion of registers (Figures 5.5b and 5.6b), the propagation de-

lays of the high speed architectures of the proposed digit-level hybrid-double and hybrid-triple

GNB multipliers are reduced to max {TPIS O,TFS IPO + TA}.
In the following, a brief discussion is given about the advantages of using digit-level hybrid

GNB multipliers for accomplishing double and triple field multiplications, compared to using

digit-level single GNB multipliers with 2d and 3d digit sizes, respectively.

5.3.4 Hybrid Versus Single Digit-Level GNB Multipliers

This section briefly discusses advantages for using the proposed digit-level hybrid-double and

hybrid-triple GNB multipliers, instead of using digit-level single GNB multipliers, for accom-

plishing double and triple field multiplications, respectively.

It is noted that the proposed digit-level hybrid-double and hybrid-triple GNB multipliers are

constructed using two and three digit-level single GNB multipliers, respectively. Hence, for a

fair discussion, we compare the digit-level hybrid-double and hybrid-triple GNB multipliers,

of digit size d each, to digit-level single GNB multipliers of digit sizes 2d and 3d, respectively.

The main advantage of using the digit-level (digit size d) hybrid-double and hybrid-triple

GNB multipliers, in case of double and triple field multiplications, respectively, is that one

can obtain lower computational latency, and hence higher throughput, compared to using digit-

level single GNB multipliers with digit sizes 2d and 3d, respectively. For example, by using a

digit-level hybrid-double GNB multiplier with d =
⌈

m
3

⌉
, one obtains the result of a double field

multiplication after 3 clock cycles. However, a digit-level single GNB multiplier computes the

double field multiplication over 4 clock cycles for a digit size 2d = 2
⌈

m
3

⌉
where

⌈
m
2

⌉
< 2

⌈
m
3

⌉
<

m. In addition, by using the digit-level hybrid-double/triple GNB multiplier structures (for

digit size d), one can achieve lower space/time complexities for some computational latencies,

compared to using digit-level single GNB multipliers (for digit sizes 2d and 3d, respectively).

106

For example, a digit-level hybrid-triple GNB multiplier with d =
⌈

m
2

⌉
accomplishes a triple

field multiplication over 2 clock cycles, while the same latency can only be achieved by using

two bit-parallel GNB multipliers when multiplying four field elements.

Therefore, the proposed DL-PIPO hybrid-triple GNB multiplier accomplishes three field

multiplications using the latency required for a single field multiplication, and hence, it can be

used to increase the throughput of applications where such triple multiplications exist. In what

follows, a new architecture for the eight-ary field exponentiation is presented, as an application

for the digit-level hybrid-triple GNB multiplier presented in this section.

5.4 Proposed Architecture for Field Exponentiation

Exponentiation is a fundamental operation for the Diffie-Hellman key exchange algorithm [29]

and is also used for other cryptographic applications such as random number generation [85].

The n-ary scheme is used to increase throughput of GF (2m) exponentiation [42, 83]. In the

case of n = 23 (i.e. eight-ary scheme), to compute the exponentiation Ah for A ∈ GF (2m) and

a positive integer h =
∑⌈m

3 ⌉−1
i=0 hi23i, where 0 ≤ hi < 8, one rewrites h as h =

∑7
w=1 λ (w) w,

where λ (w) =
∑
{i:hi=w} 23i. Then, this eight-ary exponentiation scheme requires finding the

coefficients λ (w) and precomputing and storing odd powers for 1 < w < 8. This takes at most⌈
m
3

⌉
+2 iterations to complete [42, 83]. In this section, a new architecture for the eight-ary field

exponentiation scheme when the GF (2m) elements are represented in the GNB is presented.

The proposed architecture is based on the digit-level hybrid-triple GNB multiplier presented in

Section 5.3.2 (Figure 5.6) and computes the exponentiation results using
⌈

m
3

⌉
iterations, while

it does not require any storage of precomputed values.

In the following, the proposed formulations for field exponentiation is first derived, fol-

lowed by presenting its corresponding proposed architecture.

Proposition 5.4.1 Let F = Ah denotes the exponentiation of an arbitrary GF (2m) element A

represented in the GNB, where 1 < h < 2m is an arbitrary positive integer. Therefore, one can

compute F using the following recurrence:

F(i) =Ahk′−1−i
(
F(i−1)

)23

, (5.6)

where k′ =
⌈

m
3

⌉
, h =

∑k′−1
i=0 hk′−1−i8k′−1−i, 0 ≤ hk′−1−i < 8, F(−1) = 1, and F = F(k′−1).

Proof By substituting for i = 0, . . . , k′ − 1 in (5.6), where k′ =
⌈

m
3

⌉
and hk′−1−i ∈ [0, 7] are the

coefficients of the radix-8 representation of h, one gets

F(k′−1) =A(((hk′−18+hk′−2)8+hk′−3)8+···+h1)8+h0

=A
∑k′−1

i=0 hk′−1−i8k′−1−i
.

107

That is, F(k′−1) = F, since h =
∑k′−1

i=0 hk′−1−i8k′−1−i.

Note that (5.6) reads h left-to-right. Similarly, one can read h right-to-left by using F(i) =

Ahi
(
F(i−1)

)2−3

, for 0 ≤ i < k′, where h = 23(k′−1) ∑k′−1
i=0 hi2−3(k′−1−i) and F =

(
F(k′−1)

)23(k′−1)
.

Based on (5.6), the eight-ary exponentiation architecture of Figure 5.7 is proposed, which is

constructed based on the proposed digit-level hybrid-triple GNB multiplier of Figure (5.6)

(either Figure 5.6a or Figure 5.6b, depending on whether the target application requires a low

area design or a high speed design, respectively). It is noted that, in this figure, the 1 inputs to

A

m(Figure 5.6a or

5.6b)

Fm

m

m

m

m

m

m
m

m
m

m
m

m m

m
m

Figure 5.7: Architecture of the proposed eight-ary field exponentiation scheme.

multiplexers represent the field element 1 = (1, . . . , 1) represented in the GNB. As shown in

this figure, the architecture is composed of one DL-PIPO hybrid-triple GNB multiplier and four

2 : 1 m-bits multiplexers. The first three multiplexers (0, 1, and 2), respectively, are controlled

by the coefficients s(i)
0 , s(i)

1 , and s(i)
2 of the binary representation of hk′−1−i = s(i)

0 + s(i)
1 2 + s(i)

2 22,

where k′ =
⌈

m
3

⌉
and 0 ≤ hk′−1−i < 8 for all 0 ≤ i < k′ in (5.6). The last multiplexer, i.e.

3, passes the field element 1 = (1, . . . , 1) during the first iteration, while it selects the 3-fold

right cyclic shift of the multiplier’s output during the remaining iterations. Therefore, by using

this architecture one computes F = Ah after k′ runs of the hybrid-triple multiplication. This is

equivalent to k′× (L + 1) clock cycles in the case of parallel preloading of the multiplier, where

L = k if a low area hybrid multiplier is used otherwise it becomes L = k + 1 for using a high

speed hybrid multiplier (k =
⌈

m
d

⌉
, d is the digit size).

One can see that, the proposed eight-ary exponentiation architecture does not require any

storage of precomputed values, while it has almost the same latency, compared to the existing

schemes. Also, it is noted that the proposed architecture uses the same latency regardless of

the exponent’s value. This in turn prevents leakage of time/power dissipation information.

108

5.5 Conclusion

In this paper, three new architectures for digit-level (DL) single multiplication using GNB

have been proposed; two multipliers with fully serial-in-parallel-out (FSIPO) and one with

parallel-in-serial-out (PISO). The two DL-FSIPO single GNB multipliers have been proposed

for the first time in the literature. They do not require preloading of the inputs and, hence, are

advantageous for applications where the parallel loading of inputs is not possible due to limited

size of the data-path.

Using the proposed single digit-level multiplier architectures, a new digit-level serial-in-

parallel-out (DL-SIPO) hybrid-double GNB multiplier and for the first time in the literature

a new digit-level parallel-in-parallel-out (DL-PIPO) hybrid-triple GNB multiplier have been

proposed. The proposed digit-level hybrid-double and hybrid-triple multipliers, perform two

and three field multiplications, respectively, using the same latency as a single digit-level field

multiplication.

As an application of the proposed hybrid-triple multiplier, a new digit-level eight-ary field

exponentiation architecture has been presented which offers computational latency similar to

the existing eight-ary schemes, however, without requiring storage of precomputed values.

109

Chapter 6

Digit-Level Architectures for GF
(
2m)

Multiplication in the PB

In this chapter, and to the best of the author knowledge, two new architectures of GF (2m)

digit-level FSIPO (DL-FSIPO) multipliers for dedicated PBs are proposed for the first time in

literature. The new digit-level serial PB architectures generate the output bits in parallel after

k iterations. In the new DL-FSIPO PB multiplication schemes, both inputs enter the multiplier

digit-by-digit serially, one digit per a clock cycle starting from the most or least significant digit

(MSD or LSD), as the computations are carried out. Therefore, the new MSD and LSD DL-

FSIPO PB multiplication structures are expected to be advantageous for resource constrained

applications where the data-path of the inputs might have limited capacity, specially, when the

value of m is large. In addition, by using additional parallel-in-serial-out register, one can also

generate the output bits of the proposed DL-FSIPO PB multipliers serially over 2k clock cycles.

The latter scheme is advantageous over the serial-serial schemes in [46, 14] for performing n

consecutive multiplications. The serial-serial schemes presented in [46, 14] require 2kn clock

cycles to complete n consecutive GF (2m) digit-level multiplications. The same number of

n consecutive digit-level multiplications can be run using only k (n + 1) clock cycles based on

the proposed DL-FSIPO multiplication schemes with an additional parallel-in-serial-out output

register.

It is noted that, a preliminary MSB bit-level version of this chapter appears in ARITH 22,

the 22nd IEEE Symposium On Computer Arithmetic (June 2015). The rest of the chapter

is organized as follows. Sections 6.1 and 6.2, respectively, present the proposed MSD and

LSD DL-FSIPO PB multiplication schemes. Section 6.3, presents comparisons between the

proposed MSD and LSD DL-FSIPO PB multiplication schemes and the other existing coun-

terparts. Section 6.4 gives some conclusions.

110

6.1 Proposed MSD DL-FSIPO PB Multiplier

This section, presents a new MSD serial multiplier design for dedicated PB which follows

a FSIPO inputs/output scheme. To the best of the author knowledge, the proposed MSD DL-

FSIPO architecture of the serial PB multiplier is presented for the first time in the literature. The

proposed MSD DL-FSIPO PB multiplier conducts the multiplication operation as the digits of

the two inputs enter the multiplier in a digit-by-digit order, one digit per a clock cycle (for each

input), starting from the most significant digit. Therefore, the proposed MSD DL-FSIPO PB

multiplier is advantageous for achieving high throughput for applications where m is large and

the parallel preloading of the inputs is not possible due to the limited sizes of the input data-

paths. In the following, the required formulations for the MSD DL-FSIPO PB multiplication

is first derived. Then, the proposed architecture is shown. The section concludes by studying

the space and time complexities.

6.1.1 Formulations

In this section, the required formulations for the proposed MSD DL-FSIPO PB multiplication

scheme is derived. First, a recursive digit-level construction of the GF (2m) elements when

represented in the PB is given, by reading the field element digit-by-digit, starting from the

most significant digit, as follows.

Definition 6.1.1 Let α be the root of the field’s defining irreducible polynomial of GF (2m). Let

us divide the GF (2m) element, say A = (am−1, . . . , a0) represented in the PB, into k =
⌈

m
d

⌉
digits

of size d each. That is A = (Ak−1, . . . , Ak−1−i, . . . , A0), where Ak−1−i =
∑d−1

j=0 ad(k−1−i)+ jα
j is the

(k − 1 − i)-th digit and ad(k−1−i)+ j = 0 for d (k − 1 − i) + j ≥ m. Then, A can be constructed

recursively, starting from the most significant digit Ak−1, as follows:

A(i) =Ak−1−i + A(i−1)αd (6.1)

starting at i = 0 and obtaining A = A(k−1) at i = k − 1, given that A(−1) = 0.

Proof By using (6.1), for i = 0, 1, . . . , k − 2 one gets

111

A(0) =Ak−1 + A(−1)αd

=

d−1∑
j=0

ad(k−1)+ jα
j,

A(1) =Ak−2 + A(0)αd

=

d−1∑
j=0

ad(k−2)+ jα
j +

d−1∑
j=0

ad(k−1)+ jα
j+d

=

2d−1∑
j=0

ad(k−2)+ jα
j,

...

A(k−2) =A1 + A(k−3)αd

=

d−1∑
j=0

ad(1)+ jα
j +

(k−2)d−1∑
j=0

ad(2)+ jα
j+d

=

(k−1)d−1∑
j=0

ad+ jα
j,

and hence, for i = k − 1

A(k−1) =A0 + A(k−2)αd

=

d−1∑
j=0

a jα
j +

(k−1)d−1∑
j=0

ad+ jα
j+d

=

kd−1∑
j=0

a jα
j,

that is A(k−1) =
∑m−1

i=0 aiα
i since ai = 0 for i ≥ m, which completes the proof.

Notice that the multiplication by αd in (6.1) realizes a d-bit left shift and does not require

any reduction for 0 ≤ i < k. Based on the recursive construction in (6.1), one obtains the

multiplication of any two arbitrary GF (2m) elements A and B as follows.

Proposition 6.1.2 Let A and B be two arbitrary GF (2m) elements represented in the PB which

is generated by the degree m irreducible polynomial p (x) = xm +
∑ω−2

i=0 xti + 1 with ω nonzero

terms. Let us define Ci = A(i)B(i) mod p (α), where A(i) and B(i) are given in (6.1) and α is the

112

root of p (x). Then, one can compute the multiplication of A and B, i.e. AB mod p (α) = Ck−1,

based on the following recurrence on Ci:

Ci =

d−1∑
j=0

[
ad(k−1−i)+ j

(
Bk−1−i + B(i−1)αd

)
+

bd(k−1−i)+ jA(i−1)αd
]
α j mod p (α)+

Ci−1α
2d mod p (α) , (6.2)

i = 0, . . . , k − 1, where C−1 = A(−1)B(−1) mod p (α) = 0.

Proof By using the definition (6.1) for A(i) and B(i) in evaluating Ci = A(i)B(i) mod p (α), one

obtains

Ci =
(
Ak−1−i + A(i−1)αd

) (
Bk−1−i + B(i−1)αd

)
mod p (α)

=Ak−1−i

(
Bk−1−i + B(i−1)αd

)
+

Bk−1−iA(i−1)αd +Ci−1α
2d mod p (α) .

Now, by substituting for Ak−1−i =
∑d−1

j=0 ad(k−1−i)+ jα
j and Bk−1−i =

∑d−1
j=0 bd(k−1−i)+ jα

j in the above

formulation, (6.2) is obtained.

Having AB mod p (α) = A(k−1)B(k−1) mod p (α) = Ck−1, then, by iterating for i =

0, 1, . . . , k − 1, one obtains the multiplication results after k iterations over (6.1) and (6.2).

Notice that, the left most (kd − m) bits of the most significant digit of the input are zeros.

Hence, the highest order coordinate in the intermediate variable elements A(k−2) and B(k−2) is

α(k−1)d−1−(kd−m) = αm−d−1. Therefore, the multiplication by αd which appears in the expressions

ad(k−1−i)+ j

(
Bk−1−i + B(i−1)αd

)
and bd(k−1−i)+ jA(i−1)αd can be accomplished by a simple left shift of

d bits without any reduction.

Based on (6.2), the multiplication of the two GF (2m) elements A and B, is reduced recur-

sively to bit-wise AND operations, field additions, left shifts (for the multiplication by αd), and

multiplications with the fixed field elements α2d and α j, 0 < j < d.

The following is an example for illustrating the proposed multiplication scheme.

Example 6.1.3 Table 6.1 lists the steps for multiplying the two GF
(
23

)
field elements A =

α = (0, 1, 0) and B = α2 = (1, 0, 0), represented in the PB
{
α2, α, 1

}
which is defined by the

irreducible trinomial p (x) = x3 + x + 1. In this example, d = 1 (bit-level multiplication).

113

i a2−i b2−i A(i−1) B(i−1)

0 a2 = 0 b2 = 1 A(−1) = 0 B(−1) = 0

1 a1 = 1 b1 = 0 A(0) = a2 + A(−1)α = 0 B(0) = b2 + B(−1)α = 1

2 a0 = 0 b0 = 0 A(1) = a1 + A(0)α = 1 B(1) = b1 + B(0)α = α

i a2−i

(
b2−i + B(i−1)α

)
b2−iA(i−1)α Ci−1α

2 mod p (α) Ci

0 a2

(
b2 + B(−1)α

)
= 0 b2A(−1)α = 0 C−1α

2 mod p (α) = 0 C0 = 0

1 a1

(
b1 + B(0)α

)
= α b1A(0)α = 0 C0α

2 mod p (α) = 0 C1 = α

2 a0

(
b0 + B(1)α

)
= 0 b0A(1)α = 0 C1α

2 mod p (α) = α + 1 C2 = α + 1 = α3

Table 6.1: Example 6.1.3 for multiplying the two GF
(
23

)
elements A = α = (0, 1, 0) and

B = α2 = (1, 0, 0) using (6.1) and (6.2).

The proposed MSD DL-FSIPO PB multiplication scheme in (6.1) and (6.2) can be im-

plemented for an arbitrary irreducible polynomial considering any digit size d, 0 < d < m.

However, the following remark gives some conditions for efficient hardware realization, based

on Theorems 2.9.4 and 2.9.5.

Remark 6.1.4 Let p (x) = xm +
∑ω−2

i=1 xti + 1 denotes the defining irreducible polynomial with

ω nonzero terms for GF (2m). Then, by choosing the digit size d of the MSD DL-FSIPO PB

multiplier such that

d ≤
⌊m − tω−2

2

⌋
, (6.3)

the multiplication of an arbitrary GF (2m) element by a fixed field element αq, where q ≤ 2d,

can be accomplished efficiently in a single step using using q (ω − 2) two-inputs XOR gates

with a propagation delay equivalent to
⌈
log2 (q + 1)

⌉
XOR gate delays.

According to (6.3), efficient hardware realizations of the MSD DL-FSIPO PB multipli-

cation scheme for the five fields recommended by NIST for ECDSA GF
(
2163

)
, GF

(
2233

)
,

GF
(
2283

)
, GF

(
2409

)
, and GF

(
2571

)
, respectively, offer maximum digit sizes of 78, 79, 135,

161, and 280.

6.1.2 Architecture

This section presents the proposed architecture of the MSD DL-FSIPO PB multiplier, as shown

in Figure 6.1a, where A, B ∈ GF (2m) represent the inputs to the multiplier, k =
⌈

m
d

⌉
and d is the

digit size. Figure 6.1b shows the detailed architecture of △ j module at i-th iteration, 0 ≤ j < d

and 0 ≤ i < k. Figure 6.1c shows the architecture of ⊗ module.

114

<Z>

d

mm

m

m

m-d

m-d

m

d-1 m

m

1

1

m-d

j

m

1

1

m-d

0

m

1

1

m-d

<X>
0m-d-1

<Y>
0m-d-1

k 1
A

ik 1
A

0
A

0m-1

d

k 1
B

ik 1
B

0
B

d

(a)

m

m-d

m

m-d

m-d

m m-d

d
m

j

d

d
k i

(b)

n

n
n

n

(c)

Figure 6.1: (a) Architecture of the proposed MSD DL-FSIPO PB multiplier. (b) Detailed

architecture of △ j. (c) Architecture of ⊗ module.

The architecture in Figure 6.1a is designed based on formulations (6.1) and (6.2). In this

design, ⟨X⟩ and ⟨Y⟩ are left shift registers, which respectively store the bits of A(i−1) and B(i−1)

(see (6.1)) during the i-th iteration, for 0 ≤ i < k. It is noted that, the (m − d)-th to (m − 1)-th

coordinates are omitted from ⟨X⟩ and ⟨Y⟩, since these correspond to zeros in all the interme-

diate elements A(0) to A(k−2) and B(0) to B(k−2) according to (6.1). Then, it is sufficient to have

only (m − d)-bits, in each of ⟨X⟩ and ⟨Y⟩. Moreover, according to this, one obtains A(i−1)αd and

115

B(i−1)αd by simple left shifting of d-bits. During the i-th iteration, the vertical thick line in Fig-

ure 6.1a represents a 2m-bits bus which contains the bits of Ak−1−i, Bk−1−i, A(i−1)αd, and B(i−1)αd.

In Figure 6.1a, α2d represents the multiplication of the contents of accumulator ⟨Z⟩ by the fixed

field element α2d. The vertical thick line in Figure 6.1b represents the concatenation of the

lower d-bits of ad(k−1−i)+ j

(
Bk−1−i + B(i−1)αd

)
with the (m − d)-bit result of XORing the higher

bits of ad(k−1−i)+ j

(
Bk−1−i + B(i−1)αd

)
to bd(k−1−i)+ jA(i−1)αd. This is done in order to compute the

expression ad(k−1−i)+ j

(
Bk−1−i + B(i−1)αd

)
+ bd(k−1−i)+ jA(i−1)αd in (6.2) (the multiplication by αd is

accomplished through the d-bit left shift). In the same figure, the block denoted by α j repre-

sents the multiplication by the fixed field element α j, 0 ≤ j < d. Hence, by adding the outputs

of the field multiplications by all α j and α2d, one obtains Ci = A(i)B(i) mod p (α) in accumulator

⟨Z⟩, after the i-th clock trigger, according to (6.2). Therefore, by initializing the three registers

⟨X⟩, ⟨Y⟩, and ⟨Z⟩ of Figure 6.1a, with zeros, the result Ck−1 = AB = A(k−1)B(k−1) mod p (α) is

generated in accumulator ⟨Z⟩ after k iterations.

As a graphical illustration of Example 6.1.3, Figure 6.2 presents the state of the correspond-

ing GF
(
23

)
MSD DL-FSIPO PB multiplier during the different iterations of computations (for

multiplying the two field elements A = α = (0, 1, 0) and B = α2 = (1, 0, 0) when d = 1), based

on the architecture which has been introduced in this section. Figure 6.2a shows the initial state

(i = 0). Figure 6.2b shows the state after first clock cycle (i = 1). Figure 6.2c shows the state

after second clock cycle (i = 2). Figure 6.2d shows the state after third clock cycle, where the

result α3 = α + 1 is stored in the output register which is surrounded by the dotted rectangle.

It is noted that, in this figure, the underlined leftmost bits of A(i−1) and B(i−1), respectively,

are always zero, which represent the missing (not required) leftmost FFs in registers ⟨X⟩ and

⟨Y⟩.
In the following, the space and time complexities of the proposed MSD DL-FSIPO PB

multiplier will be studied.

6.1.3 Space and Time Complexities

This section gives the space and time complexities of the proposed MSD DL-FSIPO PB mul-

tiplier. Following the design guidelines of Remark 6.1.4, the space complexity of the proposed

MSD DL-FSIPO PB multiplier in Figure 6.1a is given by the following proposition.

Proposition 6.1.5 The total number of gates in the proposed MSD DL-FSIPO PB multiplier

of Figure 6.1a is as follows:#ANDs = d (2m − d) , #FFs = 3m − 2d,

#XORs = d
[
2m + (d+3)(ω−2)

2 − d
]
.

(6.4)

116

1

1

33

3

2

2

3

100

2

2

1

3

010

00

00

00 0

A
(-1)

 = 000

B
(-1)

 = 000

C0 = 000

a2 = 0

b2 = 1

C-1 = 000
2

3

1

2

1

(a)

1

1

33

3

2

2

3

00

2

2

1

3

10

10

00

00 0

A
(0)

 = 000

B
(0)

 = 001

C1 = 010

a1 = 1

b1 = 0

C0 = 000
2

3

1

2

1

(b)

1

1

33

3

2

2

3

0

2

2

1

3

0

01

10

10 0

A
(1)

 = 001

B
(1)

 = 010

C2 = 011

a0 = 0

b0 = 0

C1 = 010
2

3

1

2

1

(c)

1

1

33

3

2

2

3

2

2

1

3

00

01

10 1
2

3

1

2

1

C2 = 011

(d)

Figure 6.2: The state of the corresponding GF
(
23

)
MSD DL-FSIPO PB multiplier for Example

6.1.3, throughout the different iterations of the computation. (a) initial state. i = 0. (b) state

after first clock cycle. i = 1. (c) state after second clock cycle. i = 2. (d) state after third clock

cycle.

Proof The total number of two-inputs AND gates which is required for the hardware realiza-

tion of the proposed architecture in Figure 6.1a equals to d (2m − d), where 2m − d two-inputs

AND gate is contributed by each △ j block, 0 ≤ j < d. Similarly, and from the same fig-

ure, one finds the total number of FF to be (m − d) + (m − d) + m = 3m − 2d. For the total

number of two-inputs XOR gates, it consists of the XOR gates in the field addition of d + 1

elements, the XOR gates in all the △ j modules, 0 ≤ j < d, in addition to the XOR gates

which form the multiplication by the constant α2d. Notice that, for j = 0, the multiplication

by α j = α0 = 1 in △0 module is free. Therefore, the total number of two-inputs XOR gates is

dm + d (m − d) +
∑d−1

j=1 j (ω − 2) + 2d (ω − 2) = d
[
2m + (d+3)(ω−2)

2 − d
]
.

For the time complexity of the proposed MSD DL-FSIPO PB multiplier, it is derived in

terms of the propagation delay through the corresponding levels of two-inputs AND and two-

inputs XOR gates along the multiplier’s longest path, as follows.

Proposition 6.1.6 The maximum propagation delay (PD) through the proposed MSD DL-

117

FSIPO PB multiplier of Figure 6.1a is:

PD =max{TA +
(
1 +

⌈
log2 (d)

⌉
+

⌈
log2 (d + 1)

⌉)
TX,(⌈

log2 (2d + 1)
⌉
+

⌈
log2 (d + 1)

⌉)
TX} (6.5)

where TA denotes the propagation delay of a single two-inputs AND gate.

Proof As one can see from Figure 6.1a, there are two main paths in the proposed design of

the MSD DL-FSIPO PB multiplier. The first path is between the shift registers ⟨X⟩ and ⟨Y⟩,
from one side, and the accumulator ⟨Z⟩, from the other side. This path has a propagation

delay of TA +
(
1 +

⌈
log2 (d)

⌉
+

⌈
log2 (d + 1)

⌉)
TX, where the propagation delay contributed by

a △ j block, 1 ≤ j < d, and the (d + 1)-inputs field adder, respectively, are
⌈
log2 (j + 1)

⌉
TX

and
⌈
log2 (d + 1)

⌉
TX. The second path lies between the output and input of the accumulator

⟨Z⟩, which passes through the (d + 1)-inputs field adder and the module α2d. This path has

a propagation delay equals to
(⌈

log2 (2d + 1)
⌉
+

⌈
log2 (d + 1)

⌉)
TX, where

⌈
log2 (2d + 1)

⌉
TX is

the propagation delay contributed by the α2d module. Therefore, the propagation delay of the

proposed MSD DL-FSIPO PB multiplier takes the value of the maximum propagation delay

between these two paths.

In the following, the proposed LSD version of the DL-FSIPO PB multiplier is presented.

6.2 Proposed LSD DL-FSIPO PB Multiplier

In this section, the proposed LSD variant for our DL-FSIPO PB multiplier is presented. To

the best of the author knowledge, the proposed LSD DL-FSIPO multiplier is the first such

architecture presented for dedicated PB in the literature. The proposed LSD DL-FSIPO PB

multiplier reads its two inputs digit-by-digit, one digit per a clock cycle (for each input) while

the computations are being performed, starting from the least significant digit. This in return,

removes the preloading requirement of the inputs, in advance to computations. It is noted that,

the parallel loading of inputs might not be possible in resource constrained applications where

the GF (2m) dimension m is large and the capacity of input data-paths is limited. Hence, the

proposed LSD DL-FSIPO PB multiplier has the potential of achieving high output throughput

in such applications. The following starts by deriving the required formulations for the LSD

DL-FSIPO PB multiplication scheme. This is followed by constructing the corresponding

architecture. At the end of this section, the space and time complexities will be studied.

118

6.2.1 Formulations

This section gives the necessary formulations for constructing the proposed scheme of LSD

DL-FSIPO PB multiplication. The following introduces the recursive least significant digit

first digit-level construction of the GF (2m) elements, based on the PB representation.

Definition 6.2.1 Let α be the root of the GF (2m) defining irreducible polynomial. Let A =∑m−1
i=0 aiα

i ∈ GF (2m) be an arbitrary field element represented in the PB. Divide A into k =
⌈

m
d

⌉
digits of size d each. That is, A = (Ak−1, . . . , Ai, . . . , A0), where Ai =

∑d−1
j=0 adi+ j−rα

j is the i-th

digit of A such that adi+ j−r = 0 for di + j − r < 0 (r = kd − m represents the number of right

padded zeros). Then, one constructs A recursively, starting from its least significant digit, as

follows:

A(i) =Aiα
m−d + A(i−1)α−d, (6.6)

for i = 0, . . . , k − 1, given that A(−1) = 0.

Proof Substituting for i = 0, 1, . . . , k − 2 in (6.6), one gets

A(0) =A0α
m−d + A(−1)α−d

=

d−1∑
j=0

a j−rα
m−d+ j,

A(1) =A1α
m−d + A(0)α−d

=

d−1∑
j=0

ad+ j−rα
m−d+ j +

d−1∑
j=0

a j−rα
m−2d+ j

=

2d−1∑
j=0

a j−rα
m−2d+ j,

...

A(k−2) =Ak−2α
m−d + A(k−3)α−d

=

d−1∑
j=0

a(k−2)d+ j−rα
m−d+ j +

(k−2)d−1∑
j=0

a j−rα
m−(k−1)d+ j

=

(k−1)d−1∑
j=0

a j−rα
m−(k−1)d+ j,

and hence, for i = k − 1 one has

119

A(k−1) =Ak−1α
m−d + A(k−2)α−d

=

d−1∑
j=0

a(k−1)d+ j−rα
m−d+ j +

(k−1)d−1∑
j=0

a j−rα
m−kd+ j

=

kd−1∑
j=0

a j−rα
m−kd+ j

=

kd−r−1∑
j=−r

a jα
m+r−kd+ j

and by noticing that kd − m = r, then

A(k−1) =

m−1∑
j=−r

a jα
j

=

m−1∑
j=0

a jα
j,

since a j = 0 for j < 0, which completes the proof.

It is noted that, the multiplication of A(i−1) by α−d in (6.6) is realized as a d-bit right shift

(no reduction is require for 0 ≤ i < k). The following theorem utilizes (6.6) in conducting

multiplication of two arbitrary GF (2m) elements.

Proposition 6.2.2 Let Ci = A(i)B(i) mod p (α), where A and B are two arbitrary GF (2m) ele-

ments, A(i) and B(i) are given in (6.6), and α is the root of the field irreducible polynomial p (x).

Then, based on (6.6), one computes AB mod p (α) = A(k−1)B(k−1) mod p (α) = Ck−1 according

to the following recurrence on Ci

Ci =

[d−1∑
j=0

(
adi+ j−r

(
Biα

m−d + B(i−1)α−d
)
+ bdi+ j−rA(i−1)α−d

)
α j−(d−1) mod p (α)

]
αm−1 mod p (α)+

Ci−1α
−2d mod p (α) , (6.7)

for i = 0, . . . , k − 1 given that C−1 = A(−1)B(−1) mod p (α) = 0, where d is the digit size, k =
⌈

m
d

⌉
is the number of iterations, and Bi =

∑d−1
j=0 bdi+ j−rα

j is the i-th digit of B such that bdi+ j−r = 0

for di + j − r < 0 (r = kd − m represents the number of right padded zeros).

120

Proof By using definition (6.6) for A(i) and B(i) in evaluating Ci = A(i)B(i) mod p (α), one has

Ci =
(
Aiα

m−d + A(i−1)α−d
) (

Biα
m−d + B(i−1)α−d

)
mod p (α)

=Aiα
m−d

(
Biα

m−d + B(i−1)α−d
)

mod p (α)+

Biα
m−dA(i−1)α−d mod p (α)+

A(i−1)B(i−1)α−2d mod p (α)

=

d−1∑
j=0

[
adi+ j−r

(
Biα

m−d + B(i−1)α−d
)
+

bdi+ j−rA(i−1)α−d
]
αm−d+ j mod p (α)+

Ci−1α
−2d mod p (α) ,

where the last result is obtained by substituting for Ai =
∑d−1

j=0 adi+ j−rα
j

in Aiα
m−d

(
Biα

m−d + B(i−1)α−d
)

mod p (α) and for Bi =
∑d−1

j=0 bdi+ j−rα
j in

Biα
m−dA(i−1)α−d mod p (α), followed by taking αm−d+ j as a common factor. Then, by

noticing that αm−d− j = αm−1α j−d+1, the proof is complete.

Notice that, the right most r = (kd − m) bits in the least significant input digits A0 and B0

are zeros. According to this, the lowest coordinate in either A(k−2) or B(k−2) has an order of αd.

Therefore, it is sufficient to accomplish the multiplication by α−d in expressions B(i−1)α−d and

A(i−1)α−d of (6.7) by simple d-bit right shifts without any reductions. Now, since A = A(k−1)

and B = B(k−1), then, by iterating on (6.7) for i = 0, 1, . . . , k − 1, one obtains AB mod p (α) =

A(k−1)B(k−1) mod p (α) = Ck−1.

Based on (6.7), the multiplication of A and B is reduced, recursively, to bit-wise AND

operations, field additions, right shifts (for the multiplication by α−d), in addition to the mul-

tiplications with the constant elements αm−1 and α−q whereq is a positive integer such that

q ≤ 2d. The following is an example illustrating the proposed multiplication scheme in (6.7).

Example 6.2.3 Table 6.2 lists the steps (according to formulations (6.6) and (6.7)) for multi-

plying the two GF
(
23

)
field elements A = α = (0, 1, 0) and B = α2 = (1, 0, 0), represented

in the PB
{
α2, α, 1

}
which is defined by the irreducible trinomial p (x) = x3 + x + 1. In this

example, d = 1 (bit-level multiplication), and hence, k =
⌈

3
1

⌉
= 3 and r = 3 × 1 − 3 = 0.

The following presents the formulations needed for realizing the operations of multiplying

an arbitrary field element by the constants αm−1 and α−q, where q ≤ 2d for some positive integer

d.

121

i ai bi A(i−1) B(i−1)

0 a0 = 0 b0 = 0 A(−1) = 0 B(−1) = 0

1 a1 = 1 b1 = 0 A(0) = a0α
2 + A(−1)α−1 = 0 B(0) = b0α

2 + B(−1)α−1 = 0

2 a2 = 0 b2 = 1 A(1) = a1α
2 + A(0)α−1 = α2 B(1) = b1α

2 + B(0)α−1 = 0

Xi = ai

(
biα

2 + B(i−1)α−1
)

Yi = biA(i−1)α−1 Zi = Ci−1α
−2 mod p (α) Ci = (Xi + Yi)α2 mod p (α) + Zi

0 a0

(
b0α

2 + B(−1)α−1
)
= 0 b0A(−1)α−1 = 0 C−1α

−2 mod p (α) = 0 C0 = 0

1 a1

(
b1α

2 + B(0)α−1
)
= 0 b1A(0)α−1 = 0 C0α

−2 mod p (α) = 0 C1 = 0

2 a2

(
b2α

2 + B(1)α−1
)
= 0 b2A(1)α−1 = α C1α

−2 mod p (α) = 0 C2 = α
3 mod p (α) = α + 1

Table 6.2: Example 6.2.3 for multiplying the two GF
(
23

)
elements A = α = (0, 1, 0) and

B = α2 = (1, 0, 0) using (6.6) and (6.7).

First, the multiplication by the constants αm−1 is considered. Let p (x) = xm+
∑ω−2

i=1 xti+1 be

the generating irreducible polynomial of GF (2m), where α is its root. According to Theorem

2.9.5, the multiplication of an arbitrary GF (2m) element A by the constant element αm−1 can

be accomplished efficiently in one step if m − 1 ≤ m − tω−2. This means that, tω−2 = 1, and

hence, p (x) is an irreducible trinomial of the form xm + x + 1. Since this form of p (x) is not

common, the following general formulation for multiplying an arbitrary field element by the

constant element αm−1 is considered.

Proposition 6.2.4 Let the elements of GF (2m) be represented in the PB which is defined by

the irreducible p (x) = xm +
∑ω−2

i=1 xti + 1. Let α be a root of p (x). Denote by [↑ i] and

[↓ i] the operations of up and down i-bit shifts, as defined by Definition 2.9.2. Let the m-bits

vertical vector
[
am−1

0 . . . am−1
m−1

]T
(T is the vector transposition) represents the coordinates

of the result out of multiplying an arbitrary GF (2m) element A =
∑m−1

i=0 aiα
i by αm−1, that is

Aαm−1 mod p (α) =
∑m−1

i=0 am−1
i α

i, then
am−1

0
...

am−1
m−2

am−1
m−1


=


0
...

0

a0


+

ω−2∑
j=0


n−1∑
i=0


a1
...

am−1

0


[↑ li]


[
↓ t j

]
. (6.8)

Here, t0 = 0, n is the number of nonzero entries in column zero of the (m − 1) × m binary

reduction matrix Q [72], and li denotes the row location of the i-th nonzero entry in this column.

Proof From Section 2.9.1.1, by setting B in (2.2) and (2.3) to B = αm−1 =

1, 0, . . . , 0︸ ︷︷ ︸
m−1

, one

obtains (6.8).

122

Next, the multiplication of an arbitrary field element A represented in the PB by the constant

element α−q, i.e. Aα−q mod p (α), where q is a positive integer, is considered. The following

are some conditions for the efficient hardware realization of this operation.

Proposition 6.2.5 Assume p (x) = xm +
∑ω−2

i=1 xti + 1 is the field irreducible polynomial which

defines GF (2m). Let α denotes the root of p (x). Therefore, for a positive integer q ≤ t1, the

coordinates of α−q are obtained in a single step, as follows

α−q mod p (α) =

αm +

ω−2∑
i=1

αti

α−q. (6.9)

Proof Since p (α) = 0, then αm +
∑ω−2

i=1 α
ti = 1, and by multiplying both sides by α−q one gets

α−q mod p (α) =αm−q +

ω−2∑
i=1

αti−q,

in which ti − q ≥ 0 for all 1 ≤ i ≤ ω − 2 if q ≤ t1. Then, the assertion is true.

Proposition 6.2.6 Assume p (x) = xm +
∑ω−2

i=1 xti + 1 is the field irreducible polynomial which

defines GF (2m). Denote by α the root of p (x). Let A = (am−1, . . . , a0) be an arbitrary GF (2m)

element represented in the PB. Therefore, for a positive integer q ≤ t1, the coordinates of

Aα−q mod p (α) =
∑m−1

i=0 aiα
i−q mod p (α) are obtained in a single step, as follows:

Aα−q mod p (α) =
m−1∑
i=q

aiα
i−q

q−1∑
i=0

ai

αm +

ω−2∑
j=1

αt j

αi−q. (6.10)

Proof Note that, Aα−q mod p (α) =
∑m−1

i=q aiα
i−q +

∑q−1
i=0 aiα

i−q mod p (α). Since it is given that

q ≤ t1, then, one can compute α−1 through α−q using (6.9). This completes the proof.

The following is a remark about the selection of the digit size for efficient hardware imple-

mentation of the proposed LSD DL-FSIPO PB multiplier.

Remark 6.2.7 Let p (x) = xm +
∑ω−2

i=1 xti + 1 denotes the defining irreducible polynomial with

ω nonzero terms for GF (2m). Then, by choosing the digit size d of the LSD DL-FSIPO PB

multiplier such that

d ≤
⌊ t1

2

⌋
, (6.11)

the multiplication of an arbitrary GF (2m) element by the fixed field element α−q, where q is a

positive integer satisfying q ≤ 2d, can be accomplished in a single step.

123

According to (6.11), efficient hardware realizations of the LSD DL-FSIPO PB multipli-

cation scheme for the five fields recommended by NIST for ECDSA GF
(
2163

)
, GF

(
2233

)
,

GF
(
2283

)
, GF

(
2409

)
, and GF

(
2571

)
, respectively, offer maximum digit sizes of 1, 37, 2, 43,

and 1. It is evident that the MSD version of the DL-FSIPO PB multiplier provides larger

flexibility on the selection of digit sizes for ECDSA recommended fields.

In the following section, the architecture of the proposed LSD DL-FSIPO PB multiplier is

presented.

6.2.2 Architecture

This section presents the proposed architecture of the LSD DL-FSIPO PB multiplier, as shown

in Figure 6.3a. Figure 6.3b shows the detailed architecture of the △′j module at i-th iteration,

0 ≤ j < d and 0 ≤ i < k. The component ⊗ is shown in more details in Figure 6.1b. Also, it is

noted that r = kd − m is the number of right padded zeros.

The architecture of Figure 6.3a is constructed based on (6.6) and (6.7). In the following

illustration denotes by A and B the input field elements to the multiplier, while A(i) and B(i) are

given in (6.6), and Ci is defined in (6.7). In Figure 6.3a, ⟨X⟩ and ⟨Y⟩ are right shift registers. ⟨X⟩
stores the bits of A(i−1), while ⟨Y⟩ stores the bits of B(i−1), during the i-th iteration of the k clock

cycles of computations. Notice that, the least significant digit of either A(i−1) or B(i−1) is zero

for all i < k (only A(k−1) = Ak−1α
m−d +A(k−2)α−d and B(k−1) = Bk−1α

m−d +B(k−2)α−d have nonzero

least significant digits). Also, the rightmost r bits of A(k−2) and B(k−2) are zeros (padding zeros).

Therefore, during the last iteration i = k − 1, one has ⟨X⟩ = A(k−2) =

⟨
am−1−d, . . . , a0, 0, . . . , 0︸ ︷︷ ︸

d

⟩
and ⟨Y⟩ = B(k−2) =

⟨
bm−1−d, . . . , b0, 0, . . . , 0︸ ︷︷ ︸

d

⟩
, and hence, it is sufficient to have only (m − d)-bits

in each of ⟨X⟩ and ⟨Y⟩. The vertical thick line in Figure 6.3a represents a 2m-bit bus carrying

the bits of Ai, Bi, ⟨X⟩ = A(i−1), and ⟨Y⟩ = B(i−1), during the i-th iteration, for 0 ≤ i < k. During

the i-th iteration, the m-bit input Biα
m−d+B(i−1)α−d in Figure 6.3b represents B(i) (see (6.6)) and

is constructed by concatenating the d-bits from Bi (higher bits) with the (m − d)-bits from B(i−1)

(lower bits). In the same figure, the vertical thick line concatenates the d bits from adi+ j−rB(i)

(higher bits) to the m − d bits (lower) resulting from bit-wise XORing the lower m − d bits

of adi+ j−rB(i) with bdi+ j−rA(i−1)α−d. Here, j denotes the number of the block △′j in Figure 6.3a

and its value satisfies 0 ≤ j < d. The multiplication of the latter concatenated m-bit signal

(of Figure 6.3b) by α j−(d−1) generates the m-bit output of the corresponding △′j block in Figure

6.3a (that is
[
adi+ j−r

(
Biα

m−d + B(i−1)α−d
)
+ bdi+ j−rA(i−1)α−d

]
α j−(d−1)). The output of block αm−1

represents the result of the fixed multiplication of the summation of the outputs of all △′j by

124

<Z>

d

mm

m

m

m-d

m-d

m

d-1 m

m

1

1

m-d

j

m

1

1

m-d

0

m

1

1

m-d

<X>
0m-d-1

<Y>
0m-d-1

0m-1

B
ik 1

B
0
B
d

A
ik 1

A
0
A
d

‘

‘

‘

m-1

m m

(a)

m

m-d

m

m-d

m-d

m(i-1)

(i-1)

di+j-r

di+j-r

m-d

d

m
j-(d-)

-d

-d
i
m-d

(b)

Figure 6.3: (a) Architecture of the proposed LSD DL-FSIPO PB multiplier. (b) Detailed archi-

tecture of △′j at i-th iteration.

αm−1. At the i-th clock trigger, the accumulator ⟨Z⟩ is updated by adding the output of block

αm−1 to the output of block α−2d. Block α−2d represents the multiplication of the current state

of register ⟨Z⟩ by the fixed element α−2d. Therefore, after the i-th clock signal, ⟨Z⟩ = Ci,

according to (6.7). Then, by initializing the three registers ⟨X⟩, ⟨Y⟩, and ⟨Z⟩ in Figure 6.3a with

zeros, one generates the multiplication result AB mod p (α) = A(k−1)B(k−1) mod p (α) = Ck−1 in

accumulator ⟨Z⟩ after k iterations.

Figure 6.4 presents a graphical illustration showing the state of the GF
(
23

)
least significant

bit first bit-level (LSB BL-FSIPO) PB multiplier during the different iterations of computations,

for multiplying the two field elements A = α and B = α2 in Example 6.2.3, based on the

architecture of Figure 6.3a, where d = 1. Figure 6.4a shows the initial state (i = 0). Figure

6.4b shows the state after first clock cycle (i = 1). Figure 6.4c shows the state after second clock

cycle (i = 2). Figure 6.4d shows the state after third clock cycle, where the result α3 = α + 1

125

is stored in the output register which is surrounded by the dotted rectangle. It is noted that, in

this figure, the underlined rightmost bit of each of A(i−1) and B(i−1), respectively, is always zero,

which represents the missing (not required) rightmost FF in each of register ⟨X⟩ and register

⟨Y⟩, respectively.

33

3

3
00 0

C0 = 000

C-1 = 000
3

1

1

2

2

3

100

2

2
2

010

00

00

A(-1) = 000

B(-1) = 000

a0 = 0

b0 = 0

1
3

1

2

1

(a)

33

3

3
00 0

C1 = 000

C0 = 000
3

1

1

2

2

3

10

2

2
2

01

00

00

A(0) = 000

B(0) = 000

a1 = 1

b1 = 0

1
3

1

2

1

(b)

33

3

3
00 0

C2 = = 011

C1 = 000
3

1

1

2

2

3

1

2

2
2

0

00

01

A(1) = 100

B(1) = 000

a2 = 0

b2 = 1

1
3

1

2

1

(c)

33

3

3

10 1 C2 = 011
3

1

1

2

2

3

2

2
2

01

10

1
3

1

2

1

(d)

Figure 6.4: The state of the corresponding GF
(
23

)
LSB BL-FSIPO PB multiplier for Example

6.2.3, throughout the different iterations of the computation. (a) initial state. i = 0. (b) state

after first clock cycle. i = 1. (c) state after second clock cycle. i = 2. (d) state after third clock

cycle.

In the following, the space and time complexities of the proposed LSD DL-FSIPO PB

multiplier will be studied.

6.2.3 Space and Time Complexities

This section starts by deriving the space and time complexities for the multiplication of an

arbitrary field element, represented in the PB, by the constants αm−1 and α−q (for 0 ≤ q ≤ t1),

respectively, where α ∈ GF (2m) is the root of the field’s generating irreducible polynomial.

After this, the space and time complexities of the proposed LSD DL-FSIPO PB multiplier are

considered.

The following lemma gives the space and time complexities for the multiplication of an

arbitrary field element by the constant element αm−1.

126

Lemma 6.2.8 The hardware realization of the multiplication of an arbitrary GF (2m) element

A =
∑m−1

i=0 aiα
i by the constant element αm−1 according to (6.8) requires the following number

of two-inputs XOR gates

Nαm−1 = (m − 1) (n + ω − 3) + (ω − 2)

−
n−1∑
i=1

li −
ω−2∑
j=1

t j, (6.12)

and a propagation delay of

Tαm−1 =
(⌈

log2 (n)
⌉
+

⌈
log2 (ω − 1)

⌉)
TX, (6.13)

where p (x) = xm +
∑ω−2

i=1 xti + 1 is the field’s generating irreducible polynomial with ω nonzero

terms, n is the number of nonzero entries in column zero of the (m − 1) × m binary reduction

matrix Q [72], and li denotes the row location of the i-th nonzero entry in this column.

Proof The generation of v1 =
∑n−1

i=0

[
a1 a2 . . . am−1 0

]T
[↑ li] in (6.8) requires∑n−1

i=1 (m − 1 − li) = (n − 1) (m − 1) − ∑n−1
i=1 li two-inputs XOR gates. After this, one needs

another
∑ω−2

j=1

(
m − t j

)
= (ω − 2) m − ∑ω−2

j=1 t j two-inputs XORs for the realization of v2 =

v3 +
∑ω−2

j=0 v1

[
↓ t j

]
in (6.8), where v3 =

[
0 0 . . . a0

]T
and t0 = 0. Therefore, by adding

these values we get (6.12). Similarly, one obtains (6.13) by adding the propagation delays con-

tributed by the generation of v1 (that is,
⌈
log2 (n)

⌉
TX) and v2 (that is

⌈
log2 (ω − 1)

⌉
TX, since

v1 [↓ 0] + v3 does not require any XORing).

Corollary 6.2.9 If 1 < tω−2 ≤ m+1
2 , then, Nαm−1 and Tαm−1 in (6.12) and (6.13), respectively,

become

Nαm−1 = (ω − 2) (m − 1) , (6.14)

and

Tαm−1 =2
⌈
log2 (ω − 1)

⌉
TX. (6.15)

Proof Since 1 < tω−2 ≤ m+1
2 , then, n = ω − 1, l0 = 0, and li = m − ti for 1 ≤ i < ω − 1 (see

Remark 2.9.3). Based on this, Nαm−1 becomes

127

Nαm−1

= (m − 1) (n + ω − 3) + (ω − 2)

−
n−1∑
i=1

li −
ω−2∑
j=1

t j

= (m − 1) (ω − 1 + ω − 3) + (ω − 2)

−
ω−2∑
i=1

(m − ti) −
ω−2∑
j=1

t j

= (2ω − 4) m − (2ω − 4) + (ω − 2)

−
ω−2∑
i=1

m

= (ω − 2) (m − 1) .

Similarly, Tαm−1 becomes

Tαm−1

=
(⌈

log2 (n)
⌉
+

⌈
log2 (ω − 1)

⌉)
TX

=
(⌈

log2 (ω − 1)
⌉
+

⌈
log2 (ω − 1)

⌉)
TX

=2
⌈
log2 (ω − 1)

⌉
TX.

The following targets efficient hardware implementation of the proposed LSD DL-FSIPO

PB multiplier. Therefore, values of d which satisfy the condition of (6.11) are only considered.

In this context, the following lemma gives the space and time complexities for the hardware

realization of the multiplication of an arbitrary field element A by the constant element α−q,

based on the formulation (6.9).

Lemma 6.2.10 The hardware realization of the multiplication of an arbitrary GF (2m) element

A =
∑m−1

i=0 aiα
i by the constant element α−q, according to (6.9), requires at most a number of

two-inputs XOR gates equals to

Nα−q =q (ω − 2) , (6.16)

and a propagation delay of

Tα−q =
⌈
log2 (q + 1)

⌉
TX, (6.17)

where p (x) = xm +
∑ω−2

i=1 xti + 1 is the field’s generating irreducible polynomial with ω nonzero

terms and d satisfies the condition of (6.11).

128

Proof According to (6.9), we have

Aα−q mod p (α)

=

m−1∑
i=0

aiα
i−q

=

m−1∑
i=q

aiα
i−q +

q−1∑
i=0

ai

αm +

ω−2∑
j=1

αt j

αi−q.

As it is shown in Figure 6.5, the hardware realization of the above formulation requires a

number of two-inputs XOR gates equals to q (ω − 1) − q = q (ω − 2) and a propagation delay

equivalent to
⌈
log2 (q + 1)

⌉
TX.

q m-q

a
qm 1

a
0
aq-1

a

q

-1

q

a
0

q

m 1
a

q

2

1

jt qm q

j

2
11

1

jtm

j

mod
q

A p

qA

Figure 6.5: Multiplying an arbitrary GF (2m) element by the constant α−q wherep (x) = xm +∑ω−2
i=1 xti + 1 is the field’s generating irreducible polynomial with ω nonzero terms and q ≤ t1

(condition of (6.11)).

Now, the space complexity of the proposed LSD DL-FSIPO PB multiplier in Figure 6.3a

is given. What follows assumes the conditions 1 < tω−2 ≤ m+1
2 (which is true for the five binary

extension fields recommended by NIST for ECDSA [12]) and d ≤
⌊

t1
2

⌋
are valid.

Proposition 6.2.11 By following the conditions 1 < tω−2 ≤ m+1
2 and d ≤

⌊
t1
2

⌋
, then, the total

number of gates in the hardware realization of the proposed LSD DL-FSIPO PB multiplier of

129

Figure 6.3a is as follows:
#ANDs = d (2m − d)

#XORs = (2d + ω − 2) m − (ω − 2) − d
[

(d−3)(ω−2)
2

]
+ 1

#FFs = 3m − 2d

. (6.18)

Proof The total number of two-inputs AND gates required for the hardware realization of

the proposed architecture in Figure 6.3a equals to d (m + m − d) = d (2m − d), where each

△′j block contributes m + m − d = 2m − d two-inputs AND gates (0 ≤ j < d). From the

same figure, one finds the total number of FFs in registers ⟨X⟩, ⟨Y⟩, and ⟨Z⟩ to be (m − d) +
(m − d) +m = 3m − 2d. For the total number of two-inputs XOR gates, it consists of the XOR

gates in the field addition of d elements plus those in the field addition of 2 elements (that is
(d − 1) m+m = dm XORs), the XOR gates which form the multiplication by the constant α−2d

(that is 2d (ω − 2) see (6.16)), the XOR gates which form the multiplication by the constant

αm−1 (given by (6.14)), in addition to the XOR gates in all the △′j modules, 0 ≤ j < d. Notice

that, each △′j module requires m−d+Nα j−(d−1) two-input XOR gates, out of which Nα j−(d−1) (given

by (6.16)) two-input XOR gates are required to realize the multiplication by α j−(d−1). Therefore,

the total number of two-inputs XOR gates is dm + 2d (ω − 2) + d (m − d) +
∑d−1

j=0 Nα j−(d−1) +

Nαm−1 , and by substituting for
∑d−1

j=0 Nα j−(d−1) =
∑d−1

i=0 Nα−i =
∑d−1

i=0 i (ω − 2) = d(d−1)(ω−2)
2 and for

Nαm−1 = (ω − 2) (m − 1), according to (6.16) and (6.14), respectively, (2d + ω − 2) m−(ω − 2)−
d
[

(d−3)(ω−2)
2

]
+ 1 is obtained.

The time complexity of the proposed LSD DL-FSIPO PB multiplier, in terms of the propa-

gation delay of the corresponding levels of two-inputs AND and two-inputs XOR gates along

the multiplier’s longest path, is as follows. Again, assuming the conditions 1 < tω−2 ≤ m+1
2 and

d ≤
⌊

t1
2

⌋
are valid.

Proposition 6.2.12 By following the conditions 1 < tω−2 ≤ m+1
2 and d ≤

⌊
t1
2

⌋
, then, the max-

imum propagation delay for the hardware realization of the proposed LSD DL-FSIPO PB

multiplier in Figure 6.3a is independent of the binary extension field’s dimension (i.e., m), and

is equal to

PD =TA + 2
(
1 +

⌈
log2 d

⌉
+

⌈
log2 (ω − 1)

⌉)
TX. (6.19)

Proof There are two main paths in Figure 6.3a. The first path extends between the input

registers (⟨X⟩ and ⟨Y⟩) and the output accumulator ⟨Z⟩. The second path extends between the

output and input of register ⟨Z⟩. For the former path, notice that the multiplication by α−(d−1)

requires higher propagation delay than the multiplications by the constants α−1 through α−(d−2).

130

Therefore, the critical path in Figure 6.3a between input registers (⟨X⟩ and ⟨Y⟩) and the output

accumulator ⟨Z⟩ passes through module △′0. This propagation delay consists of TA+TX+Tα−(d−1)

contributed by module △′0,
⌈
log2 d

⌉
TX contributed by the d inputs field adder, TX contributed

by the 2 inputs field adder, in addition to Tαm−1 which is contributed by the multiplication with

αm−1 (given by (6.15)). This adds up to TA + 2
(
1 +

⌈
log2 d

⌉
+

⌈
log2 (ω − 1)

⌉)
TX. On the other

hand, the propagation delay of the path between the output and input of accumulator ⟨Z⟩ is

equivalent to TX + Tα−2d =
(
1 +

⌈
log2 (2d + 1)

⌉)
TX. Hence, the propagation delay in (6.19) is

the maximum between these two paths.

In the following, a comparison between the proposed DL-FSIPO PB multipliers and other

existing digit-level serial PB multiplication schemes is conducted.

6.3 Comparisons

In this section, the proposed DL-FSIPO PB multipliers are compared to other existing serial

PB multipliers. For this purpose, the propagation delay and space complexity for the differ-

ent serial PB multiplication schemes are listed in Table 6.3. In this table, space complexity

is reported in terms of number of FF, two-inputs AND and XOR gates, and 2-to-1 1-bit mul-

tiplexers (for either logic implementation or inputs preloading). Time complexity appears in

terms of number of levels of two-inputs AND (TA) and XOR (TX) gates, and 2-to-1 1-bit

multiplexers (TM). p (x) = xm +
∑ω−2

i=1 xti + 1 is the field’s irreducible polynomial, satisfy-

ing m+1
2 ≥ tω−2 and t1 > 1. Also, in the table, T

′
=

(
1 +

⌈
log2 (ω − 1)

⌉
+

⌈
log2 (m)

⌉)
TX and

T ” =
(
1 +

⌈
log2 (ω − 1)

⌉
+

⌈
log2 (m − 1)

⌉)
TX [75]. Moreover, d is the digit size, k =

⌈
m
d

⌉
, and

for an integer x the function δ (x) = 0 if x , 1.

Multiplier FF AND XOR
2-to-1 1-bit Propagation Parallel Loading Serial Loading

MUX∗ Delay 2-to-11-bit MUX Latency Latency

LSD DL-SIPO [57] 2m + d − 1 dm + (2d − 1) (ω − 1)
dm + (d − 1)+

m TA +
⌈
log2 (d + 1)

⌉
TX m k + 1 − δ (d) 2k + 1 − δ (d)

(2d − 1) (ω − 2)

MSD DL-SIPO [80] 2m + d dm + (2d − 1) (ω − 1) dm + d (ω − 2) 0 TA +
⌈
log2 (2d + 1)

⌉
TX m k + 1 − δ (d) 2k + 1 − δ (d)

BL-PISO (d = 1) [75] 3m + tω−2 − 1 2m − 1
(ω − 1) (m − 1)+

0
TA +

(
1 +

⌈
log2 (ω − 1)

⌉
+

2m m 2m
ω − 3 +

∑ω−2
i=1 ti

⌈
log2 (m)

⌉)
TX

PIPO [50] 5m − 1 m2+m
2

m2+m
2 4m TA +

⌈
log2 m

⌉
TX + 2TM 2m 2tω−2 + 1 k + 2tω−2 + 1

LSD DL-FSIPO

3m − 2d d (2m − d)

(2d + ω − 2) m − (ω − 2)−
0

TA + 2
(
1 +

⌈
log2 (d)

⌉
0 k k

(Figure 6.3a) d
[

(d−3)(ω−2)
2

]
+ 1 +

⌈
log2 (ω − 1)

⌉)
TX

MSD DL-FSIPO

3m − 2d d (2m − d) 2dm + d
[

(d+3)(ω−2)
2 − d

]
0

⌈
log2 (d + 1)

⌉
TX+

0 k k
(Figure 6.1a)

max
{ ⌈

log2 (2d + 1)
⌉

TX,

TA +
(
1 +

⌈
log2 (d)

⌉)
TX

}
∗ These multiplexers are used in the multiplication logic which are different from the ones used for parallel preloading of inputs.

Table 6.3: Space and time complexities of the different digit-level GF (2m) PB multipliers.

While the DL-SIPO PB multipliers listed in this table offer best space complexities and

131

propagation delays, one can see that, the proposed DL-FSIPO PB multipliers are advantageous

for the case of serial inputs preloading since they offer lower latency for generating the m output

bits. This feature of the proposed DL-FSIPO multipliers results in low-latency fast multiplica-

tion in resource constrained applications where the input data-path might have limited capacity

for reading elements from large finite fields. In addition, and similar to the DL-SIPO PB mul-

tipliers in Table 6.3, the proposed MSD and LSD DL-FSIPO PB multipliers offer propagation

delays that are independent of the dimension of GF (2m). Compared to the PIPO serial PB

multiplier in Table 6.3, both of the proposed MSD and LSD DL-FSIPO PB multipliers show

better space as well as time complexities.

Figures 6.6 and 6.7 plot the efficiency as a function of the digit size considering serial

inputs loading and parallel inputs loading, respectively, for the different multipliers in Table

6.3 (except the BL-PISO), under the field GF
(
2233

)
recommended by NIST which is defined

by an irreducible trinomial p (x) = x233 + xt1 + 1, where t1 = 74.

Normalized Throughput (TP/G)

0

100

200

300

400

500

600

700

800

0 40 80 120 160 200 240

d

T
P

/G

LSD DL-SIPO MSD DL-SIPO PIPO MSD DL-FSIPO LSD DL-FSIPO

Figure 6.6: Normalized throughput as a function of the digit size for the serial inputs loading

case.

132

Normalized Throughput (TP/G)

0

100

200

300

400

500

600

700

800

900

1000

1100

0 20 40 60 80 100 120 140 160 180 200 220 240

d

T
P

/G
LSD DL-SIPO MSD DL-SIPO PIPO MSD DL-FSIPO LSD DL-FSIPO

Figure 6.7: Normalized throughput as a function of the digit size for the parallel inputs loading

case.

Here, efficiency denotes the normalized throughput, that is, throughput (computed at 1

GHz) per number of NAND gate equivalence (TP/G), measured in Kbps/Gate. The inclinations

after each peak in these two plots are due to increasing the digit size while the latency (hence

the throughput) is fixed. For instance, the efficiency peaks which start at d = 117 correspond

to a computational latency of k =
⌈

233
117

⌉
= 2 clock cycles. Increasing d beyond the value of

117, say d = 140, increases the space complexities, however, the latency stays constant at

k =
⌈

233
140

⌉
= 2.

From the two plots of Figures 6.6 and 6.7, one can see that, the proposed DL-FSIPO PB

multipliers are advantageous for the case of serial inputs preloading since they offer better

efficiencies, compared to the other multipliers (when running at the same clock speed). The

DL-SIPO PB multipliers show higher efficiencies than the other multiplication schemes in the

case of parallel inputs preloading. However, it is interesting to notice that the gap between the

efficiencies of the proposed DL-FSIPO PB multipliers and those of the DL-SIPO PB multipliers

133

decreases with increasing d in case of parallel preloading of inputs, as depicted in Figure 6.7.

Although this is not a practical case, however, one can see from the chart that for values of

d ≥ 160, the efficiencies of the proposed DL-FSIPO PB multipliers beat those of the DL-

SIPO PB multipliers. On the other side, for the case of serial inputs preloading, the efficiency

gap increases in favor of the proposed DL-FSIPO PB multipliers. Considering the PIPO PB

multiplier, it offers the lowest efficiency in both serial and parallel inputs preloading scenarios.

Notice that, in the case of parallel inputs preloading, the efficiency of the PIPO PB multiplier

is fixed since its latency depends on tω−2 (second highest order amongst the orders of the terms

forming the field defining polynomial), and not the digit size.

In Table 6.3, the PISO PB multiplier from [75] is a bit-level multiplier (d = 1). Hence,

the digit size is set to d = 1 (one bit) for the different digit-level multipliers in this table, in

order to conduct further comparisons. As a case study, the bit-level case of the field GF
(
2233

)
recommended by NIST which is defined by an irreducible trinomial p (x) = x233+xt1+1, where

t1 = 74, is investigated. Then, for this case, the resulting space and time complexities of the

multipliers which are listed in Table 6.3 are reported in Table 6.4. Also, Table 6.5 estimates

the corresponding space and time complexity readings based on the 65nm CMOS standard

library’s statistics. In this table, the total gate counts are estimated in terms of total NAND gate

equivalence (GE) while MPD denotes the maximum propagation delay. Latency denotes the

total number of clock cycles required to generate the 233-bits of output. TP is throughput (@ 1

GHz) and TP/G denotes throughput per total GE measured in Kbps/Gate. SIL and PIL denote

“Serial Input Loading” and “Parallel Input Loading”, respectively.

Multiplier FF AND XOR
2-to-1 1-bit Propagation Parallel Loading Serial Loading

MUX∗ Delay 2-to-11-bit MUX Latency Latency

LSB BL-SIPO [57] 466 235 234 233 TA + TX 233 233 466

MSB BL-SIPO [80] 467 235 234 0 TA + TX 233 233 466

BL-PISO [75] 772 465 538 0 TA + 10TX 466 233 466

PIPO [50] 1164 27261 27261 932 TA + 8TX + 2TM 466 149 382

LSB BL-FSIPO (Figure 6.3a) 697 465 700 0 TA + 4TX 0 233 233

MSB BL-FSIPO (Figure 6.1a) 697 465 467 0 3TX 0 233 233
∗ These multiplexers are used in the multiplication logic which are different from the ones used for parallel preloading of inputs.

Table 6.4: Space and time complexities for the NIST recommended field GF
(
2233

)
defined by

the irreducible trinomial x233 + xt1 + 1, where t1 = 74 and the digit size is d = 1.

In the standard 65nm CMOS technology library, the NAND gate equivalences (GEs) for a

two-inputs AND, two-inputs XOR, D-type FF, and a 2-to-1 1-bit Multiplexer, when reported

based on synthesis results using the Synopsys Design Vision tool [4], are 1.25, 2, 3.75, and 2,

respectively. In addition, and based on synthesis with the same tool using the same technology

library, the maximum propagation delays (MPD) for a two-inputs AND, two-inputs XOR, and

134

Multiplier
MPD GE Latency TP/G @ 1 GHz

ns PIL SIL PIL SIL PIL SIL

LSB BL-SIPO [57] 0.07 3441 2975 233 466 291 168

MSB BL-SIPO [80] 0.07 2979 2513 233 466 336 199

BL-PISO [75] 0.43 5484 4552 233 466 182 110

PIPO [50] 0.41 95759 94827 149 382 16 6

LSB BL-FSIPO (Figure 6.3a) 0.19 4595 4595 233 233 218 218

MSB BL-FSIPO (Figure 6.1a) 0.12 4129 4129 233 233 242 242

Table 6.5: Space and time complexity estimates for the multipliers which are listed in Table

6.4 based on on the standard 65nm CMOS library measures.

2-to-1 1-bit multiplexer are 0.03ns, 0.04ns, and 0.03ns respectively.

From Table 6.5, one can see that the listed PIPO serial PB multiplier offers the best latency

in case of parallel preloading of its inputs. However, it has lowest efficiency (i.e. normalized

throughput in terms of throughput per NAND gate equivalence measured at 1 GHz) in both

parallel and serial preloading scenarios, compared to all the other listed multiplication schemes.

This is mainly due to the relatively large space complexity of this PIPO serial PB multiplier.

It is noted that the BL-SIPO PB multipliers which are listed in Table 6.5 offer the best space

complexity and highest operating frequency. In addition, the BL-SIPO PB multipliers in this

table show the best efficiency, in case of parallel preloading of inputs.

However, the proposed MSB and LSB BL-FSIPO PB multipliers offer lower latencies,

compared to the BL-SIPO, BL-PISO, and PIPO, in case of serial inputs loading. In this case,

as a result of the low latencies, the proposed MSB and LSB BL-FSIPO PB multipliers show

the best efficiency. In comparison to the BL-PISO and BL-PIPO PB multipliers, which are

listed in Table 6.5, the proposed MSB and LSB BL-FSIPO PB multipliers are advantageous in

terms of space complexity1, operating frequency, and efficiency, as well as in terms of latency

in case of serial loading of inputs. Furthermore, Table 6.5 show that the proposed MSB BL-

FSIPO PB multiplier is superior to the proposed LSB BL-FSIPO PB multiplier in terms of

space complexity, propagation delay, and hardware efficiency.

It is also worth noting that, in the case of parallel preloading of inputs, the BL-PISO PB

multiplier generates its first output bit with a latency of 1 clock cycle, while the proposed BL-

FSIPO, as well as the BL-SIPO PB multipliers, require 233 clock cycles after which all the

output bits are generated in parallel. For the same case of parallel preloading of the inputs, the

PIPO PB multiplier, which is listed in Table 6.5, requires 149 clock cycles to generate all the

233 output bits, in parallel.

1the LSB BL-FSIPO PB shows almost similar space complexity as the PISO for the case of serial loading of
inputs

135

In cases where the multiplication results need to be communicated to other modules of

the underlying system, one can convert the proposed DL-FSIPO PB multipliers into serial-

in-serial-out schemes, if the output is transmitted using the same limited capacity data-path

of inputs. This is done by running the proposed DL-FSIPO PB multipliers an additional
⌈

k
2

⌉
clock cycles through which the inputs are set to zeros. During each one of the additional clock

cycles, the proposed DL-FSIPO PB multipliers produce two digits of the multiplication result

for transmission over the output data-path. Therefore, the proposed DL-FSIPO PB multipliers

are advantageous over the serial-serial multipliers presented in [46, 14], in the sense that they

fully utilize the output data-path by requiring only 2k −
⌈

k
2

⌉
clock cycles compared to 2k clock

cycles required by the multipliers in [46, 14] which use only half the output data-path capacity.

In addition, in case only one output digit is required to be transmitted per a clock cycle, one can

accomplishes this by using a dedicated parallel-in-serial-out output register with the proposed

DL-FSIPO PB multipliers. This scheme accomplishes n consecutive multiplications using only
(n + 1) k clock cycles, and hence, it is favoured over the serial-serial multiplication schemes in

[46, 14] which require 2nk clock cycles for the same scenario.

The following section, concludes this chapter.

6.4 Conclusion

This chapter introduced two new digit-level multiplication schemes for the elements of

GF (2m), based on the PB representation. The proposed formulations for the digit-level PB

multiplications are based on recursive constructions of the field elements, which constructs an

element digit-by-digit, one digit per a clock cycle, starting from either the most or the last sig-

nificant digit. Based on these new formulations, and to the best of the author knowledge, the

first architectures for digit-level fully-serial-in-parallel-out (DL-FSIPO) multiplier have been

proposed for dedicated PB. The proposed MSD and LSD DL-FSIPO PB multipliers do not

require any preloading of the inputs and, therefore, they are advantageous for achieving high

throughput in applications where the parallel preloading of the inputs is not possible (if the

input data-path size is limited, which is possible in resource constrained applications). For this

specific case of serial preloading of the inputs, it has been shown, based on the provided the-

oretical analysis, that the proposed MSD and LSD DL-FSIPO PB multipliers offer the highest

throughput and normalized throughput, when compared to other digit-level serial PB multipli-

cation schemes.

136

Chapter 7

Summary and Future Work

This chapter summarizes the contributions of this work and presents some future goals.

7.1 Summary of Contributions

This thesis introduced efficient hardware designs of the WG stream ciphers in Chapters 3 and

4. The presented designs in Chapter 3 are for the multiple output bit MOWG(29, 11, 17) and

single output bit WG(29, 11) based on the ONB-II representation of the GF
(
229

)
elements.

The hardware complexity of the MOWG(29, 11, 17) has been reduced by one field multiplier

through signal reuse techniques, while its time complexity has been slightly enhanced by re-

moving some inverters from the critical path. On the other hand, the space complexity of the

WG(29, 11) has been significantly reduced to only five multipliers in its transform through the

utilization of new trace properties. The new trace property generates the trace of the multipli-

cation of two field elements represented in the ONB-II without performing the multiplication.

The conducted ASIC and FPGA implementations showed superior performance of the pro-

posed WG(29, 11) compared to previous counterparts.

In Chapter 4, polynomial basis representation of the field elements has been considered

for the first time for implementing WG stream ciphers. Nine new designs have been intro-

duced. Three out of which are for the class of WG(29, 11) including a standard, a serialized,

and a pipelined versions. The other six designs are for the class of WG-16 including a stan-

dard, a serialized, and a pipelined versions, each implemented by a traditional PB multiplier

and Karatsuba multiplier. The space complexity of these two classes of the WG cipher has

been significantly reduced through using a new trace property for the PB. Similar to the trace

method introduced in Chapter 3, the new trace property of this chapter generates the trace of

the multiplication of two field elements represented in the PB without performing the multi-

137

plication. The different designs have been demonstrated by ASIC implementations and have

shown a promising performance compared to the previous counterparts. In particular, this

chapter showed that the proposed WG-16 designs comply with the bit rate requirements of the

4G mobile network domain, while offering a variety of optimization options.

In addition, new architectures for the digit-level multiplication in the GNB and PB repre-

sentations of GF (2m) elements have been proposed in Chapters 5 and 6. In Chapters 5 and 6,

new DL-FSIPO GF (2m) multiplication schemes have been proposed for both of the GNB and

PB representations, respectively. These new architectures are shown to be advantageous for

increasing the throughput in applications with limited data-path capacities. Both MSD as well

as LSD variants have been constructed for all proposed DL-FSIPO multipliers.

In Chapter 5, an optimized MSD DL-PISO GNB multiplier has also been presented. The

proposed MSD DL-FSIPO and DL-PISO GNB multipliers in Chapter 5 have been interleaved

in order to construct new architectures for an MSD DL-SIPO GNB Hybrid-double and a DL-

PIPO GNB Hybrid-triple multiplications. The latter two hybrid multiplication schemes con-

duct multiplication of three and four field elements, respectively, using the same latency re-

quired to multiply only two elements. Based on the proposed Hybrid-triple GNB multiplier,

a new digit-level eight-ary exponentiation scheme has been presented in Chapter 5. This new

exponentiation uses almost the same latency of existing eight-ary designs, however, it does not

require pre-computations or storage of intermediate values.

The following section presents some future work for this thesis.

7.2 Future Work

In the future, the following projects can be considered as a continuation for this thesis:

• Generalized hybrid-n-ary FSIPO multipliers.

• ASIC and FPGA realizations of the proposed DL-FSIPO and the digit-level hybrid mul-

tipliers, optimized at the gate / transistor level.

• Implementations for fast field inversion designs using the new hybrid multipliers based

on the recently published work about generalized k-chains [51].

• Ultra lightweight hardware designs for the WG-16 stream cipher suitable for RFIDs,

based on the new hybrid-triple digit-level multipliers.

• Concurrent error control in the different presented designs.

138

Bibliography

[1] 3GPP Technical Specification Groups. http://www.3gpp.org/

Specification-Groups.

[2] Xilinx. http://www.xilinx.com/.

[3] The Sage Notebook. http://www.sagenb.org/.

[4] Synopsys. http://www.synopsys.com/.

[5] IEEE Standard Specifications for Public-Key Cryptography. IEEE Std 1363-2000, page i,

2000.

[6] eSTREAM - The ECRYPT Stream Cipher Project, 2005.

[7] 3rd Generation Partnership Project; Long Term Evaluation Release 10 and Beyond (LTE-

Advanced); Proposed to ITU at 3GPP TSG RAN Meeting, 2009.

[8] Adopted Bluetooth Core Specifications, Core Version 4.0. Bluetooth Special Interest

Group, June 2010.

[9] CLP-41: SNOW 3G Flow through Core. Elliptic Technologies, 2011. http://www.

elliptictech.com/products-clp-41.php.

[10] ZUC Key Stream Generator. Elliptic Technologies, 2011. http://www.elliptictech.

com/pdf/CLP-410ZUCKeyStreamGenerator.pdf.

[11] 3GPP TS 33.401 v11.0.1. 3rd Generation Partnership Project; Technical Specification

Group Services and Systems Aspects; 3GPP System Architecture Evolution (SAE): Se-

curity Architecture, June 2011 (Release 11).

[12] Digital Signature Standard (DSS). Federal Information Processing Standards (FIPS), July

2013.

139

[13] Gordon B. Agnew, Ronald C. Mullin, I. M. Onyszchuk, and Scott A. Vanstone. An

Implementation for a Fast Public-Key Cryptosystem. J. Cryptology, 3:63–79, 1991.

[14] Abdulaziz Al-Khoraidly and Mohammad K. Ibrahim. Finite field serial-serial multiplica-

tion/reduction structure and method, US7519644 B2, Apr 2009.

[15] David W. Ash, Ian F. Blake, and Scott A. Vanstone. Low Complexity Normal Bases.

Discrete Applied Math., 25(3):191 – 210, 1989.

[16] R. Azarderakhsh and A. Reyhani-Masoleh. Low-Complexity Multiplier Architectures

for Single and Hybrid-Double Multiplications in Gaussian Normal Bases. IEEE Trans.

Comput., 62(4):744–757, April 2013.

[17] Reza Azarderakhsh and Arash Reyhani-Masoleh. A Modified Low Complexity Digit-

Level Gaussian Normal Basis Multiplier. In M.Anwar Hasan and Tor Helleseth, editors,

Arithmetic of Finite Fields, volume 6087 of Lecture Notes in Computer Science, pages

25–40. Springer Berlin Heidelberg, 2010.

[18] Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid. Nist Special

Publication 800-57. NIST Special Publication, 800(57):1–142, 2007.

[19] Thomas C. Bartee and David I. Schneider. Computation With Finite Fields. Information

and Control, 6(2):79 – 98, 1963.

[20] T. Beth and D. Gollman. Algorithm Engineering for Public Key Algorithms. IEEE J. Sel.

Areas Commun., 7(4):458–466, 1989.

[21] Alex Biryukov, Deike Priemuth-Schmid, and Bin Zhang. Differential Resynchronization

Attacks on Reduced Round SNOW 3G⊕. In MohammadS. Obaidat, GeorgeA. Tsihrintzis,

and Joaquim Filipe, editors, e-Business and Telecommunications, volume 222 of Commu-

nications in Computer and Information Science, pages 147–157. Springer Berlin Heidel-

berg, 2012.

[22] M. Cenk, M.A Hasan, and C. Negre. Efficient Subquadratic Space Complexity Bi-

nary Polynomial Multipliers Based on Block recombination. IEEE Trans. Comput.,

63(9):2273–2287, September 2014.

[23] L. Chen, J. Franklin, and A. Regenscheid. Guidelines on Hardware-Rooted Security in

Mobile Devices (Draft). In Special Publication 800-164. National Institute of Standards

and Technology, October 2012.

140

[24] Lidong Chen and Guang Gong. Communication System Security. Chapman and Hall -

CRC Press, 2012.

[25] Yanni Chen and Keshab K. Parhi. Small Area Parallel Chien Search Architectures for

Long BCH Codes. IEEE Trans. Very Large Scale Integr. Syst., 12(5):545–549, May 2004.

[26] Chao Cheng and K.K. Parhi. High-Speed Parallel CRC Implementation Based on Unfold-

ing, Pipelining, and Retiming. IEEE Trans. Circuits and Systems II, 53(10):1017–1021,

2006.

[27] A. Cilardo. Fast Parallel GF(2m) Polynomial Multiplication for All Degrees. IEEE Trans.

Comput., 62(5):929–943, May 2013.

[28] J.P. Deschamps, J.L. Imaña, and G.D. Sutter. Hardware Implementation of Finite-Field

Arithmetic. McGraw-Hill Education, 2009.

[29] W. Diffie and M.E. Hellman. New Directions in Cryptography. IEEE Trans. Inf. Theory,

22(6):644–654, November 1976.

[30] V. Dimitrov and K. Jarvinen. Another Look at Inversions Over Binary Fields. In 2013

21st IEEE Symposium on Computer Arithmetic (ARITH), pages 211–218, April 2013.

[31] H. El-Razouk, A Reyhani-Masoleh, and G. Gong. New Implementations of the WG

Stream Cipher. IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 22(9):1865–1878,

September 2014.

[32] H. El-Razouk, A. Reyhani-Masoleh, and G. Gong. New Hardware Implementations of

WG(29,11) and WG-16 Stream Ciphers Using Polynomial Basis. IEEE Trans. Comput.,

to appear.

[33] Serdar S. Erdem, Tugrul Yanik, and Çetin K. Koç. Polynomial Basis Multiplication over

GF(2m). Acta Applicandae Mathematica, 93(1-3):33–55, September 2006.

[34] X. Fan and G. Gong. Specification of the Stream Cipher WG-16 Based Confidentiality

and Integrity Algorithms. Technical Report CACR 2013-06, University of Waterloo,

Waterloo, ON, Canada, 2013.

[35] X. Fan, N. Zidaric, M. Aagaard, and G. Gong. Efficient Hardware Implementation of

the Stream Cipher WG-16 with Composite Field Arithmetic. Technical Report CACR

2013-23, University of Waterloo, Waterloo, ON, Canada, 2013.

141

[36] G.-L. Feng. A VLSI Architecture for Fast Inversion in GF(2m). IEEE Trans. Comput.,

38(10):1383–1386, 1989.

[37] L. Gao and G.E. Sobelman. Improved VLSI Designs for Multiplication and Inversion in

GF(2M) Over Normal Bases. In ASIC/SOC Conference, 2000. Proceedings. 13th Annual

IEEE International, pages 97–101, 2000.

[38] Willi Geiselmann and Dieter Gollmann. Symmetry and Duality in Normal Basis Multipli-

cation. In Teo Mora, editor, Applied Algebra, Algebraic Algorithms and Error-Correcting

Codes, volume 357 of Lecture Notes in Computer Science, pages 230–238. Springer

Berlin Heidelberg, 1989.

[39] Guang Gong and Yassir Nawaz. The WG Stream Cipher. eSTREAM, ECRYPT Stream

Cipher Project, Report 2005/033, 2005.

[40] Guang Gong and A.M. Youssef. Cryptographic Properties of the Welch-Gong Transfor-

mation Sequence Generators. IEEE Trans. Inf. Theory, 48(11):2837 – 2846, Nov. 2002.

[41] T. Good and M. Benaissa. Hardware Results for Selected Stream Cipher Candidates. In

Workshop Record of the State of The Art of Stream Ciphers 2007 (SASC 2007), pages

191–204, 2007.

[42] Daniel M. Gordon. A Survey of Fast Exponentiation Methods. Journal of Algorithms,

27(1):129–146, April 1998.

[43] S.S. Gupta, A. Chattopadhyay, K. Sinha, S. Maitra, and B.P. Sinha. High-Performance

Hardware Implementation for RC4 Stream Cipher. IEEE Trans. Comput., 62(4):730–743,

2013.

[44] A. Halbutogullari and C.K. Koc. Mastrovito Multiplier for General Irreducible Polyno-

mials. IEEE Trans. Comput., 49(5):503 –518, May 2000.

[45] A. Hariri and A. Reyhani-Masoleh. Digit-Level Semi-Systolic and Systolic Structures for

the Shifted Polynomial Basis Multiplication Over Binary Extension Fields. IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., 19(11):2125 –2129, nov. 2011.

[46] M.A. Hasan and V.K. Bhargava. Division and Bit-Serial Multiplication over GF(qm).

Computers and Digital Techniques, IEE Proceedings E, 139(3):230–236, May 1992.

[47] M.A. Hasan, M.Z. Wang, and V.K. Bhargava. A Modified Massey-Omura Parallel Mul-

tiplier for a Class of Finite Fields. IEEE Trans. Comput., 42(10):1278 –1280, Oct. 1993.

142

[48] Jenn-Shyong Horng, I.-Chang Jou, and Chiou-Yng Lee. Low-Complexity Multiplexer-

Based Normal Basis Multiplier Over GF(2m). Journal of Zhejiang University SCIENCE

A, 10(6):834–842, May 2009.

[49] Junxian Huang, Feng Qian, Alexandre Gerber, Z. Morley Mao, Subhabrata Sen, and

Oliver Spatscheck. A Close Examination of Performance and Power Characteristics of 4G

LTE Networks. In Proceedings of the 10th international conference on Mobile systems,

applications, and services, MobiSys ’12, pages 225–238, New York, NY, USA, 2012.

ACM.

[50] J.L. Imaña. Low Latency GF(2m) Polynomial Basis Multiplier. IEEE Trans. Circuits Syst.

I, Reg. Papers, 58(5):935–946, May 2011.

[51] K. Jarvinen, V. Dimitrov, and R. Azarderakhsh. A Generalization of Addition Chains and

Fast Inversions in Binary Fields. IEEE Transactions on Computers, to appear.

[52] D. Johnson, A. Menezes, and S. Vanstone. The Elliptic Curve Digital Signature Algo-

rithm (ECDSA). Int’l J. Information Security, 1(1):36–63, 2001.

[53] Anatolii Karatsuba and Yuri Ofman. Multiplication of Multidigit Numbers on Automata.

Soviet Physics-Doklady, 7:595–596, 1963.

[54] Paris Kitsos, George Selimis, and Odysseas Koufopavlou. High Performance ASIC Im-

plementation of the SNOW 3G Stream Cipher. In IFIP/IEEE VLSISOC 2008 - Interna-

tional Conference on Very Large Scale Integration (VLSI SOC), Rhodes Island, Greece,

Oct. 13-15 2008.

[55] C.K. Koc and B. Sunar. Low-Complexity Bit-Parallel Canonical and Normal Basis Mul-

tipliers for a Class of Finite Fields. IEEE Trans. Comput., 47(3):353–356, 1998.

[56] E. Krengel. Fast WG Stream Cipher. In IEEE Region 8 Int. Conf. on Computational

Technologies in Elect. and Electron. Eng., 2008. SIBIRCON 2008., pages 31 –35, Jul.

2008.

[57] S. Kumar, T. Wollinger, and C. Paar. Optimum Digit Serial GF(2m) Multipliers for Curve-

Based Cryptography. IEEE Transactions on Computers, 55(10):1306–1311, October

2006.

[58] C. Lam, M. Aagaard, and G. Gong. Hardware Implementations of Multi-output Welch-

Gong Ciphers. Technical Report CACR 2011-01, University of Waterloo, Waterloo, ON,

Canada, 2009.

143

[59] Rudolf Lidl and Harald Niederreiter. Introduction to Finite Fields and their Applications.

Cambridge University Press, New York, NY, USA, 1986.

[60] Yiyuan Luo, Qi Chai, Guang Gong, and Xuejia Lai. A Lightweight Stream Cipher WG-

7 for RFID Encryption and Authentication. In Global Telecommunications Conference

(GLOBECOM 2010), 2010 IEEE, pages 1 –6, Dec. 2010.

[61] James L. Massey and Jimmy K. Omura. Computational Method and Apparatus for Finite

Field Arithmetic, May 1986.

[62] Edoardo D. Mastrovito. VLSI Designs for Multiplication Over Finite Fields GF(2m). In

Teo Mora, editor, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes,

volume 357 of Lecture Notes in Computer Science, pages 297–309. Springer Berlin Hei-

delberg, 1989.

[63] Edoardo D. Mastrovito. VLSI Designs for Multiplication over Finite Fields GF(2m). In

Proceedings of the 6th International Conference, on Applied Algebra, Algebraic Algo-

rithms and Error-Correcting Codes, AAECC-6, pages 297–309, London, UK, UK, 1989.

Springer-Verlag.

[64] A. Mirzaei, M. Dakhilalian, and M. Modarres-Hashemi. An Improved Attack on WG

Stream Cipher. IJSNS International Journal of Computer Science and Network Security,

10(4):45–52, apr. 2010.

[65] R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone, and R. M. Wilson. Optimal Normal Bases

in GF(pn). Discrete Applied Math., 22(2):149–161, Feb. 1989.

[66] S.H. Namin, Huapeng Wu, and M. Ahmadi. Power Efficiency of Digit Level Polynomial

Basis Finite Field Multipliers in GF(2283). In 2012 19th IEEE International Conference

on Electronics, Circuits and Systems (ICECS), pages 897–900, December 2012.

[67] Yassir Nawaz. Design of Stream Ciphers and Cryptographic Properties of Nonlinear

Functions. PhD thesis, University of Waterloo, 2007.

[68] Yassir Nawaz and Guang Gong. WG: A Family of Stream Ciphers with Designed Ran-

domness Properties. Inf. Sci., 178(7):1903 – 1916, 2008.

[69] C. Paar. Optimized Arithmetic for Reed-Solomon Encoders. In , 1997 IEEE International

Symposium on Information Theory. 1997. Proceedings, pages 250–, June 1997.

144

[70] A. Reyhani-Masoleh. Efficient Algorithms and Architectures for Field Multiplication

Using Gaussian Normal Bases. IEEE Trans. Comput., 55(1):34–47, Jan 2006.

[71] A. Reyhani-Masoleh and M.A. Hasan. A New Construction of Massey-Omura Parallel

Multiplier Over GF(2m). IEEE Trans. Comput., 51(5):511 –520, May. 2002.

[72] A. Reyhani-Masoleh and M.A. Hasan. Low Complexity Bit Parallel Architectures for

Polynomial Basis Multiplication Over GF(2m). IEEE Trans. Comput., 53(8):945 – 959,

Aug. 2004.

[73] A. Reyhani-Masoleh and M.A. Hasan. Low Complexity Word-Level Sequential Normal

Basis Multipliers. IEEE Trans. Comput., 54(2):98–110, 2005.

[74] A. Reyhani-Masoleh and M.A. Hasan. Low Complexity Word-Level Sequential Normal

Basis Multipliers. IEEE Trans. Comput., 54(2):98–110, 2005.

[75] Arash Reyhani-Masoleh. A New Bit-Serial Architecture for Field Multiplication Us-

ing Polynomial Bases. In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic

Hardware and Embedded Systems - CHES 2008, number 5154 in Lecture Notes in Com-

puter Science, pages 300–314. Springer Berlin Heidelberg, Jan 2008.

[76] Arash Reyhani-Masoleh and M. Anwar Hasan. Efficient Digit-Serial Normal Basis Mul-

tipliers Over Binary Extension Fields. ACM Trans. Embed. Comput. Syst., 3(3):575–592,

August 2004.

[77] Sondre Ronjom and Tor Helleseth. Attacking the Filter Generator Over GF(2m). eS-

TREAM, ECRYPT Stream Cipher Project, Report 2007/011, 2007.

[78] P.A Scott, S.E. Tavares, and L.E. Peppard. A Fast VLSI Multiplier for GF(2m). IEEE J.

Sel. Areas Commun., 4(1):62–66, January 1986.

[79] George N. Selimis, Apostolos P. Fournaris, Harris E. Michail, and Odysseas

Koufopavlou. Improved Throughput Bit-Serial Multiplier for GF(2m) Fields. Integra-

tion, the VLSI Journal, 42(2):217 – 226, 2009.

[80] Leilei Song and Keshab K. Parhi. Low-Energy Digit-Serial/Parallel Finite Field Multi-

pliers. Journal of VLSI signal processing systems for signal, image and video technology,

19(2):149–166, July 1998.

[81] Leilei Song and K.K. Parhi. Efficient Finite Field Serial/Parallel Multiplication. In Pro-

ceedings of International Conference on Application Specific Systems, Architectures and

Processors, 1996. ASAP 96, pages 72–82, August 1996.

145

[82] W. Stallings. Cryptography and Network Security: Principles and Practice. Prentice

Hall, 2011.

[83] D. Stinson. Some Observations on Parallel Algorithms for Fast Exponentiation in GF(2n).

SIAM J. Comput., 19(4):711–717, August 1990.

[84] B. Sunar and C.K. Koc. Mastrovito Multiplier for All Trinomials. IEEE Trans. Comput.,

48(5):522 –527, May 1999.

[85] C.C. Wang and D. Pei. A VLSI Design for Computing Exponentiations in GF(2m) and

its Application to Generate Pseudorandom Number Sequences. IEEE Trans. Comput.,

39(2):258–262, February 1990.

[86] C.C. Wang, T.K. Troung, H.M. Shao, L.J. Deutsch, J. Omura, and Irving S. Reed. VLSI

Architectures for Computing Multiplications and Inverses in GF(2m). IEEE Trans. Com-

put., C-34(8):709–717, 1985.

[87] Hongjun Wu, Tao Huang, PhuongHa Nguyen, Huaxiong Wang, and San Ling. Differ-

ential Attacks Against Stream Cipher ZUC. In Xiaoyun Wang and Kazue Sako, editors,

Advances in Cryptology - ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer

Science, pages 262–277. Springer Berlin Heidelberg, 2012.

[88] Hongjun Wu and Bart Preneel. Resynchronization Attacks on WG and LEX. In Matthew

Robshaw, editor, Fast Software Encryption, volume 4047 of Lecture Notes in Computer

Science, pages 422–432. Springer-Verlag, 2006.

[89] Huapeng Wu. Bit-Parallel Finite Field Multiplier and Squarer Using Polynomial Basis.

IEEE Trans. Comput., 51(7):750 –758, July 2002.

[90] Teng Wu and Guang Gong. The Weakness of Integrity Protection for LTE. In the Proceed-

ings of Sixth ACM Conference on Security and Privacy in Wireless and Mobile Networks,

WiSec13, pages 79–88. Also, appeared as Technical Report, CACR 2013–03, 2013, Uni-

versity of Waterloo, Canada., Budapest, Hungary, Apr. 17-19 2013.

146

Curriculum Vitae

Name: Hayssam El-Razouk

Post-Secondary University of Western Ontario

Education and London, ON, Canada

Degrees: 2011 - 2015 Ph.D.

University of Western Ontario

London, ON, Canada

2004 - 2006 M.E.Sc.

Beirut Arab University

Beirut, Lebanon

1997 - 2002 B.E.

Honours and NSERC CGS D (Canada)

Awards: 2012-2015.

Jamal Abdul Nasir (Lebanon)

1999-2002.

Related Work Teaching / Research Assistant

Experience: University of Western Ontario

2004 - 2006 and 2011 - 2015.

Software Engineer

RedIron Technologies (Canada)

2006 - 2011.

147

	Hardware Implementations for Symmetric Key Cryptosystems
	Recommended Citation

	tmp.1436454781.pdf.0SPGI

