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Abstract 

Transcranial Doppler ultrasound (TCD) is used for the assessment of cerebral blood flow 

velocity (CBFV) at the middle cerebral artery (MCA) with the assumption that diameter of 

the artery does not change. Thus, CBFV is equivalent to cerebral blood flow (CBF). The 

purpose of this thesis was determine if the MCA dilates during hypercapnia (HC) and/or 

constricts during hypocapnia (HO) in healthy young and older adults using 3T magnetic 

resonance imaging (MRI). We also determined how these changes in MCA cross-sectional 

area (CSA) influence estimates of CBF and cerebrovascular reactivity (CVR) from TCD in 

young and older adults. Lastly, we compared whether changes in MCA CSA mimic those at 

the internal carotid artery (ICA) as assessed with duplex ultrasound during HC and HO. For 

all studies, HC was induced with 6% carbon dioxide and HO with hyperventilation at 30 

breaths per minute, each for five minutes. T2-weighted sagittal images of the MCA were 

performed with MRI and collection of an image took approximately one minute. When 

assessing the peak response there was a significant increase in MCA CSA during HC and a 

decrease during HO. Using these MCA CSA values to calculate CBF resulted in a greater 

percent change during each protocol compared to CBFV. Changes in MCA CSA were also 

examined every minute over the five minute periods of HC and HO and significant increases 

were seen within the first minute of HC while decreases during HO were not evident until 

minute four. No changes in ICA CSA occurred during HC or HO. Using CBF rather than 

CBFV to calculate CVR resulted in a greater CVR for each protocol. Finally, when the 

response to HC was compared between young and older adults the increase in MCA CSA 

was reduced in older adults compared to young. Cerebrovascular conductance was also 

reduced in older adults compared to young during HC, while CVR was not different. In 

summary, the diameter of the MCA changes during manipulations of carbon dioxide and 

CBFV underestimates CBF and CVR. Also, CVR may not be the best metric to compare the 

vasodilatory response to HC between groups.               
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Chapter 1  

1 Introduction 

1.1 Overview 

In order to maintain cerebral function, blood flow is very tightly regulated to ensure 

adequate delivery of oxygen (O2) and nutrients and removal of carbon dioxide (CO2). 

Over a century of experimentation has contributed to our understanding of measurement 

and regulation of cerebral blood flow (CBF)(85). Despite these achievements, much work 

remains and is now potentially more important than ever as cerebrovascular function may 

play a role in the development of cognitive disorders such as dementia and Alzheimer’s 

disease (86). For example, in the U.S., the prevalence of Alzheimer’s disease is estimated 

to triple by 2050 (37). In this context, development of techniques to accurately quantify 

CBF and assess cerebrovascular function is vital.  

 Since its introduction in 1982 (2), transcranial Doppler ultrasound (TCD) has 

been used widely to quantify cerebral blood flow velocity (CBFV) during many 

experimental conditions including assessment of autoregulation, metabolic regulation of 

the cerebral vasculature by CO2 and O2, with exercise, and to assess disease status. With 

TCD, the middle cerebral artery (MCA) is most commonly insonated. The three main 

branches coming off of the circle of Willis including the anterior cerebral artery (ACA), 

middle cerebral or posterior cerebral (PCA) arteries can be insonated with TCD. 

Transcranial Doppler ultrasound is relatively inexpensive, has excellent time resolution, 

and is quite user friendly (103) and all of these factors have made it a commonly used 

tool. With TCD, since the vessel being insonated cannot be visualized, a key assumption 

is that the diameter of the insonated vessel does not change; this assumption leads to the 

idea that CBFV estimates CBF.  

Since the experiments of Kety and Schmidt (46, 47) the effect of “high CO2” or 

hypercapnia (HC) to increase CBF and “low CO2” or hypocapnia (HO) to decrease CBF 

have been measured and this response is termed cerebrovascular reactivity (CVR). 

Estimates of CVR have since been used to examine differences between clinical 
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populations in conditions such as migraine headache (54), diabetes (18) and transient 

ischemic attack (94), for example, and during healthy aging (107). Transcranial Doppler 

ultrasound is one method that is used to assess CVR and this estimate is used routinely to 

predict risk of stroke and transient ischemic events in individuals with carotid artery 

stenosis (32) and has been associated with all-cause mortality (79). Justification for the 

use of TCD to provide estimates of CBF during changing levels of end tidal CO2 

(ETCO2) come from magnetic resonance imaging (MRI) studies at 1.5T which suggested 

that the MCA diameter does not change during HC or HO (89, 96). However, with a 

higher resolution MRI (3.0T), MCA dilation can be observed during hypoxia (106). Since 

the cerebral vasculature is generally more sensitive to the partial pressure of CO2 (PaCO2) 

than the partial pressure of O2 (PO2) this could suggest that at a higher resolution a 

change in MCA diameter could be detected with MRI during changes in ETCO2. 

 Additionally, a change in diameter of the internal carotid artery (ICA), which is 

the main branch that leads into the MCA, during HO and HC has been documented (104). 

This is an important finding for two reasons: 1) If the ICA changes diameter during 

manipulations of ETCO2 it seems unlikely that the MCA diameter remains constant. 2) 

The diameter of the ICA can be determined using duplex ultrasound, which is a more 

readily available technology, whereas MRI is needed to examine MCA diameter. If 

changes in the ICA diameter mimic those that occur at the MCA then insonation of this 

vessel could prove useful for supplying a “correction factor” to estimate diameter 

changes at the MCA with changing ETCO2. Overall, this assumption that MCA diameter 

is constant while ETCO2 changes must be revisited now that advancements in MRI 

technology are available. This is important to establish first in a young and healthy 

population and then with a healthy aging and cardiovascular disease model since TCD is 

often used to estimate CVR in these groups.    

The overall objectives of this research were to quantify MCA diameter reactivity, 

and thereby determine whether or not TCD can adequately quantify CBF and CVR in 

healthy young and older populations. The working hypothesis is that the MCA constricts 

during HO and dilates during HC, leading to an underestimation of CBF and CVR with 

TCD. 
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Study 1. Cerebral blood flow velocity underestimates cerebral blood flow during 

hypercapnia and hypocapnia. 

Purpose: To determine whether the MCA constricts during HO and/or dilates 

during HC and to quantify the effect of such changes on CBF.  

Hypothesis: The cross-sectional area (CSA) of the MCA will change during HO 

and/or HC.  

Study 2. Heterogeneous patterns of vasoreactivity in the middle cerebral and 

internal carotid arteries. 

Purpose: To determine the time course of the change in CSA and flow of the 

MCA and ICA over 5 minutes of HC and HO in healthy individuals and to study 

the contributions of MCA CSA data to the estimation of CVR values. 

Hypothesis: The change in CSA during HC and HO will lead to an 

underestimation of CVR as traditionally calculated with CBFV. Additionally, 

changes in ICA CSA will mimic changes in the MCA during HO and HC.  

Study 3. Role of the middle cerebral artery and grey matter volume in 

cerebrovascular changes with healthy aging.   

Purpose: To assess the effect of healthy aging on MCA vasodilation, 

cerebrovascular reactivity, and cerebrovascular conductance during HC and to 

normalize these indices to grey matter volume.  

Hypothesis: The older adults will have less of a vasodilatory response at the MCA 

compared to young controls and therefore have decreased CVR and CVC. 

Cerebral blood flow will be similar between young and older adults when 

normalized to grey matter volume.    
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1.2 Anatomy of the Cerebral Vasculature 

The brain is supplied by four major arteries which eventually converge to form the circle 

of Willis. This system is unique to the brain, as opposed to other organs, in that blockade 

of one of these major arteries does not necessarily mean that adequate perfusion cannot 

be maintained to the entire brain. Outside of the cerebral circulation, large arteries are 

generally thought of as conduit vessels and arterioles as the regulator of vascular 

resistance. In the brain, the larger vessels have more involvement in regulating 

cerebrovascular resistance (22). For example, moving from the aorta to the pial arteries 

results in a 50 to 60% reduction in systemic pressure, and estimates suggest that larger 

cerebral arteries contribute anywhere from 20 to 60% of cerebrovascular resistance (22, 

38).   

Posteriorly, the two vertebral arteries unite intracranially to form the basilar artery 

(Figures 1.1 and 1.2). More anteriorly, the carotid arteries contribute the majority of 

blood supply to the brain, with each contributing approximately 40% to total perfusion 

(21). From the common carotid artery there is a bifurcation and the external carotid artery 

supplies blood to the facial region while the ICA enters the cranial cavity (Figure 1.1) and 

divides into four major branches: the ACA, MCA, anterior choroidal, and the posterior 

communicating arteries. From the ICA on each side the anterior cerebral arteries are 

joined by the anterior communicating artery and run parallel to one another to form the 

rostral portion of the circle of Willis.  The posterior communicating arteries are the 

bridge between the rostral (carotid) circulation and the caudal (basilar) circulation and 

with the basilar artery forms the caudal portion of the circle of Willis (Figure 1.2). 

Interestingly, this “normal” layout of the circle of Willis was observed in just over half of 

human brains in a large sample so this anatomical layout is actually quite variable (4). 

 The largest branch originating from the basilar artery is the PCA which supplies 

the inferior and medial aspects of the temporal and occipital lobes (Figure 1.2)(21). The 

MCA supplies the lateral aspects of each cerebral hemisphere whereas the ACA supplies 

the medial aspects of the frontal and parietal lobes (21). From these main arteries there is 

continual branching until the final superficial pial arteries penetrate into the brain matter 

and are aptly named penetrating arteries (14). These arteries are surrounded by the 
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Virchow-Robin space and when this space disappears the arterioles are then known as 

parenchymal and become almost completely surrounded by the end-feet of glial cells 

known as astrocytes. Astrocytes play a role in the regulation of CBF and will be 

discussed further below (14).   
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Figure 1.1: The internal carotid and vertebral arteries: right side. Reproduction of a 

lithograph plate from Gray's Anatomy from the 20th U.S. edition of Gray's Anatomy of 

the Human Body, originally published in 1918. 
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Figure 1.2: The arteries of the base of the brain. The temporal pole of the cerebrum and a 

portion of the cerebellar hemisphere have been removed on the right side. Reproduction 

of a lithograph plate from Gray's Anatomy from the 20th U.S. edition of Gray's Anatomy 

of the Human Body, originally published in 1918. 
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1.3 Quantification of Cerebral Blood Flow and Transcranial 

Doppler Ultrasound 

Blood flow can be described by Poiseuille’s law [1] and this law applies during laminar 

flow with Newtonian fluids in a rigid tube, where flow (Q) is proportional to the pressure 

change across the system (ΔP) and the radius of the tube to the fourth power (r) and is 

inversely proportional to the length of the tube (L) and viscosity of the fluid (μ). Within a 

system, during acute changes in Q it is generally assumed that μ and L do not change; 

thus, Q is determined by the pressure change and the change in r. The effect of r can also 

be thought of in terms of vascular resistance where Q is inversely proportional to 

resistance.  

[1]                                                  

𝑄 =  
𝛥𝑃𝜋𝑟4

8𝜇𝐿
 

 Early on, most techniques developed to measure CBF relied on inert or 

radioactive tracers and a modification of the Fick equation which states that the amount 

of a tracer taken up by a tissue per unit time is equal to the product of the blood flow 

through an organ and the arteriovenous difference of the tracer (16). Kety and Schmidt 

(1946) were the first to use this principle with inert nitrous oxide gas as the tracer (46). 

Since this time other non-invasive imaging techniques have been established and are used 

widely.  

1.3.1 Transcranial Doppler Ultrasound 

The methods discussed above that rely on the Fick equation give an overall estimation of 

CBF for the brain as a whole. In contrast, transcranial Doppler ultrasound (TCD) 

measures CBFV at the larger vessels that supply the brain with blood. The premise of 

Doppler ultrasound is that an ultrasound beam with a known emitted frequency makes 

contact with a moving red cell and this contact changes the frequency returning to the 
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receiver. Using this frequency information, which is known as the Doppler shift, the 

velocity of the red cell can be calculated using the following equation: 

[2]                                                                  

𝑣 =
𝑓𝑑 ∙ 𝑐

2𝑓𝑡 ∙ 𝑐𝑜𝑠 𝜃
 

Where v is velocity, fd is the detected frequency, c is the velocity of a sound wave 

through tissue, ft is the transmitted frequency and θ is the angle of insonation (27). This 

principle was applied to the cerebral circulation as early as 1965 (68), during surgery or 

in children with open fontanels with the conventionally applied frequency of 5 to 10 MHz 

(2). This technique was modified to be usable in adults using a frequency of 2 MHz 

where there is less attenuation of signal by bone and soft tissues. This allows TCD to be 

applied at windows of the skull where bone is thinner. The most commonly used window 

is known as the transtemporal window of the temporal bone where TCD can be used to 

examine CBFV in the ACA, MCA, and PCA which are the three main arteries off of the 

circle of Willis (2). For the MCA, the first branch off of the circle of Willis (the M1 

segment) is most commonly insonated and this is also the case for the A1 branch of the 

ACA (77). For the posterior circulation, two portions of the PCA can be insonated 

including P1, which is the segment between the basilar artery and the posterior cerebral 

collateral artery, and P2, which is the portion distal to the posterior cerebral collateral 

artery (103). The majority of studies examining the PCA focus on the P1 segment (78, 

104). Knowledge of each of the three cerebral arteries average flow velocity, direction of 

flow, and average depth are used to locate each vessel during a routine TCD examination 

(103).     

 Quantification of CBF is possible with duplex ultrasound of the extracranial 

arteries of the neck as the Doppler signal is used to quantify CBFV and B-mode images 

are used to determine arterial diameter from which CBF can be calculated (61, 104). With 

TCD B-mode imaging can be done but it appears to overestimate arterial diameter 

compared to MRI measurements (106). Often, users of TCD assume that CBFV is 

equivalent to CBF and this is based on the belief that the diameter of the intracerebral 
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arteries (mainly the MCA) is constant. This assumption has been examined with MRI 

during manipulations of ETCO2 and via direct observation during craniotomy. Two 

studies have examined MCA diameter at 1.5T during hyperventilatory HO and found no 

difference in MCA diameter during a decrease from baseline ETCO2 by ~13 mmHg (89, 

96). Serrador et al. (2000) also looked at HC to an ETCO2 of ~45 mmHg and found no 

change in diameter (89). In this study, at 1.5 T, the resolution of the magnet was reported 

to be 0.47 mm. It is possible that changes in MCA diameter were not large enough to be 

detected at this resolution. When ETCO2 was manipulated during craniotomy, the 

diameter change was 1.7% with a sample size of three (28).  

Together, these findings described above led most researchers to interpret CBFV 

as CBF. However, conflicting evidence has been presented. For example, simultaneous 

recordings of MCA CBFV and venous outflow velocity from the sphenoparietal sinus 

during HC to ~55 mmHg indicated that venous outflow was higher than MCA CBFV 

which indicates dilation at the MCA (97). Also, when comparing 133Xe clearance 

estimates to TCD CBFV during HC with 4 and 6% CO2 (in O2) CBF determined with 

133Xe clearance was greater than TCD CBFV estimates, inferring vasodilation (15). 

Lastly, Doppler power can be used to estimate vessel CSA based on the derivation of an 

equation by Arts and Roevros (1972) used for determining blood flow (5). At the MCA, 

when Doppler power was used as an index of CSA during hypercapnic hypoxia (end tidal 

PO2 was 50 mmHg and ETCO2 was 8.5 to 9.5 mmHg above baseline), at the end of the 

stimulus, a significant increase in Doppler power was noted which the authors suggest is 

indicative that vasodilation had occurred (80). Notably, in this study neither HC or 

hypoxia alone had an effect on Doppler power (80). Also, comparison of Doppler power 

to vessel area in a flow phantom has raised questions as to whether power-based 

estimates of CSA are justifiable in vivo (19).  Overall, the fact that some of these findings 

are inconsistent seems to indicate that the question of whether or not the MCA diameter 

is constant during HC and/or HO needs to be revisited.  
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1.4 Magnetic Resonance Imaging 

In the context of this thesis, MRI is used for quantification of CBFV, determination of 

MCA CSA, and estimation of brain volume so the focus will be on details relevant to 

these techniques.   

 In the simplest terms, the basis for the MRI signal are the protons that lie within 

the abundant hydrogen atoms throughout the human body. Hydrogen nuclei intrinsically 

possess a nuclear spin that gives rise to a magnetic field for each proton. Normally these 

spins are pointing randomly but within the external magnetic field of the MRI they are all 

oriented in the same direction to form the net magnetization. The net magnetization is a 

vector with a transverse component (perpendicular to the magnetic field) and a 

longitudinal component (parallel or antiparallel to the magnet field). When a person is 

placed within the MRI, the transverse components cancel out so there is no net transverse 

magnetization but a longitudinal component is generated because there are more spins 

parallel to the field than antiparallel. However, no signal is actually generated until these 

spins are tipped away by what is called a radiofrequency pulse (usually by 90˚ to tip 

magnetization from fully longitudinal to fully transverse) from their original orientation; 

the recovery to their equilibrium state is where the MRI signal comes from. When 

magnetization is in the transverse direction the spins produce an oscillating electric 

current so signal is produced. After the spins have been tipped, the recovery of the 

longitudinal magnetization is described by a time constant known as T1. In the transverse 

direction, the spins lose coherence (are out of phase with one another) and the 

magnetization decays; this process is described by the time constant T2. An image is 

formed because different types of tissue have different T1 and T2 values (83). In T2-

weighted images tissues with long T2 values give the largest signal intensity so they 

appear to be bright. Fluids have the longest T2 while water-based tissues have longer T2 

values than fat-based tissues (Figure 1.3)(65). In images with predominantly T1 contrast, 

long T1 tissues give the weakest signal so in this case, the brightest pixels are associated 

with short T1 values. Any tissues with more water (and thus more protons) will appear 

dark and this type of scan is useful for showing anatomy (Figure 1.3) (65). 
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Figure 1.3: Sagittal image of the spinal column with T2 contrast (left side) and T1 

contrast (right side). Image courtesy of GE Healthcare. 
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Phase contrast (PC) imaging can be used to determine CBFV and was first 

described by Moran in 1982 (70). This type of MRI is based on the principle that applied 

magnetic gradients introduce a phase shift in moving protons that is proportional to fluid 

velocity (9). With PC MRI two acquisitions need to be performed because the phase of 

the signal can depend on many factors. Therefore,  it is necessary to collect one 

acquisition with a pulse sequence that is relatively insensitive to flow followed by one 

that is sensitive to flow over a particular range of velocities so that the two acquisitions 

can be subtracted. This should remove the effect of any dephasing due to other factors. 

The phase is unchanged for any protons that are not moving, thus the subtraction also 

suppresses any signal from background tissue (102). The maximum measurable velocity 

is a parameter selected by the operator, known as the encoding velocity (Venc), which 

corresponds to a phase shift of 180° (69).  

 Estimates of CBFV derived from TCD have been compared to PC derived 

estimates, although few studies have looked at agreement between the two modalities 

beyond calculation of a correlation coefficient which is useful for detection of random 

error but does not detect systematic biases (62). Baledent et al. (2006) found small to 

moderate correlations between PC and TCD for peak systolic and end diastolic velocities 

in the MCA and absolute values for TCD were higher than for PC (9). Valdueza et al. 

(1997) also reported higher values of CBFV at rest and during hyperventilation with TCD 

(96). In the only examination to date looking at CVR to HC (from 40 mmHg at baseline 

to 45 mmHg) with PC MRI and TCD it was again reported that CBFV and CVR values 

derived from TCD were slightly higher and proportional bias was present where there 

was a larger difference between the two modalities at higher velocities (57). It remains to 

be seen how TCD and PC MRI may compare when velocities are examined over a wider 

range of ETCO2.   

 MRI can also be used to examine structural properties of the cerebral blood 

vessels with angiography (magnetic resonance angiography). Magnetic resonance 

angiography relies on changes in the signal due to the flow of blood through or within the 

image plane. If, after the 90˚ pulse, another 180˚ pulse is applied then an image with T2 

contrast can be generated that has what is known as “black blood contrast” where the 
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blood appears dark and there is good contrast between the blood vessel walls and the 

blood (83). In contrast, if this 180˚ pulse is not applied, then the signal from flowing 

blood is visible and appears bright. This is the basis for time-of-flight magnetic resonance 

angiography (12). 

 Brain volume quantification is a technique used to detect structural differences of 

different brain tissues (grey matter, white matter, etc.) while discounting differences in 

positioning and larger scale differences in volume (6). The steps for determination of 

brain volume involve spatially normalizing a T1-weighted image of an individual brain to 

the group template. This process is a registration so that local areas stretch and compress 

with respect to one another to match the template image. The image is then segmented 

into tissue classes (gray matter, white matter and cerebrospinal fluid) and smoothed. This 

type of analysis has been applied to many areas of research. For example, the negative 

linear association grey matter volume and age has been characterized with this 

methodology (31).  
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1.5 Regulation of Cerebral Blood Flow 

The regulation of CBF is complex and is dependent on many factors including the 

perfusion pressure of the brain, arterial blood gases, metabolic factors involved with 

neurovascular coupling, and the autonomic nervous system (105).   

1.5.1 Carbon Dioxide 

It is well established that alterations in PaCO2 have an effect on cerebral vessels that is 

unique to the cerebral circulation (3). Increased PaCO2 results in decreased tone in all 

cerebral vessels with the smaller vessels being most responsive. Hypocapnia causes a 

similar increase in tone in cerebral vessels of all sizes (100). Hypercapnia produces an 

increase in CBF that was first reported to be approximately 75% during inhalation of 5 to 

7% CO2 (47). Conversely, a decrease in PaCO2 causes a decrease in CBF which was first 

documented to be 32% during active hyperventilation (46). In general, during HO CBF 

decreases 2 to 3% per mmHg decrease in PaCO2 to a minimum level of ~10 to 15 mmHg. 

During HC the increase in CBF is approximately 3 to 4 % per mmHg increase in PaCO2 

with its highest level at 10 to 20 mmHg above baseline (13). It was originally unclear 

whether PaCO2 itself was the stimulus for the change in CBF or whether the 

accompanying pH change initiated the response. Human studies ruled out the effect of 

arterial pH on vessel diameter (36, 53). Direct observation of pial arterioles in an 

anesthetized cat model have shown that the effect of CO2 is mediated by a change in pH 

of the extracellular fluid (cerebrospinal fluid) rather than a change in PaCO2 (51).  

The mechanism through which CO2/pH affects vessel tone is not entirely clear 

and this is probably due to redundancy in the regulatory mechanisms. An inhibitory effect 

of protons on voltage dependent calcium channels has been suggested whereby their 

activation prevents calcium entry into the vascular smooth muscle cell (101). 

Additionally, potassium (K+) channels have been proposed to play a role where their 

activation leads to hyperpolarization of the membrane, inhibition of calcium channels and 

vasodilation (73). Based on animal work, four types of K+ channels have been identified 

on cerebral vessels including inward rectifier K+ channels, delayed rectifier K+ channels, 

ATP-sensitive K+ channels, and calcium-sensitive K+ channels (50). Of these, ATP-
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sensitive K+ channels and calcium activated K+ channels likely play a major role (59). In 

animal studies, only combined inhibition of ATP-sensitive K+ channels and calcium 

activated K+ channels abolished hypercapnic vasodilation (59).  

In addition to a direct action on various ion channels, it is possible that CO2/pH 

exerts effects on cerebral vessels through vasoactive mediators. Nitric oxide (NO) likely 

plays a role in the flow response to HC since its blockade reduces the response (88, 99). 

Exogenous administration of a NO donor also increases the response to HC and 

diminishes the response to HO in humans (55). It appears that the source of NO, at least 

in a rodent model, is neuronal NO synthase, rather than the endothelium (58). However, 

there are also contradictory data that minimize the role that NO plays on CVR to CO2. 

Ide et al. (2007) reported that blockade of NO had no effect on the CBFV response to HC 

(42). It is possible that this is due to compensatory dilatory mechanisms that are 

upregulated when NO is blocked. Additionally, when nitrite and nitrate levels were 

examined (as surrogate estimates of NO), along with CVR, there was no correlation 

between the measurements (66). 

Evidence from pigs suggests that prostenoids may play a permissive role during 

HC-induced increases in flow but on their own they are not likely the necessary mediator 

for vasodilation (56). Also, in humans, administration of the cyclooxygenase inhibitor 

indomethacin, reduces the CBFV response to HC (10).  The conclusion from the bulk of 

this evidence is that we have some ideas as to how CO2 exerts its effects on the cerebral 

circulation but there are still many questions that remain unanswered.  

The vasoactive response in the brain to HC and HO has been utilized to estimate 

CVR and characterize cerebrovascular health. As stated previously, CVR is the change in 

CBFV or CBF to a change in PaCO2 and is generally quantified as the absolute or percent 

change in CBF (or CBFV) per change in PaCO2 (or ETCO2). Cerebrovascular reactivity is 

thought to be an indicator of overall cerebral health and decreased CVR is associated 

with several pathological states including ischemic stroke in those with carotid occlusion 

(92), sleep-related disordered breathing (71), hypertension (90), multiple sclerosis (63), 

Alzheimer’s disease (67), preeclampsia (87), and mortality in general (79).  
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Commonly, HO CVR is assessed during hyperventilation that reduces PaCO2. 

Alternatively, within the literature there are varying methodologies employed to increase 

PaCO2 including rebreathing (30), breath holding (45, 81), inhalation of 2 to 6% CO2 in 

air (10, 84), inhalation of 5% CO2 in 95% O2 (referred to as carbogen) (44), and 

administration of acetazolamide (98), which increases PaCO2 by inhibiting the enzyme 

carbonic anhydrase. Benefits and drawbacks of each of these are summarized in a review 

by Fierstra et al. (2013)(23) and the authors conclude that the best option is CO2 as a 

stimulus to examine CVR. 

1.5.2 Blood Pressure 

In general, cerebral perfusion pressure can be defined as the difference between mean 

arterial pressure (MAP) and intracranial pressure. For decades, students of physiology 

have been taught that CBF is protected against changes in MAP over the pressure range 

of approximately 60 to 150 mmHg and this concept is known as cerebral autoregulation 

(CA). Autoregulation can be examined in terms of the steady state relationship between 

CBF and MAP over minutes or hours and this is known as static CA (105). Alternatively 

the capacity of the cerebrovasculature to regulate the pressure-flow relationship to 

transient changes in MAP over several seconds or heart beats is known as dynamic CA 

(105). Based on an amalgamation of studies in patients, the concept of autoregulation was 

developed and only recently has it been questioned since studies in healthy humans do 

not support a system where CBF is completely protected against fluctuations in MAP 

(61). Not until technology was available in the 1980s to examine beat-by-beat 

measurements of MAP and CBF was it possible to examine more transient effects of 

MAP on CBF. Aaslid (1989) developed a thigh cuff method where occlusion of the thigh 

with rapid cuff release induced transient hypotension and it was observed that CBFV 

tracked the drop in MAP but recovered more quickly (1). This finding with others led to 

the development of the concept that CA acts as a high pass filter where higher frequency 

BP fluctuations are transferred to the cerebral circulation whereas the circulation is 

buffered against slower changes in MAP (108). 

 It should be noted that static versus dynamic CA are experimental rather than 

physiological classifications and it is likely that the mechanisms for static and dynamic 
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CA are similar. A close matching in the percent change in cerebrovascular resistance to 

slower, drug-induced changes in pressure and those that occur during the drop in MAP 

during thigh-cuff release has been described (95). The mechanisms through which 

cerebrovascular resistance is modified to maintain cerebral perfusion pressure are unclear 

at this time but likely include a combination of neurogenic, myogenic and possibly 

endothelial responses (93, 105). Interestingly, based on animal studies, it has been 

estimated that larger cerebral arteries contribute anywhere from 20 to 60% of 

cerebrovascular resistance at rest (22, 38). 

   Additionally, it is important to remember that factors like BP and CO2 do not 

exert their effects on the cerebral blood vessels independently. There is an interplay 

between the role of MAP and CO2 on the cerebral vasculature. This was first established 

in dogs where animals with a MAP of 100 mmHg had a less pronounced reaction to HC 

and HO than normotensive animals and at a MAP of 50 mmHg there was no change in 

CBF with HC or HO (35). Also, using CO2 as a stimulus to examine CVR may also 

increase systemic MAP and possibly perfusion pressure. Battisti-Charbonney et al. 

(2011) observed that below a threshold ETCO2, MAP changed little, but above this, MAP 

increased linearly with ETCO2 (11). Therefore, it is important to report cerebrovascular 

conductance (CVC) in an attempt to account for the effect of MAP changes during a 

CVR test.  

1.5.3 Neural Control 

The cerebral vessels are densely innervated and the sources of innervation differ 

depending on the location of the vessel. The larger blood vessels that run along the 

surface of the brain are said to be innervated extrinsically by the superior cervical 

ganglion, the sphenopalatine and otic ganglia, and the trigeminal ganglion (33). The 

superior cervical ganglion provides sympathetic innervation and releases norepinephrine 

and neuropeptide Y. The sphenopalatine and otic ganglia are responsible for 

parasympathetic innervation and releases vasoactive intestinal polypetide, NO, 

acetylcholine, among others. Lastly, the trigeminal ganglion is a source of sensory nerves 

that contain calcitonin gene-related polypeptide, substance P, neurokinin A, and others 

(33). The role of extrinsic sympathetic innervation in the brain is somewhat unclear as the 
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results of blockade studies in humans have been equivocal (41, 75). In contrast, 

ganglionectomy in patients with pathological conditions has resulted in increased CBF in 

the majority of studies (43, 91) though it is unclear how these findings may apply in a 

healthy population (48). In addition, the general consensus based on the body of literature 

suggests that sympathetic innervation may serve as a protective mechanism to shift the 

autoregulatory curve to higher pressure. This mechanism would protect the brain against 

increased pressure with sympathetic activation (33). For example, when norepinephrine 

was infused to raise pressure the change in cerebrovascular resistance that occurred was 

not present when phentolamine, which is a non-selective α-receptor blocker, was infused. 

Additionally, CBFV increased when norepinephrine and phentolamine were infused 

together indicating that CA was impaired (49). 

 As pial arteries enter the brain cortical tissue they lose this extrinsic nerve supply 

and receive inputs from neurons within the brain itself and this is termed “instrinsic 

innervation.” These smaller vessels receive nerve afferents from areas such as the locus 

coreuleus, raphe nucleus, and basal forebrain (14). However, this innervation does not 

interact directly with the vessel but is instead in contact with astrocytes surrounding the 

blood vessel (14). The best studied pathways involved in intrinsic innervation include 

release of acetylcholine from the nucleus basalis, norepinephrine from the locus 

coeruleus, and serotonin from the raphe nucleus (33). Receptors for these 

neurotransmitters are located on both astrocytes and on smooth muscle and/or endothelial 

cells of blood vessels (33). Complete description of these pathways is beyond the scope 

of this review but it should be noted that literature in this area focuses, out of necessity, 

on animal models and in some cases on brain slices. In this type of experimental set-up 

blood vessels are not pressurized and do not have intraluminal flow (33). This is a 

valuable experimental design to answer some questions about intrinsic innervation but 

applicability to the intact human cerebrovasculature is unclear.     

1.5.4 Metabolic Control 

Within the brain, blood flow increases to areas that are neuronally active and this 

relationship is termed neurovascular coupling. The distribution of CBF is coordinated to 

increase when activity in a certain brain region increases and this response is known as 
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functional hyperemia. The hyperemic response occurs within seconds and is very specific 

to the region that is neuronally active (17, 74). There is a close association between 

neurons, astrocytes and blood vessels within the cortex and together, these three 

components comprise the neurovascular unit. Functionally, this association allows 

delivery of substrates to support neuronal activation and removal of metabolic by-

products (40).  

The mechanisms that are involved neurovascular regulation are still a topic of 

study but it is clear that there is involvement by neurons, astrocytes and vascular cells 

(40). Initially, it was proposed that a reduction in glucose or oxygen triggered by 

neuronal activation may trigger the blood flow response. However, further research 

indicated that it is likely synaptic signaling and not an energy deficit that triggers the flow 

response (7). There are several chemical mediators that have been proposed to be 

involved in stimulating the functional hyperemic response and this list includes ions, 

neurotransmitters, vasoactive factors that are released in response to neurotransmitters, 

and metabolic by-products (29). However, in blockade experiments, inhibiting one 

candidate mediator does not completely inhibit the response which indicates that there 

may be mechanistic redundancy or that some combination of the proposed mediators are 

involved in the response (40). One mechanism that is fairly well established to play a role 

in the hyperemic response is activation of glutamate receptors through synaptic 

transmission that initiates release of NO (39) and increases calcium in astrocytic end-feet 

that leads to release of other vasoactive mediators including prostenoids (40), of which 

some derivatives lead to vasodilation while others cause constriction (39). Which 

pathway predominates at any given time remains unclear but is likely regulated by 

another mediator such as lactate, adenosine, or the level of oxygen (39). From the local 

area where there is an up regulation in flow associated with neuronal activation upstream 

arteries also dilate to prevent a drop in microvascular pressure and avoid a ‘steal’ from 

adjacent areas (22). Overall, the mechanisms involved in neurovascular coupling remain 

unclear and require further study, especially in humans. The issue is further complicated 

because the mechanisms of functional hyperemia may differ from one brain location to 

another (40). For example, in the cerebellum CBF increases are highly dependent on NO 
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synthase but in the somatosensory cortex NO synthase-related mechanisms play a less 

prominent role (20).    

1.6 Cerebrovascular Reactivity and Aging 

As mentioned previously, CVR is decreased with many pathological conditions. 

However, the evidence related to healthy aging and CVR is mixed with some studies 

reporting that CVR is reduced with healthy aging (10, 25, 60), maintained (26, 72), 

increased (109), or different between sexes (44, 64). These differences likely are due to a 

number of factors including the age range of the subject pool, the stimulus used to assess 

CVR, sex differences, and possibly the way that the data are presented.  

A large scale epidemiological study was conducted by Bakker et al. (2004) that 

examined CVR in adults grouped by decade up until the age of 90 reported a 0.08% per 

mmHg decrease per year (8). Therefore, studies that use an older population are probably 

more likely to find a difference in CVR compared to a young group. Additionally, the 

literature on CVR is complicated by the use of 5% CO2 in 95% oxygen (known as 

carbogen) as a stimulus (8, 44, 60). This is problematic because a constrictive effect from 

the hyperoxia may counteract vasodilation due to HC (24). For example, when CVR was 

determined by two imaging methods, using the blood oxygen level dependent signal and 

arterial spin labelling, there was agreement between methods when CO2 in air was the 

stimulus and agreement with blood oxygen level dependent imaging carbogen estimates 

of CVR. However, the CVR values determined with arterial spin labelling and carbogen 

did not agree with other estimates (34). Lastly, when CO2 in air is used as the stimulus, 

different percentages of CO2 have been used in the literature ranging from 2% to 7% (10, 

72, 76, 82, 107). This difference makes comparison between studies more challenging.    

 Some studies have reported that there are sex differences in CVR. Bakker et al. 

(2004) examined CVR in older adults aged 55 years and older and found that CVR was 

greater in men (8). Additionally, declining CVR in women with age but no effect in men 

has been reported (44). Similarly, Matteis et al. (1998) reported that CVR, as assessed by 

the breath-holding index, was lower in post-menopausal women compared to younger 
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premenopausal women and young and older men (64). Significant differences in CVR 

have also been reported across the menstrual cycle (52) yet very few studies take this into 

account when choosing young female subjects.       

The reporting of CVR in terms of absolute values or percent change further 

complicates study findings. For example, Oudegeest-Sander et al. (2014) examined CVR 

in young, elderly, and older elderly groups and found no difference in CVR expressed in 

relative terms but a difference in absolute values (76). Since there is no standardized 

metric that is preferred then both absolute and relative CVR should be presented. Lastly, 

the majority of studies described here have utilized TCD, and therefore, have measured 

CBFV not CBF. If the MCA dilates during HC and/or constricts during HO to a different 

extent in young and older subjects then using CBFV alone may disguise any differences 

between the groups. In summary, the question of whether or not aging is related to 

diminished CVR should be revisited due to the limitations in the previous research 

described above. 
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Chapter 2 

2 Cerebral blood flow velocity underestimates cerebral 
blood flow during modest hypercapnia and hypocapnia 

(Published in J Appl Physiol 117:1090-1096, 2014. Used with permission – see Appendix 

C) 

2.1 Introduction 

The responsiveness of the cerebral circulation to altered carbon dioxide (CO2) partial 

pressures has long been recognized (12) and is the basis of one method to assess 

cerebrovascular health (9, 14).  Alterations in vessel diameter have been observed with in 

vitro preparations or craniotomy with changes in inspired CO2 at the level of the smaller 

cerebral arteries including the anterior cerebral artery, the M2 segment of the middle 

cerebral artery (MCA) and the intraparenchymal cerebral arterioles (1, 7). Whether or not 

larger cerebral arteries constrict and/or dilate in conscious humans is important because 

the standard tool for measuring cerebral hemodynamics, transcranial Doppler ultrasound 

(TCD), measures cerebral blood flow velocity (CBFV) which is used as a surrogate for 

cerebral blood flow (CBF). However, the change in CBFV is equivalent to the change in 

CBF only if the diameter of the insonated vessel does not change. This assumption is 

particularly relevant to the M1 segment of the MCA, as it is the cerebral vessel that is 

most often studied using TCD. Early studies used magnetic resonance imaging (MRI) 

and reported that MCA diameter did not change in response to manipulations of end-tidal 

CO2 (ETCO2) (22, 25). Serrador et al. examined MCA diameter during hypercapnia (HC) 

at an ETCO2 of approximately 45 mmHg and during hypocapnia (HO) at 24 mmHg in 6 

subjects and found no change in either condition (22). The voxel dimensions in this case 

were 0.47 x 0.47 x 5.0 mm. Valdueza et al. had 7 subjects hyperventilate to an ETCO2 of 

27 mmHg and no change in MCA diameter was detected with a voxel size of 0.8 x 0.4 x 

3.0 mm (25). Both of these investigations were performed at 1.5 T with limited spatial 

resolution relative to higher field systems currently available. 
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In contrast to MRI data (22, 25), indirect measures suggest that MCA diameter 

does change across levels of ETCO2.  For example, combined measures of the 

hypercapnia-induced flow difference between CBFV in the MCA and the sphenoparietal 

sinus (which drains the MCA) indicated a greater increase on the venous side (26). The 

authors attributed this observation to MCA vasodilation (26).  

Measures of CBFV as an index of CBF are challenged not only by the assumption 

of constant MCA diameter, but also velocity errors. A problem inherent to the Doppler 

signal is overestimation of peak values due to spectral broadening, which has a greater 

impact as the angle of insonation increases (11). Spectral broadening occurs intrinsically 

due to the nature of transmitting and receiving acoustic energy (8) and has been 

documented with other types of Doppler ultrasound systems (11). In addition to TCD, 

MRI-based phase contrast (PC) imaging can estimate CBFV based on the principle that 

applied magnetic gradients induce a phase shift in moving protons that is proportional to 

fluid velocity. Phase contrast imaging has been validated against a flow phantom for 

estimation of total CBF through the basilar artery and internal carotid arteries and has 

been used to estimate MCA CBFV (2, 15, 23). Leung et al. reported that PC-based 

estimates were lower than those measured by TCD with the error attributed to Doppler 

spectral broadening (15). Overall, the agreement between TCD and PC estimates of 

CBFV requires further study. 

The primary purpose of this study was to determine if the MCA constricts during 

HO and/or dilates during HC and to quantify the impact of such changes on CBF. A 

secondary purpose was to compare velocity measures from TCD to velocity measures 

collected with PC MRI over a range of ETCO2 values.  

2.2 Materials and Methods 

In total, nineteen subjects (24 ± 2 years, 8 males) participated in this study. Subjects were 

not on any medications and were non-smokers with no history of cardiovascular disease. 

All subjects gave informed consent and the protocol was approved by the Health 

Sciences Research Ethics Board at Western University. 
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2.2.1 Experimental Protocols 

Subjects participated in two testing sessions including an MRI day and a physiological 

data collection (Lab) day that were matched for time of day. Subjects were asked to 

refrain from alcohol, caffeine and physical activity for 12 hours prior to testing. The 

protocol consisted of 5 minutes of baseline measures followed by 5 minutes of HC or HO 

(assigned randomly) then a 3-4 minute recovery period. The CO2 manipulation that had 

not yet been performed (HC or HO) was then completed for 5 minutes after another 5 

minute baseline. To induce HC the subjects breathed air that consisted of 6% CO2, 21% 

oxygen, and balanced nitrogen.  For HO, participants breathed at a rate of 30 breaths per 

minute guided by a metronome. The protocols were designed to increase ETCO2 by 

approximately 10 mmHg during HC and decrease ETCO2 by approximately 15 mmHg 

during HO. 

2.2.2 Measurements 

2.2.2.1 Lab Session 

Heart rate was acquired from standard ECG. Finger arterial blood pressure (BP) was 

measured continuously and the brachial waveform (Finometer, Finapres Medical Systems 

BV, Amsterdam, The Netherlands) was corrected to brachial sphygmomanometric 

values. End-tidal CO2 (CO2100C analyzer, Biopac, CA, USA) and breathing frequency 

(respiratory strain gauge) were measured continuously. Cerebral blood flow velocity of 

the MCA was measured in a supine position using a 2-MHz pulsed transcranial Doppler 

ultrasound probe (Neurovision system, Multigon Industries, Elmsford, CA, USA). The 

average depth of the ultrasound beam was 5.0 ± 0.4 cm.   

2.2.2.2 MRI Session 

A 3T MRI (Magnetom TIM TRIO, Siemens Medical Solutions, Erlangen, Germany) was 

used for data collection. A 3D time of flight sequence was used to select the location on 

the M1 segment of the right MCA to apply a T2 fast spin echo sequence and a PC 

sequence that were used to determine the vessel cross-sectional area (CSA) and CBFV, 

respectively. Both T2 and PC sequences were applied during baseline conditions (Pre HC 

and Pre HO) and each experimental condition (HC and HO) for 9 subjects (25 ± 2 years, 



38 

 

5 males). In each condition, two T2 image acquisitions were performed (approximately 1 

minute per acquisition) followed by one PC acquisition (approximately 2 minutes) 

followed by two more T2 acquisitions. In the MRI session for the remaining subjects 2 to 

5 T2 images were taken at baseline and during HC and HO for assessment of MCA CSA. 

For T2 images, used to calculate MCA CSA, (8 slices, repetition time (TR) = 3000 ms, 

echo time (TE) = 100 ms, flip angle = 120°, voxel dimensions 0.4 x 0.4 x 2.0 mm3), the 

pulse sequence was gated to the peak of the pulse wave from the continuous signal 

derived from an MRI-compatible pulse oximeter (8600FO MRI, Nonin Medical Inc., 

Plymouth, MN, USA) as measured at the right third finger.  

For the PC acquisition, which was used to determine CBFV, (TR = 24.75 ms, TE 

= 6.01 ms, flip angle = 15°, voxel dimensions 0.7 x 0.7 x 3.0 mm3) 25 phases were 

retroactively gated to the signal from the pulse oximeter. The velocity-encoding factor 

(Venc), which is the maximum measurable velocity, was individually determined since 

setting the Venc too low can result in aliasing (18). The Venc for Pre HC and Pre HO 

conditions was, on average, 111 ± 14 m/s, 145 ± 13 m/s for HC, and 98 ± 14 m/s for HO. 

Respiration was collected with a strain gauge around the upper abdomen. 

2.2.3 Data Analysis 

2.2.3.1 Lab Data 

Values of heart rate, BP, breathing frequency, and mean CBFV were averaged for the 5 

minute baseline periods. These measures were averaged every minute during HC and HO 

and the value reported corresponds to when the maximal and minimal CSA 

measurements from the MRI were recorded.  

2.2.3.2 MRI Data 

Figure 2.1 shows a representative baseline T2 image. Using Osirix imaging software 

(Pixmeo, Bernex, Switzerland) the CSA of each MCA image was measured in triplicate 

by two blinded observers. The MCA was assumed to be circular but rather than fitting a 

circle to the vessel we chose to outline the lumen manually point by point for the best fit 

and this was done at each operator’s discretion after training by the same investigator. An 
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intra-class correlation coefficient (ICC) was calculated to examine the agreement 

between the two observers. The ICC between the two observers was 0.92; thus, the 

average CSA between the two observers is reported. The HC and HO CSAs are reported 

as the maximal CSA for HC and the minimal CSA for HO as well as the average of all 

CSAs during HC and HO. The diameter was then determined as the square root of CSA 

divided by π multiplied by 2.  

An index of vascular reactivity was assessed relative to the corresponding 

baseline as the ∆CSA/∆ETCO2 during each of HC and HO. Cerebral blood flow was 

calculated (CSA x CBFV) using TCD CBFV as the basis for CBF calculations unless 

otherwise noted. Percent change (%∆) from baseline was calculated for CBF and CBFV. 

Cerebrovascular reactivity (CVR) for CBF and CBFV was calculated as both absolute 

and relative change (∆CBF/∆ETCO2, ∆CBFV/∆ETCO2, %∆CBF/∆ETCO2, 

%∆CBFV/∆ETCO2).  

Phase contrast data were assessed using cvi42 (Circle Cardiovascular Imaging, 

Calgary, AB, Canada). Phases were quantified into velocities based on the Venc. The 

lumen of the MCA was identified and the mean velocity for each voxel was determined 

over the 25 phases. To coincide with the TCD analysis, a peak velocity for each of the 25 

images was determined from the voxel with the highest velocity within the MCA and 

these values were averaged over the cardiac cycle. The analysis was performed by two 

blinded observers and values were averaged.  The ICC between the two observers was 

1.0 (p<0.001). 

2.2.4 Statistical Analysis 

Data are presented as mean ± standard deviation unless otherwise indicated. 

SigmaStat12.0 was used for statistical analysis. All comparisons were made with a paired 

t-test. Average and maximal/minimum data are reported for HC and HO. The 

maximum/minimum CSA were the main outcome of interest because this represents the 

maximum to which CSA changes may impact TCD estimates of CBFV. Therefore, all 

calculations relating to the change in CSA relate to the maximal CSA during HC and the 

minimum during HO. Bland-Altman analysis was performed to examine the spread of 
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differences between PC and TCD for estimates of CBFV and CVR. The differences 

between the two estimates were plotted against the corresponding means and fixed and/or 

proportional biases were assessed.  A one sample t-test was performed on the difference 

values between the two observers, and between PC and TCD difference values, to test for 

fixed bias since the differences should be equal to zero if no fixed bias exists (3). The 

regression between the differences and corresponding means was plotted and a slope 

different from zero was used to indicate the presence of proportional bias (3). The ICC 

was also calculated to examine the agreement between PC and TCD and a value greater 

than 0.8 was considered to indicate good agreement. 

Cohen’s d was calculated for the change in CSA during HC and HO to provide an 

estimate of the effect size. Additionally, a post hoc power analysis was performed for the 

change in CSA during each of the HO and HC conditions using GPower 3.1 (6) 

specifying two tails, an α-value of 0.05, the sample size, and the effect size of Cohen’s d. 

2.3 Results 

T2 images were collected for 19 subjects and analysis of CSA was performed on images 

from 15 subjects for HO and on 13 subjects for HC for whom image quality provided 

clear MCA edges. Phase contrast images of sufficient quality to determine CBFV were 

obtained in 7 of 9 individuals for both the HC and HO trials and TCD CBFV was 

collected in these same subjects. The average time between the Lab and MRI session was 

53 ± 58 days. This estimate is variable because 13 subjects had their Lab and MRI 

sessions within 29 days of one another while the other 6 had 3 to 4 months between test 

dates due to the reduced availability of the MRI.  

Table 2.1 illustrates the physiologic responses to HC and HO in both the 

laboratory and MRI sessions. End-tidal CO2 increased during HC and decreased during 

HO in each session (p<0.01 for all cases). Breathing rate was not different during HC in 

the MRI or in the Lab session. By design, breathing rate was elevated compared to 

baseline during HO in each session (p<0.001). Additionally, heart rate increased during 

both HC and HO in the MRI and Lab sessions (p<0.05 for all cases). Blood pressure was 

measured only in the Lab session and during HC, SBP and MAP increased above 



41 

 

baseline (p<0.05 for both cases) while DBP remained unchanged. During HO, SBP 

increased above baseline (p<0.01) while MAP and DBP remained unchanged.  

During HC, CSA of the MCA increased from 5.6 ± 0.8 at baseline to a maximal 

CSA of 6.5 ± 1.0 mm2 (p<0.001; Figure 2.2A) and an average CSA of 6.3 ± 0.9 mm2 

(p<0.001). During HO, the CSA decreased from 5.8 ± 0.9 at baseline to a minimum of 

5.3 ± 0.9 mm2 (p<0.001; Figure 2.2B) and an average CSA of 5.5 ± 0.9 mm2 (p=0.01). 

For HC, Cohen’s d was 0.94 and the achieved power was 0.87. For HO, Cohen’s d was 

0.50 and achieved power was 0.44.  Figure 2.2 illustrates the individual patterns of 

response showing a homogeneous dilatory response for all subjects during HC and 

heterogeneous vasoconstriction during HO where 6 participants showed less than a 5% 

change in MCA CSA. Figure 2.3 shows the mean and individual data for the relationship 

between ETCO2 and CSA.  The average increase during HC was 0.11 ± 0.07 mm2/mmHg 

while the average decrease during HO was 0.04 ± 0.03 mm2/mmHg.  

Both PC and TCD methods produced similar significant changes in CBFV during 

both HC and HO stimuli. Overall, there was a strong linear association between TCD and 

PC estimates of CBFV (r=0.71, p<0.001; Figure 2.4B). The limits of agreement with 

Bland-Altman analysis were at -27 and 20 on the y-axis (Figure 2.4A) and 1 value fell 

outside this range at approximately y=23. Bland-Altman analysis revealed no significant 

fixed (mean difference -3.56 cm/s; p=0.13) or proportional biases (r=0.01; p=0.98). 

However, the spread of the differences between PC and TCD produced limits of 

agreement with a wide range. The ICC for CBFV was 0.83 (p<0.001). 

There were no differences in CVR between CBFV estimates obtained by TCD 

and PC for HC or HO (TCD: 2.42 ± 3.98 cm/s/mmHg; PC: 2.87 ± 1.63 cm/s/mmHg, for 

HC p=0.33 and TCD: -1.67 ± 1.37 cm/s/mmHg; PC: -0.92 ± 1.17 cm/s/mmHg, for HO 

p=0.14). There was a strong linear association between TCD and PC CVR (r=0.81, 

p<0.001; Figure 2.5B). Bland-Altman analysis for CVR (Figure 2.5A) revealed one point 

that fell outside the limits of agreement of -3.6 and 4.8. No fixed bias (mean difference 

0.6 cm/s/mmHg; p=0.10) was observed; however, the slope of the regression line was 
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different from zero (r=0.57; p=0.032), indicating proportional bias was present. The ICC 

for CVR was 0.86 (p<0.001).   

Cerebral blood flow, calculated from TCD CBFV and MCA CSA, increased from 

baseline during HC and decreased during HO (p<0.01 for each; Figure 2.6A). The %∆ 

was greater for CBF than for CBFV during HC and HO (p<0.001 for each comparison; 

Figure 2.6B). There was also a significant change from baseline during HC (from 219 ± 

38 to 333 ± 68 ml/min; p=0.001) and HO (from 211 ± 34 to 156 ± 13 ml/min; p=0.007) 

when CBF was calculated from PC CBFV and MCA CSA. Cerebrovascular reactivity 

calculated from CBF was 19 ± 23 ml/min/mmHg for HC and -8 ± 6 ml/min/mmHg for 

HO. Comparing %∆CBFV CVR to %∆CBF CVR revealed that the reactivity to HC and 

HO was greater for %∆CBF CVR than %∆CBFV CVR (p<0.05 for both cases; Figure 

2.7).  
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Table 2.1: Physiological results during HC and HO in the lab and MRI. 

 Pre HC HC Pre HO HO 

MRI     

End tidal carbon dioxide (mmHg) 37 ± 3 46 ± 5* 36 ± 4 23 ± 3† 

Breathing rate (breaths per minute) 13 ± 3 15 ±3 13 ± 4 28 ± 1† 

Heart rate (beats per minute) 63 ± 6 67 ± 7* 67 ± 11  76 ± 12† 

Lab     

End tidal carbon dioxide (mmHg) 39 ± 3 49 ± 5* 36 ± 4 25 ± 9† 

Breathing rate (breaths per minute) 14 ± 2 16 ± 3 14 ± 3 29 ± 1† 

Heart rate (beats per minute) 61 ± 9 65 ± 6* 64 ± 9 69 ± 7† 

Systolic blood pressure (mmHg) 107 ± 11 112 ± 13* 110 ± 8 114 ± 9† 

Diastolic blood pressure (mmHg) 69 ± 8 70 ± 10 69 ± 8 70 ± 8 

Mean arterial pressure (mmHg) 82 ± 9 86 ± 10* 84 ± 7 85 ± 7 
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Values are means ± SD. *p<0.05 for Pre HC versus HC. †p<0.05 for Pre HO versus HO. MRI: HC n=13, HO n=15. Lab: HC and HO 

n=7. HC = hypercapnia; HO = hypocapnia.   
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Table 2.2: CBFV during HC and HO obtained from TCD and PC MRI. 

 Pre HC HC Pre HO HO 

TCD CBFV (cm/s) 68 ± 9 85 ± 15* 69 ± 8 55 ± 16† 

PC CBFV (cm/s) 64 ± 10 85 ± 15* 61 ± 8 51 ± 8† 

Values are means ± SD. *p<0.05 for Pre HC versus HC. †p<0.05 for Pre HO versus HO. TCD and PC: HC n=7 and HO n=7. CBFV = 

cerebral blood flow velocity; HC = hypercapnia; HO = hypocapnia; PC = phase contrast; TCD = transcranial Doppler ultrasound. 

 

 

 

 

 

 



46 

 

 

Figure 2.1: Sagittal T2 baseline image through the right middle cerebral artery of a 

representative subject. 
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Figure 2.2: Individual and mean changes in the CSA of the middle cerebral artery. A: 

HC (n=13). B: HO (n=15). CSA = cross-sectional area; HC = hypercapnia; HO = 

hypocapnia. 
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Figure 2.3: Relationship between the change in ETCO2 and the change in middle 

cerebral artery CSA from HO to HC. Filled squares represent mean data with standard 

deviation bars and unfilled squares show individual data (n=19; n=9 with data points for 

HO and HC, n=6 for HO alone, and n=4 for HC alone). CSA = cross-sectional area; 

ETCO2 = end-tidal carbon dioxide; HC = hypercapnia; HO = hypocapnia. 
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Figure 2.4: Bland-Altman and scatter plots comparing TCD and PC CBFV over the 

range of end-tidal carbon dioxide values. Pre HC, HC, Pre HO and HO are represented 

for 7 subjects for a total of 28 data points. A: Bland-Altman plot of CBFV. B: Scatter plot 
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with the regression line (solid line) and 95% confidence intervals (dashed lines) for 

CBFV. CBFV = cerebral blood flow velocity; PC = phase contrast; TCD = transcranial 

Doppler ultrasound. 
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Figure 2.5: Bland-Altman and scatter plots comparing TCD and PC CVR over the range 

of end-tidal carbon dioxide values. The change from Pre HC to HC and Pre HO to HO 

are represented for 7 subjects for a total of 14 data points. A: Bland-Altman plot of CVR. 

B: Scatter plot with the regression line (solid line) and 95% confidence intervals (dashed 
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lines) for CVR. CVR= cerebrovascular reactivity; PC = phase contrast; TCD = 

transcranial Doppler ultrasound. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 

 

 

Figure 2.6: A: CBF during HC and HO calculated by multiplying the cross-sectional area 

of the MCA by TCD CBFV. B: Percent change in CBFV and CBF during HC and 

HO.*p<0.05. CBF = cerebral blood flow; CBFV = cerebral blood flow velocity; HC = 

hypercapnia; HO = hypocapnia; MCA = middle cerebral artery; TCD = transcranial 

Doppler ultrasound. n=7 for all conditions. 
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Figure 2.7: Cerebrovascular reactivity expressed as percent change of CBFV and CBF 

divided by the change in end tidal carbon dioxide during HC and HO.*p<0.05. CBF = 

cerebral blood flow; CBFV = cerebral blood flow velocity; CVR = cerebrovascular 

reactivity; HC = hypercapnia; HO = hypocapnia; MCA = middle cerebral artery; TCD = 

transcranial Doppler ultrasound. n=7 for all conditions. 
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2.4 Discussion 

This study was the first to show that MCA CSA increases by 16 ± 7% and decreases by 8 

± 6% during HC and HO, respectively. Thus, using CBFV as an estimate of flow 

underestimated true flow changes in the MCA. Cerebrovascular reactivity was also lower 

when using CBFV compared to CBF. Additionally, there was some variability between 

TCD and PC estimates of CBFV during both HC and HO conditions which was evident 

by the wide limits of agreement produced from Bland Altman analysis despite the strong 

ICC value.  

Overall, MCA diameters calculated from measures of CSA in the current study 

(2.66 ± 0.21 to 2.87 ± 0.21 mm for HC and 2.69 ± 0.20 to 2.59 ± 0.21 with HO) are 

comparable to values of 2.23 mm (24) to 3.4 mm (10, 21, 22, 25, 28) from other studies 

that have employed MRI. In the current analysis, the percent change in diameter with HC 

was 8 ± 3 % over an average change in ETCO2 of 9 ± 4 mmHg whereas diameter 

decreased 4 ± 4 % during an ETCO2 decrease of 13 ± 5 mmHg. Willie et al. (2012) 

reported a change in the diameter of the internal carotid artery of approximately 20% 

over a PaCO2 range of 50 mmHg (27). Thus, the current data produced a rate of diameter 

change (approximately 0.4%/mmHg) over a physiologically-relevant range of ETCO2 

that is consistent with that of the internal carotid artery (approximately 0.6%/mmHg) 

observed over a much wider range of ETCO2.   

Previously, MCA diameter was observed not to change across a similar range of 

ETCO2 examined in the current study (22, 25). However, Serrador et al. (2000) used 1.5 

T MRI with a voxel size of 0.47 x 0.47 x 5.00 mm giving a total voxel volume of 1.11 

mm3 (22). In the current study, the resolution of the 3T system was greater with a voxel 

size of 0.4 x 0.4 x 2.0 mm for a voxel volume of 0.32 mm3. The voxel volume affects not 

only the resolution but also the impact of partial volume effects. In particular, the smaller 

voxel volume of the 3T system used here will reduce the presence of two or more types 

of tissue in one voxel where signal from one would “water down” signal from the second. 

With the larger voxel volume in the previous study partial volume effects may have 

minimized any detectable change (22). In addition, a higher signal-to-noise ratio was 
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achieved with the 32 channel head coil and the signal-to-noise ratio is inherently two 

times greater at 3 T compared to 1.5 T (4). Some variability in MCA CSA was observed 

across subjects in the current study, especially during HO. The observation of a greater 

dilatory response to HC versus constrictor response to HO is consistent with previous 

observations of the internal carotid artery (27). We observed high between-subject 

variability in the constrictor response to HO which suggests either varying sensitivity to 

CO2 or that the MCA exists in a constricted state at baseline. Giller et al. (1993) also 

observed variability in the response to HO upon direct observation of the MCA during 

craniotomy (7). We speculate that the brain could be protected from inappropriate 

vasoconstriction which could lead to damaging ischemia, particularly if it involves the 

major arteries at the base of the brain. In this context, baseline flow may be the regulated 

variable in the brain as opposed to the PaCO2.  

In the current study no significant biases were observed when comparing TCD 

and PC estimates of CBFV. Additionally, the ICC was strong indicating that variation 

between the two methods in the same subject was minimal compared to variation 

between subjects. However, the variability in the differences between the two methods 

produced quite a spread of data, resulting in wide limits of agreement. Leung et al. 

observed proportional bias with less agreement between the two methods at high levels of 

CBFV during HC (15). However, in this study, proportional bias was observed only with 

CVR due to one data point where CVR was highest. This indicates that TCD and PC may 

not provide similar estimates of CBFV in individuals who express a large CVR response 

to HC. Leung et al. suggested that one way to reduce this variability between the two 

methods may be to compare the mean CBFV signal instead of the peak signal which may 

reduce partial volume effects (15).   

 The increase in MCA CSA with HC may be influenced by the concurrent rise in 

BP. In this study, mean arterial pressure increased during HC by approximately 5 ± 3%. 

Under conditions of normal ETCO2 a change in BP should have minimal effect on CBF 

due to intact cerebral autoregulation. However, under hypercapnic conditions dynamic 

cerebral autoregulation is impaired (19). Thus, it is possible that the cerebral circulation 

may respond passively to small BP changes leading to an effect on the CSA of the MCA 
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during HC. Indeed, pharmacological studies indicate that larger cerebral vessels, such as 

the internal carotid artery, can change diameter passively during changes in BP (16). 

Based on these earlier data (16), the change in diameter in internal carotid artery diameter 

that could be expected with our change in BP is approximately 3% (16) which is less than 

the 8% diameter change observed. However, the study of Liu et al. was performed under 

conditions of normocapnia so it is unclear how HC may affect these results (16).  

This study is limited by the fact that MCA CSA and TCD measurements were 

collected on different days that were, on average, 53 days apart. We attempted to 

decrease day to day variability by performing data collection at the same time of day in 

the separate sessions. Despite this limitation, studies suggest that TCD and PC estimates 

of CBFV are reproducible over a week in the case of TCD and over 72 days for PC (5, 

23). These studies are limited by the fact that they examined repeatability under 

conditions of normocapnia. Few studies that have assessed the reproducibility of 

cerebrovascular reactivity to carbon dioxide have produced variable findings. McDonnell 

et al. found the ICC between two estimates of TCD-based CBFV change during HC 

performed a week apart to be fairly strong (ICC=0.73) in one rater who had more recently 

been trained, but much weaker in the other rater (ICC=0.08) (17). Additionally, BP 

measurements were not taken during the MRI session.   

Another limitation of the current study was that PaCO2 was not measured. 

Previous studies indicate that ETCO2 overestimates PaCO2 during HC but not HO (20, 

27). Regardless, ETCO2 was used in all cases so any overestimation was comparable 

between TCD and PC. 

Lastly, it must be noted that in a minimal number of T2 images the vessel borders 

were unclear and as result were not analyzed. Respiratory-induced motion artifacts can be 

problematic and were a concern for this study. All images used in this study were 

carefully monitored for significant motion problems like blurring or ghosting. It is 

unlikely that the image quality could be significantly improved through the use of 

respiratory gating for the following reasons:  (1) the significant increase in scan time 

during the T2 turbo spin echo sequence used in this study could potentially introduce 
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patient movement artifacts other than respiration itself, and (2) the potentially large 

variation between TR periods in this acquisition would significantly alter the spin history 

and introduce other unwanted magnitude and phase variances and therefore image 

artifacts.  

 In summary, the present data support the conclusion that the CSA of the MCA 

changes in response to changes in ETCO2. The response was more homogeneous across 

participants during HC than HO. These data contribute to emerging evidence that 

alterations in CBF due to manipulations of the arterial partial pressure of CO2 and/or the 

arterial partial pressure of oxygen are not solely due to changes in the smaller arterioles 

(27, 28). Therefore, caution must be applied when using CBFV as a surrogate for CBF 

during conditions that manipulate concentrations of arterial gases.  
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Chapter 3  

3 Heterogeneous patterns of vasoreactivity in the middle 
cerebral and internal carotid arteries 

(Published in Am J Physiol Heart Circ Physiol. 2015 Feb 27:ajpheart.00761.2014. doi: 

10.1152/ajpheart.00761.2014. [Epub ahead of print]. Used with permission – see 

Appendix C) 

3.1 Introduction 

It is well known that the cerebral vessels demonstrate high sensitivity to levels of carbon 

dioxide (CO2) (7) but the exact mechanisms of this reactivity have yet to be elucidated (1, 

13, 20). The relative change in flow or flow velocity to a given change in end tidal CO2 

(ETCO2) is a standard  measurement known as cerebrovascular reactivity (CVR) that 

reflects the health of the cerebrovascular system (11) and the risk for a future ischemic 

event (15).  The relative contributions of subcortical and intraparenchymal vessels to 

estimates of CVR remain unknown and the reactivity is generally attributed to the pial or 

intraparenchymal vessels. Yet, estimates based on the fall in pressure from the aorta 

indicate that the large subcortical or cerebral arteries contribute as much as 50 to 60% to 

cerebrovascular resistance (5). Thus, understanding their reactivity to changes in CO2 has 

important implications for determining cerebrovascular health. 

The contribution of the conduit vessels to CVR remains unclear in intact humans 

due to lack of access to direct in vivo assessment of these vessels. This limitation has led 

to reliance on transcranial Doppler ultrasound (TCD) to assess cerebral vasomotor 

control, a method that is applied easily and provides excellent temporal resolution of 

cerebral blood flow velocity (CBFV). Although the total power of the Doppler signal has 

been used to account for possible changes in middle cerebral artery (MCA) cross-

sectional area (CSA) (12), TCD cannot quantify cerebral blood flow (CBF) because the 

CSA of the insonated vessel cannot be visualized directly. Thus, CBFV is accepted as a 

suitable analog of CBF. This supposition is supported by earlier magnetic resonance 

imaging (MRI) studies in which changes in MCA diameter were not observed during 
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hypocapnia (HO: hyperventilation to 24 mmHg (14) and 27 mmHg (18)) or hypercapnia 

(HC: ETCO2 increased to 45 mmHg (14)).  

Recently, we used 3T MRI and a 32 channel head-coil to enhance resolution and 

observed a statistically significant change in MCA diameter of 8 ± 3% during HC 

(ETCO2 increased 9 mmHg above baseline) and a decrease in diameter of 4 ± 4% during 

HO (ETCO2 decreased by 13 mmHg) (4). Thus, concurrent measures of  CBFV alone 

using phase contrast imaging or TCD, underestimated the true CBF by as much as 20% 

(4). These observations were based on assessment of the maximal CSA during five 

minute periods of HC and the minimal CSA during hyperventilatory HO. These MCA 

diameter changes were replicated at 7T during HC by an independent group who reported 

a 7 ± 3% diameter change when ETCO2 was kept constant at 15 mmHg above each 

subject’s baseline (19). The time course of dilation and the contribution of the MCA to 

changes in CVR remain fundamental to gaining greater understanding of the 

contributions of these vessels versus downstream segments of the vascular tree to 

cerebrovascular control.  

 The internal carotid artery (ICA) diameter changes by approximately 20% over a 

range of partial pressures of CO2 (PaCO2) from 15 to 65 mmHg while the partial pressure 

of oxygen (PO2) was clamped (21). However, the timing of this response is unknown as 

the diameter measures were made after 12 to 15 minutes of CO2 stimulus. Since the ICA 

can be insonated by the more cost-effective and accessible method of ultrasound it would 

be useful to determine if the changes in the ICA CSA during HC and HO mimic the 

changes in the MCA.  

The purposes of this study were to determine the time course of the change in 

CSA and flow of the MCA and ICA over 5 minutes of HC and HO in healthy individuals 

and to study the contributions of MCA CSA data to the estimation of CVR values. We 

also estimated wall shear stress (WSS) in order to quantify how flow-mediated effects 

may contribute to the vascular responses.  
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3.2 Materials and Methods 

Fourteen subjects (23 ± 3 years, 7 females) gave informed consent to participate in this 

study that was approved by the Health Sciences Research Ethics Board at Western 

University and performed in accordance with the Declaration of Helsinki. Subjects were 

non-smokers, were not on any medications, and had no history of cardiovascular disease.  

3.2.1 Experimental Protocols 

Subjects participated in two test days: 1) a Lab day where TCD of the MCA and duplex 

imaging of the ICA were performed and 2) a separate MRI day. The Lab and MRI days 

were matched for time of day. Subjects were asked to refrain from alcohol, caffeine and 

physical activity for 12 hours prior to testing. The protocol on each test day consisted of 5 

minutes of baseline measures (Pre HC and Pre HO) followed by 5 minutes of 

hypercapnia (HC) or hypocapnia (HO) (the order of which was counterbalanced across 

participants) then a 3 to 4 minute recovery period to allow ETCO2 levels to return to 

normal. The PO2 was not clamped during the ETCO2 manipulations. Another 5 minute 

baseline was then performed followed by the ETCO2 manipulation that had yet to be 

performed. For HC, subjects breathed air composed of 6% CO2, 21% oxygen, and 72% 

nitrogen. Hypocapnia was induced by hyperventilation at 30 breaths per minute guided 

by a metronome. Previous use of these protocols in our lab suggested that ETCO2 levels 

remain fairly constant (within ~1-2 mmHg) over the 5 minutes during each manipulation 

(23).  

3.2.2 Measurements 

3.2.2.1 Lab Session 

Heart rate was acquired from standard ECG. Finger arterial blood pressure (BP) was 

measured continuously (Finometer, Finapres Medical Systems BV, Amsterdam, The 

Netherlands). The brachial BP waveform was corrected to brachial sphygmomanometric 

values. Breathing frequency and ETCO2 were monitored continuously with a respiratory 

strain gauge and a gas analyzer (ML206, ADInstruments, Colorado Springs, CO, USA) 

respectively. Right middle cerebral artery velocity (MCAv) was measured in a supine 
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position (2 MHz pulsed wave TCD probe; Neurovision, Multigon Industries, Elmsford, 

CA, USA). The average depth of insonation was 4.8 ± 0.3 cm.  

Duplex ultrasound imaging was used to record the right ICA flow velocity (ICAv) 

(Doppler ultrasound, 4.7 MHz probe) continuously while a longitudinal image of the 

vessel was taken every minute during baseline and each protocol (10 MHz probe; Vivid 7 

system, GE Healthcare Canada, Mississauga, ON, Canada).  The ICA recording site was 

at least 1 cm superior to the carotid sinus. Velocity waveforms were processed to produce 

an analog signal of the instantaneous weighted mean flow velocity. The 2D echo 

ultrasound images were stored for analysis with EchoPAC software (GE Healthcare 

Canada, Mississauga, ON, Canada). 

3.2.2.2 MRI Session 

A 3T MRI (Magnetom Prisma, Siemens Medical Solutions, Erlangen, Germany) was 

used to image the MCA. A 3D time of flight pulse sequence was used to identify the M1 

segment location for application of a T2 fast spin echo sequence (8 slices, repetition time 

= 3000 ms, echo time = 96 ms, flip angle = 120°, voxel dimensions = 0.4 x 0.4 x 2.0 

mm3) for image acquisition. Collection of an image took approximately one minute and 

was gated to the peak of the pulse wave at the finger derived from an MRI-compatible 

pulse oximeter (8600FO MRI, Nonin Medical Inc., Plymouth, MN, USA) as measured at 

the right third finger. Respiration was monitored with a strain gauge around the upper 

abdomen and ETCO2 data were collected as described during the Lab session. 

3.2.3 Data Analysis 

Three systolic and three diastolic diameters were measured for each ICA image by a 

blinded observer and an average of the three was taken. The accuracy of measurement 

was confirmed by a second blinded observer using images from four participants across 

the range of image quality (a total of 92 images) producing an intraclass correlation 

coefficient (ICC) of 0.89 (p<0.001). A mean diameter was then calculated as: mean 

diameter (mm) = (2/3*diastolic diameter (mm)) + (1/3*systolic diameter (mm)). Internal 

carotid artery flow (QICA) was determined as: QICA (ml/min) = ICAv (cm/s)*[π*(mean 

diameter (cm)/2)2]*60 (s/min).  
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From the sagittal images, the MCA CSA was measured manually in triplicate by 

each of two blinded observers using Osirix imaging software (Pixmeo, Bernex, 

Switzerland) (ICC of 0.96; p<0.001) and the data from both observers were averaged and 

reported. An estimate of blood flow in the MCA (QMCA) was determined as: QMCA 

(ml/min) = MCAv (cm/s)*CSA (cm2)*60 (s/min). The reproducibility of MCA flow 

velocity responses to HC and HO has been established in our hands under laboratory and 

MRI conditions, albeit with separate modalities (i.e., TCD and phase contrast imaging) 

(4). Therefore, QMCA data were based on MCAv and CSA data that were collected on 

separate days. When reported, the MCA diameter was calculated from the measured CSA 

value. The percent change (%∆) in CSA between baseline and HC or HO time points was 

also calculated for the ICA and the MCA.  

Flow indices for each vessel are reported both as absolute values and as %∆ to 

account for differences in baseline flow. Cerebrovascular conductance (CVC) was 

calculated for the ICA and the MCA as the quotient of flow and mean arterial pressure 

(MAP). CVR was calculated for both arteries as the %∆ in flow from baseline per mmHg 

change in ETCO2 at each minute of the 5 minute period during HC and HO. Wall shear 

stress was calculated for the MCA and the ICA at baseline and each minute of HC and 

HO as: WSS (τ, dyn/cm2) = 4*η*Q/r3*π, where η is the blood viscosity (0.009 Poise), Q 

is flow (ml/min) and r is the radius of the inside of the artery (cm) (3).  

All variables were similar in the baseline periods of the Lab and MRI sessions so 

an average of this five minute period is reported for heart rate, BP, breathing frequency, 

ETCO2, MCAv, ICAv, QICA, QMCA, CVC, CVR and WSS indices. The values during HC 

and HO are reported for each minute over the 5 minute period.  

3.2.4 Statistical Analysis 

The effect of HC or HO on the time course of MCA and ICA changes in CSA, with the 

corresponding ETCO2, heart rate and respiration outcomes, were characterized first using 

one-way repeated measures ANOVAs (main effect of time) (SigmaStat 12.0, Systat 

Software, San Jose, CA, USA). Subsequently, the effects of HC and HO on MCA and 

ICA over time were assessed using a general linear mixed ANOVA model (main effects 
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of artery). Additionally, comparisons between Lab values of ETCO2, heart rate, and 

respiration to MRI values over time were performed with general linear mixed ANOVA 

(main effect of experimental session). The effect of HC and HO on the index of WSS was 

examined using one-way repeated measures ANOVA. The probability level for statistical 

significance was p<0.05 and significant main effects or interactions were assessed using 

Tukey’s post hoc test. A post-hoc power analysis was performed with G*Power 3.1 (31) 

specifying two tails, an α-value of 0.05, the sample size and the effect size (Cohen’s d). 

3.3 Results 

Clear MCA images and complete data for MCAv and QICA were obtained from 11 

participants (23 ± 3 years, 5 females) during HC at baseline and sample sizes at each of 

the 5 time points were: 9, 10, 9, 9, and 8, respectively. The Pre HO sample size was 9 (23 

± 3 years, 4 females) and the sample sizes at each of the 5 time points were 8, 9, 8, 9, and 

5, respectively.  

During HC there was a main effect of time for all BP variables, heart rate, 

respiration rate, ETCO2, and CVC but there was no effect of artery (Table 3.1). Thus, the 

experimental stimuli and conditions were replicated for each of the two protocols within 

the same session that studied the MCA and the ICA responses. When the MCA, ICA and 

MRI protocols were compared there was a trend for a main effect of experimental session 

for respiration rate (p=0.06) and no differences for ETCO2 or heart rate.  

Compared with baseline, a main effect of time was observed during HO for heart 

rate, respiration rate, and ETCO2 but not for BP variables and there was no effect of 

artery for any of these variables when the ICA and MCA protocols were compared (Table 

3.2). However, main effects of time and artery were observed for CVC where constriction 

of the downstream vascular bed was observed in both vessels but overall levels were 

greater in the ICA. During HO, there was a main effect of experimental session when 

comparing the MCA, ICA and MRI protocols for ETCO2 (p=0.05) and no differences in 

heart rate or respiration rate.  
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Table 3.3 shows the changes in heart rate and respiration rate during HC and HO 

in the MRI session. In the MRI during HC, heart rate was increased compared to baseline 

at minutes 2 to 5 of HC (p<0.05). Additionally, respiration rate was increased at minutes 

4 and 5 compared to minute 1 of HC (p=0.04 for each). Compared to baseline, heart rate 

was elevated at all time points of HO (p<0.05) except minute 5. By design, breathing rate 

was elevated at all time points in HO (p<0.001).  

Figure 3.1A shows the time course of the MCA CSA response to HC. The MCA 

CSA increased progressively above baseline over the five minutes of HC (p<0.05). 

Compared to baseline (5.8 ± 1.1 mm2), the largest MCA CSA (6.8 ± 1.3 mm2; +14 ± 8%) 

occurred at four minutes of HC. A main effect for time (p=0.05) was observed for the 

ICA CSA response to HC (Figure 3.1B) but no pairwise comparisons reached 

significance despite ETCO2 levels that were greater than baseline at each time point 

(p<0.001). Main effects of time (p<0.001) and artery (p<0.001) were observed for 

%∆ICA and %∆MCA CSA (Figure 3.1C). In terms of QICA and QMCA a main effect of 

time (p<0.001) and a trend for a difference between arteries (p=0.07) were observed 

during HC (Figure 3.1D).The %∆QMCA and %∆QICA increased similarly with time 

(p<0.001) in each artery (Figure 3.1E).  

Figure 3.2A illustrates the change in MCA CSA during HO. Compared to 

baseline, the MCA CSA was reduced from baseline (5.9 ± 0.8 mm2) only at minutes four 

(p=0.01 versus baseline and p=0.003 versus HO min 1) and five (5.1 ± 0.5 mm2 at HO5; 

6 ± 6%; p=0.03 versus baseline and p=0.008 versus HO min 1). The ICA CSA was not 

different from baseline at any time point during HO despite significant and rapid 

reductions in ETCO2 (Figure 3.2B). A main effect of time (p=0.02) was observed for 

%ΔCSA of the ICA and MCA during HO (Figure 3.2C). Main effects of time (p<0.001) 

and artery (p=0.006) were observed for absolute QICA and QMCA values during HO 

(Figure 3.2D) but not for %∆ of either value (Figure 3.2E).  

During HC, a time x method interaction was observed such that the %∆MCAv 

was less than %∆QMCA and this effect was present after three minutes of HC (p<0.02; 
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Figure 3.3A). During HO, a main effect for time (p<0.001) was observed indicating 

similar relative reductions in both MCAv and QMCA.  

Compared with baseline, MCA WSS was elevated at all HC time points (p<0.01), 

and time points 2, 4, and 5 were greater than 1 (p<0.03; Table 3.4). Compared with 

baseline, MCA WSS was reduced at all HO time points (p<0.05). In the ICA, wall shear 

stress increased progressively during HC with time points 2 to 5 minutes being different 

from baseline (p<0.001) and time points 4 and 5 minutes being greater than the first 

minute of HC (p<0.05). During HO the ICA WSS was reduced compared to baseline at 

all time points except minute five (p<0.05).   

The contributions of changes in CSA to the overall CVR outcome was examined 

by using MCAv and QMCA to calculate CVR. After five minutes, CVR was 3.13 ± 1.55 

%/mmHg when MCAv was used and 4.88 ± 2.46 %/mmHg using QMCA (Figure 3.4A). 

This is a difference of 58 ± 25% in CVR. Using ICAv and QICA to calculate CVR during 

HC resulted in very similar estimates to those calculated from QMCA after five minutes, 

although the pattern of response appears to be different (using ICAv: 4.56 ± 2.02 

%/mmHg and using QICA: 4.70 ± 1.93 %/mmHg at minute five; Figure 3.4A). 

Hypocapnia elicited a similar CVR value at five minutes when it was calculated using 

ICAv, QICA and MCAv despite a different response pattern between MCAv and estimates 

based on ICAv. Additionally, CVR calculated using QMCA was smaller than any of the 

other estimates indicating that failure to account for MCA CSA changes leads to an 

underestimation of CVR to HO (Figure 3.4B).  
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Table 3.1: Physiological responses to hypercapnia in the ICA and the MCA over time. 

Time 

Sample 

 Pre 

(11) 

1 

(9) 

2 

(10) 

3 

(9) 

4 

(9) 

5 

(8) 

P-value 

Time Artery 

SBP  

(mmHg) 

ICA 112 ± 10 114 ± 12 115 ± 11 116 ± 13 116 ± 12 118 ± 14 <0.001 0.97 

MCA 111 ± 12 114 ± 12 116 ± 13 117 ± 14 116 ± 13 118 ± 13 

DBP 

(mmHg) 

ICA 68 ± 10 66 ± 6 67 ± 6 67 ± 8 68 ± 9 70 ± 9 0.021 0.94 

MCA 66 ± 8 66 ± 8 67 ± 8 67 ± 9 68 ± 9 70 ± 9 

MAP 

(mmHg) 

ICA 82 ± 8 83 ± 7 84 ± 6 85 ± 8 86 ± 9 87 ± 9 <0.001 0.94 

MCA 82 ± 8 83 ± 9 84 ± 8 84 ±9 86 ± 9 86 ± 9 

HR 

(bpm) 

ICA 60 ± 7 63 ± 6 66 ± 8 64 ± 11 66 ± 11 62 ± 9 <0.001 0.48 

MCA 62 ± 11 67 ± 11 67 ± 9 68 ± 10 70 ± 11 66 ± 8 
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Resp 

(breaths/min) 

ICA 15 ± 3 15 ± 3 15 ± 2 16 ± 2 16 ± 2 16 ± 1 <0.001 0.50 

MCA 14 ± 3 15 ± 2 15 ± 2 15 ± 3 15 ± 2 16 ± 2 

ETCO2 

(mmHg) 

ICA 39 ± 5 48 ± 3 49 ± 4 49 ± 5 49 ± 4 49 ± 5 <0.001 0.55 

MCA 40 ± 4 49 ± 4 50 ± 4 51 ± 5 51 ± 5 50 ± 5 

CVC 

(ml/min/ 

mmHg) 

ICA 4.0 ± 1.2 4.3 ± 1.3 4.7 ± 1.3 5.0 ± 1.6 5.5 ± 2.2 4.9 ± 1.4 <0.001 0.12 

MCA 3.0 ± 1.0 3.8 ± 1.4 4.0 ± 1.2 4.4 ± 1.3 4.4 ± 1.3 3.9 ± 1.3 

Values are mean ± standard deviation. Sample sizes are shown in brackets. No time x artery interactions were present. CVC = 

cerebrovascular conductance; DBP = diastolic blood pressure; ETCO2 = end tidal carbon dioxide; HR = heart rate; ICA = internal 

carotid artery; MAP = mean arterial pressure; MCA = middle cerebral artery; Resp = respiration rate; SBP = systolic blood pressure. 

Values for ICA and MCA were obtained during separate trials of the same session, acquired in varied order. 
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Table 3.2: Physiological responses to hypocapnia in the ICA and the MCA over time. 

Time 

Sample 

 Pre 

(9) 

1 

(8) 

2 

(9) 

3 

(8) 

4 

(9) 

5 

(5) 

P-value 

Time Artery 

SBP 

(mmHg) 

ICA 119 ± 9 120 ± 12 121 ± 12 119 ± 15 118 ± 12 120 ± 13 0.35 0.70 

MCA 118 ± 12 116 ± 13  118 ± 12 116 ± 11 117 ± 13 117 ± 4 

DBP 

(mmHg) 

ICA 69 ± 10 69 ± 12 71 ± 11 70 ± 12 69 ± 11  71 ± 11 0.19 0.85 

MCA 69 ± 9 67 ± 9 68 ± 10 68 ± 9 69 ± 9 70 ± 8 

MAP 

(mmHg) 

ICA 87 ± 9  87 ± 11 89 ± 11 88 ± 13 87 ± 11 88 ± 11 0.14 0.70 

MCA 86 ± 9 84 ± 10 85 ± 10 84 ± 9 85 ± 10 87 ± 4 

HR 

(bpm) 

ICA 60 ± 12 66 ± 10 62 ± 12 66 ± 12 65 ± 12 64 ± 11 <0.001 0.95 

MCA 60 ± 11 65 ± 13 65 ± 14 66 ± 15 65 ± 13 62 ± 9 

Resp 

(breaths/min) 

ICA 15 ± 3 29 ± 1 28 ± 3 29 ± 2 29 ± 2 28 ± 5 <0.001 0.93 

MCA 14 ± 3  29 ± 2 29 ± 2 30 ± 1 28 ± 2 28 ± 2 
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ETCO2 

(mmHg) 

ICA 39 ± 3 31 ± 4 30 ± 3 29 ± 4 29 ± 3 28 ± 2 <0.001 0.47 

MCA 39 ± 5 30 ± 4 29 ± 5 28 ± 5 27 ± 5 25 ± 4 

CVC (ml/min/ 

mmHg) 

ICA 3.4 ± 0.7 2.8 ± 0.3 2.5 ± 0.3 2.7 ± 0.3 2.8 ± 0.7 2.5 ± 0.4 <0.001 0.023 

MCA 2.7 ± 0.7 2.4 ± 0.7 2.2 ± 0.7 2.2 ± 0.5 2.0 ± 0.6 2.0 ± 0.7 

Values are mean ± standard deviation. Sample sizes are shown in brackets. No time x artery interactions were present. CVC = 

cerebrovascular conductance; DBP = diastolic blood pressure; ETCO2 = end tidal carbon dioxide; HR = heart rate; ICA = internal 

carotid artery; MAP = mean arterial pressure; MCA = middle cerebral artery; Resp = respiration rate; SBP = systolic blood pressure. 

Values for ICA and MCA were obtained during separate trials of the same session, acquired in varied order. 
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Table 3.3: Physiological variables during hypercapnia and hypocapnia in the MRI session. 

 Pre 1 2 3 4 5 

Hypercapnia (11) (9) (10) (9) (9) (8) 

Heart rate (bpm) 59 ± 8 62 ± 10  66 ± 12* 67 ± 10* 68 ± 10* 69 ± 10*  

Respiration rate (breaths/minute) 13 ± 3 13 ± 3 13 ± 3 14 ± 2 15 ± 2† 14 ± 3† 

End tidal carbon dioxide (mmHg) 37 ± 3 52 ± 2* 52 ± 2* 53 ± 2* 53 ± 2* 52 ± 1* 

Hypocapnia (9) (8) (9) (8) (9) (5) 

Heart rate (bpm) 61 ± 9 70 ± 10* 68 ± 11* 67 ± 11* 67 ± 11* 67 ± 4 

Respiration rate (breaths/minute) 14 ± 3 29 ± 1* 29 ± 1* 29 ± 1* 29 ± 1* 28 ± 1* 

End tidal carbon dioxide (mmHg) 37 ± 4 24 ± 5* 25 ± 6* 24 ± 6* 24 ± 6* 25 ± 6* 

Values are mean ± SD. *p<0.05 compared to Pre. †p<0.05 compared to time 1. Sample sizes are in brackets.  
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Table 3.4: Index of wall shear stress (dyn/cm2) during hypercapnia and hypocapnia in the internal carotid (ICA) and middle cerebral 

artery (MCA). 

  Pre 1 2 3 4 5 

Hypercapnia 
ICA 3.6 ± 1.4 4.2 ± 1.6 4.7 ± 1.7* 4.8 ± 1.7* 5.0 ± 1.8*† 4.0 ± 1.0*† 

MCA 19 ± 5.6 20 ± 4.4* 23 ± 6.4*† 22 ± 4.6* 23 ± 4.9*†  23 ± 6.1*† 

Hypocapnia 
ICA 3.0 ± 0.9 2.5 ± 0.6* 2.3 ± 0.7* 2.5 ± 0.6* 2.5 ± 1.0* 2.6 ± 0.8 

MCA 17 ± 4.8 15 ± 4.9*  14 ± 5.1* 15 ± 5.4* 14 ± 5.6* 16 ± 6.9* 

Values are mean ± SD. *p<0.05 compared to Pre. †p<0.05 compared to time point 1. 
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Figure 3.1: Change in MCA and ICA indices during hypercapnia. Sample sizes at each 

time point are in brackets along the x-axis. A: MCA CSA. B: ICA CSA. There was a 

main effect of time (p=0.045) but no significant pairwise comparisons. C: Percent change 

in CSA from baseline. D: Absolute Q. E: Percent change in Q from baseline. CSA = 

cross-sectional area; CVR = cerebrovascular reactivity; ETCO2 = end tidal carbon 

Time (min) 
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dioxide; HC = hypercapnia; HO = hypocapnia; ICA = internal carotid artery; MCA = 

middle cerebral artery; Q = flow. *p<0.05 compared to Pre; †p<0.05 compared to time 1; 

‡p<0.05 compared to time 2.    
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Figure 3.2: Change in MCA and ICA indices during HO. Sample sizes at each time point 

are in brackets along the x-axis. A: MCA CSA. B: ICA CSA. C: Percent change in CSA 

from baseline. D: Absolute Q. E: Percent change in Q from baseline. CSA = cross-

sectional area; CVR = cerebrovascular reactivity; ETCO2 = end tidal carbon dioxide; HC 

= hypercapnia; HO = hypocapnia; ICA = internal carotid artery; MCA = middle cerebral 

artery; Q = flow. *p<0.05 compared to Pre; †p<0.05 compared to time 1.   

Time (min) 
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Figure 3.3: Percent change of QMCA and MCAv during changes in ETCO2. A: 

Hypercapnia. B: Hypocapnia. ETCO2 = end tidal carbon dioxide; MCAv = middle 

cerebral artery flow velocity; QMCA = middle cerebral artery flow. *p<0.05 for QMCA 

versus MCAv; †p<0.05 compared to time 1; ‡p<0.05 compared to time 2. 
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Figure 3.4: Cerebrovascular reactivity (CVR) over five minutes calculated from ICAv, 

QICA, MCAv, and QMCA during manipulations of ETCO2. A: Hypercapnia. Standard 

deviation ranges are as follows: MCAv 1.02 to 1.55 %/mmHg; QMCA 1.33 to 2.46 

%/mmHg; ICAv 1.39 to 2.04 %/mmHg; QICA 0.92 to 2.10 %/mmHg. B: Hypocapnia. 

MCAv -1.22 to -1.65 %/mmHg; QMCA -1.11 to -1.71 %/mmHg; ICAv -1.98 to -2.92 

%/mmHg; QICA -2.05 to -3.18 %/mmHg. ETCO2 = end tidal carbon dioxide; ICAv = 

internal carotid artery flow velocity; MCAv = middle cerebral artery flow velocity; QICA 

= internal carotid artery flow; QMCA = middle cerebral artery flow. 
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3.4 Discussion 

The main findings of this study are as follows: 1) The CSA of the MCA increased by the 

first minute during HC, while a decrease in MCA CSA was not observed until the fourth 

minute during HO. 2) No change was observed in ICA CSA during these HC or HO 

stimuli despite large changes in Q, flow velocity and WSS in each vessel and condition. 

3) The corresponding relative changes in QMCA and QICA were similar for both HC and 

HO. 4) The percent change in MCAv was less than the percent change in QMCA during 

HC but not HO. 5) Failure to account for MCA dilation during HC underestimated CVR 

by 58%. These results indicate that the subcortical vessels dilate rapidly, contribute 

significantly to the change in cerebral vascular conductance during HC, and are important 

to the normal CVR response during HC. Additionally, the relative change in ICA flow 

corresponded well to the ipsilateral change in MCA flow rate as would be expected. 

Overall, the data illustrate a greater vasoreactivity of the MCA versus the ICA in 

response to changes in ETCO2. 

The baseline MCA CSA values observed in this study (5.8 ± 1.1 mm2), using a 

different complement of participants, are nearly identical to those observed in our 

previous work (5.9 ± 0.8 mm2) (4). Also, the 8 ± 3%∆ in MCA diameter during HC, and 

4 ± 4%∆ during HO, of the previous study are very similar to the respective values of 8 ± 

4%and 3 ± 2% in the current study. Similarly, the average ICA baseline diameter of 5.2 ± 

0.5 mm is comparable to the values reported by Willie et al. of 5.2 ± 0.6 mm (21) and Liu 

et al. of 4.7 ± 0.7 mm (9). 

An important observation of the current study was that the rapid change in MCA 

CSA following an increase in ETCO2 was not matched by concurrent ICA dilation. The 

lack of change in ICA dimensions stands in contrast to the findings of Willie et al., who 

observed both a dilation during iso-oxic HC and constriction during iso-oxic HO (21). 

This between-study difference likely reflects the shorter stimulus used in the current 

study. Specifically, ICA diameter measurements were made during the first five minutes 

of the CO2 challenge of the current study but after at least 12 minutes in the Willie et al. 

study. Also, the magnitude of the HC stimulus was ~30% greater (65 mmHg) in the 
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Willie et al. study. Thus, the MCA appears to exert greater sensitivity to changes in 

ETCO2 than the ICA.   

The current observations have important implications for the study of CVR, a 

measurement used often as an index of cerebrovascular health (11, 15).  Many studies of 

CVR take advantage of the accessible TCD method to study MCA CBFV responses to 

HC (see Topicuoglu (16); Tsivgoulis et al (17) for review). A long-standing assumption 

of TCD is that the diameters of the large subcortical vessels being interrogated change 

little so that flow velocity is proportionate to changes in total flow. Whereas this 

assumption found support using earlier MRI devices operating at 1.5 T (14, 18), the 

improved resolution of current MRI technology exposed the reactivity of this conduit 

vessel to changes in ETCO2. Thus, reliance on CBFV data underestimates the true change 

in CBF and this, of course, would underestimate the true values of CVR during both HC 

and HO. The magnitude of this error will depend on the vasodilatory sensitivity of the 

MCA that may vary with age, sex, disease, etc.  Further, the combined data from the 

current study, our previous report (4), and that of Willie et al. (21), suggest that the 

magnitude of this error may change over the duration, and possibly dose, of the ETCO2 

challenge. These observations highlight the need for caution when interpreting CVR 

outcomes.  

In contrast to the findings during HC, MCAv did not underestimate QMCA during 

HO as we previously reported (4). The current data indicate that this constrictor pattern 

was delayed, relative to the more rapid dilation, not being observed until the fourth 

minute of HO (Figure 3B) and even then there was not a significant difference between 

the percent change in MCAv and QMCA. The slower and smaller effect of HO suggests 

that the MCA exists at a heightened level of contractile state at baseline levels of ETCO2 

such that its sensitivity for further constriction is diminished. This interpretation is 

consistent with the exponential nature of increase in CBF during the transition from HO 

to HC (4, 21). The variability in findings between studies may be due to the approach that 

highlighted the peak response in our earlier report versus the time course pattern in the 

current analysis. Also, inter-individual variability and the overall smaller response to HO 

will add to between-study variations. Another source of variability could be the 
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difference in ETCO2 between the Lab and MRI sessions. In the future, this issue could be 

resolved with clamping of ETCO2 levels to ensure that the same stimulus was attained on 

both the Lab and MRI day.  

In the current approach, the changes in flow observed in the ICA were driven 

primarily by the changes in CBFV that, in turn, resulted from dilation or constriction of 

the downstream vessels. Conversely, the changes in flow at the MCA resulted from a 

combination of the change in velocity (reflecting changes in downstream vascular 

conductance) and the change in MCA CSA. Thus, five important conclusions relevant to 

CVR assessment can be made from the current observations. First, use of velocity data 

alone underestimates the change in QMCA. Second, measures of ICA flow reflect more 

accurately the CVR outcome with HC than MCA mean flow velocity and CVR 

calculated using QICA provides a similar estimate to that calculated from QMCA when MRI 

technology is not available, at least within the timeframe of the current paradigm. Third, 

the subcortical cerebral vessels, such as the MCA, contribute importantly to the CVR 

outcome. Fourth, reactivity of cerebrovascular segments appears to increase when 

moving from the ICA to the MCA and possibly beyond. Fifth, CVR appears to change 

over time during application of a five minute stimulus and this should be considered 

when quantifying CVR. 

 This project provides, to our knowledge, the first insight into ETCO2-induced 

changes in WSS in the M1 segment of the MCA and in the ICA of humans. Of course, 

calculating WSS using a derivation of the Hagen-Poiseuille equation in human pulsatile 

flow ignores assumptions of laminar Newtonian fluid flowing through straight rigid 

cylindrical tubes. Also, the values presented here are calculated from flow data that are 

averaged over time and cannot be used to consider peak and nadir values observed during 

systole and diastole. Therefore, the values of WSS presented here must be considered to 

be approximates only and qualitative in nature. With these constraints, WSS increased 

during HC by ~40% in the ICA and 15% in the MCA. Thus, the dilatory response in the 

MCA appears to have prevented the large increase in shear stress that was present in the 

ICA. Likely, a hypercapnia induced increase in flow in blood vessels downstream to the 

MCA increased shear stress at the MCA that initiated the vasodilation.  In addition, these 



85 

 

data suggest that the ICA is relatively insensitive to acute flow-mediated dilatory stimuli. 

Based on what has been documented about the time course of flow-mediated dilation in 

the periphery, and in particular the brachial artery, peak dilation is observed around 60 

seconds after a stimulus in young subjects (2). It appears that this same flow-mediated 

mechanism does not play a role in stimulating dilation in the ICA. However, ICA dilation 

does appear to be begin near the end of the five minute CO2 stimulus (Figure 1B) 

consistent with the significant dilation observed in this vessel following 15 minutes of 

hypercapnia (21).Therefore, it seems unlikely that flow-mediated effects play a role in 

ICA dilation and at this point the reasons for this are unknown.  

This study is limited by the fact that the current design could not rule out the 

effects of blood pressure on our estimates of CSA and Q. Dynamic cerebral 

autoregulation is reduced during HC (10) resulting in greater fluctuations in CBF with 

pressure. Thus, the increase in blood pressure during HC could contribute as a stimulus 

for increased flow and, perhaps, contribute to the apparent dilation at the MCA. 

However, such an impact of blood pressure is unlikely in the current study because the 

increase in MAP at the first minute of HC was small (from 82 ± 8 to 83 ± 8 mmHg) and a 

significant dilation was already observed. Another limitation is that the MRI and Lab 

sessions were performed on different days and on average, the interval between tests was 

101 ± 74 days. In five subjects the two test days were separated by 22 days but an 

upgrade of our MRI system resulted in a delay for the remaining participants. To assess 

reproducibility, we determined CBFV CVR in one subject during HO and three subjects 

(all males) during HC on two durations separated by 29 ± 24 days. The ICC between test 

days was 0.81 (p<0.001). Additionally, we have compared estimates of CBFV on 

separate days (TCD and phase contrast imaging) that were performed 53 ± 48 days apart 

and the ICC was 0.83 (p<0.001) (4). 

Additionally, we did not control for menstrual cycle in this study. 

Cerebrovascular resistance may change over the course of the menstrual cycle (8), but 

whether or not menstrual cycle phase alters the MCA CSA response to HC remains to be 

determined. Also, we did not clamp PO2 during HC or HO. However, when measured 

independently of the current study end tidal PO2  increased from 104 ± 8 to 136 ± 4 
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mmHg during HC (n=4) and during HO from 116 ± 4 to 136 ± 5 mmHg during HO 

(n=3). Based on the findings of Willie et al. (21) we speculate that this change in PO2 

would have little effect on CBFV or CSA outcomes because an increase in arterial PO2 to 

320 mmHg only decreased MCAv by ~4 cm/s on average and decreased ICA diameter by 

0.03 cm. Lastly, the statistical power achieved for MCA CSA changes across minutes one 

to five are as follows: 0.42, 0.35, 0.71, 0.75, and 0.34, respectively. The differences in 

statistical power between the current and previous studies can be explained on the basis 

of the different methodological approach that minimized variability in the previous study. 

Specifically, in our previous work (4) the achieved power was 0.87 and was based on the 

peak response over a five minute stimulus. In contrast, the current study focused on effect 

sizes at each time point, increasing exposure to inter-individual differences in the rate of 

MCA dilation. During HO, the achieved powers are less than 0.6 at all time points due to 

a smaller overall response.   

 In summary, this study supports the conclusion that the CSA of the MCA 

increases by the first minute of HC. In contrast, the change in MCA CSA during HO was 

not detected until the fourth minute. Moreover, no changes in the CSA of the ICA were 

detected within the five minute stimulus period. Thus, in support of our previous 

findings, TCD MCAv underestimates changes in QMCA during HC but less so during HO 

(4). The similar relative changes in CBF between the ICA and MCA, suggest that the use 

of duplex ultrasound to evaluate ICA flow could be used as a surrogate measure of CVR 

when MCA diameters are not accessible. 

 

 

 

 

 



87 

 

3.5 References 

1.  Ainslie PN, Duffin J. Integration of cerebrovascular CO2 reactivity and 

chemoreflex control of breathing: mechanisms of regulation, measurement, and 

interpretation. Am J Physiol Integr Comp Physiol 296: R1473–1495, 2009. 

2.  Black MA, Cable NT, Thijssen DHJ, Green DJ. Importance of measuring the time 

course of flow-mediated dilatation in humans. Hypertension 51: 203–210, 2008. 

3.  Bolduc V, Thorin-Trescases N, Thorin E. Endothelium-dependent control of 

cerebrovascular functions through age: exercise for healthy cerebrovascular aging. 

Am J Physiol Heart Circ Physiol 305: H620–633, 2013. 

4.  Coverdale NS, Gati JS, Opalevych O, Perrotta A, Shoemaker JK. Cerebral blood 

flow velocity underestimates cerebral blood flow during modest hypercapnia and 

hypocapnia. J Appl Physiol 117: 1090–1096, 2014. 

5.  Faraci FM, Heistad DD. Regulation of large cerebral arteries and cerebral 

microvascular pressure. Circ Res 66: 8–17, 1990. 

6.  Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power 

analysis program for the social, behavioral, and biomedical sciences. Behav Res 

Methods 39: 175–191, 2007. 

7.  Kety SS, Schmidt CF. The effects of altered arterial tensions of carbon dioxide and 

oxygen on cerebral blood flow and cerebral oxygen consumption of normal young 

men. J Clin Invest 27: 484–492, 1948. 

8.  Krejza J, Rudzinski W, Arkuszewski M, Onuoha O, Melhem ER. Cerebrovascular 

reactivity across the menstrual cycle in young healthy women. Neuroradiol J 26: 

413–419, 2013. 

9.  Liu J, Zhu YS, Hill C, Armstrong K, Tarumi T, Hodics T, Hynan LS, Zhang R. 

Cerebral autoregulation of blood velocity and volumetric flow during steady-state 

changes in arterial pressure. Hypertension 62: 973–979, 2013. 



88 

 

10.  Panerai RB, Deverson ST, Mahony P, Hayes P, Evans DH. Effects of CO2 on 

dynamic cerebral autoregulation measurement. Physiol Meas 20: 265–275, 1999. 

11.  Portegies ML, de Bruijn RF, Hofman A, Koudstaal PJ, Ikram MA. Cerebral 

vasomotor reactivity and risk of mortality: the Rotterdam Study. Stroke 45: 42–47, 

2014. 

12.  Poulin M, Robbins P. Indexes of flow and cross-sectional area of the middle 

cerebral artery using Doppler ultrasound during hypoxia and hypercapnia in 

humans. Stroke 27: 2244-2250, 1996. 

13.  Schmetterer L, Findl O, Strenn K, Graselli U, Kastner J, Eichler H, Wolzt M. Role 

of NO in the O 2 and CO 2 responsiveness of cerebral and ocular circulation in 

humans. Am J Physiol Integr Comp Physiol 273: R2005–R2012, 1997. 

14.  Serrador JM, Picot PA, Rutt BK, Shoemaker JK, Bondar RL. MRI measures of 

middle cerebral artery diameter in conscious humans during simulated orthostasis. 

Stroke 31: 1672–1678, 2000. 

15.  Silvestrini M, Vernieri F, Pasqualetti P, Matteis M, Passarelli F, Troisi E, 

Caltagirone C. Impaired cerebral vasoreactivity and risk of stroke in patients with 

asymptomatic carotid artery stenosis. JAMA 283: 2122–2127, 2000. 

16.  Topcuoglu MA. Transcranial Doppler ultrasound in neurovascular diseases: 

diagnostic and therapeutic aspects. J Neurochem 123 Suppl : 39–51, 2012. 

17.  Tsivgoulis G, Alexandrov A V, Sloan MA. Advances in transcranial Doppler 

ultrasonography. Curr Neurol Neurosci Rep 9: 46–54, 2009.  

18.  Valdueza JM, Balzer JO, Villringer A, Vogl TJ, Kutter R, Einhaupl KM. Changes 

in blood flow velocity and diameter of the middle cerebral artery during 

hyperventilation: assessment with MR and transcranial Doppler sonography. 

AJNRAmerican J Neuroradiol 18: 1929–1934, 1997. 



89 

 

19.  Verbree J, Bronzwaer A-SGT, Ghariq E, Versluis MJ, Daemen MJ, van Buchem 

M a, Dahan A, Van Lieshout JJ, van Osch MJP. Assessment of middle cerebral 

artery diameter during hypocapnia and hypercapnia in humans using ultra high-

field MRI. J Appl Physiol 117: 1084-1089, 2014. 

20.  Wang Q, Paulson OB, Lassen NA. Effect of Nitric Oxide Blockade by NG-Nitro-

L-Arginine on Cerebral Blood Flow Response to Changes in Carbon Dioxide 

Tension. J Cereb Blood Flow Metab 12: 947-953. 

21.  Willie CK, Macleod DB, Shaw AD, Smith KJ, Tzeng YC, Eves ND, Ikeda K, 

Graham J, Lewis NC, Day TA, Ainslie PN. Regional brain blood flow in man 

during acute changes in arterial blood gases. J Physiol 590: 3261–3275, 2012.  

 

 

 

 

 



90 

 

Chapter 4  

4 Role of the middle cerebral artery and grey matter 
volume in cerebrovascular changes with healthy aging 

4.1 Introduction 

The cerebral vasculature is highly sensitive to alterations in the partial pressure of carbon 

dioxide (PaCO2) and in general, a lesser reactivity or change in cerebral blood flow 

velocity (CBFV) or cerebral blood flow (CBF) to a change in PaCO2 is indicative of 

increased risk of stroke and all-cause mortality and this measure is known as 

cerebrovascular reactivity (CVR) (98, 111). Age is currently the number one risk factor 

for development of cerebrovascular disease (41). It is generally well established that 

absolute CBFV as measured at the middle cerebral artery (MCA) with transcranial 

Doppler ultrasound (TCD) is reduced with healthy aging (11, 93, 134). However, there is 

conflicting evidence as to whether CVR is reduced with aging with some studies 

reporting decreased CVR with age (9, 11, 34, 132), while others reported no difference 

(35, 55, 88, 93). Some variability between studies can likely be attributed to different 

vasodilatory stimuli ranging from 5 to 7% CO2 in room air (9, 11, 34, 35, 55, 88, 93, 132) 

or 5% CO2 in 95% oxygen (9) and different modalities to acquire CBFV and CBF (TCD 

(9, 11, 34, 35, 88, 93), positron emission tomography (55), xenon inhalation (132)).  

 Examinations of CVR in healthy aging are further complicated by the fact that the 

majority of studies rely on estimates of CBFV rather than CBF. Many studies obtain 

these data using TCD that targets the MCA with the assumption that the diameter of the 

MCA does not change. However, we have documented with 3T magnetic resonance 

imaging (MRI) in two separate groups of young healthy subjects that the diameter of the 

MCA increases by approximately 8% during hypercapnia (HC) with 6% CO2 (23, 24). 

Thus, at the end of five minutes of HC, CVR calculated with CBF was 58% greater than 

CVR calculated from CBFV (24). With 7T MRI, a MCA diameter change of 7% with HC 

of 15 mmHg above baseline has also been reported (121). 
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Previous studies using TCD to examine aging and CVR have not accounted for 

MCA dilation and a possible difference in the dilatory capacity of the cerebrovasculature 

between young and older groups as cerebrovascular conductance (CVC) is reduced with 

aging (2). There is evidence that the CBF response to HC is mediated by prostaglandins 

and/or nitric oxide (NO) (11, 71). Since both of these mediators decrease with age, at 

least in the periphery (36, 112), it is possible that older adults may not have the same 

dilatory response at the MCA as young subjects. If this is the case, quantifying CVR with 

CBF rather than CBFV may expose a difference between young and older groups that is 

masked when MCA diameter changes are not taken into account. Also, it is important to 

note that CVR alone does not quantify whether the dilatory capacity of the 

cerebrovasculature is intact with age. If the end tidal CO2 (ETCO2) change is equivalent 

between groups with HC then the change in CBF is the primary determinant of CVR. 

However, an increase in CBF could be a result of a change in mean arterial pressure 

(MAP) alone. Therefore, it is necessary to examine CVC in addition to CVR to quantify 

cerebrovascular health with age.  

 Additionally, with aging, brain atrophy occurs and is more pronounced in grey 

matter (GM) than white matter (WM) (67) with certain areas within GM and WM being 

more affected than others (4, 21). Thus, when CBF is compared in a young population to 

an older population it may be difficult to draw conclusions when the volume of the 

vascular bed being perfused is unknown. Chen et al. (2011) found that regional perfusion 

quantified with arterial spin labelling and cortical thickness were not closely related 

throughout much of the cortex (18). However, these measurements are based on voxel-

level analysis and it is not clear whether this dissociation between CBF and GM volume 

holds with a more global measure of CBF, as with TCD. Therefore, the purposes of this 

study were to compare the change in cross-sectional area (CSA) of the MCA during HC 

in young adults (YA) to that in older healthy adults (OA) and to assess how these changes 

may impact estimates of CVR. We estimated brain volume, and more specifically GM 

volume, in order to determine if the reduction in CBFV and/or CBF with age is related to 

a reduction in GM volume.  
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4.2 Materials and Methods 

Ten older subjects aged 59 to 75 years (66 ± 7 years, 5 females) and 12 younger subjects 

(24 ± 4 years, range 20 to 30 years, 6 females) gave informed consent to participate in 

this study that was approved by the Health Sciences Research Ethics Board at Western 

University and performed in accordance with the Declaration of Helsinki. Subjects were 

non-smokers who had no history of cardiovascular disease. A female OA was on 10 mg 

per day of Clobazam for seizures but had not had a seizure in 13 years. Additionally, an 

older male subject was on Warfarin for a blood clot that occurred five years prior. All 

other subjects were not on any type of medications. All subjects were recreationally 

active. Female OA reported that they were postmenopausal (and this was confirmed with 

sex hormone analysis (Table 4.3)) and not on hormone replacement therapy and young 

female subjects were studied in the early follicular phase of their menstrual cycle (days 1 

to 6) or the low hormone phase of oral contraceptives (4 of 6 young female participants 

were taking oral contraceptives).  

4.2.1 Experimental Protocols 

All subjects participated in a familiarization session and two experimental sessions, 

including what will be referred to as an MRI day and a Lab day. During the 

familiarization session all experimental protocols were thoroughly explained, subjects 

practiced breathing 6% CO2, and completed the Montreal Cognitive Assessment (MoCA: 

www.mocatest.org) and the Trail Making Test to assess cognitive abilities. The MoCA is 

a 10-minute test that covers eight cognitive domains and is scored out of 30 where a score 

less than 26 indicates mild cognitive impairment (19). The Trail Making Test consists of 

Parts A and B and in Part A 25 circles are numbered from 1 to 25 and the time is 

recorded while you connect the circles numerically as fast as possible. In Part B there is a 

combination of 25 consecutive numbers and letters that must be connected alternately 

(i.e., 1-A, 2-B, 3-C, etc.) as fast as possible. Times can then be stratified into percentiles 

based on normative data (26). 
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 Prior to each experimental session subjects were asked to refrain from alcohol, 

physical activity, and caffeine for 12 hours prior to testing. For the Lab testing session, a 

blood sample was obtained after a 12-hour fast that was analyzed for blood glucose, 

hemoglobin, cholesterol, triglyceride, 17-β estradiol, progesterone, and testosterone 

concentrations. A small meal consisting of a granola bar and juice was then provided. For 

the MRI day subjects were permitted to eat a small breakfast before the testing session. 

For each day a HC trial was performed where subjects breathed air that consisted of 6% 

CO2, 21% oxygen, and 72% nitrogen. Each of these HC periods consisted of 

approximately three minutes of baseline and five minutes of HC. During HC the partial 

pressure of oxygen was not clamped.    

4.2.2 Measurements 

4.2.2.1 Lab Session 

Initially, three seated blood pressure (BP) measurements were taken (HEM-790-ITCAN, 

Omron, Lake Forest, IL, USA). Images of the right and left common carotid artery (10 

MHz probe; Vivid 7 system, GE Healthcare Canada, Mississauga, ON, Canada) were 

then captured while seated in order to quantify intima-media thickness. Throughout, heart 

rate was acquired from standard ECG. Arterial BP was measured with finger cuff 

plethysmography (Finometer, Finapres Medical Systems BV, Amsterdam, The 

Netherlands) and the brachial BPs were derived from the finger pressure waveform 

corrected to manual sphygmomanometric values. Respiration rate and ETCO2 were 

monitored with a strain gauge and a gas analyzer (ML206, ADInstruments, Colorado 

Springs, CO, USA), respectively. In the supine position, the right MCA was insonated to 

measure CBFV (2 MHz pulsed wave TCD probe; Neurovision, Multigon Industries, 

Elmsford, CA, USA) with an average depth of insonation of 4.9 ± 0.4 cm in YA and 5.0 

± 0.5 cm in OA.  

4.2.2.2 MRI Session 

MRI was performed with a 3T system (Magnetom Prisma, Siemens Medical Solutions, 

Erlangen, Germany). A 3D time of flight pulse sequence was used to identify the location 

on the M1 segment of the MCA for application of a T2 fast spin echo sequence (8 slices, 
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repetition time = 3000 ms, echo time = 96 ms, flip angle = 120°, voxel dimensions = 0.4 

x 0.4 x 2.0 mm3). The pulse sequence was gated to the peak of the pulse wave measured 

at the third finger of the right hand with an MRI-compatible pulse oximeter (8600FO 

MRI, Nonin Medical Inc., Plymouth, MN, USA). Collection of an image took 

approximately 1.25 minutes. Respiration was monitored with a strain gauge around the 

upper abdomen and ETCO2 data were collected as described during the Lab session. 

Additionally, a T1-weighted structural image was acquired with a 3D MPRAGE pulse 

sequence for determination of GM, WM, and cerebrospinal fluid volume (repetition time 

= 2.3 ms, echo time = 30 ms, flip angle = 9°, voxel dimensions = 1.0 x 1.0 x 1.0 mm).  

4.2.3 Data Analysis 

Baseline ETCO2 values from the MRI were corrected to Lab values. The length of the 

hose to the CO2 analyzer (located outside the MRI area) resulted in a damping of the 

signal that significantly diminished the baseline values. Since there was no difference in 

respiration rates between the Lab and MRI day we corrected MRI values to the average 

baseline Lab ETCO2. The MCA CSA was measured manually by two blinded observers 

using Osirix imaging software (Pixmeo, Bernex, Switzerland) and the data from both 

observers was averaged and reported. The agreement between the two observers was very 

good (intraclass correlation coefficient (ICC) was 0.987 (p<0.001)). The reported CSA 

during HC is the maximal value from the five minute period and this is reported along 

with percent change (%Δ) from baseline. All other reported variables for HC correspond 

to this maximal CSA value. When reported, the MCA diameter was calculated from the 

measured CSA. Cerebral blood flow was calculated as CBF (ml/min) = CBFV 

(cm/s)*CSA (cm2)*60 (s/min). Cerebral blood flow velocity and CBF are also reported as 

%Δ. Cerebral blood flow velocity and MCA CSA were collected at the same time of day 

on separate days and, on average, the interval between each test was 11 ± 11 days.  

 Using SPM 8 (http://www.fil.ion.ucl.ac.uk/spm/), high-dimensional spatial 

normalization was performed with T1 images using the DARTEL toolbox. A template 

was created by averaging data from all subjects. Images were then segmented into GM, 

WM and cerebrospinal fluid. Total intracranial volume was calculated as the sum of these 
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three components. Since GM volume has been documented to change the most with age 

we normalized all measurements of CBFV, CBF, CVC, and CVR to GM volume and are 

reported as CBFVGM, CBFGM, CVCGM, and CVRGM.  

 Cerebrovascular conductance was calculated as the quotient of CBFGM and MAP. 

Cerebrovascular reactivity indices were calculated both as the percent and absolute 

change in CBFGM and CBFVGM per mmHg change in ETCO2 at approximately every 

1.25 minutes during HC (to correspond with the timing of MCA images). The right and 

left common carotid artery intima-media thickness was quantified with calipers at three 

regions along the artery and averaged. An independent observer also completed the 

analysis and the ICC between the observers was 0.985 (p<0.001). An average from the 

two investigators is reported. 

4.2.4 Statistical Analysis 

The effects of time (baseline versus hypercapnia) and group (YA versus OA) were 

assessed using a general linear mixed model ANOVA and a Holm-Sidak post hoc test for 

pairwise comparisons (SigmaStat 12.0; Systat Software, San Jose, CA) for heart rate, BP, 

ETCO2, respiration, MCA CSA, CBFVGM, CBFGM, CVCGM, and CVRGM. Unpaired t-

tests were used to assess the impact of group on GM, WM and cerebrospinal fluid. The 

probability level for statistical significance was p≤0.05.  

4.3 Results 

On average, OA had greater systolic BP, fasting glucose, total and LDL cholesterol, 

triglycerides and hemoglobin A1C levels than YA but were still within the normal range 

(Table 4.1). On separate testing days (Lab and MRI) there were no differences in seated 

BP in YA or OA prior to beginning experimental protocols. Additionally, OA had greater 

intima-media thickness of the left and right common carotid arteries (Table 4.1). There 

were no differences in MoCA scores or Part B of the Trail Making Test between groups. 

Time to complete Part A of the Trail Making Test was 26 ± 10 s for the OA and 19 ± 6 s 

for the YA (p=0.07). Testosterone levels in older postmenopausal women were greater 

than YA females (p=0.03; Table 4.2) and 17-β estradiol levels were not detectable in 4 of 
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5 OA females. In the female with detectable estradiol the levels were within the 

postmenopausal range (<202 pmol/L).  

 A main effect of time (baseline to HC) was observed for heart rate and ETCO2 in 

the Lab and MRI and diastolic BP in the Lab (p<0.001 for all) (Table 4.3). A group x 

time interaction was present for systolic BP where baseline (p=0.03) and HC (p=0.002) 

systolic BP values were greater in OA versus YA and there was a significant increase 

during HC (p<0.001) in OA that was not present in YA. There were also main effects of 

time (p=0.003) and group (p=0.002) for MRI respiration where respiration was greater in 

YA compared to OA.  

There was a significant effect of time (baseline to HC) when absolute MCA CSA 

was compared to baseline but no effect of group was observed (Figure 4.1C). 

Specifically, in YA, MCA CSA increased from 6.5 ± 1.6 to 7.1 ± 1.4 mm2 with HC while 

OA CSA changed from 7.0 ± 1.2 to 7.3 ± 1.4 mm2 (Figure 4.1A and B). A significant 

difference between YA and OA was observed in %Δ CSA (p=0.04; Figure 4.1D).  

Grey matter volume was decreased in OA compared to YA (p=0.008) while WM 

volume was not different (Table 4.4). Compared to YA, cerebrospinal fluid volume was 

increased in OA (p=0.02) but the total intracranial volume was not different between 

groups. A main effect of time (p<0.001) but no effect of group was observed for 

CBFVGM where HC was greater than baseline. Similarly, for CBFGM there was a main 

effect of time (p<0.001) and no effect of group. There were significant differences in both 

YA (p<0.001) and OA (p=0.04; Figure 4.2C) when the %Δ was compared for CBFVGM 

and CBFGM where CBFVGM was lower than CBFGM.  

At baseline and during HC MAP was greater in OA than YA (p=0.01 at baseline 

and p<0.001 during HC; Figure 4.3A). Mean arterial pressure during HC was also greater 

than baseline levels within each group (p=0.02 in YA and p<0.001 in OA). At baseline 

there was no difference in CVCGM between YA and OA (Figure 4.3B). During HC, 

CVCGM was elevated in YA compared to OA (p=0.02). Additionally, within group 

differences in CVCGM were present during HC compared to baseline where there was an 

increase in CVCGM with HC (YA: p<0.001and OA: p<0.001). 
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Cerebrovascular reactivity was determined in absolute and relative terms using 

both CBFVGM and CBFGM. There was no effect of group (YA versus OA) but a 

significant difference where CBFVGM was lower when CBFGM was used for absolute 

CVRGM (p<0.001; Figure 4.4A). Relative CVRGM calculated with CBFVGM was 

decreased compared to the same estimate calculated with CBFGM in YA but not OA 

(p=0.001; Figure 4.4B).   
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Table 4.1: Subject characteristics. 

 YA OA 

n, male/female 12, 6/6 10, 5/5 

Height (cm) 173 ± 14 171 ± 12 

Weight (kg) 69 ± 14 74 ± 14 

BMI (kg/m2) 23 ± 3 25 ± 3 

Systolic BP (mmHg) 112 ± 9  123 ± 11* 

Diastolic BP (mmHg) 72 ± 6 75 ± 11 

Glucose (mmol/L) 4.8 ± 0.5 5.4 ± 0.4* 

Total cholesterol 

(mmol/L) 
3.92 ± 0.50 5.00 ± 0.77* 

HDL cholesterol (mmol/L) 1.50 ± 0.46 1.59 ± 0.45 

LDL cholesterol (mmol/L) 2.10 ± 0.47 2.94 ± 0.51* 

Triglycerides (mmol/L) 0.70 ± 0.27 1.05 ± 0.48* 

HbA1C (mmol/L) 0.053 ± 0.002 0.057 ± 0.003* 

IMT (mm)   

     Right 0.44 ± 0.05 0.73 ± 0.13* 

     Left 0.48 ± 0.06 0.74 ± 0.17* 

MoCA score (out of 30) 28 ± 1 28 ± 2 
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Trail Making Test (s) 

     Part A 19 ± 6 26 ± 10 

     Part B 41 ± 13 61 ± 33 

Values are mean ± standard deviation. BMI = body mass index; BP = blood pressure; 

HbA1C = hemoglobin A1C; HDL = high density lipoprotein; IMT = intima-media 

thickness; LDL = low density lipoprotein; MoCA = Montreal cognitive assessment; OA 

= older adults; YA = young adults. *p<0.05 versus YA. 
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Table 4.2: Sex hormones in young and older adults. 

 YA OA 

Males 

(n=6) 

Females 

(n=6) 

Males 

(n=5) 

Females 

(n=5) 

17-β Estradiol (pmol/L) 79 ± 28 125 ± 28 106 ± 34  N/A* 

Progesterone (nmol/L) 2.4 ± 1.3 1.6 ± 0.8 1.3 ± 0.6 0.8 ± 0.5  

Testosterone (nmol/L) 18.5 ± 6.3 0.9 ± 0.4 18.3 ± 7.8 0.5 ± 0.2† 

Values are mean ± standard deviation. *Four of five postmenopausal women had 17-β 

estradiol levels lower than the assay could detect (<19 pmol/L) while the remaining 

woman was 47 pmol/L. OA = older adults; YA = young adults. †p<0.05 versus YA 

females with t-test. 
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Table 4.3: Physiological characteristics at baseline and hypercapnia for Lab and MRI. 

 YA OA          P-value 

Baseline     HC Baseline HC Time Group Interaction 

LAB 

Heart rate 

(bpm) 

65 ± 9 71 ± 10 62 ± 11 68 ± 11 <0.001 0.49 0.97 

SBP 

(mmHg) 

 114 ± 10 116 ± 12  124 ± 10* 132 ± 10*† <0.001 0.07 0.04 

DBP 

(mmHg) 

68 ± 7 71 ± 7 73 ± 10 77 ± 10 <0.001 0.13 0.29 

Respiration 

(breaths per 

minute) 

13 ± 3 14 ± 5 11 ± 3 11 ± 3 0.62 0.07 0.93 

ETCO2 38 ± 4 49 ± 4 39 ± 3 49 ± 4 <0.001 0.97 0.95 
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MRI 

Heart rate 

(bpm) 

71 ± 13 78 ± 13 69 ± 15 74 ± 15 <0.001 0.57 0.42 

Respiration 

(breaths per 

minute) 

15 ± 3 17 ± 4 10 ± 4 11 ± 4 0.003 0.002 0.83 

ETCO2 38 ± 4 51 ± 2 38 ± 3 51 ± 3 <0.001 0.67 0.80 

Values are mean ± standard deviation. DBP = diastolic blood pressure; ETCO2 = end tidal carbon dioxide; HC = hypercapnia; OA = 

older adults; SBP = systolic blood pressure; YA = young adults. *p<0.05 compared to baseline. †p<0.05 compared to YA. 
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Table 4.4: Brain volume in young and older adults. 

 YA OA 

Grey matter (ml) 719 ± 98 622 ± 50* 

White matter (ml) 536 ± 60 545 ± 58 

Cerebrospinal fluid (ml) 222 ± 37 266 ± 40*  

Total intracranial volume (ml) 1476 ± 175  1432 ± 131  

Values are mean ± standard deviation. OA = older adults; YA = young adults. *p<0.05 

for baseline versus YA.  
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Figure 4.1: Middle cerebral artery cross-sectional area (CSA) during hypercapnia in 

young adults (YA) and older adults (OA). A: Mean and individual CSA at baseline and 

hypercapnia in YA. B: Mean and individual CSA at baseline and hypercapnia in OA. C: 

Mean CSA at baseline and hypercapnia in YA and OA. D: CSA percent change from 

baseline. *p<0.05 versus YA. 
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Figure 4.2: Cerebral blood flow velocity (CBFV) and cerebral blood flow (CBF) during 

hypercapnia in young adults (YA) and older adults (OA). A: CBFV at baseline and 

hypercapnia in YA and OA. B: CBF at baseline and hypercapnia in YA and OA. C: 

Percent change CBFV and CBF with hypercapnia in YA and OA. *p<0.05 versus CBFV. 
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Figure 4.3: Mean arterial pressure (A) and cerebrovascular conductance (B) at baseline 

and hypercapnia in young adults (YA) and older adults (OA). *p<0.05 versus baseline; 

†p<0.05 versus YA. 
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Figure 4.4: Cerebrovascular reactivity (CVR) at baseline and hypercapnia in young 

adults (YA) and older adults (OA). A: Absolute CVR in YA and OA. B: Relative CVR in 

YA and OA. *p<0.05 compared to CBFV CVR.  
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4.4 Discussion 

The main findings of this study are as follows: 1) The %Δ in MCA CSA with HC was 

greater in YA than OA. 2) When corrected to GM volume, MCA flow velocity or blood 

flow were not different between YA and OA at baseline or during HC. 3) CBFVGM 

underestimated the change in CBFGM with HC in both YA and OA. 4) There was a 

greater change in CVCGM during HC in YA than OA. 5) Despite the smaller dilatory 

response in OA versus YA, CVR was not different between the groups due to the 

compensatory central hemodynamic contributions to CBF through elevated BP in OA. 

Therefore, when studying MCA flow patterns, reductions in absolute baseline CBF in 

healthy aging are related to reductions in cortical mass. Furthermore, the aging process 

appears to include diminished cerebrovascular dilatory responsiveness in the MCA and 

its downstream vascular bed. In addition to exposing age-related decrements in CVC, 

these data outline the concern that the sole use of CVR to study cerebrovascular health 

may be misleading due to compensatory responses that can elevate CBF despite smaller 

dilatory responses. 

 A major finding of the current study was the smaller dilation of the MCA in OA 

in response to HC. The mechanism(s) involved in this impaired dilation is beyond the 

scope of this study but may include arterial stiffening or impaired endothelial function as 

it pertains to HC or shear stress stimuli. Extracellular pH of the cerebrovasculature is the 

main mediator of the HC-induced increase in CBF (64) via an effect on potassium 

channels (63) and it is unclear how aging may affect these channels. In addition, NO and 

prostaglandins may also play a role in this response (2, 17). Unfortunately, studying 

endothelial function in the intact, conscious human brain is difficult though drug studies 

have been employed to examine endothelial regulation of the cerebrovasculature. The 

hypercapnic increase in CBFV measured with TCD in humans (23) and CBF with the 

133Xe clearance method in rats (28) was impaired with NO synthase blockade, though not 

abolished. Additionally, administration of a NO donor to patients with endothelial 

dysfunction restores CVR measured with TCD to levels of healthy age-matched controls 

(71). However, other studies have found no effect of NO inhibition on the response to HC 

in humans (12, 29). It is possible that blockade of one pathway results in upregulation of 
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another (for example, the prostaglandin pathway) since it is not the NO pathway alone 

that is responsible for the hyperemic response to HC. Additionally, when indomethacin is 

administered to block the prostaglandin pathway in humans a difference in YA and OA in 

baseline TCD CBFV and CVR is abolished, which indicates that the prostaglandin-

mediated response to HC is impaired with aging (11).  

 This study is the first to incorporate direct measures of MCA CSA and CBF 

scaled to GM volume in calculations of flow responses in a healthy aging model. A major 

outcome of this approach was the observation that healthy aging does not affect CVR. 

Previously, reports on the impact of age on CVR were based primarily on mean CBFV 

through the MCA (2, 9, 18, 20). Yet, even CVR calculated using CBFV was the same 

between groups when normalized to GM volume. Therefore, these data highlight the 

importance of considering contributing factors to the flow response. These findings are in 

line with other human studies that have reported no difference in CVR with age using 

TCD (9, 18). Galvin et al. (2010) and Murrell et al. (2013) found no difference in CVR 

between young and older groups with a very similar age range to our subjects. However, 

MAP during HC was not reported in either of these studies so it is unclear whether a 

greater pressor response played a role in maintaining CVR in OA as we suggest based on 

our data. These studies also reported an increase in cerebrovascular resistance in the older 

participants which is in line with the reduction in conductance during HC that we 

observed in OA.  

The major outcome of this study was quantification of an age-related reduction in 

dilatory responsiveness at the MCA and the downstream vessels that it supplies. These 

data confirm the findings of Barnes et al. (2012) who drew similar conclusions based on 

TCD CBFV measures alone (11). Additionally, Barnes et al. (2012) found no differences 

in CVC between young and older adults when indomethacin was administered. These 

findings suggest that with age, one pathway that may be altered is cyclooxygenase-

mediated dilation. Our results add to these findings because they confirm that CVC 

calculated based on CBF rather than CBFV is diminished in OA. Also, the impairment in 

dilation that results in decreased CVC is not limited to vessels downstream to the MCA, 
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but also to the MCA itself. Finally, changes in GM volume with aging cannot account for 

the difference in CVC between young and older groups.     

The discussion above outlines the problem that measures of CVRGM and CVCGM 

support opposing conclusions in the context of studying human cerebrovascular health. 

These findings lead to the question of whether CVR or CVC is a more appropriate metric 

for examining the dilatory capacity of the cerebrovasculature. A major point here is that 

CVR does not measure vasodilation but only the flow response to a stimulus. In turn, 

changes in flow can be incurred by either a change in downstream conductance and/or by 

a change in the pressure gradient. The cerebrovascular pressure gradient is difficult to 

measure in humans but is formed to a large extent by the systemic BP. Nonetheless, 

rarely is BP measured or reported in CVR measures despite evidence that HC elevates BP 

(13, 20). The current study indicated that the pressor response to HC is greater in OA 

compared to YA. By accounting for changes in MAP, the current calculation of CVCGM 

exposed the reduced dilatory response in the OA. The effect of MAP on CBFV has been 

examined and reported that above a threshold ETCO2, increases in MAP with ETCO2 

have a linear relationship with CBFV (13). As well, Claassen et al. (2007) found that the 

magnitude of increase in an index of CVC with a rebreathing challenge was greater than 

the magnitude of change in CBFV which suggests that MAP has a direct effect on CBFV 

(20). Based on these findings and the fact that the change in MAP during HC was 

different between groups, we suggest that the best way to rationalize these findings is to 

calculate a CVC reactivity index as the change in CVC divided by the change in ETCO2. 

When this is done as a percent change in CVCGM there is no difference between YA (4.22 

± 1.60 %/mmHg) and OA (3.18 ± 1.34 %/mmHg, p=0.11). However, the difference is 

significant using the absolute change in CVCGM (YA: 1.8 x 10-4 ± 0.69 x 10-4 

ml/min/ml/mmHg and OA: 1.2 x 10-4 ± 0.56 x 10-4 ml/min/ml/mmHg, p=0.04).       

 We examined the relationship between GM volume and cerebrovascular indices 

based on the idea that there is a linkage between CBF and tissue atrophy. Previous studies 

have reported decreased CBFV in OA compared to YA (2, 20, 31) and when we 

normalized CBFV to GM volume we did not see differences in CBFVGM, CBFGM, or 

CVRGM. However, a difference in CVC between groups was present during HC even 
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when normalized to GM volume. One limitation of this normalization approach is that we 

used total GM volume though the MCA is not responsible for perfusion of all the GM 

and the exact portion of tissue that it supplies is unknown. This estimate was used 

because it is difficult to determine exactly which regions are supplied by the MCA due to 

individual variation. The challenge of our approach is exposed by Chen et al. (2011) who 

examined voxel-wise measures of cortical blood flow using MRI perfusion methods 

(arterial spin labelling) and cortical thickness and reported that, on that small scale, 

reductions in CBF with aging were dissociated from the concurrent process of cortical 

atrophy (18). Therefore, our results suggest that an overall relationship exists between 

CBF and GM volume; however, the pattern becomes dissociated at the voxel scale. 

Additionally, with this cross-sectional approach we are unable to determine if initial 

atrophy results in the flow reduction or a flow impairment leads to atrophy.      

 In conclusion, this study was the first to show that the MCA and its vascular bed 

display impaired dilation to hypercapnia in healthy aging. Our studies indicate that the 

measure of CVC and/or CVC reactivity to CO2 is a more appropriate estimate of the 

dilatory capacity of the cerebrovasculature than a traditional estimate of CVR. 

Additionally, we confirm that there is a relationship between GM volume and MCA CBF 

so that a reduction in MCA CBFV and/or CBF with age may be a result of global GM 

tissue atrophy, or impaired flow leads to atrophy, and this should be accounted for when 

making comparisons between groups. 
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Chapter 5  

5 General Discussion 

5.1 Perspectives 

A literature search in PubMed using the search term “transcranial Doppler ultrasound” 

elicits a response of almost 8,000 papers. A majority of these papers examine the MCA 

and all assume that the diameter of the MCA does not change or that the change is 

negligible so CBFV is the same as CBF. Hypercapnia and/or hypocapnia are commonly 

used to examine cerebrovascular health where a greater increase in CBFV with HC 

and/or a greater decrease in CBFV with HO is a healthier response. Based on evidence 

that MCA diameter may not be constant combined (2, 4) with a greater availability of 

MRI technology with enhanced resolution we designed this series of studies to examine 

how MCA CSA changes with HC or HO. Additionally, we wanted to quantify how 

changes in MCA CSA impact estimates of CBF and CVR in young and older 

populations. Finally, we examined how changes in MCA CSA compare to those at the 

ICA with HC and HO.  

5.2 Major Findings 

The main finding of this series of studies were that MCA CSA increased during HC and 

decreased during HO. When the findings from all three studies using HC (n=36) and the 

two studies with HO (n=24) for young adults were combined the average increase was 15 

± 8% during HC and the average decrease was 9 ± 6% during HO (Figure 5.1). When 

CBFV was compared to CBF during HC, CBFV underestimated the change in CBF. 

Also, CVR during HC was underestimated if CBFV was used. In the first study of this 

series we documented similar results with HO where CBFV underestimated the change in 

CBF and CVR. However, in the second study of this series the difference between CBF 

and CBFV was not significant during HO. Additionally, even in OA where the change in 

CSA was smaller during HC, this still resulted in a greater change in CBF versus CBFV. 



117 

 

 When the CSA data from all studies are combined (Figure 5.1) an important 

observation is that there is variability in the data both in baseline CSA and in the response 

HC and HO. Initially, we were hopeful that a universal correction factor could be applied 

so that TCD users could correct CBFV measurements based on the amount of change in 

ETCO2 to more closely estimate CBF; however this is not practical because of the 

variability in the response. For example, in the subject with the largest baseline CSA 

(who also had the smallest response to HC), during HC there was no diameter change so 

CBFV is equivalent to CBF. However, in the subject with the greatest hypercapnic 

response, the MCA CSA change was almost 29% resulting in a 42% difference in 

estimates of CBFV and CBF. During HO, there were also subjects who had almost no 

constriction at the MCA while the greatest change was a 22% decrease which resulted in 

an 11% difference in CBFV and CBF.    

Comparison of diameter changes at the MCA to the ICA during HC and HO 

revealed that the dilation/constriction response is greater at the MCA as no change was 

observed in ICA diameter. This difference was not expected as Willie et al. (2012) had 

documented changes in ICA diameter with HO and HC (5). Different exposure times to 

HC and HO likely played a role in these observations as we did HC and HO for five 

minutes while Willie et al. (2012) applied each stimulus for 12 to 15 minutes before 

measurement for CBFV (5). Future studies could examine MCA CSA over longer 

exposure to HC and HO. Another notable finding from this study was that at the end of 

five minutes, CVR calculated with ICA CBF produced similar estimates to those from 

MCA CBF. Since ICA CBF can be quantified with duplex ultrasound and does not 

require MRI technology this method of determining CVR is likely more feasible than 

performing TCD to determine CBFV and then MRI to determine MCA CSA.   

Lastly, CBFV, CBF, and CVR normalized to GM volume were not different 

between young and older adults while CVCGM and the percent change in MCA CSA was 

greater in YA during HC. In this study, during HC there was a greater pressor response in 

OA (7 ± 5 mmHg) versus YA (3 ± 3 mmHg) which we believe compensated for 

decreased dilation at the MCA to equalize CBF between groups. Based on these findings, 

we suggest that CVC or CVC reactivity (ΔCVC/ΔETCO2) is a more appropriate measure 
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to examine the dilatory capacity of the cerebrovasculature as it accounts for changes in 

MAP. Even with 4% CO2, Barnes et al. (2012) reported, on average, a change in MAP 

from 81 ± 5 to 84 ± 5 mmHg which suggests that even with a smaller stimulus a change 

in pressure cannot be avoided (1). Examining the mechanism behind reduced 

cerebrovascular dilation was beyond the scope of this research. However, previous work 

has implicated a lack of production or utilization of prostaglandins and/or NO in the 

response to HC by examining CBFV with TCD (1, 3). Therefore, this same study design 

could be used to examine CVC in populations with poor endothelial health, such as those 

with atherosclerosis.  
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Figure 5.1: Change in middle cerebral artery (MCA) cross-sectional area (CSA) during 

hypercapnia (A) and hypocapnia (B). 
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5.3 Utility of Transcranial Doppler Ultrasound 

It is important to identify how these changes in MCA CSA during HC and HO may 

impact the findings of many TCD studies as MRI technology is not as widely accessible 

or feasible. When examining differences between groups and/or experimental conditions 

that involve HC or HO it is important to recognize that measured changes in CBFV likely 

underestimate actual changes in CBF. However, this is more of a problem when 

comparing groups that likely have differences in arterial health. For example, in the third 

study in this thesis young and older adults did not have the same dilatory response at the 

MCA to HC so we cannot say that CBFV underestimates CBF by the same amount in 

each group. Based on our findings in OA we speculate that other groups of older adults 

such as those with cardiovascular disease likely have a similar, or possibly even greater, 

impairment in MCA dilation. Therefore, when comparing such a group to a young 

population it is more important to keep in mind that changes in the MCA are likely 

different between groups. In terms of HO, the constrictor response at the MCA was 

smaller than the dilatory response to HC so changes at the MCA have less of an impact 

on CBF with HO. For instance, in the second study of this thesis when the changes in 

CBFV versus CBF were compared over five minutes, no significant changes in HO CSA 

were detected until minute four. Therefore, for the first three minutes of HO there is little 

difference between CBFV and CBF. Consequently, employing HO protocols that are 

shorter in duration is the best way to minimize differences in CBFV versus CBF. 

Additionally, if the study population consists of all OA then we have established that 

there is less CSA change even with HC so in this case CBFV is a better indicator of CBF.  

 Finally, TCD is unmatched in its time resolution. In our studies, a difference in 

MCA CBFV could be observed within 30 seconds of initiation of HC or HO and tracked 

beat-by-beat. This is in contrast to our MRI measurement of phase contrast CBFV that 

took approximately 2.5 minutes to create the velocity profile over one cardiac cycle or 

our measurement of CSA that could be captured every 1 to 1.25 minutes. Therefore, the 

aim of these studies was not to imply that TCD is not a useful tool but to encourage 

examination into some of the basic assumptions of the technique. Application of TCD 

during changes in ETCO2 can still be encouraged though possible changes in diameter 
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should be considered in terms of designing a study that minimizes the impact of these 

changes so that CBFV more closely predicts CBF.  

5.4 Conclusions 

In young adults, the MCA dilates by the first minute of hypercapnia and this dilation 

means that CBFV underestimates both CBF and CVR. In contrast, the MCA does not 

constrict during hypocapnia until the fourth minute and the impact of this constriction on 

estimates of CBF and CVR is less than that of hypercapnia. In addition, constriction and 

dilation at the MCA is unmatched by similar responses at the ICA. Finally, the CVR 

response to hypercapnia is preserved in healthy older adults, compared to young. 

However, impaired MCA dilation and CVC in older adults suggests that the dilatory 

capacity of the cerebrovasculature is impaired in comparison to young adults. Therefore, 

we suggest that CVC or CVC reactivity is a more telling estimate of the health of the 

cerebrovasculature than CVR.  
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LETTER OF INFORMATION 

Project Title: Examining flow and diameter in the middle cerebral artery during different 

levels of carbon dioxide, lower body negative pressure and nitroglycerin. 

Principal Investigator:  J. Kevin Shoemaker, Ph.D. 

Research Coordinator:  Nicole Coverdale, M.Sc.   

                                         Katelyn Norton, M.Sc. 

                                         Carly Barron, M.Sc. 

Sponsor: CIHR team grant in physical activity, mobility and neural health 

This letter of information is part of the process of informed consent. It should give you an 

understanding of the research being conducted and what your participation will involve. 

If you would like more details regarding something mentioned in this letter, or 

information not included here, please ask. Take time to read this carefully and to know 

the following information. You will receive a copy of this form to keep as your own. 

Introduction 

You are invited to voluntarily participate in a research study that examines how blood 

vessels in your brain respond to different protocols by using imaging techniques. A 

variety of stressors change blood flow in the brain and it is currently unclear whether this 

is because the large blood vessels are changing diameter in response to such stressors. 

Therefore, the main purpose of the study is to measure the diameter of and flow through 

larger brain vessels with magnetic resonance imaging (MRI). As well, a type of 

ultrasound called transcranial Doppler (TCD) is commonly used to study brain blood 

flow often based on the assumption that large vessel diameter does not change. 

Therefore, a secondary purpose of this study is to validate TCD measures of blood flow 

velocity against MRI measures. The study contains three parts that will be conducted on 

three separate days. A total of 60 participants will be recruited in this study. If you agree 

to participate, you will be required to come to the laboratory approximately three hours 

following a light meal and after having avoided alcohol, Nicorette gum, coffee, tea, soft 

drinks and chocolate for at least 12 hours.  

Participant Inclusion/Exclusion Criteria 

You will not be included in the study if you are not within the age ranges of 18 and 80 

years of age or if you have any of the following: Raynaud’s disease, respiratory illnesses, 

glaucoma, claustrophobia, metallic implants or objects in or under your skin. You will 

not be included in the study if you are a smoker. In addition, you will not be included in 

the study if you are, or think you might be, pregnant. Also, you will not be included in the 

study if you have taken phosphodiesterase type 5 inhibitors within the last 24 hours. This 

class of drugs includes Viagra, Cialis, and Levitra and are used for the treatment of 

erectile dysfunction. There is a risk for decreased blood pressure due to the 
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administration of nitroglycerin in this study and ingestion of these types of drugs magnify 

this risk. Additionally, since MRI is used in this study, you will not be included in the 

study if you are not suitable for MRI based on the following criteria: 

MRI exclusion criteria 

If you have any history of head or eye injury involving metal fragments, if you have 

some type of implanted electrical device (such as a cardiac pacemaker), if you have 

severe heart disease (including susceptibility to heart rhythm abnormalities), you should 

not have an MRI scan unless supervised by a physician. Additionally you should not have 

a MRI scan if you have conductive implants or devices such as skin patches, body 

piercing or tattoos containing metallic inks because there is a risk of heating or induction 

of electrical currents within the metal element causing burns to adjacent tissue. 

Research Tests  

If you take part in this study, you will report to the laboratory on separate occasions to 

complete two phases (and 3 Days) of the study.  The following addresses what will 

happen on each day of testing. 

Day 1 Instrumentation: Laboratory for Brain and Heart Health, Room 402, Labatt 

Health Sciences Building.   

For the tests that occur at the Laboratory for Brain and Heart Health you will have the 

following devices attached to you/tests performed for data collection: 

 

1.  A button ultrasound probe will be held against the temple region of your head that 

will determine how fast the blood is flowing through one of the larger vessels in 

the brain. This process is known as transcranial Doppler ultrasound. 

2.  Small electrodes will be placed on your chest to record the electrocardiogram 

(ECG, the heart rate tracing).   

3.  A small cuff will be placed around one finger and a blood pressure cuff will be 

placed around the upper portion of the same arm.  These cuffs are used to measure 

your blood pressure.  When activated, the finger cuff will inflate with air and you 

should feel a pulsating sensation on your finger.  During a recording session your 

finger may turn slightly blue and feel numb but this quickly goes away when the 

cuff pressure is reduced. 

4.  An elastic strap will be placed around your chest to monitor changes in breathing 

rate and depth. No discomfort or risks are associated with this procedure. 

5.  You will be fitted with a small mouthpiece so that you can breathe a mixture of 

gas that is mostly oxygen but contains a higher than normal level of carbon 

dioxide.  Breathing the carbon dioxide will last a minimum of 7 to 8 minutes. 

6.  You will be asked to breathe faster than normal, in time with a metronome. 

7.  You will undergo a procedure called “lower body negative pressure (LBNP)”. In 

this procedure your legs and hips are sealed in a box and a vacuum will create 

suction around your lower body to mimic the effects of gravity. This lower body 
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suction mimics the effect of upright posture and, depending on the degree of 

suction, unloads baroreceptors in the heart and/or in the aortic arch and carotid 

sinus. The level of suction that will be used is equivalent to the effect of gravity 

when sitting up.   

8.  An anesthetist will insert a small plastic tube (catheter) into a large vein in your 

arm or hand. This catheter will be connected to an intravenous tube through which 

the anesthetist will infuse a drug called nitroglycerin (used to treat angina) or a 

saline solution that simply mimics the water portion of your blood.  Any infusion 

will last up to 15 minutes.  

9.  You will be asked to breathe through an inspiratory impedance threshold device 

(ITD) attached to a tube. You will experience some resistance while inhaling 

through this device.  

 

Day 1 Experimental Procedures (Summarized in Figure 1) 

 

You will undergo 5 experimental tasks: 1) Breathing higher-than-normal carbon dioxide 

(6% CO2, 21% oxygen and balanced nitrogen), 2) hyperventilating (to reduce carbon 

dioxide in your blood), 3) LBNP 4) nitroglycerin administration and 5) ITD. Tossing a 

coin will randomize the order of the first three protocols.  

 

1. Carbon dioxide: a facemask will be attached through which you will breathe 

air with the same amount of oxygen as with normal air but with more carbon 

dioxide. Carbon dioxide levels will be monitored from a line attached to the 

facemask. After 5 minutes of rest, you will breathe CO2 until end tidal partial 

pressure of CO2 (PETCO2) reaches 50 mmHg (about 2-3 minutes), after which 

you will continue breathing the gas for 5 minutes for a total of 7 to 8 minutes. 

This level of CO2 will make you breathe faster and deeper. Five minutes 

recovery will then allow your levels of carbon dioxide to return to normal. 

2. Hyperventilation: after a 5 minutes rest period, you will be asked to breathe in 

time with a metronome at a rate that is faster than your normal breathing rate.  

You will then be given 5 minutes to recover. 

3. LBNP: after 5 minutes of rest, suction will be turned on for 5 minutes and this 

will be followed by 5 minutes of recovery. 

4. Saline and nitroglycerin: in a random assignment (like the tossing of a coin) 

saline or nitroglycerine will be infused. Saline will be infused for 5 minutes 

and nitroglycerine (0.5 μg/kg/min) will continue for 15 minutes. Five minutes 

of recovery will end the test.  

5. ITD: You will be asked to breathe through a tube with an attached ITD for 1-5 

minutes at rest and during LBNP.  
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The protocols will take approximately 75 minutes for the actual experiment plus time for 

equipment setup, insertion of the catheter, familiarization with the protocol and recovery 

from the nitroglycerin. Also, it is expected that the TCD probe will continually need to be 

adjusted slightly to maximize the quality of the signal. Therefore, the entire test time is 

expected to be about 3 hours. 

Days 2 and 3 Instrumentation: Robarts Research Institute at Western University 

For the tests that occur at the Robarts Research Institute you will have the following 

devices attached to you/tests performed for data collection: 

 

1.  The blood vessels in your brain will be imaged, which means that you will lie on 

a table that enters the bore of a 3.0 Tesla whole-body MRI. It can be noisy during 

the MRI procedure so you will wear hearing protection (head phones). 

2.  A small cuff will be placed around one finger and will measure heart rate.  

3.  An elastic strap will be placed around your chest to monitor changes in breathing 

rate and depth. No discomfort or risks are associated with this procedure. 

4.  You will be fitted with a small mouthpiece so that you can breathe a mixture of 

gas that is mostly oxygen but contains a higher than normal level of carbon 

dioxide.  Breathing the carbon dioxide will last a minimum of 7 to 8 minutes. 

5.  You will be asked to breathe faster than normal, in time with a metronome. 

6.  You will undergo a procedure called “lower body negative pressure (LBNP)”. In 

this procedure your legs and hips are sealed in a box and a vacuum will create 

suction around your lower body to mimic the effects of gravity. This lower body 

suction mimics the effect of upright posture and, depending on the degree of 

suction, unloads baroreceptors in the heart and/or in the aortic arch and carotid 

sinus. The level of suction that will be used is equivalent to the effect of gravity 

when sitting up.  

7.  An anesthetist will insert a small plastic tube (catheter) into a large vein in your 

arm or hand. This catheter will be connected to an intravenous tube through which 

the anesthetist will infuse a drug called nitroglycerin (used to treat angina) or a 

saline solution that simply mimics the water portion of your blood.  Any infusion 

will last up to 15 minutes.  

8.  You will be asked to breathe through an inspiratory impedance threshold device 

(ITD) attached to a tube. You will experience some resistance while inhaling 

through this device.  

Days 2 and 3 Experimental Procedures (Summarized in Figure 1) 

You will undergo 5 experimental tasks: 1) Breathing higher-than-normal carbon dioxide 

(6% CO2, 21% oxygen and balanced nitrogen), 2) hyperventilating (to reduce carbon 

dioxide in your blood), 3) LBNP, 4) nitroglycerin administration and 5) ITD. Tossing a 

coin will randomize the order of these tasks. 
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1. Carbon dioxide: a facemask will be attached through which you will breathe 

air with the same amount of oxygen as with normal air but with more carbon 

dioxide. Carbon dioxide levels will be monitored from a line attached to the 

facemask. After 5 minutes of rest, you will breathe CO2 until end tidal partial 

pressure of CO2 (PETCO2) reaches 50 mmHg (about 2-3 minutes), after which 

you will continue breathing the gas for 5 minutes for a total of 7 to 8 minutes. 

This level of CO2 will make you breathe faster and deeper. Five minutes 

recovery will then allow your levels of carbon dioxide to return to normal. 

2. Hyperventilation: you will continue wearing the facemask during this 

protocol. After a 5 minutes rest period, you will be asked to breathe in time 

with a metronome at a rate that is faster than your normal breathing rate. You 

will then be given 5 minutes to recover. 

3. LBNP: after 5 minutes of rest, suction will be turned on for 5 minutes and this 

will be followed by 5 minutes of recovery. 

4. Saline and nitroglycerin: in a random assignment (like the tossing of a coin) 

saline or nitroglycerine will be infused. Saline will be infused for 5 minutes 

and nitroglycerine (0.5 μg/kg/min) will continue for 15 minutes. Five minutes 

of recovery will end the test.  

5. ITD: You will be asked to breathe through a tube with an attached ITD for 1-5 

minutes at rest and during LBNP.  

The protocols will take approximately 75 minutes for the actual experiment plus time for 

equipment setup, insertion of the catheter, familiarization with the protocol and recovery 

from the nitroglycerin. Therefore, the entire test time is expected to be about 2 hours. 

 

 

 

 

  

Figure 1. Study protocol. 
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Risks 

MRI 

Part of your participation in this study will involve a research test with Magnetic 

Resonance Imaging (MRI) system, a common medical diagnostic tool that uses a strong 

magnetic field, a low frequency magnetic field, and a radio frequency field. No X-rays 

are used. As with any technology there is a risk of death or injury. For MRI the risk of 

death is less than 1 in 10 million and the risk of injury is less than 1 in 100,000. These 

risks do not arise from the MRI process itself, but from a failure to disclose or detect MRI 

incompatible objects in or around the body of the subject or the scanner room. It is 

therefore very important that you answer all the questions honestly and fully on the MRI 

screening questionnaire. 

Almost all the deaths and injuries related to MRI scans have occurred because the MRI 

operator did not know that surgically implanted metal hardware (such as a cardiac 

pacemaker) was present inside the subject during the MRI scan. Other remote risks 

involve temporary hearing loss from the loud noise inside the magnet. This can be 

avoided with ear headphone protection that also allows continuous communication 

between the subject and staff during the scan. 

For comparison, the risk of death in an MRI is similar to travelling 10 miles by car, while 

the risk of injury during an MRI is much less than the risks associated with normal daily 

activities for 1 hour. 

You may not be allowed to continue in this research study if you are unable to have a 

MRI scan because, for example, you have some MRI incompatible metal in your body, 

you may be pregnant or attempting to become pregnant, or you may have a drug patch on 

your skin that contains a metal foil. Should you require a medically necessary MRI scan 

in the future, the final decision as to whether you can be scanned will be made by a 

qualified physician considering all the risks and benefits. 

Venous Catheter 

There is a small risk of bruising or infection when inserting the catheter into your vein.  

Some patients may experience mild pain and discomfort and some may feel nauseated or 

dizzy when blood is taken. 

ECG 

The adhesive on the electrodes used to measure your heart rate may cause a small rash to 

develop under the electrode.  However, this rash should disappear in a day or two. 

Blood pressure cuff 

There are no known risks of using the finger cuff methods (Finometer) of examining 

arterial blood pressure. With the finger cuff the fingertip may turn a little blue and feel 

numb during the prolonged test sessions but this resolves immediately when the cuff is 
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removed. Standard arm cuff blood pressure measures of arterial pressure will also be 

obtained periodically, a method that has no known risks. 

Transcranial Doppler ultrasound 

There are no known harmful effects with standard diagnostic ultrasound and tonometry as 

used in this study.  

CO2 Breathing 

Breathing a slightly higher level of carbon dioxide may give you a small headache and it 

may make you feel breathless.  These feelings vanish quickly when you start breathing 

room air again.  

Lower Body Negative Pressure 

As an orthostatic stress, LBNP carries a risk of fainting (syncope). This is particularly 

important during prolonged levels (i.e., 5-10 minutes). To reduce the risk of syncope you 

will be instructed to inform the experimenters if you feel any of the symptoms of 

presyncope (i.e. nausea, light headedness, tunnel vision, blurry vision, excessive heat and 

sweat).  You will also be monitored throughout the test for the following termination 

criteria: systolic blood pressure less than 90 mmHg, sudden reductions in systolic blood 

pressure of >20 mmHg, sudden decrease in heart rate or heart rate less than 30 bpm and 

symptoms suggestive of impending syncope. There is minimal risk to you for the 

duration and level of LBNP used here because mean arterial pressure is minimally 

threatened and there is no additional challenge to cerebral perfusion.  Also note that 

syncope does not develop immediately even in full head-up tilt tests.  Moreover, the signs 

of imminent syncope generally develop 1-2 minutes prior to the event (i.e., generally, 

there is a progressive reduction in blood pressure prior to the sudden hypotension that 

marks presyncope). We will monitor you for these symptoms and stop the suction upon 

their first appearance. 

Inspiratory impedance Threshold Device  

There are no known harmful effects associated with breathing through the ITD as used in 

this study.  

Nitroglycerin 

Nitroglycerin may induce headache. A headache occurs in up to 50% of patients as a 

result of dilation of brain blood vessels. The headache usually disappears within several 

days with continued treatment. Acetaminophen (Tylenol) may be used to treat nitrate 

headaches. Other adverse reactions that occur in less than 1% of patients include allergy: 

itching, wheezing, tracheobronchitis (inflammation of lower respiratory tract); 

cardiovascular: hypotension (low blood pressure), reflex tachycardia (increased heart 

rate), palpitations (abnormality of regular heart rhythm), bradycardia (slowed heart rate), 

syncope due to nitrate vasodilation has rarely been reported; central nervous system: 

headache, weakness, dizziness, apprehension, restlessness; gastrointestinal: nausea, 
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vomiting, diarrhea, and abdominal pain; genitourinary: dysuria (difficulty urinating), 

urinary frequency, impotence; metabolic: methemoglobinemia (abnormal amount of a 

form of hemoglobin is produced); musculoskeletal: arthralgia (joint pain), muscle 

twitching; ophthalamologic: blurred vision; respiratory: bronchitis, pneumonia, upper 

respiratory symptoms. 

Staying still  

During the experiment, you have to remain still in a lying down position for 3 hours. You 

may develop a sore back in the middle of the experiment. These sensations will diminish 

very quickly when you sit up from the bed after the experiment. 

Alternatives to Participating 

You may choose not to participate in this study. 

Benefits to You if You Take Part in the Study 

There are no direct benefits to you as a result of the study.  

Voluntary Participation 

You are encouraged to ask questions regarding the purpose of this study and the outcome 

of your testing.  Participation in this study is voluntary.  You may refuse to participate, 

refuse to answer any questions, or withdraw from the study at any time with no effect on 

your academic or employment status.  We ask that you do not get involved in any other 

study while you are involved in this study.  However, participation in this study will not 

stop you from being involved in future studies. You do not waive any legal rights by 

signing the consent form.  

Incidental Findings 

An incidental finding refers to any unexpected observation made during the course of the 

study that may require attention by your doctor. Examples could include high blood 

pressure, irregular heart rhythm or a mass observed with MRI. Should an abnormality be 

detected during testing, you will be informed and will be encouraged to share this 

information with your doctor.  

Confidentiality 

All information that you provide will be keep strictly confidential. No information that 

could reveal your identity will be released to anyone unless disclosure is required legally. 

All of the information collected for this study will be stored in a locked filing cabinet that 

will only be accessible to the research team. To further protect your anonymity, your 

name will be replaced with a subject ID number on all documents. Representatives of 

The University of Western Ontario Health Sciences Research Ethics Board may require 

access to your study-related records or may follow up with you to monitor the conduct of 

the research. 
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Compensation 

You will be compensated for parking expenses. 

Publication of Results 

Published results from this study will not identify you by name.  New findings from this 

study may be forwarded to each interested participant upon request.  You may keep a 

copy of this letter of information. 

Contact Persons 

If you have any questions regarding this study, please feel free to contact:  

Dr. Kevin Shoemaker 

(519) 661-2111 Ex 85759 

Room 3110 Thames Hall 

Western University 

 

If you have any questions about your rights as a participant or about the conduct of the 

study you may contact The University of Western Ontario Office of Research Ethics, 

519-661-3036 or email ethics@uwo.ca 

 

 

 

 

 

 

 

 

 

 

 

mailto:ethics@uwo.ca
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LETTER OF INFORMED CONSENT 

Project Title:  

Examining flow and diameter in the middle cerebral artery during different levels of 

carbon dioxide, lower body negative pressure and nitroglycerin. 

Principal Investigator:  

J. Kevin Shoemaker, Ph.D. 

I have read the letter of information, have had the nature of the study explained to 

me and I agree to participate.  All questions have been answered to my satisfaction.  

SIGNATURES 

In the event that abnormal findings are observed during any of the tests, or upon my 

wishes, I consent to the release of my medical information to my family doctor or 

medical clinic. 

Name of Doctor or Clinic  

 

I agree   OR  I disagree   

 (initial) (initial) 

 

 

Name of participant (Please print)                                  Name of person obtaining consent 

 

 

Signature of participant                                             Signature of person obtaining consent 

 

 

Date Date 
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