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Abstract 

Plants growing under iron deficiency suffer from multiple physiological defects. 

Although the effects of microRNA156 (miR156) on multiple aspects of plant 

development have been investigated, a possible role of miR156 in plant iron homeostasis 

has not been shown. By employing next-generation RNA-sequencing, the current 

research demonstrated that multiple iron homeostasis-related genes, including ones 

coding for Ferritins, group Ib bHLH transcription factors, and key enzymes involved in 

iron uptake, were differentially expressed in Arabidopsis thaliana plants overexpressing 

miR156. Overexpression of miR156 also enhanced Arabidopsis growth under iron-

deficiency. In addition, expression analysis revealed that miR156 is a positive regulator 

of FIT and PYE genes partially through targeting SPL9 and SPL15. By using Chromatin 

Immuno-Precipitation qPCR assay, SPL9 and SPL15 were found to have strong binding 

capability to the promoters of PYE and FIT. Taken together, my data suggest that miR156 

is a positive regulator of iron homeostasis through targeting SPL9 and SPL15 in 

Arabidopsis.  

  

 

 

Keywords: miR156, SQUAMOSA PROMPTER BINDING-like protein (SPL), iron 
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Chapter I. Introduction 

Due to their sessile nature, plants have evolved sophisticated mechanisms to cope with 

adverse conditions, including nutrient deficiency. To maintain normal growth and 

development, plants acquire metallic and non-metallic nutrients, such as zinc, copper, and 

iron, from the soil.  Iron (Fe) was first discovered as an essential plant nutrient as early as 

1843 by E. Gris (Reviewed by Fernández and Ebert in 2005). He showed that Fe was 

critical for plants to recover from the absence of green pigments in foliage by external 

application of a Fe solution to the rhizosphere or leaves (Fernández and Ebert 2005). Fe 

is also an essential nutrient for animals (including humans), which acquire a significant 

portion of their dietary Fe from plant sources either directly or indirectly (Cakmak 2002; 

Welch and Graham 2004). Given the importance of Fe to living organisms, a significant 

amount of effort has been invested in understanding the molecular mechanisms that 

govern iron homeostasis in plants to develop higher quality crops (Colangelo and 

Guerinot 2004; Fehr 1982; Lin et al. 1997; Sun 1986). Research on different species has 

provided a good understanding of the physiological and molecular mechanisms that 

control Fe absorption, transportation, and storage (Briat and Lobréaux 1997; Curie et al. 

2001; Hell and Stephan 2003; Stocking 1975). All of this valuable information gave me a 

theoretical basis for conducting this project. In this dissertation, Arabidopsis was 

employed to examine the effect of overexpression of miR156 on plant growth under iron 

deficiency, as well as plant iron acquisition at the physiological and molecular levels.  
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1.1 The importance of iron for living organisms 

Although Fe has been identified as the fourth most accumulated element on Earth, almost 

30% of the land is still considered to be Fe-deficient (Grotz and Guerinot 2006). Fe has 

different oxidation states, from -2 to +6, with most of Fe existing as ferrous (Fe2+) and 

ferric (Fe3+) irons. Due to its ability to be easily involved in redox reaction and form 

chelate complexes, Fe is a vital element for living organisms (Desforges and Oski 1993; 

Iannotti et al. 2006; Korcak 1987; Mori et al. 1991).  

In humans, hemoglobin and myoglobin require Fe as an essential component for 

O2 transportation (Saarinen and Siimes 1979), in which Fe serves as a loading dock to 

bind with O2. Iron deficiency in the human body causes anemia, which can result in 

severe symptoms, such as heart failure (Gil and Ferreira 2014; Gunawardena and Dunlap 

2012). The anemia caused by iron deficiency affects approximately one billion people 

worldwide (Vos et al. 2013). Furthermore, about 6% of the body’s iron is utilized in 

forming vital enzymes. For instance, cytochromes that are responsible for ATP 

generation via electron transport chain require Fe for their function (Kranz et al. 2009).  

In plants, Fe is also a vital element for maintaining normal growth. Fe serves as 

co-factor in many photosynthesis-associated enzymes, such as hydrogenase and 

chloroplast-ferredoxin (Briat et al. 2007; Fukuyama 2004; Tagawa and Arnon 1962). 

Also, iron is a component of glutamyl-tRNA reductase, which participates in chlorophyll 

biosynthesis in plants (Kumar and Söll 2000). As such, restricted iron acquisition in 

plants leads to chlorosis with limited chlorophyll biosynthesis and can lead to plant death 

(Mengel 1994). On the other hand, both humans and livestocks rely on plant foods as a 

source of iron, making the study of plants’ iron acquisition significant. 



3 

 

 
  

1.2 Iron homeostasis in plants 

Reduced availability of Fe impacts plant metabolism and restricts chlorophyll 

biosynthesis, leading to iron chlorosis (Brown 1961; Naeve 2006). However, excessive 

levels of Fe are not desirable for plants either (Thomine and Vert 2013). Excessive Fe 

could lead to the accumulation of reactive oxygen species (ROS) and can further damage 

the cell structure (Ravet and Pilon 2013). Hence, maintaining the right balance 

(homeostasis) of Fe in plants is crucial for normal growth and development.  

Plants have evolved two distinct strategies (I and II) to acquire iron from the 

environment (Hell and Stephan 2003; Kobayashi and Nishizawa 2012). While the 

graminaceous plants (the family Poaceae) use strategy II, other plants, dicotyledonous 

and non-graminaceous monocotyledonous plants, employ strategy I to acquire Fe 

(Schmidt 2003; Thomine and Lanquar 2011). The difference between these two strategies 

is that plants employing the strategy II mechanism release phytosiderophore, which is a 

Fe chelator, into soil to chelate Fe3+ ions and form a soluble complex that can be further 

transported by plant roots. On the other hand, plants that utilize strategy I, such as 

Arabidopsis thaliana, can only uptake free Fe2+ from soil. Furthermore, the existence of 

most Fe as Fe3+ makes Fe absorption from the rhizosphere problematic, because Fe3+, 

unlike Fe2+, has an extremely low solubility at neutral and basic pH (Schwertmann 1991).  

Plants utilize strategy I for iron uptake from the rhizosphere through three steps (Figure 

1): first, proton-pumps localized on plasma membrane release H+ into soil to acidify the 

surrounding rhizosphere causing lower pH. Lower pH increases the solubility of Fe3+. 

Then ferric chelate reductase is released to further reduce Fe3+ to Fe2+. The final step in 

iron absorption is performed by a plasma membrane transporter, IRT1, which moves Fe2+ 



4 

 

 
  

 

 

 

Figure 1. Iron uptake mechanism in Arabidopsis. Figure is modified from 

(Brumbarova et al. 2015). Arabidopsis employs Strategy I to uptake iron from soils. 

There are three major steps in this process: first, acidification of rhizosphere by AHA2 

protein to make more Fe3+ soluble; second, reduction of Fe3+ to Fe2+ by FRO2; at last, 

Fe2+ transport to the cytoplasm by IRT1 (Detailed description in Section 1.2 for 

individual components shown here).  
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from the rhizosphere into the cell through positive transportation (Schmidt 2003).  

In Arabidopsis, the H+ ATPase (AHA) family acts as a proton pump to acidify the 

rhizosphere (Palmgren 2001; Santi and Schmidt 2009). The acidification induced by iron 

deficiency is mostly performed by AHA2 (Santi and Schmidt 2009). The Ferric 

Reductase Oxidase/ Ferric Chelate Reductase (FRO) family of enzymes serve in the 

reduction of Fe3+ to Fe2+ in Arabidopsis. Reduction of Fe3+ by FRO was considered to be 

the rate limiting step in iron uptake (Connolly et al. 2003). There are eight putative FRO 

genes (FRO1 to FRO8) in Arabidopsis. Among them, the transcript levels of FRO2 and 

FRO3 were significantly increased in roots under iron-deficiency compared to other FRO 

genes (Mukherjee et al. 2006). Of the several FRO proteins that have been reported to act 

as ferric chelate reductase, FRO2 utilizes the majority of the reduced iron during iron 

uptake.  Overexpression of FRO2 in Arabidopsis resulted in improved growth under iron-

deficiency conditions (Robinson et al. 1999). The last step in iron uptake is performed by 

Iron Regulated Transporter 1 (IRT1), which transports Fe2+ into the cytoplasm (Vert et al. 

2002). Loss-of-function irt1 mutant shows chlorosis and lethality (Vert et al. 2002). 

Interestingly, IRT1 not only transports Fe into plants, but also transports other nutrient 

elements, such as zinc, copper, cobalt, and cadmium (Halimaa et al. 2014). Thus plants 

growing under iron deficiency tend to have more of the other metallic elements. 

 

1. 3 Molecular regulation of iron homeostasis in Arabidopsis 

Available evidence points to both transcriptional (Bauer et al. 2007, Long et al. 2010, 

Sivitz et al. 2012, Wang et al. 2007) and post-transcriptional regulation (Barberon et al. 
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2011; Kerkeb et al. 2008) for maintaining Fe homeostasis in plants. Current findings 

support the view that the iron homeostasis regulation pathway is centrally managed by 

FER-LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION FACTOR (FIT, 

previously known as FRU/bHLH29), which belongs to the Basic Helix-Loop-Helix 

(bHLH) transcription factor family (Bauer et al. 2007). FIT is essential for the induction 

of many Strategy I-related genes (Figure 2A), such as AHA2, FRO2, and IRT1 (Colangelo 

and Guerinot 2004; Jakoby et al. 2004). Furthermore, multiple Ib group bHLH family 

proteins, bHLH38, bHLH39, bHLH100, and bHLH101, were shown to form 

heterodimers with FIT to regulate the transcription of IRT1, AHA2, and FRO2 (Wang et 

al. 2013; Yuan et al. 2008). The loss-of-function fit1 mutant exhibits severe chlorosis 

which is lethal, but this lethality can be attenuated by the addition of supplementary iron. 

 Besides the FIT network, another bHLH transcription factor POPEYE (PYE) has 

been shown to participate independently from FIT pathway in iron homeostasis in 

Arabidopsis (Long et al. 2010) (Figure 2B). A transcriptome study revealed multiple 

genes related to iron storage (ferritin coding genes) and oxidative stress were highly 

expressed in pye-1 mutants under both iron-sufficient and –deficient conditions. Both 

bHLH39 and bHLH101 genes were up-regulated under both normal and iron-deficiency 

conditions in pye-1 mutant compared to WT plants. On the other hand, the IRT1 gene was 

down-regulated under iron- deficiency in the pye-1 mutant. Surprisingly, the pye1 mutant 

has a higher iron content than WT plants under both normal and iron deficient conditions 

(Long et al. 2010). These authors also indicated that the potential role of PYE in iron 

homeostasis is highly related to iron relocation after iron uptake from the rhizosphere. 
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Figure 2. A model depicting the molecular mechanism of the iron homeostasis 

regulatory pathway in Arabidopsis thaliana. There are two reported regulatory 

pathways that control iron homeostasis-related genes, FIT- (A) and PYE-dependent (B) 

pathways. Both FIT and PYE can be triggered under low-iron conditions, and repressed 

under high-iron conditions. (A) FIT can activate the transcription of group Ib bHLH 

transcription factors and then form heterodimer with them to regulate down-stream iron 

acquisition genes, such as AHA, FRO, and IRT. (B) PYE regulates another set of iron 

homeostasis-related genes; such as genes that participate in iron re-localization in plants.  
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1.4 Plant microRNAs  

MicroRNAs (miRNA) are a class of newly discovered single-stranded non-coding small 

RNA molecules. They are usually 21 nt in length (Voinnet 2009). The biogenesis of 

miRNAs (Figure 3) has been well illustrated in plants, where it starts with the 

transcription of single-stranded RNA (primary-miRNA, pri-miRNA) that are transcribed 

by RNA polymerase II. The RNA molecule subsequently forms an imperfectly matched 

hairpin-structure precursor (precursor of miRNa, pre-miRNA). The precursors are further 

processed by Dicer-like 1 (DCL1) proteins in conjunction with Nuclear cap-binding 

complex  (CBC), Serrate (SE), Hyponasty Leaves 1 (HYL1), and Hua Enhancer 1 

(HEN1), into miRNA/miRNA* duplex. This duplex is then transported into the 

cytoplasm. In the cytoplasm, miRNA is released and incorporated into a RNA-induced 

silencing complex (RISC), which negatively regulates target genes at the post-

transcriptional level by base-pairing to complementary targets (Dugas and Bartel 2004; 

Kidner and Martienssen 2005). MiRNAs perform their functions at the transcriptional 

and post-transcriptional levels. At the post-transcriptional level, they can either induce 

cleavage of target mRNAs by complementarily binding to target sites, or inhibit protein 

translation by physically blocking translation. At the transcriptional level, they affect the 

expression of target genes through miRNA-mediated DNA methylation (Hu et al. 2014; 

Wu et al. 2010). Based on a recent miRbase release (http://www.mirbase.org/, Release 21, 

June 2014), 325 miRNA families were registered for A. thaliana, of which 187 were 

experimentally examined. 

 

http://www.mirbase.org/
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Figure 3. An overview of miRNA biogenesis in plants. Pathway was modified from 

(Zhu 2008). Key enzymes in the biogenesis process are labelled beside respective arrows. 

The biogenesis of miRNAs starts with the transcription of pri-miRNA. The pri-miRNA 

subsequently forms an imperfectly matched precursor pre-miRNA. The precursors are 

further processed by DCL1 in conjunction with CBC, SE, HYL1, and HEN1, into 

miRNA/miRNA* duplex. This duplex is then transported into the cytoplasm. In the 

cytoplasm, mature miRNA is released and incorporated into RISC, which negatively 

regulates target genes at the post-transcriptional level by base-pairing to complementary 

targets. 

 



10 

 

 
  

Temporal and spatial accumulations of a few highly conserved miRNAs are 

crucial for maintaining proper plant development. For example, miRNA165 and miR166 

are involved in the determination of leaf patterns (Liu et al. 2009), miR156 and miR157 

govern the transition from vegetative to reproductive phase (Wu et al. 2009), and miR172 

participates in controlling floral development (Wollmann et al. 2010). Meanwhile, some 

miRNAs participate in plant nutrient acquisition. MiR398 was first reported to be related 

to stress tolerance in Arabidopsis. Cu/Zn superoxide dismutase (CSD) coding genes were 

identified as direct targets of miR398. Reduced levels of miR398 can increase plant 

tolerance to oxidative stress by directly up-regulating CSD1 and CSD2 genes (Sunkar et 

al. 2006). MiR395 and miR399 participate in sulphate and phosphorus homeostasis in 

Arabidopsis, respectively (Chiou 2007). Furthermore, a number of transcriptome studies 

indicate that the expression levels of many miRNAs are induced by nutrient deprivation 

(Pant et al. 2009; Sunkar et al. 2007). 

 

1.5 Characterization of miR156/SPL regulatory network in plants 

MiR156 is one of the most studied miRNAs and is highly abundant in many plant species 

with a strong sequence conservation (Cho et al. 2012; Hultquist and Dorweiler 2008; 

Wang et al. 2009; Wu et al. 2009; Wu and Poethig 2006). In Arabidopsis, there are 10 

miR156 precursors (pre-mir156a to pre-mir156j). The first eight precursors (pre-

miR156a to pre-miR156h) were identified experimentally (Reinhart et al. 2002; Xie et al. 

2005), whereas pre-miR156i and pre-miR156j were only predicted by computational 

analysis. Although the members of miR156 precursors do not share significant sequence 
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similarity, the mature miR156 sequences derived from each of these precursors are nearly 

identical (Schmidt and Bancroft 2011).  

In Arabidopsis, miR156 functions by targeting genes encoding members of a 

plant-specific transcription factor, SQUAMOSA PROMOTER BINDING PROTEIN-

LIKE (SPL) proteins. MiR156 represses SPL by complementary binding to SPL mRNAs 

leading to transcript degradation (Figure 4A). MiR156 was first reported as a regulator in 

plant developmental phase transition. In the juvenile stage, plants keep a high level of 

miR156 expression (Wu et al. 2009). MiR156 can further repress the expression of 

miR172 through targeting SPL9 and SPL10, which can activate transcription of pri-

miR172 (Wu et al. 2009). Once the plant matures, the transcript level of miR156 

gradually decreases and that of miR172 increases (May et al. 2013). Overexpression of 

miR156 in Arabidopsis causes a prolonged juvenile phase manifested by a slight delay in 

flowering and a drastic increase in number of rosette leaves (Wang et al. 2009; Wu and 

Poethig 2006). Another trait related to plant phase transition, the distribution of trichomes, 

is also regulated through the miR156/SPL network (Figure 4B). In vitro analysis showed 

that SPL9 protein can directly bind to the promoters of TRICHOMELESS1 and 

TRIPTYCHON, which are negative regulators of trichome formation, to activate their 

transcription (Yu et al. 2010). 

In addition to its role in regulating plant development, miR156 has also been 

shown to influence secondary metabolism in Arabidopsis (Gou et al. 2011; Wei et al. 

2012; Yu et al. 2014). The miR156-regulated SPL9 down-regulates anthocyanin 

biosynthesis by binding to bHLH proteins to physically block the formation of the MYB- 
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Figure 4 The miR156-SPL regulatory network in Arabidopsis thaliana. (A) An 

example of how miR156 represses SPL genes is shown. MiR156 can bind 

complementarily to its target mRNAs and result in cleavage of mRNA molecules. The 

arrows under SPL3 show the cleavage sites of miR156. (B) The SPLs can bind to 

genomic fragments containing a consensus T(N)CGTACAA sequence (with the core 

sequence being GTAC) located in target gene’s promoter region to activate its 

transcription. SPLs can also negatively regulate gene expression by physically blocking 

other transcription factor from binding to target gene’s promoter.  
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bHLH-WD40 complex that is required for activating transcription of anthocyanin 

biosynthetic genes (Gou et al. 2011). Furthermore, overexpression of miR156 enhances 

the carotenoid content in Arabidopsis and Brassica napus seeds (Wei et al. 2010, Wei et 

al. 2012).  

The function of miR156 has also been investigated in other plant species, such as 

Zea mays (Chuck et al. 2007), Medicago sativa (Aung et al. 2014), Panicum virgatum 

(Fu et al. 2012), and Lotus japonicus (Wang et al. 2014). The maize Corngrass1 (Cg1) 

mutant was first identified as a mutant with a more extended juvenile stage than WT. 

Further study indicated the phenotype of Cg1 was caused by overexpression of two 

tandem miR156 genes (Chuck et al. 2007). Overexpression of miR156 in multiple plant 

species, such as P. virgatum, M. sativa and L. japonicus, caused drastically changed 

phenotypes, such as reduced plant height, enhanced branching, smaller organ size, and 

slightly delayed flowering time. Furthermore, a correlation between the severity of 

phenotype and the expression level of miR156 was demonstrated. Higher transcript levels 

of miR156 yield more severe phenotypes compared to transgenic plants that exhibit 

moderate or lower transcript levels of miR156 in P. virgatum (Fu et al. 2012) and in M. 

sativa (Aung et al. 2014). Additionally, the role of miR156 in regulating symbiosis 

between legume and rhizobium was examined. In G. max, miR156 and miR172 showed 

reciprocal roles in symbiosis, with miR156 negatively regulating nodulation (Yan et al. 

2013). In L. japonicus, ectopic expression of miR156 represses nodulation and affects the 

transcription pattern of multiple nodulation-related genes, such as Early Nodulin, which 

is critical in the early stages of symbiosis (Wang et al. 2014).  
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1.6 SQUAMOSA PROMOTER BINDING-like proteins 

In total, the Arabidopsis genome contains 16 SQUAMOSA PROMOTER BINDING-

like(SPL) members. At least 10 of these (SPL2, 3, 4, 5, 6, 9, 10, 11, 13, and 15) are 

regulated by miR156. These miR156-targeted SPL genes can be divided into four groups 

based on phylogenetic tree analysis: SPL3/SPL4/SPL5, SPL2/SPL10/SPL11, SPL9/SPL15, 

and SPL6/SPL13 (Guo et al. 2008). SPL proteins play various roles in the plant life cycle 

(Figure 4). For instance, SPL3, SPL4, and SPL5 play a redundant role in controlling plant 

phase transition from juvenile to adult (Wu and Poethig 2006). Moreover, SPL3 partially 

participates in control of flowering through transcriptional regulation of FLOWERING 

LOCUS T (FT) under various ambient temperatures in Arabidopsis (Hwan Lee et al. 2012; 

Kim et al. 2012). SPL13 regulates the phase transition from cotyledons to the appearance 

of true leaves (Martin et al. 2010). SPL9 and SPL15 control shoot structure, as spl9/spl15 

double T-DNA knock-out mutant exhibited shortened plastochron during vegetative 

phase (Schwarz et al. 2008).  

Interestingly, a feed-back regulatory mechanism has also been discovered 

between SPL and miR156. The transcript level of miR156a precursor was elevated in 

transgenic plants harboring miR156-insensitive SPL9 and SPL10 (the binding sites within 

SPL9 and SPL10 were modified to prevent miR156 from recognizing them) driven by 

their native promoters (Wu et al. 2009). Furthermore, a feed-back regulatory pathway 

was also observed between miR156 and SPL15. The transcript level of miR156b was 

significantly reduced when SK156, a miR156 gain-of-function mutant, was 

complemented with expression of a miR156-insensitive SPL15 gene. Also, the binding 
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capability of SPL15 to the promoter of miR156b was demonstrated in vitro (Wei et 

al.2012).  

Additionally, non-miR156 targeted SPL genes also play versatile roles in plant 

growth. A non-miR156 target SPL gene, SPL7, was shown to be essential for copper 

homeostasis in Arabidopsis through regulation of miR398, in which SPL7 binds directly 

to the miR398 promoter in vitro and activates its expression. The spl7 mutant showed 

strong retardation when grown under copper deficiency condition (Yamasaki et al. 2009). 

SPL8, another gene not targeted by miR156, together with three miR156-targeted SPLs 

(including SPL2, SPL9, and SPL15) are involved in sporogenous cell formation and cell 

proliferation in Arabidopsis, all of which influence plant fertility (Xing et al. 2013).   

 

1.7 Proposed research 

Increased abundance of miR156 in Arabidopsis alters various aspects of plant growth and 

development, including varied shoot architecture, delayed flowering, and altered 

carotenoid and flavonoid biosynthesis (Wang et al. 2014; Wei et al. 2012; Wu et al. 

2009). Several recent studies have highlighted a potential role for miR156 in plant 

nutrient homeostasis and in plant response to environmental cues. When Arabidopsis 

plants were grown under potassium, nitrogen, and phosphorus deficiency conditions, 

miR156 was up-regulated in Arabidopsis roots (Hsieh et al. 2009). Other miRNAs 

involved in regulating plant growth and development are also regulated by various metal 

stresses (Mendoza-Soto et al. 2012).  
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 Plants adapt to increased biomass yield by increasing the acquisition of essential 

nutrient elements (Chatzistathis and Therios 2013). As plants (including Arabidopsis) 

that overexpress miR156 showed significantly enhanced vegetative shoot yield, I 

hypothesized that these plants must have an improved ability to uptake mineral nutrients, 

including iron (Fe). However, there are no reports in the literature associating the 

miR156/SPL network with iron homeostasis.  

In this dissertation, the effects of miR156 on iron homeostasis will be examined at 

the physiological and molecular levels. The thesis is divided into two parts. In the first 

part, I investigated global changes in gene expression caused by overexpression of 

miR156 in Arabidopsis. Total RNA from both roots and rosette leaves at the bolting stage 

were subjected to next-generation RNA-sequencing (NG-RNA-SEQ). Among the 

differentially expressed genes, a significant number of genes involved in iron uptake and 

storage were noticed. In the second part, physiological and molecular experiments were 

employed to investigate the potential role that miR156 and its target SPL9 and SPL15 

genes play in plant adaptation to iron deficiency. Effects of miR156 on iron homeostasis-

related genes, including AHA2, FRO2, FRO3, IRT1, FIT, PYE, bHLH38, 39, 100, and 

101, were tested in response to Fe-deficiency.  I then used Chromatin Immuno-

Precipitation (ChIP)-qPCR to investigate if SPL9 and SPL15 directly bind to promoters 

of genes encoding major transcription factors involved in iron homeostasis to regulate 

their expression.    
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Chapter II. Materials and Methods 

2.1 Plant materials and growth conditions 

Arabidopsis thaliana ecotype Columbia-0 was used in this work as wild-type (WT) plant. 

Transgenic Arabidopsis seeds that overexpress miR156 (35S:miR156) were kindly 

provided by Dr. Wang Jiawei (Wang et al. 2009). SPL9 and SPL15 double T-DNA 

knockout mutant (spl9/spl15) was acquired from the Arabidopsis Biological Resource 

Center (https://abrc.osu.edu/).  

 Plant seeds were first surface-sterilized by immersing in a solution containing 

70% ethanol and 5% Triton X-100 (Sigma, USA) for 10 min with gentle agitation. The 

seeds were then rinsed briefly with 95% ethanol, followed by rinsing with double 

distilled H2O (ddH2O) for at least 5 times. Stratification was performed to break seed 

dormancy by incubating surface-sterilized seeds in dark at 4 ºC for at least 48 h. After 

stratification, seeds were re-suspended in 0.1% agar solution then placed on growth 

medium [half-strength Murashige and Skoog (½MS) medium (Recipe shown in 

Appendix A) supplemented with 1% sucrose and 0.5% 2-(N-Morpholino) ethanesulfonic 

acid hydrate (MES), pH 5.7]. The plates containing seeds were placed in a growth room 

set at 21 ºC under 16h-light/8h-dark photoperiods with 100~110 µmol·m-2·sec-1 light 

intensity.  

 For NG-RNA-SEQ, seedlings were first germinated on plates until 7-day-old, 

then transplanted into commercial soil (Premier Tech Horticulture, Rivière-du-Loup, 

Quebec, Canada) and kept growing in a growth room. Rosette leaves and roots were 

collected from plants at the bolting stage (when primary shoots reach 5 mm in height). 

https://abrc.osu.edu/
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Fresh tissues were rapidly cleaned and gently dried with paper towel. The cleaned tissue 

samples were immediately frozen in liquid nitrogen and stored in ultra-freezer (-80 ºC) 

for further analysis.  

 To examine plants growth under iron-deficiency, seeds were grown on two types 

of medium: high-iron medium (½MS medium containing 50µM Fe·EDTA, 1% sucrose, 

and 0.5% MES, pH 5.7) or low-iron medium (Fe·EDTA was omitted from high-iron 

medium). For qPCR assay on iron homeostasis-related genes, seedlings were first grown 

on high-iron medium until 5-day-old. The seedlings were then transferred onto no-iron 

medium [low-iron medium supplemented with 300 µM Ferrozine (Sigma, USA)]. 

 

2.2 Isolation and quality control of total RNA from Arabidopsis 

The total RNA was isolated with RNeasy Plant Mini Kit (QIAGEN, USA). After 

isolation, RNA samples were treated with Turbo DNase I (Ambion, USA) at 37 ºC for 30 

min to remove genomic DNA contaminants. The Turbo DNase I was then removed by 

using DNase Inactivation Reagent (Ambion, USA) following the manufacture`s 

instruction. The integrity of total RNA was first tested by examining on 1% agarose gel 

and observing the 18S and 28S ribosomal RNA (rRNA) bands. The RNA samples, 

exhibiting band intensity ratio of 2:1 of 28S versus 18s rRNAs, were used for further 

experiments. For qRT-PCR, the total RNA was subjected to reverse transcription to 

produce cDNA (described in section 2.4). For NG-RNA-SEQ, the RNA samples were 

first diluted with nuclease-free ultra-pure water (Lifetechnologies, USA). The diluted 

samples were further tested by using Bioanalyzer (Agilent, USA) to examine the RNA 
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Integrity Number (RIN) as Illumina NG-RNA-SEQ requires RNA samples possess RIN 

greater than 8.  

 

2.3 Illumina next-generation RNA-sequencing 

The NG-RNA-SEQ was performed through a service contract by PlantBiosis (Lethbridge, 

AB) using Genome Analyzer II (Illumina, USA). Single-end sequencing matric was 

carried out. The sequencing libraries were multiplexed and amplified for 36 cycles. Six 

samples were loaded into each lane. The samples were distributed randomly across lanes. 

After sequencing, the raw data were analyzed by two steps: preparing raw data and 

mapping raw data to reference genome. For preparing raw data, basecalling and de-

multiplexing was performed using Illumina CASAVA 1.8.1 with default parameters. The 

de-multiplexed reads were checked with FastQC program. Then raw reads were trimmed 

with Cutadapt. After trimming, data was examined by FastQC again to ensure the quality. 

The contaminating sequences (such as chloroplastom, mitochondrion, ribosomal RNAs, 

etc.) were removed by using BOWTIE aligner. Finally, DESeq pipeline was used to map 

clean data to Arabidopsis genome (TAIR10, http://www.arabidopsis.org/). Statistical 

comparison was performed by using DESeq R/Bioconductor package. Features with false 

discovery rate < 0.2 (20% false positive rate) were considered differentially expressed 

between conditions. 

 

http://www.arabidopsis.org/
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2.4 cDNA synthesis and qRT-PCR 

A total of 0.2 μg of total RNA was subjected to reverse-transcription reaction by using 

qScript cDNA synthesis Kit (Quanta Biosciences, USA) according to the manufacturer's 

instructions. QRT-PCR was carried out in a 96-well plate on a C1000 Thermal Cycler 

and CFX96 Real-Time System (Bio-Rad, Canada), with PerfeCTa SYBR Green FastMix 

(Quanta Biosciences). All primers for qRT-PCR are listed in Appendix B. For validation 

of NG-RNA-SEQ results, β-actin (AT3G18780) and PP2AA3 (AT1G13320) were used 

as reference genes to calculate transcript levels. For iron deficiency test, SAND gene 

(AT2G28390) was used to normalize the data according to Han’s test, that transcript level 

of SAND is stable in the presence of 300 µM Ferrozine (Han et al. 2013). Transcript 

levels were calculated based on the ΔΔCT method by using GeneStudy (Bio-Rad, USA). 

At least two technical replicates were performed for each primer and template set. The 

results were shown as mean± standard error that derived from three biological replicates.  

 

2.5 Extract genomic DNA from Arabidopsis 

The genomic DNA was extracted from young rosette leaves by a simplified 

Cetyltrimethyl ammonium bromide (CTAB) method. The rosette leaves were first 

homogenized by grinding in mortar and pestle with liquid nitrogen. Approximately 0.1 g 

of ground samples was transferred into 1.5 ml microcentrifuge tubes. 1 ml of CTAB 

solution [2% CTAB (w/v), 1.4 M NaCl, 20 mM Ethylenediaminetetraacetic acid, and 100 

mM Tris-Cl (pH 8.0)] was added into the tube and gently mixed. Five-hundred μl 

chloroform was added into the solution and gently mixed by inverting the tube for 5 times. 
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The mixture was centrifuged at 4,000 g for 10 min. The supernatant was then transferred 

into a new tube and the leftover was discarded. Half volume of isopropanol was added 

into the supernatant and gently mixed by inverting the tubes for 5 times. The mixture was 

then centrifuged at 14,000 g for 15 min. The supernatant was discarded and the white 

pellet (nucleotides) at the bottom of tube was dissolved in 50 μl of ddH2O and treated 

with Ribonuclease A (Sigma, USA) at 37 C for 30 min. The DNA samples were then 

stored at -20 ºC for further application. 

 

2.6 Generation of pSPL:SPL-GFP fusion constructs by Gateway cloning 

The simplified procedure for gateway cloning is shown in Figure 5. The genomic DNA 

fragments (pSPL9:SPL9 and pSPL15:SPL15) containing about 2 kb native promoter and 

gene body without translation stop codon were first cloned by using Arabidopsis Col-0 

genomic DNA as a template. The PCR primers (Appendix B) were designed by using 

Primer3 software (http://biotools.umassmed.edu/bioapps/primer3_www.cgi ). The PCR 

program was: denaturing at 98˚C for 30 sec, then 35 cycles at 98˚C for 30 sec, 55˚C for 

30 sec, 72˚C for 4 min followed by final extension at 72˚C for 10 min. Phusion High-

Fidelity DNA Polymerase (New England Biolabs, Canada) was used for PCR 

amplification. The size of PCR amplicon was further examined on 1% agarose gel by 

comparing it with a DNA ladder (HyperLadder II, Medicorp Inc., Canada). The PCR 

products showing the expected size were then gel-purified by using QIAquick Gel 

Extraction kit (QIAGEN, Canada) following the manufacturer’s instructions.  

  

http://biotools.umassmed.edu/bioapps/primer3_www.cgi
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Figure 5. A simplified Gateway cloning procedure for generating pSPL:SPL-GFP 

fusion constructs. The blunt-end PCR products were first cloned into linearized 

pENTR/D-TOPO vector by directional cloning. This donor vector (blue circle) containing 

pSPL:SPL fragment (black portion) were further subjected into LR recombination with 

destination vector (pMDC107, red circle) to generate the final construct containing a 

fusion SPL-GFP gene driven by native SPL promoter. 
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The purified PCR products were ligated into pENTR/TOPO-D directional cloning vector 

(Lifetechnologies, Canada) by mixing 0.5 µL purified PCR product, 1µL Salt solution 

(provided with the vector), and 1µL TOPO vector. The mixture was incubated at room 

temperature for 2 h. This pSPL:SPL/pENTR vector was then transformed into 

Escherichia coli TOP10 competent cells (method for preparing competent cells described 

in section 2.7). The colonies that survived through antibiotic screen were subjected to 

colony PCR to confirm the inserted fragments. The plasmids were then subjected to 

sequencing to confirm the genomic sequence was identical with the template derived 

from ABRC. Once the cloned nucleotide sequence was confirmed, LR recombination was 

carried out to generate the final construct harboring pSPL:SPL and GFP fusion gene. The 

LR recombination was performed by using LR Clonase II Enzyme Mix (Life 

Technologies). First, 7µL of the pSPL:SPL/pENTR vector (100ng/µL), 1µL of 

destination vector (pMDC107, 100ng/ µL), and 2 µL of LR Clonase II Enzyme was 

mixed. The mixture was incubated at room temperature for at least 4 h. This final 

construct, which contains pSPL:SPL-GFP fusion gene, was then transformed into E. coli 

TOP10 competent cells. Further colony PCR was carried out to check the presence of 

final construct in E. coli.  

 

2.7 Preparing competent cells 

Starting culture was prepared from our lab stock and cultured overnight. The starting 

culture was then added into 200 ml of liquid LB medium (recipe shown in Appendix C). 

When OD600 reached 0.4, bacteria were collected by centrifuge at 3,000 g for 15 min at 

4 ºC. The pellet was washed with 100 mL of ice-cold 0.1 M MgCl2 solution. The cells 
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were harvested by centrifugation at 3,000 g for 15 min at 4 ºC. The supernatant was 

discarded and the pellet was re-suspended in 100 mL of ice-cold 0.1 M CaCl2 solution. 

The suspension was centrifuged again as in the previous step. The supernatant decanted 

and the pellet was re-suspended in 2 mL of ice-cold 100 mM CaCl2 and 20% glycerol 

solution. The re-suspended bacterial solutions were fast frozen in liquid nitrogen and 

stored in a -80 ºC freezer for future use. 

 

2.8 Transformation of competent bacterial cells 

Chemical transformation was used to introduce plasmids to E. coli. Briefly, the frozen 

competent cells were thawed on ice for 10 min. The plasmids was added to competent 

cells and gently mixed. The mixture containing competent cells and plasmid was 

incubated on ice for another 30 min. After incubation, the mixture was transferred into a 

water bath set as 42 ºC for 45 s, then quickly put back on ice for another 1 min. Two-

hundred µL of liquid LB medium was added into bacterial solution and incubated at 37 

ºC  for 1 h. Finally, the bacterial solution was spread evenly on LB solid medium 

containing the appropriate antibiotics. 

 A similar procedure was followed for transformation of Agrobacterium 

tumefaciens. After incubating the mixture of plasmids and competent cells, the solution 

was incubated at 37 ºC for 45 s, then quickly transferred into liquid nitrogen for 1 min. A 

portion of 200 µL liquid LB medium was added to the bacterial solution and incubated at 

28 ºC. The solution was then thawed and spread onto LB solid medium containing the 

appropriate antibiotics. 
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2.9 Arabidopsis transformation  

The Arabidopsis transformation was carried out using Agrobacterium-mediated floral-dip 

method as previously described in (Zhang et al. 2006).  

 

2.10 Determination of iron content in rosette leaves 

The iron assay kit ab83366 (Abcam, USA) was used to determine the iron content of 

rosette leaves. Rosette leaves were harvested and washed with 0.1 calcium nitrate 

solution, then rinsed in ddH2O 3 times. Clean leaves were dried in an oven at 65 ºC for 2 

d. Dried sample was ground into fine powder with a mortar and a pestle. Approximate 

0.01 g of dried sample was used to measure the iron contents. According to the iron assay 

kit, iron content was measured by comparing with a standard curve. 

 

2.11 Root acidification assay 

After stratification, plant seeds were placed on high-iron medium or low-iron medium 

(described in section 2.1) and allowed to grow vertically. Five-day-old seedlings were 

rinsed in assay solution (low-iron medium without MES and sucrose, supplemented with 

0.005% bromocresol purple), then transferred to 96-well containing 300 µl assay solution 

for 12 h. The absorption at 536 nm of assay solution was measured to indicate the proton 

extrusion.  
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2.12 Ferric (Fe3+) iron reduction assay 

The Ferric reduction assay was conducted to examine the roots’ ability to reduce Fe3+ to 

Fe2+. A set of seedlings were generated as described in section 2.11 for use in ferric 

reduction assay. The 5-day-old seedlings were first rinsed with 0.1 M calcium nitrate 

solution to remove excessive iron. The rinsed seedlings were then incubated in reduction 

assay solution (0.1M Fe·EDTA and 0.3M Ferrozine) for 1 h. The Fe2+·Ferrozine complex 

was quantified by measuring a molar extinction coefficient of 28.6 mM-1 ·cm-1 at 562 nm.  

 

2.13 Chromatin Immuno-Precipitation (ChIP)-qPCR assay 

The ChIP-qPCR assay was employed to evaluate the binding capability of SPL9 and 

SPL15 proteins on selected candidate genes. The ChIP assay was performed according to 

a previously described protocol (Gendrel et al. 2005) with some modifications. Recipes 

for buffers used in this assay are listed in Appendix D.  

Briefly, 500 mg of three-week-old transgenic seedlings harboring pSPL:SPL-GFP 

was first washed in ddH2O and gently blot dried. The samples were then cross-linked 

with 1% formaldehyde solution under vacuum for 15 min. The cross-linking was 

terminated by adding 0.125 M Glycine into the mixture and incubating under vacuum for 

another 5 min. Tissues were rinsed twice with 1X PBS and ground to fine powder by 

using liquid nitrogen. The powders were added to 10 ml of Extraction Buffer 1 in 50 mL 

conical centrifuge tubes and mixed well. The mixture was then filtered into a fresh tube 

on ice through two layers of Miracloth (Millipore, CANADA). The filtrate was 

centrifuged at 5,000 g at 4 ºC for 15 min to collect chromatin. The supernatant was 
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discarded and the pellet was re-suspended in 300 µl of extraction buffer 2. After 

centrifugation at 13,000 g for 10 min, the pellet was re-suspended in 100 µl of extraction 

buffer 3, layered on 400 µl of extraction buffer 3 and centrifuged at 16,000 g for 1 h at 4 

ºC. The pellet was re-suspended in 100 µl of nuclei lysis buffer by gentle pipetting. The 

re-suspended chromatin solution was sheared by sonication twice for 17s each at power 3 

(Sonic Dismembbrator, Fisher Scientific). The fragmented chromatin solution was then 

centrifuged at 13,000 g for 5 min. The supernatant was transferred to fresh tube and 

diluted to 1 ml in Dilution Buffer. 10 µl of this chromatin solution was retrieved and 

stored at -20 ºC serves as input DNA. The chromatin solution was divided equally to 3 

micro-centrifuge tubes and 40 µl of Protein agarose beads (Millipore) and GFP antibody 

Ab290 (Millipore) was added to each tube and incubated for 12 h at 4 ºC.  

The following day (after 12 h incubation), 50 µl of protein A- agarose beads was 

added to each tube and incubated at 4 ºC for 1 h. The beads were recovered by centrifuge 

at 3,800 g at 4 ºC for 30 s. The immune-complexes were then washed in a sequential 

order with following buffers: low-salt, high-salt, LiCl, and Tris-EDTA (TE) buffers. For 

each wash, the immune-complexes were washed at 4 ºC for 10 min. After each wash, the 

beads were collected by centrifuge at 3,800 g at 4 ºC for 30 s. After the last wash, the 

agarose beads were collected by centrifuge at 3,800 g at 4 ºC for 30 s and eluted in 200 µl 

of fresh Elution Buffer. Cross-linking of the immune-complexes was reversed by 

incubating at 65 °C for 4 h with 200 mM NaCl.  

On the third day, 2 µl of proteinase K (10 ng/ µl), 20 µl of 40 mM Tris-HCl (pH 

6.5) and 10 µl of 100 mM EDTA were added to each sample and incubated at 45 ºC for 1 

h. The DNA was purified with equal volume of phenol/chloroform and precipitated with 
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anhydrous ethanol, 0.3 M NaOAc (PH 5.2) and 15 µg of glycogen carrier (Roche, USA). 

The DNA pellet was washed with 70% ethanol and re-suspended in 200 µl of ddH2O. 

The DNA solution was stored at -20°C and ready for down-stream application. 

The DNA derived from the ChIP-assay was used to quantify specific regions of 

the promoter that have putative SPL binding site(s) (binding sites were defined by the 

presence of SPL binding core sequence, GTAC) using qPCR with promoter-specific 

primers flanking the putative binding site(s) (Appendix A). The locations of putative SPL 

binding sites and primers used in ChIP-qPCR are listed in Appendix F and G. The 

relative amount of enriched ChIP-DNA was normalized against % input DNA using the 

∆∆Ct method (ChIP-analysis, Life Technologies, http://www.lifetechnologies.com/).  

 

2.14 Gene Ontology (GO) Parametric Analysis of Gene Set Enrichment (PAGE) 

analysis 

GO analysis was performed by using the agriGO online analysis tool 

(http://bioinfo.cau.edu.cn/agriGO/ ) (Du et al. 2010). The differentially expressed gene 

accession numbers with corresponding expression fold-changes were submitted to 

Parametric Analysis of Gene set Enrichment (PAGE) online software and analyzed with 

default parameters (Kim and Volsky 2005). The Z-score derived from PAGE analysis 

indicates whether the specific GO term occurs more or less frequently than expected. The 

extreme positive Z-score indicates the GO term occurs more frequently than expected, 

whereas a negative number indicates that the term occurs less than expected. The cut-off 

http://www.lifetechnologies.com/
http://bioinfo.cau.edu.cn/agriGO/
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for Z-score is usually set at 2.0. Any number greater than 2.0 or less than -2.0 is 

considered significant. 

 

2.15 Confocal microscopy 

I investigated the production of SPL9-GFP and SPL15-GFP fusion proteins using 

confocal microscopy. The transgenic Arabidopsis plants harboring pSPL9:SPL9-GFP and 

pSPL15:SPL15-GFP respectively were grown on ½ MS medium for one month. The 

rosette leaves were first stained with 4’,6-diamidino-2-phenylindole (DAPI) to show the 

location of nuclei. Then the stained leaves were examined on a DM IRE2 inverted 

microscope equipped with an HCX PL APO 1.20 63× water-immersion objective. Images 

were collected in a 512×512 format on a TCS SP2 confocal system (Leica Microsystems, 

German) using a scanning speed of 40Hz. GFP was visualized by exciting the samples 

with the 514 nm argon laser line and collecting fluorescence with an emission window set 

at 520-580 nm.   

 

2.16 Statistical analyses 

For validation of NG-RNA-SEQ results by qRT-PCR, students’ T-test was used to 

examine the significant differences between WT and 35S:miR156 plants. Statistically 

significant differences among the three Arabidopsis genotypes were determined with one-

way Analysis of Variance (ANOVA), followed by post-hoc Duncan’s test at P value 

≤0.05.  
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Chapter III. Results 

3.1 Overexpression of miR156 resulted in extensive changes in the global gene 

expression pattern 

To investigate the transcriptome differences between WT plants and those overexpressing 

miR156 (hereafter denoted by 35S:miR156 plants), high-throughput Illumina NG-RNA-

SEQ was performed using total RNA extracted from rosette leaves and roots when WT 

plants were at the bolting stage. The isolated RNA was subjected to a series of quality 

control assays to ensure RNA integrity before being subjected to NG-RNA-SEQ.  

 

3.1.1 RNA sample preparation and quality control for Illumina sequencing 

For each type of tissue, total RNA was isolated from four independently pooled samples. 

4 µg of total RNA was diluted to a final volume of 100 µl. The quality of each RNA 

sample was first tested on 1% agarose gel. Bioanalyzer was used to further examine the 

RIN from each RNA sample (Figure 6). The analysis showed that RINs for samples were 

greater than 8.0, which indicated these samples were suitable for NG-RNA-SEQ.  

 

3.1.2 General results of NG-RNA-SEQ 

A total of 2,971 Mb nucleotides corresponding to 102.44 million raw reads were 

generated from NG-RNA-SEQ. A total of 6,644 and 1,944 genes could be detected in 

rosette leaf and root samples, respectively. Among them, 142 genes were differentially 

expressed (with at least two-fold change in expression) in root samples (50 were up-

regulated and 92 were down-regulated in 35S:miR156 roots compared with WT roots)  
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Figure 6. Examination of RNA quality using Bioanalyzer. Samples corresponding to 

different types of tissues and genotypes are underlined and labelled. Four independent 

biological replicates were used. The very left and right lanes on the upper and lower 

panels are ladders.   
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and 1,139 genes were differentially expressed in leaf samples (920 were up-regulated and 

219 were down-regulated in 35S:miR156 leaves compared with WT leaves) (Appendix E). 

Eight genes showed contradictory results between roots and rosette leaves, whereas 23 

genes showed the same trend in both sets of tissues (Figure 7). Among these 31 genes, 25 

have putative functions based on a TAIR search, and six genes are of unknown functions 

(Table 1).  

 

3.1.3 Validation of NG-RNA-SEQ results by qRT-PCR 

To validate the NG-RNA-SEQ results, a series of qRT-PCR assays were carried out using 

identical RNA samples. A total of 40 candidate differentially-expressed genes; i.e. 10 

candidate genes from each category were randomly selected. Based on the qRT-PCR 

results, 37 out of 40 candidate genes (92.5%) showed similar expression trends to those 

found in the NG-RNA-SEQ experiment (Figure 8).  

 

3.1.4 Transcriptomics of 35S:miR156 plants 

To determine how overexpression of miR156 affects certain classes of genes, Gene 

Ontology (GO) analysis was performed. In the leaf and root samples, 6142 out of 6644 

(92.44%) and 1764 out of 1945 (90.69%) genes, respectively, could be functionally 

annotated. Of the 1250 genes that showed significantly varied expression between WT 

and 35S:miR156 plants, 1225 (98%) could be functionally annotated (Figure 9A) using 

tools available online at http://www.ncbi.nlm.nih.gov/. Based on the Parametric Analysis 

of Gene Set Enrichment (PAGE) analysis (http://bioinfo.cau.edu.cn/agriGO/ ) of the roots, 

DNA binding (GO: 0003677, Z-score: 3.7), nucleic acid binding (GO: 0003676, Z-score: 

http://www.ncbi.nlm.nih.gov/
http://bioinfo.cau.edu.cn/agriGO/


33 

 

 
  

 

 

 

Figure 7. Venn diagram of differentially expressed genes derived from NG-RNA-

SEQ. Down and up in the figure indicate down-regulated and up-regulated genes in 

35S:miR156 plants compared to WT plants. 
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Figure 8. qRT-PCR using 40 randomly selected differentially expressed genes. Ten 

candidate genes were randomly selected from each category. The expression patterns of 

37 out of these 40 candidate genes showed consistency with the NG-RNA-SEQ data. 

QRT-PCRs were performed on the same samples used for NG-RNA-SEQ. Both β-actin 

and PP2AA3 were used as internal reference genes to calculate transcript levels by ΔΔCT 

methods. Results are shown as means ± standard error derived from four biological 

replicates. Asterisks indicate statistical significance at P<0.05. 
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Figure 9. Parametric Analysis of Gene Set Enrichment (PAGE) analysis of 

differentially expressed genes in rosette leaf (A) and root (B). Blue and green colors 

indicate positive and negative Z-scores, respectively. 
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Table 1. Genes with more than 2-fold change in expression were detected in both 

roots and rosette leaves. 

Genes Expression 

trend 

(35S:miR156 

vs WT) 

Description 

AT3G57260 ↓Leaf ↑Root beta 1,3-glucanase 

AT2G24850 ↓Leaf ↑Root Encodes a tyrosine aminotransferase that is responsive to treatment with 

jasmonic acid. 

AT3G10720 ↑ Leaf ↓Root Plant invertase/pectin methylesterase inhibitor superfamily 

AT4G35770 ↑ Leaf ↓Root Senescence-associated gene that is strongly induced by phosphate 

starvation. Transcripts are differentially regulated at the level of mRNA 

stability at different times of day. mRNAs are targets of the mRNA 

degradation pathway mediated by the downstream (DST) instability 

determinant. 

AT3G49780 ↑ Leaf ↓Root Phytosulfokine 3 precursor, coding for a unique plant peptide growth 

factor. Plants overexpressing this gene (under a 35S promoter), develop 

normal cotyledons and hypocotyls but their growth, in particular that of 

their roots, was faster than that of wildtype. 

AT5G64120 ↑ Leaf ↓Root Encodes a cell wall bound peroxidase that is induced by hypo-osmolarity 

and is involved in the lignification of cell walls. 

AT1G30730 ↑ Leaf ↓Root FAD-binding Berberine family protein 

AT3G26500 ↑ Leaf ↓Root Encodes PIRL2, a member of the Plant Intracellular Ras-group-related 
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 LRRs (Leucine rich repeat proteins). PIRLs are a distinct, plant-specific 

class of intracellular LRRs that likely mediate protein interactions, 

possibly in the context of signal transduction. 

AT3G18080 ↓ Leaf ↓Root B-S glucosidase 44 (BGLU44) 

AT5G54585 ↓ Leaf ↓Root unknown protein 

AT1G67865 ↓ Leaf ↓Root unknown protein 

AT2G41240 ↓ Leaf ↓Root bHLH100. Encodes a member of the basic helix-loop-helix transcription 

factor family protein. 

AT2G13810 ↓ Leaf ↓Root AGD2-like defense response protein 1 (ALD1) 

AT2G43590 ↓ Leaf ↓Root Chitinase family protein 

AT1G77270 ↓ Leaf ↓Root unknown protein 

AT2G25680 ↓ Leaf ↓Root Encodes a high-affinity molybdate transporter. Mutant has reduced 

concentrations of molybdate in roots and shoots, and reduced shoot and 

root length when growing on Mo-limited medium 

AT5G04150 ↓ Leaf ↓Root bHLH101. Encodes a member of the basic helix-loop-helix transcription 

factor family protein. 

AT1G72520 ↑ Leaf ↑Root PLAT/LH2 domain-containing lipoxygenase family protein 

AT4G34410 ↑ Leaf ↑Root encodes a member of the ERF (ethylene response factor) subfamily B-3 of 

ERF/AP2 transcription factor family. The protein contains one AP2 

domain.  

AT5G35935 ↑ Leaf ↑Root copia-like retrotransposon family 

AT4G30975 ↑ Leaf ↑Root Unknown gene 
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AT5G52050 ↑ Leaf ↑Root MATE efflux family protein 

AT2G05380 ↑ Leaf ↑Root glycine-rich protein 3 short isoform (GRP3S) 

AT1G12610 ↑ Leaf ↑Root Encodes a member of the DREB subfamily A-1 of ERF/AP2 transcription 

factor family (DDF1). 

AT4G24380 ↑ Leaf ↑Root unknown protein 

AT2G44840 ↑ Leaf ↑Root encodes a member of the ERF (ethylene response factor) subfamily B-3 of 

ERF/AP2 transcription factor family.  

AT1G74930 ↑ Leaf ↑Root encodes a member of the DREB subfamily A-5 of ERF/AP2 transcription 

factor family. 

AT1G43590 ↑ Leaf ↑Root unknown protein 

AT3G02840 ↑ Leaf ↑Root ARM repeat superfamily protein 

AT5G42380 ↑ Leaf ↑Root calmodulin like 37 

AT4G01360 ↑ Leaf ↑Root Encodes a protein related to BYPASS1 (BPS1). Regulates production of 

mobile compound: bps signal. 
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3.5), transcription regulator activity (GO: 0030528, Z-score: 2.9), and transcription factor 

activity (GO: 0003700, Z-score: 2.6) were over-represented in 35S:miR156 plants. Also, 

transporter activity (GO: 0005215, Z-score: -2.6) and catalytic activity (GO: 0003824, Z-

score: -2.7) were under-represented in 35S:miR156 roots. On the contrary, the GO 

analysis of the leaf transcriptome showed a different picture than the one derived from 

roots (Figure 9B). 35 GO terms were identified to be significantly affected, including 23 

in biological process, 10 in cellular component, and 2 in molecular function. The ones 

with the highest score were: response to stimulus (GO:0050896, Z-score 8.4) and 

response to stress (GO:0006950, Z-score: 8.3). 

 

3.1.5 Differential repression of SPL genes by miR156 in leaves and roots 

Based on previous reports in the literature, SPL genes were expected to be repressed in 

35S:miR156 plants. My NG-RNA-SEQ results were consistent with this expectation. As 

shown in Tables 2 and 3, a number of SPL genes were down-regulated in 35S:miR156 

plants compared to WT. Seven SPL genes, SPL4, 5, 6, 9, 10, 11, and 15, were down-

regulated in leaves of 35S:miR156 plants compared to WT (Table 2), whereas only SPL6, 

10, 11, and 15 were down-regulated in 35S:miR156 roots (Table 3). Based on the 

expression values derived from NG-RNA-SEQ results, miR156 appears to preferentially 

target SPL5, SPL9, and SPL15, as they are the only SPL genes showing more than 2-fold 

reduction in expression in 35S:miR156. The effect of miR156 on other SPL genes was 

less pronounced. 
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Table 2. Expression pattern of SPL genes in rosette leaves 

Genes 
Expression in 

WT 

Expression in 35S:miR156 

plants 

Log2(Fold-

Change) 
P-adj 

SPL4 90.40 71.83 -0.33 0.137 

SPL5 24.53 8.16 -1.59 9.27E-4 

SPL6 67.69 45.05 -0.59 3.98E-3 

SPL9 60.60 16.07 -1.92 6.43E-12 

SPL10 82.39 57.01 -0.53 4.64E-3 

SPL11 71.52 37.72 -0.92 1.64E-06 

SPL15 30.69 15.93 -0.95 4.44E-3 

 

 

 

 

 

 

 

 

 

 

 

 



41 

 

 
  

Table 3. Expression pattern of SPL genes in roots. 

Genes 
Expression in 

WT 

Expression in 35S:miR156 

plants 

Log2(Fold-

Change) 
P-adj 

SPL6 123.04 92.08 -0.42 0.023 

SPL10 121.65 60.77 -1.00 1.65E-11 

SPL11 45.74 29.04 -0.66 0.08 

SPL15 42.19 17.54 -1.27 8.15E-6 
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3.2 Iron homeostasis related genes are affected by overexpression of miR156 

The transcription patterns of multiple iron homeostasis-related genes were affected by 

overexpression of miR156 (Figure 10). These genes can be divided into three groups, I 

(genes coding Ferritins, which can store iron in plants), II (iron uptake-related genes), and 

III (genes coding for transcription factors that participate in iron homeostasis). In group I, 

FER4 was up-regulated in both roots and rosette leaves of 35S:miR156 plants. FER1 and 

FER3 were up-regulated in 35S:miR156 leaves, but were undetectable in roots. Genes in 

group II that participate in iron uptake and genes in group III coding for transcription 

factors were down-regulated in 35S:miR156 plants. Although the transcription levels of 

all group II genes were reduced, only AHA7 and FRO4 showed more than two-fold 

change in expression. Similarly, for the expression levels of transcription factors that 

participate in iron homeostasis, bHLH38, bHLH39, bHLH100, and bHLH101 showed 

more than 2-fold changes in expression in at least one sample type (Figure 10).  

 

3.3 MiR156 participates in iron homeostasis in Arabidopsis 

Based on the NG-RNA-SEQ results, I hypothesized that elevated transcript levels of 

ferritin coding genes may correspond to a higher level of iron content in 35S:miR156 

plants. I also hypothesized that the reduced transcript levels of key genes encoding 

enzymes and transcription factors that are involved in iron uptake may be caused by 

elevated iron content. To investigate these two hypotheses, a series of tests were 

performed on 35S:miR156 and WT plants to examine the impact of overexpression of 

miR156 on iron homeostasis, such as measurement of iron content,  
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Figure 10. Multiple iron homeostasis-related genes were affected by overexpression 

of miR156. Genes related to iron homeostasis were retrieved from NG-RNA-SEQ results. 

These genes were further divided into three groups: Gourp I, Ferritin coding genes; 

Gourp II, Iron-uptake related enzymes coding genes; Group III, genes coding for 

transcription factors that participate in iron-homeostasis, including AHA, FRO, and IRT 

families. Numbers are normalized counts derived from NG-RNA-SEQ. Yellow color 

indicates a lower expression level compared to red. nd, not detected. 
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determination of growth under iron deficiency, evaluation of the rhizosphere acidification 

level and the ability to reduce ferric iron.  

 

3.3.1 Iron content of rosette leaves is not affected by overexpression of miR156 

The iron content was measured in rosette leaves collected at the same developmental 

stage as those used for NG-RNA-SEQ. First, a standard curve for iron concentration 

ranging from 0 nM to 10 nM was generated (Figure 11A). The regression of the standard 

curve was 0.9998 indicating that it was accurate enough for calculating iron content. The 

results shown in Figure 11B indicate that the iron contents in WT, spl9/spl15, and 

35S:miR156 were not statistically different. 

 

3.3.2 Improved growth of 35S:miR156 plants under iron-deficiency condition 

To further examine the role of miR156 in plant response to iron stress, the growth of WT 

and 35S:miR156 was examined under different iron availability conditions (Figure 12A 

and 12B). To prove the effects of miR156 on plant growth under iron deficiency were 

exerted by down-regulating SPL genes, spl9/spl15 double knock-out mutant plants were 

also tested (Figure 12A and 12B). All genotypes showed similar growth patterns under 

regular ½MS medium supplemented with 50 µM Fe·EDTA (+Fe) (Figure 12A). Under 

the low iron condition, the best growth was obtained with 35S:miR156 plants (Figure 

12B), which showed elongated roots. The spl9/spl15 double knockout mutants had 

similar root length as 35S:miR156 plants (Figure 12C and12D), but with less lateral root 

branching (Figure 12E and 12F). WT plants, on the other hand, showed severely 
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Figure 11. Measurement of iron content in Arabidopsis rosette leaves. A, Iron 

standard curve was made according to the manual (Section 2.10); B, iron concentrations 

in three Arabidopsis plant genotypes. The results are shown as mean ± standard error of 

three biological replicates. Values shown with the same letter indicate no significant 

difference at P ≤ 0.05. 
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Figure 12. Growth of WT, spl9/spl15 and 35S:miR156 plants under iron deficiency.  

A, Plant growth on high iron medium (½ MS medium containing 50µM Fe·EDTA); and 

B, plant growth on low iron medium (Fe·EDTA was omitted from high iron medium) at 

10 days post germination. The root length (C and D) and branch numbers (E and F) were 

shown as mean ± standard error, which was calculated from three biological replicates. 

At least 10 seedlings were measured for each biological replicate. Values shown with the 

same letter under the same condition indicate no significant difference at P ≤ 0.05. 
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retarded growth compared to 35S:miR156 and spl9/spl15 mutants (Figure 12). Under 

low-iron condition, the number of lateral root of 35S:miR156 and spl9/spl15 plants were 

approximate 6 and 4 times higher compared to WT plants, respectively (Figure 12F). 

Regarding the shoots, 35S:miR156 plants developed more true leaves compared to the 

other two genotypes (Figure 10B).  

 

3.3.3 MiR156 has no effect on rhizosphere acidification 

To better understand why 35S:miR156 plants grew better than other plants under iron-

deficiency, an acidification assay was performed to measure the plant's ability to acidify 

its rhizosphere. In nature, higher acidification levels (lower pH) of plant roots' 

rhizosphere lead to a higher solubility of Fe3+, which can be transported into plants. In 

two independent experiments, 35:miR156 plants showed no statistically significant 

difference in rhizosphere acidification levels compared to spl9/spl15 and WT plants 

(Figure 13) under both high iron (+Fe) and low iron (–Fe) conditions.  

 

3.3.4 MiR156 affects iron reduction partially through targeting SPL9 and SPL15 

An important aspect in iron homeostasis is the regulation of iron transport which requires 

the reduction of Fe3+ to Fe2+. Plants utilize strategy I to uptake iron can only transport 

Fe2+ into roots but not Fe3+, hence the reduction of Fe3+ to Fe2+ is critical step in plant 

iron uptake. To examine the effects of miR156 on iron reduction, a Fe3+ reductase assay 

was carried out using WT, 35S:miR156, and spl9/spl15 double T-DNA knockout mutant 

roots. Under normal growth condition, all three genotypes had the same level of  
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Figure 13. Acidification of rhizosphere in WT, spl9/spl15, and 35S:miR156 plants 

under normal Fe condition (A) and iron-deficiency condition (B). 5-day-old plants 

grown on high-iron (½MS medium containing 50µM Fe·EDTA) and low-iron (Fe·EDTA 

was omitted from ½MS medium) were used to perform acidification assays. The 

acidification levels were quantified by measuring absorbance at A590 of assay solution 

containing pH indicator. A higher absorbance indicates higher pH. Results are shown as 

mean± standard error (n≥4). The same trends are observed from two independent 

biological replicates. Values shown with the same letter under the same condition 

indicate no significant difference at P ≤ 0.05. 
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acidification ability (Figure 14). However, when plants were grown under iron deficiency 

(low iron), both 35S:miR156 and spl9/spl15 showed higher iron reduction rates than WT. 

It should be noted also that the three sets of plants showed higher iron reduction rates 

under iron-deficiency condition than in the high iron medium. 

 

3.4 MiR156 regulates iron homeostasis-related genes through SPL9 and SPL15  

To find out the effects caused by overexpression of miR156 on the regulatory machinery 

of iron homeostasis, the expression patterns of genes coding major transcription factors 

and enzymes that participate in iron homeostasis were tested under iron-deficiency 

condition. Five-day-old plants were transferred onto ½ MS medium with or without iron 

for either two days or four days, and total RNA was extracted from the roots and used for 

qRT-PCR to test for the transcript levels of genes of interest.  

 

3.4.1 FIT and PYE were transiently up-regulated in the roots of spl9/spl15 and 

35S:miR156 plants under iron deficiency compared with WT plants 

Ferrozine, a strong ferric iron chelator, was used to eliminate free iron from the medium, 

because it is a strong ferric iron chelator that can bind to free Fe2+ ions. As FIT and PYE 

are two of the major transcription factors of iron homeostasis in Arabidopsis, their 

expression patterns were examined by qRT-PCR. FIT and PYE were induced under iron 

deficiency in all three plant genotypes, but spl9/spl15 and 35S:miR156 plants exhibited 

relatively higher PYE expression levels than WT after 48 h under iron deficiency 

condition (Figure 15A). For FIT gene, 35S:miR156 plants had higher expression levels  
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Figure 14. Ferric reduction in WT, spl9/spl15, and 35S:miR156 roots. 5-day-old 

plants grown on high-iron (½MS medium containing 50µM Fe·EDTA) and low-iron 

(Fe·EDTA was omitted from ½MS medium) were used to perform iron reduction assays. 

An iron chelator, Ferrozine, was used to quantify Fe2+ ions in assay solution. Ferrozine 

can bind with free Fe2+ ions to form a complex and shows purple color. The 

Fe2+·Ferrozine complex was quantified by measuring a molar extinction coefficient of 

28.6 mM-1 ·cm-1 at 562 nm. Results are shown as mean ± standard error derived from 

four biological replicates. Values shown with the same letter under the same condition 

indicate no significant difference at P ≤ 0.05. 
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Figure 15. Effect of iron deficiency on expression of PYE and FIT in roots of WT, 

spl9/spl15, and 35S:miR156 plants. A and B, Relative transcript levels of PYE after 48h 

and 96h under iron deficiency. C and D, relative transcript levels of FIT after 48h and 96 

h under iron deficiency. The transcript level was first calculated by using ΔΔCT method.  

SAND was used as internal reference gene for calculation. The mean of transcript levels 

derived from iron deficiency condition (no-iron medium, described in Section 2.1) is 

reported relative to the transcript levels derived from normal growth condition (high-iron 

medium, described in Section 2.1) control in the same genotype. The qRT-PCR results 

are shown as mean± standard error of three biological replicates. Values shown with the 

same letter under the same condition indicate no significant difference at P ≤ 0.05. 
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than WT and spl9/spl15 after 48 h iron deficiency treatment (Figure 15C). In spl9/spl15 

double mutant, the increase in transcript levels of both FIT and PYE was delayed relative 

to 35S:miR156 plants (Fig. 15B and D). 

 

3.4.2 MiR156 has different effects on the expression patterns of bHLH38, bHLH39, 

bHLH100, and bHLH101 under short term iron deficiency  

Due to the critical roles of bHLH38, bHLH39, bHLH100, and bHLH101 in plant iron 

homeostasis (Wang et al. 2013; Yuan et al. 2008), and the NG-RNA-SEQ results 

indicating that these genes were down-regulated in 35S:miR156 plants, their expression 

patterns under short term iron deficiency were tested in WT, spl9/spl15, and 35S:miR156 

plants. In all three genotypes, bHLH38, bHLH39, bHLH100, and bHLH101 were induced 

by iron deficiency after 48 h and 96 h relative to plants grown under control conditions 

(Figure 16). Different bHLH genes were affected differently by miR156. Under iron 

deficiency, the expression of bHLH38 was induced by overexpression of miR156 after 48 

h iron deficiency stress (Figure 16A). But after 96 h, the transcript level of bHLH38 was 

relatively low in 35S:miR156 plants compared to WT and spl9/spl15 plants. BHLH39 and 

bHLH101, on the other hand, showed similar expression patterns under iron deficiency, 

as both of them were repressed by miR156 after 48 h and 96 h of iron deficiency stress 

(Figure 16B and D). The transcript level of bHLH100 was not affected in spl9/spl15 and 

35S:miR156 plant roots after 48 h iron deficiency (Figure 16C).  
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Figure 16. Expression patterns of group I bHLH transcription factors after 48h and 

96h under iron deficiency. The transcript level was first calculated by using ΔΔCT 

method. SAND was used as internal reference gene for calculation. The transcript levels 

of candidate genes derived from iron deficiency condition (no-iron medium, described in 

section 2.1) and the transcript levels derived from normal growth condition (high-iron 

medium) were tested. The qRT-PCR results are shown as mean± standard error of three 

biological replicates. Values shown with the same letter under the same condition 

indicate no significant difference at P ≤ 0.05. 
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3.4.3 MiR156 transiently upregulates iron uptake genes 

To assess the effect of miR156 on iron uptake under iron deficiency, we tested for 

expression of key genes involved in this transport, including IRT1, AHA2, FRO2, and 

FRO3. My analysis revealed that the transcription levels of IRT1, FRO2, and FRO3 were 

enhanced in all three sets of plants under iron deficiency (Figure 17A, C, and D). AHA2, 

on the other hand, was only induced under iron deficiency in 35S:miR156 plants (Figure 

17B) 

 

3.5 SPL9 and SPL15 bind to the promoters of FIT and PYE genes 

To test whether miR156 affects iron homeostasis directly through miR156/SPL 

regulatory network, ChIP-qPCR assay was used to determine the binding capability of 

SPL9 and SPL15 to the promoters of FIT and PYE. To examine whether SPL-GFP 

fusions were produced, the SPL9-GFP and SPL15-GFP fusion proteins were examined in 

transgenic pSPL9:SPL9-GFP and pSPL15:SPL15-GFP Arabidopsis plants using 

confocal microscopy. As the confocal microscopy showed, both SPL9-GFP and SPL15-

GFP were co-localized with DAPI in the nucleus (Figure 18). This result indicated that 

the transgenic plants possess translated fusion proteins and are suitable for further 

examination. According to the ChIP-qPCR results, both SPL9 and SPL15 proteins could 

bind to the promoters of FIT (Figure 19) and PYE (Figure 20) genes. For FIT promoter 

(Figure 19A), both SPL9 and SPL15 showed similar binding strength to the putative SPL 

binding site I (Figure 19B). The binding capabilities of SPL9 and SPL15 to the putative  
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Figure 17. Expression patterns of iron uptake genes under iron deficiency condition. 

The transcript level was first calculated by using ΔΔCT method. SAND was used as 

internal reference gene for calculation. The transcript levels of candidate genes derived 

from iron deficiency condition (no-iron medium, described in section 2.1) and the 

transcript levels derived from normal growth condition (high-iron medium) were tested. 

The qRT-PCR results are shown as mean± standard error of three biological replicates. 

Values shown with the same letter under the same condition indicate no significant 

difference at P ≤ 0.05. 
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Figure 18. Localization of SPL9-GFP (upper panels) and SPL15-GFP (lower panels). 

The SPL9-GFP and SPL15-GFP fusion proteins were first confirmed in transgenic plants 

harboring pSPL9:SPL9-GFP and pSPL15:SPL15-GFP. Because SPL proteins are 

transcription factors and localized in nucleus, the SPL-GFP fusion protein should be 

localized in nucleus. In vivo localization of the SPL-GFP fusion protein in leaves of 

positive transformants (A and E), the same area of leaf was stained with DAPI (B and F), 

which was used as a marker of nucleus. Brightfield images of the same leaf region (C and 

J) were captured. Merged pictures showing SPL-GFP and DAPI are co-localized in 

nucleus (D and H). 

 

 

 

 

 

 



57 

 

 
  

 

 

 

 

Figure 19. Detection of SPL9 and SPL15 binding to FIT promoter by ChIP-qPCR. 

(A) Schematic representation of the promoter region of FIT showing putative SPL 

binding sites (indicated by asterisks). Numbers in brackets indicate the positions of 

binding sites relative to the translation start codon of FIT. Roman numerals indicate the 

sites were tested by qPCR. nd, not detected.  (B) ChIP-qPCR analysis on putative SPL 

binding site I. Each ChIP-qPCR histogram indicates the mean ± standard error of four 

biological replicates. Enrichment values were normalized to input. Genotype SPL9 and 

SPL15 indicate pSPL9:SPL9-GFP and pSPL15:SPL15-GFP transgenic plants. 
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Figure 20. Detection of SPL9 and SPL15 binding to PYE promoter by ChIP-qPCR. 

(A) Schematic representation of the promoter region of PYE. Asterisks indicate locations 

of putative SPL binding sites on PYE promoter. Numbers in brackets indicate the position 

of binding sites relative to the translation start codon of PYE. Roman numerals indicate 

the sites were tested by qPCR.  (B-E) ChIP-qPCR analysis on putative SPL binding sites 

I, II, III, and IV, respectively. Each ChIP-qPCR histogram indicates the mean ± standard 

error of four replicate results. Enrichment values were normalized to input. Genotypes 

SPL9 and SPL15 indicate pSPL9:SPL9-GFP and pSPL15:SPL15-GFP transgenic plants. 
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binding site II in FIT promoter were not conclusive for me to draw any conclusion, 

whereas binding site III could not be examined due to the very high background 

generated in the ChIP-qPCR assay. For PYE promoter (Figure 20A), SPL15 was found to 

bind to sites I, II, and IV (Figure 20B, C, D), but SPL9 could bind only to site IV (Figure 

19E). 
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Chapter IV. Discussion 

4.1 Research overview 

Since the discovery of the first miRNA (lin-4) back in the early 1990s (Lee et al. 1993), 

major advances have been made in investigating the function of miRNAs in animals and 

plants (Ambros 2004; Bartel 2004). MiR156 is one of the most studied miRNAs in plants. 

Functional characterization of miR156 revealed it has versatile roles in multiple aspects 

of plant growth and development. In this project, I attempted to identify novel functions 

for miR156 that have not been reported in the literature. To that end, Next-Generation 

RNA-Sequencing (NG-RNA-SEQ) was first employed to profile the differences in 

transcriptomes between miR156 overexpression line (35S:miR156) and wild-type (WT) 

plants at the bolting stage. The results of NG-RNA-SEQ revealed a cluster of iron 

homeostasis-related genes that were differentially expressed in 35S:miR156 relative to 

WT. This finding led me to hypothesize that the miR156/SPL regulatory network 

participates in regulating iron homeostasis in Arabidopsis.  

 

4.2 Overexpression of miR156 impacts global gene expression 

NG-RNA-SEQ results revealed that 1,139 and 142 genes were differentially expressed in 

rosette leaves and roots, respectively, in 35S:miR156 plants compared to WT. The 

number of differentially expressed genes in leaves is about eight times higher than that in 

roots. So far, no direct evidence indicates that overexpression of miR156 influences the 

root architecture in Arabidopsis. Meanwhile, our results indicated that when WT and 

35S:miR156 plants are grown under normal condition for 10 days, their roots showed no 
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significant morphological difference. On the other hand, overexpression of miR156 in 

Arabidopsis leads to constant emerging of rosette leaves and delayed flowering (Wei et al. 

2012). The differences in morphology between shoot and root might explain the higher 

number of differentially expressed genes in rosette leaves relative to roots of 35S:miR156. 

The present NG-RNA-SEQ results mirror to some extent results of a similar analysis 

conducted in rice, where the expression of over 3000 genes was found to be affected by 

miR156 overexpression (Xie et al. 2012), with most of the 3,000 genes being up-

regulated in leaves. Although Arabidopsis and rice are not evolutionarily closely related, 

the functional conservation of miR156 among species may to some extent explain the 

similarity in the large number of genes that were differentially expressed.  

Since the Gene Ontology (GO) can display only some broad or specific 

distribution of genes, the interesting question will be uncovering the correlation between 

GO distribution within a given reference genome and the global gene expression pattern. 

Based on this purpose, Parametric Analysis of Gene Set Enrichment (PAGE) which 

combines the expression value and GO analysis to provide a more accurate view of 

unexpected genes was carried out in this study.  

Comparing the PAGE results between shoots and roots, it is obvious that the GO 

terms with significant Z-scores differentially occurred. Regarding the GO term response 

to stimuli in the rosette leaves, it is plausible that more stress existed in 35S:miR156 

plants than in WT if as high as 8 times Z-score was shown. On the contrary, response to 

stimuli was not significantly observed in roots. In addition, the transcription regulator 

activity also displayed different change profiles in shoots, and unexpectedly also in the 

roots. All these results suggested that miR156 may play essential role in shoot and root 
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development and in stress response. However, interpreting this information is challenging 

due to the broad biological categories in the GO system and the coverage of NG-RNA-

SEQ data.  

 

4.3 Overexpression of miR156 affects multiple iron homeostasis genes  

After obtaining NG-RNA-SEQ data, I manually examined the list of differentially 

expressed genes. Multiple iron homeostasis-related genes were affected by 

overexpression of miR156 (Figure 10). These differentially expressed genes were further 

divided into three groups: I, ferritin coding genes; II, genes coding transcription factors 

have role in iron homeostasis; III, iron uptake enzyme coding genes.  Among the group I, 

only FER4 was detectable in both roots and leaves. FER1, FER3, and FER4 showed 

enhanced expression in leaves of 35S:miR156 compared to WT. I proposed that the 

elevated iron content in 35S:miR156 may explain the high expression of genes encoding 

iron storage proteins, including FER1, FER3, and FER4, in rosette leaves of 35S:miR156 

plants. This may also explain why 35S:miR156 plants show decreased expression of 

genes that encode transcription factors and enzymes that participate in iron uptake, 

including AHA2, FRO2, and Ib group bHLH transcription factors.  

Among the differentially expressed genes, two encoding bHLH family of 

transcription factors were down-regulated in rosette leaves and roots of 35S:miR156 

plants compared to WT (Table 2). In Arabidopsis, the roles of these two genes are closely 

related to the regulation of iron homeostasis. Loss-of-function bhlh100/bhlh101 double 

mutant produced hypersensitivity to iron deficiency. Interestingly, the bhlh100/bhlh101 
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mutant exhibits more rosette leaves at flowering compared to WT (Sivitz et al. 2012). 

One of the most pronounced phenotypes caused by overexpression of miR156 in 

Arabidopsis is the enhanced rosette leaf number. Due to the similarity in phenotype 

between 35S:miR156 and bhlh100/bhlh101, it is tempting to suggest a crosstalk between 

miR156/SPL gene regulatory network and bHLH100/bHLH101 signalling pathway.  

 

4.4 MiR156 affects plant growth under iron deficiency but not iron contents 

There was no statistically significant difference in iron content between rosette leaves of 

WT and 35S:miR156 in my experimental set-up. Nevertheless, the difference in the 

expression patterns of iron homeostasis-related genes between the two plant lines 

warranted further investigation of their growth under iron deficiency.  

Under normal growth conditions, there was no difference in shoot morphology 

between 10-day-old spl9/spl15, 35S:miR156 and WT plants, neither was there a 

significant difference in root architecture between the three sets of plants when grown 

under normal condition. On the other hand, when plants were grown in a low-iron 

medium, root elongation was severely repressed in WT compared to spl9/spl15 and 

35S:miR156 plants. Both spl9/spl15 and 35S:miR156 plants maintained similar root 

length under both growth conditions, but 35S:miR156 had the most lateral root branches 

compared to spl9/spl15 and WT. These results may indicate that overexpression of 

miR156 can enhance plant growth under iron deficiency conditions at least partially by 

targeting SPL9 and SPL15.  
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It is worth noting that iron accumulation in mature rosette leaves was not affected 

by miR156, as WT, spl9/spl15, and 35S:miR156 plants had similar levels of iron in 

rosette leaves. However, NG-RNA-SEQ results clearly showed that the iron uptake-

related genes were down-regulated in 35S:miR156 plants at the bolting stage. This may 

suggest the involvement of other signalling pathways in regulating iron accumulation to 

maintain iron levels at a certain range and avoid the negative impacts of excessive iron, 

which may cause increased reactive oxygen species (ROS) stress (Connolly and Guerinot 

2002). Combined, these findings suggest that overexpression of miR156 in Arabidopsis 

acts to enhance plant growth but only under low-iron condition. 

 

4.5 Overexpression of miR156 affects ferric reduction but not rhizosphere 

acidification 

Schmidt et al. (2000) used the whole root as a unit to test root ferric reduction. This was 

done to avoid inaccurate results due to the non-linear relationship between reduction 

ability and root mass (Schmidt et al. 2000). In my study, there were significant 

differences in root length and lateral branch number (Figure 12C and E) between WT, 

spl9/spl15, and 35S:miR156 when grown under iron deficiency, and so I also used the 

whole root to study ferric reduction and rhizosphere acidification. These processes are 

two major steps in iron acquisition. Since 35S:miR156 plants showed better growth than 

WT under iron deficiency, it is possible that plants with enhanced miR156 expression 

have a better ability to mobilize iron from the rhizosphere.  
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Ferric reduction ability was increased in all three genotypes under iron deficiency. 

However, when grown under iron-deficiency, both 35S:miR156 and spl9/spl15 roots 

showed higher levels of ferric reduction rate when compared with WT plants. This could 

partially explain why 35S:miR156 and spl9/spl15 have better growth under iron 

deficiency. Ferric reduction is catalyzed by FRO family of proteins in Arabidopsis 

(Connolly et al. 2003, Mukherjee et al. 2006, Robinson et al. 1999). FRO2 contributes 

the most to the reduced ferric iron in the rhizosphere (Connolly et al. 2003). There is also 

bioinformatics evidence indicating that FRO3 is localized to the mitochondria and might 

contribute to mitochondrial iron homeostasis (Jain et al. 2014). FRO7 is critical for iron 

mobilization into the chloroplast. In fro7 loss-of-function mutant, plant chloroplasts 

contain 33% less iron compared to WT plants (Jeong and Connolly 2009). My NG-RNA-

SEQ results showed that FRO2, FRO3, and FRO7 were down-regulated in 35S:miR156 

roots grown under normal conditions, suggesting that the overexpression of miR156 not 

only affect iron uptake from the rhizosphere but also iron relocation within the plant.  

 

4.6 MiR156 up-regulates iron homeostasis genes under iron deficiency 

To gain an understanding of why 35S:miR156 plants maintain normal growth under iron 

deficiency, the expression patterns of major iron homeostasis-related genes were 

examined in roots of WT, spl9/spl15, and 35S:miR156 plants. The genes encoding two 

major transcription factors FIT and PYE, which are involved in iron homeostasis, were 

both up-regulated with different expression levels in WT, spl9/spl15, and 35S:miR156 

plants under iron deficiency condition.  
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As a key regulator of iron homeostasis, FIT plays a critical role in activating the 

transcription of major iron homeostasis-related genes, such as AHA2, IRT1, and FRO2 

(Jakoby et al. 2004; Yuan et al. 2008). Under iron deficiency condition, FIT was up-

regulated in all three genotypes after 48- and 96-h iron deprivation stress, more FIT 

expression was detected in roots of 35S:miR156 compared to WT and spl9/spl15 after 48 

h. It seems that FIT was up-regulated in spl9/spl15 in a transient manner; i.e. up until 96 

h of iron-deficiency stress. The enhanced level of FIT makes it possible that the 

transcription of down-stream genes that participate in iron homeostasis could be induced 

in 35S:miR156 plants. However, the fact that such a miR156 effect could only be 

partially mimicked in loss-of-function of SPL9 and SPL15 mutant shows that other SPL 

proteins may play a redundant role in regulating the transcription of FIT gene. Thus, the 

better growth of 35S:miR156 plants (relative to WT) under low-iron condition can be 

partially explained by a transient elevation in FIT transcript level.  

PYE is critical for inducing about one third of the genes involved in Arabidopsis 

response to iron-deficiency (Long et al. 2010). Under iron-deficiency condition, loss of 

PYE function leads to severe plant growth retardation, including chlorosis and repressed 

root elongation. Interestingly, the pye-1 mutant had elevated iron content, decreased 

tolerance to iron deprivation, decreased iron reductase activity, and a weaker iron 

deficiency response compared to WT (Long et al. 2010). These results indicate that PYE 

is critical in activating transcription of iron homeostasis-related genes as well as iron 

relocation within the plant. In my study, I found PYE to be up-regulated under iron-

deficiency after 48- and 96-h treatment in both spl9/spl15 and 35S:miR156 roots 

compared to WT plants. This result suggests that overexpression of miR156 not only 
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affects the transcription of iron homeostasis-related genes, but may also influence the iron 

relocation within plants. 

BHLH38, bHLH39, 100, 101 belong to the Ib subgroup of basic helix-loop-helix 

transcription factors. These genes have been shown to play critical roles in root response 

to iron deficiency (Sivitz et al. 2012; Yuan et al. 2008). In this research, I found this 

group of bHLH genes to be up-regulated under iron deficiency condition in WT, 

spl9/spl15, and 35S:miR156 plants. But the expression of bHLH38, bHLH39, bHLH100, 

and bHLH101 showed different patterns in different sets of plants. After 48 h of growth 

under iron deficiency, only bHLH38 was slightly up-regulated in 35S:miR156, whereas 

the expression levels of bHLH39 and bHLH101 were transiently suppressed in this plant. 

Moreover, the expression of bHLH100 was not affected by overexpression of miR156 or 

loss-function of SPL9 and SPL15, indicating that these group Ib bHLH transcription 

factors may participate in different levels of iron homeostasis regulation. 

Furthermore, although FIT is required for activating transcription of bHLH38, 

bHLH39, bHLH100, and bHLH101, the expression of these Ib group bHLH genes was 

not affected by overexpression of FIT (Wang et al. 2007). This indicates that another 

regulatory pathway may be coordinating with the FIT-dependent pathway to regulate 

plant iron homeostasis through selective regulation of Ib group bHLH genes. Thus, the 

increased FIT level in 35S:miR156 plants did not yield enhanced expression of bHLH39, 

100, and 101, suggesting that miR156 can only participate in FIT-dependent regulation of 

iron homeostasis. 

Regarding the genes that participate in iron uptake, the transcript levels of AHA2, 

FRO2, FRO3, and IRT1 were transiently up-regulated in 35S:miR156 plants. Although 
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AHA2 is critical for Arabidopsis rhizosphere acidification, higher transcript levels of 

AHA2 did not increase the acidification ability of 35S:miR156 roots. This result indicates 

that miR156 can only participate in the transcriptional regulation of AHA2 but not in the 

post-transcriptional regulation. Furthermore, the putative role of FRO3 in mitochondrial 

iron homeostasis indicates a potential role for miR156 in intracellular iron relocation. An 

important point here is that spl9/spl15 double mutant could not mimic the effects caused 

by overexpression of miR156 on these genes, indicating a possible redundant role for 

other SPLs in regulating these genes, and that a higher order of knockout mutant may be 

required to fully mimic the effects caused by overexpression of miR156. 

 

4.7 Cross talk between phytohormone, miR156, and iron homeostasis 

MiR156 is induced in roots by phosphorus-, nitrogen-, and potassium-deficiency, with 

the highest induction occurring under nitrogen-deficiency (Hsieh et al. 2009).  By 

combining the gene expression patterns of iron homeostasis-related genes and results of 

plant growth under iron deficiency, a putative role for miR156 in iron homeostasis can be 

proposed. Furthermore, as phytohormones, especially auxin and ethylene play important 

roles in the regulation of iron homeostasis (Chen et al. 2010; Garcia et al. 2011; Giehl et 

al. 2012; Lingam et al. 2011), a cross talk between miR156 and phytohormones should 

not be overlooked.  

Relationships between miR156, auxin, and gibberellin signalling pathways have 

been proposed and partially examined (Xing et al. 2013; Yu et al. 2012). Recently, a 

grafting-based experiment showed that miR156 could serve as a mobile messenger 

between shoots and roots (Bhogale et al. 2014). Another study examined the ferric 
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reduction ability of a number of mutants with defects in auxin, cytokinin, ABA, and 

ethylene signalling pathways. The study found that none of the mutants totally lost the 

ability to reduce iron, indicating that phytohormones are not required for the induction of 

iron reduction activity (Schmidt et al. 2000). The authors further suggested that iron 

reduction activity caused by hormonal defects could be induced by altered root 

architecture, especially the increased root surface area in some of the mutants. Based on 

the close relationship between miR156 and phytohormones, it is probable that these 

hormones help 35S:miR156 plants achieve better growth under iron deficiency.   

Previous studies of the expression patterns of FIT and IRT1 indicated that iron 

uptake occurs mainly in the root hair zone (Jakoby et al. 2004; Seguela et al. 2008). 

Although the enhanced iron-reductase activity in Arabidopsis can be attributed to 

transient up-regulation of PYE gene, which then activates transcription of FRO2 and 

FRO3 genes, how other iron uptake related genes, such as AHA2, IRT1 are activated is 

still unclear. Furthermore, the spl9/spl15 double mutant can partially recover the 

phenotype of 35S:miR156 plants under low-iron condition, but only part of the iron 

homeostasis related genes tested in this study were affected at the transcriptional level by 

loss-of-function of SPL9 and SPL15, including FIT, PYE, and bHLH101. This indicated 

that other SPLs, with SPL9 and SPL15, play redundant roles in regulation of plant iron 

homeostasis.  

It is also interesting to note that the core sequence of the SPL binding sequence 

(GTAC) is identical to the reported copper responsive element (GTAC). The binding 

capability of SPL to the copper responsive element has also been shown in 

Chlamydomonas (Kropat et al. 2005). Furthermore, a non-miR156 targeted SPL gene, 
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SPL7, is a key regulator in copper-homeostasis in Arabidopsis (Yamasaki et al. 2009). 

Copper is also involved in crucial processes including ethylene perception, and oxidative 

stress response (Pilon et al. 2006). In Arabidopsis, the induction of ferric reductase 

activity is caused by synergistic iron and copper deficiency, and indicates that the same 

set of genes may be responding to both Fe and Cu deficiency (Romera et al. 2003). All 

these results indicate that SPL proteins might participate in both iron and copper 

homeostasis, and miR156 can partially participate in this pathway. 

There are a large number of transcriptomic studies on iron homeostasis in 

Arabidopsis, but none of them showed miR156 as being differentially expressed in 

response to iron-deficiency stress. In addition, none of the miR156-targeted SPL genes 

showed changes in expression in response to iron deprivation. However, SPL genes can 

be up-regulated by low pH (Iyer-Pascuzzi et al. 2011). Since the reduced pH in 

rhizosphere is a major step in iron uptake, it is tempting to assume that the iron uptake 

results in a lowered rhizosphere pH environment that could further trigger pH-induced 

SPL gene expression, which would negatively regulate the iron uptake genes at the 

transcriptional level (Figure 20). In summary, it appears that miR156/SPL is only “the tip 

of the iceberg” in a complicated gene regulatory network participating in iron 

homeostasis, and the role of miR156 in this pathway is not regulated by low iron 

condition. 
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Figure 21. A proposed model for the regulatory pathway involving miR156/SPL, pH, 

and iron availability. Solid black or green lines with a perpendicular bar indicate 

repression of downstream genes expression. For the plants utilize strategy I to up-take 

iron from rhizosphere, the first step is to lower pH to release more free iron. On the other 

hand, higher iron accumulation within plants can repress the transcription of FIT and 

PYE. Furthermore, acidic environment can trigger transcription of SPL genes, which can 

be suppressed by miR156. 

 

 

 

 



72 

 

 
  

Chapter V. Conclusions  

Development of crop cultivars that can better tolerate limited minerals has always been a 

focus of the breeding industry (Ortiz-Monasterio et al. 2007; Welch and Graham 2004). 

My research clearly shows that overexpression of miR156 improves plant growth under 

low iron conditions due presumably to longer and more branched roots, which may allow 

the plant to reach deeper into the soil to acquire mineral nutrients under normal field 

conditions.  

To our knowledge, based on the newly released transcriptomic data (Kong and 

Yang 2010; Schuler et al. 2011; Thimm et al. 2001; Waters et al. 2012), there are no 

reports in the literature pointing to the induction of the miR156/SPL regulatory network 

by iron deficiency. Furthermore, a synergistic role of miR156 and multiple 

phytohormones that can manipulate plant roots’ architecture has been demonstrated 

(Eviatar-Ribak et al. 2013; Xing et al. 2013a). Given that iron uptake genes were only 

transiently up-regulated in 35S:miR156 plants under iron deficiency, combined with the 

tight relationship between miR156 and phytohormones, it is tempting to speculate that 

the phenotypes caused by overexpression of miR156 or loss-of-function of SPL9 and 

SPL15 under low-iron condition may be the side effects of phytohormone signalling 

pathways. It is important to note that a number of proteins in iron homeostasis also have 

roles in plant acquisition of other metallic nutrients, such as IRT1 which can transport 

zinc, iron, and manganese (Korshunova et al. 1999). It may be necessary to examine 

other elements in 35S:miR156 plants besides iron. It is also possible that SPL proteins 

may regulate down-stream genes through protein-protein interaction with other bHLH 

transcription factors (Gou et al. 2011a). 
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Although miR156 has been employed in crop molecular breeding for many years 

(Aung et al. 2014; Fu et al. 2012; Wang et al. 2014; Zhang et al. 2011), a more detailed 

understanding of its gene regulatory network is needed to fully assess the utility of this 

molecule in crop quality improvement.  In this regard, my research may provide a slightly 

deeper understanding of the complicated regulatory network controlled by miR156.  
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Appendices 

Appendix A. Recipe for ½ MS medium. Stock solutions for 10X macronutrients, 

1000X micronutrients, and 200X Fe·EDTA were prepared and stored in 4°C, respectively.  

 Chemicals Final concentration (mg/l) 

Macronutrients NH4NO3 825 

CaCl2 · 2H2O 220 

MgSO4 · 7H2O 185 

KH2PO4 85 

KNO3 950 

Micronutrients H3BO3 3.1 

CoCl2 · 6H2O 0.0125 

CuSO4 · 5H2O 0.0125 

MnSO4 · 4H2O 11.15 

KI 0.415 

Na2MoO4 · 2H2O 0.125 

ZnSO4·7H2O 4.3 

Fe·EDTA FeSO4 · 7H2O 13.9 

Na2EDTA · 2H2O 18.6 
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Appendix B. Primers used in this study 

Name Sequence (5’-3’) 

Product 

size (bp) 

Description 

WY130235 CACCTCGGCAGTTTCCTATTGGTTAC 4,038 

Gateway cloning of pSPL9:SPL9 

genomic fragment for GFP fusion 

construct 

WY130236 GAGAGACCAGTTGGTATGGTGAGAAGA 4,038 

Gateway cloning of pSPL9:SPL9 

genomic fragment for GFP fusion 

construct 

WY130243 CACCTCTTGCTTTCGTGTTTATGATTG 3,525 

Gateway cloning of 

pSPL15:SPL15 genomic fragment 

for GFP fusion construct 

WY130244 AAGAGACCAATTGAAATGTTGAGGAGAG 3,525 

Gateway cloning of 

pSPL15:SPL15 genomic fragment 

for GFP fusion construct 

WY140701Q GGTAGGGAAGGAGAAGAAGG 
225 

qRT-PCR AT2G35290 Forward 

primer 

WY140702Q 
GAACATCCAAATCCGAAAAC 225 

qRT-PCR AT2G35290 Reverse 

primer 

WY140703Q GTTGATGTACCGGTTATCGT 
185 

qRT-PCR AT5G52750 Forward 

primer 

WY140704Q GCAGGATTGTATTGGTAAGG 
185 

qRT-PCR AT5G52750 Reverse 

primer 

WY140705Q TAACCGAAGGACTAACCGTA 
204 

qRT-PCR AT1G24150 Forward 

primer 

WY140706Q TCTAGACGTAAGAGCCAAG 
204 qRT-PCR AT1G24150 Reverse 
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primer 

WY140707Q GTCCCTTATGCATCACATTT 
227 

qRT-PCR AT5G14930 Forward 

primer 

WY140708Q ATGAACACCGTTTAGCAACT 
227 

qRT-PCR AT5G14930 Reverse 

primer 

WY140709Q ATAGCAAGACCAGACAGCAT 
161 

qRT-PCR AT4G04745 Forward 

primer 

WY140710Q AGATTTGAGGAAACGAGTGA 
161 

qRT-PCR AT4G04745 Reverse 

primer 

WY140711Q GTTTGACGACCCTGAATCTA 
167 

qRT-PCR AT2G38790 Forward 

primer 

WY140712Q CTCTCATGTCCATCCTTGAT 
167 

qRT-PCR AT2G38790 Reverse 

primer 

WY140713Q CCTCTACGAGTTGGCTAAAG 
173 

qRT-PCR AT2G47780 Forward 

primer 

WY140714Q TCTCAACATCGAAGAACACA 
173 

qRT-PCR AT2G47780 Reverse 

primer 

WY140715Q CTTTGACTGGCTTTTCTCTG 
224 

qRT-PCR AT3G24420 Forward 

primer 

WY140716Q GAGAAGCAGCAATAAGGAGA 
224 

qRT-PCR AT3G24420 Reverse 

primer 

WY140717Q AGAAATCTGTCAGCATCGTT 
173 

qRT-PCR AT1G09940 Forward 

primer 

WY140718Q CACTGATATTCCTCCCAAAA 
173 

qRT-PCR AT1G09940 Reverse 

primer 
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WY140719Q AGGTGAATGTGGGTTACAAG 
202 

qRT-PCR AT4G00300 Forward 

primer 

WY140720Q TTGTTGTCATCAGCAGTAG 
202 

qRT-PCR AT4G00300 Reverse 

primer 

WY140721Q GTGTAGATGGGGAAACTTCA 
198 qRT-PCR AT5G37300 Forward 

primer 

WY140722Q TTTCCAAAAGCTTCTACTGC 
198 qRT-PCR AT5G37300 Reverse 

primer 

WY140723Q AGACCCCTTTTCGTTTTTAC 
171 qRT-PCR AT1G01390 Forward 

primer 

WY140724Q GGTACACCGTTTACAATGCT 
171 qRT-PCR AT1G01390 Reverse 

primer 

WY140725Q CCATCCGCCAACATTCTACT 
167 qRT-PCR AT2G24850 Forward 

primer 

WY140726Q ACCATTGCGACGGTATTCTC 
167 qRT-PCR AT2G24850 Reverse 

primer 

WY140727Q GATTTTGCCGTTGATGACCT 
90 qRT-PCR AT5G25830 Forward 

primer 

WY140728Q GAGCTGTCGGTTATGGTGGT 
90 qRT-PCR AT5G25830 Reverse 

primer 

WY140729Q CGGAAAAGGATCCAAGAACA 
203 qRT-PCR AT4G01460 Forward 

primer 

WY140730Q CCGTTGAAGAAACGAAGGAG 
203 qRT-PCR AT4G01460 Reverse 

primer 

WY140731Q CTTACGTGAATGGCAAGCAA 
140 qRT-PCR AT2G29350 Forward 

primer 

WY140732Q CCACATTGTTGACGAGGATG 
140 qRT-PCR AT2G29350 Reverse 

primer 

WY140733Q CTTGGCAGGCAAACAGTGTA 
127 qRT-PCR AT1G65480 Forward 

primer 

WY140734Q AGCCACTCTCCCTCTGACAA 
127 qRT-PCR AT1G65480 Reverse 

primer 

WY140735Q CCTTGTTGGAACACCGAGAT 
230 qRT-PCR AT1G32450 Forward 

primer 

WY140736Q TGATGTACGCTGCTTTGTCC 
230 qRT-PCR AT1G32450 Reverse 

primer 

WY140737Q ACGGTTCACCTGTTGTGTCA 
174 qRT-PCR AT1G60590 Forward 

primer 
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WY140738Q CTTCAAACGCCTGAGTGTCA 
174 qRT-PCR AT1G60590 Reverse 

primer 

WY140739Q TGGGAGTATTCAGCGGTAGG 
114 qRT-PCR AT5G57880 Forward 

primer 

WY140740Q TCCGCGCTAAGGATAAAATG 
114 qRT-PCR AT5G57880 Reverse 

primer 

WY140741Q CAGTTCAGCGGCTCTTTACC 
96 qRT-PCR AT5G35935 Forward 

primer 

WY140742Q AGGAACTAATGGTGGCGTTG 
96 qRT-PCR AT5G35935 Reverse 

primer 

WY140743Q CCAGCACTTCCTCTCGTCTC 
142 qRT-PCR AT4G30975 Forward 

primer 

WY140744Q TGGAGAGCACAACACACACA 
142 qRT-PCR AT4G30975 Reverse 

primer 

WY140745Q CCGAAGATGACGCTATCCAT 
151 qRT-PCR AT2G39510 Forward 

primer 

WY140746Q TAAAGGCAAAGGCAGGAAGA 
151 qRT-PCR AT2G39510 Reverse 

primer 

WY140747Q CTCAGCCGTTCTTTTCTTGG 
129 qRT-PCR AT2G02120 Forward 

primer 

WY140748Q TCGCAGTTTGTATCGCTCAC 
129 qRT-PCR AT2G02120 Reverse 

primer 

WY140749Q AAGCAAGCGATGAAGGAAGA 
156 qRT-PCR AT1G74930 Forward 

primer 

WY140750Q CTCGGGAGTGTCGTAAGAGC 
156 qRT-PCR AT1G74930 Reverse 

primer 

WY140751Q ATGAGCTTCTTGCCGTCAGT 
100 qRT-PCR AT4G01390 Forward 

primer 

WY140752Q TCACGAAACCCCTCACTACC 
100 qRT-PCR AT4G01390 Reverse 

primer 

WY140753Q ATCCAATCTATTTCACTTCCACAA 
142 qRT-PCR AT1G43590 Forward 

primer 

WY140754Q CCCAAATAAGAGCAGGATGTT 
142 qRT-PCR AT1G43590 Reverse 

primer 

WY140755Q TTCTTCAGCGGAGGAACAAT 
134 qRT-PCR AT4G33120 Forward 

primer 

WY140756Q TCCATTCCTTTCAGCCACTC 
134 qRT-PCR AT4G33120 Reverse 

primer 

WY140757Q TCAAGGAAGGTTCAGGGATG 
90 qRT-PCR AT3G57260 Forward 

primer 

WY140758Q AGATTCACGAGCAAGGGAGA 
90 

qRT-PCR AT3G57260 Reverse 
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primer 

WY140759Q CTCGACGATGACTGTGGCTA 
140 qRT-PCR AT3G02620 Forward 

primer 

WY140760Q GAAACGTCTTGCTCGGGTTA 
140 qRT-PCR AT3G02620 Reverse 

primer 

WY140767Q TCGAGCAAGAGATGAGCAGA 
91 qRT-PCR AT3G29410 forward 

primer 

WY140768Q TCTTCAACCGCTGCTTCTTT 
91 qRT-PCR AT3G29410 reverse 

primer 

WY140769Q ACATCCCACCACCAAACCTA 
104 qRT-PCR AT3G18080 forward 

primer 

WY140770Q ACGAGTAAGCCCTTGGACCT 
104 qRT-PCR AT3G18080 reverse 

primer 

WY140771Q TTTTGGGAAGAGGCTTGAGA 
194 qRT-PCR AT1G12010 forward 

primer 

WY140772Q CTGCATCTGTGTGAGCCCTA 
194 qRT-PCR AT1G12010 reverse 

primer 

WY140773Q TGACGAGTCCGGGAAACTAC 
114 qRT-PCR AT1G67865 forward 

primer 

WY140774Q ACTGGGTGTGGTCAGGAGTC 
114 qRT-PCR AT1G67865 reverse 

primer 

WY140775Q GGCTGTTGTTTCAGGTGGTT 
168 qRT-PCR AT3G29430 forward 

primer 

WY140776Q CCGCTGCTTCTCTTCTCAGT 
168 qRT-PCR AT3G29430 reverse 

primer 

WY140777Q TAGGCTCGGTGCTACTGGAT 
100 qRT-PCR AT4G11650 forward 

primer 

WY140778Q CACCCTCACACACACACACA 
100 qRT-PCR AT4G11650 reverse 

primer 

WY140779Q TTCCCGAATCACAGAACCTC 
102 qRT-PCR AT1G73260 forward 

primer 

WY140780Q GCTTCCTCTCGTGGTCAAAC 
102 qRT-PCR AT1G73260 reverse 

primer 

WY140781Q CTCGTGGAGGCTAAGAGTGG 
104 qRT-PCR AT3G10720 forward 

primer 

WY140782Q TTAAGTGCGTGGCTCACAAG 
104 qRT-PCR AT3G10720 reverse 

primer 

WY140783Q CTCTGAAAGCCCAAGACCAG 
117 qRT-PCR AT4G07820 forward 

primer 

WY140784Q AGGCTTGAGCATAGGCAGTC 
117 qRT-PCR AT4G07820 reverse 

primer 
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WY140785Q CTGGCAAAGCTGAGGAGAAG 
165 qRT-PCR AT5G15970 forward 

primer 

WY140786Q CGGATCGCTACTTGTTCAGG 
165 qRT-PCR AT5G15970 reverse 

primer 

WY140211Q ACCGACGCAAGAAGATCAAC 
132 

qRT-PCR bHLH38 AT3G56970 

forward primer 

WY140212Q GCTGTTGCAGCTCTGGTATG 
132 

qRT-PCR bHLH38 AT3G56970 

reverse primer 

WY140209Q CTGGCCAATCGAAGAAGCTA 
130 

qRT-PCR bHLH39 AT3G56980 

forward primer 

WY140210Q TGACCTGAAATTTGCACCAA 
130 

qRT-PCR bHLH39 AT3G56980 

reverse primer 

WY140201Q GTCTTCCTCCCACCAATCAA 
138 

qRT-PCR bHLH100 AT2G41240 

forward primer 

WY140202Q CCGAAATTTGAAACGAGAGC 
138 

qRT-PCR bHLH100 AT2G41240  

reverse primer 

WY140205Q CTTCGTGCTCTCTTGCCTCT 
175 

qRT-PCR bHLH101 AT5G04150 

forward primer 

WY140206Q TTCTCAGCTGCTCTTGGTGA 
175 

qRT-PCR bHLH101 AT5G04150  

reverse primer 

WY140217Q GCTTAAGCGTGAGCATTTGA 
130 

qRT-PCR PYE AT3G47640 

forward primer 

WY140218Q TTGACCAAACACGTCCTTCA 
130 

qRT-PCR PYE AT3G47640  

reverse primer 

WY140809Q ATGTTCCCAATGATGGTCGT 
149 

qRT-PCR FRO2 (AT1G01580) 

forward primer 

WY140810Q ATTCCTAATGGCCCCTTCAC 
149 qRT-PCR FRO2 (AT1G01580) 
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reverse primer 

WY140811Q GTTTCGTTCCTCCAACCAGA 
149 

qRT-PCR IRT1 (AT4G19690) 

forward primer 

WY140812Q TTATGCCACGGGTTCTCTTC 
149 

qRT-PCR IRT1 (AT4G19690) 

reverse primer 

WY140813Q GTCGGAGTCAAGCACCAAGT 
149 

qRT-PCR FRO3 (AT1G23020) 

forward primer 

WY140814Q AATGCGAGATACCGGTCCTA 
149 

qRT-PCR FRO3 (AT1G23020) 

reverse primer 

WY140815Q GCTGGAATCAGGGAAGTTCA 
150 

qRT-PCR AHA2 (AT4G30190) 

forward primer 

WY140816Q AAGATCATTGCTGGCTTTGG 
150 

qRT-PCR AHA2 (AT4G30190) 

reverse primer 

WY140823Q CATGCTCCTGATGCTCAAAA 
147 

qRT-PCR FIT (AT2G28160) 

forward primer 

WY140824Q TGGAGCAACACCTTCTCCTT 
147 

qRT-PCR FIT (AT2G28160) 

reverse primer 

WY150201 TTTTGCTTCATAAGTTTGTGACTT 
153 

FIT (AT2G28160) ChIP qPCR I 

WY150202 TTTGCCACATGATTATCTTTCAG 
153 

FIT (AT2G28160) ChIP qPCR I 

WY150205 GCCGATTGCAAATTAATTCCT 
151 

FIT (AT2G28160) ChIP qPCR II 

WY150206 AAATCGATCAGACCGTATTAAAAA 
151 

FIT (AT2G28160) ChIP qPCR II 

WY150207 CATGCATGACATTACAAGACG 
173 

FIT (AT2G28160) ChIP qPCR III 

WY150208 TGTTGACAACGAAAGAGAGACAA 
173 

FIT (AT2G28160) ChIP qPCR III 

WY140356 CGAATGGTAACCTCGGTTTT 
171 

ChIP-qPCR PYE AT3G47640  I 
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WY140357 TAATCCGCACCGCAAATAAT 
171 

ChIP-qPCR PYE AT3G47640  I 

WY140358 GGTAACTAGTGATTCTGATGCACAC 
142 ChIP-qPCR PYE AT3G47640  II 

WY140359 GCCTTTGCCTCTTCCATACA 
142 ChIP-qPCR PYE AT3G47640  II 

WY140360 ATAGACCGCCCCCAAAAC 
149 ChIP-qPCR PYE AT3G47640  III 

WY140361 TAGTTTTGCGGTTCGAATGA 
149 ChIP-qPCR PYE AT3G47640  III 

WY140362 CTTCACGTTGACCCCACAT 
132 ChIP-qPCR PYE AT3G47640  IV 

WY140363 CAGATTAATCGGGTAAAAAGTTG 
132 ChIP-qPCR PYE AT3G47640  IV 
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Appendix C. Recipe for Lysogeny broth (LB) medium 

Chemicals Concentration (g/l) 

Tryptone 10 

Yeast extract 5 

NaCl 10 
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Appendix D. Recipe for buffers used in ChIP assay 

Buffers Composition 

1X PBS NaCl 137 mM, KCl 2.7 mM, Na2HPO4 10 mM, KH2PO4 1.8 mM 

Extraction buffer 1 Sucrose 0.4 M, Tris-Cl 10 mM (pH 8), MgCl2 10 mM. β-ME 5 mM, 

PMSF 0.1 mM, Protease inhibitor 2 tablets/100ml  

Extraction buffer 2 Sucrose 0.25 M, Tris-Cl 10 mM (pH 8), MgCl2 10 mM. β-ME 5 mM, 

PMSF 0.1 mM, Triton X-100 1%, Protease inhibitor half tablet/10ml  

Extraction buffer 3 Sucrose 1.7 M, Tris-Cl 10 mM (pH 8), MgCl2 2 mM. β-ME 5 mM, 

PMSF 0.1 mM, Triton X-100 0.15%, Protease inhibitor half 

tablet/10ml  

Nuclei lysis buffer 
Tris-Cl 50 mM (pH 8), EDTA 10 mM, SDS 1%, Protease inhibitor 

one tablet/10ml 

Dilution buffer 
Triton X-100 1.1%, EDTA 1.2 mM, Tris-Cl 16.7 mM (pH 8), NaCl 

167 mM 

Low-salt buffer 
150 mM NaCl, 0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM 

Tris-HCl (pH 8) 

High-salt buffer 
500 mM NaCl, 0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM 

Tris-HCl (pH 8) 

LiCl buffer 
0.25 M LiCl, 1% NP-40 (or IGEPAL CA-360), 1% DOC, 1 mM 

EDTA, 10 mM Tris-HCl (pH 8) 

Elution buffer 
0.1% SDS, NaHCO3 8.4g 
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Appendix E. List of differentially expressed genes derived from NG-RNA-

SEQ 

Tissue 

type 

Gene 

expression 

trend 

(35S:miR156 

vs WT) 

Accession numbers 

Rosette 

leaves 

Up-regulated  AT1G17420, AT1G19180, AT1G20450, AT1G35140, AT1G55450, AT1G57990, 

AT1G59870, AT1G61890, AT1G72520, AT1G78850, AT2G17840, AT2G24600, 

AT2G41100, AT4G08950, AT4G20830, AT4G31800, AT4G34150, AT5G20230, 

AT5G57560, AT5G67300, AT1G08930, AT3G01290, AT5G19240, AT4G25100, 

AT4G02380, AT4G23180, AT3G55980, AT4G30270, AT4G30280, AT3G45970, 

AT2G41430, AT2G27690, AT1G20510, AT3G57520, AT2G44500, AT5G24030, 

AT1G20440, AT5G66210, AT3G19680, AT1G09970, AT3G15356, AT2G40000, 

AT1G27770, AT3G54810, AT4G36850, AT4G13340, AT4G30210, AT2G22500, 

AT2G23810, AT1G56660, AT4G29780, AT1G03220, AT4G24570, AT4G20860, 

AT5G56980, AT1G80840, AT5G48380, AT1G61100, AT1G70700, AT1G21130, 

AT5G44070, AT5G37770, AT3G59350, AT1G69840, AT1G19380, AT2G06050, 

AT3G25780, AT4G08850, AT4G12720, AT2G17230, AT3G10720, AT2G27080, 

AT1G72450, AT5G14120, AT3G55430, AT2G44490, AT4G02330, AT3G57450, 

AT1G18740, AT4G17230, AT1G32640, AT1G09070, AT1G07135, AT1G22190, 

AT2G27500, AT3G47960, AT2G34930, AT3G52400, AT3G06500, AT1G76680, 

AT3G16530, AT5G42650, AT3G57530, AT3G45640, AT5G35735, AT4G19520, 

AT2G34600, AT1G74450, AT2G01450, AT1G73080, AT1G76650, AT2G19800, 

AT3G52800, AT1G21910, AT1G02660, AT5G19230, AT3G11820, AT4G14365, 

AT1G22530, AT1G28380, AT5G26030, AT5G01100, AT1G19770, AT5G64310, 

AT1G78830, AT4G27280, AT1G19020, AT3G25760, AT5G45340, AT2G47060, 

AT5G20250, AT1G79245, AT3G50950, AT4G34410, AT5G51550, AT5G49360, 

AT3G44260, AT5G35935, AT5G06320, AT5G47910, AT1G65490, AT1G33590, 

AT1G74950, AT2G41110, AT5G54380, AT4G26690, AT4G18010, AT5G41750, 

AT1G76160, AT2G06850, AT4G18205, AT5G13220, AT4G16563, AT5G62570, 

AT5G42050, AT3G21070, AT5G07440, AT1G01120, AT2G38470, AT4G37260, 

AT4G30975, AT1G63860, AT1G17620, AT3G28180, AT5G52882, AT2G47730, 

AT2G31810, AT4G30440, AT1G70090, AT3G48520, AT3G04640, AT3G08720, 

AT1G72430, AT4G21570, AT1G13210, AT3G62720, AT5G57220, AT4G23220, 

AT1G23030, AT4G17490, AT3G19010, AT3G51450, AT2G13790, AT5G06870, 

AT3G15450, AT1G11260, AT5G52050, AT3G09260, AT5G28630, AT4G21990, 

AT2G37940, AT3G56200, AT1G05675, AT1G15010, AT2G28630, AT2G31880, 

AT3G23030, AT1G32920, AT4G34390, AT2G41640, AT3G09830, AT5G05600, 

AT5G04870, AT1G24170, AT5G45750, AT5G25930, AT1G17380, AT3G05490, 

AT3G10300, AT1G29690, AT1G33610, AT5G62520, AT3G47340, AT2G01180, 

AT1G03870, AT1G56510, AT3G51920, AT5G58120, AT4G33920, AT1G65390, 

AT5G13190, AT3G13080, AT1G51760, AT4G38470, AT1G53430, AT5G67480, 

AT2G06530, AT4G33050, AT1G50040, AT5G54710, AT3G56880, AT1G57680, 

AT5G49520, AT4G11280, AT1G75750, AT1G31130, AT5G22690, AT4G00300, 

AT3G15210, AT4G30290, AT3G44860, AT5G63160, AT1G50740, AT4G17500, 

AT3G28200, AT2G35930, AT3G48360, AT3G16420, AT3G16470, AT1G66160, 

AT1G14740, AT5G54170, AT4G22690, AT1G27730, AT5G45280, AT5G47220, 

AT1G02400, AT4G29950, AT5G41740, AT5G64260, AT3G58120, AT5G61210, 
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AT1G66180, AT2G23120, AT3G28340, AT3G49530, AT3G47570, AT4G03400, 

AT1G61340, AT2G34510, AT2G23320, AT3G22060, AT3G19030, AT3G24550, 

AT2G15880, AT1G44350, AT2G18690, AT3G16400, AT5G25440, AT4G02540, 

AT2G32150, AT1G78070, AT1G56140, AT5G53750, AT3G07780, AT5G24590, 

AT5G46510, AT4G18950, AT2G41420, AT1G30135, AT2G47440, AT1G65310, 

AT4G15800, AT5G27520, AT1G54010, AT2G29340, AT2G39650, AT1G28370, 

AT4G14370, AT5G01600, AT5G42800, AT3G54020, AT2G03240, AT1G04240, 

AT4G35770, AT1G22280, AT4G36670, AT5G11650, AT4G17615, AT4G22880, 

AT2G30990, AT4G25810, AT1G16370, AT1G78280, AT5G08760, AT3G57930, 

AT2G15390, AT2G30930, AT3G23730, AT1G17860, AT4G27410, AT2G31800, 

AT4G23190, AT1G36370, AT3G59080, AT1G63750, AT1G18890, AT2G30250, 

AT5G02290, AT5G19120, AT1G27100, AT2G42760, AT1G35350, AT3G10020, 

AT2G43290, AT3G15950, AT4G32480, AT4G27652, AT1G71697, AT3G02880, 

AT4G34180, AT5G52750, AT5G56170, AT2G23130, AT5G54720, AT4G04570, 

AT1G09950, AT1G12580, AT3G44630, AT2G17480, AT5G22250, AT5G05140, 

AT3G06070, AT1G58270, AT1G30040, AT1G07000, AT1G50460, AT5G65470, 

AT4G24230, AT3G14870, AT2G46510, AT5G18400, AT2G17290, AT3G11420, 

AT4G27654, AT4G09570, AT5G52310, AT2G05380, AT1G09940, AT3G19970, 

AT5G04480, AT1G72416, AT3G50930, AT1G05135, AT5G52320, AT4G30470, 

AT3G50060, AT1G12610, AT4G36010, AT4G11320, AT3G13520, AT4G24380, 

AT5G40780, AT1G61667, AT4G12040, AT1G06620, AT5G23050, AT5G64870, 

AT1G31540, AT2G35710, AT1G20823, AT3G22275, AT3G05320, AT5G44568, 

AT5G48540, AT4G38550, AT1G76700, AT1G21100, AT2G30020, AT4G24160, 

AT2G41010, AT1G52400, AT1G25400, AT2G28400, AT4G22710, AT5G40340, 

AT1G18210, AT1G66500, AT5G05440, AT4G36500, AT2G30040, AT3G26910, 

AT3G61640, AT2G21500, AT1G16130, AT1G66760, AT4G08500, AT4G17460, 

AT1G11960, AT4G14130, AT5G64750, AT1G75230, AT2G21120, AT4G35320, 

AT5G15870, AT1G69760, AT1G72900, AT4G00970, AT3G13790, AT2G39210, 

AT3G29000, AT1G74430, AT3G16860, AT5G13200, AT4G01950, AT5G23510, 

AT1G60140, AT5G44130, AT1G14330, AT3G49780, AT1G18300, AT1G62440, 

AT4G32800, AT1G22882, AT5G45110, AT1G18570, AT1G42990, AT3G16460, 

AT4G21390, AT2G25460, AT1G59910, AT5G48450, AT4G28085, AT2G27310, 

AT5G65300, AT2G39400, AT5G54860, AT5G51190, AT1G63830, AT2G39360, 

AT1G76600, AT2G25735, AT2G26190, AT3G50260, AT4G31000, AT3G01830, 

AT2G39420, AT3G50650, AT1G14540, AT2G29300, AT5G22500, AT1G33760, 

AT4G30350, AT1G51660, AT2G32140, AT1G72790, AT4G30910, AT3G05165, 

AT2G22880, AT1G51800, AT1G61260, AT2G22770, AT3G20600, AT4G25830, 

AT1G03230, AT1G65845, AT1G22890, AT5G66675, AT5G58090, AT1G64760, 

AT3G28160, AT1G66090, AT4G20780, AT1G73805, AT1G67060, AT3G25610, 

AT5G41080, AT2G44840, AT5G01040, AT2G23680, AT3G23170, AT1G52040, 

AT1G03370, AT5G03360, AT1G10550, AT1G08920, AT3G02140, AT1G24150, 

AT3G48650, AT5G19110, AT2G32800, AT3G62150, AT2G24330, AT1G05575, 

AT2G27260, AT5G63770, AT3G54200, AT2G33570, AT4G22780, AT4G27350, 

AT4G13575, AT4G28490, AT2G15090, AT2G39310, AT5G22630, AT5G64120, 

AT5G09440, AT5G59730, AT4G11330, AT2G32210, AT2G46400, AT1G30730, 

AT3G26980, AT1G27020, AT5G61380, AT4G15760, AT5G17350, AT5G11970, 

AT5G11740, AT2G17120, AT1G50750, AT3G60260, AT1G33600, AT2G39180, 

AT1G69900, AT3G49350, AT4G18340, AT5G43620, AT4G35985, AT1G79700, 

AT1G69890, AT4G10390, AT5G12940, AT4G30060, AT4G11000, AT5G36925, 

AT4G08170, AT1G56540, AT5G03545, AT1G73540, AT5G65920, AT3G45040, 

AT2G46270, AT1G74930, AT3G27960, AT5G17220, AT4G36900, AT2G35290, 

AT3G02070, AT1G14480, AT3G27210, AT1G11670, AT3G49160, AT2G23290, 

AT1G64380, AT1G11185, AT1G74330, AT3G55840, AT5G25250, AT4G01870, 

AT1G30640, AT1G51270, AT5G39580, AT5G25050, AT3G10640, AT1G22810, 

AT3G61190, AT5G10695, AT5G38700, AT4G33420, AT5G48530, AT3G03020, 

AT3G05580, AT2G33580, AT4G26400, AT2G17660, AT4G19230, AT4G15260, 

AT3G44735, AT1G51820, AT2G46780, AT4G01750, AT4G02200, AT1G02390, 
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AT1G29330, AT1G47380, AT4G36950, AT5G40540, AT1G43590, AT3G07195, 

AT1G21110, AT2G27660, AT5G62470, AT3G02840, AT5G42380, AT5G13170, 

AT1G61360, AT2G28120, AT4G27657, AT5G58620, AT1G14370, AT4G30510, 

AT5G25240, AT5G66640, AT1G21120, AT5G26770, AT2G36220, AT1G09932, 

AT4G23810, AT1G73830, AT1G72280, AT3G56410, AT2G38240, AT1G22510, 

AT4G18280, AT5G41100, AT1G16110, AT3G25600, AT4G29740, AT1G30720, 

AT3G04110, AT5G49280, AT4G01360, AT2G33830, AT1G07870, AT2G39200, 

AT5G16360, AT1G14870, AT3G05200, AT1G18390, AT5G66070, AT3G15060, 

AT1G15670, AT5G66480, AT1G78860, AT1G43886, AT5G27420, AT1G61610, 

AT3G59310, AT5G52760, AT1G52200, AT5G14930, AT3G24420, AT4G28190, 

AT5G66650, AT1G02380, AT2G23690, AT4G13180, AT4G17030, AT1G05340, 

AT1G43910, AT4G24275, AT5G24110, AT4G11521, AT3G46930, AT2G23100, 

AT2G38530, AT1G68690, AT5G10750, AT3G44320, AT1G70740, AT3G46090, 

AT4G37610, AT3G03030, AT2G43320, AT1G26730, AT5G66620, AT4G01250, 

AT2G41330, AT1G18400, AT3G14590, AT2G13800, AT5G59550, AT1G17147, 

AT3G17690, AT5G22940, AT5G67450, AT5G52020, AT2G20142, AT5G59820, 

AT5G17850, AT5G65390, AT5G63450, AT3G55500, AT2G32200, AT3G08860, 

AT5G64660, AT3G15630, AT5G23130, AT4G20820, AT2G31730, AT4G37370, 

AT4G39890, AT3G45730, AT5G35777, AT1G78000, AT5G16200, AT5G17490, 

AT3G44400, AT1G32170, AT1G72140, AT3G16030, AT4G13395, AT2G29720, 

AT5G44050, AT4G15233, AT2G30360, AT5G38210, AT1G61560, AT3G45960, 

AT5G18150, AT5G57550, AT4G29700, AT1G14520, AT3G10930, AT3G59880, 

AT5G26920, AT1G66920, AT3G62260, AT2G17705, AT3G16330, AT4G38400, 

AT4G30850, AT1G77450, AT1G28010, AT1G80610, AT3G13437, AT1G02360, 

AT5G07100, AT2G38790, AT5G39020, AT5G46910, AT5G62865, AT4G08040, 

AT1G65790, AT3G23250, AT1G11000, AT1G28660, AT3G50800, AT4G37240, 

AT3G29170, AT1G65486, AT4G35480, AT1G76790, AT1G18200, AT1G74440, 

AT4G13110, AT3G46385, AT3G49620, AT1G52890, AT3G50470, AT3G26680, 

AT1G03457, AT2G45680, AT1G67470, AT2G22860, AT1G17060, AT1G63180, 

AT5G03720, AT4G25390, AT3G22910, AT3G59750, AT2G34355, AT5G39785, 

AT1G11210, AT1G51090, AT3G55950, AT5G54060, AT4G01010, AT1G33770, 

AT1G24140, AT4G05010, AT1G09575, AT3G18560, AT1G31290, AT3G57640, 

AT3G19580, AT5G48850, AT1G52830, AT1G60190, AT5G13700, AT1G24145, 

AT4G33985, AT4G19380, AT3G49580, AT5G07990, AT5G63970, AT1G01560, 

AT5G12340, AT1G20350, AT4G04810, AT4G30090, AT4G25835, AT5G66790, 

AT3G54000, AT1G69430, AT1G36622, AT2G29440, AT3G51970, AT1G58420, 

AT3G52450, AT1G69570, AT5G37540, AT1G66400, AT5G54490, AT5G65280, 

AT4G37770, AT5G60270, AT4G15230, AT3G01430, AT2G47780, AT3G46110, 

AT5G48657, AT4G04745, AT4G23870, AT2G28500, AT2G01300, AT5G08240, 

AT3G52520, AT1G69260, AT3G49110, AT5G07070, AT1G80120, AT1G77290, 

AT2G28140, AT2G16060, AT1G68330, AT4G11290, AT2G20880, AT4G23680, 

AT4G39830, AT4G29050, AT5G61600, AT1G01110, AT1G72920, AT1G71400, 

AT5G66630, AT3G15620, AT4G33960, AT3G16690, AT5G63905, AT1G18710, 

AT2G31020, AT5G26220, AT3G16510, AT1G65890, AT1G07150, AT3G54150, 

AT3G09520, AT3G21330, AT1G28480, AT3G02410, AT4G01540, AT4G23215, 

AT3G04010, AT5G06720, AT4G38552, AT1G70800, AT2G40095, AT3G26500, 

AT5G36000, AT2G16870, AT1G51620, AT5G01730, AT5G19340, AT4G21865, 

AT3G15650, AT5G09800, AT1G11740, AT4G29270, AT4G23230, AT1G21550, 

AT3G48390, AT4G23550, AT5G02200, AT1G79680, AT5G06865, AT1G49530, 

AT5G59720, AT1G61460, AT5G07620, AT1G17830, AT2G15480, AT4G18250, 

AT2G32190, AT4G18195, AT1G57560, AT5G13210, AT4G22490, AT1G35230, 

AT3G25597, AT2G15760, AT5G46500, AT3G20660, AT2G03540, AT5G19020, 

AT1G05020, AT1G78410, AT3G11402, AT3G43430, AT5G03700, AT2G33350, 

AT4G38530, AT5G65925, AT1G32690, AT4G23610, AT5G52250, AT1G66930, 

AT3G07000, AT2G34080 
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 Down-

regulated 

AT4G19170, AT1G69530, AT2G25900, AT5G53450, AT1G02205, AT4G36040, 

AT5G49740, AT4G24780, AT3G18080, AT4G26850, AT3G09440, AT1G25440, 

AT2G14610, AT3G18290, AT3G57260, AT1G71030, AT2G40610, AT1G13650, 

AT5G05250, AT3G59940, AT1G23390, AT5G10930, AT4G13840, AT5G63180, 

AT3G03470, AT4G33790, AT1G14880, AT2G30766, AT1G64390, AT3G26290, 

AT2G45660, AT1G68570, AT5G01820, AT5G13740, AT1G32450, AT2G24850, 

AT2G06950, AT2G15020, AT3G22231, AT5G54585, AT2G30770, AT1G67865, 

AT3G55646, AT4G12290, AT2G32010, AT1G10640, AT2G46710, AT3G63210, 

AT2G28720, AT4G21650, AT4G19430, AT1G47400, AT1G60590, AT3G56970, 

AT2G14247, AT3G55710, AT2G43570, AT4G05070, AT1G13609, AT5G37300, 

AT2G45560, AT1G74940, AT4G01460, AT1G14890, AT5G59130, AT2G29350, 

AT2G14560, AT3G51860, AT3G47640, AT5G13320, AT3G18773, AT1G01190, 

AT1G48120, AT5G67280, AT3G26830, AT5G15800, AT2G18560, AT3G46130, 

AT1G33170, AT2G04160, AT4G32280, AT5G03230, AT2G41240, AT1G80440, 

AT1G47395, AT4G21215, AT5G43870, AT2G36970, AT2G13810, AT2G47880, 

AT1G65480, AT2G21320, AT2G42200, AT4G16260, AT3G30122, AT2G38180, 

AT5G39860, AT4G10500, AT2G45220, AT4G29190, AT5G60910, AT5G59350, 

AT3G52740, AT1G66140, AT5G38140, AT5G01790, AT4G16447, AT3G56980, 

AT2G04240, AT1G33960, AT2G32390, AT1G49230, AT3G49650, AT2G29090, 

AT5G16570, AT2G43590, AT1G77270, AT4G11360, AT5G59670, AT1G18330, 

AT1G18810, AT1G56120, AT3G14760, AT3G16670, AT3G61880, AT5G54190, 

AT4G03510, AT5G44430, AT1G51170, AT4G09500, AT2G18660, AT4G23020, 

AT3G03440, AT2G25680, AT3G08505, AT5G55450, AT4G32290, AT1G04180, 

AT2G05440, AT1G20470, AT5G04150, AT3G26200, AT2G39920, AT4G13800, 

AT3G61970, AT3G22600, AT4G30710, AT1G69490, AT3G06868, AT2G40390, 

AT3G22235, AT5G28910, AT1G70420, AT3G05690, AT3G46880, AT5G63580, 

AT5G44780, AT1G24260, AT5G51850, AT4G01490, AT2G39705, AT5G53200, 

AT3G22810, AT2G42530, AT1G09080, AT5G43860, AT2G38995, AT3G62070, 

AT2G21640, AT5G46830, AT1G52770, AT4G12480, AT2G37100, AT3G15270, 

AT3G12220, AT3G63380, AT4G25000, AT4G10380, AT5G67550, AT5G64510, 

AT1G01390, AT4G37580, AT1G51460, AT1G53490, AT1G51890, AT3G02550, 

AT3G51340, AT5G25830, AT4G26680, AT4G13260, AT1G68620, AT5G28030, 

AT2G34180, AT3G14280, AT5G57880, AT2G43700, AT5G12360, AT1G23060, 

AT1G19510, AT1G62870, AT4G39010, AT1G72540, AT2G15830, AT5G24330, 

AT4G12490, AT3G26320, AT5G47610, AT1G16830, AT5G50800, AT5G01880, 

AT1G12570, AT4G38320, AT4G22760, AT5G61350, AT3G24360, AT1G22900, 

AT5G23980, AT4G25420, AT1G21240 

Roots Up-regulated AT5G35935, AT4G30975, AT2G39510, AT2G02120, AT1G74930, AT4G01390, 

AT1G43590, AT4G33120, AT3G57260, AT3G02620, AT5G42600, AT1G16410, 

AT4G33550, AT4G34410, AT4G14548, AT1G66800, AT2G38540, AT1G72520, 

AT5G52050, AT2G21650, AT2G25150, AT1G19210, AT2G24850, AT2G26370, 

AT4G24380, AT2G44840, AT3G13784, AT2G05380, AT1G11460, AT1G12610, 

AT4G37850, AT1G45020, AT2G35585, AT5G58680, AT4G01360, AT2G14290, 

AT4G36570, AT5G62330, AT3G02840, AT4G22505, AT1G35186, AT2G28860, 

AT5G42380, AT3G55515, AT2G30540, AT3G27940, AT3G24255, AT3G44870, 

AT1G76952,  

AT2G37210  

 Down-

regulated 

AT3G29410, AT3G18080, AT1G12010, AT1G67865, AT3G29430, AT4G11650, 

AT1G73260, AT3G10720, AT4G07820, AT5G15970, AT5G48430, AT4G08770, 

AT3G23290, AT5G43270, AT1G13710, AT1G52820, AT3G05650, AT5G14330, 

AT2G43590, AT1G64400, AT2G27402, AT4G04410, AT1G27370, AT1G50050, 

AT2G43050, AT3G30260, AT2G41240, AT4G24350, AT5G40590, AT1G30730, 

AT2G44220, AT3G47710, AT3G03670, AT1G48930, AT5G04960, AT5G64120, 

AT2G13810, AT2G21330, AT3G49780, AT2G36870, AT1G77270, AT3G57920, 

AT5G52720, AT4G33070, AT5G23660, AT2G43620, AT3G60160, AT1G68040, 

AT1G33840, AT3G12900, AT1G67860, AT4G35770, AT1G19250, AT2G25680, 

AT3G51660, AT2G32270, AT3G48770, AT2G15780, AT5G44973, AT3G60330, 
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AT1G74880, AT5G67400, AT1G64160, AT4G08620, AT1G53635, AT5G04150, 

AT4G33666, AT3G62760, AT1G53480, AT4G19680, AT3G26500, AT3G47380, 

AT5G54585, AT5G15960, AT4G13390, AT2G42250, AT1G52800, AT5G66700, 

AT5G06690, AT5G56370, AT5G06640, AT5G06630, AT4G15700, AT2G42350, 

AT1G61750, AT5G36260, AT1G05680, AT2G26820, AT3G07070, AT1G73120, 

AT3G61390,  

AT3G15370 
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Appendix F. The location of putative SPL binding sites in FIT promoter and the 

primers used in ChIP-qPCR assay. Putative SPL binding sites are boxed. Primers used 

in ChIP-qPCR are underlined. The translation start codon is shaded in blue. Red and 

yellow characters indicate 5’ UTR and exon, respectively. 

 

aagaagatggatggaccactgttactgattggtgtggtcattgtttactgattggtgtggtcattggtaggtttggttttattagtgaatccatgccat

ttcggttttcaaaattgtaaccgatagttacggttatctgaaaatctgacacaatactttattgatgttcatgagtcatgacttatccgctgttgtgtttc

taaagatgtgctgataagtcacataaaaattgaatttgttccatgtctgtatagagaagaaaaggagttttcatattttccccatttttgttggggtga

acaaattaaaagttatctgctagttgacatgcataaaggttagaggaaaaagaaaaggaaaaaagaaaaaagtttgtcaaaatattttgcttcat

aagtttgtgacttattcagagttatgtttctaaagatgtgataggtacagcaaaattgtatttgttccaaatgtcaattagtgaagaaaagaaaaag

agttgtcatatttgttggagtactgaaagataatcatgtggcaaaaaaaaaacgaaataggaagaatttcagtaaaaattatgctagcttcacat

gtatcaaatatatttgaaccaaagtatgccatattcatgaattgtttttacaacaatttttatttgttttaaactctagaggctatatgtgaaaaaaaattt

tacagcaaaaataagattatatcagaaacattacagaccgaaatttacagccacgatctaaccaaacatctactaaattgacataatagcattatt

caaatatttatttggaaattggttgatgtttttgaaagttgtggagtatcccaaaaatccaatgttgctcaaaagttcagtttctctaataaattcaaca

cctagatggaatctataattggttgactttttttttttttttttttttacagttatatacctgaaaaaatattccaacttgaaatattataaagagttgattttt

gtcctaaccggccaagactttaatattttatactgtctttctttgctatcctttgtttgtttgttgagacaagaacgaaaaccgtgcattgaacaggctt

cttcataatttaattgcggtttatccttaaatgatttgaaaaatggaaatgcatttatcaaaaataaaagaaaataattgaaatgctattatattccaga

gttggtttgttatttgaaaattatgctggtttaagtttatatttgaaattaattttggccgtttttctacaaaacatatttatcatattggagtactttttaaat

acactaacataaaaatgttgagaaaaacttttgttaaaattctagcttgtgacaactaaaccagttgacatctacagttgtaataagccgattgcaa

attaattcctaacattttaataaacaagaatatatgtggatctaaattcaaaaatataaacagtacactaacatttgtacgtctaatatcgtagtaaa

cttttacttatgaacacctttttaatacggtctgatcgatttatttatttatataaccaaaactcatatatattcataaactaaattatatagtaacaggat

atattatgagcttaatatacatgctatatgcctatataaggtcttaataaccaaaactcataataatgtattcataaactaaattatatagtaatattttt

ggtatattttataactttaaaaaactctaaatatttgtggtatttttgaaaatggataaaaatgatatttttggaaagtagtataattttaaaaaacttctc

ccaataaagacatgaccaaaaatgtgtgttatttctatatatatttttttttttttttgatcaacatatactcttgtttctaatctgcattccctccaccaca

aaaaaaaattcaaatgataaaatataaagaagaacaatgtggaaatataattgtcatgcaacacgacaaattaatcattcgagtaacataatttat

acatataatatacaggtcatgcatgacattacaagacgtaactgaataaactaatatcaaccaactatcaagagtacatttctttaaatttgttttaa

ttgatttcttaacttattatgttaattaatacagtttatttcatactcactctattatataaactcattttgtctctctttcgttgtcaacaacttttcttcattga

caaaaacacacaaATGGAAGGAAGAGTCAACGCTCTGTCAAACATAAACGATCTCGAACTT

CACAATTTCTTGGTCGATCCAAACTTCGATCAGTTCATAAACCTCATAAGAGGAGAT

CATCAAACCATTGACGAAAACCCAGTTCTTGATTTCGATCTTGGTCCATTACAAAACA

G 
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Appendix G. The location of putative SPL binding sites in PYE promoter and the 

primers used in ChIP-qPCR assay. Putative SPL binding sites are boxed. Primers used 

in ChIP-qPCR are underlined. The translation start codon is shaded in blue. Red, purple, 

and yellow characters indicate 5’ UTR, intron, and exon, respectively. 

ttgggccaaacgagattagtttctaacagatgtttttccggacccggaccggtaatacccacgatccgcttaattatttggtccctgtctagctcta

aaatcccggtgcaaacgaaccggcaaaaccaacgacctagcggttcggtattttgtttctgaaatctgaaccctccgatttgttcttcttttttttttt

ctttttataatgcaaacaattgatgaaaaaatatattatggtccgaatggtaacctcggtttttaatatgtgagaaaagtggtataacattgcagtac

agttcaattacggtacgtgcgagaaaaatatatttgcgggacaaatatggtttgtacaaaataagcggtacagaataatgtttgattgatgaaaa

aattatttgcggtgcggattataaattatatatatatatatatattaataattaattattatttttgtgttaataaataagcaataacatatatttataaattat

taatacataaataaatcaaaatatacatttttaaagtttaacatacatattattaaattcgttgaatagtttcatcataaaaaattgaaaaaaaaatcat

aattttttactagtaaattgattatagaacttatataagcttatagtggataataattgtcaaaatttctataagtattatgatatttctatttcttgtaattac

attttcttagattttaattaaataaaaagaataaaactataattattgcatatatatatatatatatatatatatatatatatatatattaaagtccattagtta

agcaaattgttatgtcctacgtatatttttttcttttatgcactaggtaactagtgattctgatgcacacatatactctctttttttgtacatatatttaaatg

gggaagctaatggaaaaaaaattaaaatttgcttaagtaatggagtaataaacgagggatgtgtgtatggaagaggcaaaggctgagaaact

tttggttgggacgtaggacataacaatttgcttaagtaatggagtaatgaacgatttttttgttggaatgcggttttgagcaaaaacactaggtaaa

tgatttttcttcttttgaaaagcattccagtgtattgtttttaggacaaaattgcaaacttttttcttttttttttcgaaaaacgcaaatttgttaaaagtattg

attggtaactgtattgtagttttaataaaaaaacaagaaaacgccttttgtatgtttcttaatcacagtgtatgaatggtgacatagaccgccccca

aaaccgtaccgtaactgtaacagtataaaaaatctctatatatacatatatatctatgtatttttgttattatttgaaccgtcccatactttttccgtatca

caaaatacagtcatcattcgaaccgcaaaactatatatagtatttcggtttttgaattcaaaatgaaggagaagaggaataggcagattaatataa

tttcgttatttctttttaatttcctatcttcaatttttcctcacccactgaatttgactatgccattaaaaatgtgtatactaatcatcataccgtcaataaat

agagtttgtgggaaacacacgacagacacgtcatcagctctcgacggcgcgtttccatgcctttattatccttcacgttgaccccacatgcccct

gttttttttttttggtgttctacggtatatttttgtgaaaatgttacttttcatctactcgataaaattcttaaacagatagtacaactttttacccgattaatc

tgtagaaaatacaatgttatttacactcaacaaacatttccattaatagaactttacccgatttaaaccactcttccactcgattaatattattattttatt

aattaaagatacgatgacgtgtccatgagagatgagctttagtggcacgcaacgtaagagaagaagacaaaagtaaaaaagagaaaggca

catgtcgaactcacgtgtccacttaaacgcaccaccttcttctgtgctctccacgcgcctccacacgccctcctcaacttcggaccttcttcctcc

aaaaaaaacaatttcactcttcattttctcagattctcttattatttcttctactcgtttcgaatcctaatcgtctacagtttccgacgagattctcaccg

gagaaagaaaggtagttcttttctctgaatctgttgtgttgagaacttagccgtaatttttgagaattattcttcactatttgatttgacaagaatatgg

gtaataaagacagaatctaaaacacttgcttcagtttttgaggaatcaaaaatcacacgaaagttttttttttttttctgctcctatgtttcttggtgcgt

ttgtgtttatttgacattaggagtgattgattgattataaagatgaatgatttgttagattcattaagatcactgttctttttgattaatcatcttatgtctaa

attttaggtgacttgacagagaatcttgttctgtaataaaagcaaagATGGTATCGAAAACTCCTTCTACATCGTCT

GATGAAGCAAATGCTACTGCAGATGAAAGgtgattcttaaggagaca 
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