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Abstract 

There is a critical need for detailed surveys of lakes covering large spatial  

(>100 km
2
) and temporal scales (decades) to determine if there is an increase in the 

magnitude and frequency of phytoplankton blooms. Remote sensing was used to: (1) 

develop a regression model that relates chlorophyll a (chl-a) as a proxy of lake 

phytoplankton biomass to Landsat TM and ETM+ optical reflectance (r
2
=0.85, 

p<0.001); and (2) apply this regression model to estimate chl-a in lakes within the 

Temperate Forest Biome in Ontario over a 28-year period. A two-way Analysis of 

Variance of remotely sensed chl-a of lakes revealed a spatial pattern of relatively low 

chl-a in headwater lakes to higher chl-a in lower reaches of watersheds, and a 

temporal pattern within a trend. These findings suggest that the recent increase in 

community-driven reports of phytoplankton blooms is not indicative of an actual 

increase in phytoplankton blooms in these lakes. 

 

Keywords: temperate forest, lakes, trophic status, phytoplankton blooms, 

phytoplankton, chlorophyll a, remote sensing  



 

 

iii 

 

Co-Authorship Statement 

 

 Mr. Aleksey Paltsev will be the first author on any manuscript(s) submitted 

from the contents of this thesis as he conducted satellite imagery data processing, 

statistical analysis, and contributed to the design of the research approach. Dr. Irena F. 

Creed will be a co-author on any manuscript(s) submitted from the contents of this 

thesis as she contributed to the definition of the research problem, synthesis of ideas 

and interpretation of the research results.  

Financial support of the research activities for this project was provided by 

Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery 

Grants to Dr. Irena F. Creed.  

 

 

 

 



 

 

iv 

 

 Acknowledgments 

First of all, I would like to thank my supervisor, Dr. Irena Creed, for all of her 

guidance and encouragement throughout the entire 2.5 year research project. Dr. 

Creed is an amazing scientist whose dedication to my professional development has 

been invaluable and greatly appreciated.  

I thank my advisory committee members, Dr. Katrina Moser, Dr. Hugh Henry 

and Dr. Brian Branfireun, for allowing me the opportunity to accomplish this goal. 

Each member of my advisory committee contributed bright ideas that were 

instrumental in making my thesis a success.  

I thank Mr. David Aldred for his tremendous help in guiding me through 

remote sensing techniques and developing automated scripts for satellite image 

processing. I also thank Ms. Xue (Sherry) Qin for her incredible willingness to help as 

well as for her support with satellite image processing and Ms. Jacqueline Serran for 

her help with formatting text and numerous graphs in this thesis.  

I would like to extend a special thanks to Dr. Eric Enanga who made my first 

field trip in Canada unforgettable and from whom I learnt a lot on soil sampling. I 

would also like to thank Dr. R. Sorichetti and Dr. G. Sass who became good friends of 

mine and who provided me with the precious field data I used in my research.  

 



 

 

v 

 

Table of Contents 

Abstract ...................................................................................................................................... ii 

Co-Authorship Statement...........................................................................................................iii 

Acknowledgments ..................................................................................................................... iv 

Table of Contents....................................................................................................................... v 

List of Tables.............................................................................................................................vii 

List of Figures...........................................................................................................................viii 

Chapter 1 ...................................................................................................................................1 

1  Introduction ............................................................................................................................1 

1.1 Problem Statement...........................................................................................................1 

1.2  Theoretical framework for optical remote sensing of phytoplankton...............................3 

1.3  Analytical framework for optical remote sensing of phytoplankton ...............................11 

1.4 Hypothesis and Objectives.............................................................................................13 

1.5 Thesis Organization........................................................................................................13 

Chapter 2 .................................................................................................................................15 

2  Study Region........................................................................................................................15 

Chapter 3 .................................................................................................................................18 

3  Methods ...............................................................................................................................18 

3.1 Ground-based data.........................................................................................................18 

3.2 Satellite-based data........................................................................................................19 

3.2.1 Rationale for choosing Landsat TM and ETM+ imagery .........................................19 

3.2.2 Landsat data acquisition ..........................................................................................19 

3.2.3 At-satellite radiance calibration................................................................................20 

3.2.4 Atmospheric correction ............................................................................................20 

3.2.5 Lake identification ....................................................................................................24 

3.2.6 Lake selection for regression modeling ...................................................................25 

3.2.7 Regression modeling ...............................................................................................26 

3.2.8 Decomposition of variance ......................................................................................27 

Chapter 4 .................................................................................................................................29 

4  Results .................................................................................................................................29 

4.1 Chl-a concentration in ground-based samples...............................................................29 

4.2 Regression model...........................................................................................................29 

4.2.1 Results validation.....................................................................................................34 

4.3 Spatial patterns in modelled chlorophyll a......................................................................34 

4.4 Temporal patterns in modelled chlorophyll a .................................................................37 

4.5 Alterations in the trophic status of lakes.........................................................................37 

4.6 Decomposition of total variation into space, time and space × time components .........40 

Chapter 5 .................................................................................................................................45 

5  Discussion............................................................................................................................45 

5.1 Regression model analysis ............................................................................................45 



 

 

vi 

 

5.2. Analysis of spatial and temporal patterns .....................................................................45 

Chapter 6 .................................................................................................................................51 

6  Conclusions..........................................................................................................................51 

References...............................................................................................................................53 

Curriculum Vitae.......................................................................................................................62 

 

 



 

 

vii 

 

List of Tables 

Table 1.1: Overview of Landsat satellite sensors for phytoplankton monitoring (past 

and currently operational) modified from Chander et al. (2009).  RBV:  Return Beam 

Vidicon; MSS:  Multispectral Scanner System; TM:  Thematic Mapper; ETM+:  

Enhanced Thematic Mapper; OLI:  Operational Land Imager; pan:  panchromatic; IR:  

infrared; NIR:  near infrared; SWIR:  shortwave infrared; TIR:  thermal infrared. ......7 

Table 1.2:  Overview of remote sensing studies using Landsat imagery for the 

estimation of different parameters in inland waters only. B:  Landsat band number; 

LR:  simple linear regression; MLR:  multiple linear regression; Chl-a:  chlorophyll-a; 

SD:  Secchi disk depth; TURB:  turbidity; TSS:  total suspended sediment; TSM:  

total suspended matter; DOM:  dissolved organic matter..............................................9 

Table 3.1:  Correspondence between Landsat image capture dates and ground 

measurement dates. ......................................................................................................21 

Table 4.1: Descriptive statistics of in situ lake physical, chemical and biological data.

......................................................................................................................................30 

Table 4.2: Pearson correlation coefficients between in situ DOC and various Landsat 

bands, band ratios, and band combinations. ................................................................32 

 



 

 

viii 

 

List of Figures 

Figure 1.1: Evidence for the increased number of phytoplankton blooms in southern 

Ontario (modified from Winter et al., 2011). ................................................................2 

Figure 2.1: Location of the study region in the Temperate Forest Biome of Ontario 

and the location of sampled lakes. ...............................................................................16 

Figure 3.1: Flowchart of Landsat TM and ETM+ image processing steps, lake 

identification and reflectance calculation. ...................................................................22 

Figure 4.1: Pearson correlation coefficients (r) between CHLaobs (ln [µg 

CHLaobs/L]) and various Landsat bands, band combinations and band ratios.............31 

Figure 4.2: Relationship of time window between in situ and satellite observations 

and r
2
, and number of lakes..........................................................................................33 

Figure 4.3: Scatter-plot of B3 reflectance regressed against CHLaobs (ln [µg 

CHLaobs/L])..................................................................................................................35 

Figure 4.4: Comparison of CHLaobs (ln [µg CHLaobs/L]) and CHLamod (ln [µg 

CHLamod/L]).................................................................................................................36 

Figure 4.5: Map of average CHLamod (µg/L) for 21,384 lakes in a 28-year record....38 

Figure 4.6: Time series of median CHLamod (ln [µg CHLamod/L]) for 6,384 lakes in a 

28-year record (1984-2011) with an additional axis for CHLamod (µg/L)......................................39 

Figure 4.7: Comparison in distribution of trophic status of lakes (%) for two ten-year 

periods (1985-1994 and 1995-2004)............................................................................41 

Figure 4.8: Sources of natural variation of CHLamod (ln [µg CHLamod/L]). ...............42 

Figure 4.9: Number of years needed to establish the stability of variance in CHLamod 

(ln [µg CHLamod/L]). ....................................................................................................43 

Figure 4.10: Number of lakes needed to establish the stability of variance in CHLamod 

(ln [µg CHLamod/L]). ....................................................................................................44 



 

 

ix 

 

 

List of Abbreviations 

chl-a:  Chlorophyll a  

CHLaobs:  Observed (sampled in the field) chlorophyll-a  

CHLamod:  Modelled chlorophyll-a  

DOC:  Dissolved organic carbon 

TM:  Landsat Thematic Mapper sensor 

ETM+:  Landsat Enhanced Thematic Mapper sensor  

OLI:  Operational Land Imager sensor 

B1:  Band 1 (Landsat blue band) 

B2:  Band 2 (Landsat green band) 

B3:  Band 3 (Landsat red band) 

B4:  Band 4 (Landsat near infrared band) 

ANOVA:  Analysis of variance  

RMSE:  Root mean square error 

DOS - Dark Object Subtraction method  

COST:  Cosine of Sun Zenith Angle variation of DOS method



1 

 

 

Chapter 1 

1  Introduction  

1.1 Problem Statement  

 Lakes in the temperate forests of eastern North America appear to be 

experiencing an increase in the frequency and duration of phytoplankton blooms. 

These blooms are often comprised of phytoplankton species that have the capacity to 

produce toxic secondary metabolites such as neurotoxins, hepatoxins and gastro-

toxins that can cause serious health problems for animals and humans (Havens, 2008). 

This has been the focus of numerous recent public and government reports (Winter et 

al., 2011), resulting in heightened public concern and public reporting of 

phytoplankton blooms in Ontario (Figure 1.1).  

  Phytoplankton blooms have usually been associated with the process of 

eutrophication where excess macronutrients such as phosphorus (P) and nitrogen (N) 

enter water bodies (Paerl and Huisman, 2009). The leading cause of this excessive 

nutrient concentration is mainly ascribed to anthropogenic influences through either 

direct discharge of waste products and chemical fertilizers into surface waters (Glibert 

et al., 2005) or widespread land use and land cover change (e.g. deforestation, prairie 

plowing, wetland drainage, etc.) (Foley et al., 2005). However, these explanations 

provide little or no insight into phytoplankton bloom occurrence in nutrient poor 

oligotrophic lakes located on relatively pristine landscapes a considerable distance 

from urban zones and agricultural lands.  

Canada’s Great Lakes-St. Lawrence forest region contains 18% of the world’s 

freshwater resources. With relatively little anthropogenic influence in the northern 

parts of this region, it is likely that other factors are contributing towards a rise in 

phytoplankton biomass. For example, climate warming and associated hydrological 

and biogeochemical changes may be contributing to increased phytoplankton biomass 

in oligotrophic lakes (O’Neil et al., 2012). More intense precipitation events promote 

washing of nutrients out from uplands to wetlands and lakes, increasing their nutrient 

enrichment. On the other hand, the prolonged periods of droughts lead to the effect 

when nutrients are captured within lakes, raising a possibility of blooms (Paul, 2008; 

Paerl and Paul, 2012). 
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Figure 1.1: Evidence for the increased number of phytoplankton blooms in southern 

Ontario (modified from Winter et al., 2011). 
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It should also be noted that heightened awareness of phytoplankton blooms 

may indicate perceived rather than real concerns. An increased number of reports 

does not necessarily indicate an actual increase in phytoplankton blooms. Public 

perception may be heightened by a greater number of news stories illustrated with 

photographs of dead fish and livestock. Therefore, there is a critical need for a 

detailed historical survey of lake phytoplankton biomass covering large regional 

scales over extended periods (decades) that can help determine whether global factors 

such as climate change do play an important role and whether public perceptions are 

accurate.  

Until recently it was unfeasible to conduct this kind of research because it 

required both comprehensive historical records and laborious sampling campaigns in 

frequently difficult-to-access locations. The era of remotely sensed imagery, however, 

allows for characterization of lake phytoplankton over large spatial extents over the 

past several decades.  

1.2  Theoretical framework for optical remote sensing of 

phytoplankton  

 Satellite remote sensing has proven to be an effective tool for ecological 

research in inland water bodies, helping to understand past and current complex 

ecological and biogeochemical processes occurring in them. In lake science, the 

application of remote sensing is based on the inherent properties of water, its 

dissolved components, and phytoplankton pigments to absorb or reflect solar radiation 

at specific wavelengths within the electromagnetic spectrum (Richardson, 1996).  

 The ability of a surface to reflect radiation is measured by reflectance; i.e., the 

ratio of the total amount of reflected radiation (light) to the total amount of radiation 

(light) incident on the surface. Every dissolved component or pigment in water has its 

own reflectance properties, making it possible to “trace” their presence and 

concentration in the water column. Phytoplankton detection is possible through the 

optical properties of one of the principal pigments of all phytoplankton, chlorophyll a 

(chl-a). Some phytoplankton groups have specific pigments, such as phycocyanin in 

cyanobacteria with an electromagnetic absorption peak at about 620 nm, meaning that 

these groups can be distinguished from other phytoplankton by their reflectance 

(Kallio, 2012).  Since cyanobacteria in most cases are responsible for both 
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phytoplankton bloom development and toxin production (Downing et al., 2001), 

remote sensing promises to be a useful technique for studying these blooms via 

detection of phycocyanin concentration in water. However, this technique is 

hampered by the inability of most satellite sensors to resolve the narrow bandwidths 

of these specialized absorption peaks and is still under investigation (Vincent et al., 

2004).  

Among several currently existing remote sensing systems, one of the most 

popular and widely available systems is the Landsat satellite series. It offers the 

longest continuous record of satellite-based observations of the Earth’s surface 

starting with the launch of the first satellite in the series (Multispectral Scanner or 

MSS) in the early 1970s (Fraser 1998). Landsat Thematic Mapper (TM) and 

Enhanced TM (ETM+) sensors were subsequently launched to provide finer spatial 

resolution (30 m). Landsat TM and ETM+ images consist of seven spectral 

bands (with one additional band for ETM+) (Table 1.1). Table 1.1 presents an 

overview of all past and currently operational Landsat satellite sensors. 

Landsat TM and ETM+ have a long history of successful quantification of 

phytoplankton chl-a (Carpenter and Carpenter, 1983; Lathrop et al., 1991; Gitelson, 

1992; Fraser, 1998;  Allee and Johnson, 1999; Svab et al., 2005; Cannizzaro and 

Carder, 2006;  Karakaya et al., 2011; McCullough et al., 2012; Hicks et al., 2013;  

Giardino et al., 2014). These studies relied mostly on: (1) the optical properties of chl-

a characterized by low reflectance in the red wavelengths and high reflectance in the 

near-infrared; and (2) simple linear or multiple linear regression models where 

satellite measured reflectance was related statistically to near-simultaneous ground-

based measurements of chl-a.  

The successful use of Landsat TM and ETM+ imagery depends on various 

factors, including the methods used for: (1) ground-based data collection (e.g., depth 

from which a sample was collected);  (2) correction of raw Landsat images to remove 

terrain and atmospheric effects; and (3) statistical analysis (e.g., the type of regression 

analysis used) (Liu et al., 2003; Kallio, 2012). It has also been shown that estimates 

produced by regression models can be highly dependant on chl-a concentration; 

accuracy can significantly drop with decreasing chl-a concentration (El-Alem et al., 

2012). 
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A review of existing literature of inland lake parameter models developed 

from remotely sensed imagery (using Landsat in particular) revealed that the majority 

of models were developed from a single lake (e.g., Ritchie et al., 1990; Mayo et al., 

1995; Budd and Warrington, 2004; Vincent et al., 2004; Tebbs et al., 2013; Rodríguez  

et al., 2014), some from a few lakes (e.g., Dekker and Peters, 1993; Gitelson, 1993; 

Baruah et al., 2001; Brezonik et al., 2005), and only a handful from a large number of 

lakes (e.g., Chipman et al., 2004; Olmanson et al., 2013) (Table 1.2). Few studies 

have attempted to estimate chl-a over a period of more than one year (e.g., Kloiber et 

al., 2002; Sass et al., 2007; McCullough et al., 2012; Hicks et al., 2013) (Table 1.2).  

 The studies that aimed at the model developing from many lakes 

transferedknowledge from a few representative lakes to many lakes in a region. They 

used in situ measurements from a few representative lakes to calibrate relationships 

between Landsat TM or ETM+ imagery and chl-a, then extended the scale of study 

from one year to decades and/or from small to large regions. For example, Pulliainen 

et al. (2001) predicted average chl-a concentration for lakes in southern Finland using 

regression models developed from ground-based chl-a measurements in just six lakes. 

The authors found that average chl-a can be reliably estimated from satellite data 

(AISA hyperspectral system) without having in situ measurements for every lake. 

Sass et al. (2007) classified trophic status in 76 lakes in northern Alberta (Canada), 

finding a relationship between Landsat TM Band 3 (red) reflectance and ground 

observations from 18 lakes (r
2
 = 0.68, p < 0.0001). Further, they used the regression 

equation and the reflectance derived from archived TM data to build a time series of 

chl-a concentration for 20 years, thereby confirming the possibility of using remote 

sensing of the lakes with no in situ data for continuous temporal analysis. Allan et al. 

(2011) characterized the spatial and temporal distribution of chl-a in numerous lakes 

spread over the large area of the Central Volcanic Plateau in New Zealand, finding a 

strong relationship between Landsat ETM+ Band 3 reflectance values and in situ data 

(r
2
 = 0.95, p < 0.001). The developed model was transferred to predict the 

concentration of chl-a for two different seasons (spring and summer) of the same year. 

The previously mentioned studies have one particular idea in common: their models 

were developed for the same biogeoclimatic and physiographic region.
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Table 1.1: Overview of Landsat satellite sensors for phytoplankton monitoring (past and currently operational) modified from Chander et al. 

(2009).  RBV:  Return Beam Vidicon; MSS:  Multispectral Scanner System; TM:  Thematic Mapper; ETM+:  Enhanced Thematic Mapper; OLI:  

Operational Land Imager; pan:  panchromatic; IR:  infrared; NIR:  near infrared; SWIR:  shortwave infrared; TIR:  thermal infrared. 

Resolution 

Satellite Sensors 
Launch 

Date 

 

Decommission 

Date 

 
Spectral Bands (B) (nm) Pixel Size (m) 

Revisit 

Period 

(days) 

Altitude 

(km) 

Landsat 1 
MSS 

and 

RBV 

July 23, 

1972 
January 7, 1978 

80 (RBV) 

79 (MSS) 18 920 

Landsat 2 
MSS 

and 

RBV 

January 22, 

1975 
February 25, 

1982 

RBV 

 

B1 (green):  480-

570 

B2 (red):  580-680 

B3 (NIR):  700-830 

MSS 

 

B4 (green):  500-600 

B5 (red):  600-700 

B6 (NIR):  700-800 

B7 (SWIR):  800-

1,100 

80 (RBV) 

79 (MSS) 
18 920 

Landsat 3 
MSS 

and 

RBV 

March 5, 

1978 
March 31, 1983 

RBV 

 

B1 (pan):  505-750 

MSS 

 

B4 (green):  500-600 

B5 (red):  600-700 

B6 (NIR):  700-800 

B7 (SWIR):  800-

1,100 

B8 (TIR):  10,400-

12,600 

40 (RBV) 

79 (MSS) 

240 (MSS 

thermal) 

18 920 

Landsat 4 
MSS 

and TM 
July 16, 

1982 
June 30, 2001 16 705 

Landsat 5 
MSS 

and TM 
March 1, 

1984 

Completely 

deactivated: 

June 5, 2013 

MSS 

 

B4 (green):  500-

600 

B5 (red):  600-700 

TM 

 

B1 (blue):  450-520 

B2 (green):  520-600 

B3 (red):  630-690 

82 (MSS) 

30 (TM) 

16 705 
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B6 (NIR):  700-800 

B7 (SWIR):  800-

1,100 

B4 (NIR): 760-900 

B5 (SWIR-1): 1,550-

1,750 
B6 (thermal IR): 

10,400-12,500 
B7 (SWIR-2):  

2,080-2,350 

Landsat 6 ETM+ 
October 5, 

1993 
Did not achieve 

orbit 
 

16 705 

Landsat 7 ETM+ 
April 15, 

1999 
Operational 

B1 (blue):  450-520 

B2 (green):  520-600 

B3 (red):  630-690 

B4 (NIR):  760-900 

B5 (SWIR-1):  1,550-1,750 

B6 (TIR): 10,400-12,500 
B7 (SWIR-2):  2,080-2,350 

B8 (pan):  500-900 

30 

120 (thermal) 

15 (pan) 
16 705 

EO-1 OLI 
November 

21, 2000 
Operational 

B1 (coastal aerosol):  433-453 

B2 (blue):  450-515 

B3 (green):  525-600 

B4 (red):  630-680 

B5 (NIR):  845-885 

B6 (SWIR-1):  1,560-1,660 

B7 (SWIR-2):  2,100-2,300 

B8 (pan):  500-680 

B9 (cirrus):  1,360-1,390 

B10 (TIR-1): 10,600-11,200 
B11 (TIR-2):  11,500-12,500 

30 

100 (TIR) 

15 (pan) 

16 705 
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Table 1.2:  Overview of remote sensing studies using Landsat imagery for the estimation of different parameters in inland waters only. B:  

Landsat band number; LR:  simple linear regression; MLR:  multiple linear regression; Chl-a:  chlorophyll-a; SD:  Secchi disk depth; TURB:  

turbidity; TSS:  total suspended sediment; TSM:  total suspended matter; DOM:  dissolved organic matter. 

Public

ation 
Location Sensor 

# of 

modeled 
lakes 

# of 

years 

(period) 

Lake 

parameter 
Statistical 

technique 

Bands/band 

combinations/

band ratios 

r
2
 

(chl-a 

only) 

Reference 

 

2013 USA, 

Minnesota 
TM, ETM+ 10500 20 (1985–

2005) 
SD MLR B1/B3 n/a Olmanson et 

al.(2013) 
2013 New Zealand, 

theWaikato 
region 

ETM+ 34 9 (2000–

2009) 
TSS, SD LR B4, B3, B1/B3 n/a Hicks et al., 

2013 

2012 USA, Maine TM, ETM+ 1511 20 (1990–

2010) 
SD LR 

(forward 

stepwise 

regression) 

B1/B3 n/a McCullough 

et al.(2012) 

2011 New Zealand, 

Central 

Volcanic 

Plateau 

ETM+ n/a  1 (2001) Chl-a LR B3, B1/B3 0.95 Allan et al. 

(2011) 

2008 Southern 

Finland 
ETM+ n/a  1 (2002) SD, TURB, 

DOM 
LR B1/B3 n/a Kallio et al. 

(2008) 
2007 Canada, 

Alberta, Boreal 

Plain 

TM, ETM+ 76 20 (1984-

2003) 
Chl-a, SD, 

TURB 

LR B3 0.68 Sass et al. 

(2007) 

2004 USA, 

Wisconsin 

TM, ETM+ 8645 3 (1999–

2001) 
SD MLR B1/B3, B1 n/a Chipman et 

al. (2004) 
2003 USA, lower 

peninsula of 

Michigan 

ETM+ 93 1 (2001) SD LR B1/B3 n/a Nelson et al. 
(2003) 
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2003 USA, 

Minnesota 

 

TM 94 1 (2001) SD MLR B1/B3, B1 n/a  Sawaya et 

al. 
(2003) 

2002 USA, 

Minnesota, 

Twin Cities 

Metropolitan 

Area 

 

TM, MSS 64–170 25 (1973–

1998) 
SD step-wise 

regression, 
MLR 

B1/B3, B1 n/a Kloiber et 

al. 
(2002) 

2002 The 

Netherlands, 

Southern 

Frisian Lakes 

 

TM n/a n/a   TSM Analytical (B2 + B3)/2 n/a Dekker et 

al. 
(2002) 

2001 Southern 

Finland 
TM 85 1 (1997) Chl-a, SD, 

TURB 

LR B1/B2, 
B1–B4)/ 
(B3– B1– 

B4)/(B3– 
B4), (B1– 

B4)/(B3– B4) 

n/a Härmä et al. 
(2001) 

1998 USA, Nebraska 

Sand Hills, 

Nebraska 

TM 21 1 (1994) TURB LR B3 n/a Fraser 

(1998) 
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1.3  Analytical framework for optical remote sensing of 

phytoplankton 

 For this research the framework developed by Wiley et al. (1997) and later 

applied by Sass et al. (2007) was adapted. Figure 1.2 shows schematic (A) and 

statistical (B) models of three types of variation (space, time and space × time 

interaction components) that contribute to overall variance in chl-a concentration.  

Conceptually, the spatial component represents variation due to landscape attributes 

of a study region including geology, topography, hydrology, forest and soil type (c.f. 

Devito et al., 2005). Data on these attributes should be spatially extensive (Wiley et 

al., 1997). For instance, they cannot represent concentration of chl-a for a single lake 

but rather for many lakes in the region. The temporal component represents variation 

due to differences between years including climatic oscillations and trends as well as 

human development. Finally, the space × time interaction component represents non-

synchronous site (lake) specific variation in time. Processes leading to this type of 

variation occur within lakes and can be biological (e.g., interactions between species 

including competition and predation) or physical (e.g., morphometric properties of 

lakes such as lake area, depth, size of littoral zone). The complexity of processes 

involved in this type makes it difficult to define what exactly causes the variation. 

Therefore, Sass et al. (2007) called it "variation due to unknown factors". 

Statistically, all three components are integrated into the paradigm of standard 

two-way analysis of variance (ANOVA). ANOVA has been widely used in ecological 

research for evaluating spatial and temporal patterns with applications for 

zooplankton (Lewis, 1978), fish and insect populations (Wiley et al., 1997), and chl-a 

of eutrophic lakes (Sass et al., 2007). The spatial component represents averaged time 

variation between sites, the temporal component represents averaged spatial variation 

between years, while the space × time interaction component accounts for interaction 

between time and space variations, namely variations that are site-specific (e.g. chl-a 

that varies across the lakes of the same study region). Finally, the error term in the 

ANOVA analysis may also be found in the space × time interaction component. This 

error is associated with any measurement or remote sensing processing errors. It is 

possible to separately estimate the errors (i.e., not have them included in the space ×  
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Figure 1.2: Schematic (A) and statistical (B) models of variation in the trophic status 

of lakes (modified from Sass et al., 2007). 
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time interaction component), but only if any replicates were collected during the 

sampling period (Wiley et al., 1997). 

1.4 Hypothesis and Objectives 

The goal of the research is to characterize spatial and temporal variation in 

lake chl-a as a proxy of phytoplankton biomass of lakes in the study region (the 

northern edge of the Temperate Forest Biome) in Ontario. 

The hypothesis is that concentration of chl-a in lakes in the Temperate Forest 

Biome of Ontario is highly dependent on spatial and temporal differences in 

topography and climatic patterns. The predictions are that: (1) the temporal 

component of variation in chl-a is large, with an increase in chl-a over time related to 

climate change; (2) the spatial component of variation in chl-a is similarly large, with 

a systematic pattern of increase in chl-a from the upper to lower reaches of 

watersheds; and (3) the space × time interaction component of variation is the 

smallest.  

To test this hypothesis, the following objectives were completed:  

1. develop regression models that relate chl-a to optical reflectance;  

2. apply these models to estimate chl-a concentration in lakes over several 

decades; 

3. decompose the total variation in chl-a into space, time, and space × time 

interaction components to identify the main factors influencing chl-a 

concentration. 

The results of the study will help to identify which factors are associated with 

reported phytoplankton blooms and allow researchers to target future monitoring 

efforts on the potentially susceptible lakes in forested landscapes. 

1.5 Thesis Organization 

 This thesis has been prepared in monograph format. The introduction (Chapter 

1) provides an overview of the research problem and presents the theoretical and 

analytical approaches to address the research problem. Chapter 2 outlines the study 

region. The methods section (Chapters 3) describes methods used in the study. 

Chapter 4 describes the findings of the research, while these findings are discussed in 



13 

 

 

detail in Chapter 5 with particular emphasis on the spatial and temporal factors 

influencing variation in chl-a. Chapter 6 summarises the major conclusions of the 

work, discusses the anticipated significance of the study, and identifies future research 

directions. 
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Chapter 2 

2  Study Region 

The study region is in the Great Lakes-St. Lawrence Forest region located at 

the northern edge of the Temperate Forest Biome and confined by the administrative 

borders of the province of Ontario (Figure 2.1). 

 Climate is continental, with precipitation being influenced by lake effect from 

the Great Lakes and local orographic effects in areas of high relief (Baldwin et al., 

2011).  According to McKenney et al. (2011), mean annual precipitation in the study 

region for the period of 1981–2010 was 990 mm. Areas with maximum annual 

precipitation are located along topographic heights facing the Great Lakes, especially 

in the Batchawana and Muskoka watersheds (1135 mm and 1150 mm respectively). 

Average annual mean air temperature for 1981-2010 was +4.4 
o
C, varying between 

+7.0 
o
C in the south-east and 1.8

 o
C in the north (McKenney et al., 2011).  The frost-

free period greatly depends on the location; in more warm and humid south regions 

this period normally extends from April to November while in the north it lasts from 

May to September (Baldwin et al., 2011). Peaks in stream discharge occur during 

snowmelt in March to April and again in September to November during autumn 

storms (Mengistu et al., 2013). 

Geology is the Precambrian rocks of the Canadian Shield. Bedrock geology is 

primarily composed of silicate greenstone with small outcrops of more felsic igneous 

rock (Ontario Geological Survey, 2003). In the south, these rocks are almost 

completely covered with glaciofluvial outwash, whereas they come to the surface 

throughout the Algoma Highlands and the north portion of the study region. The 

outwash is 1-2 m in width and generally consists of two layers: sandy loam ablation 

till and a compacted lower slit loam basal till (Ontario Geological Survey, 2003). 

Topography varies from flats and depressions along the shores of lakes Superior and 

Huron to hills and uplands (Algoma and Madawaska highlands, Batchawana 

Mountains). Elevations range from 180 m to 650 m at the summit of Batchawana 

Mountain with an average of 460 m (Baldwin et al., 2000). The most rugged 

topography occurs in the Algoma Highlands where hills of mostly oblong forms with 

gentle to steep slopes drain into numerous wetlands and lakes.  
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Figure 2.1: Location of the study region in the Temperate Forest Biome of Ontario 

and the location of sampled lakes. 
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Soils in the southern portion of the study region are thin and undifferentiated 

brunisols. Central and northern areas of the study region are represented by orthic 

ferro-humic podzols gradually thickening, differentiating, and increasing in organic 

content on topographic benches. Wetland areas are comprised of ferric humisols with 

highly humified organic deposits (Canada Soil Survey Committee, 1978). 

The Great Lakes-St. Lawrence Forest region is the second largest forest region 

in Ontario and represents the transitional zone between deciduous and coniferous 

forests. Deciduous species are primarily comprised of sugar (Acer saccharum Marsh.) 

and red (Acer rubrum L.) maples, yellow birch (Betula alleghaniensis Britt.), and red 

oak (Quercus rubra L.). Coniferous species are represented by white (Pinus strobes 

L.) and red (Pinus resinosa Ait) pine, and eastern white cedar (Thuja occidentalis L). 

There is a long history of forest management activities that have resulted in a fairly 

simple forest structure, with reduced species diversity and little variety in forest age 

(Carleton, 2000). In addition, logging has also led to significant changes in nutrient 

composition of local soils (especially nitrogen [N] and dissolved organic carbon 

[DOC]) that could have had potential impact on the streams and lakes of the study 

region (Kreutzweiser et al., 2008). 
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Chapter 3 

3  Methods 

3.1 Ground-based data 

 Ground-based measurements were taken as a part of the field campaign 

launched in 2008 and conducted by Sorichetti (2013b). The measurements of 

chlorophyll a and DOC were made in 31 oligotrophic lakes in the Algoma Highlands 

of Ontario from 2009 to 2011 (Figure 2.1). Lakes were selected on a basis of minimal 

direct anthropogenic influence and public concern about the potential of 

phytoplankton blooms in the lakes. The sampled lakes are relatively deep (ranging 

between 0.8 m to 42.7 m; Sorichetti, 2013b), thermally stratified during the warm 

summer months, and dimictic with major mixing events occurring during the spring 

snowmelt and fall storms. Lakes were sampled at their centers throughout the ice-free 

season (May – October). Surface water samples integrated to 1.0 m depth were 

collected in 500 mL pre-rinsed polyethylene bottles near the centres of the lakes. The 

samples were then put into in a cooler with ice until return to the field laboratory.  

 Each sample was filtered onto Whatman GF/F filters and analysed for chl-a 

concentration according to EPA Method 445.0 (Arar and Collins, 1997). Chl-a was 

extracted from filters using an acetone/ultra-pure water solvent (90:10 v/v) in 20 mL 

scintillation vials and stored in the dark at -20 °C for 20 h. Samples were brought to 

room temperature in the dark and measured using a Turner 10-AU field fluorometer 

with a 680-nm emissions filter (Turner Designs, Sunnyvale, CA, U.S.A.). 

 Ground-based measurements of chl-a conducted by Sass et al. (2007) were 

also used in this study. The measurements were taken in 22 eutrophic lakes in August 

2001 in the Boreal Plain in northern Alberta. The lakes were relatively shallow with 

an average depth of 1.3 m (Sass et al., 2008). Lakes were sampled at their centers in 

mid-August coinciding with the summer peak in phytoplankton biomass. Grab 

samples were taken from a depth of 0.20-0.40 m of the water column and transported 

to a laboratory. Samples were filtered within 12 hours of collection, frozen, and later 

analyzed for chl-a using a spectrophotometer at 750, 665 and 649 nm using EPA 

Method 446.0 following the methods of Bergmann and Peters (1980) and Sass et al. 
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(2007). Satellite reflectance values for the Alberta lakes were also provided by Sass et 

al. (2007). 

3.2 Satellite-based data 

3.2.1 Rationale for choosing Landsat TM and ETM+ imagery 

 Archived Landsat TM and ETM+ satellite images were chosen as the source 

of satellite-based data for this research for a number of reasons: (1) well-established 

methods of image and associated metadata processing; (2) near-continuous coverage 

of archived satellite imagery starting from 1982; (3) global coverage allowing for 

analysis over large areas as well as in areas with limited or no physical access; and (4) 

free distribution, an especially important consideration for historic surveys of large 

areas with requirements of hundreds thousands of scenes.  

3.2.2 Landsat data acquisition 

 Twelve Worldwide Reference System ground tracks (path and row 

combinations 22/27, 21/28, 20/27, 20/28, 17/28, 17/29, 16/29, 18/28, 18/29, 21/27, 

19/27, 19/28; UTM zones 16, 17 and 18) were identified for the study region. Landsat 

TM (1984-2011) and ETM+ (1999-2003) scenes as well as associated metadata 

corresponding to these tracks were retrieved from US Geological Survey archives for 

the period of 1984-2011. ETM+ images for the period of 2003-2011 were not 

acquired due to a system failure in the Landsat 7 sensor in 2003 that resulted in wide 

strips of missing data within images. Only those images were selected that: (1) 

contained less than 50% cloud or haze cover; and (2) were captured from late July to 

early November. This period coincides with the peak phytoplankton biomass known 

for the study region, extending into a prolonged autumn boundary. This boundary 

may extend into ice cover periods, but it was set this way intentionally due to new 

evidence that duration of phytoplankton blooms is increasing, covering a period up to 

mid-November (Winter et al., 2011).  

 Although the 16-day revisit period of Landsat satellites offers the potential to 

acquire two images for each ground track in most months, the presence of cloud cover 

limited this number; in many months no usable images could be acquired. Particular 

attention was paid to images captured from 2009 to 2011 – the period for which in 
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situ measurements of chl-a were available. A time window between image capture 

and ground observation within +/- 7 days was used to limit the search. Although this 

window is the longest period in which reasonable results can be yielded (Kloiber et al, 

2002; Nelson et al., 2003), it remained a challenge to find cloud-free Landsat images 

falling within this window. 

A total of 1,067 Landsat TM and 159 ETM+ images were retrieved. Five 

images coinciding with the in situ measurements in 2009, 2010 and 2011 within +/- 6 

days were acquired (Table 3.1). All images were corrected for terrain at delivery. 

Landsat images were imported into ArcGIS 10.2 where they were cropped to remove 

“dark” or zero value pixels on image margins. Only Bands 1-5 (out of 7) were 

processed and used in this analysis. 

3.2.3 At-satellite radiance calibration  

Landsat images are stored in 8-bit Digital Numbers (DNs) for the purpose of 

minimizing storage volume.  This storage process involves scaling and offsetting the 

physical at-satellite radiance values (the amount of energy sensed by the satellite 

measured in W m
-2

 sr
-1

 µm
-1

).  The first step in image analysis is to convert DNs for 

each image Band 1-4 back to at-satellite radiance values (Lsat) using Equation 1: 

  [1] 

where B and G are published post-launch image gain and bias provided in image 

metadata (Chander et al., 2009).  An automated script was developed for 

implementation in ArcGIS 10.2 to execute at-satellite radiance calibration. Figure 3.1 

shows a flowchart of Landsat processing. 

3.2.4 Atmospheric correction  

 Estimating phytoplankton biomass or other water quality variables from 

Landsat images depends on being able to relate Landsat pixel values to inherent 

physical optical properties of the variables. Because these physical properties do not 

vary in space or time, Landsat images acquired over a span of time and across 

different ground tracks must be corrected to a common radiometric scale in order to 

do quantitative analysis.   
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Table 3.1:  Correspondence between Landsat image capture dates and ground 

measurement dates. 

Date of image 

capture 
Sensor 

Ground measurement 

date 

May 22, 2009 TM May 17, 2009 

June 12, 2009 TM June 13, 2009 

June 23, 2009 TM June 24, 2009 

June 17, 2010 TM June 16, 2010 

August 16, 2010 TM August 16, 2010 

July 31, 2011 TM July 27, 2011 
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Figure 3.1: Flowchart of Landsat TM and ETM+ image processing steps, lake 

identification and reflectance calculation.  
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 A major source of error is the modification of electromagnetic radiation 

signals collected by satellites from scattering and absorption by gases and aerosols as 

the signals travel through the atmosphere from the Earth’s surface.  Atmospheric 

interference can be particularly significant over water bodies, because interference 

increases as reflected radiance from water decreases (Brezonik et al. 2005).  

Atmospheric conditions vary in both space and time.  The effects of atmospheric 

conditions depend on the wavelength of energy reaching the given satellite sensor. 

The main atmospheric effect is scattering which is additive to the remote sensed 

signals, while the effect of absorption is multiplicative. 

A number of methods have been developed to correct satellite images for 

atmospheric effects (Chavez, 1996; Chen et al., 2005). Physical models are the most 

complex and require detailed knowledge of atmospheric conditions such as Rayleigh 

atmosphere, aerosols and ozone optical depth at the time of image acquisition.  As 

these parameters are rarely available – especially for historic and rural archived 

imagery – physical models can typically only be used for field-calibrated studies 

where in situ measurements can be made. 

Relative methods use histogram matching and regression techniques to 

normalize images to a single reference image by selecting pseudo-invariant ground 

features (PIFs) that are assumed to have constant reflectance properties (Schott et al., 

1988; Furby et al., 2001).  Relative methods are not applicable when generalization of 

spectral features takes place across more than one Landsat frame as PIFs cannot be 

identified across ground tracks (Mahiny et al., 2007). 

Dark Object Subtraction methods (DOS) can be used across different scenes 

and do not require in situ atmospheric measurements. These methods assume that 

there are near-zero reflectance features ("dark features") within an image (e.g., clear 

water bodies, dense forest, shadows) and that the signal recorded by the sensor is 

solely a result of atmospheric scattering (path radiance) – this value is subtracted from 

all pixels in an image (Shunlin et al, 2001). The Cosine of Sun Zenith Angle model 

(COST) variation of DOS was adopted for this study (Chavez, 1996).  

 “Dark feature” DNs (DNmin) were identified by examining a histogram of DNs 

in each image band. Only Bands 1-4 were processed and used in this analysis. The 

lowest DN with a count of at least 1,000 pixels (McDonald et al., 1998) was recorded. 
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 For each Landsat band, the COST equation normalizes for variations due to 

Earth-Sun distance and solar zenith angle in addition to atmospheric effects by 

converting physical at-satellite radiance values (Lsat) to unitless [0-1] surface 

reflectance values (ρ) using Equation 2 (Chavez, 1996): 

 

 

[2] 

where: 

a) d is the earth-sun distance in astronomical units (provided in lookup tables 

according to image capture date); 

b) Lp is dark object radiance ((Lp = DNmin – B / G) minus radiance contributed by 

a percentage of surface reflectance (0.01 (1%) is an assumption of dark object 

surface reflectance for Bands 1-3; 0.001 (0.1%) for Band 4; and 0 (0%) for 

Band 5 (Lu et al., 2002; Mather and Tso, 2009; Clark et al., 2010)); 

c) Tv is atmospheric transmittance from target to sensor (assumed to be 1 by Lu 

et al., 2002); 

d) Esun is an exoatmospheric solar constant (provided in lookup tables according 

to satellite sensor); 

e) ϴz is solar zenith angle in radians (published in image metadata); and 

f) Tz is atmospheric transmittance in the illumination direction from sun to target 

(given as ϴz for Bands 1-4). 

 An automated script was developed for implementation in ArcGIS 10.2 to 

execute atmospheric correction for all images. 

3.2.5 Lake identification 

Pixels representing water bodies were identified according to an approach 

suggested by Frazier et al. (2003). A threshold value between water and non-water 

pixels for each image was identified by analysing histograms of raw Band 5 

(shortwave infrared) DNs for each image (a band in which radiation is strongly 

absorbed by water). This value was then used to reclassify the Band 5 images where 

pixels were assigned as water below this threshold and values equal to and above the 

threshold were assigned as non-water.  
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Water pixels were then converted to polygons. Since the water pixels 

accounted for not only lakes but also for other water features such as rivers and 

streams, these polygons were manually removed, thereby leaving only lakes (the 

“satellite lakes”) for further analysis. 

Cloud/shadow masks were generated automatically from the raw Landsat DNs 

by applying a stand-alone software package Fmask 3.2 (“Function of Mask”) that was 

initially developed by Zhu and Woodcock (2012) as a Matlab code. Fmask uses the 

physical properties of clouds (e.g., temperature, brightness) and the darkening effect 

of cloud shadows in the near infrared band (Band 4) to separate cloud/shadow pixels 

and clear sky pixels. Fmask can also be used to detect snow pixels – this function was 

particularly important for analyzing images captured in late October – November.  

Lake polygons intersecting any pixels classified as cloud, shadow or snow were 

discarded.   

3.2.6 Lake selection for regression modeling 

Sass et al. (2007) cite the importance of lake selection criteria when dealing 

with prediction of chl-a for small lakes because of potential errors appearing in pixels 

near or along lake shorelines. The reflectance properties of shallow water and/or 

abundant emergent or aquatic vegetation that appear at the edges of water features are 

different than those of deeper water, producing pixels with mixed reflectances.  

In order to avoid this problem, a minimum lake area of 4.5 ha (50 digital 

pixels for images with 30 m resolution) was applied – lake polygons with a smaller 

area were discarded. The remaining lake polygons were buffered inside to a distance 

of 15 m (1/2 pixel distance), further reducing the potential effects of mixed pixels.  

Mean reflectance values for each Landsat Band 1-4 were extracted within each 

buffered lake polygon. 

Twenty-six of 31 ground sampled lakes were matched with satellite lakes, 

meaning that seven ground sampled lakes were either: (1) cloud covered at the time of 

image capture; (2) smaller than 4.5 ha; or (3) image capture fell outside the +/-7 day 

window of ground observation. Nine of the 26 ground sampled lakes had in situ chl-a 

data for more than one image date within the +/- 7 day time window, resulting in a 
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total sample size of 35 Ontario lakes. All ground sample dates were found to fall 

within a +/- 6 day time window of image capture. 

3.2.7 Regression modeling 

Ground-based measurements of chl-a were related to mean lake reflectance. 

Pearson correlation was used to determine statistical relationships between natural log 

transformed ground-based chl-a (hereafter referred to as CHLaobs) and reflectances 

from Landsat bands (B), band combinations and band ratios. Band combinations and 

band ratios were chosen on the basis of a review of studies (Dekker and Peters, 1993; 

Chen et al., 1996; Vincent et al., 2004; Hellweger et al., 2004). Twenty-one different 

bands, band combinations and band ratios were tested to determine the strongest 

relationship of reflectance to chl-a by comparing with CHLaobs using the Pearson 

product-moment correlation coefficient (r). This correlation had already been 

conducted on the CHLaobs from the Alberta lakes. 

 The Pearson correlation coefficient was also used to test potential relationships 

between natural log transformed DOC sampled in the Ontario lakes and reflectance 

values to determine whether DOC had any confounding effect on reflectance. 

Sass et al. (2007) found that a maximum +/- 2 day time window between 

ground measurement and image capture was optimal for their model. To determine 

this window for the Ontario lakes, simple linear regressions between reflectance (in 

the band, band combination or band ratio determined to have the strongest 

relationship with CHLaobs) and CHLaobs for each time window interval step of one 

day between +/ 1 to +/- 6 days. A maximum +/- 3 day time window left a total of 31 

Ontario lake samples. 

 Ontario and Alberta ground sampled lakes were combined into a single dataset 

for modeling. Cook's distance of CHLaobs was calculated in three iterations to identify 

and eliminate six outliers, leaving 47 samples for use in modeling. The resulting 

dataset was randomly split into two datasets of 24 and 23 lakes covering 

approximately the same ranges of chl-a and reflectance in the band, band combination 

or band ratio determined to have the strongest relationship with CHLaobs. The first 

dataset was used for model development and the second for model validation. 
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 A linear regression model was developed from the first dataset of 24 lakes 

using CHLaobs as the dependent variable and the band, band combination or band ratio 

determined to have the strongest relationship with CHLaobs as the independent 

variable. The equation obtained from the regression model was applied to predict chl-

a (hereafter referred to as CHLamod) for the lakes in the model validation dataset. A 

linear regression was conducted using  CHLaobs from the validation dataset as the 

dependent variable and CHLamod as the independent variableto determine the strength 

of the model and to confirm that predicted values fit onto a 1:1 line with no intercept 

with observed values. The model equation was then applied to all lakes in each 

Landsat image and for the entire period of 1984-2011. These remaining images 

included 793 cloud-free processed images from the end of July to mid-November with 

the highest number of them captured in August and September (around 70%). 

 A total of 21,384 satellite lake observations were found to be located within 

the study region over the 28-year period. These lakes were used for evaluating spatial 

distribution of CHLamod within the study region as well as for analysing their trophic 

status.  However, many of these lakes lacked complete CHLamod data for some years 

due to haze and clouds. In order to build temporal patterns where the development of 

chl-a over a 28-year period could be identified, it was important to have a continuous 

annual record of CHLamod for the same lakes. Therefore, lakes with missing data (i.e. 

missing years) were excluded, leaving a final selection of 6,384 lakes. 

3.2.8 Decomposition of variance 

 Two-way analysis of variance (ANOVA) was used to evaluate spatial and 

temporal patterns in CHLamod (Figure 1.2B). The variation in CHLamod was 

decomposed into space, time and space × time interaction components, statistically 

expressed as the sum of squares in space (SSspace), time (SStime), and space × time 

(SSspace x timet). The ANOVA matrix consisted of 28 columns corresponding to the 

number of years and 6,384 rows corresponded to the number of lake records. The 

space factor accounted for evaluation of the difference between the 28-year average 

CHLamod for a specific lake and the 28-year average of all lakes, whereas the time 

factor accounted for the difference between the average CHLamod of all lakes for a 

specific year and for the 28-year average of all lakes. The space × time factor 
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estimated the difference between the total variation and the sum of variation in the 

space and time factors (SStotal - SSspace - SStime).  

 ANOVAs were also conducted on subsets of the dataset to examine the 

stability of variance in CHLamod with gradually increasing temporal and spatial extent 

of sampling (i.e., the effect of number of years and number of lakes). Twenty subsets 

were selected for testing both the number of years and the number of lakes. While 

testing the effect of the number of years: (a) ANOVAs were performed for every year 

from 1985 to 1997 and for every two years from 1998 to 2011; and (b) all 20 subsets 

consisted of 6,384 lakes. While testing the effect of the number of lakes: (a) ANOVAs 

were performed on subsets containing between 200 and 6384 lakes increasing in size 

by increments of 200 between 200 and 2000 lakes and of 400 between 2001 and 6384 

lakes; and (b) all 20 subsets consisted of 28 years. In the end, two final datasets were 

created (number of years and number of lakes) with proportions of total variation in 

CHLamod (in percentages). 

The minimum number of years and lakes which was required to establish the 

stability of variance in CHLamod was determined by identifying breakpoints for each 

of three components (i.e., space, time and time x space interaction) with the use of 

nonlinear piecewise regressions. Since the breakpoints for each component were 

different, the one with maximum value (i.e., number of years or number of lakes) was 

selected. At this breakpoint all these components were becoming stable.   
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Chapter 4 

4  Results 

4.1 Chl-a concentration in ground-based samples  

 CHLaobs in 24 lakes selected for the regression model development ranged 

from 0.50 to 78.79 µg/L with an average of 14.51 µg/L (Table 4.1). CHLaobs in the 23 

lakes selected for the validation dataset ranged from 0.39 to 59.6 µg/L with an 

average of 12.1 (µg/L). This indicates that both datasets represented the lakes of all 

trophic states from oligotrophic to hypereutrophic (very nutrient rich; Carlson and 

Simpson, 1996). 

4.2 Regression model 

 Analysis of reflectance values showed that bands B2 (green) and B3 as well as 

band combinations B3*B1 and B3*B2 were significantly correlated to CHLaobs in the 

Ontario lakes with B3 showing the strongest correlation (r=0.91, p < 0.0001; Figure 

4.1). Similar coefficients were found by Sass et al. (2007) for Alberta lakes (B3, PCC 

= 0.82, p < 0.0001). Therefore, this band was chosen for the regression model 

development. It was interesting to find that band ratio B3*B1 also had significant 

correlation reaching a mark of 0.90 (p < 0.0001). There were no previous studies 

found having any comparable results for this ratio for inland waters.  

The possible contribution of DOC to the strength of the regression model was 

considered. DOC absorbs moderately in the red wavelengths (B3) leading to potential 

changes in the spectral reflectance properties (Gitelson et al., 1993, Svab et al., 2006). 

However, there was no significant relationship found between this band and DOC (r = 

0.38, p = 0.18, n = 14; Table 4.2).  

A series of linear regression models were developed of CHLaobs from the 

Ontario lakes and B3 by successively increasing the time window between the day of 

image capture and sample day in one day increments from +/- 1 to +/- 6 days (Figure 

4.2). As the time window increased, the strength of relationships decreased (r
2
 

decreasing from 0.82 to 0.21 with increasing time windows). There was a significant 

drop in the strength of relationships after +/-3 days (r
2 

decreasing from
 
0.73 for 

+/- 3 days to 0.35 for +/- 4 days). The former finding agrees with the results achieved  
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Table 4.1: Descriptive statistics of in situ lake physical, chemical and biological data. 

 n Mean Min Max Median 

CHLaobs (µg/L)* 24 14.51 0.50 78.79 3.71 

DOC (µg/L) 14 5148.68 2634.00 8477.90 4368.26 

Validation CHLaobs 

(µg/L) 
23 12.1 0.39 59.60 5.59 

* Final lake selection used for the regression model  
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Figure 4.1: Pearson correlation coefficients (r) between CHLaobs (ln [µg CHLaobs/L]) and various Landsat bands, band combinations and 

band ratios. 



31 

 

 

Table 4.2: Pearson correlation coefficients (r) between in situ DOC and various Landsat 

bands and band ratios. 

Landsat band/band 

combination 
B1 B2 B3 B3*B1 B3*B2 

DOC, n=14 0.42 0.29 0.38 0.39 0.18 
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Figure 4.2: Relationship of time window between in situ and satellite observations 

and r
2
, and number of lakes. 
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by Kloiber et al. (2001); however, these authors did not find a significant drop in the 

strength of their models from one time step to another owing likely to a far larger 

sample size (160 lakes in contrast to 35). Given the relative strength of the 

relationship found using a time window of +/- 3 days, the decision was made to use 

this time window to preserve a relatively large number of sample lakes (31).  

Cook's distance identified six outliers in our dataset. Four of them came from 

Ontario dataset from 2011, while two came from the Alberta dataset. The fact that all 

the outliers from the Ontario dataset were from the same year suggests that this year 

may have been exceptional in terms of climatic conditions. 

 A linear regression model performed using CHLaobs from the 24 lake model 

development dataset explained 85% of variation in CHLamod (r
2
 = 0.85, p < 0.001, n = 

24; Figure 4.3). 23 out of 24 lakes fell within the bounds of 95% prediction limits. 

4.2.1 Results validation 

 The accuracy of model was assessed using the validation dataset of 23 lakes 

(Table 4.1). The comparison revealed significant correlation between CHLaobs and 

CHLamod with a root mean square error (RMSE) = 0.55 (r
2  

 = 0.84 and p < 0.0001; 

Figure 4.4). The slope of the regression was found to be only slightly greater than 1 

(1.0079) and the intercept only slightly less than 0 (-0.0997). Therefore, it was 

concluded that the predictive power of the model was good. 

4.3 Spatial patterns in modelled chlorophyll a 

 Spatial patterns were assessed on the basis of a trophic status map of 21,384 

lakes (Figure 4.5). The map was created by averaging the 28-year record of CHLamod 

for each lake. This average concentration was used to classify the lakes into four main 

trophic groups according to Carlson and Simpson (1996): oligotrophic, mesotrophic 

(intermediate nutrient levels), eutrophic (nutrient rich) and hypereutrophic. The map 

revealed two distinct patterns in average CHLamod.  

First, lakes located in close proximity (within 100 km) to Lakes Superior and 

Huron are mostly mesotrophic or eutrophic. Further, most of the highly productive 

hypereutrophic lakes (CHLamod > 56 µg) of the study region are also found in close 

proximity to the Great Lakes (especially to the northern shore of Lake Huron and Saul 

Ste. Marie metropolitan area). This trend is less obvious in the south-eastern portion  
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Figure 4.3: Scatter-plot of B3 reflectance regressed against                               

CHLaobs  (ln [µg CHLaobs/L]). 
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Figure 4.4: Comparison of CHLaobs (ln [µg CHLaobs/L]) and                               

CHLamod (ln [µg CHLamod/L]). 
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of the region. The distribution of mesotrophic and eutrophic lakes is apparently more 

random.  

 Second, oligotrophic lakes are concentrated along the topographic divides 

between watersheds. They form an almost continuous "oligotrophic belt" with the 

only interruption in the south-eastern portion of the region. 

4.4 Temporal patterns in modelled chlorophyll a 

 A 28-year time series of annual median CHLamod for 6,384 lakes was created 

for the analysis of temporal patterns (Figure 4.6). 

The time series revealed a cyclic structured pattern in the median CHLamod 

with a different range and intensity of fluctuation over the 28-year period. The range 

of fluctuation seems to be higher between 1989 and 1999. The time series also 

revealed three peaks in the median CHLamod in 1991, 2000 and 2010 with 

approximately the same CHLamod (7.5 µg/L).  

4.5 Alterations in the trophic status of lakes  

 The bar chart of comparison in the proportions of lakes trophic status for two 

periods showed an increasing trend in the proportion of lakes with high level of 

biological production (Figure 4.7). The proportion of oligotrophic lakes decreased 

from 49.3% in 1994 to 41% in 2004; however, the proportion of mesotrophic lakes 

significantly increased from 42.1% in 1994 to 48.1% in 2004. There was also an 

increase in the proportion of eutrophic lakes from 7.4% in 1994 to 9.6% in 2004 as 

well as a slight increase in the proportion of hypereutrophic lakes from 1.1% in 1994 

to 1.3% in 2004. Provided that these two types of lakes (eutrophic and 

hypereutrophic) are the ones with highest biological production, even a slight increase 

in their proportion could have led to significant changes in the average CHLamod in 

the region. Overall, the chart showed that lakes of the study region became more 

eutrophic in the period between 1985 and 2004.
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Figure 4.5: Map of average CHLamod (µg/L) for 21,384 lakes in a 28-year record 
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Figure 4.6: Time series of median CHLamod (ln [µg CHLamod/L]) for 6,384 lakes in a 28-year record (1984-2011) with an additional  

axis for CHLamod (µg/L)
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4.6 Decomposition of total variation into space, time and 

space × time components 

 The analysis of proportions of total variation in CHLamod revealed that the 

space × time interaction factor accounted for around 74.9% of total variation, while 

space and time factors accounted for 16.1% and 8.9% accordingly (p<0.0001; Figure 

4.8).  

In evaluating the number of years that is necessary to establish the stability of 

variance in CHLamod it was found that the sampling period should be not less than 12 

years in order to obtain a stable variance structure (Figure 4.9). At this point the 

space, time and space × time interaction component levelled off and did not change 

significantly afterwards. It was also found that despite the fact that these factors 

became stable at 12 years, there was a slight increasing trend of time factor with 

increasing years of sampling. The space factor, in contrast, had a slight decreasing 

trend after 12 years. 

In evaluating the number of lakes (sample size) necessary to establish the 

stability of variance in CHLamod, it was found that around 3,400 lakes are needed for 

an area the size of the study region to obtain a stable variance structure (Figure 4.10). 

The factors behave similarly on both plots, although not identically. The interaction 

between time and space factors appears more complex in Figure 4.10 (evaluating the 

number of samples) where they are located much closer to each other (between 10 and 

20 % in proportion of total variation) and even intersect when the number of lakes 

reaches 3,000. The third space × time interaction factor shows a very stable pattern on 

both plots never dropping below 67% in total variation.
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Figure 4.7: Comparison in distribution of trophic status of lakes (%) for two ten-year periods (1985-1994 and 1995-2004).
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Figure 4.8: Sources of natural variation of CHLamod (ln [µg CHLamod/L]). 
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Figure 4.9: Number of years needed to establish the stability of variance in    

CHLamod (ln [µg CHLamod/L]). 
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Figure 4.10: Number of lakes needed to establish the stability of variance in   

CHLamod (ln [µg CHLamod/L]). 
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Chapter 5 

5  Discussion 

5.1 Regression model analysis 

 The importance of the time window between satellite image capture and 

sample date (Kloiber et al., 2002) was shown in this study (Figure 4.2). The fewer 

days between these two events the stronger the correlation (as measured in r
2
) 

between CHLaobs and satellite reflectance. Kloiber et al. (2002) showed that +/-1 day 

was optimal for their model with a minimum sample size of 40. In this research, 

however, with fewer ground observations and a sharp drop in correlation (at the point 

of +/- 4 days), a time window of +/- 3 days was found to be optimal.  There was also a 

concern that using in situ observations from different years in the same model could 

weaken the strength of correlation (Harma et al., 2001). Our results agreed with this. 

Using a time window +/- 3 days and data from 2009 resulted in r
2
 = 0.80, whereas 

using the same window with added 2010 and 2011 data led to decline in the strength 

with r
2
 = 0.73. The subsequent abrupt drop in correlation from +/- 3 days to +/- 4 days 

could have been caused by different factors (e.g., the presence of outliers) not related 

to the year when data were sampled. 

Since there were few studies conducted over a large number of lakes (i.e., 

hundreds or thousands; Table 1.2), it was a challenge to compare the overall results of 

this model with others.  However, in line with the studies conducted over moderate 

number (tens) of lakes (Gitelson et al., 1993; Allee and Johnson, 1999; Allan et al., 

2011), this model showed strong correlation between  reflectance values from Landsat 

B3 and CHLaobs  (r
2 

=0.85, p < 0.001). The coefficients obtained by comparing 

CHLamod with the validation dataset (RMSE = 0.55, r
2  

 = 0.84 and p < 0.0001) also 

confirmed this.  Therefore, it can be concluded that the Landsat TM and ETM+ 

imagery is reliable enough to be used for modelling detailed synoptic coverage of  

chl-a. 

5.2. Analysis of spatial and temporal patterns  

 Lake-specific variation (the space × time interaction component) accounted for 

the majority of the variation in CHLamod (74.9%; Figures 4.8, 4.9 and 4.10). Such a 

high proportion indicates that processes occurring within lakes (lake-specific) are 



45 

 

 

most important for phytoplankton growth in the study region. These processes can be 

attributed to the ecology of particular phytoplankton species found in the lakes, e.g. 

their ability to migrate in the water column and nutrient uptake characteristics. There 

may be hundreds of different species of algae and cyanobacteria in a single lake that 

compete with each other for nutrients and better access to light (Stoermer et al., 1985; 

Huisman et al., 2004). Further, other biological factors such as predation may also 

have a significant effect on phytoplankton populations (Hart and Robinson, 1990).  

A similar percentage in variation was found by Wiley et al. (1997) for two 

insect species (Glossosoma nigrior and Goera stylata; 77 and 44% accordingly). 

However, in this research no particular species were studied. Moreover, Glossosoma 

nigrior and Goera stylata are insects with well documented ecology, while it seems 

rather difficult to incorporate ecological characteristics for all phytoplankton species 

living in a lake (or several lakes) in the same paradigm. Since it is known that 

different phytoplankton taxa tend to dominate an environment in a different part of 

growing season (Wetzel, 2001), one of the feasible ways to understand the influence 

of the biological factor on the space × time interaction component could be the ability 

to discriminate this phytoplankton taxon remotely. For example, there are techniques 

for distinguishing phycocyanin of cyanobacteria in large lakes from reflectance of 

MERIS imagery (Simis et al., 2005; Kallio, 2012). 

It is worth mentioning that lake-specific physical factors are of (if not the 

same) importance. The size and form of lakes regulate sedimentation, diffusion and 

mixing which in turn regulate concentrations of nutrients and suspended particulate 

matter which affect primary production (Hakanson, 2005). Sorichetti et al. (2013a) 

found evidence that cyanobacteria thrive in iron poor environments. This is due to 

their ability to migrate through the water column (Molot et al., 2014) and uptake 

ferric iron that is unavailable to other phytoplankton species (Kranzler et al., 2013). 

The main source of ferric iron in the temperate lakes is anoxic sediments. Anoxia in 

turn is highly dependent on lake morphometry and depth in particular (Molot et al., 

2014). By definition the space × time interaction component also includes the error 

term. Unfortunately, there were no replicates in this study that would enable 

separation from the space × time interaction component. Therefore, it is impossible to 

define what proportion within the component is taken up by the error.  
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 Around 16% of the total variation in CHLamod was explained by the space 

factor (Figures 4.8, 4.9 and 4.10). This suggests that CHLamod in the lakes of the study 

region may be influenced by one of the landscape control elements (e.g. topography, 

surficial geology, forest type) or by their interaction with each other. Areas with 

similar geology, forest type and soils, topography and affected hydrological 

connectivity may have a key control on water flow and nutrient transport and 

accumulation (Creed et al., 2002). Lakes located on the lower reaches of the local 

rivers or lowlands receive more nutrients than those located on uplands of watershed 

boundaries (Figure 4.5). Further, logging practices such as clear cutting increase 

erosion and lead to the changes in nutrient composition of local soils (Kreutzweiser et 

al, 2008). These nutrients are then flushed to receiving lakes where they accumulate, 

likely causing an increase in phytoplankton biomass and consequent phytoplankton 

blooms (Devito et al., 2000). 

The “lake effect” (increasing productivity in proximity to the Great Lakes) 

found among the lakes of the study region may be attributed to the space factor. 

However, these lakes may be affected not so much by the neighbouring Great Lakes 

themselves but rather by the water flow bringing organic matter and nutrients from 

upstream areas. This is suggested by the fact that this pattern seems to disappear in the 

south-eastern portion of the region. This portion lies in the middle of the St. Lawrence 

River and Great Lakes Watershed, at a considerable distance from any large rivers or 

lakes. Moreover, the south-eastern portion is known to be much affected by human 

activities due to relative proximity to the most populated areas in Ontario (Baldwin et 

al., 2000). Most of the reports on phytoplankton blooms were described for this 

portion as well (Winter et al., 2011). Another important pattern found in the study 

region is a high concentration of oligotrophic lakes in the centre where they comprise 

an “oligotrophic belt”. In fact, this belt consists almost entirely of oligotrophic lakes 

with rare interruptions of mesotrophic lakes. Not surprisingly, it was found that the 

belt corresponds to the boundary of regional watersheds (Figure 4.5).  Thus, nutrients 

may not accumulate in these lakes; instead they are washed out to the downstream 

areas via surface and groundwater streams. 

 A minority of variation in CHLamod was explained by the time factor (8.9%; 

Figures 4.8, 4.9 and 4.10). Sass et al. (2007) found the same result (9%) in the Alberta 

Boreal Plain. This is a rather interesting finding given that the Boreal Plain lies in a 
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considerably higher latitude than the Ontario study region (56
o
N vs. 46.5

o
N) with a 

generally colder (average annual temperatures +1.7
o
C vs. +4.5

o
C) and drier (average 

annual precipitation 469 mm vs. 990 mm) climate. The possible reason of this 

similarity may not be climate itself but global climate patterns occurring in these two 

regions. These patterns may be similar in both the Temperate Forest Biome of Ontario 

and the Boreal Plain of Alberta.   

Climate affects the productivity and biodiversity of surface waters directly via 

increased temperature and radiation, changes in seasonal patterns, or intensified 

vertical stratification of water (Butterwick et al., 2005; Elliott, 2014), and indirectly 

via changes in nutrient fluxes from headwater catchments (King et al., 2007; 

Whitehead et al., 2009). Climate patterns are driven both by anthropogenic climate 

change and by natural climatic oscillations. The patterns caused by climate change are 

non-stationary; i.e., their means change over time. On the other hand, patterns caused 

by global climatic oscillations are stationary with means repeating over time (Zhang 

et al., 2000; Mengsitu et al., 2013). Since these repeating periods can occur at scales 

of several decades, they may be perceived as non-stationary patterns. Thus, it is 

important to be able to delineate climate change from natural climatic oscillations 

(Sang et al., 2011). Mengsitu et al. (2013) used wavelet analysis to develop an 

analytical framework allowing to deconstruct a 28-year time series of temperature in 

the Turkey Lakes Watershed in the Algoma Highlands into non-stationary trends and 

stationary cycles. The authors were able to explain the majority of variations in the 

time series through the prism of catchment water yield responses. This suggests that 

wavelet analysis may be a useful technique in explaining climate patterns (such as 

ones hidden in time series) and their influence on phytoplankton biomass. 

Both climatic non-stationary trends and stationary cycles are likely 

incorporated in the times series of median CHLamod for the study region (Figure 4.6). 

Fluctuations found in this time series may reflect year-to-year climatic variability or 

the North Atlantic Oscillation (Zhang et al., 2000). A climatic non-stationary trend 

would be shown on the times series as a gradual positive or negative trend in CHLamod 

(Blenckner et al., 2007). A positive trend was expected as increasing temperature in 

the region should lead to higher biomass and consequently higher chl-a concentration 

(Downing et al., 2001; O’Neil et al., 2012). However, there was no significant trend 

towards increasing in phytoplankton biomass over the 28-year period.  
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This finding contradicts the work presented by Winter et al. (2011) who 

analyzed reports on phytoplankton blooms in Southern Ontario for 19 years and found 

significant increases in the number of phytoplankton blooms (Figure 1.1). Given that 

the development of a phytoplankton bloom always implies an increase in 

phytoplankton biomass (Paerl and  Huisman, 2009) and consequently in chl-a, it is not 

clear why there is no direct correlation between these events. There could be three 

explanations for this: (1) the reports were analyzed for southern Ontario, a region that 

overlaps only the southern portion of the study region; (2) the reports cover the period 

from 1994 to 2013 while the time series presented in this region covers the period 

1984-2011; and (3) there is no real increase in phytoplankton blooms but instead an 

increased number of reports due to increased awareness of the problem. It is outside 

the scope of this research to elucidate which explanation or explanations are correct. 

However, an attempt could be made to trace if there were any changes in the trophic 

status of the lakes assuming that there is an increase in the proportion of lakes with 

high average CHLamod.  

 Herein the question can be posed: was there any alteration in trophic status of 

lakes during the period of 1985-2004? The 21,384 lake dataset was divided into two 

groups corresponding to the ten-year periods of 1985-1994 (preceding the 

phytoplankton bloom report) and 1995-2004 (matching the first ten years of the 

phytoplankton bloom report). Since there were no data for 2011-2013 to organize a 

complete dataset corresponding to the phytoplankton bloom report, data for 2005-

2011 were discarded. Data for the first year (1984) was also discarded to provide 10 

continuous years of CHLamod data with the final year overlapping the first year of the 

phytoplankton bloom report. The proportions of lakes with different trophic statuses 

for each period were calculated. 

There has been a shift towards eutrophication of lakes found in the period of 

1985–2004 (Figure 4.7). Eutrophication trend is particularly noticeable in the pattern 

of oligotrophic versus mesotrophic lakes (with decrease in the proportion of 

oligotrophic lakes and almost the same increase in the proportion of mesotrophic 

lakes). This leads to the assumption that eutrophication of Ontario lakes started even 

before the 1980s and likely continues now. The finding generally correlates with the 

increase number of reports on phytoplankton blooms for the same period and possibly 

provides an insight on why more blooms are presently occurring in oligotrophic lakes. 
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Perhaps these lakes are no longer oligotrophic. The condition of these lakes has 

changed, perhaps too quickly to be perceived.   
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Chapter 6 

6  Conclusions 

There is a vital need for spatially and temporally extensive datasets on chl-a 

concentration of numerous (hundreds and thousands) lakes, covering large spatial 

(>100 km
2
) and temporal scales (decades) to determine if the number of 

phytoplankton blooms increases and, if so, what processes cause this increase. In this 

study archived Landsat TM and ETM+ imagery was explored to model chl-a 

concentration in thousands of lakes across a huge region of the Temperate Forest 

Biome in Ontario and for the period of 28 years. It was confirmed that satellite 

imagery, Landsat in particular, is a unique instrument allowing to build detailed 

historical surveys of phytoplankton biomass that can be used for lake trophic status 

assessment. 

The ability to distinguish between spatially and temporally extensive, and site 

specific (local scale) variations was shown to be of great importance. The study 

revealed that a majority of the variation in CHLamod (74.9%) was explained by a 

space × time interaction component, leading to the conclusion that future researches 

should pay particular attention to the processes occurring within lakes despite the fact 

that regional and global-scale processes may seem to be more obvious. The spatial 

patterns found in the research provide an insight on the susceptibility of lakes to 

eutrophication and the possible directions of eutrophication processes occurring in the 

study region. By being able to predict the potential susceptibility of lakes to 

eutrophication, researchers will be able to target future monitoring and research 

efforts. These spatial patterns also confirm the importance of topography as a 

determinant of nutrient export. Topography should be considered in regulating 

various management strategies such as logging practices (e.g. logging in river 

floodplains versus in highlands of watershed boundaries). The temporal shift in 

CHLamod found between the time periods of 1985-1994 to 1995-2004 sends an 

important warning that eutrophication of Ontario lakes might be the reality that people 

should deal with. Increased number of reports on phytoplankton blooms  for the 

period of 1995-2004 can be attributed to this process. On the other hand, we did not 

find any overall trend in the median CHLamod for 28 years. Therefore, future research 

is needed to develop new approaches for understanding the obtained time series to 

determine the rate and intensity of the eutrophication. 



51 

 

 

 This study will form the basis for future research that will be focused on both 

improving the existing regression model and understanding the natural spatial and 

temporal patterns that were discovered in the present study. For improving the 

existing regression model: (1) information on new lakes with 2014 CHLaobs will be 

added, covering the entire study region to allow more in situ data for analysis and 

validation; (2) Landsat ETM+  and OLI images for 2012-2014 will be retrieved and 

processed, so as to have complete continuous data for 30 year period (1984-2014). 

For understanding the spatial and temporal patterns, new analytical methods will be 

applied, such as: (1) digital terrain analysis techniques (Creed and Sass, 2011) to 

assess the relative contribution of catchments to the lake area and characterize lake-

specific morphometry using digital lake bathymetry data, and (2) wavelet 

transformations (Mengsitu et al., 2013) to distinguish between non-stationary trends 

and stationary cycles in climate patterns affecting the region. 
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