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Abstract 

 

This thesis presents a control scheme for a single-stage three-phase Photovoltaic (PV) 

converter with negative sequence load current compensation.  

In this thesis a dual virtual impedance active damping technique for an LCL filter is proposed 

to address the issue of LCL filter resonance.  Both inverter-side current and the capacitor 

current are used in the feedback loop. Using both signals provides higher DC rejection than 

using capacitor current alone.  The proposed active damping scheme results in a faster 

transient response and higher damping ratio than can be obtained using inverter-side current 

alone.  The feedback gains can be calculated to achieve a specified damping level.  

A method of determining the gains of the Proportional and Resonant current controller based 

on frequency response characteristics is presented. For a specified set of gain and phase 

margins, the controller gains can be calculated explicitly. Furthermore, a modification is 

proposed to prevent windup in the resonator.   

A numerically compensated Half-Cycle Discrete Fourier Transform (HCDFT) method is 

developed to calculate the negative sequence component of the load current. The numerical 

compensation allows the HCDFT to accurately estimate the fundamental component of the 

load current under off-nominal frequency conditions. The proposed HCDFT method is 

shown to have a quick settling time that is comparable to that obtained with conventional 

sequence compensation techniques as well as immunity to harmonics in the input signal. 

The effect of unbalance compensation on the PV power output depending on the irradiance 

and the operational region on the power-voltage curve is examined.  Analysis of the DC link 

voltage ripple shows the region of operation on the P-V curve affects the amplitude of the 

DC link voltage ripple during negative sequence compensation.   

The proposed control scheme is validated by simulation in the Matlab/Simulink® 

environment.  The proposed control scheme is tested in the presence of excessive current 

imbalance, unbalanced feeder impedances, and non-linear loads.  The results have shown that 

the proposed control scheme can improve power quality in a hybrid PV-diesel microgrid by 

reducing both voltage and current imbalance while simultaneously converting real power 

from a PV array.   

 

 

Keywords: Photovoltaic (PV), LCL, Active Damping, Proportional Resonant Controller,  

Anti-Windup, Active Power Filter, Discrete Fourier Transform (DFT), Negative sequence, 

Load Compensation, Microgrid, Inverter control. 
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Chapter 1 

1 Introduction 

In recent years, the concept of a microgrid has gained significant attention in academia and 

practical applications and is at the forefront of power system research and development. By 

definition, a microgrid is a small scale power system including at least two generation 

sources and a collection of loads [1], [2]. Most microgrids are low voltage distribution scale 

systems [2]. A microgrid can be electrically connected to a larger grid or operated in stand-

alone mode (termed ‘islanded mode’).   Renewable or alternative energy resources, such as 

wind, solar Photovoltaic (PV) or hydrogen Fuel Cell (FC) can be integrated into microgrids 

relatively easily.  Most of these resources do not produce electricity in a form that is directly 

compatible with the AC grid.  Thus interfacing power electronic converters are required for 

grid integration purposes.    

Because of their possibility for flexibility, microgrids can offer potential advantages over the 

conventional grid.  By operating in islanded mode a microgrid can continue to supply power 

to critical loads during a grid blackout. Industrial users in particular can benefit from on-site 

combined heat and power generation in the form of a microgrid.  Microgrids also offer an 

alternative to electrification of remote locations without the high capital cost of transmission 

line construction.  Because loads and generators are close together, transmission losses can 

be reduced. The closer tie between generation and consumption means that demand response 

and load shedding can be used more effectively.  Moreover, microgrids potentially offer a 

way of utilizing the capabilities of converter interfaced generation sources to deal with power 

quality issues [3]. The potential military applications for microgrids have motivated much 

research as well [4]-[8].  

Small, stand-alone distribution systems ranging in capacity from a few kW’s to tens of MW’s 

have long been used to supply electricity to many remote communities scattered throughout 

northern Canada [9].  According to a 2011 report by CANMET Energy, of the 292 remote 

residential communities in Canada, 249 have diesel power plants or gasoline gen-sets [9].  

The total installed capacity is 453.3 MW of fossil fuel driven generators and 153.1 MW of 

hydro-electric generators.  Synchronous generators driven by diesel engines are used for 
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electrification of remote communities in much of the world.  As an established technology 

they have the advantage of reliability, and availability of maintenance technicians. Diesel 

gen-sets are also being used in conjunction with renewable resources to provide a backup 

source of electricity.  The main drawbacks of diesel generating units are the high cost of 

diesel fuel and the difficulty of transporting the fuel to ultra-remote locations.  Some 

communities in Nunavut and Ontario, for example, must have diesel fuel flown in.  This has 

caused electricity prices to reach $1.3/kWh CAD in some locations [10] creating a financial 

incentive to investigate alternative energy possibilities.  Incorporating renewable energy 

resources in remote communities could be an improvement from both a financial and 

environmental perspective [9].  Since the 1970s many solutions have been proposed [10]-

[14], nearly all of which involve adding renewable generation in the form of solar 

Photovoltaic (PV) or wind to the supply mix.  Pilot projects have produced some promising 

results but system capacity is often under-utilized due to improper sizing, low load 

conditions, and seasonal variation in daily solar Irradiance (IR) [10]. 

During times of lower power production, the under-utilized PV inverter can be used for 

ancillary functions like power quality improvement and voltage regulation. In the literature 

PV inverters have been reported to be used for voltage control in low voltage grids [15], [16] 

increasing transmission line capacity [17], and active power filtering [18]. Unbalance in 

three-phase microgrids is another power quality issue which has the potential to be addressed 

by PV inverters. 

1.1 'Unbalance in Three-Phase Grids 

An ideal power grid is assumed to be balanced, but in practice factors such as single phase 

loads, untransposed lines, asymmetrical faults, open conductors, and single phase distributed 

generation can all contribute to grid unbalance. There are several factors which can cause 

microgrids and remote grids to be susceptible to unbalance.  Distribution level microgrids 

may have a high portion of single phase loads which can cause unbalanced feeder loading. 

Unequal feeder lengths in rural microgrids can cause voltage unbalance.  Distributed 

generation units with single phase connections can cause unbalanced voltage swells.  In the 

islanded mode of operation microgrids cannot rely on support from the utility grid to 

maintain balanced voltages in the presence of unbalanced loads [19]. 
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Unbalanced voltages can have a severe impact on three-phase loads, especially machine 

loads which require de-rating when the voltage unbalance exceeds a certain level [20]. 

Unbalance can occur in either the load current, voltage, or both. Unbalanced load current will 

cause a double line frequency ripple in the three-phase power, and can cause torque pulsation 

in three-phase generators [21]. Serious overheating of the rotor can occur in a synchronous 

generator producing negative sequence current [22]. Unbalanced voltages have long been 

known to have a negative impact on polyphase induction motors. In [23] it was reported that 

the negative sequence current induced by voltage imbalance increases losses in the rotor and 

stator and decreases the net torque produced on the shaft. The losses in the machine produce 

higher levels of heating. Other effects include higher noise levels and increased mechanical 

vibrations.  

An unbalanced three phase power system can be represented by the superposition of three 

balanced systems, known as the positive sequence circuit, negative sequence circuit, and zero 

sequence circuit [24].  Several definitions for quantifying voltage unbalance have been 

proposed [20]. The National Electrical Manufacturers Association measures the degree of 

unbalance by the ratio of the maximum deviation from the average voltage over the average 

of the phase to phase voltages, while European standards use the ratio of negative to positive 

sequence voltage [20]. The European standard definition has been widely accepted in the 

literature [20], [22] and is adopted in this thesis.  

For a voltage unbalance of 2%, a 5% derating of three-phase induction motors is required 

[20]. For 5% unbalance, 25% derating is recommended according to NEMA Standard MG 1-

1993 [20].  For synchronous generators the limit on negative sequence current depends on 

the type of machine. The suggested negative sequence continuous current limitation for 

turbo-generators is 10-15% of the maximum current depending on the cooling system used 

[22]. Hydro turbines on the other hand can typically supply continuous negative sequence 

current of up to 40% of the rated stator current without sustaining damage. The strong 

damper windings in salient pole hydro generators provide a path for the double line 

frequency current induced during unbalanced operation, which prevents excessive heating of 

the rotor. 
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Power electronic interfaced loads and energy sources can also be affected by voltage 

unbalance [25], [26]. Under unbalanced voltage conditions a double line frequency ripple is 

induced in the voltage of the DC link of Voltage Source Converters (VSCs). Increased 

harmonics in the output current are also observed when the voltage is unbalanced [25]. 

Unlike machine loads and generators, the impact of unbalanced voltages on static converters 

can be mitigated through proper control techniques. A control scheme is reported in [27] 

which suppresses ripples in the DC link voltage in a grid interfacing converter for a 

renewable source under unbalanced voltage conditions.   

The potentially adverse effects associated with grid unbalance have motivated researchers to 

find innovative ways to deal with unbalanced systems. Transmission line transposition, load 

switching, and adequate system planning are among the ways of preventing unbalance. In 

situations where unbalance cannot be prevented a number of devices can be used to mitigate 

the voltage and/or current unbalance. These devices include passive compensators, Active 

Power Filters (APFs), Static Synchronous Compensators (STATCOMs), and Dynamic 

Voltage Restorers (DVRs). All these devices, with the exception of passive compensators, 

are based on the VSC architecture.  Many PV inverters use the same basic topology as 

STATCOMs and APFs.  With an appropriate control strategy, a PV converter can also 

provide negative sequence compensation. 

1.2 Control of PV Systems 

Sinusoidal current injection is accomplished by controlling the VSC. A typical PV inverter 

control scheme consists of several nested loops. The outer loop tracks the Maximum Power 

Point (MPP) and generates the voltage reference for the DC link voltage controller. The DC 

link voltage controller generates the power reference. The inner current controller regulates 

the current and generates the terminal voltage reference for the inverter. Pulse Width 

Modulation (PWM) or another switching scheme is used to determine the instantaneous state 

of each of the six switches to produce the desired voltage at the VSC terminals.  

To simplify design and implementation, conventional VSC control schemes often utilize the 

rotating reference frame [28], [29].  The transformation from the stationary ABC frame to the 

rotating dq frame converts AC signals into DC quantities. This allows Proportional Integral 

(PI) controllers to be used for current control. However, PI controllers are ineffective in 
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controlling the ripples caused by the synchronous reference frame transformation of 

unbalanced quantities. Standard dq frame control schemes cannot inject the necessary 

negative sequence compensating current.   

For negative sequence compensation, the current control loop should be able to control the 

grid-injected current directly and must be able to control unbalanced signals.  The DC link 

voltage control loop needs to be immune to double-line frequency oscillations in the 

measured DC link voltage. The control scheme must also include a method of generating the 

reference compensation current. 

1.3 Research Objectives and Scope 

1.3.1 Motivations and Problem Statement 

Solid-state converters can tolerate unbalanced conditions as long as the control strategy is 

capable of dealing with unbalanced quantities. This is in contrast with rotating machines 

which can be damaged by unbalanced voltage and current.  PV interfacing VSCs normally 

have under-utilized power rating capacity at times because of the intermittency of solar 

energy.  Unbalanced load compensation can be achieved without installing additional devices 

by using available capacity of the converter of a PV generator to inject an unbalanced three-

phase current. This results in only a balanced current being drawn from the generator.  

Although the physical hardware of the inverter is capable of handling unbalanced quantities, 

synchronous reference frame control techniques cannot.  Most of the control strategies for 

three-phase PV inverters proposed in the literature are based on synchronous reference frame 

theory.  

Since the primary purpose of the PV system is for real power conversion there may be 

scenarios where total compensation of the load unbalance in addition to power conversion 

would exceed the ratings of the converter. In these situations it should be possible to 

prioritize power conversion by reducing the compensating current reference. This requires 

explicit calculation of the fundamental negative sequence current. An accurate, robust 

method of calculating the compensating current is needed. To be suitable for deployment in a 

remote grid it should have tolerance for frequency deviation and harmonic loads.   



6 

 

In a single stage PV converter not only does negative sequence current compensation affect 

the control requirements, it can also impact the production of real power from the PV 

generator.  It is important to verify the performance of the whole system under different 

irradiance and temperature conditions. The effect of double line frequency DC link voltage 

oscillations is considered for single phase PV inverters in [30].  The interaction between APF 

operation and PV system performance is investigated in [31]. However, only two-stage 

converter configurations are considered in [31]. There is a need to further investigate the 

limitations and effects of the PV array on phase compensation for single stage converters. 

1.3.2 Scope and Objectives 

Power system planning to estimate loads on each phase is an essential step in preventing and 

reducing network unbalance.  However, not all causes of load and voltage unbalance can be 

foreseen.  In this thesis the focus is on compensating existing load unbalance rather than 

preventing it.  New converter topologies are also outside the scope of this investigation since 

the goal is to make use of existing converter systems for phase balancing purposes.  

Maximum power point tracking for PV systems is a well-studied topic and is also outside the 

focus of this work.  The Perturb-and-Observe (P&O) method which has been previously 

reported in many other works is adopted in this thesis. This also allows the effect of negative 

sequence compensation on a conventional MPPT scheme to be verified.   

The focus of this thesis is on development of control strategies for a PV interfacing VSC 

which has the secondary objective of compensating negative sequence load current. A three-

phase PV system connected to a three wire grid has been considered. With the goal of 

making use of existing under-utilized converters, a conventional three leg VSC distribution 

scale converter is examined. 

The main objectives of this research are:  

1. To design a control scheme for a single-stage three-phase VSC with an LCL filter 

configuration to compensate negative sequence load current.  

 This requires the current controller to be able to track unbalanced current 

references.  
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 In order to effectively compensate the negative sequence load current, the 

grid-side current of the inverter must be controlled. An active damping 

scheme is proposed for the VSC AC filter to allow control of the grid-side 

current.  

 Single-stage PV converters must operate over a relatively wide range of DC-

link voltages. The current controller should be able to function without 

saturating the switching function even under low DC link voltage conditions. 

An anti-windup scheme is proposed for stationary frame proportional resonant 

controllers to improve robustness under both low voltage and high voltage 

conditions. 

2. To design a negative sequence load current estimator to generate the compensation 

current reference.  

 The negative sequence load current is calculated using the Half-Cycle 

Discrete Fourier Transform (HCDFT). The HCDFT reaches its output in one-

half of a cycle of the fundamental regardless of harmonic or noise distortion in 

the input signal, and is able to reject harmonics in the input signal.  

 During off-nominal frequency conditions however, the standard HCDFT will 

not accurately calculate the fundamental component of the load current. A 

numerical compensation method is proposed to accurately calculate the 

negative sequence load current during frequency variation. 

3. To investigate the interaction between PV power production and unbalanced load 

compensation in a single-stage voltage source converter. 

 The ability of the system to compensate negative sequence load current under 

various operating conditions of the PV is examined. The oscillating power 

injected by the converter during unbalance compensation affects the DC link 

voltage differently depending on the region of operation on the P-V curve. 

From the analysis and simulations conducted, recommendations for real 

power curtailment are drawn. 

1.4 Organization of the Thesis 

Chapter 2 provides further background on compensating devices and their control. The first 

section of Chapter 2 contains a brief introduction to the theory of symmetrical components 
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and a literature review of unbalance compensating devices. Previously proposed dual-

purpose PV systems are discussed in Section 2.5. An overview of techniques for damping 

resonance in higher order VSC filters is presented. Control issues for single stage PV 

interfacing VSCs with 3
rd

 order filters are presented along with previous solutions found in 

the literature. The proposed control scheme is developed and discussed in Chapter 3. A dual-

feedback active damping technique is presented. Design of the Proportional Resonant (PR) 

controller gains based on frequency response for a VSC with the proposed active damping 

scheme is shown. A modification to the PR control to prevent resonator windup is proposed. 

Chapter 4 presents a numerically compensated half-cycle DFT algorithm for calculation of 

symmetrical components. The compensating current reference is calculated using the 

proposed HCDFT of the load current. The performance of the proposed technique is 

demonstrated and compared with conventional symmetrical sequence calculation methods. In 

Chapter 5 the effect of load compensation on a PV generator is investigated. The case studies 

in Chapter 6 verify the performance of the proposed control scheme in a microgrid 

containing diesel gen-sets.  Chapter 7 summarizes the contributions of the thesis and provides 

some suggestions for future work. 
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Chapter 2 

 

2 Background and Literature Review 

In this chapter more detail is given on the previous research done on phase balancing. 

Symmetrical components theory will be briefly reviewed. Previously reported methods of 

sequence component calculation will be discussed.  In recent years, a number of power-

electronic devices have been proposed which can compensate unbalanced networks. An 

overview of these devices is presented.  Next, previously proposed dual-purpose PV systems 

are examined. The issue of VSC filter resonance is introduced and a review of resonance 

damping techniques is presented. 

2.1 Review of Symmetrical Components 

One of the most influential papers on the topic of power systems was written by Charles 

Fortescue in 1918 [1].  In this paper, a method of representing an unbalanced polyphase 

system by the summation of balanced polyphase systems was presented. The symmetrical 

components theory provides an analytical and consistent way to treat unbalanced three-phase 

systems.  According to this theory, any three-phase system may be decomposed into three 

balanced systems with a positive, negative, and zero sequence [2]. The sequence components 

of a three-phase set of signals are depicted in the phasor diagram of Figure 2.1. 
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Figure 2.1: Symmetrical Sequence Components 

For a set of three-phase sinusoidal signals ƒabc defined in phasor form by (2.1). 
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The positive (ƒ
+
), negative (ƒ

-
), and zero (ƒ

0
) sequence phasor components for phase A are 

calculated by (2.2). 
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The transformation matrix in (2.2) includes a complex number a which has magnitude of 1 

and phase angle of 120
o
. The phase B and C values of the positive, negative, and zero 

sequence components have the same magnitude as their respective phase A quantities, and a 

phase shift defined according to Figure 2.1. The sum of the positive negative and zero 

sequence components is equal to the original three-phase quantities (2.3). 
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Under balanced conditions, a three-phase system will only contain a positive sequence 

component, and ƒabc
-
 and ƒabc

0
 in (2.3) will be zero. Because the zero sequence component is 

defined as the sum of all three-phase values it is clear that there can be no zero sequence 

current in a three-phase, three-wire system. If a four-wire connected is used, then it is 

possible to have a non-zero zero sequence component.  Equation (2.3) shows that the 

compensating current should be made to equal the negative sequence of the load current to 

achieve phase balancing. Although (2.2) gives the definition for the negative sequence 

current, all the terms are expressed as steady-state phasor representations.  For a real-time 

control process, time domain quantities are required. Fortescue’s method can also be applied 

to real-time transient signals when Instantaneous Symmetrical Components (ISC) theory is 

used to represent time-domain signals [3]. 
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Symmetrical components theory is also a powerful tool for calculating power in unbalanced 

networks. For a three-phase, three-wire network, the instantaneous power can be calculated 

as the sum of the instantaneous line to ground voltages V multiplied by the line currents I, as 

in (2.4) 

VItp )( , 

 )()()( tvtvtvV cba , 
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(2.4) 

Applying ISC theory, V and I can be represented by the positive and negative sequence 

components, and (2.4) can be rewritten as (2.5).   
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(2.5) 

In (2.5), V 
+
 and V 

-
 are row vectors of the sinusoidal positive and sequence voltages with 

amplitude v
+
 and v 

-
 respectively, phase angles θ

+
 and θ

-
, and frequency ω. I 

+
 and I 

-
 are 

column vectors of the positive and sequence currents respectively, with amplitudes i 
+
 and i 

-
, 

and phase angles θi
+
 and θi 

-
.  If θ

+
 is taken as the reference, and hence it is equal to zero, the 

total three-phase instantaneous power can be expressed by (2.6).  
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(2.6) 

The instantaneous power p(t) in (2.6) consists of a DC component, and an AC oscillating 

component. The frequency of the AC component is equal to twice that of the line frequency. 

Under balanced conditions, i.e. there are only positive sequence quantities, the instantaneous 

three-phase power is a DC quantity. If the voltage V is balanced, i.e. v
 –

 is equal to zero, the 

instantaneous power in (2.6) becomes (2.7). 

   )2cos(
2

3
)cos(

2

3
)(

  itivivtp   
(2.7) 
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From (2.7) it is clear that when the voltage is balanced, the negative sequence current 

contributes to the instantaneous power but with zero average component.  Thus it does not 

contribute to the real power transfer. The magnitude of the ripple in the instantaneous power 

depends on the amplitude of the negative sequence current and positive sequence voltage. 

Because injecting negative sequence current component does not consume real power when 

the voltage is balanced, devices with no generation are able to provide negative sequence 

current compensation. 

Since both voltage and current can be unbalanced in a three-phase system, there are two 

approaches to balancing a system: current balancing and voltage balancing. If the feeder 

impedance and the source voltages are balanced, then balancing the current will also lead to a 

balanced voltage. If the line impedance or source voltage is unbalanced, compensating the 

negative sequence load current may not eliminate the negative sequence load voltage. 

Likewise, balancing the load voltage will balance the current drawn from the source if the 

line impedance and source voltages are symmetrical. Compensating the negative sequence 

load voltage may not eliminate the negative sequence current supplied by the grid if the 

source voltage and impedance is unbalanced.  

2.2 Calculation of Symmetrical Components for Control 
Applications 

A well-known technique for generating the orthogonal components needed to calculate 

instantaneous symmetrical components is to use All Pass (AP) filters [4]-[6]. The transfer 

function of a first order AP filter is given in (2.8) where ω0 is the fundamental grid 

frequency. 

s

s
sAP






0

0)(



 

(2.8) 

Equation (2.8) has a unity gain over the entire frequency spectrum, and introduces a -90
o
 

phase shift for signals at the frequency ω0. The frequency response when the filter is centered 

at 60 Hz is shown in Figure 2.2. 
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Figure 2.2: Frequency response of a 1
st
 order AP filter  

From the frequency response it is clear that an AP filter does not alter the amplitude of the 

input signal.  If the frequency of the input signal varies, the time constants of the filter must 

be adjusted accordingly to ensure exact phase shift. This method however, has the advantage 

of being straightforward and computationally inexpensive [5]. 

In [6] the signals processed by the AP filters are used to compute the positive sequence 

quantities, although the same technique can be used to calculate the negative sequence. 

Figure 2.3 shows only the positive sequence case. This figure essentially shows 

implementation of the positive sequence portion of (2.2) using AP filters to create 

appropriate phase shifts. 
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Figure 2.3: Symmetrical component calculation using AP filters [5] 

The block diagram in Figure 2.3 computes the instantaneous positive sequence components 

with amplitude V
+
 and phase angle of θ

+
 from the three-phase sinusoidal input signals with 

amplitude Vabc and phase θabc. 

Another technique to calculate the ISC is the Dual Second Order Generalized Integrator 

(DSOGI) method [7]. The building block of the DSOGI filter is a Second Order Generalized 

Integrator (SOGI) block, shown in figure 2.4.  

∫ 

∫ 

ωo

ωo

ks + _+

_
Vpkcos(ωt+θ) Vpkcos(ωt+θ) 

Vpkcos(ωt+θ-90o) 

 

Figure 2.4: Second order generalized integrator block diagram [8] 

The SOGI filter shown in Figure 2.4 has a unity gain and zero phase shift at the resonant 

frequency ω0, and less than unity gain at all other frequencies. The SOGI essentially acts as a 

resonant filter at the frequency ωo. This gives the DSOGI an advantage over AP filters due to 

superior harmonic filtering. When a sinusoidal input signal with frequency ω = ω0 is passed 

through the SOGI block, the outputs are a sinusoid with the same amplitude and phase as the 

input, and a sinusoid with the same amplitude but with 90
o
 phase lag compared to the input 

signal. In Figure 2.4 ks is a constant which affects the transient response of the filter.  
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The symmetrical components can be calculated in the orthogonal (alpha-beta) reference 

frame as shown in Figure 2.5 [7]. First, three-phase sinusoidal input, vabc(t), is transformed 

into alpha-beta axis quantities vα(t) and vβ(t), respectively, via the Clarke transformation. 

Next, the vα
+
(t) and vβ

+
(t) quantities are processed by an SOGI block which provides the 90

o
 

phase shift to the input signal, denoted by the imaginary operator j. Finally, the positive 

sequence values vα
+
(t) and vβ

+
(t) are obtained as shown in Figure 2.5. The ABC frame 

positive sequence output can be obtained by applying the inverse Clarke transformation to 

the outputs of the DSOGI shown in Figure 2.5, vα
+
(t) and vβ

+
(t). The negative sequence α-β 

quantities can also be calculated using the same structure as shown in Figure 2.5 as long as 

the Clarke transformation follows the negative sequence direction. 

vα(t)

vβ(t)

SOGI

+
+

+ _

SOGI

vβ(t)

vα(t)

jvα(t)

jvβ(t)

vα
+(t)

vβ
+(t)

ABC→αβ 
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Figure 2.5: Positive sequence calculation in the αβ frame 

The DSOGI method offers improved harmonic rejection compared to the AP filter method 

but it requires designing the SOGI filter gain ks to avoid either high oscillations in the output 

or unacceptably slow transient response. Adaptive Notch Filters (ANFs) are proposed in 

[9],[10] and have similar performance to the DSOGI method of [7]. The structure of an ANF 

is similar to that of the SOGI with an additional integral term used to estimate the frequency 

of the input signal and “adaptively” adjust the filter resonant frequency.  Despite the 

frequency adaptive loop, ANF techniques have little advantage over the DSOGI in [7] for 

applications where the negative sequence current must be calculated. Improving the 

harmonic rejection can be obtained at the expense of increased settling time [9].  

Synchronous Reference Frame (SRF) control dominates the academic literature on three-

phase power electronic converters. Several authors have proposed methods of sequence 

extraction which take advantage of the properties of SRF quantities [8], [11]. A Dual 



19 

 

Synchronous Reference Frame (DSRF) structure for calculating sequence components in the 

rotating reference frame is presented in [11], [12]. The unbalanced signal is converted to the 

synchronous reference frame using both a positive and negative rotary angle. A decoupling 

network which combines the outputs of the two reference frames to remove the effect of 

cross-coupling between the positive and negative sequence components using a low pass 

filter is proposed in [12]. The dynamic response of the decoupling network is complicated to 

analyze and strongly depends on the cut-off frequency of the low-pass filters.  A response 

time comparable to that of the SOGI based methods [7] can be obtained with the DSRF 

method. However, since there is no harmonic attenuation, band-pass filters must be used in 

conjunction with DSRF decoupling if the input signal is distorted. The need for additional 

filtering increases both the complexity of the DSRF and the transient response time. 

A fast sequence component detector for SRF signals is proposed in [13]. This method uses 

differentiation of the d and q axis components along with some algebraic manipulation to 

remove the 2
nd

 harmonic oscillation from the unbalanced dq components.  Time derivation 

results in excessive noise so Savitzky-Golay filters are used for smoothing. Unlike the 

technique proposed in [12] only one synchronous reference transformation is required to 

calculate either the positive or negative sequence.  Although a fast settling time can be 

obtained (~1/4 cycle), the high level of noise at the output, renders this algorithm ill-suited 

for control applications. 

Variations on the Least Error Squared (LES) method of phasor calculation combined with 

ISC have been proposed in [3] and [14] to determine the sequence components. A suitable 

frequency response with a short sampling window is obtained by sampling and computing 

the phasors at a very fast rate (10 kHz).  The frequency response of a 50 sample LES filter 

sampling at 10 kHz shows, however, that there is still poor attenuation and amplification of 

harmonics [14]. Use of the Discrete Fourier Transform (DFT) has been reported in [15],[16] 

for calculating the positive sequence components of the fundamental and harmonic of the 

load currents. The control structure in [15] is shown to result in shorter computation time 

than a comparable synchronous reference frame controller, but the system frequency is 

assumed to be constant. In a microgrid, however, low system inertia can cause large 

frequency deviations compared with the main grid.  Thus, the method of sequence extraction 

implemented in the control system of a DG unit must be resilient to frequency variations. 
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In all the methods of negative sequence calculation mentioned above there is a trade-off 

between the speed of response and the settling time/steady state oscillations.  SRF sequence 

extraction techniques require computationally intensive variable transformations and are less 

attractive for control structures based in the stationary frame. For the control structure 

proposed in this thesis, the sequence calculation algorithm is required to be suitable for 

online calculation, have a short response time, and be robust against adverse grid conditions 

such as harmonic distortion and off-nominal frequencies. The numerically compensated, 

half-cycle DFT method proposed in this thesis is further discussed in Chapter 4. 

 

2.3 Review of Compensating Devices 

Although ideally all loads connected to a three-phase grid would be balanced, asymmetrical 

loading is inevitable in practical situations where different loads are connected to different 

phases. In cases where severe unbalance cannot be eliminated, some form of compensation 

may be required.  Passive load balancing by means of passive inductive and capacitive 

elements was one of the earliest methods proposed [17]. The principle of passive load 

balancing is to connect a reactive admittance network in parallel with the load [17]. The 

combined admittance of the load and the reactive admittance network should be purely real 

and balanced [18]. Figure 2.6 illustrates this concept. The load is modelled as a resistor Rab 

connected between phases A and B. The compensating network consists of a capacitor and 

an inductor connected between phases B and C, and phases C and A respectively, which 

yields an equivalent balanced wye connected load when the voltages are balanced. Because 

only reactive elements are used, no real power is consumed by the compensating network.  
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Figure 2.6: Passive balancing network [17] 

Passive compensation techniques are limited to compensating fixed loads, and perform 

poorly in the presence of load variations. In addition to introducing unwanted resonance in 

the system, passive compensators can be overloaded during voltage transients due to their 

lack of inherent current limiting capabilities [19]. 

With the advent of solid-state power electronics, there has been great interest in voltage and 

current compensation devices based on the inverter topology. A great deal of literature is 

available on so-called Active Power Filters (APFs), which have been proposed to 

compensate varying unbalanced loads and harmonic distortion [19]-[27].  APFs compensate 

load unbalance and harmonics by injecting the negative sequence and harmonic currents 

consumed by the load.  APFs can produce fast dynamics and can compensate rapidly varying 

loads. The three-phase shunt-connected Current Source Converter (CSC) is proposed in [20] 

to compensate negative sequence load currents.  

Voltage Source Converters with either a three or four-wire configuration have been proposed 

as well [21]-[24]. The VSCs shown in Figure 2.7 can be connected either in series with the 
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load or in shunt. Series connected devices inject a voltage in the line to achieve the desired 

voltage at either the load or the grid side. Shunt connected devices inject current ig,abc into the 

network. The neutral point N is created in the four-wire converter in Figure 2.7(b) by 

splitting the DC link capacitor, Cdc, in two. Lf and Cf are passive filter elements used to 

reduce the harmonic content of the inverter voltage and current respectively. 
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-
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ig,a

ig,b
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(b) 

Figure 2.7: (a) Three-wire  and (b) four-wire voltage source converters 

It should be noted that a three-wire VSC cannot compensate zero sequence current or voltage 

components for the reasons discussed in Section 2.1. In [27], to overcome this limitation, a 

zig-zag transformer is connected in parallel with a three-wire shunt APF. The zig-zag 

transformer provides a path for the zero sequence load current, while the APF is tasked with 

compensating negative sequence and harmonic currents. 
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A Static Synchronous Compensator (STATCOM) is a voltage control device based on the 

same VSC topologies shown in Figure 2.7, which provides dynamic reactive power support. 

A STATCOM injects/absorbs current by controlling the terminal voltage of the STATCOM 

to produce the needed phase shift and amplitude difference between the grid voltage and the 

terminal voltage of the STATCOM. In this way a STATCOM can inject/absorb reactive 

power without the need for large inductors or capacitors. The reactive elements in Figure 2.7 

are used for filter purposes only. Although primarily for voltage support, STATCOMs have 

also been reported for load balancing applications [28]-[33].  

A 30 kVA distribution level STATCOM is proposed in [28] to improve the operation of a 

Diesel generator set by balancing the load current. A relatively large 10,000 µF DC link 

capacitor is used to reduce the DC voltage ripple.  An additional gain in the switching 

function is included in [29] to reduce the impact of DC link voltage ripple due to negative 

sequence compensation on current distortion, and to enable a smaller DC link capacitor to be 

used.  Reference [30] presents a control strategy for combined balancing of either the load 

current or the voltage using a STATCOM. Voltage balancing rather than current 

compensation is described in [31],[32].  In [33] a 50 MVA STATCOM is presented along 

with coordinated control of positive and negative sequence voltage. The STATCOM is used 

to reduce wind turbine torque ripple during unbalanced faults. Priority, however, is given to 

positive sequence voltage control, rather than eliminating the negative sequence components. 

Another class of power system compensation devices, Dynamic Voltage Restorers, can be 

used to improve voltage quality for sensitive loads by reducing voltage sags, swells, and 

harmonics [4], [14], [34]-[36]. A DVR topology is shown in Figure 2.8 which consists of a 

passive filter, a series connected VSC and a DC link capacitor, and a rectifier to provide 

power to the DC link capacitor [14].  
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Figure 2.8: A DVR with line-side Harmonic filter [14] 

With an appropriate control strategy the DVR depicted in Figure 2.8 can also compensate 

unbalanced voltage variations on the load side. In [14] the authors propose a control scheme 

based on LES filters to determine the amplitude and phase angles of the measured load and 

grid voltage. Phasor subtraction is used to determine the necessary voltage injected in the 

line. The presented results show that the DVR is able to compensate short term voltage 

unbalances even in the presence of distorted load currents. 

The DVR structure presented in [35] uses two inverters connected in cascade through an 

open end winding transformer. Either an energy storage system or an auxiliary power supply 

is required at the DC link of each inverter to provide power to the DVR. In [34] a DVR 

topology is proposed which eliminates the DC link energy storage element.  A shunt 

connected three-phase inverter is connected to the DC link of the DVR directly to provide 

power to the device, which is able to compensate unbalanced voltage swells and sags.  

Although they can provide voltage balancing, DVRs cannot provide current balancing, 

because they are connected in series with the load, unlike APFs and STATCOMs, which 

typically utilize a shunt connection. 

2.4 Review of Dual Purpose PV Systems 

Because PV power production fluctuates based on the time of day and weather conditions, it 

is almost guaranteed that the inverter’s designed capacity for PV power conversion is under-

utilized. In light of this, many authors have proposed using the excess converter capacity for 

various voltage/power quality improvement applications [37]-[50]. A novel converter 
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topology combining a PV generator with a DVR is presented in [43]. In [48], [49], PV 

inverters are operated as STATCOMs to support grid voltage. 

In [38]-[40] single phase inverters have been used as active power filters for reducing current 

distortion and power factor correction.  A method of reducing voltage unbalance in a 

distribution system with a high level of single phase PV generators has been discussed in 

[41] and [42]. If the system has a high R/X ratio it may require real power curtailment.   

Shahnia et al. describe a compensating current reference calculation method for a 6 leg 

inverter in a microgrid [51]. A Fuel Cell is used as the source for the converter. The 

controller must switch between different modes to calculate the compensating current 

depending on the whether the non-linear or unbalanced load is greater or less than rated 

output of the FC.  Unbalanced load compensation using three-phase PV converters has been 

discussed in [37], [44]-[47], [50]¸ [52]-[54].  Dual-stage topologies are considered in [37], 

[44], [46], [52], [53]. A dual-stage converter limits the impact that the DC link voltage 

oscillation has on the output of the PV array because the PV array is connected to the DC 

link by a DC-DC converter. A study of different PV converter configurations performing 

phase balancing and APF duties is reported in [46], but only dual-stage topologies are 

included for comparison. 

Single-stage converter topologies for phase balancing are reported in [45], [47], [50], [54].  

In [45] a notch filter is used to extract the fundamental in-phase component of the load 

current to be used as the grid current reference.  Both [45] and [54] use the grid voltage to 

generate sinusoidal reference signals. However, unbalanced or distorted supply voltages will 

negatively impact the performance of the controller.  The single-stage PV inverter control 

scheme proposed in [47] directly adds the measured load current to the current reference 

rather than just the negative sequence load current. In the presence of non-linear loads this 

approach can cause harmonic distortion in the inverter current.  Neither [47] nor [45] discuss 

issues of resonance damping for the LCL filter used in the converter.  In [50] a control 

scheme for a VSC fed by a renewable energy source is proposed to improve power quality in 

a distribution system. The grid current is controlled without the need for additional sensing of 

the inverter or load currents. The control scheme, however, is developed for a generic 

renewable source and the particular characteristics of a PV array have not been considered.  
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2.5 LCL Filter Resonance Damping 

Current harmonics in power systems can cause interference with communications systems, 

increased losses and heating of electromagnetic equipment, and voltage distortion [55]. IEEE 

standard 519-2014 requires the total demand distortion of the current injected by all power 

generation equipment to be less than 5% [55].  The PWM switching scheme used by the 

inverter produces high order harmonics at the carrier and side-band frequencies which must 

be removed to comply with IEEE Std. 519-2014.  LCL filters are used to remove the higher 

order switching harmonics in the inverter output voltage and to reduce current distortion.  

The LCL configuration, depicted in Figure 2.9, has an inverter-side filter inductor, Lc, a grid-

side filter inductor Lg, and a filter capacitor, Cf. This configuration allows smaller values of 

inductance to be used compared to single order filter, which can improve the power factor 

and decrease power losses [56]. One design trade-off is, however, the presence of a 

resonance peak in the filter frequency response.  If the resonance is not damped the control 

bandwidth must be limited to well below this resonance point.  This imposes a severe 

restriction on the speed of the controller response. If the control bandwidth is not properly 

limited instability may occur.  In Figure 2.9 i is the inverter-side current, ic is the current 

flowing through the filter capacitor, and ig is the current injected into the grid. The equivalent 

grid inductance and resistance is Lgr and rgr respectively. vinv is the voltage at the inverter 

terminals, and vg is the voltage at the point of common coupling to the grid. 

 

 

 

Figure 2.9: Single line diagram of a VSC with an LCL filter 
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The resonance issue has been examined in the literature and a number of solutions have been 

proposed [56]-[60].  These methods can be classified as either passive or active techniques, 

based on whether they involve additional physical components in the filter or alterations to 

the inverter control structure respectively.  Passive damping methods require insertion of 

additional resistive elements in the filter [58], [61]. Figure 2.10 illustrates a passive damping 

approach.  The resistive element Rdamp is inserted in series with the AC filter capacitor Cf 

[58]. The advantages of passive damping include high reliability and lower control 

complexity [61].  However the damping elements consume real power which effectively 

decreases the inverter efficiency. Variations in the filter parameters can also lead to non-

optimal damping which cannot be adaptively compensated. 
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Figure 2.10: Passive damping of an LCL filter 

Much of the literature is focused on active damping techniques which dampen the filter 

resonance without adding physical components to the filter.  Although active damping 

requires additional sensors and a more complex control scheme, it offers a lossless solution 

to the resonance problem.  An active damping method is proposed in [59] which avoids the 

resonance problem by controlling a weighted average of ig and i rather than ig. This scheme is 

depicted in Figure 2.11.  
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Figure 2.11: Weighted-average current control active damping 

The current reference and inverter terminal voltage reference are denoted in Figure 2.11 by 

iref and vinv,ref respectively. By proper selection of the weighting gains, βg and β, the 

equivalent LCL filter transfer function can be reduced from a third order to a first order 

function, which eliminates the resonance problem and simplifies the current controller gain 

design.  However, using this method the current injected into the grid cannot be directly 

regulated. 

Various digital filters have been proposed to dampen the resonant peak [62]-[64]. In [63] 

low-pass, lead-lag, and notch cascade filters are examined. A self-commissioning notch filter 

is proposed in [62] which is tuned based on the estimated resonant frequency.  The 

performance of digital filter based active damping techniques can be highly sensitive to the 

accuracy of the filter parameters. 

Virtual impedance is a multi-loop scheme which uses a proportional feedback loop to 

dampen the resonance [57], [60], [65]-[67].  The damping variable, xdamp, is multiplied by the 

gain Kd and subtracted from the output of the current controller, as shown in Figure 2.12. The 

feedback variable xdamp can either be the filter capacitor current, voltage, or the inverter-side 

current.  The feedback variable may be physically measured [60] or mathematically 

estimated [68]. 
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Figure 2.12: Virtual impedance damping 

If the feedback variable is the inner inductor current, i, it is the equivalent of adding a resistor 

in series with the inner inductor. If the capacitor current is used, the virtual resistance is 

effectively in series with the filter capacitor [57].  A physical resistor damps resonance by 

dissipating energy to limit the oscillating energy transfer between the filter components 

whereas the virtual impedance absorbs “control energy” by reducing the control effort.  The 

capacitor voltage is filtered by a lead-lag network and subtracted from the inverter voltage 

reference in [69],[70].  A hybrid method is proposed in [71] which incorporates both passive 

damping and capacitor current based active damping to provide robustness against 

component variations. 

Of the possible feedback variables, capacitor current ic is most commonly employed in the 

literature [57], [60], [65]-[67], [72]. The capacitor current can either be directly measured or 

can be calculated from the ig and i.  Wang et. al [72] investigate design considerations for an 

LCL filter as well as proper control parameter selection when an active damping scheme with 

capacitor current is employed. In [66] the authors use a combination of proportional and 

discretely implemented derivative capacitor current feedback. The authors of [66] derive an 

analytical discrete time open-loop optimization to calculate the required feedback gains as 

well as a numerical closed-loop solution which accounts for the closed-loop controller 

dynamics.  A comparison of different two-loop damping variables has also been conducted in 

[65].  The results show that when the inverter-side current i is used as the damping variable, 

the control loop has better rejection of DC components in the controller output but at the cost 

of a slower transient response compared to using ic for the damping feedback.   
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2.6 Summary 

Many methods of calculating negative sequence components have been reported in the 

literature for both the ABC and rotating reference frame. Most have either high sensitivity to 

noise and harmonics or a slow transient response.  The method which is used to calculate the 

compensating reference current can have a pronounced impact on the performance of the 

control scheme. In order to avoid deterioration of the system performance due to the negative 

sequence compensation loop, the sequence extraction algorithm must be impervious to 

harmonics, noise, and variations in the grid frequency.  

Although dual-purpose PV systems have been previously reported, most of the control 

schemes are not suitable for a converter with an LCL filter.  If a higher order filter is used an 

active damping scheme must be employed to enable control of the grid-side current. Virtual 

impedance active damping schemes have been shown to meet the requirement of good 

robustness to variations in the filter inductance without additional power loss in the filter. 

The choice of feedback variables for virtual impedance active damping schemes affects the 

performance.  A fast transient response can be obtained when capacitor current is used. Using 

the inner inductor current results in better rejection of DC and low frequency harmonics in 

the controller output than when capacitor current feedback is used, but has a slower transient 

response.   

Very little research has been reported on the effect of phase balancing on PV systems with 

single-stage configurations. For a single stage PV converter, variations in the DC link voltage 

will affect the efficiency of the power conversion. Hence, there is a need to examine the 

ability of the PV systems to compensate negative sequence load current under various 

conditions.   
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Chapter 3 

3 Design and Analysis of the Control Strategy 

In this chapter a stationary frame control scheme for the single stage PV inverter is presented.  

A typical two-loop structure is employed which consists of an outer DC link voltage loop and 

an inner current loop. The current control loop has been designed to enable the inverter to 

inject the required negative sequence compensation current into the microgrid.   

Section 3.1 begins by modeling of the inverter with an LCL filter.  Next, in Section 3.2, a 

virtual impedance Active Damping (AD) method is proposed to facilitate direct control of ig 

rather than the inverter-side current i. A step-by-step method of explicitly calculating the PR 

and AD gains based on the inverter modeling is presented in Section 3.3.  In Section 3.4, 

modifications to the standard PR controller are proposed to counteract resonator windup, 

which can potentially occur in single stage inverters due to low PV voltage. The DC link 

control strategy discussed in [1] is adopted for the proposed system in Section 3.5. A 

frequency-locked-loop is implemented to estimate the fundamental grid frequency in Section 

3.6.  In Section 3.7 an MPPT scheme based on the perturb-and-observe method is used to 

generate the reference for the DC link.  An overall block diagram of the control scheme 

developed in Chapters 3 and 4 is shown in Figure 3.1. 

The three-phase inverter shown in Figure 3.2 is a two-level, three wire, six switch inverter. 

The switching states of S1-S6 are determined using a Sinusoidal Pulse-Width Modulation 

(SPWM) scheme.   



39 

 

 

 

PWM

kdl kdc

i ic

-+PR

+
+

HCDFT

÷ PI+PZ
-+

0.5Vdc

MPPT
Vdc

Ppv

FLL ωest

ωest

ωest

Vdc

(.)2

HCDFT

ig

Vdc,ref

SF

ωest

il

il
-

|Il
-|

icomp

(.)2

vg

|Vg
+|

ug
+

vg,α 
+

ipv,ref
S1-S6

÷ 
Sec. 3.7

Sec. 3.2

-

Sec. 3.3-3.4

Sec. 3.6

Sec. 4.1

Sec. 4.1

Sec. 6.1

Sec. 3.5

 

Figure 3.1: Overall block diagram of the inverter control scheme 
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Figure 3.2: A single stage PV inverter with an LCL filter 

 

3.1 Inverter Modeling 

According to the averaged model of a six-switch, two-level converter with SPWM,  the 

fundamental frequency component of the inverter terminal voltage vinv is related to the 

SPWM modulation index, M, and the DC link voltage, VDC by (3.1) [1]. 

2

DC
inv

V
Mv   

(3.1) 

Thus the terminal voltage of the converter can be controlled by adjusting the modulation 

index.  

The filter is composed of the inner inductance Lc, Capacitor Cf, and grid-side inductance Lg. 

Taking Figure 3.2 as a reference, the differential equations describing the AC filter dynamics 

of the inverter for each phase can be written as (3.2).  Each of the energy storage elements, 

Lc, Cf, and Lg, in the filter contribute a first order differential equation to the system model.  

rc and rg are the parasitic resistances of Lc and Lg respectively.   

ivv
dt

di
cinv cc rL   

g
c ii

dt

dv
fC  

(3.2) 
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ggc

g
ivv

dt

di
gg rL   

Combining (3.1) and (3.2) the system can be represented in a state-space form (3.3). 
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(3.3) 

Equation (3.3) represents one phase of the inverter. The states are inverter-side current, i, 

grid-injected current ig, and filter capacitor voltage vc.  The state-space model for each phase 

can be developed independently in the ABC reference frame. Each of the three-phases is a 

third order, non-linear system sharing a common variable VDC. Because the dynamics of the 

AC filter are significantly faster than those of the DC bus, the system described by (3.3) can 

be linearized by assuming a constant value for VDC [1]. The control input of the system in 

(3.3) is the modulation index M. The grid voltage term vg can be considered as a disturbance 

input. The parameters of the LCL filter considered are listed in Table 3.1. With those 

parameters, the system poles are determined from the Eigenvalues of the first matrix in (3.3) 

and are plotted in Figure 3.3. 

 
Figure 3.3: Poles of the inverter with the LCL Filter 

The system (3.3) has one purely real pole and a pair of complex conjugate poles located on 

the left-hand side of the complex plane.  The complex poles have a damping ratio of 0.003 
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because the parasitic resistances of the filter elements have low impedance values and cannot 

provide a significant level of damping. 

 

Table 3.1: LCL filter parameter values 

Lc 0.96 mH 

rc 0.016 Ω 

Lg 0.25 mH 

rg 0.014 Ω 

Cf 67.5 µF 

 

The controlled variable is the grid-side current, thus the transfer function relating the grid-

side current ig, to the system input, vinv, is of interest. Neglecting the parasitic resistances of 

the filter components, this transfer function can be written as (3.4). 
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(3.4) 

 

When the small parasitic resistances are neglected the transfer function (3.4) has one pole at 

the origin and a pair of poles that lie on the imaginary axis.  The resonant frequency of the 

filter depends on the values of the filter components.  The frequency response for the filter is 

plotted in Figure 3.4. 
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Figure 3.4: LCL filter frequency response 

Figure 3.4 illustrates the characteristics of the filter to attenuate the harmonics of the 

switched voltage vinv and produce a sinusoidal current.  The transfer function in (3.4) is the 

equivalent admittance of the filter over a range of frequencies.  For voltage harmonics at and 

near the resonant frequency, the filter presents an equivalent impedance of zero. Instead of 

attenuating harmonics at the resonant frequency, there is amplification.  For the LCL filter 

values listed in Table 3.1 this resonance point occurs at 8.64e+3 rad/s. The value of the 

resonant frequency is important from both a power quality and control system stability point 

of view. If no damping technique is employed, the resonance places restrictions on the 

bandwidth of the current control loop. 

3.2 Virtual Impedance Active Damping Scheme 

To solve the problem of filter resonance, active damping techniques are preferred to passive 

damping techniques in the literature. In the proposed control scheme, depicted in Figure 3.5 a 

multivariable feedback AD technique is employed. The inverter-side current i and the filter 

capacitor current ic are multiplied by their respective damping coefficients kdl and kdc and 

subtracted from the output of the PR controller to yield the inverter terminal voltage 

reference, vinv. No physical filter damping components are added. The value of the damping 

coefficients determines the values of virtual impedances in series with the inner inductor and 

with the filter capacitor. When the AD scheme in Figure 3.5 is used, the LCL filter is the 
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equivalent of a damped second order dynamic system from the perspective of the grid-side 

current controller.  The multivariable feedback results in improved DC rejection compared to 

capacitor current alone for the AD loop. An extra degree of freedom is afforded by using two 

current feedback variables which allows the gains to be easily calculated to yield the desired 

damping ratio without the need for iteration or complex algorithms.  Unlike the cascade filter 

methods discussed in Chapter 2, no additional integral or derivative terms are required in the 

control scheme.   
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Figure 3.5: Proposed active damping scheme for an LCL filter 

Since the capacitor current can be calculated from the inductor and grid current 

measurements, only two current sensors per phase are required to implement this scheme. 

The physical significance of the additional proportional feedback can be deduced by 

rearranging Figure 3.5 to the form of Figure 3.6.  

The i feedback loop has the effect of adding a resistance, Req, which has a value of kdl in 

series with the inner inductor. The ic feedback loop effectively adds a complex, frequency 

dependant impedance, Zeq, in parallel with the filter capacitor. Equating the capacitor current 

with the derivative of the capacitor voltage as in (3.5) is the first step to determining Zeq. 

dt

dv
Ci c

fc   
(3.5) 

The inverter-side current is defined by (3.6)  
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The relationship between the inductor, capacitor, and grid-side currents is given by 

gc iii   
 (3.7) 

Substituting (3.5) and (3.6) into (3.7) and simplifying yields (3.8) 
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(3.8) 

From (3.8) the equivalent impedance in series with the filter capacitor is (3.9) 
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According to (3.9) the virtual impedance in parallel with the capacitor is dependent on both 

damping gains. 

 

Figure 3.6: Equivalent Filter with virtual impedance active damping 

 

3.2.1 Damping Coefficient Calculation 

The equivalent transfer function of the LCL filter with the dual feedback AD scheme shown 

in Figure 3.5 is derived as in (3.10) 
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When two variables are used as feedback there is an additional degree of freedom in 

choosing the coefficients of the denominator polynomial of (3.10) compared to feedback of 

capacitor current alone. The parasitic resistance of the filter components are neglected in the 

analysis and design of the damping gain for the sake of simplicity. Additionally, this ensures 

that the gain is designed conservatively since the parasitic resistance will also contribute 

some passive damping to the filter.  Equation (3.10) is a 3
rd

 order dynamic system which can 

be rearranged into the form (3.11) 
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(3.11) 

The system in (3.11) can be approximated as a second order system provided the magnitude 

of the real pole is much larger than the real portion of the complex pole pair.  The ratio of the 

real pole to the real portion of the complex pole in (3.11) is m and must be specified by the 

designer of the control scheme.  In [2] the minimum value for m is 5 in order to approximate 

(3.10) as a second order system.  Equating the denominator of (3.10) with the third order 

system in (3.11) allows the damping gains to be calculated for a desired damping ratio ζ as in 

(3.12). 
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It should also be noted that the effective resonant frequency of the compensated system, 'n , 

is reduced by a factor of 221 m compared to the undamped resonant frequency of the 

LCL filter, n  . This indicates increased attenuation in the region of the uncompensated 

resonant frequency. Increasing the value of m will result in a greater reduction in the 

effective resonant frequency.  

The frequency response of (3.10) is plotted below in Figure 3.7 when m = 5 and the damping 

ratio is increased from 0.1 to 1. 
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Figure 3.7: Frequency Response of the damped filter as ζ is increased from 0.1 to 1 

Figure 3.8 shows the frequency response of (3.10) using the component values listed in Table 

3.1 when ζ = 0.9 and m = 5. The damping ratio is chosen as 0.9 to ensure adequate damping 

in case of filter parameter variation. 

 

Figure 3.8: Frequency response of the LCL filter with and without AD 
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Because the damped filter does not include a pole at or very near the origin, the filter does 

not amplify lower frequency and DC components of the input. Above the resonant frequency, 

the magnitude of the damped and undamped frequency response is nearly identical.  

The effectiveness at different values of resonant frequencies is demonstrated in Figure 3.9.   

The parameters for LCL filter configurations with low (0.69 kHz), medium (1.19 kHz), and 

high (1.69 kHz) resonant frequencies in [3] were used with (3.12) to calculate the damping 

gains for the same values of ζ and m as shown above. Figure 3.9 shows the frequency 

response of the filters with active damping. 

 

Figure 3.9: Filter response for filters with low, medium, and high natural resonance 

frequencies 

Figure 3.9 shows that the AD scheme described above is suitable for LCL filters with a wide 

range of resonant frequencies. 

3.2.2 Effects of Grid Inductance Variation 

In addition to the inductance of the filter components and transformer, the frequency 

characteristics of the grid impedance can also affect the transfer function of the filter. The 

grid impedance can vary due to line/load switching and connection or disconnection of the 

microgrid from the main grid. The value of the grid-side filter inductor can also be different 

from the nameplate rating as a result of operating conditions and miscalculations. Of the 

filter damping techniques discussed in Chapter 2, multi-loop AD techniques have been 
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shown to have good resilience to changes in grid-side inductance [4]. Figure 3.10 shows the 

movement of the poles of the loop gain (3.10) as the changing grid-side inductance varies. 

   

 (a)                                                                  (b) 

Figure 3.10: (a) Impact of a ten-fold increase and (b) decrease in Lg on open loop poles 

When the grid inductance is increased while the damping gains kdl and kdc remain the same, 

the damping is somewhat decreased before returning to previous levels. The minimum 

damping ratio of the pole locations shown in Figure 3.10 (a) is ζ = 0.71, which is still 

sufficiently damped to prevent instability in the current control loop.  Figure 3.10(b) shows 

that reducing the grid-side inductance causes the complex pole pair to travel toward the real 

axis, until the system contains only real poles.  Further decreasing Lg eventually leads to 

another pair of complex poles appearing at a higher frequency.  This alternate resonant point 

can be seen in Figure 3.11 where the frequency response is plotted as Lg varies from its 

nominal value. 

The frequency response for Lg
’
 = 0.1*Lg = 25 µH exhibits underdamped characteristics.  If 

the range of typical grid impedance values are known in advance it is advisable to calculate 

the damping gains based on a low grid impedance value.  Increasing the grid impedance 

increases the system damping.   If the grid inductance is decreased significantly lower than 

the value considered at the design stage, the system could become underdamped. 

Lg ↓ 

Lg ↑ 
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Figure 3.11: Frequency response of the LCL filter 

 

3.3 Calculation of the Current Controller Gains 

Once the necessary damping of the LCL filter has been achieved, the model of the equivalent 

compensated system (3.10) can be used to determine the current controller gains.  

Gcon(s)+-
Gigu(s)

Ig,ref ig

PlantController

 

Figure 3.12: The current control loop 

The plant labelled in Figure 3.12 is the transfer function (3.10) of the LCL filter with the AD 

loops as discussed in Section 3.2.  Based on classical control theory, the closed-loop 

characteristics of a system can be manipulated by open-loop characteristics of the loop gain 

transfer function. Of particular interest are the Phase Margin (PM), which affects the 

transient response, and the Gain Margin (GM), which indicates the sensitivity to parameter 

variations. Controller design based on PM and GM specifications has been discussed in the 

literature [5] as systematic methods for calculating the gains with higher order filters.  
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A proportional resonant controller is adopted which allows for individual control of each 

phase of the inverter. The input of the controller is the error between the sinusoidal current 

reference ig,ref, and the measured current ig. 

∫ 
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Figure 3.13: Block diagram of a proportional + resonant controller 

The controller consists of two parts: a proportional term kp, and a resonant term with gain ki 

which employs two integrators. When the gains Kωo are set equal to the fundamental 

frequency ωo, the resonator performs a time-domain amplitude integration of a sinusoidal 

signal with frequency ωo [6]. From Figure 3.13, the transfer function of a PR controller 

including the proportional and resonant terms is given in (3.13). 
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sk
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
  (3.13) 

The transfer function of the PR controller contains a pair of poles on the jω axis at the 

fundamental frequency ωo.  This allows the PR controller to track a sinusoidal reference 

signal with frequency of ωo according to the internal model principle [7].  An infinite gain at 

the fundamental frequency is observed in the frequency response of (3.13) as shown in 

Figure 3.14. 
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Figure 3.14: PR controller frequency response 

If Kωo is not tuned to the exact frequency of the input signal, or if the reference frequency 

varies, the controller would have imperfect tracking. To be suitable for a microgrid, the 

controller is required to be effective during possible times of frequency deviation.  In order to 

adapt the controller for variable grid frequencies, the value Kωo in the block diagram in 

Figure 3.13 is updated based on the output of the frequency estimation unit, discussed in 

Section 3.6.  

For a PR controller the relationship between the gains kp and ki and the transfer function is 

less straight forward than for a PI controller.  Rather than selecting gains for the PR 

controller in the ABC frame, the gains for an equivalent PI controller can be calculated and 

applied to the PR controller [8].  The open-loop transfer function, P(s), of the system shown 

in Figure 3.12 is: 
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(3.14) 

when Gcon(s) is a PI controller.  In order to synthesize the controller gains, several parameters 

have to be chosen, namely the PM and GM.  A PM of 30-60
o
 is typically selected [5]. The 
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desired GM should be chosen keeping in mind the restrictions placed on the crossover 

frequency ωc. Since ultimately the controller will be of the proportional resonant form, the 

crossover frequency should be higher than the fundamental frequency of 377 rad/s but lower 

than the resonant frequency of the filter, ωn. From these criteria ki and kp can be explicitly 

calculated.  In this case, GM = 12 dB and PM = 45
o
 is selected. 

The first step is to find an expression for the proportional gain kp in terms of ωc. This  

expression can then be used to calculate the crossover frequency in terms of the desired gain 

margin.  Once ωc is known it can be used to determine kp.  From kp, ωc, and the PM, the 

integral gain can be calculated. 

In the low frequency range (ω < ωn) the filter capacitor has little impact on the transfer 

function gain and the plant can be represented by a first order system (3.15) [5]. 
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The gain of the controller in the region of ωc can be approximated by the proportional gain kp 

because the corner frequency of the PI controller (ki/kp) is lower than ωc. Thus the 

approximate open-loop transfer function is (3.16). 
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At the crossover frequency, the gain of (3.16) is equal to 1.  Calculating the magnitude of 

(3.16) at s = jωc and rearranging terms leads to an expression for the proportional gain kp 

(3.17). 

222
)( cgcdlp LLkk   (3.17) 

To develop an expression for the crossover frequency in terms of the specified gain margin, 

the magnitude of the loop gain at the filter resonant frequency is examined. For the transfer 

function in (3.14) the -180
o
 point occurs at the resonant frequency ωn.  The gain margin of 

(3.19) is given by (3.18).  
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)(20 njPLogGM   (3.18) 

Although Gigu(s) is a third-order system, it can be approximated by a damped second order 

system at the resonant frequency because the damping gains were designed to move the real 

pole from the origin to the left hand plane much farther than the complex-conjugate pair. The 

second order approximation of the loop gain (3.19) is more accurate in the region of the 

resonant frequency than (3.16).  
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The damping ratio, ζ, and m in (3.19) are the same designer-selected parameters discussed in 

Section 3.2. Substituting (3.17) and (3.19) into (3.18) yields an expression for the crossover 

frequency based on the desired GM. 
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A more detailed derivation of (3.19) and (3.20) is given in Appendix C.  Using the crossover 

frequency, the proportional gain kp can be calculated from (3.17).  

The final step in the design process is to calculate the integral gain, ki based on the desired 

PM.  The phase of the system at the crossover frequency, φc, is determined by evaluating the 

phase angle of the transfer function P(s) in (3.14) when s = jωc. 
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The necessary phase of the loop gain to yield the desired phase margin is: 

0180 PMc  (3.22) 
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Substituting (3.22) into the right hand side of (3.21) and rearranging yields an expression for 

the integral gain ki. 
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The chosen phase and gain margins, the resulting crossover frequency ωc, and gains kp and ki 

calculated using the method above are listed in Table 3.2 for the system with parameters 

listed in Table 3.1. 

Table 3.2: Current Controller Parameters 

GM 12 dB 

ωc 3640 rad/s 

PM 50
o
 

ki 3516 

kp 4.73 

 

Figure 3.15 shows the open loop frequency response of the system for both a PI and PR 

controller with the same ki and kp controller gains listed in Table 3.2. 

 

Figure 3.15: Bode plot of the loop transfer function for PI and PR controllers 

Only in the low frequency region does the frequency response differ for the PI and PR 

controllers. Above ω ≈ 10,000 rad/s the phase and magnitude of the frequency response is the 
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same for both types of controllers. The step response of the current control loop when a PR 

controller is used is plotted in Figure 3.16 for an increase of 0.5 to 1.0 pu in the magnitude of 

the reference current. 

 

Figure 3.16: Step response of current control loop when a PR controller is used for a 100% 

increase in current reference magnitude at t = 0.25 s 

Because of the resonator, the controller is able to track the sinusoidal reference signal with 

zero steady state error and a fast dynamic response. Although typical transient performance 

criteria, such as overshoot and rise time, are difficult to apply to tracking of non-DC signals, 

visual inspection of Figure 3.16 shows almost perfect alignment with the reference signal 

within a ½ cycle of the fundamental. 

3.4 Anti-Windup Scheme for a PR Controller 

3.4.1 Discrete Implementation of a PR Controller.  

The digital implementation of the control scheme requires discrete implementation of the 

continuous time PR controller. The same structure of Figure 3.13 is kept but a discrete 

implementation of the integrators is used. This allows the resonator gains to be updated based 

on the estimated frequency and requires lower computational resource consumption  

compared to implementing a discrete transformation of the PR transfer function (3.13) [9]. 

Using the Forward Euler transformation for integrator 1 in Figure 3.17 and the Backward 

Euler transformation for integrator 2 prevents the formation of algebraic loops [10].  

Discretizing the integrators in this manner has also been shown to have a smaller deviation 

from the desired resonant frequency than when the Tustin approximation is used [9], [11]. 
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Figure 3.17: Discrete-time Proportional Resonator 

 

3.4.2 Windup in PR Controllers 

The output of the resonator, ur, is the amplitude integration of the sinusoidal input signal ig,ref 

- ig. For a sinusoidal input with amplitude A, frequency ω, and phase φ, the amplitude of the 

output of the resonator in (3.13) will increase linearly at the rate of 0.5kiAt  as shown in 

(3.19) [6].   
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Figure 3.18: Amplitude integrator for a sinusoidal signal 

 

Figure 3.19 shows the output of a PR controller with ki = 377,  kp = 1 when an input signal 

with constant amplitude is applied.  
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Figure 3.19: Controller output u for constant error input signal ig,ref - ig 

If the controller is given a reference which cannot be met, the resonator will have a constant 

input error signal and the output will increase rapidly.  This is because the integral gain is 

typically large to meet the control loop requirements.  Even if the error returns to zero, it will 

take time for the output of the resonator to decrease.  This phenomenon is referred to in the 

literature as “windup” and is a well-known problem in systems controlled by PI controllers. 

Unlike windup as experienced by a PI controller, it is not the individual integrators but the 

resonator itself which becomes wound-up in a PR controller. 

Operating limits of the converter are the main cause of controller windup. For an inverter, the 

plant actuators are the switching signals, determined from the inverter terminal reference 

voltage. The amplitude of the line to line terminal voltage of the inverter is limited to 

√3VDC/2.  Increasing the reference voltage beyond this value will not result in a higher 

voltage at the converter terminals.  Excessively high controller gains, high levels of grid 

voltage imbalance, low DC bus voltage, and fault conditions can all cause the inverter 

reference voltage to reach the saturation point. Not all events which cause actuator saturation 

can be accounted for at the design stage, thus some type of Anti-Windup (AW) strategy 

should be incorporated in the control scheme.  

In the literature, the problem of windup in PR controllers has been discussed in [10], [12]-

[14]. Conditional integration is shown in [14], where if the output of the controller exceeds a 

predefined limit, the input to the resonator is set to zero to stop further integration.  The 

solutions to resonator windup are mainly based on AW techniques developed for PI 
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controllers.  In [10], [12]-[15] an anti-windup technique using back-calculation as shown in 

Figure 3.20 is proposed. 
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Figure 3.20: Anti-windup scheme using back-calculation [10] 

In a back-calculation AW scheme for PI controllers, the amount by which the integrator 

output exceeds the saturation limit is subtracted from the integrator input.  In Figure 3.20 this 

scheme is adapted for a PR controller.  When the output of the resonator ur, exceeds the 

maximum and minimum conditions imposed by the saturation block, the error is multiplied 

by the gain KAW and subtracted from the input to the first integrator.  The output of the 

saturation block in Figure 3.20 for an input signal u is defined by (3.24). 
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Before saturation starts, the back calculation signal ur - Sat(ur) is equal to zero since ur = 

Sat(ur).  Figure 3.21 shows the output of the PR controller to the same input as in Figure 3.19 

when the AW scheme is employed with KAW = 1 and KAW = 100.  
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Figure 3.21: PR output for a constant error signal when a back-calculation anti-windup 

scheme is used 

By feeding back the error between the resonator output and the saturation limits, the anti-

windup scheme limits the output of the controller.  If the output of the resonator increases, so 

does the amplitude of the signal subtracted from the resonator input, ur = Sat(ur). This limits 

the output of the controller, as seen in Figure 3.21, compared to the controller output without 

an AW scheme shown in Figure 3.19.  Figure 3.21 shows that the value of the back-

calculation gain KAW affects the resonator output during saturation.  Increasing KAW 

decreases the amplitude of the controller output but results in a slightly more distorted 

controller output.  When the saturation function (3.24) is applied to a sinusoidal signal, the 

output contains a significant amount of harmonic distortion. Because the sinusoidal signal ur 

is compared to constant saturation limits, Umax and Umin, the controller output u is also 

distorted, which can be seen in Figure 3.21.  

The magnitude of the steady state output during a saturation condition is determined by the 

magnitude of the tracking gain, KAW.  Selecting a very large value for KAW may cause the 

current control loop to become unstable, while a small value will be less effective in limiting 

the output of the controller.  It is important to note that this method of anti-windup cannot 

prevent the resonator output from reaching the saturation limits, because there is no feedback 

signal in this case.  Although [10], [12]-[15] show implementation of an anti-windup scheme 

for a current controller, none consider the effect of a multi-loop active damping scheme. 

The modulation index has two important parameters: the amplitude and the phase angle. 

Although the amplitude saturates at 1, when normalized to Vdc/2, the phase angle can vary 
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between 0-180
o
. The magnitude and phase of the injected grid current depends on both the 

magnitude and phase angle of the inverter terminal voltage.  To improve controller 

performance while the anti-windup scheme is active, the magnitude of the inverter reference 

voltage must be minimized, and the anti-windup loop must not interfere with the correct 

phase. In a single stage PV system this is especially important, because the bus voltage is 

dependent on the real power injected into the grid.   

3.4.3 Proposed Anti-windup Scheme 

An improved back calculation anti-windup strategy for a PR controller is presented in this 

section.  The proposed changes from the strategy shown in Figure 3.20 reduce the current 

distortion and improve reference current tracking during activation of the anti-windup loop. 

The proposed AW scheme shown in Figure 3.22 accounts for the active damping loop. The 

output of the virtual impedance loop, vinv,ref, is used for the back calculation rather than the 

output of the PR controller or resonator. Using the output of the virtual impedance loop 

allows the saturation limits to be easily calculated.  If the PR controller output u is used 

instead, the limits of the saturation block cannot be set precisely, since the relationship 

between u and vinv,ref is not a simple algebraic one. This can result either in triggering the 

anti-windup loop before saturation has actually been reached if the limit is too low, or 

operating in the non-linear region of SPWM modulation if the limits are set too high.  The 

second advantage of the scheme shown in Figure 3.22 is more accurate tracking of the phase 

of the reference current during input saturation.  This is the result of adding the feedback 

signal ebc to the input of the second integrator.  
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Figure 3.22: Proposed Anti-Windup scheme for PR based current controller with an AD loop 

Two gains K1 and K2 are added to the conventional PR structure as shown in Figure 3.22.  

When the inverter terminal voltage reference vinv,ref is within the acceptable range, the 

feedback signal ebc is then equal to zero, and the controller behaves exactly as a standard PR 

controller.  When vinv,ref  exceeds the limits imposed by the DC link voltage the output of the 

saturation block will be clipped, and the feedback signal ebc will no longer be zero. The limits 

Umax and Umin in Figure 3.22 are set to +VDC/2 and –VDC/2 respectively, where VDC is the DC 

link voltage.  Some over modulation is possible, however the relationship between the 

modulation index and the terminal voltage becomes non-linear. The strategy is to keep the 

output vinv,ref as close as possible to the limit to remain in the region of approximate linearity. 

As mentioned in [10], analysis of the anti-windup scheme is complicated. This is due the 

non-linearity of the relationship between the modulation index, DC link voltage, and inverter 

terminal voltage during SPWM over-modulation, as well as the non-linear saturation function 

(3.24).  However, some insight into the effect of the second feedback term can be gained by 

examining the equivalent structure of Figure 3.23. 
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Figure 3.23: Equivalent block diagram of Modified PR controller 

When the anti-windup loop is engaged, the input to the resonator is no longer the error 

between the reference and actual value of the grid side current, e. Instead, the equivalent 

error 'e  is  

 
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Thus, adding the back calculation signal to the second integrator allows for additional 

filtering of the feedback ebc without the need for implementing separate integrators. The 

second gain also reduces the steady state output vinv,ref compared to purely proportional 

feedback.  

In the frequency domain, the output of the PR controller u is described by (3.26). 
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The second term on the right hand side of equation (3.26) shows the “filtering” effect the PR 

controller has on the back calculation signal C(s). The frequency response of the second term 

in the right hand side of (3.26) is shown in Figure 3.24.  
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Figure 3.24: Frequency response of the gain of the back calculation signal for normalized 

value of K2 = 0 and K2 = 500 

Including the integral feedback, (|K2| > 0), introduces a phase lag at the frequency 

1

2

K

K
  (3.27) 

When ω is chosen in the vicinity of the fundamental frequency, there is a 45
o
 phase reduction 

of the fundamental components of the anti-windup feedback variable Ebc(s). It is this phase 

shift which affects the phase of the current under saturated conditions. If the current ig is in 

phase with ig,ref and differs only in magnitude, then the error, e, must also be in phase with ig. 

To eliminate the error to the resonator, 'e , the compensating signal must also be in phase 

with the error. However, the compensating signal ebc is in phase with the inverter terminal 

voltage vinv,ref. but the current ig lags vinv,ref . This means that the phase of ebc is also leading 

that of ig, and causes the equivalent error 'e  to be out of phase with the controller input e. By 

adjusting the ratio in (3.27) the phase shift between the plant input and the signal ebc, can be 

altered to improve the phase tracking of the current reference when the anti-windup loop is 

active. 

         K1=3, K2=1000 
         K1=3, K2=0 
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3.4.4 Anti-windup Gain Selection 

There are two aspects to be considered in choosing the gains for AW loop: stability of the 

control loop, and steady state performance while the loop is active.  The gains must be 

chosen such that the output of the virtual impedance loop vinv,ref is limited sufficiently.  The 

magnitude of the reference voltage during saturation conditions depends on the current error 

e, and on the gains K1 and K2.  A higher gain K1 will decrease the magnitude of the output u, 

but excessively large values can cause oscillations in the modulating index and high levels of 

harmonic distortion.  In [10] normalization for the anti-windup gains is shown to remove the 

effect of the changes in the controller input and output. The normalized values of both K1 and 

K2 are defined by (3.28). 

K
V

i

U

e
K

DC

g

5.0
ˆ max,

max

max   (3.28) 

The normalized gain K̂  is obtained by multiplying the gain K by the maximum error input 

emax and dividing by the maximum output Umax. For the PV system under consideration this 

corresponds to the maximum inverter current ig,max and 0.5VDC.   

The first gain, K1, is selected using an empirical method to achieve a damped transient 

response and steady state limiting of vinv,ref at the maximum anticipated error with the gain K2 

set to zero.  When the normalized gain K1 = 1 the current controller has the maximum error 

input, the modulation index has a peak value of 3.1 during activation of the AW loop as 

shown in Figure 3.25.   Increasing K1 to 3 reduces the peak modulation index to a value of 

1.9 pu peak.  Further increasing K1 has a diminishing effect on the amplitude, thus the 

normalized value of K1 is set to 3. 
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Figure 3.25: Modulation index for phase A with maximum error input and K2 = 0 

Next, K2 is tuned to achieve good phase matching at the nominal power factor of 1.0 using   

K2 ≈ 377K1 as the starting point.  Following this empirical method resulted in normalized 

values of K1 = 3 and K2 = 1000.  The dq axis current components are shown in Figure 3.26 

and the modulation index for phase A is shown in Figure 3.27.  Figure 3.27 shows that when 

K2 > 0 the amplitude of the modulation index kept closer to the saturation limit.  

 

Figure 3.26: dq axis inverter current for K2 = 1000 
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Figure 3.27: Modulation index for phase A with K2 = 1000 

 

3.4.5 Extension to Three-Phase, Three-Wire Inverters 

A three-wire system can contain only positive and negative sequence variables, but it is 

impossible for zero sequence currents to flow in a three-wire system.  Following deactivation 

of the AW loop however, a zero sequence quantity can be observed in the output of the PR 

controllers.  This can cause the inverter reference voltage to be unbalanced and increases 

current distortion and imbalance.   In the test shown in Figure 3.28 the inverter is originally 

running under normal conditions without activation of the anti-windup loop.  At t = 0.15 s the 

current reference increases causing the modulation index to saturate and the anti-windup loop 

to engage until t = 0.2 s when the current reference decreases back to the same value as prior 

to t = 0.15 s.  Although the current reference and grid conditions are the same for t < 0.15 s 

and t > 0.2 s, after the AW loop is deactivated the PR controller outputs uabc and the 

modulation index are unbalanced which can be seen in Figure 3.28(b)&(c) respectively. The 

summation of the PR controller outputs for phases A, B, and C are shown in Figure 3.28(d). 

According to (2.2) this is equal to three times the zero sequence component of uabc.  

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 3.28: (a) Inverter current, (b) PR controller output (d) modulation index, and (c) 

summation of the three phase controller outputs 

After the AW loop is deactivated the current also has slightly higher distortion. The Total 

Harmonic Distortion (THD) of the inverter current before and after the AW loop is activated 

is listed in Table 3.3. 

Table 3.3: Current THDs before and after saturation 

t < 0.15 s t > 0.2 s 

THD IA = 2.8% THD IA = 3.4% 

THD IB = 2.8% THD IA = 4.4% 

THD IC = 2.8% THD IC = 3.0% 
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To solve this problem a slight modification has been made to the controller structure, as 

shown in Figure 3.29. 

ig,ref uabc

PR
igDamped 

LCL filter

G0

Σ 

+-

3u0

 

Figure 3.29: Zero sequence elimination loop  

To eliminate circulating zero sequence harmonics in the controller, the outputs of the A, B 

and C phase PR controllers, ua, ub, and uc, are added together to calculate the zero sequence 

component u0 (3.29) 

 cba uuuu 
3

1
0  (3.29) 

which is multiplied by the gain G0 and subtracted from the current reference for each phase. 

The zero sequence feedback loop in Figure 3.29 essentially “reuses” the PR controllers to 

control the u0 with the reference amplitude for u0 being zero.  The magnitude of G0 affects 

the rate at which the zero sequence is eliminated following deactivation of the anti-windup 

loop as well as the reduction in the zero sequence controller output u0 during activation of the 

AW loop.  The value of G0 in this case selected empirically as 100/3.   

The results from the same test illustrated in Figure 3.28 when the zero-sequence feedback 

loop is included are shown in Figure 3.30. When the zero sequence feedback loop is 

included, the controller output and the modulation index are both balanced and return to the 

pre-saturation values as seen in Figure 3.30(b) and (c) respectively. Once the current 

reference is reduced and the AW loop deactivates, Figure 3.30(d) shows that the summation 

of the controller outputs returns to zero, so there is no zero sequence component.   
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.30: (a) Inverter current, (b) PR controller output (d) modulation index, and (c) 

summation of the three phase controller outputs when zero sequence feedback loop is 

employed 

The inverter current shown in Figure 3.30(a) has a THD of 2.8% in all three phases during t < 

0.15 s and t > 0.20 s.  During activation of the AW loop the THD of the inverter current is 

2.4% for all three phases. 
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An alternative solution is to use a PR controller for only two of the three phases and to 

calculate uc using (3.30). 

bac uuu   (3.30) 

However, this will result in significantly higher levels of distortion in the controller output, 

and consequently the current, while the anti-windup loop is active. The inverter current and 

modulation index are shown in Figure 3.31 when (3.30) is used to calculate uc.  The current 

in Figure 3.31(a) is unbalanced while the AW loop is active.  Although the modulation 

indices in Figure 3.31(b) are highly distorted while the AW loop is active, following 

deactivation Mabc is balanced. 

 
(a) 

 
(b) 

Figure 3.31: (a) Inverter current and (b) modulation index when only two PR controllers are 

used  

From 0.15 s <  t < 0.2 s, while the AW loop was active, the current THDs were 4.5%, 12.1% 

and 11.7% for phases A, B and C respectively.  This is significantly higher than the 2.4% for 

all three phases when the zero sequence feedback loop was used in Figure 3.30(a). 

3.4.6 Performance Comparison of the Proposed Anti-Windup Scheme 

To test the performance of the anti-windup scheme, an ideal DC voltage is used in place of 

the PV generator at the DC link. A reference current is given to the PR controllers to 
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deliberately cause saturation of the modulating index. A current reference with zero 

quadrature component and a magnitude of 1 pu is given to the current controller. The step in 

the reference current at t = 0.1 s results in saturation of the modulation index, until the 

current reference is reduced to 0.35 pu 6 cycles later. The results are illustrated in Figure 

3.32. Although the dq transformation is not used in the control strategy, the rotating reference 

frame currents are shown in Figure 3.32(g)&(h) to compare the phase angle of the current 

with the anti-windup loop activated.  Figure 3.32(a) and (b) shows the result when no anti-

windup strategy is used. In only 6 cycles, the inverter voltage reference grows to 158 times 

the saturation limit, and even when the current reference decreases the controller output only 

decreases slowly, as seen in Figure 3.32(b).  Figure 3.32(a) shows the current injected into 

the grid. A high level of current distortion is visible due to the over-modulation.  

 

       

(a)                                                                         (b) 

 

   (c)                                                                        (d) 
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(e)                                                                          (f) 

 

 (g)                                                                          (h) 

Figure 3.32: Inverter current (a) and modulation index (b) without anti-windup, inverter 

current (c), modulation index (e) and dq frame current (g) with the proposed AW scheme, 

and with the AW scheme from [10](d)(f)(h) 

 When the proposed anti-windup strategy is used, Figure 3.32(c)(e)(g) shows that even 

during activation of the windup loop the THD of the output current is below the maximum of 

5%. Figure 3.32(g) shows that the current closely follows the phase angle of the reference, 

even though the inverter cannot inject a high enough current to meet the reference.  Once the 

current reference is reduced, the controller quickly tracks the new reference and returns to 

normal operation. Figure 3.32(d),(f),(h) show that the AW strategy in [10] results in poorer 

limitation of the input variable, a higher THD, and a phase shift of approximately 45
o
 from 

the reference current phase. A more oscillatory transient response is observed in Figure 

3.32(d) as compared to the proposed strategy.  

3.5  DC Link Voltage Control 

For a single stage solar power conversion system, the terminals of the PV array are directly 

connected to the DC link of the inverter.  Because the power produced by the array is directly 
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dependent on the voltage of the array, real power of the system is controlled by controlling 

the DC bus voltage of the inverter.  The DC voltage control loop is shown in Figure 3.33. 
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Figure 3.33: Bus voltage control loop 

The method in [1] has been adopted in this work to control the DC bus voltage. The control 

variable is the square of the voltage. In the dual loop strategy a PI controller is used to 

generate the appropriate current references. The current control loop in labeled in Figure 3.33 

can be approximated as a unity gain because the bandwidth is significantly (i.e. more than 10 

times) higher than that of the DC link voltage controller loop [1].  The gains are determined 

by the desired system bandwidth based on the transfer function (3.31) [1]. 
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The equivalent inductance of the filter is gceq LLL  for the LCL filter configuration [16]. 

Equation (3.31) indicates that the stability of the system depends on the value of the time 

constant τ0, which is related to the output power output, Pg of the inverter and the grid 

voltage vg. A pole-zero compensator is included to increase the phase margin at the worst 

case, 00, gP W, to ensure stability over the whole range of power output. The controller and 

compensator transfer function is given by (3.32). 
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The PI controller gains kdc,p and kdc,i are determined based on the desired bandwidth of 200 

rad/s.  The pole and zero locations of the compensator are chosen to add a 45
o
 phase boost at 

the crossover frequency. The frequency response of the open loop transfer function 

GVP(s)Gcomp(s) is shown in Figure 3.34 below. 

 

Figure 3.34: Frequency response of the compensated and non-compensated forward loop 

gains at maximum and minimum output power 

When the inverter is injecting an unbalanced three-phase power to the grid, the DC link 

voltage oscillates at two times the line frequency. If the oscillation is not removed, the 

bandwidth of the loop must be limited to provide sufficient attenuation of the oscillatory 

component to avoid distorting the current reference [17]. The second order notch filter of 

(3.33) is used to attenuate the double line frequency component in the measured DC link 

voltage, Vdc. 
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The location of the notch is determined by the frequency ω2f which is set to 2π120 rad/s. The 

quality factor Q is chosen as 1. 
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Although the output of the DC link voltage controller is a DC value, a sinusoidal reference 

signal must be given to the PR controllers. The amplitude of the current reference is obtained 

by dividing the output of the PI controller by the peak of the positive sequence component of 

the grid voltage |Vg
+
|. The sinusoidal reference current ipv,ref is generated by multiplying the 

positive sequence three-phase template signals ug,abc
+
 by the reference current amplitude. 

Both |Vg
+
| and ug,abc

+
 are calculated using the half-cycle DFT, which is discussed further in 

Chapter 4. 
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Figure 3.35: Sinusoidal reference current generation 

 

3.6 Frequency Estimation 

In the conventional grid, the frequency is tightly regulated. Only very small deviations from 

the nominal frequency are permitted. In a microgrid however, the lower system inertia may 

result in greater frequency deviations. Additionally, transient events, and grid 

connection/disconnection may cause changes in the fundamental frequency which need to be 

tracked by the control system to ensure proper performance and synchronization with the rest 

of the grid/microgrid. Phase-Locked Loops (PLLs) are commonly used in the literature for 

this task. However, it is unnecessary to estimate the phase angle in the proposed control 

scheme.  

Frequency-Locked Loops (FLLs) are simple to implement, do not require trigonometric 

calculations, and are more immune to phase angle transients than are PLLs [18]. In the 

proposed inverter control scheme a simple frequency locked loop is used to estimate the grid 
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frequency based on the positive sequence grid voltage. A block diagram of the FLL is shown 

in Figure 3.36. The FLL is composed of the SOGI discussed in Chapter 2 along with an 

additional integrator.  This third integrator detects the input frequency by adjusting the value 

of ωest until the SOGI output V’ is equal to the input Vα
+
.  

++ ωest 

Vα
+ -

+ -+ ∫xkF1

∫xx

-kF2 ∫

377

SOGI

V’

 

Figure 3.36: Frequency Locked Loop 

The gains kF1 and kF2 determine the settling time of the FLL, and are set to √2 and 1 

respectively to achieve a settling time of 0.038 s [18].  The output of the FLL is the estimated 

frequency ωest. Only one phase voltage is required as the input for the FLL.  The α 

component of the positive sequence voltage at the PCC is used as the input. This ensures that 

even if the voltage is unbalanced the performance of the frequency estimation unit is not 

affected. The positive sequence calculation method used to obtain Vα
+
 is described in Chapter 

4. 

 

Figure 3.37: Output of the FLL 
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3.7 Maximum Power Point Tracking 

The curves shown in Figure 3.38 indicate that the power production of the PV generator 

depends on both the environmental conditions and the terminal voltage of the array. In the 

system under consideration the power is adjusted by controlling the DC bus voltage of the 

inverter. The operating conditions which result in the maximum power are called the 

Maximum Power Point (MPP). Because the voltage of the MPP varies with irradiance, 

temperature and other conditions such as partial shading, an algorithm must be implemented 

to track the MPP.  

 

Voltage (V) 

(a) 

 
(b) 

Figure 3.38:  Effect of irradiance on P-V curve (a) and effect of temperature variation (b) 

Many techniques, known as Maximum Power Point Tracking (MPPT) algorithms have been 

proposed in the literature [19]-[27]. Hill climbing techniques such as the perturb and observe 

(P&O) and incremental conductance (INC), are some of the simplest and most prevalent in 
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practical applications [28]. These two techniques have been shown to be equivalent both 

mathematically and experimentally by the authors in [29]. For a single stage inverter, the 

standard P&O algorithm either decreases or increases the DC bus reference voltage by a 

fixed step size depending on the change in power from the previous step. The voltage must 

oscillate since all scenarios lead to a perturbation of the voltage. The INC algorithm has an 

additional step which measures the derivative of the current and does not alter the voltage 

reference if this is the case because the system is presumed to have reached the steady-state.  

As with all hill climbing algorithms using a fixed perturbation step the algorithm may be 

unable to reach the true MPP depending on the starting voltage and width of the voltage step. 

As shown in [29], although the INC algorithm theoretically allows for zero oscillation, the 

conditions can rarely be met and both methods result in virtually identical performance. 

In this thesis the goal is to examine the effect of negative sequence load current 

compensation, on the primary function, which is power conversion. For this reason the most 

widely used algorithm, the P&O technique is adopted. A slight modification however has 

been made to the P&O algorithm to allow the voltage to reach a steady value. The algorithm 

shown in Figure 3.39 also compares the change in power to a certain minimum threshold.  If 

this is the case, the change in voltage for the next step will be set to zero.  This takes 

advantage of the fact that at the MPP the slope of the P-V curve is almost zero, and only 

small changes in power occur between voltage steps.  Keeping in mind the analysis of [29], 

this modification results in a specific implementation of the INC algorithm.  The value of 

Pmin can be set according to the maximum slope of the P-V curve under low irradiance 

conditions.  In this case the value has been set to 0.1% of Pmax or 50 W.  A higher value of 

Pmin would result in greater potential power loss, while smaller values were found to be 

difficult to distinguish from noise in the signal. The modification does not guarantee the 

complete removal of oscillations in all circumstances, but for a minimal increase in 

complexity and no reduction in speed of tracking the voltage oscillation inherent in the 

standard P&O algorithm can be removed.  

Figure 3.39 shows the P&O algorithm used in this control scheme.  The first step in the 

algorithm is to calculate the difference between the DC link voltage and PV power at the 

current time step, n, and the previous step, n-1. If the change in power is less than Pmin, the 

voltage reference is held constant.  Otherwise, the sign of the voltage change is checked.  If 
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the voltage has decreased and power has increased, the voltage reference is decremented.  If 

power has decreased, the voltage is incremented.  If the voltage and the power have increased 

from the previous step, the voltage reference will be increased.  Otherwise, the voltage 

reference decreases. The value of the voltage perturbation, ΔV, and the time step of the 

algorithm are chosen according to the guidelines given in [28] as 4 V and 50 ms respectively.  

The performance of the P&O algorithm is demonstrated in Chapter 6. 
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Figure 3.39: P&O MPPT algorithm 

3.8 Conclusion 

In Chapter 3 a control scheme for a three-phase PV inverter has been designed and analyzed.  

A linear model of the LCL filter is presented.  An active damping scheme for the inverter is 

proposed and described. This method uses feedback of both the inverter-side current and the 
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filter capacitor current to damp the resonance of the LCL filter.  Because two feedback 

variables are used, the damping ratio can be directly specified and no iteration is required in 

calculating the feedback gains.  Using the inner inductor current in addition to the capacitor 

current increases the phase margin and reduces the low frequency gain.  Using the transfer 

function of the damped LCL filter, a method of calculating the gains for a PR controller 

based on phase and gain margin specifications has been shown.  The current control loop had 

a ½ cycle step response time. A modification is proposed for a PR controller to prevent 

resonator windup. The proposed anti-windup scheme compares the output of the active 

damping loop to a maximum and minimum value based on the DC link voltage. If the limits 

are exceeded, the difference is subtracted from the input of the resonator. Compared to 

previously proposed anti-windup methods for PR controllers, the scheme presented in this 

chapter has been shown to more accurately track the phase of the current reference. The DC 

link voltage control scheme discussed in [1] is considered. An FLL was designed to estimate 

the grid frequency. Finally, the well-known P&O technique for maximum power point 

tracking has been adopted. 
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Chapter 4 

4 Calculation of the Negative Sequence Current Component 

In this chapter the method used for calculating the negative sequence of the load current is 

shown and compared to existing techniques for calculating negative sequence components.  

For control applications the calculation of sequence components must be accomplished in 

real time using no more than the available processing power.  Several techniques for the 

calculation of symmetrical components were presented in Chapter 2.  In this chapter, the 

work presented in [1] is extended for the calculation of the negative sequence current 

component using a compensated Half-Cycle Discrete Fourier Transform (HCDFT).  Section 

4.1 provides a brief introduction to the Discrete Fourier Transform (DFT).  The method for 

calculating the accurate negative sequence components is then derived. This method is 

evaluated and compared with existing algorithms in section 4.2. Section 4.3 describes the 

integration of the HCDFT into the inverter control structure. 

4.1 Negative Sequence Calculation 

The DFT is a well-established method of processing power system signals for protection, 

monitoring, and control applications [2].  It is well suited for noisy environments because 

harmonics can be eliminated. The output of the DFT algorithm for a signal x(n) with 

frequency ƒg sampled at ƒs, is a phasor quantity XN.  It can be calculated from (4.1).  
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If the input signal is a continuous time sinusoid defined by (4.2), then (4.1) can be rewritten 

as (4.3), 
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where N is the number of samples per period of the fundamental. According to Euler’s 

formula (4.4) the exponential term in (4.3) can be decomposed into a real and an imaginary 

component (4.5). 
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The two terms on the right hand side of (4.5) are respectively referred to as the real filter and 

the imaginary filter.  The outputs of the two filters are the fundamental component of the 

original input signal and its 90
o
 phase shift. From these two values the amplitude of the 

signal and the phase angle can be calculated. If the DFT output XN is recalculated each time a 

new sample is added, at each sample time the angle will shift forward by N/2 radians. In 

the time domain this leads to a counter clockwise rotation of the measured angle. Following a 

disturbance in the input signal (change in amplitude or phase), the correct output will be 

reached once N post-disturbance samples have been obtained. For the full-cycle DFT this 

translates into a fixed settling time of one cycle of the fundamental frequency, i.e. 16.6 ms 

for a 60 Hz signal.  

This can be observed in Figure 4.1. A sinusoidal input signal with frequency ƒg = 60 Hz is 

shown in Figure 4.1(a) along with phasor magnitude estimated by a full-cycle DFT algorithm 

with N = 64.  At t = 0.25 s the amplitude of the input signal drops by 50%. The DFT 

magnitude reaches its new value at t = 0.266 s, which is one cycle after the disturbance to the 

input. Figure 4.1(b) shows the rotating phase angle measured by the DFT.  
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Figure 4.1: (a) Input signal and DFT magnitude and (b) phase   

4.1.1 The Half-Cycle DFT 

Another well-known phasor estimation technique is the Half-Cycle DFT, given by (4.6). 
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The coefficients of the real and imaginary filters for the HCDFT are calculated by (4.7). 
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M samples per half cycle are taken as inputs for the HCDFT. Because it needs only half the 

number of samples required for the full cycle DFT, the HCDFT has a settling time of one 

half of a cycle, which is 8.333 ms for a 60 Hz grid. Figure 4.2 shows the response of the half 

and full cycle DFT algorithms.  
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Figure 4.2: Settling time of the Full and Half cycle DFT 

The shorter window length of the HCDFT also results in a poorer frequency response, as 

even harmonics are no longer completely rejected. For the application in this thesis however, 

it is an acceptable trade-off for the shorter settling time. The limits for even harmonics are 

much lower than for the odd harmonics, most concerning are the 5
th

, 7
th

, and 11
th

 harmonics, 

which can be completely eliminated by the HCDFT. The frequency responses of the real and 

imaginary filters of the HCDFT are shown in Figure 4.3. 

 

 

(a) 
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(b) 

Figure 4.3: (a) Magnitude and (b) phase of the discrete-time frequency response of the 

HCDFT 

The frequency response shows that the HCDFT completely rejects all odd harmonics of the 

fundamental and attenuates the even harmonics. The harmonics of interest in most power 

systems, i.e. the 3
rd

, 5
th

, 7
th

, and 11
th

, are filtered by the HCDFT. 

Because the HCDFT has a sampled signal for its input, only signals up to fs/2 can be properly 

represented.  A typical way to solve this problem is to process the signal through an anti-

aliasing filter prior to performing the DFT. No anti-aliasing filter has been used in the 

proposed control scheme since the frequency fs/2 corresponds to the 32
nd

 harmonic.  

Stringent limits are placed on such high order current harmonics and which also limits 

possible errors due to aliasing.  An anti-aliasing filter could be readily included if it is 

deemed to be worth the additional implementation complexity. 

4.1.2 Negative Sequence Calculation in the Phasor Domain 

The symetrical sequence components of a three-phase system, introduced in Chapter 2, are 

redefined for convenience in (4.8).  Equation (4.8) can be applied to the phasor of the DFT, 

or directly to the outputs of the real and imaginary filters using ISC theory.  
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Figure 4.4 shows the magnitude of the negative sequence calculated by the HCDFT when the 

load is suddenly removed from one phase. Prior to the load being removed, all three phases 

are balanced. The response time of the negative sequence calculation is equal to the settling 

time of the HCDFT, or ½ cycle. 

 

(a) 

 

(b) 

Figure 4.4: (a) Three-phase load current, and (b) the magnitude of the –ve sequence 

calculated by the HCDFT 

4.1.3 Numerical Compensation for Off-Nominal Frequency 

When the grid frequency varies from the nominal value, the negative sequence phasor 

estimated by the HCDFT will contain errors because fg ≠ fs/N.  If the three-phase signals are 

unbalanced, significant errors can be observed in the magnitude and phase of the calculated 

sequence values. Figure 4.5(a) shows the magnitude of the negative sequence output of the 

HCDFT for a 60.9 Hz input. In this case, the error does not settle to zero and the magnitude 

has a noticeable AC component. Figure 4.5(b) shows the error in the estimated phase angle. 
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When the negative sequence component is small, the angle error has a large oscillating 

component with an amplitude of over 15
o
 as well as a DC error. 

 

(a) 

 

(b) 

Figure 4.5: (a) Negative sequence magnitude  and (b) phase error under off nominal 

frequency conditions, with Hzf g 9.60  

There are several ways of dealing with the problem of variable grid frequency. One way is to 

implement a variable sampling rate such that the number of samples per cycle remains 

constant. Another technique, known as “adaptive windowing”, is to adjust the number of 

samples per cycle N, based on the grid frequency so that ƒs/N ≈ ƒg.  The first method is 

complicated to implement in a microcontroller which relies on fixed sampling frequency. 

The second method will result in non-negligible error unless a very high sampling frequency 

is used. Following the method proposed in [1], a numerical compensation method is used in 

combination with adaptive windowing. Reference [1] presents a quantification of the error 

resulting from the frequency variation, as well as a method of numerically compensating the 

resulting error.  However, the focus is on extracting the angle of the positive sequence 
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voltage. All derivations are done for a full-cycle DFT.  To meet the controller performance 

requirements outlined in Chapter 1, the HCDFT is used in this thesis to compute the negative 

sequence current. 

4.1.4 Estimated Error of the Fundamental Phasor due to Off-Nominal Frequency 

The method outlined in [1] for quantifying the error and calculating the accurate phasor has 

been adapted in the following section to compute the negative sequence quantities using a 

HCDFT algorithm. The input signal x(n) is assumed to be a sampled sinusoid an amplitude 

Vm, phase angle of θ and frequency ƒg (4.9). 
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The calculated HCDFT can be written as (4.10).  
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If the HCDFT filter is designed for a nominal frequency ƒn such that 
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Then (4.10) can be rewritten as (4.13). 
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If the corrected fundamental phasor, XNg, without the error accrued due to frequency 

mismatch, is defined in (4.14), (4.13) can be written in terms of the accurate phasor and its 

complex conjugate XNg
*
(4.15). 
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Equation (4.16) indicates that the estimated phasor XN and the accurate phasor XNg are related 

by two complex error coefficients, k1 and k2. Using trigonometric substitutions, k1 and k2 can 

be expressed by the trigonometric functions (4.17)(a) and (4.17)(b). 
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Since it is the accurate negative sequence phasor which is of interest, (4.16) can be combined 

with the equation for symmetrical components (4.18) to calculate the negative sequence 

phasor NX 
. 
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2* aa  , (4.19) 

equation (4.18) can be rewritten as (4.20). 

*

,

2

,,2,,

2

,1 )()(3 cNgbNgaNgcNgbNgaNgN XaaXXkaXXaXkX 
 (4.20) 

It can be observed from (4.18) that the first and second set of brackets on the right hand side 

of (4.20) are equivalent to the negative and positive sequence components of the accurate 

phasor respectively. Equation (4.20) can then be simplified as (4.21).  

*

21 )()(
  NgNgN XkXkX  (4.21) 

Rearranging (4.21) yields an expression for the accurate negative sequence phasor NgX 
. 

 
 NgNNg XkX

k
X *

2

1

1
 (4.22) 

In order to develop an expression for


NgX  containing only the HCDFT output and 

compensating coefficients, the same procedure can be followed for the positive sequence 

accurate phasor 


NgX . 
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(4.24) 
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1

1
 

Substituting (4.24) into (4.22) and rearranging the terms yields an expression for calculating 

the accurate negative sequence phasor (4.27).  
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Following the same procedure outlined above for the accurate positive sequence phasor 


NgX  

results in the expression of (4.28). 
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In addition to numerical compensation of the off-nominal frequency, adaptive windowing is 

implemented to limit the maximum frequency error to be compensated. The window lengths 

and corresponding range of fg are listed in Table 4.1.  This improves the performance in the 

presence of off-nominal frequency harmonics. Real and imaginary filters for M = 31-34 

corresponding to ƒg = 57.4 Hz - 61.9 Hz are stored. This range of frequencies was chosen to 

reflect the maximum anticipated variations in the microgrid frequency. 

Table 4.1: HCDFT Filter length 

Frequency  M 

fg > 61.0 Hz 31 

59.2 ≤ fg  ≤ 61.0 Hz 32 

57.4 ≤ fg  < 59.2 Hz 33 

fg  < 57.4 Hz 34 

Although the magnitudes of the compensating coefficients defined in (4.17) are trigonometric 

functions of the grid frequency and the filter length, a quadratic and linear approximation can 

be found for |k1| and |k2| respectively, as shown in (4.29). Using the approximate equation 
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also prevents dividing by zero error when the grid frequency is exactly equal to the nominal 

frequency. 

1
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2

11 
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(4.29) 











M

f
fgk s

gM
2

22       

The gains of 
Mg1

 and 
Mg2

in (4.29) have fixed values which depend on the value of M and 

were determined by plotting the |k1| and |k2| in (4.17) vs fg and using the curve matching 

feature in Matlab®. These values and are listed in Table 4.2. 

Table 4.2: Coefficients of approximate gain equation 

Frequency 
Mg1

 
Mg2

 

fg > 61.0 Hz 4100699.1   
3103264.8   

59.2 ≤ fg  ≤ 61.0 Hz 4101409.1   
3103377.8   

57.4 ≤ fg  < 59.2 Hz 4102124.1   
3103249.8   

fg  < 57.4 Hz 4102842.1   
3102876.8   

The angles of the error coefficients θ1 and θ2 are calculated based on the measured grid 

frequency using (4.17). 
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No approximation is necessary to calculate the angles in (4.30). 
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4.2 Verification of the Compensation Algorithm 

4.2.1 Performance of the Compensated HCDFT 

Matlab/Simulink® is used to test the performance of the compensated negative sequence 

phasor algorithm. A sampling rate of 3840 Hz is chosen, corresponding to a filter length of 

32 samples per ½ cycle at the nominal frequency of 60 Hz. In each case, white noise with a 

45 dB  Signal to Noise Ratio is added to the input signal to better simulate current sensor 

input.  

For case 1, the same conditions used in the test in Figure 4.5 have been applied to the 

compensated phasor. The results, shown in Figure 4.6, show that the numerically 

compensated negative sequence phasor has a negligible steady state error even for the 

greatest possible relative frequency deviation, Mfff sg / . The angular error is less 

than 0.1
o
.  Adjusting the filter length M depending on fg as shown in Table 4.1 ensures that 

the error between the filter frequency and the grid frequency Δf will never be more than 1 Hz 

over the range 55 > fg >64 Hz.  

 
(a) 

 
(b) 

Figure 4.6: Case 1, Compensated negative sequence (a) phasor magnitude and (b) phase for 

ƒg = 61 Hz 

Because the input to the algorithm is a distribution system current which may be highly 

unbalanced and distorted, the performance of the algorithm under such conditions is 
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important. Case 2 examines the performance under harmonic conditions. Like the 

uncompensated HCDFT, the proposed technique completely eliminates odd harmonics. 

However, for off-nominal system frequency operation, the odd harmonics will be attenuated 

but not completely eliminated, except for integer multiples of the sampling frequency. The 

greater the relative frequency deviation Δf, the lower the harmonic attenuation.  

In case 2, the input signal contains 5
th

, 7
th

, and 11
th

 harmonics with a THD of 11.0% of the 

positive sequence current. The 3
rd

 harmonic is not considered here because the VSC is 

connected through a delta-wye transformer which “traps” the 3
rd

 harmonic components.  

Initially the three phases are balanced. At t = 0.2 s an unbalance is created which results in a 

20% negative sequence component. An under-frequency grid condition is simulated with ƒg 

= 58.2 Hz, shown in Figure 4.7(b). An over-frequency condition for ƒg = 61.0 Hz is also 

simulated and plotted in Figure 4.8(b). 

 

(a) 

 

(b) 

Figure 4.7 Case 2, (a) Negative sequence output with ƒg = 58.2 Hz and (b) input signals 

containing 5
th

, 7
th

, and 11
th

 harmonics with THD of 11.2%  
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(a) 

 

(b) 

Figure 4.8: Case 2, (a) Negative sequence for ƒg = 61.0 Hz and (b) input signals containing 

5
th

, 7
th

, and 11
th

 harmonics with THD of 11.2% 

At 58.2 Hz the grid frequency corresponds exactly to the nominal frequency for a filter 

length of M = 33. After the half-cycle transient, the HCDFT is able to completely filter out 

the harmonics as seen in Figure 4.7(a). Although the input signals in Figure 4.7(b) are highly 

distorted, the measured magnitude using the HCDFT is accurate. 

For the second simulation of Case 2 an over-frequency condition is considered. A 1 Hz 

frequency deviation is simulated and the input signals shown in Figure 4.8(b) contain the 

same harmonic as in the input signals in Figure 4.7(b) with a THD of 11.2%.  Although the 

frequency deviation is actually less than in the first simulation (+1.0 Hz vs. -1.8 Hz), the 

output of the HCDFT is slightly more distorted.  This is because the ratio of the grid 

frequency and the sampling frequency is not an integer.  The numerical compensation 

scheme corrects the error at the fundamental frequency but can only partially compensate the 

harmonic component.  However, Figure 4.8(a) shows that even under these conditions, the 
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calculated negative sequence component contains only a small oscillatory error 

(approximately 0.22%).  Such a small error does not have an appreciable impact on the 

current injected into the grid by the inverter. 

4.3 Comparison with Conventional Techniques 

In the following cases, the efficacy of the proposed HCDFT technique is compared with the 

SOGI and APF based sequence extraction algorithms, which have been discussed in Chapter 

2.  These techniques are chosen for their prevalence in the literature and similarities with the 

HCDFT.  All three methods require estimation of the grid frequency. The methods are 

compared on the basis of suitability for the PV control structure, the criteria being: quick 

settling time and immunity to harmonic distortion.  

4.3.1 Settling Time 

In Case 3, the settling times of four techniques are compared for an undistorted input at the 

nominal frequency. The input in Case 3 contains a 40% negative sequence until t = 0.1 s, 

when there is a 50% decrease in the magnitude of the negative sequence. The results are 

plotted in Figure 4.9 for All-Pass, SOGI, DQ, and HCDFT algorithms. 

The SFSC and AP filter methods have the shortest response time of 5.1 ms and 5.4 ms 

respectively.  Because the differentiation in the SFSC technique amplifies noise, it requires 

additional low-pass filtering, which slows the response. The settling times of the SOGI and 

HCDFT are 8.8 ms and 8.3 ms respectively.  Although the AP filter and SFSC methods both 

have a shorter response time than the HCDFT, the difference is only 2.7 ms.  In test cases 4 

and 5, only the HCDFT, SOGI and AP filter techniques are applied.  This is because the 

performance of the SFSC method is too poor to allow a meaningful comparison. 
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(a) 

 

(b) 

Figure 4.9: (a) Settling time of HC-DFT, SOGI, dq0, and APF method of sequence 

calculation (b) to 50% decrease in the negative sequence 

 

4.3.2 Unbalanced Harmonics 

The next scenario, Case 4, compares the performance of the HCDFT, SOGI and AP filters 

under unbalanced harmonic distortion.  At 0.1 seconds, a non-linear load with 5
th

, 7
th

, and 

11
th

, harmonics is added to phase A. The input signal, seen in Figure 4.10(b) has a THD of 

10.0% in phase A, this corresponds to the maximum allowable level of harmonic distortion 

over a very short interval (3 s), as defined by IEEE 519-2014 [3].  Figure 4.10(a) shows the 

error between the measured and the actual negative sequence fundamental component. As 

expected, the performance of the AP filter performance has been affected most significantly, 

since the filter has a unity gain over the whole frequency spectrum.  The SOGI extraction 

technique shows improvement over the AP filter, however, there is still more distortion 

visible than for the compensated HCDFT output.  
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(a) 

 

(b) 

Figure 4.10: (a) Negative sequence calculated by HC-DFT, APF, and SOGI techniques and 

(b) unbalanced harmonic input with ƒg = 60.5 Hz 

4.3.3 Balanced Harmonics 

In Case 5, the performance under balanced harmonics is compared.  All even and odd 

harmonics up the 11
th

 harmonic are present, minus the triplen harmonics which are not 

considered in a three-wire system. The THD is 14% and the grid frequency is 59.8 Hz. The 

calculated negative sequence magnitudes and the input signals are shown in Figure 4.11.  

From Figure 4.11(a) it can be seen that even though the HCDFT does not completely 

eliminate the even harmonics, it outperforms the SOGI, and AP filter techniques. It is noted 

that the settling time of the HCDFT is unaffected by the harmonic content of the input. 
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(a) 

 
(b) 

Figure 4.11: (a) Output of negative sequence calculation algorithms, and (b) balanced, highly 

distorted input with ƒg = 59.8 Hz 

 

4.4 Calculation of the Compensation Reference Current 

The proposed control structure uses the stationary reference frame with AC rather than DC 

control signals. For this application it is not necessary for the controller to calculate the 

phasor values.  Figure 4.12 depicts the current reference calculation unit for compensating 

the negative sequence load current. First, the HCDFT is applied to the three-phase load 

current il.  The output of the real and imaginary HCDFT filters, Rl and Il, respectively, are 

used as inputs to (4.18) to calculate the instantaneous positive and negative sequence 

components. This produces the real and imaginary components of the positive and negative 

sequences, Rl
+
, Il

+
, Rl 

-
, Il

 -
.  Equation (4.27) is implemented in the numerical compensation 

block of Figure 4.12 as a set of complex multiplications. The output of this block is the 

compensated sinusoidal negative sequence current Rlg
-
 and its 90

o
 phase shift Ilg

-
. Together 

these two signals are the equivalence of the negative sequence αβ components. To obtain the 

reference compensation current, the negative rotation inverse Clarke transformation (4.31) is 
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applied directly to the outputs of the compensation block. The final current reference given to 

the PR controllers is the summation of the negative sequence reference il 
-
 and the positive 

sequence output of the DC link voltage control loop, ipv,ref. 

½ Cycle 

DFT
Eqn. (4.18)

Off-nominal 

frequency 

compensation

k1, k2

il 
-

il

Rlg
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Ilg
-  
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-
 

fgrid
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+
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to current 

controllers
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Il  
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+

 

Il 
+

 

αβ -

abc

 

Figure 4.12: Compensating current reference calculation 
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 (4.31) 

4.5 Conclusion 

In this chapter the DFT is briefly reviewed and an off-nominal frequency compensation 

technique following the method of [1] is derived for a HCDFT algorithm. Using (4.27) the 

accurate fundamental negative sequence component can be calculated even during off-

nominal grid frequencies. This method has been tested under various harmonic conditions 

and its performance has been compared to that of the conventional techniques described in 

the literature.  The results show that the compensated HCDFT is more resilient to harmonic 

filtering characteristics than the other techniques, without sacrificing the speed of response. 

The inverse Clarke transformation can be directly applied to the outputs of the frequency 

compensation block to obtain the ABC frame compensating currents. 
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Chapter 5 

5 Compensation of Unbalanced Load for Different Operating 
Conditions of a PV Array 

In Chapter 3 and Chapter 4 a control scheme has been proposed for a PV inverter to allow for 

compensation of negative sequence load current.  A test system has been built in 

Matlab/Simulink® to study the performance of a PV system with the control scheme shown 

in Figure 3.1.  In this chapter, the effect of unbalanced load compensation on a PV array with 

a single-stage converter is examined.  

Perturbations in the voltage of the DC bus will have an impact on real power production from 

the PV array because the PV array and the inverter are connected at the DC link. 

Compensating negative sequence load current will lead to an oscillation in the power and 

voltage at the DC link.  Two case studies are described in this chapter.  The first case study 

compares different regions of operation on the Power-Voltage (P-V) curve of the PV array, 

and the second study compares different irradiance levels. 

For the first case study in Section 5.1, the effect of the location of the operating point on the 

P-V curve is investigated. Three conditions for the PV array are simulated.  Although the 

VSC is operating at the same DC link voltage and supplying the same power in each case, the 

DC link voltage oscillations caused by load compensation are of different magnitudes 

depending on whether the PV array voltage is below, above, or equal the voltage at the MPP, 

Vmpp.  Since the PV array is likely to be operated at or near the MPP the majority of the time, 

it is important to assess the impact of load balancing on power production at the MPP.  In 

Section 5.2 the effect of compensating an unbalanced load is compared for different levels of 

solar irradiance ranging from 20-80% of the maximum expected irradiance. A range of 

irradiance and temperature conditions have been simulated and the power loss of the PV 

array due to load compensation has been compared. 

A single-line diagram of the test system considered for the case studies is shown in Figure 

5.1. The grid is modelled as a balanced three-phase 60 Hz voltage source connected to bus 

B1 through an inductance Lgr = 0.2 mH and resistance rgr = 29.3 mΩ. Both balanced and 



106 

 

unbalanced linear loads are connected at bus B1 along with the PV system. The PV inverter 

is connected to the network through a delta-wye step-up transformer. 

Balanced
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iinv
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Figure 5.1: Distribution network simulated in Chapter 5 

 

5.1 Case 1: PV Curve Region of Operation and Effect of 
Unbalance Compensation 

The DC link voltage and power oscillation is one focus of the test.  From the PV perspective, 

it is important to minimize oscillation in the array terminal voltage to maximize the energy 

production from the system. For the inverter, reducing the DC bus voltage ripple is also an 

important consideration. Excessive ripples can cause over-voltage, excessive voltage stress, 

controller saturation, and current distortion. One solution is to increase the capacitance of the 

DC bus to smooth ripples out.  However, this increases the cost and size of the VSC [1]. In 

the following simulations the inverter is equipped with a 3248 µF DC link capacitor, CDC. 

The capacitor is sized with no consideration for the second harmonic voltage oscillations 

which allows more insight into the effect of unbalance compensation on the PV array.  Figure 

5.2 shows the power relationships at the DC link of the inverter. 
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Figure 5.2: Power relationship with DC link connections of the PV system 

The instantaneous power injected to the grid is labeled Pinv in Figure 5.2.  Pdc, Pcap, and Ppv 

are the total DC link power, capacitor power, and PV array power respectively.  

Unlike an ideal voltage source, the current-voltage (I-V) characteristics of a PV array have 

three distinct regions of operation: the Constant Current (CC) region below the MPP voltage, 

the Maximum Power Point (MPP) region, and the Constant Voltage (CV) region above Vmpp. 

The regions are labeled in Figure 5.3. 

 

Figure 5.3: Regions of the I-V curve for a PV array 

In this simulation the effect of the region of operation on the Power-Voltage (P-V) curve on 

the performance of the system is examined. The results are compared to the case where the 

inverter is operating solely as an active power filter with no generation source connected at 

the DC link.  Three different P-V curves have been simulated. Each curve intersects at 435 V 

and 27.4 kW, as seen in Figure 5.4. For curve 1 in 435 V corresponds to the MPP.  On curve 

2, 435 V falls in the CC region and on curve 3 it falls in the CV region.  The details of the 

array simulated to generate curves 1, 2, and 3 are listed in Table 5.1.  Detailed modeling of 

the PV panels is discussed in Appendix A. 



108 

 

Table 5.1: Array parameters for Case 1 

 Curve 1 Curve 2 Curve 3 

Series panels 16 25 14 

Parallel panels 16 9 26 

T (
o
C) 30 37 28 

IR (W/m
2
) 510 850 790 

 

The MPPT algorithm is disabled for this experiment because the PV array is deliberately 

made to operate away from the MPP in two of the three curves. A constant voltage reference 

is given to the DC link voltage controller to ensure an accurate comparison between the three 

regions of operation.  

 
Figure 5.4: Three PV characteristic curves used in Case 1 

 

Initially the inverter injects balanced currents into the grid (floating state for the APF mode). 

An unbalanced condition is created at t = 0.3 s when a 24 Ω, 9.16 kW (0.183 pu) resistive 

load, rub, connected between phases B and C is switched on.  The value of the single phase 

Vpv 
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load is selected so as to allow the inverter to fully compensate the load without exceeding 

power ratings.  Once the single phase load is connected, the inverter supplies the full 

negative sequence current to the load.  The test is conducted four times.  First, the PV array is 

disconnected and the inverter operates solely as an active power filter.  Next, each of the 

three curves is simulated and the inverter operates simultaneously in both compensation and 

power conversion mode.   

The DC link voltages during negative sequence compensation for each case are plotted 

together in Figure 5.5. The reference voltage, Vpv,ref, is also shown. The total DC link power, 

Pdc, for MPP, CC, and CV regions of operation is plotted in Figure 5.6.  Capacitor power Pcap 

and PV array power Ppv are plotted in Figure 5.7 and Figure 5.8 respectively. 

 

 

Figure 5.5: Steady state DC bus voltage waveforms during negative sequence compensation 

for Active Power Filter (APF), Constant Current (CC), Constant Voltage (CV), and 

Maximum Power Point (MPP) operation 

 

Although the average DC link voltage and negative sequence current are the same in each 

case, Figure 5.5 shows that the region of operation affects the DC link voltage oscillation. 

The DC link voltage for the Constant Current and MPP mode during negative sequence 

compensation was almost identical according to Figure 5.5.  The amplitude of the voltage 
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oscillation is higher in the CC and MPP case than when the inverter operates in Active Power 

Filter mode.  The lowest oscillation amplitude occurs when the PV array matches curve 3 and 

is operated in the Constant voltage region.   

 
 (a) 

 
(b) 

 
(c) 

Figure 5.6: Total DC link power, Pdc during negative sequence compensation for (a) MPP 

region, (b) CC region, and (c) CV region 

 

The total DC link power for each region of operation is similar since the same unbalanced 

load is compensated in each case. This is illustrated by Figure 5.6(a)-(c). 

 

MPP 

CC 

CV 
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(a) 

 
(b) 

 

(c) 

Figure 5.7: Capacitor power during negative sequence compensation Pcap for (a) MPP region 

(b) CC region, and (c) CV region 

 

 
(a) 

MPP 

CC 

CV 

MPP 
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(b) 

 
(c) 

Figure 5.8: PV array power during negative sequence compensation, Ppv in (a) MPP region, 

(b) CC region, and (c) CV region in the CV region 

Figure 5.8(a) shows the oscillation in the PV power is the lowest when the inverter operates 

at the MPP.  However, it is also the most distorted. This is because of the opposite signs of 

dPpv/dVpv on either side of the MPP. Voltage excursions above the MPP have a negative 

characteristic while below they have positive slope. The PV power shows the largest 

oscillation in the CV region (Figure 5.8(c)).  At the same time, the capacitor power 

oscillation, shown in Figure 5.7(c), has the smallest oscillation. Figure 5.7(c) and Figure 

5.8(c) indicate that a higher portion of the ripple in Pdc is supplied by the PV array rather than 

by the capacitor in the CV region. This explains why the lower DC link voltage had a smaller 

ripple in the CV region compared with operating in the CC or MPP region in Figure 5.5.  

5.1.1 Analysis of DC Link Voltage Ripple in APF Mode 

The expected voltage ripple in the DC bus can be calculated by the power balance equation 

between the VSC input power Pdc and the instantaneous three phase output power Pinv. 

According to Figure 5.2, if the losses in the inverter are neglected this relationship can be 

written as (5.1).  

CV 

CC 
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invpvcapdc PPPP   (5.1) 

To simulate nighttime operation, the PV array is initially disconnected and the inverter acts 

solely as an APF providing the compensating current needed to balance the load. Thus (5.1) 

can be written as (5.2), in APF mode. 

invcapdc PPP   (5.2) 

The power in the capacitor Pcap can be written in terms of the DC link voltage Vdc (5.3). 











dt

dV
CVP dc

DCdccap  (5.3) 

After t = 0.3 s when the inverter is compensating the unbalanced load, the instantaneous 

power injected into the grid is: 

)2cos(
2

3
   tIVPinv

 (5.4) 

where V
+
 and I

-
 are the amplitude of the positive sequence voltage and negative sequence 

current respectively.  Substituting (5.3) and (5.4) into (5.2) yields:  

)2cos(
2

3
 







  tIV
dt

dV
CV dc

DCdc  (5.5) 

The DC link voltage has both a DC value V0 and an oscillating component v(t) and is 

expressed in (5.6). 

)(0 tvVVdc   (5.6) 

Substituting (5.6) into (5.5) yields (5.7). 
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dt

tdv
VCtIV

dt

tdv
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tdv
VC DCDC

)(
)2cos(

2

3)(
)(

)(
00 








    (5.7) 

The approximation in (5.7) is valid with an assumption that the amplitude of the oscillation is 

much less than the average DC link voltage.  From (5.7) the oscillating component of the DC 

link voltage during compensation is: 

)2sin(
4

3
)(

0







t
VC

IV
tv

DC

 (5.8) 

According to (5.8), the amplitude of the oscillatory voltage component is dependent on the 

amount of negative sequence compensation, the average value of the bus voltage, and the 

size of the DC bus capacitor.  Increasing the bus capacitor or voltage and/or reducing the 

negative sequence compensation will all contribute positively to reduce the oscillation in the 

bus voltage.   Based on (5.8), the expected amplitude of the DC link voltage oscillation is 

8.6_V.  According to Figure 5.5, which shows the DC link voltage during negative sequence 

current compensation, the amplitude of the DC voltage oscillation is 8.5 V, which closely 

agrees with the theoretical value. 

5.1.2 Analysis of the DC Link Voltage Ripple in the Constant Voltage Region 

With the PV array connected to the terminals of the DC bus the inverter output power during 

unbalanced compensation is (5.9). 

avgcompinv PPP   (5.9) 

The component Pavg of the output power is the real power generated by the PV array and 

Pcomp is the oscillating power due to the negative sequence compensation current.  Only the 

PV array contributes to Pavg, but both the DC link capacitor and the PV array will play a role 

in supplying Pcomp.  

When the inverter is operating in APF mode, a decrease in the DC capacitor voltage causes 

power to be injected into the grid. Power is absorbed when capacitor voltage increases. In the 

constant voltage region, dPpv/dVpv has the same sign for the PV array as for the capacitor. 
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Since the PV array is contributing to the power oscillation required for supplying an 

unbalanced current, less oscillation is experienced in the DC capacitor. This reduces the 

amount of voltage ripple during negative sequence load current compensation. 

The reduction in the amplitude of the DC link voltage oscillation can be quantified by 

approximating the PV array power in the CV region with (5.10) 

 pvOCcvpv VVmP   (5.10) 

where mcv is a constant equal to the approximate slope of the P-V curve and VOC is the open-

circuit voltage of the PV array. Substituting (5.3), (5.10), and (5.9) into the power balance 

equation in (5.1) results in (5.11). 

  avg

dc

dcDCdcOCcv PtIV
dt

dV
VCVVm   )2sin(

2

3
  (5.11) 

Again, the DC link voltage can be written as (5.12) 

)2sin(ˆ
0 tvVVdc   (5.12) 

 Replacing Vdc with (5.12) in (5.11) yields (5.13). 

  avgOCcv

cvDC

PVVm

tIVtvmtvVC



 

0

0 )2sin(
2

3
)2sin(ˆ)2cos(ˆ2 

 
(5.13) 

Next, (5.13) is rearranged to calculate the amplitude of the oscillation and phase angle. 




















cv

DC

cvDC

m

VC
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IV
v

01

22

0

2
tan

)2(2

3
ˆ





 (5.14) 

The value of mcv is estimated by selecting two points (v1, p1) and (v2, p2,) in the region of Vpv 

= 435 V on curve 3 in Figure 5.4 and substituting them into (5.15). 
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cv
vv

pp
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




2

12  (5.15) 

Choosing points (425,37310 ) and (435,27150) result in mcv = 1016.  The expected amplitude 

of the DC link voltage oscillation is then 6.2 V, which is confirmed by DC link voltage 

shown in Figure 5.5.  According to (5.14), the amplitude of the voltage oscillation in the CV 

region is reduced as the value of mcv increases.  When the slope of the P-V curve is large 

enough that the value of mcv is close to 2ωCdcV0, it can have an impact on the magnitude of 

the voltage oscillations.   

 

5.2 Case 2: Negative Sequence Compensation Under Different 
Irradiance Levels 

The effect of negative sequence compensation on the power generation of the PV array is 

examined under different irradiance levels in Case 2. For Case 2, a series of irradiance and 

temperature conditions are simulated for the PV generator connected to the same network 

shown in Figure 5.1.  Figure 5.9 shows the P-V curves of the simulated PV array for different 

environmental conditions. For each P-V curve shown in Figure 5.4 the unbalanced load in 

Figure 5.1 is switched on to examine the impact of unbalanced load compensation on the PV 

array when irradiance varies between 200-800 W/m
2
.  The maximum irradiance considered 

in this study is 800 W/m
2
 because at higher irradiance values the inverter has insufficient 

additional capacity to compensate the load.  At lower irradiance levels (IR < 200 W/m
2
) the 

DC link voltage at the MPP is too low to compensate the negative sequence load considered 

in this study.  
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Figure 5.9: PV curves for irradiance from 200-800 W/m
2
  

Initially the PV system is running at the MPP and injecting balanced power into the grid.  At 

t = 0.3 s the unbalanced load rub is switched on, and the PV inverter begins to compensate the 

full negative sequence load current.  Figure 5.10 shows the load current used for all four IR 

levels. It can be observed that prior to t = 0.3 s the current is balanced.  Following the 

switching of rub, the three-phase load currents become unbalanced.  Despite the unbalanced 

load current, the current drawn from the grid remains balanced, as seen in Figure 5.11(a)-(c) 

which shows the grid current when irradiance is 200, 400, 600, and 800 W/m
2
 respectively. 

Because the negative sequence load current is fully compensated by the inverter, the grid 

voltage remains balanced.   

 

 
Figure 5.10: Load current for case 2 
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       (a)                                                                (b) 

      
      (c)                                                               (d) 

Figure 5.11: Grid current when irradiance is (a) 200, (b) 400, (c) 600, and (d) 800 W/m
2
  

The inverter current is shown in Figure 5.12(a)-(c).  At the lowest irradiance level of 

200_W/m
2
, Figure 5.12(a), the inverter current has the highest imbalance of 100% while at 

800_W/m
2
 the inverter current has a 24% imbalance.  This is because as the irradiance level 

increases, the output power and current of the inverter also increases while the negative 

sequence load current remains constant. 

       
     (a)                                                                (b) 

       
     (c)                                                               (d) 

Figure 5.12: Inverter current when irradiance is (a) 200, (b) 400, (c) 600, and (d) 800 W/m
2
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Figure 5.13 shows the DC link voltage for each irradiance level.  When the inverter current is 

balanced up until t = 0.3 s, the DC link voltage is equal to Vmpp.  Once the inverter begins to 

compensate the unbalance load, the voltage begins to oscillate at two times the line 

frequency, as discussed in Section 5.1.  This voltage ripple causes the array to operate around 

the MPP rather than at the MPP, leading to a drop in the average power output of the PV 

array. 

 

   

     (a)                                                              (b) 

  

     (c)                                                             (d) 

Figure 5.13: DC link voltage for irradiance of (a) 200, (b) 400, (c) 600, and (d) 800 W/m
2
    

The average PV output power in each case has been normalized according to (5.16) and is 

plotted in Figure 5.14. 

mpp

avg

Navg
P

P
P ,

 (5.16) 

When the inverter begins injecting a negative sequence current a drop in the average power 

output of the PV array can be seen in Figure 5.14 for each irradiance level. This power loss is 

due to the ripple in the DC link voltage shown in Figure 5.13. 
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Figure 5.14: Average PV array power before and during negative sequence current 

compensation 

In [2] a formula is presented for calculating the power loss from the rms value of the ripple in 

the array voltage and the power at the MPP (5.17). 
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 (5.17) 

In (5.17) Ns is the number of series PV cells, a is the diode ideality constant and VT is the 

diode thermal voltage, which are given in Appendix A.  The power loss due to the negative 

sequence power ripple can be approximately calculated from (5.17) and the simulation 

results show a close agreement. Figure 5.13(a)-(d) shows that the ratio of the DC link voltage 

ripple amplitude to MPP voltage remains quite close at each of the irradiance levels. 

According to (5.17) this should equate to a similar percentage of power loss at each 

irradiance level. In Figure 5.14 it is seen that regardless of the irradiance level, the average 

power output of the PV array dropped by approximately 0.225% in response to compensating 

a 0.183 pu load unbalance. However, since there was a higher average power, the total power 

loss increased with increasing irradiance. 

The MPP voltage for the curves shown in Figure 5.9 varies from 391V at 200 W/m
2
 to 412 V 

at 800 W/m
2
. The amplitude of the voltage oscillation was quite close in each case, however 

slightly higher (2.9%) DC link voltage oscillations were observed at 800 W/m
2
 compared to 

200 W/m
2
 (2.55%). This discrepancy is in spite of the fact that at lower irradiance the 

operating voltage drops 5% between the highest and lowest irradiance levels. Intuitively from 

(5.8) a higher voltage ripple would be expected at low irradiance levels because of the 
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reduction in the average DC link voltage.  Although each PV profile results in the same 

percentage of power loss, at a higher irradiance this translates into greater total lost energy.   

 

5.3  Conclusion 

The analysis and simulations in the preceding sections highlight several important factors for 

dual-purpose single-stage PV inverters. The coupling between the inverter DC link voltage 

and the PV array voltage is shown to affect Ppv during unbalanced load compensation. 

Increasing the DC link capacitor can reduce (but not entirely eliminate) the effect of the 

double-line frequency power oscillation on the DC link voltage.  

The results shown in section 5.2 indicate that the best performance in terms of limiting the 

DC link voltage ripple are obtained when the PV array is operating in the constant voltage 

region of the I-V curve. In both the CC and MPP regions the amplitude of the oscillation is 

greater than for the APF mode but in the CV region the amplitude is lower. It is shown that 

the reduction in voltage ripple is related to the slope of the P-V curve at the operating point.  

In a microgrid with limited storage capability, there may be times when PV power 

curtailment is needed. This is accomplished by shifting the voltage reference away from the 

MPP.  Based the on the results of described in Section 5.1, it is recommended to move the 

reference point higher than the MPP voltage which will result in a smaller DC voltage ripple 

than if the reference is moved to the constant current region. 

When the system is running at the MPP, compensating the negative sequence load current 

will result in a drop in power due to the oscillating DC link voltage. Higher irradiance and 

compensating current will increase the amount of power loss. However, for a 0.183 pu power 

oscillation, only around a 0.225% decrease in the average PV output power was observed. At 

800 W/m
2
 this only amounted to a reduction of 97.3 W.  

The results of cases 1 and 2 in this chapter demonstrate the ability of a single stage PV 

inverter to compensate negative sequence load current at various irradiance levels provided 

the inverter has sufficient excess capacity.    
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Chapter 6 

6 Control of a PV Inverter for Negative Sequence Current 
Compensation in a Microgrid 

In this chapter, the performance of the proposed VSC controller for a PV system is validated 

in a Matlab/Simulink® simulation environment.  The main objective of the simulation 

studies described in Chapter 6 is to verify the performance of the proposed control scheme in 

Figure 3.1 under different loading and grid conditions.  To achieve these objectives, 5 case 

studies are presented herein. 

Case study 1 examines the operation of the system when the unbalanced load exceeds the 

available capacity of the inverter. A compensation current scaling method is described to 

reduce the negative sequence reference current during high irradiance conditions. In case 

study 2 the negative sequence compensation is tested in a network with unbalanced feeder 

impedances. The third case study shows the performance of the PV system when a balanced 

non-linear load is connected to the network. The transient response of the system due to 

rapidly changing loads is demonstrated in case study 4.  The performance of the controller in 

a hybrid diesel-PV microgrid is shown in case study 5. The results of the case studies show 

that the proposed control scheme is capable of simultaneous real power injection and 

negative sequence current compensation. The negative sequence current reference scaling 

prevents excessively high current reference values. The proposed negative sequence 

reference calculation technique is shown to cause no additional inverter current distortion 

during harmonic load current distortion.  This is demonstrated by comparison with an 

identical system operating only in power conversion mode.  The numerical compensation 

technique described in Chapter 4 is shown to prevent errors in the HCDFT due to spectral 

leakage during grid frequency deviations.  

6.1 Case Study Test Network 

Figure 6.1 shows a single-line diagram of the system simulated in case studies 1-4. The grid 

is modelled by a stiff voltage source connected by an equivalent impedance Zgrid consisting of 

an inductance Lgr = 0.2 mH and resistance rgr = 29.3 mΩ.  For case studies 1-4 the X/R ratio 

of the grid impedance is chosen to be 2.57, as a low X/R ratio is characteristic of low voltage 

networks.  A collection of linear loads, both balanced and unbalanced are connected at bus 
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B1. The PV generator and the inverter and passive LCL filter are connected to the rest of the 

grid by a transformer with a delta-wye configuration.  The current igrid is drawn from the grid 

and iinv is the current produced by the PV inverter on the Wye-side of the transformer.   
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Figure 6.1: Single line diagram of the test system used in cases 1-4 

6.2 Case Study 1: Compensation Current Scaling 

It is likely that the inverter will experience times where compensating the entire negative 

sequence load current would exceed the inverter ratings and cause damage to the inverter. 

This could occur due to an unbalanced fault, highly unbalanced loading, or high real power 

production.  The first case study illustrates the performance of the system when the 

unbalanced load current exceeds the excess capacity of the inverter.  An algorithm for scaling 

the negative sequence compensation current is discussed in Section 6.2.1.  This algorithm 

ensures the current reference does not exceed the ratings of the inverter.  The performance of 

MPPT during negative sequence compensation and changing irradiance is also demonstrated.   

6.2.1 Magnitude Scaling for Limiting Negative Sequence Current 

To prevent damage to the PV system it is important to limit the current reference to Imax 

which is the current rating of the inverter.  To give priority to real power generation, the 
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amplitude of the negative sequence reference current Icomp should be limited according to Imax 

and the positive sequence current reference Ipv,ref (6.1). 
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(6.1) 

The negative sequence current reference signals are sinusoidal, and using a DC limit to 

implement (6.1) will cause distortion in the reference signal.  Instead, the negative sequence 

reference is reduced by multiplying the measured negative sequence load by a scaling factor.  

Figure 6.2 shows the block diagram of the reference scaling algorithm, denoted as ‘SF’ in the 

overall control scheme in Figure 3.1.  The HCDFT algorithm used to calculate the negative 

sequence components can also be used to compute il 
-
pk, which is the amplitude of the 

negative sequence reference. The output of the DC link voltage PI controller, ipv,ref, is passed 

through the low-pass filter block, LPF, and added to the amplitude of the negative sequence 

reference, and passed through a saturation block with limits ±Imax. The PV current reference 

is subtracted from the output of this block and divided by the peak of the negative sequence, 

to generate the DC scaling factor SF.  

+

+ Imax

-Imax

+

-

LPFipv,ref

il 
-
pk x icomp

SF

il 
-

÷ 

 

Figure 6.2: Negative sequence reference current limiting 

If the negative sequence reference is less than the maximum minus the real power current 

requirement, the scaling factor, SF, is equal to 1. Otherwise, SF is equal to the maximum 

negative sequence current divided by the peak of the negative sequence load current. The 

sinusoidal negative sequence load current, il 
-
, is multiplied by the scaling factor which gives 

the actual compensating current reference icomp. 
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6.2.2 Simulation Results 

For case study 1, the switch Sub connected to the unbalanced load is in the closed position for 

the duration of the test.  The switch Snl remains open.  Throughout the scenario, the total load 

is constant. The resistive load zub = 4.8 Ω connected between phases B and C draws an 

oscillating three-phase power with a peak of 45.5 kW.  Initially the maximum power of the 

PV array is 51.0 kW, which is equal to the full power and current rating of the inverter.  The 

P-V curves for case study 1 are shown in Figure 6.3.  At t = 0.61 s the irradiance drops from 

1000 W/m
2
 to 600 W/m

2
 as seen in Figure 6.4.  Although in practical situations insolation 

and temperature rarely undergo drastic changes, the rapid change is simulated to demonstrate 

the performance of the system during an extreme change in PV power output.  The new peak 

power of the array is 30.3 kW. 

When the PV power is high, only a small amount of the inverter capacity is available for 

negative sequence compensation. The compensating current reference is initially scaled by a 

factor of 0.03, as shown in Figure 6.3 , based on the output of the scaling block in Figure 6.2. 

This allows priority to be given to real power production.  When the irradiance decreases the 

PV power output drops and a greater portion of the negative sequence load current can be 

compensated by the inverter.  Figure 6.6 shows the scaling factor increase to 0.47 following 

the drop in irradiance. The three-phase power supplied by the grid is shown in Figure 6.7. 

While the PV output is close to its rated current carrying capacity, the grid supplies almost all 

the negative sequence current drawn by the load.  As a result, a large oscillation in the power 

supplied by the grid can be observed in Figure 6.7.  Once the irradiance drops and the 

inverter is able to compensate a higher percentage of the unbalanced load, this oscillation 

decreases by almost 50%  

From the DC link voltage shown in Figure 6.8 it can be seen that the MPPT algorithm is able 

to track the maximum power voltage, while the VSC is compensating the negative sequence 

load current. Despite the oscillation in the DC link voltage, the output of the MPPT 

algorithm, Vref in Figure 6.8 settles at Vmpp. 

When the irradiance level decreases, the converter has additional capacity now available to 

compensate the load.  A larger negative sequence current is injected by the inverter which 

results in a higher DC voltage oscillation after t = 0.61 s as can be seen in Figure 6.8.   
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Due to the unbalanced current drawn by the load, the voltage at bus B1 is also unbalanced.  

The negative sequence component of the voltage at B1 is shown in Figure 6.9(b).  When the 

PV inverter is able to compensate more of the negative sequence current, a smaller 

unbalanced voltage drop occurs over the line impedance and the magnitude of the negative 

sequence voltage is also reduced. Before 0.61 s the load voltage has a 1.6% negative 

sequence component, calculated as in (6.2). 

%100% 




pk

pk

V

V
UB  (6.2) 

After 0.61 s the voltage contains a 0.89% unbalance.  The positive sequence voltage is shown 

Figure 6.9(a). 

 

 

Figure 6.3: PV curves for case study 1 

 

 

Figure 6.4: Irradiance of the PV array for case study 1 
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Figure 6.5: Moving- average of the power of the PV array 

 

 

Figure 6.6: Scaling factor limiting the negative sequence inverter current Icomp 

 

 

Figure 6.7: Grid power for case study 1 

 

 

Figure 6.8: DC link voltage 
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(a) 

 

(b) 

Figure 6.9: (a) Positive and (b) negative sequence voltage at bus B1  

The results of case study 1 show that the inverter is able to provide partial compensation of 

the negative sequence load if the full negative sequence current exceeds the excess capacity 

of the inverter.  The scaling block limits the compensating current reference according to the 

current rating of the inverter and the output of the DC link voltage controller.  When the 

irradiance decreases the inverter is able to supply more compensating current.  The negative 

sequence current compensation also reduces the negative sequence voltage.   

6.3 Case Study 2: Unbalanced Grid Impedance 

In a distribution system the causes of unbalance in the network are not limited to unbalanced 

loading.  Untransposed lines and unequal feeder lengths can all result in unbalanced line 

impedances.  Case study 2 explores the impact of an inherently unbalanced system on the 

ability of the PV inverter to provide load balancing services. To simulate an unbalanced grid, 

the equivalent grid impedance Zgr is no longer the same for each phase.  Instead, the line 

impedances of phases B and C are 50% and 10% greater respectively than that of phase A, 

although the X/R ratio has been maintained the same for all phases. The line impedances 

used in the first test of case 2 are listed in Table 6.1. 
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Table 6.1: Feeder impedances for case study 2 

 

Phase Line Impedance (Ω) 

Zgr,A 0.029315+j0.0754 

Zgr,B 1.5* Zgr,A 

Zgr,C 1.1* Zgr,A 

For case 2 the non-linear load is disconnected from the grid and switch Snl is open.  The PV 

array conditions are IR = 700 W/m
2
, T = 325 K.  Initially, only balanced loads are connected 

to bus 1.  At t = 0.3 s Sub closes connecting the single phase load zub = 21.6 + j2.18 Ω. The 

test is carried out both with and without activation of the negative sequence compensation 

loop.  

Although the load is balanced before t = 0.3 s, the three phase power drawn from the grid is 

unbalanced, as can be seen from the oscillation in Figure 6.10(a).  The positive and negative 

sequence voltages at bus B1 are shown in Figure 6.10(b)&(c).  Figure 6.10(c) shows the 

voltage at B1 has a 0.38% imbalance before the single phase load zub is connected both with 

and without negative sequence compensation by the inverter. Because Zgr is not symmetric 

there is an unbalanced voltage drop across the line impedance which causes the voltage at 

bus 1 to be unbalanced. Once the single phase load is added, the negative sequence voltage 

increases to 0.74% of the positive sequence voltage without negative sequence compensation 

and 0.43% with negative sequence compensation. 

The negative sequence load and grid currents are shown in Figure 6.10(d).  When the 

negative sequence load current is completely compensated by the inverter, the grid supplies 

only positive sequence current to the load.  However, because of the unbalanced voltage drop 

on the line, the voltage still contains a negative sequence component as seen in Figure 

6.10(b).  A close-up of the negative sequence current before connection of the single-phase 

load is shown in Figure 6.10(e).  The load current contains a negative sequence component 

with amplitude of 0.64 A before t = 0.3 s when only balanced loads are connected.  

When the current is not compensated by the inverter, the single-phase load creates a ripple in 

the real and reactive three-phase power supplied by the grid.  When the current compensation 

loop is active the oscillation in the grid power is eliminated as shown in Figure 6.10(f).  The 
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DC link voltage and average PV current are shown in Figure 6.10(g) and Figure 6.10(h) 

respectively for the case where the inverter provides negative sequence current 

compensation.  Figure 6.10(h) shows a 0.23% decrease in the average output power of the 

PV array after t = 0.3 s.  This corresponds to ripple in the DC link voltage in Figure 6.10(g).  

The change in PV power prompts the MPPT to decrease the voltage away from Vmpp at t = 

3.5.  A total decrease in the PV output power of 0.31% after compensation begins is observed 

in Figure 6.10(g). 

 

 

(a) 

 
 

(b) 

 
 

(c) 
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(d) 

 
(e) 

 
(f) 

 
(g) 
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(h) 

Figure 6.10: (a) Three-phase load power, (b) +ve sequence voltage (c), -ve sequence voltage, 

(d)-(e) -ve sequence current, (f) grid power, (g) DC link voltage, and (h) average PV power 

for case study 2 

Case 2 demonstrates performance of the inverter in the presence of asymmetrical line 

impedances.  Although negative sequence current compensation could eliminate the negative 

sequence voltage at bus 1, the voltage imbalance was reduced by 56% compared to the case 

where the compensation loop was disabled.  Compensating the negative sequence current 

almost eliminates the oscillation in the power drawn from the grid. 

 

6.4 Case Study 3: Non-Linear Loads 

An important consideration in modern power systems is the impact of non-linear loads and 

sources.  Non-linear loads can introduce harmonics in the voltage and current which causes 

deterioration in the power quality.  Since the load current is used to calculate the 

compensating current reference, load current harmonics can introduce harmonic distortion 

into the current controller reference signals.  This can lead to harmonics in the output current 

of the PV inverter.  In case 3 the balanced rectifier load shown in Figure 6.1 is connected to 

the system to test the performance of the inverter control scheme in the presence of load 

current harmonics.  In the first simulation for case study 3 the proposed HCDFT method of 

sequence extraction from Chapter 4 is used.  The performance of the system using the 

HCDFT to measure the negative sequence current is compared to that obtained using AP 

filters and a DSOGI extraction technique. 

In case study 3, switch Sub is open and the load current remains balanced through the 

simulation.  The line impedances are symmetrical with Lgr = 0.2 mH and rgr = 29.3 mΩ.   
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Under these conditions the inverter output should be the same both with and without the 

negative sequence compensation loop enabled.  In case study 3, switch Snl is initially open 

and only linear balanced loads are connected to bus B1.  At t = 0.25 s Snl is closed 

connecting a three-phase rectifier load to B1.  The rectifier has a 15 µF output capacitor and 

supplies a 27.1 kW resistive load rnl = 15 Ω.  When the non-linear load is connected the load 

current THD is 5.3%.  The load current harmonics increase the harmonic distortion in the 

voltage at bus B1, shown in Figure 6.11(a). Prior to the connection of the non-linear load the 

voltage has a THD of 0.15%.  Once the rectifier is connected, the THD increases to 2.0%.  

The load current is shown in Figure 6.11(b) and the grid current is shown in Figure 6.11(c). 

 

(a) 

 

(b) 
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(c) 

Figure 6.11: (a) Voltage at the inverter bus and (b) load current, and (c) grid current when the 

HCDFT is used for case study 3 

Within one half cycle of the fundamental after the non-linear load is connected, the HCDFT 

reference current calculator settles to zero, as shown in Figure 6.12. Even in the presence of 

harmonically distorted inputs the HCDFT retains a fixed settling time and nearly zero steady 

state error. The inverter current, is shown in Figure 6.13(a).  After the non-linear load is 

connected, the THD increases from 1.9% to 2.5% due the distortion in the voltage at bus B1.  

To demonstrate the negligible impact of the compensation loop on performance under 

balanced harmonic load currents, the same test has been carried out with the compensation 

loop disabled. The PV inverter current for this case is shown in Figure 6.13(b).  By 

comparing Figure 6.13(a) and Figure 6.13(b) it can be seen that there is no additional 

distortion in the inverter current due to the compensation current reference when the HCDFT 

is used. 

 
Figure 6.12: Negative sequence amplitude calculated by the HCDFT when a three-phase 

rectifier load is connected 
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(a) 

 
(b) 

Figure 6.13: (a) Current injected by the PV inverter when the HCDFT method is used to 

calculate the compensation current and (b) inverter current when the compensation loop is 

disabled 

 

Next, the compensation loop is re-enabled, and two conventional methods, AP filters and the 

SOGI, are used to calculate the negative sequence load current.  Results for the AP filter and 

SOGI are shown in Figure 6.14 and Figure 6.15 respectively. The amplitude of the 

compensating current reference in Figure 6.14(a) should be zero because the system is 

balanced. However, the amplitude shown in Figure 6.14(a) has a non-zero output once switch 

Snl closes. After the non-linear load is connected the inverter current using AP filters, shown 

in Figure 6.14(b), has a THD of 15%.  
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(a) 

 
 (b) 

Figure 6.14: (a) Amplitude of the negative sequence reference current and (b) inverter current 

when AP filters are used to calculate the compensation current 

 

 

Comping Figure 6.15(a) and Figure 6.14(a) shows that the error in the reference 

compensation current amplitude is lower using SOGI filters.  However, compared to using 

the HCDFT ,the SOGI method produces a higher overshoot and steady-state error in the 

compensating current reference amplitude.  This results in a higher THD in the inverter 

current, shown in Figure 6.15(b).  The inverter current, grid current, and load voltage THDs 

are listed in Table 6.2 for the HCDFT, AP filters, SOGI, and with the compensation 

reference disabled. 
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(a) 

 

 (b) 

Figure 6.15: (a) Amplitude of the negative sequence current reference and (b) inverter current 

when SOGI filters are used to calculate the compensation current 

 

 

Table 6.2: Current and voltage THDs for case study 3 

Sequence calculation  

method 

Compensation 

disabled 
HCDFT APF SOGI 

Inverter Current THD 2.5% 2.5% 15% 4.1% 

Grid Current THD 7.5% 7.5% 10.0% 8.1% 

Voltage at B1 THD 2.0% 2.0% 2.4% 2.1% 

 

When the HCDFT is used, current and voltage THDs are the same as when the inverter is 

controlled in power conversion mode without compensation.  These values are listed in 
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columns 2 and 3 of Table 6.2.  Because of the resonant element in the SOGI filters, this 

method showed significant improvement over the AP filters. However, it could not entirely 

attenuate the harmonics in the load and Figure 6.15shows increased current distortion when 

the rectifier load was connected. The HCDFT method has a comparable settling time to that 

of the SOGI reference technique, however it also shows improved steady state harmonic 

rejection compared to the SOGI.  

Case study 3 demonstrates the performance of the HCDFT method in the presence of load 

current harmonics caused by non-linear loads.  When the HCDFT reference calculator is 

employed there is no additional harmonic distortion compared to the case where no 

compensation current reference is added. 

 

6.5 Case Study 4: Transient Unbalanced Loads 

Microgrids and remote grids may be subjected to quickly varying single phase loads, such as 

single-phase motor start-up.  Case study 4 verifies the controller performance under quick 

unbalanced load switching.  The results show there can be interaction between the negative 

sequence current compensation and the P&O MPPT algorithm under such conditions.  

In case study 4, switch Sub closes at t = 0.25 s, connecting the single-phase linear load zub = 

24 Ω to bus B1.  After 10 cycles Sub opens and the load is disconnected.  At 60 Hz this 

equates to 167 ms.  This is considered “fast” since the slowest loop of the control scheme, the 

MPPT algorithm, runs at a time step of 50 ms, which is close to time step of the load change.  

The PV array experiences an irradiance level of 590 W/m
2
 at a temperature of 325 K. 

The load current is shown in Figure 6.16(a).  From t = 0.25 s to t = 4.17 s an imbalance in the 

load current can be observed in Figure 6.16(a), which is caused by the single phase load.  The 

grid current is shown in Figure 6.16(b), and the inverter current is shown in Figure 6.16(c).  

The transient response of the grid and inverter currents following the connection of a single 

phase load can be seen in Figure 6.17.  Figure 6.17(a) shows that within one cycle of 

connecting the single-phase load, the grid current is balanced.  The positive and negative 

sequence components of the reference current are controlled together in the ABC frame, thus 
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there is no difference in the transient response for a positive or negative sequence step 

change in the reference. 

 

 

(a) 

 

(b) 

  

(c) 

Figure 6.16: (a) Load current, (b) grid current, and (c) inverter current for case study 4 
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(a)                                                                  (b) 

Figure 6.17: (a) Grid current and (b) inverter current transient following connection of the 

unbalanced load 

The average power output of the PV array is shown in Figure 6.18, and the DC link voltage is 

shown in Figure 6.19. Before Sub closes, the array is operating at the maximum power point. 

When the inverter begins to compensate the unbalanced load, the average power drops by 

80_W(0.267%), as seen in Figure 6.18, due to the oscillation in the DC link voltage.  The 

P&O algorithm detects the drop in power and according to the logic in Figure 3.39 the 

voltage reference is decremented. At the next time step of the MPPT 50 ms later, the 

algorithm detects that lowering the voltage reference does not cause an appreciable increase 

in power and so does not alter the voltage reference. When the single phase load is 

disconnected, the DC oscillation ripple dies out and the average power increases.  This 

creates a true value for the condition ‘ΔP > Pmin’, while the result of the ‘ΔV > 0’ condition is 

also true because of small oscillations in the DC link voltage measurement. Under these 

conditions the MPPT logic is programmed to increment the voltage reference in response to 

the change.   Figure 6.18(b) shows that the PV power output, from t = 0.25 – 0.3 s is equal to 

the power output after the DC link voltage reference decreases at 0.3 s.   The efficiency of 

energy harvesting is therefore unaffected by the interaction between the P&O technique and 

the negative sequence compensation. 
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(a) 

  
(b)                                                (c) 

Figure 6.18: Moving-window average of PV power during Case 4 

 

 

Figure 6.19: DC link voltage during case study 4 

The results of case study 4 show that the inverter is able to compensate the negative sequence 

load current during a short (10 cycle) duration interval.  Although the P&O algorithm cannot 

distinguish between a change in power due to environmental changes or due to the DC link 

voltage ripple, it does not cause additional power loss in case study 4. 
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6.6 Case Study 5: Phase Balancing in a Hybrid Diesel-PV 
Microgrid 

Diesel engine driven synchronous generators are commonly used to supply electricity for 

small remote communities and commercial ventures.  Microgrids also typically require diesel 

gen-sets to be used for backup when renewable sources have insufficient generation 

capability.  Case study 5 verifies the performance of the proposed control strategy in the 

hybrid diesel-PV grid shown in Figure 6.20. 

Unbalanced loading poses a challenge for these kinds of isolated grids.  Single phase loads 

can cause the voltage to become unbalanced which will disrupt the operation of three-phase 

machine loads.  The power oscillation can cause ripples in the generator torque which 

decreases the efficiency of the engine and puts additional stress on the shaft.  Unbalanced 

loading also requires de-rating the generator due to higher peak to average power ratio. 

The remote grid shown in Figure 6.20 is constructed in Simulink® using the 

SimPowerSystems® toolbox. The loads are supplied by a hybrid system consisting of a 

150_kVA diesel-engine driven synchronous generator, and a 50 kVA PV system, with the 

control scheme shown in Figure 3.1.  The current supplied by the generator is igen, and iinv is 

the current supplied by the PV inverter on the Wye side of the transformer. The generator is 

controlled with a 1.67% frequency droop, which results in a maximum 0.5 Hz under/over 

frequency at the maximum/minimum power output respectively. An IEEE type 1 Automatic 

Voltage Regulator (AVR) is implemented using the predefined SimPowerSystems® block to 

control the terminal voltage of the generator. The AVR maintains the voltage within ± 5% of 

the nominal over a ± 0.27 pu reactive power output. The generator controller parameters are 

listed in Appendix B.  A balanced, delta connected load, zp3 = 3.78 + j1.40 is connected to 

bus B1.  A single phase load zub = 14.4 Ω is connected to bus B1 through the switch, Sub. 

In case study 5, the switch Sub is initially open and the grid supplies only balanced loads.  At 

t = 6 s, the Sub is closed, connecting the single phase load to bus B1.  The irradiance and 

temperature of the PV panels remain constant during the test at 700 W/m
2
 and 51.9 

o
C 

respectively. 



144 

 

Balanced

Load

Unbalanced 

Load

B1

iinv

igen

5
0

k
 V

A

2
4

0
/4

8
0

 V

iload SG
Diesel 

Engine

480 V/150 kVA

A B C

zub

Sub

A B C

z3pz3p

z3p

PV Array

Inverter 

+LCL Filter

 

Figure 6.20: Single line diagram of the remote grid simulated in case study 5 

 

6.6.1 System Performance without Negative Sequence Compensation  

In the first test the PV inverter is run in power conversion mode only, and the negative 

sequence compensation reference is disabled. System voltage, current, PV power, and 

generator power are illustrated in Figure 6.21. The positive and negative sequence voltages at 

bus B1 are shown in Figure 6.21(a)&(b).   Before the single-phase load is connected, the 

negative sequence component of the load voltage is equal to zero.  At t = 6 s the negative 

sequence voltage at bus 1 increases to 1.7% due to the unbalanced current drawn by the load.   

The output of the diesel generator is 132 kVA at 0.9 pf lagging, prior to t = 6 s. Since the 

generator supplies the negative sequence load current, double line frequency ripples are 

produced in the real and reactive power output of the generator, which can be seen in Figure 

6.21(c).  

Figure 6.21(c) shows the generator frequency during the simulation period. Before t = 6 s, the 

generator frequency settles at 59.71 Hz.  Due the low inertia of the system, the additional 

load switched on at t = 6 s causes a transient drop in the grid frequency. Following the 

transient the generator frequency settles to a value of 59.61 Hz.   
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The load, generator, and inverter load currents from t = 5.8 – 6.2 s are shown in Figure 

6.21(e)-(g) respectively.  The imbalance in iload and igen is visible in Figure 6.21(e) and Figure 

6.21(f).  The inverter current remains balanced, as shown in Figure 6.21(g) because the 

compensation reference has been disabled.  The PV inverter supplies 35.3 kW, as seen in 

Figure 6.21(i), which is the maximum power for the given environmental conditions. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 

 
(g) 

 

(h) 
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(i) 

Figure 6.21:Unbalanced  loading without phase balancing, (a)positive sequence voltage at 

bus 1 , (b) negative sequence voltage at bus 1, (c) frequency, (d) real and reactive power 

supplied by the generator, (e) load current, (f) generator current, (g) inverter current, (h) DC 

link voltage, and (i) average PV array power 

 

6.6.2 System Performance with Negative Sequence Current Compensation  

In the second simulation, the same load conditions are created, but the negative sequence 

load current compensation loop is activated.  The results of the second simulation are shown 

in Figure 6.22.  The positive sequence voltage as bus B1, seen in Figure 6.22(a), is the same 

as in the first simulation.  The negative sequence voltage in Figure 6.22(b) however is still 

equal to zero after single-phase load is connected, because the inverter supplies the negative 

sequence component of the load current.  At t = 6 s, the real and reactive power of the 

generator increases to supply the additional load, however the oscillation seen in Figure 

6.21(c) is no longer observable in Figure 6.22(c). 

Figure 6.22(d) shows that grid frequency is the same as in the first simulation.  In order to 

demonstrate the efficacy of the HCDFT technique proposed in chapter 4, the negative 

sequence reference current is shown in Figure 6.22(e) along with the negative sequence load 

current calculated used the conventional HCDFT.  Due to the grid frequency deviation, even 

when only balanced loads are connected the conventional HCDFT method measures a non-

zero negative sequence load current. The output of the conventional HCDFT has a large 

oscillatory error after the single phase load is connected compared to the output of the 

HCDFT described in Chapter 4.  When the HCDFT technique from Chapter 4 is used, the 

correct reference current is obtained despite the variations in grid frequency.  
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In the second simulation, the load current, shown in Figure 6.22(f), is equal to the load 

current from the first simulation.  The grid current, however, remains balanced even after the 

single-phase load is connected, as shown in Figure 6.22(g), while the inverter supplied the 

negative sequence load current, as shown in Figure 6.22(h).  Compensating the negative 

sequence load current induces a double line frequency ripple in the DC link voltage of the 

inverter, seen in Figure 6.22(i).  The DC link voltage ripple results in a 268 W (0.76%) 

decrease in the average output from the PV array, as shown in Figure 6.22(j). 

 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 
(f) 

 
(g) 
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(h) 

 

(i) 

 

(j) 

Figure 6.22: System variables when the PV inverter compensates load  unbalance, (a) 

positive and (b) negative sequence voltages at bus 1, (c) generator real and  reactive power, 

(d) grid frequency , (e) measured negative sequence load current , (f) load current, (g) 

generator current, and (h) inverter current. (i) DC link voltage, and (j) average PV power 

 

Case study 5 demonstrates the ability of the proposed control scheme in a low inertial 

microgrid.  Even though the grid experiences frequency deviations the proposed negative 
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sequence current calculation method is able to generate the correct compensation current 

reference.   When the PV inverter compensates the negative sequence current, the voltage 

remains balanced even after connecting the unbalanced load.  The HCDFT algorithm 

proposed in Chapter 4 accurately estimated the negative sequence load current, unlike the 

conventional HCDFT.   

 

6.7 Conclusions 

The efficacy of the proposed control scheme described in Chapters 3 and 4 has been tested by 

extensive simulation using Matlab/Simulink®.  A number of grid conditions have been 

considered, including excessive negative sequence currents, line impedance asymmetry, non-

linear loads and grid frequency fluctuations.  The proposed control scheme allows the PV 

system to simultaneously inject real power and compensate the negative sequence load 

current using the available inverter capacity. Priority is given to real power conversion. 

While the inverter supplies an unbalanced current, the controller is able to continue tracking 

the maximum power point under changing irradiance and temperature conditions. The 

HCDFT sequence calculation algorithm is shown to allow the control scheme to reject 

harmonics in the measured load current. When the inverter is tested in a hybrid diesel-PV 

microgrid the compensated HCDFT algorithm discussed in Chapter 4 is shown to accurately 

calculate the negative sequence load current even when the frequency deviates from the 

nominal value.  
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Chapter 7 

7 Summary and Conclusions 

In the previous chapters, a control scheme for a three-phase VSC has been developed for 

simultaneous power conversion and load balancing. The control scheme has been verified 

through simulation in the Matlab/Simulink® environment. In Chapter 1, the concept of the 

microgrid is introduced. The issue of unbalance in power grids is discussed including the 

effect of unbalanced voltage on inductor motors and unbalanced loading of synchronous 

generators. Next the idea of using PV interfacing converters to provide phase balancing is 

introduced. The motivations and goals of the thesis are presented. 

Chapter 2 provides details on symmetrical components theory, different phase balancing 

devices, and PV inverter control. An introduction to symmetrical components theory is given 

at the beginning of Chapter 2, followed by a literature review on methods for calculating 

compensating negative sequence currents.  Previously reported dual purpose PV systems are 

discussed.  Control considerations for inverters with LCL filters are reviewed. The issue of 

filter resonance is explained and previous solutions are described. 

In Chapter 3, the proposed control scheme for a PV inverter is presented. A model of the 

VSC is developed.  Based on the model of the LCL filter, a new active damping scheme is 

proposed using a dual variable feedback. A method of calculating the damping gains based 

on desired damping ratio is shown. The procedure for calculating PR controller gains based 

on desired frequency response characteristics is presented.  Furthermore, an anti-windup 

scheme for a PR control is proposed and demonstrated. 

An algorithm to calculate the negative sequence current reference is described in Chapter 4.  

In the proposed method, the half-cycle DFT is used to calculate sequence components and a 

numerical compensation technique is presented to reduce errors during off-nominal grid 

frequency.  Compared with AP filters and notch filter based techniques the proposed method 

shows similar settling time and far superior harmonic filtering. 

In Chapter 5 the interaction between active power generation and unbalanced compensation 

is examined through case studies.  The region of operation of the PV array is shown to have 
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an impact on the voltage ripple at the DC link during unbalance compensation. The ability of 

the system to compensate unbalanced loads at various levels of solar insolation is confirmed. 

Five case studies are presented in Chapter 6 to demonstrate the performance of the proposed 

control scheme under different grid and load conditions. Partial compensation of the 

unbalanced current is shown for a case where the VSC has insufficient capacity to supply the 

whole negative sequence. The HCDFT algorithm is shown to have good performance in the 

presence of non-linear loads creating harmonic current distortion. A network with 

unbalanced line impedance is used as the test system for one case study. The performance 

under unbalanced line impedances is examined.  Finally, the PV system is also tested in a 

low inertia PV-diesel microgrid.   

7.1 Summary of Major Contributions 

1. In this thesis, a control strategy is proposed for a single-stage three-phase PV 

interfacing inverter. Using this control scheme, the system is able to compensate 

negative sequence load currents. The converter simultaneously accomplishes 

maximum power point tracking, sinusoidal current injection, and phase balancing. 

The control scheme does not rely on balanced source voltages to generate the 

reference current waveforms. The grid-side current of the inverter is controlled to 

ensure accurate current injection. 

2. A dual-variable virtual impedance active damping scheme for an LCL filter has been 

proposed.  Using both the inner inductor current and the filter capacitor current as the 

feedback variables improves the DC rejection compared to using capacitor current 

alone.  For a specified damping ratio of the filter, the feedback gains can be explicitly 

calculated. 

3. A modified PR controller has been proposed which prevents resonator windup for 

improved performance during saturation of the modulation index. The backtracking 

anti-windup scheme used in PI controllers has been adapted for a PR controller. The 

proposed scheme has more accurate phase tracking during activation of the anti-

windup loop compared with the previously proposed approach. This feature is 

important for maximizing real power injection and preventing bus voltage collapse. 

The proposed strategy also showed a better transient response with less overshoot and 
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oscillation. The proposed anti-windup strategy was shown to allow faster recovery 

after a contingency scenario.  

4. A sinusoidal reference current generation scheme has been proposed which uses the 

HCDFT to calculate the negative sequence load current and positive sequence grid 

voltage. Numerical compensation to prevent errors during off-nominal grid frequency 

has been derived. The proposed method has a half-cycle response time even during 

harmonic distortion. The numerical compensation method has been shown to greatly 

improve the performance compared to the conventional half-cycle DFT when the 

frequency of the diesel generator deviated during large load changes. 

5. An investigation into the effect of the PV array operating conditions on unbalance 

compensation has been conducted using Matlab/Simulink®. The ability of the PV 

system to compensate negative sequence currents at different levels of irradiance is 

verified. The effect of negative sequence compensation on the DC link voltage was 

studied for different regions of the P-V curve. The results of the simulation and 

analysis favour shifting the operating point towards the open-circuit voltage when a 

reduction in real power is necessary, rather than decreasing the voltage. 

7.2  Suggestions for Future Work 

 Only unbalance compensation has been considered in this thesis. Harmonic currents 

may also degrade power quality in distribution networks. The proposed control 

scheme could be extended to allow harmonic currents to be selectively compensated. 

 PV systems are also capable of providing reactive power support, which has not been 

considered in this thesis. The control scheme could be modified to allow for reactive 

power compensation during low irradiation and balanced conditions. 

 In this thesis the VSC studied has a three-wire connection. In four-wire systems, zero 

sequence components are also possible in the current and voltage. Future work could 

include adapting the proposed control scheme for zero sequence current 

compensation if the PV converter has a four-wire configuration.    
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Appendix A: Model of the PV Array Used in Simulation 

A photovoltaic cell is a semiconductor device which generates charge carriers when exposed 

to solar radiation. The power production depends on the efficiency of the cell, the level of 

solar irradiation, temperature, and other environmental conditions. The single diode PV 

model is shown in Figure A.1 [1].  

rp

rs

Ipv V

I

ID

 

Figure A.1: Single diode model of a PV cell [1] 

In Figure A.1, the solar radiation induced generation of charge carriers is modelled by the 

current source Ipv. The value of Ipv depends on irradiance, measured in W/m
2
. The voltage at 

the terminal of the cell is V and the output current is I. The diode models the properties of the 

p-n junction. The governing equation for the PV cell is given in ( A.1 ). 
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C1060217646.1 19q : Electron Charge 

J/K103806503.1 23k : Boltzmann constant 

T : Temperature (K) 

Equation ( A.1 ) is the Shockley diode equation, where Isat is the diode saturation current, and 

a is the diode ideality constant. The resistances rs and rp are primarily dependent on the 

manufacturing process and materials used. 
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For Ns series and Np parallel connected cells equation ( A.1 ) is rewritten as ( A.2 ) to 

calculate the total current. In ( A.2 ) the voltage V and current I are the terminal voltage and 

current of the array respectively. 
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Thus, equation ( A.2 ) can be used to model a panel or array of panels as well as a single cell. 

The parameters experimentally determined in [1] are used to model a 51.5 kW-peak PV 

array, and parameters are listed in Table A.1.  

The photo-generated current Ipv is strongly dependent on both the temperature T and the 

irradiance IR. This relationship is modelled as in ( A.3 ) [1].  

  
n

npvnpvpv
IR

IR
TTKII  ,  ( A.3 ) 

Ipv,n, Tn, and IRn are the values of the photo-generated current, temperature, and irradiance 

respectively, at the Standard Test Conditions (STC) listed in Table A.1. Kpv is short circuit 

current/temperature coefficient provided by the manufacturer. The diode saturation current 

Isat is strongly dependent on the temperature of the cell. This relationship is given in ( A.4 ), 
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( A.4 ) 

where Voc,n is the open-circuit voltage and Isc,n is the short-circuit current at the STC. The 

open-circuit voltage/temperature coefficient Kv is a parameter given in the data sheet.  Each 

PV panel consists of 54 PV cells connected in series.  
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 Table A.1: PV Panel/array parameters [1] 

Standard Test Conditions: 

Tn = 300 K, IRn = 1000 W/m
2
 

Voc,n 42.9/527(array) V 

Isc,n 8.21/131.36(array) A 

Ipv,n 8.214/131.424(array) A 

Pmax 201.5/51,584(array) W 

rs 0.221 Ω 

rp 415.4 Ω 

Number of Series Panels 16 

Number of Parallel Panels 16 

Ns 864 

Np 16 

a 1.3 

Equations ( A.1 )-( A.4 ) have been implemented in Matlab/Simulink® using the values 

listed in Table A.1 to simulate a PV generator. 

References: 

[1] M.G. Villalva, J.R. Gazoli and E.R Filho, "Comprehensive Approach to Modeling 

and Simulation of Photovoltaic Arrays," IEEE Trans. Power Electron., vol.24, no.5, 

pp.1198-1208, May 2009. 
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Appendix B: Diesel Generator Parameters 

The Synchronous Machine block from the SimPowerSystems Simulink® toolbox is used in 

the simulations conducted in Chapter 6. The electrical portion of the generator is modelled by 

a sixth order state-space system.  The mechanical portion of the generator is modelled by a 

first order system. 

Synchronous Machine Parameters: 

Base power, Sb = 300 kVA, 

Base Voltage, Vb=460 Vrms,  

Nominal frequency, ƒ = 60 Hz 

Rated Speed ω0 = 1800 rpm  

Stator parameters (pu):  

Stator resistance, Rs = 0.2353, leakage inductance Lls = 0.09, d-axis magnetizing 

inductance, Lmd = 3.13, q-axis magnetizing inductance Lmq = 2.7 

Field Parameters (referred to stator, pu):  

Field resistance Rf = 0.007436, leakage inductance Llfd = 0.3643 

Damper windings (referred to stator, pu):  

d-axis resistance Rkd = 0.2164 and leakage inductance Llkd = 1.819, q-axis 

resistance Rkq1 = 0.05752 and leakage inductance Llkq1 = 0.3249 

Number of Poles: 2 

Model of the Diesel and its Control: 

The diesel engine is modelled as a first order system with a delay [1].  The proportional 

integral controller PIDG regulates the speed of the diesel-generator set by the droop gain 

Kdroop and the power output of the generator Pgen, by controlling the torque produced by the 
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actuator.  The actuator is modelled by a first order system with time constant 
2 .  A delay 

block which represents the engine dead-time due to the piston firing delay is implemented in 

Simulink® as a fixed time delay of 10.6 ms. The output of the delay block is the engine 

torque.  Tgen is the load torque supplied by the synchronous generator. The speed of the 

engine is maintained through a governor and the inertia J which represents the combined 

inertia of the engine and the generator. 

Kdroop

+-
-

+ PIDG
1

1

2 s
Delay

-
+

s

J

Pgen

Tgen

ω 0

ω

 

Figure B.1: Diesel engine model 

 

Table B.1: Diesel engine parameters 

Kdroop 1/60 pu 

KDG,P 12.5 

KDG,I 12.5 

τ2 0.1 s 

Delay 10.6 ms 

J 0.2 pu 

Automatic Voltage Regulator: 

The generator output voltage control is accomplished using the Simulink® excitation system 

block which implements an IEEE type 1 voltage regulator combined with a DC exciter. The 

inputs to the excitation system are the d and q-axis components of the generator voltage, Vd 

and Vq in pu, and the reference voltage Vref which is determined from the reactive power 

output of the generator, Q, and the droop gain Kvd. The excitation block computes the 

positive sequence peak voltage and passes the signal through a low-pass filter with time 

constant τr which represents the dynamics of the stator terminal voltage transducer. A first 
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order regulator with gain Ka and time constant τa controls the output field voltage Vf. A 

damping loop with gain Kf and time constant τf is included. The values of the excitation 

system parameters are listed in Table B.2. 
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Figure B.2: Voltage regulator and excitation system for the generator 

Table B.2: Excitation system parameters 

Kdv 0.125 pu 

τr 20e-3 

Ka 250 

τa 0.005 

Kf 0.001 

τf 0.1 

 

References: 

[1] S. Roy, O.P. Malik and G.S. Hope, "An adaptive control scheme for speed control of 

diesel driven power-plants," IEEE Trans. Energy Convers., vol.6, no.4, pp.605-611, 

Dec. 1991. 

  



161 

 

Appendix C: Derivations for Section 3.3 

 

At the resonant frequency, the gain of the third order transfer function with the form (3.11) 

can be approximated by a second order function if the purely real pole is sufficiently farther 

to the left of the resonant pole pair on the s-plane.  For values of m greater than 5 this 

assumption holds true [1]. 
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From (3.14) and ( C.1 ) the second order approximation of the LCL filter is: 
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Since the gain of the Gcon(s) ≈ kp, the open loop transfer function is 
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From (3.14), ( C.3 ) can be rewritten in terms of the filter parameters and virtual impedance 

gains as which is equivalent to (3.19). 
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The expression for kp in (3.17) can by simplified since kdl << (Lc+Lg)
2
ωc

2
. 

cgcp LLk )(   ( C.5 ) 

From ( C.4 ) and ( C.5 ) the expression for the loop transfer function is ( C.6 ). 
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The magnitude of the loop gain at the resonant frequency ωn is determined by letting s = jωn. 
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Since the -180
o
 phase occurs at the resonant frequency the magnitude of the loop gain at ωn is 

related to the Gain Margin (GM) by ( C.8 ). 
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Equating ( C.8 ) with ( C.7 ) and rearranging yields the expression for the crossover 

frequency in (3.20). 
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