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Abstract 

Defects in the proliferation, differentiation, and activity of bone marrow (BM)-

derived vasculogenic/vascular stem cells (VSCs) have been observed in diabetes 

and contribute to the development of vascular complications.  Diabetes leads to 

enhanced bone marrow adipogenesis, altering the composition of the BM stem cell 

(SC) niche and potentially disrupting the normal functioning of resident VSCs.   

Here, I establish that adipocytes have a negative influence on SC survival in culture.  

I also show that adipocytes and osteoblasts are responsible for the creation of 

distinct extracellular microenvironments, with unique expression patterns of several 

pro- and anti-angiogenic factors with known effects on VSCs, such as fibronectin, 

Notch ligands, stromal cell-derived factor-1, and angiopoietin-1 and -2.  I conclude 

that alterations in marrow composition may mediate the connection between 

hyperglycemia, VSC dysfunction, and impaired vascular repair in diabetes.  

 

Keywords:  diabetes, bone marrow, mesenchymal progenitor cells, adipogenesis, 

differentiation, vascular stem cells, endothelial progenitor cells, stem cell niche 
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Chapter 1 : Introduction1 

1 Introduction 

1.1 Diabetes 

 Diabetes mellitus is a chronic metabolic disease characterized by insufficient 

cellular responses to high blood glucose.  Type 1 diabetes, comprising 5-10% of all 

cases, is generally considered to be a disease of the young, with most patients 

diagnosed before the age of twenty1, 2.  This disorder is characterized by autoimmune 

destruction of the pancreatic β-cells responsible for the production of insulin in response 

to glycemic load1, 2.  Destruction of β-cells results in an absolute insulin deficiency and 

high blood glucose levels.  The cause of type 1 diabetes is considered to be polygenic 

and multifactorial2.  Type 2 diabetes, also known as noninsulin-dependent diabetes 

mellitus, comprises the bulk of the instances of the disorder and involves a relative lack 

of insulin signalling stemming from peripheral insulin resistance and β-cell dysfunction1, 

3.  In this form, hyperglycemia develops slowly over the course of several years1.  

During this asymptomatic period, hyperinsulinemia may occur as the β-cells of the 

pancreas struggle to keep up with the ever-increasing insulin resistance of target 

tissues, allowing for inappropriate hepatic gluconeogenesis1, 3.  Beta-cell function begins 

                                                 

 

1
 Portions of this chapter have been adapted from: Piccinin MA, Khan ZA.  Pathophysiological role of 

enhanced bone marrow adipogenesis in diabetic complications.  Adipocyte 2014; 3:4.  Reproduction of 
portions of this article is at the permission of Taylor & Francis LLC.  
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to falter gradually over time, reducing insulin secretion and resulting in hyperglycemia4.  

A third form of the disease is gestational diabetes mellitus (GDM), which is initially 

diagnosed during pregnancy1, 5.  GDM is characterized by insulin resistance and a 

considerable reduction in β-cell function by late pregnancy5, 6.  GDM affects 

approximately 14% of pregnancies, and although the majority of cases resolve post-

partum, those affected have a 65% chance of developing type 2 diabetes in the five 

years following delivery1, 5-7. 

1.1.1 Epidemiology  

 Diabetes is an incredibly prevalent disease, afflicting an estimated 347 million 

individuals worldwide as of 20088. In the United States alone, there are approximately 

20.9 million diabetes sufferers, with a prevalence of 6.9% in men and 5.9% in women9. 

These prevalence estimates have increased sharply since 1980, by 156% in men and 

103% in women, and is predicted to continue rising, even while holding the current 

levels of obesity constant9, 10. If existing trends persist, one in three U.S. adults is 

anticipated to have diabetes by 205011. Diabetes was responsible for 5.1 million deaths 

globally in 2013, with one person dying of the disease every six seconds12. The disease 

is anticipated to become the fifth leading cause of mortality worldwide by the year 2030, 

underlying 3.5% of all deaths13. This disease represents a massive burden on the global 

economy through significant reductions in productivity and the 2.3-fold increase in the 

utilization of health care resources by diabetics14. Twelve percent of worldwide health 

care expenditure is related to the care of diabetes, including $548 billion spent in the 

United States in 2013, primarily due to the management of diabetic sequelae12, 15, 16.   
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1.1.2 Diabetic Vascular Complications 

 In developed countries, the morbidity associated with diabetes is primarily 

associated with secondary sequelae rather than the acute complications, such as 

ketoacidosis and diabetic coma, which are pervasive in low- and middle-income 

nations17.  An estimated 72% of diabetics suffer from at least one long-term vascular 

complication of the disease16.  Vascular complications can broadly be divided into two 

categories on the basis of the size of the blood vessel affected.  Microvascular sequelae 

include retinopathy, neuropathy, cardiomyopathy, and nephropathy, while peripheral 

vascular disease and coronary artery disease are common macrovascular 

complications16.  These complications are the consequence of hyperglycemia-induced 

damage to blood vessels and aberrant vascular repair mechanisms.   

1.1.2.1 Mechanisms of Diabetic Vascular Complications 

 The endothelial cells (ECs) comprising the tunica intima, the innermost layer of 

the vasculature, are the first cells in the body to encounter chronically elevated blood 

glucose levels in diabetes.  The most abundant glucose transporter isoform expressed 

by ECs is glucose transporter 1 (GLUT1), which aids in the facilitated diffusion of 

glucose across the plasma membrane18-20.  The expression and function of GLUT1 is 

non-responsive to changes in glucose or insulin concentration, resulting in increased 

glucose uptake under hyperglycemic conditions and heightened intracellular glucose 

levels20-23.  The cytosolic glucose is then processed via glycolysis and the tricarboxylic 

acid (TCA) cycle to generate electron donors nicotinamide adenine dinucleotide (NADH) 

and flavin adenine dinucleotide (FADH2) for use in the mitochondrial electron transport 
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system and provide energy to pump protons across the mitochondrial membrane22.  A 

transmembrane voltage gradient is then established, which can be harnessed to drive 

production of adenosine-5’-triphosphate (ATP)22.  With excess glucose being processed 

through the TCA cycle in hyperglycemic conditions, an increased number of electrons 

are transferred into the electron transport chain, raising trans-membrane 

hyperpolarization until a threshold limit is reached22.  Electron movement is then halted 

at complex III, resulting in an accumulation of electrons at coenzyme Q22.  Coenzyme Q 

dissipates this excess charge through the partial reduction of molecular oxygen to form 

the free radical superoxide anion22.   

 Superoxide is able to exert its detrimental effects on the vasculature through a 

number of mechanisms.  The superoxide anion is able to inactivate nitric oxide (NO) by 

converting the potent vasodilator into peroxynitrite24, 25.  Peroxynitrite acts as an 

oxidizing agent, reacting with tetrahydrobiopterin (BH4) which serves as a requisite 

cofactor for endothelial nitric oxide synthase (eNOS)26.  This results in uncoupling of 

eNOS, favoring the generation of superoxide over NO production and leading to an 

accumulative increase in reactive oxygen species (ROS) and runaway inhibition of NO 

bioactivity27, 28. 

This overactive production of ROS, both directly from the electron transport chain 

and indirectly through uncoupled eNOS activity, leads to the induction of four 

mechanisms which stimulate primary biochemical changes within ECs: 1) increased 

activity of the polyol pathway, 2) generation of advanced glycation end-products 

(AGEs), 3) activation of protein kinase C (PKC), and 4) stimulation of the hexosamine 

pathway (reviewed in detail in Brownlee 2005)22.  The activation of these pathways 
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leads to endothelial dysfunction through further induction of ROS production, the 

release of inflammatory cytokines, increased synthesis of extracellular matrix 

components, diminished EC migration and proliferation, and endothelial apoptosis 

(Figure 1.1)22, 29-37.  

In addition to diminishing the production of NO, hyperglycemia and 

hyperinsulinemia further potentiate the vasoactive effects of diabetes by stimulating the 

production and activation of the most powerful known endogenous vasoconstrictor, 

endothelin-138-40.  Hyperglycemia appears to enhance endothelin-1 activity through the 

increased activation of PKC-β and –δ, while insulin likely exerts its effect via the tyrosine 

kinase activity of the insulin receptor (IR)38-40.  Interactions between endothelin-1 and its 

receptors on vascular smooth muscle cells results in the release of Ca2+ from 

intracellular stores and the opening on non-specific cation channels41.  This leads to 

depolarization sufficient to activate L-type Ca2+ channels and induce perivascular cell 

contraction and vasoconstriction41, 42.  Increased levels of endothelin-1 mRNA and 

peptide have been observed in several organs known to be susceptible to diabetic 

complications, such as the heart, kidneys, and retina38, 43-45.  The dual vasoactive 

effects of hyperglycemia on NO and endothelin-1 lead to diminished endothelial 

integrity, culminating in impaired perfusion of targeted tissue and ischemia46, 47. 

In the healthy patient, vascular repair mechanisms would be employed to restore 

the damaged blood vessels and preserve the function and circulation of affected tissues 

(Figure 1.2 A)46.  Revascularization may occur through the proliferation and migration of 

mature ECs adjacent to injured regions or through the chemokine-guided recruitment of   
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Figure 1.1.  Mechanisms of hyperglycemia-induced endothelial damage in 

diabetes. 

Glucose enters and accumulates in ECs via Glut1, which is non-responsive to changes 

in glucose concentration.  Disproportionate glucose metabolism overwhelms the 

electron transport chain, causing an accumulation of electrons at coenzyme Q.  This 

excessive charge is then dissipated through the partial reduction of molecular oxygen 

into the free radical superoxide.  Superoxide promotes the conversion of the potent 

vasodilator NO into inactive peroxynitrite and uncoupling of eNOS, leading to a loss of 

vasoregulation.  Superoxide also stimulates the generation of other ROS, which by 

several distinct mechanisms, mediate EC dysfunction and survival. 

[AGE = advanced glycation end product; EC = endothelial cell; FADH2 = flavin adenine 

dinucleotide; NADH = nicotinamide adenine dinucleotide; NO = nitric oxide; PKC = 

protein kinase C; Q = coenzyme Q; ROS = reactive oxygen species]  
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A 
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Figure 1.2.  Impaired vascular repair in diabetes. 

(A) In healthy individuals, endothelial injury would signal for the mobilization of stem 

cells from the BM into circulation and contribute to vascular regeneration.  Injury may 

cause some vascular stem cells to produce lineage-restricted EPCs which home to the 

site of injury and repair damaged vasculature, though the identity of these cells is not 

fully clear.  (B) In diabetics, this response to endothelial damage is disrupted, through a 

combination of reduced VSCs in the marrow and impaired EPC migration and 

vasculogenic function. 

[BM = bone marrow; EPC = endothelial progenitor cell; VSC = vascular stem cell] 
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bone marrow (BM)-derived endothelial progenitor cells (EPCs) to the site of injury48-50.  

This response is disrupted and occurs unevenly in type 1 diabetics with poor glycemic 

control and nearly all type 2 diabetic subjects (Figure 1.2 B)51.  The non-uniform 

distribution of vascular repair leads to divergent, tissue-specific complications, with 

heightened retinal and renal vessel formation and a lack of revascularization in the 

lower limbs and heart52-56.  These pathological changes may be partially resultant from 

deficits in EPC development, proliferation, migration, and/or function.  Analyses of EPCs 

from most diabetic subjects reveal a reduced number in both the circulation and the 

bone marrow, as well as impaired proliferation, mobilization, and capacity for vessel 

formation56-66.  The mechanisms underlying these cellular changes have not yet been 

fully elucidated, but may relate to the diabetes-induced alterations to the BM 

microenvironment from which EPCs originate. 

1.2 Stem Cells in the Bone Marrow 

The primary role of the BM is to support the maintenance and differentiation of 

hematopoietic stem cells (HSCs).  In addition to blood cell precursors, the marrow is 

also an abundant source of other precursors including mesenchymal and vascular cells.  

Each of these progenitor cell classes reside within a hierarchy of progressively more 

differentiated cell types (Figure 1.3).  HSCs are responsible for the formation of novel 

blood cells, generating leukocytes, erythrocytes, and thrombocytes.  Mesenchymal 

precursors regulate the creation of the marrow stroma that supports the HSC 

population, while vascular stem cells (VSCs) serve as a pool of progenitors for blood 

vessel formation. 
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Figure 1.3.  Developmental origin and potential of marrow-resident SCs. 

Hypothesized model of stem cell hierarchy in the marrow showing mesodermal SCs 

giving rise to embryonic hemangioblasts and mesenchymal progenitor cells (MPCs, also 

known as mesenchymal stem/stromal cells (MSCs)).  In the developing embryo, 

hemangioblasts serve as precursors for hematopoietic and vascular lineages, though 

the postnatal existence of hemangioblasts is disputed.  MPCs have a tri-lineage 

differentiation potential and able to develop into adipocytes, osteoblasts, and 

chondrocytes. 

[EC = endothelial cell; EPC = endothelial progenitor cell; HSC = hematopoietic stem 

cell; MPC = mesenchymal progenitor cell; SC = stem cell; SMC = smooth muscle cell; 

VSC = vascular stem cell]  
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1.2.1 Mesenchymal Precursors 

The first description of mesenchymal precursors in the BM came from 

Friedenstein, Chailakhjan, and Lalykina in 1968, who observed a monolayer of colony-

forming fibroblastic cells developing from guinea pig marrow aspirates67.  These 

mesenchymal precursors are possibly the most abundant precursor type in the marrow 

yet their identity and true differentiation potential is obscure and controversial.  These 

cells are often referred to as marrow/mesenchymal stem/stromal cells (MSCs) in the 

literature.  I have elected to refer to these cells as mesenchymal precursor/progenitor 

cells (MPCs) due to the lack of experimental evidence for the ‘stem’ cell phenotype and 

hematopoietic differentiation ability.  Furthermore, stromal cell definition may also be 

misleading depending on the context.  For example, a well-known function of these 

mesenchymal precursors is tissue repair following injury and thus, not solely a 

supportive framework for other functional cell types within the BM.  Therefore, I believe 

a proper term for these cells is mesenchymal progenitor/precursor cell.   

MPCs have typically been isolated from the BM mononuclear cell fraction on the 

basis of their adherence to plastic surfaces relative to hematopoietic cells, although this 

imprecise method invariably results in a contaminated heterogeneic cell population68-70.  

As the characterization of MPCs improved and selective surface markers were 

identified, monoclonal antibodies such as Stro-1 have been employed in order to better 

isolate a homogenous subset of cells for experimentation and analysis68, 69.  Other 

surface antigens of mesenchymal precursors include CD73, CD90, and CD105, though 

the cells must be devoid from the expression of CD11b, CD14, CD19, CD34, CD45, and 
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CD79α in order to exclude cells with a hematopoietic phenotype71, 72.  Additionally, the 

cells must be capable of in vitro differentiation into osteoblasts, adipocytes, and 

chondroblasts (Figure 1.4), though in vivo, chondrogenesis is typically localized to the 

osteochondral environment of joint cavities as opposed to our primary area of interest, 

the BM71, 73, 74.  

1.2.1.1 Osteoblastogenesis & Chondrogenesis 

 The predominant factor involved in regulating osteoblastic differentiation is Runt-

related transcription factor 2 (Runx2; also known as core-binding factor subunit α 1 

(CBFα1)75.  Once induced by bone morphogenic protein-7 (BMP7), Runx2 and its 

heterodimeric subunit CBFβ bind the Runx consensus sequence present in the 

promoter regions of key osteoblastic genes, leading to the development of MPCs into 

osteochondro-progenitor cells76-78.  Runx2-induced expression of the transcription factor 

Sp7 (also known as osterix) guides these bi-potential cells towards the osteoblastic 

lineage, while repressing Sex determining region-Y box 9 (Sox9) that directs 

chondrogenic development77, 79.  Together, Runx2 and Sp7 drive the expression of the 

major osteoblastic genes that contribute to the bone cell phenotype, including bone 

gamma-carboxyglutamic acid-containing protein (BGLAP; also known as osteocalcin), 

collagen 1A1, and osteopontin76, 80.  Additionally, Runx2 also plays a major role in 

suppressing the cell division of differentiating progenitor cells, entering osteoblasts into 

a post-proliferative state81.   
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Figure 1.4.  Key transcription factors regulating MPC differentiation. 

MPCs differentiate into adipocytes upon induction of PPARγ and the C/EBP family of 

transcription factors.  Activation of Runx2 stimulates MPC commitment to osteoblastic 

or chondrogenic lineages.  Subsequent expression of Sox9 directs differentiation 

towards chondrocytes, while Sp7 inhibits this pathway to facilitate osteoblastogenesis. 

[C/EBP = CCAAT-enhancer-binding protein; MPC = mesenchymal progenitor cell; 

PPARγ = peroxisome proliferator-activated receptor γ; Sox9 = sex determining region 

Y-box 9] 
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1.2.1.2 Adipogenesis 

 Adipogenic differentiation of MPCs is a biphasic process, broadly divided into two 

stages: determination and terminal differentiation.  In culture, the process requires 

approximately seven days from the initiation of adipogenic stimulation and is tightly 

regulated by an intricate cascade of transcription factors and ligand-receptor 

interactions82.   

1.2.1.2.1 Adipogenic Determination 

 Determination involves commitment of precursor cells to development along the 

adipogenic lineage as a pre-adipocyte (Figure 1.5A).  At this stage, pre-adipocytes 

remain morphologically identical to their precursor, although these cells have lost the 

ability to differentiate along any other developmental pathway82, 83.  The molecular 

mechanisms and interactions underlying adipogenic commitment are not well 

understood.  BMP4 is believed to play an important role in determination, having 

repeatedly been shown capable of committing murine C3H10T1/2 cells to adipocyte 

development84-87.  Hypomethylation of the BMP4 locus is suspected to be involved, as 

treatment with 5-azacytidine, a potent DNA methyltransferase inhibitor, is able to induce 

commitment of precursor cells to the adipogenic lineage by increasing the accessibility 

of the BMP4 transcriptional start site88, 89.  Interactions between BMP4 and its cell 

surface receptor BMP4R1A result in the rapid phosphorylation of Smad1/5/8, which 

complexes with Smad486.  This protein complex undergoes nuclear translocation, where 

it controls gene expression, though the specific targets are not yet known86, 90.  In many   
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Figure 1.5.  Schematic illustrating adipogenic determination and terminal 

differentiation. 

Differentiation of MPCs into adipocytes is governed by a tightly-regulated transcriptional 

cascade.  (A) The first stage of adipogenesis involves commitment of MPCs to the 

adipogenic lineage in a process known as determination.  Determination is primarily 

regulated by a BMP and Smad signalling pathway.  (B) Terminal differentiation of 

committed preadipocytes into mature adipocytes begins with C/EBP-β and C/EBP-δ 

inducing the transcription of PPARγ and C/EBPα, which are then able to facilitate the 

transcription of genes responsible for producing the adipocytic phenotype. 

[BMP4 = bone morphogenic protein 4; BMP4R1A = bone morphogenic protein 4 

receptor 1A; C/EBP = CCAAT-enhancer-binding protein; ERK = extracellular signal-

regilated kinase; FABP4 = fatty acid binding protein 4; Glut4 = glucose transporter 4; IR 

= insulin receptor; LPL = lipoprotein lipase; MEK = mitogen-activated protein kinase 

kinase; MPC = mesenchymal progenitor cell; PPARγ = peroxisome proliferator-

activated receptor γ] 
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well-studied murine pre-adipocyte cell lines, determination and terminal differentiation 

are separated by a brief period of proliferation, known as mitotic clonal expansion, 

though it has previously been demonstrated that this stage is not a requirement for 

human BM-MPC development91, 92.   

1.2.1.2.3 Terminal Differentiation 

  The terminal differentiation of committed progenitor cells into mature adipocytes   

is largely controlled by peroxisome proliferator-activated receptor-γ (PPARγ), which is 

known as ‘the master regulator of adipogenesis’, and the CCAAT-enhancer-binding 

protein (C/EBP) family of transcription factors.  Pro-adipogenic stimuli promote the 

hyper-phosphorylation and activation of C/EBP-β by mitogen-activated protein kinase 

kinase (MEK)/extracellular signal-regulated kinase (ERK) signalling93, 94.  C/EBP-β acts 

synergistically with C/EBP-δ to enhance the expression of PPARγ and C/EBP-α through 

direct binding to potential C/EBP sites located within the PPARγ and C/EBP-α promoter 

regions83, 95.  PPARγ and C/EBP-α form a positive feedback loop, in which each factor 

is capable of promoting the expression of the other in order to maintain the 

differentiated state96, 97.  C/EBP-α is also able to bind its own C/EBP-regulatory element 

to reinforce its own expression independently of PPARγ-mediated regulation98.  PPARγ, 

in tandem with its heterodimeric partner retinoid X receptor (RXR), and C/EBP-α act in 

concert to stimulate the expression of a number of adipocyte-specific genes, including 

fatty acid binding protein-4 (FABP4), Glut4, lipoprotein lipase, glycerophosphate 

dehydrogenase, and acetyl CoA carboxylase, among others (Figure 1.5B)97.  C/EBP-α 
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also becomes phosphorylated by cyclin D3, resulting in the formation of growth-

inhibitory complexes in order to enter adipocytes into a non-proliferative state99. 

1.2.2 Vascular Stem Cells  

VSCs are defined as “self-renewing multipotent stem cell[s] that [give] rise to 

vascular lineages”100.  VSCs, which may also be known as angioblasts, share a 

common developmental origin with HSCs as hemangioblasts residing within embryonic 

blood islands, though some evidence suggests that hemangioblasts may persist into 

adulthood in small numbers within the BM101-103.  The development of a hemangioblast 

into either a VSC or an HSC is contingent on the expression of vascular endothelial 

growth factor (VEGF) receptor-2 (VEGFR-2; also commonly known as fetal liver kinase-

1 or Flk-1) and the stem cell leukemia (SCL) transcription factor, respectively104, 105.  

SCL appears to be the predominant director of hemangioblast development and 

hematopoietic fate via Runx1 signalling, while VEGFR-2 is necessary for vascular 

lineage progression104-107.  Hemangioblasts have been characterized by the expression 

of VEGFR-2 and SCL, along with CD133 (a stem and progenitor cell marker; also 

known as AC133 or prominin-1) and CD34 (a cell adhesion factor mediating stem cell 

(SC) attachment to the BM)101, 103.  Stimulation of VSCs with VEGF induces their 

development into lineage-restricted EPCs, which can then enter into circulation, 

differentiate into mature ECs, and contribute to the formation or repair of the 

arteriovenous network108, 109. 
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1.2.2.1 Endothelial Progenitor Cells 

 EPCs are committed progenitor cells that will eventually give rise to the ECs that 

participate in the repair of damaged vasculature110.  BM-derived EPCs enter into 

circulation and migrate to the site of vascular injury, where they restore impaired blood 

flow111, 112.  Vessel repair may be comprised of angiogenesis and vasculogenesis.  In 

angiogenesis, blood vessels are formed by sprouting or intussusception (splitting) of 

pre-existing vascular networks113.  Vasculogenesis denotes the de novo formation of 

blood vessels from precursor cells.  In the embryo, vasculogenesis is employed in the 

formation of the earliest vascular plexus, after which angiogenesis was originally 

believed to take over as the predominant mechanism of vessel formation113-115.  Only 

relatively recently has vasculogenesis been accepted as a complementary method of 

postnatal neovascularization, with circulating EPCs now serving as a novel biomarker 

for vascular health116-120.   

 Asahara and colleagues were the first to identify and isolate EPCs from adult 

circulation in 1997121.  EPCs were obtained through magnetic bead selection for CD34-

positive cells in the leukocyte fraction of peripheral blood.  After seven days of culture, 

these progenitor cells adopted an endothelial-like phenotype and gene expression 

pattern.  Labelled CD34-positive cells were then injected into an athymic mouse model 

of hind limb ischemia to evaluate vasculogenic capacity.  After 6 weeks, there was 

significant incorporation of CD34-positive cells into capillaries of the ischemic limb 

relative to an injection of control CD34-depleted cells, suggesting a great potential of 

these cells to contribute to neovascularization.  Following this initial discovery of EPCs 
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in postnatal circulation, these cells have since been shown to significantly contribute to 

vessel formation in both physiological and pathological capacities46, 49, 122, 123.   

EPCs that have entered into circulation can be obtained through culture of 

peripheral blood mononuclear cells in a VEGF-containing medium108, 124.  

Characterizing EPCs has proven difficult, largely due to the co-occurrence of mature 

circulating ECs, likely shed from the vessel walls, within peripheral circulation46.  

Additionally, there appear to be two distinct categories of EPCs that are able to 

contribute to blood vessel repair and development125.  These two cell types can be 

distinguished primarily on the basis of their morphology and ability to proliferate124, 126.  

Early-outgrowth EPCs are spindle-shaped CD14- and CD45-positive cells that appear 

after about 10-14 days of culture and exhibit a low propensity for mitogenesis125-131.  

This population is believed to arise from the reprogramming of myeloid progenitors or 

monocytes into cells with an endothelial-like phenotype130-134.  Also contained within the 

peripheral blood mononuclear fraction is a small subset of cobblestone-shaped, highly 

proliferative cells, known as late-outgrowth colonies or endothelial colony-forming cells 

that appear after three or more weeks of culture126, 128, 129, 135-137.  Late-outgrowth cells 

are free from monocytic and hematopoietic markers and correspond to BM-derived 

EPCs138.  Both early- and late-outgrowth cell types appear to have a similar capacity for 

angiogenesis in vivo, though early EPCs were shown to be incapable of forming the 

capillary-like structures characteristic of vasculogenesis126, 129, 139, 140.  From this point 

forward, discussion of EPCs will centralize solely on the BM-derived late-outgrowth EPC 

cell type. 
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 As an intermediate between SCs and mature ECs, EPCs express markers of 

both stem and fully differentiated cells141.  In the BM, VSC precursors able to give rise to 

EPCs are characterized by the expression of VEGFR-2, CD34, and CD133142-144.  

CD133 is the only one of these markers not expressed by mature endothelial cells, 

which allows EPCs or cells capable of giving rise to EPCs to be distinguished from the 

circulating EC population50, 115.  A single surface marker specific to EPCs has yet to be 

described, although CD133 is currently considered to be the putative marker for the 

identification of EPCs145-147.  Functional characteristics of EPCs include the ability to 

uptake acetylated low density lipoprotein and adhere to the fucose-binding lectin Ulex 

europaeus agglutinin-1, which are features also shared by mature ECs127, 135.  Upon 

activation, BM-EPCs enter peripheral circulation and increase their expression of 

endothelial markers, such as vascular endothelial-cadherin (VE-cadherin), von 

Willebrand factor (vWF), tyrosine kinse with immunoglobulin-like and EGF-like domains 

2 (Tie-2), eNOS, and CD31 (also known as platelet endothelial cell adhesion molecule-1 

or PECAM-1), and reduce expression of the SC marker CD133108, 113, 148.  Once fully 

differentiated and incorporated into the endothelium, the expression of CD133 is 

abolished148-150.  In culture, CD133 is lost upon adherence of cells to culture plates.  

While the expression of VEGFR-2 persists following maturation, CD34 may or may not 

be expressed by differentiated ECs depending on the size of the blood vessel113, 148. 

 Though the specific cellular and non-cellular interactions in the marrow that 

govern EPC derivation and release into circulation are poorly understood, a number of 

studies have unanimously reported that the proliferation, differentiation, and migration of 

EPCs are stimulated by tissue ischemia.  A lack of oxygen within a microenvironment 



 

 

22 

prevents the proteosomal degradation of heterodimeric hypoxia-inducible factor (HIF) 

within resident cells by a pair of mechanisms151.  Under normoxic conditions, 

hydroxylation of two prolyl residues of the HIF-α subunit facilitates the protein’s 

interaction with a ubiquitin ligase and targets the protein for destruction151-155.  

Additionally, a HIF-α carboxyl-terminal asparginyl residue may undergo β-hydroxylation 

in order to prevent the binding of the transcriptional co-activator p300151, 153, 156.  Both of 

these hydroxylation reactions require the use of molecular oxygen as a requisite 

cofactor157, 158.  Under ischemic conditions, the failings of these regulatory measures are 

unable to target HIF to the proteosome or prevent the transcriptional activity of the 

protein.  HIF can then up-regulate the expression and secretion of VEGF and 

stem/stromal cell-derived factor-1 (SDF-1), which are believed to serve as principal 

signalling molecules in EPC activation and mobilization, respectively159-165.  VEGF and 

SDF-1, along with other angiogenic factors such as insulin-like growth factor-2 (IGF-2), 

enhance the expression and activity of matrix metalloproteinase (MMP)-9 in the BM, 

which cleaves the membrane-bound Kit-ligand, known as stem cell factor (SCF) to 

release its soluble form166-168.  Soluble SCF interacts with its receptor, c-Kit, expressed 

by various stromal cells to augment the BM microenvironment in favor of SC 

proliferation and mobilization into circulation147, 166, 169.  Several signalling pathways 

have been implicated in directing the proliferation and migration of EPCs, including 

Sonic hedgehog (Shh) acting through phosphoinositide-3-kinase (PI3K) and protein 

kinase B (PKB)-mediated phosphorylation of NOS, as well as VEGF-induced signalling 

via a protein kinase D-1 (PKD-1)-histone deacetylase (HDAC) 7 axis170-172.  These 

signalling cascades result in an influx of EPCs from the BM into circulation, which use 
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an SDF-1- and/or IGF2-mediated chemotactic gradient in order to home to sites in need 

to neovascularization164, 168, 173-175.   

 In diabetes, the EPC-recruiting response to hyperglycemia-induced vascular 

injury appears to be impaired.  In cultured samples of peripheral blood obtained from 

type 1 diabetics, the number of EPCs in circulation was reduced by 44% relative to 

control subjects, suggesting that the disease impairs mobilization of precursor cells from 

the BM62.  The same study also found that the EPCs of diabetic patients exhibited a 

significantly diminished capacity for angiogenesis in an in vitro assay62.  Analysis of 

CD34-positive EPCs derived from type 1 diabetics showed reduced in vitro 

differentiation of the progenitors into mature ECs176.  Similar results demonstrating 

impaired differentiation, migration, and function have also been obtained through the 

study of type 2 diabetic and mixed diabetic  population EPCs, as well as animal 

models57-59, 61, 118, 177-182.  Additionally, our laboratory has shown that hyperglycemia 

significantly increases caspase-3 activity in EPCs183.  The number of EPCs in circulation 

has been identified as an important biomarker for vascular function and overall 

cardiovascular risk and thus, understanding the mechanisms underlying diabetic EPC 

dysfunction is crucial117-120.  Furthermore, the quantities of EPCs from subjects with 

long-duration type 1 diabetes free from vascular complications were equivalent to non-

diabetic controls and demonstrated an enhanced migratory ability184.  This finding 

suggests that preservation of the EPC population and its function are critical in 

preventing or ameliorating diabetic damage to the vasculature.   

 The underlying cause of the EPC dysfunction that occurs in diabetes is not 

presently known178.  A number of potential mechanisms have been suggested, including 
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impairment of circulating EPC survival under hyperglycemic conditions and a reduction 

in the hypoxia-induced expression of pro-angiogenic factors VEGF and SDF-1185-188.  I 

propose that a major contributor to this EPC dysfunction may be disrupted signalling 

resulting from diabetes-induced alterations to the BM SC niche. 

1.2.3 Stem Cell Niche 

As with other SCs, the fates of VSCs in vivo are governed by intracellular gene 

regulation, though this intrinsic program is subject to influence by external elements in 

order to maintain an appropriate balance between self-renewal and differentiation189.  

These extrinsic cues come from SCs’ interactions with the surrounding 

microenvironment.  This microenvironment is comprised of soluble paracrine signalling 

molecules, interactions with nearby stromal cells, and the extracellular matrix, which are 

collectively referred to as the SC niche189-191.  The specific composition of these niches 

are vital in regulating SC quiescence, self-renewal, and differentiation in nearly every 

progenitor cell type166, 191, 192.  The BM SC niche is comprised of a number of cell types, 

as well as their secretory products, cell-cell interactions, and extracellular matrix (ECM) 

(Figure 1.6).  A number of SC niches have been identified and well-characterized, 

including the epithelial, intestinal, and hematopoietic niches.  Recent work has 

broadened our understanding of the BM HSC niche, including changes to the niche in 

disease states such as diabetes and obesity193, 194.  Although EPC dysfunction is 

associated with the development of pathological vascular complications, comparatively 

little is known about the role of the diabetic BM SC niche in mediating this process. 
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Figure 1.6.  Schematic of interactions between BM SC niche components. 

Within the BM reside three SC types: HSCs, MSCs, and VSCs.  The self-renewal and 

differentiation of these SCs is controlled by the surrounding microenvironment, which 

includes MPCs, adipocytes, osteoblasts, and endothelial cells.   

[EPC = endothelial progenitor cell; HSC = hematopoietic stem cell; MSC = 

mesenchymal stem cell; SC = stem cell; VSC = vascular stem cell] 
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1.3 Bone and Marrow Complications of Diabetes 

One of the extravascular complications of diabetes involves changes to the 

composition and structural integrity of the skeletal system.  This phenomenon was first 

described by Morrison and Bogan in 1927, who observed impaired bone development 

and skeletal atrophy in children with long-standing diabetes195.  Clinically, it has been 

well-documented that diabetes induces a significant increase in fracture risk among 

both type 1 and type 2 diabetics, as described by a 2007 systematic review by 

Janghorbani et al. and a 2007 meta-analysis by Vestergaard196, 197.  These fractures are 

particularly common in the radius, femur, and hip and may partially be the result of an 

increased propensity for falls due to retinopathy and lower limb neuropathy198.   

 Interestingly, type 1 and type 2 diabetes have distinct effects on skeletal 

composition.  Type 1 diabetics suffer from a substantially increased risk of fragility 

fractures – approximately 6-fold higher than the general population – and as to be 

expected, display osteopenia and significant reductions in bone mineral density 

(BMD)196, 197, 199-203.  One study has reported the prevalence of osteoporosis (defined as 

BMD at least 2.5 standard deviations below the mean BMD of an average 30-year old 

white woman) as 19.1% among type 1 diabetics (with mean age of 30 years), with 

osteopenia (defined as BMD 1-2.5 standard deviations below the same standard) being 

found in 34-67% of patients201, 204-206.  Low BMD has also been found to correlate with 

an increased severity and incidence of chronic vascular complications, underscoring the 

interrelatedness between the BM and endothelial damage201, 203, 206.  As type 1 diabetes 
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typically presents during childhood or adolescence, low bone mass may be the result of 

impaired bone formation during critical skeletal growth periods195, 207.   

Type 2 diabetes however, despite being characterized by normal or heightened 

BMD (up to 8% higher than non-diabetic subjects after controlling for confounding 

factors), is also associated with an increase in fracture risk due to inferior bone 

quality196, 197, 199, 208-210.  The impaired bone quality is associated with altered collagen 

crosslinking, build-up of AGEs, and reduced bone turnover211.  Interestingly, the risk of 

fracture in type 2 diabetes appears to have a biphasic distribution, with a reduced 

fracture risk in newly diagnosed diabetics and significantly greater risk with increasing 

duration of the disease212.  

1.3.1 Mechanisms of Skeletal Involvement in Diabetes 

The involvement of the skeleton in diabetes may arise as the combined 

consequence of several mechanisms, including altered regulation of vitamin D, reduced 

calcium absorption in the intestine, and accumulation of AGEs within the bone.  The 

changes in blood chemistry associated with diabetes have also been shown to alter the 

development of marrow MPCs, preventing their proliferation and skewing lineage 

potential in favor of adipogenic development over osteoblastogenesis183, 213, 214.  The 

distinct effects of type 1 and 2 diabetes on bone composition may be explained by a 

disrupted balance between BM-MPC self-renewal and differentiation, with promotion of 

adipogenesis over osteoblastogenesis in type 1 diabetes and at the expense of self-

renewal in type 2 diabetes.  Both diseases result in an altered cellular composition of 

the BM and the microenvironment surrounding VSCs and EPCs, which may mediate 
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EPC dysfunction.  There appear to be several mechanisms underlying the shift in MPC 

developmental potential in diabetes, including hyperinsulinemia, hyperlipidemia, 

hyperglycemia, and the use of certain diabetic medications.  

1.3.1.1 Hyperinsulinemia 

Insulin is responsible for the regulation of a number of different processes in 

adipocytes: the accumulation of triglycerides, increasing glucose transport, enhancing 

the rate of lipogenesis, inhibiting lipolysis, and promoting adipogenic differentiation215.  

In vitro, insulin signalling is requisite to induce adipogenesis in cell culture systems and 

in vivo IR-knockout models are subject to compromised adipogenic differentiation216-220.  

Hyperinsulinemia is often present in the initial stages of type 2 diabetes as pancreatic β-

cell insulin production surges in an attempt to combat increasing peripheral insulin 

resistance221, 222.  Insulin binding activates IR or IGF-1 receptor (IGF1R), which leads to 

the tyrosine phosphorylation of the insulin receptor substrate (IRS) and stimulation of a 

tyrosine signalling pathway involving PI3K and PKB (Figure 1.7)215.  The specific effects 

of insulin on adipocytes occur via two mechanisms.  Firstly, PKB activates mammalian 

target of rapamycin (mTOR), which in turn stimulates sterol regulatory element-binding 

protein 1c (SREBP1c; also known as adipocyte determination and differentiation-

dependent factor 1 or ADD1) to regulate the transcription of adipogenic genes, such as 

fatty acid synthase (FAS) and lipoprotein lipase (LPL)223-226.  PKB also phosphorylates 

forkhead box protein O1 (FOXO1), precluding its entry into the nucleus where it serves 

as a transcriptional repressor of PPARγ227, 228.   
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Figure 1.7.  Hyperinsulinemia promotes adipogenesis in MPCs. 

Binding of insulin to IR or IGF1R stimulates the phosphorylation of IRS, leading to the 

activation of a PI3K/PKB signalling pathway.  This pathway induces the transcription of 

PPARγ and adipocyte-specific genes, such as FAS and LPL. 

[FAS = fatty acid synthase; FOXO1 = forkhead box protein O1; IGF1R = insulin-like 

growth factor-1 receptor; IR = insulin receptor; IRS = insulin receptor substrate; LPL = 

lipoprotein lipase; MPC = mesenchymal progenitor cell; mTOR = mammalian target of 

rapamycin; PI3K = phosphoinositide-3-kinase; PKB = protein kinase B; PPARγ = 

peroxisome proliferator activated receptor γ] 
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Insulin has also been suggested to have anabolic actions on bone229.  

Osteoblasts possess high affinity receptors capable of binding insulin at physiological 

concentrations, and insulin signalling has been shown to be critical for osteogenic 

progenitor cell proliferation, bone mineralization, and bone turnover230-235.  Insulin has 

also been shown to positively influence the survival of osteoblasts in a dose-dependent 

manner236.  As hyperinsulinemia characterizes the early stages of type 2 diabetes, the 

unique effects insulin exerts on osteoblasts may contribute to the increased BMD and 

reduced fracture risk seen in newly-diagnosed diabetic subjects212, 237, 238.  Following β-

cell failure (or in type 1 diabetics), patients devolve into a hypoinsulinemic state, 

preventing the occurrence of these osteo-anabolic effects and potentially contributing to 

the enhanced fracture risk in the type 2 diabetic population with increasing disease 

duration239. 

1.3.1.2 Hyperlipidemia 

 Hyperlipidemia is nearly a universal hallmark of type 2 diabetes and is also a 

frequent comorbidity in type 1 diabetes, particularly when poorly controlled240-242.  

Plasma levels of free fatty acids (FFAs) are elevated in many diabetics and have been 

shown to contribute to the development of insulin resistance and cardiovascular 

disease242-246.  Significant elevations in the relative quantities of di- and tri-unsaturated 

fatty acids relative to saturated fats have also been found in the plasma of non-obese 

diabetic mice247.  PPARγ is capable of serving as a physiological sensor of lipid levels, 

with both mono- and poly-unsaturated fatty acids binding to and activating the 

transcription factor to promote adipogenesis248, 249.  In addition to the effects of fatty 
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acids on undifferentiated cells, treatment of osteoblasts with serum high in fatty acids 

was found to induce their cross-differentiation into adipocytes, as characterized by Oil 

Red O staining and up-regulation of FABP4250.  Diabetes has also been associated with 

increases in the endogenous production of prostaglandins251-253.  Prostaglandins have 

similarly been shown to bind PPARγ to promote adipogenic differentiation, while also 

inhibiting osteoblastogenesis of MPCs254-256. 

1.3.1.3 Hyperglycemia 

1.3.1.3.1 PI3K-PKB Pathway  

 High levels of blood glucose have been demonstrated to increase adipocyte 

formation, lipid accumulation, and the expression of PPARγ in mouse BM-derived 

MSCs257.  It has been suspected that hyperglycemia partially mediates its effects 

through changes to post-receptor insulin signalling, which may be implicated in the 

development of insulin resistance257, 258.  High levels of glucose increases the activity of 

PI3K and the subsequent phosphorylation of PKB, both of which are involved in the 

insulin signalling cascade257, 258.  PKB-facilitated de-repression of the pparγ gene 

though FOXO1 nuclear export leads to the induction of PPARγ and C/EBPα expression, 

along with increased adiposity of the bone marrow257, 259-261. 

1.3.1.3.2 Reactive Oxygen Species 

 As described earlier, diabetes is characterized by overproduction of ROS.  

Excessive movement of electrons through the TCA cycle eventually overwhelms the 

electron transport system and results in the generation of superoxide from molecular 
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oxygen.  Superoxide is then able to inhibit the action of glycolytic enzyme 

glyceraldehyde-3 phosphate (GAPDH), which leads to the stimulation of the AGE 

pathway that has been shown to be increasingly activated in diabetes22, 262, 263.  AGEs 

are proteins or lipids that become glycosylated following exposure to sugars and 

accelerate cellular oxidative damage and have been implicated in both micro- and 

macro-vascular diabetic complications264-267.  Binding of AGEs and their receptors, 

known as RAGE, have been associated with reduced bone formation by osteoblasts 

and diminished matrix mineralization, in addition to impaired osteoblastogenesis268, 269.  

AGE-RAGE interactions have also been identified as promoters of the MPC and 

osteoblast apoptosis, contributing to the depletion of the BM SC niche270, 271.  

Additionally, AGEs in collagen lead to heightened cross-linking and increased stiffness 

of the collagen network, possibly resulting in bone fragility263, 272.  

 Oxidative stress induced by hyperglycemia has also been found to activate the 

PI3K/PKB pathway, which acts to inhibit osteoblastic maturation and stimulate 

adipogenesis273.  Osteoblasts exposed to ROS resultant from high glucose demonstrate 

decreased expression of Runx2 and osteocalcin, with a concomitant increase in the 

abundance of the adipogenesis-related factors PPARγ, adipsin, and aP2273. ROS is 

also able to prevent matrix mineralization and enhance the accumulation of lipid 

droplets in osteoblasts273.  

1.3.1.3.3 Non-Canonical Wnt-PKC Pathway 

While most of the wingless-type MMTV integration site family member (Wnt) 

family of genes are responsible for the negative regulation of adipogenesis, we have 
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shown that Wnt11 may be induced by hyperglycemia to enhance the adipocytic 

differentiation of marrow cells274.  While the mechanism remains to be fully elucidated, 

our current working model is that, through a non-canonical pathway, hyperglycemia 

induces a switch in Wnt11 signalling that differentially activates the various isoforms of 

PKC, specifically inducing the phosphorylation and consequent activation of PKC-γ or -

ε274, 275.  PKC-ε is trans-located from the cytoplasm to the nucleus where it is expressed 

in spatiotemporal symmetry with C/EBPβ, suggesting a potential interaction274, 276.  

Through a currently unknown process likely involving the phosphorylation and 

regulation of key nuclear adipogenic factors, PKC-ε activation results in the acceleration 

of adipocytic differentiation276.  

1.3.1.3.4 Hyperglycemia on Osteoblasts 

 Understanding the effects of excessive glucose on pre-osteoblasts has been 

complicated by the inconsistent definitions of hyperglycemia used by researchers, 

although this also allows for the characterization of a dose-response effect to increasing 

glucose concentrations.  Moderate elevations in glucose level (15 mmol/L) have been 

shown to promote the proliferation and differentiation of pre-osteoblasts via activation of 

the PI3K/PKB signalling pathway, while also significantly reducing calcium uptake and 

deposition277, 278.  As glucose concentration increased to 20-35.5 mM, differentiation of 

pre-osteoblasts and the expression of osteogenic genes progressively decreased278, 279.  

Escalating glucose levels have also been associated with significant increases in ROS, 

as well as apoptosis in mature osteoblasts280.  Hyperglycemia has been shown to down-

regulate pro-osteoblastic genes Runx2, BGLAP, and osteonectin with simultaneous up-
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regulation of adipogenic genes PPARγ, adipsin, and adipocyte protein 2 (aP2), as well 

as lipid accumulation, suggesting the potential for cross-differentiation281, 282.   

Diabetes is characterized by the accelerated formation of AGEs due to the 

greater availability of glucose283.  AGEs are capable of inhibiting the osteoblastic 

differentiation of precursor cell lines via repression of Sp7 independently of 

hyperglycemia284.  Additionally, long-term interactions between AGEs and its receptor, 

RAGE, stimulates the apoptosis of osteoblastic cells both in vitro and in vivo, particularly 

in more mature cell types270.  In addition, the formation of AGEs has been shown to 

increase collagen network stiffness, leading to a reduction in its ductility and contributing 

to the increased susceptibility to fractures in diabetics211, 285.   

1.3.1.4 Effects of Diabetic Medications 

1.3.1.4.1 Thiazolidinediones 

Thiazolidinediones (TZDs or glitazones) are a class of oral anti-diabetic 

medications once commonly prescribed to improve insulin responsiveness that have 

since fallen from favour over concerns regarding their cardiovascular and hepatic 

safety286, 287.  TZDs exert their beneficial effect on insulin resistance through high affinity 

binding to and activation of PPARγ288.  Within adipose deposits, this interaction skews 

the differentiation potential of resident progenitor cells towards the fat cell lineage, 

leading to weight gain289.  In the BM, TZDs skew the development of MPCs by driving 

adipogenesis directly through the induction of PPARγ, while simultaneously suppressing 

osteoblastic development290-293.  Treatment of osteo-adipo precursor cells with TZD 
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results in up-regulation of fat cell-specific factors, such as adipsin and FABP4293.  BM-

MPCs treated with rosiglitazone demonstrate suppression of early markers of 

osteoblastic differentiation, such as Runx2, as well as biochemical indicators of bone 

formation, such as osteocalcin, alkaline phosphatase, and collagen 1293-295.  Others 

have attributed the loss of bone density to TZD-induced apoptosis of osteoblasts and 

mature osteocytes in concomitance with inhibition of bone formation296-298. 

TZDs have been variously reported as having both positive and negative effects 

on the differentiation and function of osteoclasts.  TZDs have been shown to be potent 

inhibitors of osteoclast formation and minimizers of bone resorption299, 300.  Alternatively, 

osteoclast-specific deletion of PPARγ has also been found to result in osteopetrosis and 

increased bone mass, while TZD-mediated stimulation of PPARγ can increase 

osteoclastic differentiation and lead to excessive bone resorption301, 302.  This effect 

appears to be the result of a PPARγ-stimulated increase in the transcription of c-Fos, 

which plays a critical role in the differentiation of osteoclasts301, 303.  Additionally, 

rosiglitazone has been shown to increase the abundance of C-terminal telopeptide in 

some diabetic populations, which serves as a biomarker of osteoclast function, though it 

has also been reported to inhibit osteoclastogenesis and bone resorption295.  

1.3.1.4.2 Insulin Analogues 

As insulin is a well-known inducer of adipogenesis, it is of little surprise that 

starting diabetic patients on exogenous insulin therapy is often associated with a 

significant increase in adiposity.  Type 2 diabetic subjects treated solely with Neutral 

Protamine Hagedorn (NPH) insulin reported an average increase in body weight of 7.5 



 

 

36 

kg over 12 months of therapy304.  This weight gain appears to be a consequence of 

increased lipid accumulation from fully developed fat cells and promotion of the 

adipogenic differentiation of progenitor cells305.  Interestingly, not all insulin analogues 

have an identical effect on progenitor cells, with lower mRNA expression of adipogenic 

markers PPARγ and leptin among preadipocytes treated with insulin detemir305-307.  

Insulin detemir has been shown to have a minimal effect on MPC differentiation or 

weight gain relative to other insulin formulations305, 308-310.  This may be a function of the 

medication’s reduced affinity for the insulin receptor, though treatment of preadipocytes 

with both equimolar and equipotent concentrations of insulin detemir resulted in 

significantly less differentiation than did treatment with human insulin305, 306, 311.  

Specifically in regards to bone, treatment of type 2 diabetics with insulin therapy has 

been associated with an increased risk of fractures312, 313.  

1.3.1.4.3 Metformin 

 Metformin is the often the first-line pharmacological therapy of choice in the 

management of type 2 diabetes314.  Metformin is an orally administered biguanide that 

moderates plasma glucose levels by suppressing excessive hepatic 

gluconeogenesis315.  Unlike many other anti-diabetic medications, metformin is not 

associated with increased enhanced adipogenesis or weight gain, and in many cases, 

actually leads to a reduction in weight316, 317.  A retrospective chart review of type 2 

diabetics treated with metformin alone identified a significant increase in BMD, while 

joint therapy with metformin and insulin failed to produce this increase318.  Other studies 

have similarly confirmed a decrease in the risk of fractures among diabetics treated with 
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metformin319, 320.  In vivo animal models have shown increased BMD and bone 

formation when treated with metformin, while the administration of metformin to in vitro 

culture systems appears to promote osteoblastic differentiation of MPCs and inhibit 

adipogenesis321-326.  Metformin increases the expression of several biochemical 

markers of bone formation among osteoblasts, such as alkaline phosphatase, collagen 

1, and BGLAP323.  Metformin also enhances the production of osteoprotegerin, an 

osteoclast-inhibitory factor, and decreases the expression of the osteoclast-stimulating 

factor RANKL by osteoblastic cells to reduce bone turnover321. 

Metformin has been shown to increase bone density by promoting the osteogenic 

differentiation of MPCs both in vitro and in vivo, with up-regulation of osteoblastic 

transcription factor Runx2 and no discernable effect on PPARγ, potentially leading to a 

slight reduction in fracture risk319, 322-324.  This enhanced osteogenesis appears to be the 

result of increased activation of AMP-activated protein kinase (AMPK) leading to up-

regulation of eNOS and BMP2324, 327, 328.  Metformin may also reduce levels of 

sclerostin, an osteocyte-produced glycoprotein with anti-anabolic effects on bone 

through Wnt and β-catenin signalling to enhance bone density318.  
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1.4 Rationale 

 Previously, the primary role of adipocytes was believed to be energy storage, 

though as of late, an important regulatory function for adipocytes has been realized.  

Adipocytes are now recognized as acting systemically through the production of 

hormones such as adiponectin, resistin, and leptin, as well as acting locally via the 

actions of an assortment of cytokines.  We believe that diabetes-induced shift in the 

developmental potential of BM-MPCs leads to the formation of a unique cellular 

composition within the BM, skewed in favor of adipocytes.  Studies of numerous other 

SC types have established the importance of the extracellular environment surrounding 

SCs in guiding cellular differentiation.  Many studies have investigated the role of the 

BM hematopoietic SC niche on HSC development, including variations of the niche 

within the context of disease states such as diabetes193, 329-331.  Interestingly, relatively 

little has been written about the interactions between the BM microenvironment and 

resident VSCs and EPCs, even though the cell types are significant contributors to 

vascular health.  The interactions between VSCs/EPCs, BM stromal cells, and other BM 

components that govern the differentiation and release of EPCs into circulation are 

poorly understood46.  Elucidating the mechanism by which diabetes leads to 

impairments in EPC survival, migration, and proliferation may provide a novel 

therapeutic approach for the prevention and management of diabetic complications. 
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1.5 Hypothesis 

 I hypothesize that the diabetes-induced changes in the differentiation potential of 

BM-MPCs alters the composition of the BM SC niche in a way which significantly 

impairs resident VSC survival.  

1.6 Specific Aims 

In order to test out hypothesis, I established three primary objectives: 

1. To construct an in vitro niche modelling system to assess the impact that co-

culture with MPCs, adipocytes, and osteoblasts have on the survival and 

adherence of CD133-expressing VSCs 

2. To identify genes that are differentially regulated by adipocytes and osteoblasts 

relative to MPCs that may affect the properties of VSCs 

3. To utilize a rat model of diabetes to correlate our in vitro gene expression data to 

an in vivo model of diabetes 
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Chapter 2 : Materials and Methods 

2 Materials and Methods 

2.1 In Vitro Studies 

I derived BM-MPCs from cultures of BM mononuclear cells (MNCs; Lonza Inc., 

Walkersville, MD) on plastic tissue culture dishes coated with 1 μg/cm2 fibronectin (FN) 

(Millipore, Temecula, CA) in complete Endothelial Basal Media-2 (EBM-2; Lonza Inc.) 

supplemented with 20% fetal bovine serum (FBS; Life Technologies, Burlington, ON), 

1% antibiotic-antimycotic solution of penicillin, streptomycin, and fungizone 

(amphotericin) (PSF; Mediatech Inc., Manassas, VA), and SingleQuots (Lonza Inc.) 

containing VEGF, IGF-1, human epidermal growth factor, human basic fibroblast growth 

factor, ascorbic acid, heparin, hydrocortisone, and gentamicin/amphotericin B.  The 

media was changed three times per week.  Cultures were maintained in an incubator 

with 5% CO2 at 37oC.  In order to generate human adipocytes and osteoblasts, I 

prepared BM-MPCs as described above, with the exception of FN coating of culture 

dishes.  I then induced differentiation by exposing cells seeded at a density of 50,000 

cells/cm2 to specific differentiation media.  Differentiation into adipocytes was induced 

through a seven-day culture of BM-MPCs in StemPro Adipogenesis Differentiation 

Media (Life Technologies), supplemented with 1% PSF.  BM-MPC differentiation into 

osteoblasts was induced through a 14-day culture of confluent BM-MPCs in StemPro 

Osteogenesis Differentiation Media (Life Technologies) with 1% PSF.  Differentiation 

media were changed three times per week.  
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 I utilized PoieticsTM human umbilical cord blood CD133+ cells (Lonza Inc.) to 

serve as VSCs, as CD133 is, at present, the single best marker of precursor cells with 

endothelial potential145, 147.  Our laboratory and others have previously shown derivation 

of outgrowth EPCs from CD133+ umbilical cord and bone marrow cells143, 332, 333.  As 

the expression of CD133 tends to be lost very rapidly in these cells upon culture, I 

utilized the cells without prior culture in all experiments in order to minimize variability146.  

For some experiments, I maintained CD133+ cells in short-term culture in complete 

EBM-2, with 20% FBS, 1% PSF, and SingleQuots.  For co-culture experiments, 10,000 

CD133+ cells/cm2 were seeded onto confluent cultures of BM-MPCs, or MPC-derived 

adipocytes or osteoblasts and maintained for one to 21 days.  Twenty-one days was 

selected as a suitable endpoint in order to allow for the potential differentiation of 

CD133+ cells into ECs, which occurs after approximately three weeks of culture143, 334. 

2.2 In Vivo Model 

 All experiments were conducted in accordance with Western University and 

Animal Care and Veterinary Services Guidelines. Six-week old male Sprague-Dawley 

rats (175 g) were obtained from Charles River (Wilmington, MA).  A single 

intraperitoneal injection of 65 mg/kg streptozotocin (STZ) in a pH 5.6 citrate buffer was 

administered.  Control animals were subjected to an intraperitoneal injection of an 

equivalent volume of citrate buffer alone.  Changes in body weight and blood glucose in 

rats were monitored for four weeks following STZ injections and confirmation of 

hyperglycemia.  After four weeks, the rats were then euthanized and their femurs were 

extracted.  Four weeks has previously been shown to be a sufficient length of time to 
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elicit significant changes in skeletal composition and bone deposition in models of STZ-

induced diabetes in both mice and rats335-338. 

2.2.1 RNA Isolation from Marrow Samples for qPCR 

 The BM of the medullary cavity of femurs of each rat was then extracted in order 

to conduct gene expression analyses.  To remove the BM, the epiphyses of the bones 

were removed, followed by centrifugation of the diaphyses at 200 xg for 12 minutes.  

The resulting fluid was then suspended in RLT lysis buffer (from RNeasy Mini Plus kit; 

Qiagen, Mississauga, ON) before being passed through an 18-gauge syringe. 

2.3 Measurement & Assessment 

2.3.1 RNA Isolation and qRT-PCR 

 Total RNA was extracted from cells and isolated rat marrow using RNeasy Mini 

Plus kits and according to established protocol339.  cDNA was synthesized using iScript 

Reverse Transcription Supermix (Bio-Rad Laboratories, Inc., Mississauga, ON) and the 

PTC-100 Thermal Cycler (MJ Research, St. Bruno, QC).  Quantitative reverse 

transcription polymerase chain reaction (qRT-PCR) was conducted using custom 

PrimePCR arrays (Bio-Rad Laboratories, Inc.) (Tables 2.1 and 2.2) or individual primers 

as listed in Tables 2.3 and 2.4 (Qiagen).  PCR reactions for in vitro experiments 

consisted of 10 µL of SsoFast Evagreen Supermix (Bio-Rad Laboratories, Inc.), 1 µL of 

cDNA, 1 µL of forward and reverse primers at 10 µM (except when using PrimePCR 

arrays), and 8-9 µL nuclease-free H2O (total reaction volume of 20 µL).  PCR reactions 

for in vivo experiments utilized 10 µL of RT2 SYBR Green Mastermix (Qiagen), 2 µL of  
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Table 2.1.  Primer sequence information for niche gene qRT-PCR custom plate 

array. 

Gene Species Length (bp) Source (Catalogue 
Number/Assay ID) 

SC Markers 

CD90 Human 120 bp Bio-Rad (qHsaCED0036661) 

CD133 Human 146 bp Bio-Rad (qHsaCID0017657) 

cKit Human 63 bp Bio-Rad (qHsaCID0008692) 

Nanog Human 116 bp Bio-Rad (qHsaCED0023824) 

Octamer-binding 
transcription factor 4 
(Oct4) 

Human 100 bp Bio-Rad (qHsaCED0038334) 

SCF Human 63 bp Bio-Rad (qHsaCID0008692) 

Human 115 bp Bio-Rad (qHsaCID0008103) 

Sox2 Human 98 bp Bio-Rad (qHsaCED0036871) 

Endothelial Markers 

VE-cadherin Human 112 bp Bio-Rad (qHsaCID0016288) 

vWF Human 113 bp Bio-Rad (qHsaCED0033955) 

Hematopoietic Markers & Signalling 

CD34 Human 99 bp Bio-Rad (qHsaCID0007456) 

CD45 Human 69 bp Bio-Rad (qHsaCED0038908) 

Hemoglobin-α1 
(HBA1) 

Human 90 bp Bio-Rad (qHsaCED0020775) 

Myeloproliferative 
leukemia protein 
(MPL) 

Human 119 bp Bio-Rad (qHsaCID0015934) 

Thrombopoietin 
(THPO) 

Human 92 bp Bio-Rad (qHsaCED0002654) 



 

 

44 

 

Adipogenic Markers 

C/EBP-α Human 69 bp Bio-Rad (qHsaCED0019045) 

C/EBP-β Human 117 bp Bio-Rad (qHsaCED0019041) 

PPARγ Human 117 bp Bio-Rad (qHsaCID0011718) 

Osteogenic Markers 

BGLAP Human 69 bp Bio-Rad (qHsaCED0038437) 

Runx2 Human 80 bp Bio-Rad (qHsaCID0006726) 

Sp7 Human 139 bp Bio-Rad (qHsaCED0003759) 

BMP Signalling 

BMP4 Human 127 bp Bio-Rad (qHsaCED0003208) 

BMP4R1A Human 164 bp Bio-Rad (qHsaCED0003308) 

BMP4R1B Human 120 bp Bio-Rad (qHsaCID0021330) 

BMP4R2 Human 119 bp Bio-Rad (qHsaCID0008240) 

Notch Receptors    

NOTCH1 Human 141 bp Bio-Rad (qHsaCID0011825) 

NOTCH2 Human 72 bp Bio-Rad (qHsaCED0005739) 

NOTCH3 Human 115 bp Bio-Rad (qHsaCID0006529) 

NOTCH4 Human  163 bp Bio-Rad (qHsaCID0037298) 

Notch Ligands    

Delta-like ligand 1 
(DLL1) 

Human 100 bp Bio-Rad (qHsaCID0011257) 

Human 110 bp Bio-Rad (qHsaCED0048350) 

DLL3 Human 100 bp Bio-Rad (qHsaCED0003364) 

DLL4 Human 84 bp Bio-Rad (qHsaCID0008450) 

Jagged-1 (JAG1) Human 99 bp Bio-Rad (qHsaCID0006831) 
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Human 96 bp Bio-Rad (qHsaCED0042862) 

JAG2 Human 127 bp Bio-Rad (qHsaCED0003193) 

Human 72 bp Bio-Rad (qHsaCED0047702) 

Angiopoietin (Ang) Signalling 

Ang1 Human 140 bp Bio-Rad (qHsaCID0008671) 

Ang2 Human 148 bp Bio-Rad (qHsaCID0017615) 

Tie-1 Human 75 bp Bio-Rad (qHsaCID0006540) 

Human 115 bp Bio-Rad (qHsaCED0042231) 

Tie-2 Human 101 bp Bio-Rad (qHsaCID0015119) 

Cell Adhesion Molecules 

CD38 Human 110 bp Bio-Rad (qHsaCID0006586) 

Integrin-α4 Human 73 bp Bio-Rad (qHsaCID0007441) 

Integrin-β1 Human 104 bp Bio-Rad (qHsaCED0005248) 

Neuronal cadherin 
(N-cadherin) 

Human 151 bp Bio-Rad (qHsaCID0015189) 

Vascular cell 
adhesion molecule 
(VCAM) 

Human 137 bp Bio-Rad (qHsaCID0016779) 

SDF-1 Signalling 

SDF-1 Human 94 bp Bio-Rad (qHsaCID0012398) 

C-X-C chemokine 
receptor 4 (CXCR4) 

Human 142 bp Bio-Rad (qHsaCED0002020) 

Immunoglobulin Superfamily Genes 

CD33 Human 148 bp Bio-Rad (qHsaCID0006439) 

Telomerase 

Telomerase reverse 
transcriptase (TERT) 

Human 150 bp Bio-Rad (qHsaCID0009247) 



 

 

46 

  

 

Housekeeping Genes 

β-actin Human 62 bp Bio-Rad (qHsaCED0036269) 

β2-microglobulin Human 123 bp Bio-Rad (qHsaCID0015347) 

Glyceraldehyde 3-
phosphate 
dehydrogenase 
(GAPDH) 

Human 117 bp Bio-Rad (qHsaCED0038674) 
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Table 2.2.  Primer sequence information for ECM gene qRT-PCR custom plate 

array. 

Gene Species Length (bp) Source (Catalogue 

Number/Assay ID) 

A Distintegrin and Metalloproteinase (ADAM) Peptidases 

ADAM 9 Human 144 bp  Bio-Rad (qHsaCID0018553) 

ADAM 10 Human 95 bp Bio-Rad (qHsaCED0001377) 

ADAM 12 Human 99 bp Bio-Rad (qHsaCID0011870) 

ADAM 17 Human 103 bp  Bio-Rad (qHsaCID0016420) 

ADAM 19 Human 67 bp Bio-Rad (qHsaCID0008717) 

ADAM 20 Human 98 bp Bio-Rad (qHsaCED0003133) 

ADAM 21 Human 148 bp  Bio-Rad (qHsaCED0019636) 

ADAM 28 Human 112 bp  Bio-Rad (qHsaCED0004497) 

ADAM 30 Human 114 bp Bio-Rad (qHsaCED0006925) 

ADAM 33 Human 113 bp Bio-Rad (qHsaCED0001073) 

MMPs 

MMP 1 Human 69 bp Bio-Rad (qHsaCID0017039) 

MMP 2 Human 144 bp Bio-Rad (qHsaCID0015623) 

MMP 3 Human 148 bp  Bio-Rad (qHsaCID0006170) 

MMP 7 Human 138 bp Bio-Rad (qHsaCID0011537) 
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MMP 8 Human 135 bp Bio-Rad (qHsaCID0023232) 

MMP 9 Human 82 bp Bio-Rad (qHsaCID0011597) 

MMP 10 Human 69 bp Bio-Rad (qHsaCID0008481) 

MMP 11 Human 139 bp Bio-Rad (qHsaCID0022136) 

MMP 13 Human 138 bp Bio-Rad (qHsaCID0008487) 

MMP 14 Human 60 bp Bio-Rad (qHsaCED0001628) 

MMP 15 Human 84 bp Bio-Rad (qHsaCED0002668) 

MMP 16 Human 66 bp Bio-Rad (qHsaCID0016162) 

MMP 17 Human 164 bp  Bio-Rad (qHsaCED0005565) 

MMP 19 Human 93 bp Bio-Rad (qHsaCID0010428) 

MMP 24 Human 118 bp Bio-Rad (qHsaCID0017196) 

MMP 25 Human 91 bp Bio-Rad (qHsaCED0004540) 

Tissue Inhibitors of Metalloproteinases (TIMPs) 

TIMP 1 Human 82 bp Bio-Rad (qHsaCID0007434) 

TIMP 2 Human 145 bp Bio-Rad (qHsaCID0022953) 

TIMP 3 Human 119 bp Bio-Rad (qHsaCID0015238) 

TIMP 4 Human 77 bp Bio-Rad (qHsaCID0016129) 

 

 



 

 

49 

Aminopeptidases 

Glutamyl 

Aminopeptidase 

(Aminopeptidase 

A) 

Human 79 bp Bio-Rad (qHsaCID0014953) 

Fibronectin & Inhibitors 

Fibronectin Human 138 bp Bio-Rad (qHsaCID0012349) 

Tenascin C Human 125 bp Bio-Rad (qHsaCID0020888) 

Collagens 

Collagen 1A1 Human 114 bp Bio-Rad (qHsaCED0002181) 

Collagen 2A1 Human 102 bp Bio-Rad (qHsaCED0001057) 

Collagen 3A1 Human 90 bp Bio-Rad (qHsaCID0014986) 

Collagen 4A4 Human 114 bp Bio-Rad (qHsaCID0016411) 

Collagen 5A1 Human 193 bp Bio-Rad (qHsaCID0014514) 

Collagen 6A1 Human 90 bp Bio-Rad (qHsaCID0007091) 

Basement Membrane Component Proteins 

Laminin C1 Human 104 bp Bio-Rad (qHsaCID0006254) 

Laminin C2 Human 150 bp Bio-Rad (qHsaCID0021924) 

Laminin C3 Human 119 bp Bio-Rad (qHsaCID0018418) 

Nidogen 1 Human 106 bp Bio-Rad (qHsaCED0036445) 
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Nidogen 2 Human 127 bp Bio-Rad (qHsaCID0009675) 

Heparan Sulfate 

Heparan sulfate 

proteoglycan 2 

(HSPG2) 

Human 69 bp Bio-Rad (qHsaCED0036599) 

Housekeeping Genes 

β-actin Human 62 bp Bio-Rad (qHsaCED0036269) 

β2-microglobulin Human 123 bp Bio-Rad (qHsaCID0015347) 
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Table 2.3.  Primer sequence information for qRT-PCR individual primers used for 

in vitro experimental analyses. 

Gene Species Length (bp) Source (Catalogue 
Numbers/Assay ID) 

SC Markers 

CD133 Human 105 bp Qiagen (QT00075586) 

Nanog Human 90 bp Qiagen (QT01025850) 

Oct4 Human 77 bp Qiagen (QT00210840) 

Sox2 Human 64 bp Qiagen (QT00237601) 

Endothelial Markers 

CD31 Human 144 bp Qiagen (QT00081172) 

Adipogenic Markers 

C/EBP-α Human 88 bp Qiagen (QT00203357) 

C/EBP-β Human 121 bp Qiagen (QT00237580) 

C/EBP-δ Human 90 bp Qiagen (QT00219373) 

PPARγ Human 113 bp Qiagen (QT00029841) 

FABP4 Human 100 bp Qiagen (QT01667694) 

Angiopoietin Signalling 

Ang1 Human 111 bp Qiagen (QT00046865) 

Ang2 Human 79 bp Qiagen (QT00100947) 

Tie-1 Human 63 bp Qiagen (QT00013797) 

Tie-2 Human 134 bp Qiagen (QT01666322) 

Cell Cycling Molecules 

Cyclin D1 Human 96 bp Qiagen (QT00495285) 

Housekeeping Genes 

β-actin Human 104 bp Qiagen (QT01680476) 
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Table 2.4.  Primer sequence information for qRT-PCR primers used for in vivo 

experiment analyses. 

Gene Species Length (bp) Source (Catalogue 
Numbers/Assay ID) 

SC Markers 

Nanog Rat 112 bp Qiagen (QT01300579) 

Oct4 Rat 134 bp Qiagen (QT00455028) 

Sox2 Rat 128 bp Qiagen (QT00544649) 

Endothelial Markers 

CD31 Rat 96 bp Qiagen (QT01289939) 

VEGFR2 Rat 118 bp Qiagen (QT00408352) 

vWF Rat 107 bp Qiagen (QT01588713) 

MPC Markers 

CD73 Rat 93 bp Qiagen (QT00190876) 

CD90 Rat 82 bp Qiagen (QT00195825) 

CD105 Rat 65 bp Qiagen (QT00492870) 

Adipogenic Markers 

C/EBP-α Rat 63 bp Qiagen (QT00395010) 

C/EBP-β Rat 113 bp Qiagen (QT00366478) 

C/EBP-δ Rat 94 bp Qiagen (QT00368599) 

PPARγ Rat 146 bp Qiagen (QT00186172) 

FABP4 Rat 127 bp Qiagen (QT01290072) 

Osteogenic Markers 

BGLAP Rat 92 bp Qiagen (QT00371231) 

Runx2 Rat 172 bp Qiagen (QT01300208) 
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Sp7 Rat 111 bp Qiagen (QT00423206) 

Angiopoietin Signalling 

Ang1 Rat 92 bp Qiagen (QT00199346) 

Ang2 Rat 89 bp Qiagen (QT01592045) 

Tie-1 Rat 106 bp Qiagen (QT01592031) 

Tie-2 Rat 133 bp Qiagen (QT01592038) 

ECM Genes 

Collagen 1A1 Rat 92 bp Qiagen (QT00370622) 

Collagen 4A4 Rat 108 bp Qiagen (QT02346085) 

Collagen 6A1 Rat 73 bp Qiagen (QT00440839) 

Fibronectin Rat 92 bp Qiagen (QT00179333) 

Chemokines 

SDF-1 Rat 120 bp Qiagen (QT00194152) 

Housekeeping Genes 

β-actin Rat 145 bp Qiagen (QT00193473) 
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cDNA, and 8 µL of nuclease-free H2O, for a total reaction volume of 20 µL.  PCR 

reactions were performed at the temperature profiles outlined in Table 2.5 and Table 2.6 

for SsoFast EvaGreen Supermix and qBiomarker SYBR Green Fluor Mastermix, 

respectively, using the CFX Connect Real Time PCR Detection System (Bio-Rad 

Laboratories, Inc.).  Data were analyzed according to the ΔΔCT method using CFX 

Manager Software (Bio-Rad Laboratories, Inc.) and normalized to β-actin expression. 

2.3.2 Immunofluorescence Cell Staining 

 BM-MPCs were cultured and induced to differentiate as described above on 

collagen 1-coated 4- or 8-chambered slides.  CD133+ cells were overlaid for 48 hours 

and culture slides were then stained for SC markers through one hour incubations of 

cells at room temperature using primary antibodies (Table 2.7).  Subsequent to the 

primary antibody incubation, cells were incubated with the appropriate Alexa488-

conjugated secondary antibody (Life Technologies) for one hour at room temperature.  

Slides were then counterstained using ProLong® Diamond Antifade Mountant with 

DAPI (Life Technologies).  Imaging was performed using the Olympus BX-51 

fluorescent microscope (Olympus Canada Inc., Richmond Hill, ON) and SPOT Basic 

Image Capture & SPOT Advanced Microscope Imaging Software (SPOT Imaging 

Solutions, Sterling Heights, MA). 
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Table 2.5.  Temperature profiles for qRT-PCR with SsoFast EvaGreen Supermix. 

Cycling Step Temperature Time (min:sec) No. of Cycles 

Enzyme Activation 95oC 2:00 1 

Denaturation 95oC 0:02 
45 

Annealing/Extension 55oC 0:12 

 

Melt Curve 

 

65oC 

+ 0.2oC to 95oC 
0:10 / step 1 
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Table 2.6.  Temperature profiles for qRT-PCR with qBiomarker SYBR Green Fluor 

Mastermix. 

Cycling Step Temperature Time (min:sec) No. of Cycles 

Enzyme Activation 95oC 10:00 1 

Denaturation 95oC 0:15 
40 

Annealing/Extension 60oC 1:00 

 

Melt Curve 

 

65oC 

+ 0.5oC to 95oC 
0:10 / step 1 
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Table 2.7.  Primary antibodies used for immunofluorescence staining. 

Antigen Host Source (Catalogue 
Number) 

Dilution 

CD133 Rabbit polyclonal Abcam (ab19898) 1:200 

Sox2 Goat polyclonal R&D Systems (AF2018) 1:200 

Nanog Rabbit polyclonal Abcam (ab21624) 1:200 

Oct4 Rabbit polyclonal Abcam (ab19857) 1:200 

Ki67 Rabbit monoclonal Abcam (ab16667) 1:200 
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2.3.3 Statistical Analyses 

 Data are expressed as mean expression ± standard error of the mean (SEM).  

Significance was determined using two-tailed student’s unpaired t-tests.  P-values < 

0.10 were considered to be statistically significant. 
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Chapter 3 : Results 

3 Results 

3.1 Effect of ECM Substrates on Adipogenesis 

 My first objective was to establish adipogenic differentiation of BM-MPCs to be 

used in creating an in vitro SC niche.  In order to enhance MPC adhesion to glass 

chamber plates, surfaces are typically coated in a FN substrate to improve cell 

adherence.  It has previously been demonstrated that FN may significantly alter MPC 

differentiation, including inhibition of adipogenesis340-344.  To evaluate the impact FN has 

on adipogenesis and to identify a novel coating substrate that does not interfere with 

adipogenic differentiation, BM-MPCs were cultured on uncoated plastic culture dishes, 

or plastic dishes coated with 1 μg/cm2 FN or 10 μg/cm2 type 1 collagen.  MPCs were 

induced to develop into adipocytes through culture in the appropriate differentiation 

medium for seven days.  I observed a delay in adipogenic differentiation on FN-coated 

plates, with increased expression of early differentiation factor C/EBP-β and repression 

of late adipogenic marker PPARγ (Figure 3.1).  Collagen 1-coated plates appeared to 

have no significant effect on adipogenesis, identifying it as a suitable substrate for 

cultures involving MPC differentiation. 
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Figure 3.1.  Effect of ECM substrates on adipogenesis. 

BM-MPCs were induced to differentiate into adipocytes over seven days on uncoated 

plastic culture dishes, or plates coated with 10 μg/cm2 collagen 1 or 1 μg/cm2 FN.  FN 

appeared to delay adipogenesis, with up-regulation of early adipogenic marker C/EBP-β 

and repression of late marker PPARγ.  Collagen 1 coating did not have any significant 

effects on the expression of markers of adipogenic differentiation. 

[C/EBP = CCAAT-enhancer-binding protein; ECM = extracellular matrix; FABP4 = fatty 

acid binding protein 4; PPARγ = peroxisome proliferator-activated receptor gamma] 

[* p < 0.05 compared to uncoated plate control; data expressed as mean ± SEM, 

normalized to β-actin expression and expressed as fold difference of uncoated plate 

control] 
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3.2 Establishing Co-culture of CD133-Positive Cells with 

Adipocytes and Osteoblasts 

 Based on the results garnered from the previous experiment, collagen 1 was 

selected as an ECM substrate for coating of glass chamber slides with minimal 

interference on differentiation.  Chamber slides were incubated for 3 hours with 10 

μg/cm2 collagen 1 in acetic acid collagen coating buffer.  BM-MPCs were seeded at a 

high density and induced to differentiate into adipocytes or osteoblasts.  CD133+ cells 

were then added to each chamber slide system at a cell density of 10,000 cells/cm2.  

After 48 hours of co-culture, slides were subjected to immunofluorescence microscopy 

for CD133, Nanog, and Oct4.  Figures 3.2-3.4 serve as representative images 

demonstrating CD133+ cells in co-culture with MPCs, adipocytes, and osteoblasts after 

48 hours of culture.  Although I detected CD133+ cells in these cultures, the numbers 

were too low for proper quantification (Figures 3.2-3.4).  Therefore, I explored the 

possibility of using qPCR to quantify CD133 and other SC markers as a measure of the 

quantity of SCs in each culture.  qRT-PCR was performed on CD133+ cells, MPCs, 

adipocytes, and osteoblasts in order to determine the expression of SC markers CD133, 

Nanog, and Oct4.  CD133+ cells were positive for the expression of CD133, with no 

detection of CD133 mRNA in MPCs, adipocytes, or osteoblasts (Figure 3.5).  Further, 

CD133+ cells were also positive for Oct4 and Nanog mRNA.  The undetectable level of 

CD133, Nanog, and Oct4 in MPCs, adipocytes, and osteoblasts supported the use of 

these three factors as identifiers of the SC phenotype within this co-culture system. 
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Figure 3.2.  Immunofluorescence staining of CD133+ cells in BM-MPC co-culture. 

CD133-positive SCs were cultured for 48 hours in co-culture with BM-MPCs before 

being stained for the expression of SC markers, CD133, Nanog, and Oct4.   

[20x magnification] 

[Oct4 = octamer-binding transcription factor 4]  
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Nanog 

Oct4 
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Figure 3.3.  Immunofluorescence staining of CD133+ cells in adipocytic co-

culture. 

CD133-positive SCs were cultured for 48 hours in co-culture with adipocytes before 

being stained for the expression of SC markers, CD133, Nanog, and Oct4.   

[Taken at 20x magnification] 

[Oct4 = octamer-binding transcription factor 4] 
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Figure 3.4.  Immunofluorescence staining of CD133+ cells in osteoblastic co-

culture. 

CD133-positive SCs were cultured for 48 hours in co-culture with osteoblasts before 

being stained for the expression of SC markers, CD133, Nanog, and Oct4.   

[Taken at 20x magnification] 

[Oct4 = octamer-binding transcription factor 4] 
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Figure 3.5.  SC gene expression in CD133+ cells, MPCs, adipocytes, and 

osteoblasts. 

There was no detectable expression of CD133, Oct4, or Nanog in MPCs or MPC-

derived adipocytes and osteoblasts. 

[* p < 0.05, ** p < 0.01, *** p < 0.001 compared to CD133-positive SC controls; data 

expressed as mean ± SEM, normalized to β-actin and expressed as fold difference of 

CD133+ cells] 

[MPCs = mesenchymal progenitor cells; Oct4 = octamer-binding transcription factor 4] 
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3.3 Effect of Co-culturing CD133-Positive Cells with BM-MPCs, 

Adipocytes, or Osteoblasts 

 BM-MPCs and BM-MPC-derived adipocytes and osteoblasts were cultured with 

CD133-positive SCs for one or 21 days with regular media changes three times per 

week, aspirating existing media containing any non-adherent cells.  After 21 days of co-

culture, qRT-PCR was performed to quantify the expression of three SC markers, 

CD133, Nanog, and Oct4, to serve as proxies for “stemness” of the cells remaining in 

culture.  There was a significant reduction in the mRNA levels of CD133 in co-culture 

with MPCs after 21 days, with non-significant decreases in the mRNA abundance of the 

two other stem cell markers Nanog and Oct4 (Figure 3.6).  A similar pattern occurred 

following co-culture with adipocytes (Figure 3.7).  In osteoblasts however, relatively 

greater expression of CD133, Nanog, and Oct4 were noted after 21 days as compared 

to day 1 (Figure 3.8).  These results may indicate an increased number of SCs in 

osteoblast co-culture or induction of SC genes.  

 I next set out to analyze the effect BM-MPCs, BM-MPC-derived adipocytes, and 

BM-MPC-derived osteoblasts have on CD133-positive SCs in a modified survival assay.  

CD133+ cells were again co-cultured with MPCs, adipocytes, and osteoblasts for one or 

21 days.  Media changes were conducted three times per week, in which existing media 

was aspirated and any non-adherent cells were centrifuged and seeded back with fresh 

media.  qRT-PCR was performed after one and 21 days in order to evaluate the 

expression of SC markers CD133, Nanog, and Oct4.   
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Figure 3.6.  SC gene expression in adherence co-culture of CD133+ cells with 

MPCs. 

After one and 21 days of co-culture of CD133+ cells with BM-MPCs, the expression 

levels of three SC markers (CD133, Nanog, and Oct4) were quantified as a measure of 

the stemness of cells remaining in culture.  Relative to one day of co-culture, there was 

a significant reduction in the mRNA abundance of CD133, with non-significant 

reductions in Nanog and Oct4.   

[*** p < 0.001 compared to one-day MPC co-culture controls; data expressed as mean ± 

SEM, normalized to β-actin and expressed as fold change of one-day MPC co-culture 

controls] 

[Oct4 = octamer-binding transcription factor 4] 
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Figure 3.7.  SC gene expression in adherence co-culture of CD133+ cells with 

adipocytes.   

After one and 21 days of co-culture of CD133+ cells with BM-MPC-derived adipocytes, 

the expression levels of three SC markers (CD133, Nanog, and Oct4) were quantified 

as a measure of the stemness of cells remaining in culture.  Relative to one day of co-

culture with adipocytes, there was a significant reduction in the mRNA abundance of 

CD133, with non-significant reductions in Nanog and Oct4.  

[*** p < 0.001 compared to one-day adipocyte co-culture controls; data expressed as 

mean ± SEM, normalized to β-actin and expressed as fold change of one-day adipocyte 

co-culture controls] 

[Oct4 = octamer-binding transcription factor 4] 
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Figure 3.8.  SC gene expression in adherence co-culture of CD133+ cells with 

osteoblast co-culture. 

After one and 21 days of co-culture of CD133+ cells with BM-MPC-derived osteoblasts, 

the expression levels of three SC markers (CD133, Nanog, and Oct4) were quantified 

as a measure of the stemness of cells remaining in culture.  Relative to one day of co-

culture with osteoblasts, there were substantial increases in the mRNA abundance of 

Nanog and Oct4.   

[* p < 0.001 compared to one-day osteoblast co-culture controls; data expressed as 

mean ± SEM, normalized to β-actin and expressed as fold change of one-day 

osteoblast co-culture controls] 

[Oct4 = octamer-binding transcription factor 4] 
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After one day of co-culture (Figure 3.9), there were only minor, non-significant 

differences in the mRNA levels of the three SC markers investigated.  However after 21 

days (Figure 3.10), there was a significant reduction in the mRNA levels of each of the 

SC markers in co-culture with adipocytes, suggesting that adipocytes may impair the 

survival of CD133-positive SCs, either by reducing cell numbers or down-regulation of 

SC genes. 

 One potential explanation for the differences observed in my model systems may 

be differential rates of proliferation of the background cell populations, modifying the 

mRNA abundance of the chosen housekeeping gene, β-actin, to dilute the expression of 

our genes of interest.  To eliminate this as a possibility, BM-MPCs were induced to 

differentiate into adipocytes and osteoblasts on chamber slides before being stained 

with the Ki67 to identify proliferating cells.  Under these experimental settings, Ki67-

positive MPCs, adipocytes, or osteoblasts were rarely found (Figure 3.11 A, C, & E).  

Few dividing cells may be seen in culture with each of the three cell types under high 

magnificantion (Figure 3.11 B, D, & F). 

3.4 BM-MPC, Adipocyte, and Osteoblast Contribution to SC 

Niche 

 After establishing alterations in CD133+ cell phenotype (due to either survival, 

adherence, or gene expression changes), I wanted to investigate the potential 

mechanisms underlying these changes.  Therefore, I utilized qRT-PCR to quantify 

differences in the gene expression of various genes involved in ECM composition and   
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Figure 3.9.  SC gene expression in CD133+ cell co-cultures for survival after one 

day. 

CD133+ cells were cultured in co-culture systems with BM-MPCs or MPC-derived 

adipocytes or osteoblasts with modified media changes to assess SC survival.  After 

one day of co-culture, SC markers CD133, Nanog, and Oct4 were quantified.  The 

expression levels of each of the three SC markers were consistent across culture with 

each of the cell types.   

[† p < 0.1 compared to one-day BM-MPC co-culture controls; data expressed as mean 

± SEM, normalized to β-actin and expressed as fold change of one-day BM-MPC co-

culture controls] 

[MPCs = mesenchymal progenitor cells; Oct4 = octamer-binding transcription factor 4] 
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Figure 3.10.  SC gene expression in CD133+ cell co-culture for survival after 21 

days. 

CD133+ cells were cultured in co-culture systems with BM-MPCs or MPC-derived 

adipocytes or osteoblasts with modified media changes to assess SC survival.  After 21 

days of co-culture, SC markers CD133, Nanog, and Oct4 were quantified.  While BM-

MPCs and osteoblasts appear able to support the maintenance of the SC population, 

co-culture with adipocytes led to a significant decrease in the mRNA abundance of 

CD133, Nanog, and Oct4, potentially indicative of a reduction in the stem cell phenotype 

of the cells remaining in culture. 

[* p < 0.05, ** p < 0.01 compared to 21-day BM-MPC co-culture controls; data 

expressed as mean ± SEM, normalized to β-actin and expressed as fold change of 21-

day BM-MPC co-culture controls] 

[MPCs = mesenchymal progenitor cells; Oct4 = octamer-binding transcription factor 4] 
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Figure 3.11.  Ki67 stain for proliferation of BM-MPCs, adipocytes, and osteoblasts. 

 (A, C, & E)  The number of Ki67-positive cells was low among MPCs, as well as cells 

maintained under adipogenic and osteoblastogenic differentiation conditions, indicative 

of low rates of proliferation.  (B, D, & F)  Few proliferating cells under each culture 

condition can be seen under 40-fold magnification. 

[A, C, & E taken at 10x magnification; B, D, & F taken at 40x magnification] 

[MPCs = mesenchymal progenitor cells] 
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remodeling between BM-MPCs, adipocytes, and osteoblasts that may contribute to the 

cell types’ unique effects on CD133+ cells.   

Major proteins involved in the composition of the ECM and basement membrane 

were uniquely expressed between the three cell types (Figure 3.12).  In adipocytes, I 

observed higher levels of collagen 3A1, 4A1, and 6A1, while osteoblasts displayed 

reductions in the expression of collagen 1A1, 4A1, 5A1, and 6A1 (Figure 3.12 A).  FN 

was repressed in both adipocytes and osteoblasts relative to MPCs, while the FN 

inhibitor tenascin C was increasingly expressed among both adipocytes and osteoblasts 

relative to MPC controls (Figure 3.12 B).  HSPG2 (also known as perlecan) was found 

to be significantly repressed in osteoblasts relative to control MPCs (Figure 3.12 C).  

Other basement membrane component proteins were also modulated (Figure 3.12 D).  

Laminin C1, nidogen 1, and nidogen 2 were up-regulated, while laminin C2 was 

significantly down-regulated in adipocytes.  Osteoblasts displayed repression of laminin 

C1 and C2, though the expression of nidogen 1 was substantially increased.   

Genes involved in remodeling the ECM were also uniquely regulated between 

the cell types.  The majority of ADAM peptidases were down-regulated in osteoblasts, 

with significant repression of ADAMs 9, 10, 12, 15, 19, 21, and 28 relative to MPCs 

(Figure 3.13 A).  ADAMs were selectively regulated in adipocytes, with repression of 

ADAMs 9 and 19 and increased expression of ADAMs 10, 15, and 17.  Adipocytes and 

osteoblasts also displayed unique expression of MMPs (Figure 3.13 B).  In adipocytes, 

there were significant decreases in the mRNA abundance of MMPs 1, 2, 11, 14, and 16, 

and up-regulated expression of MMPs 13, 15, 17, 19, and 24.  Alternatively, osteoblasts 

displayed repression of MMPs 1, 2, 10, 11, 14, 15, 16, 17, and 24 relative to MPCs,   
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Figure 3.12.  ECM gene expression by MPCs, adipocytes, and osteoblasts. 

(A) There was selective regulation of several collagen subtypes compared to MPCs in 

adipocytes and osteoblasts, respectively.  (B) Both adipocytes and osteoblasts were 

characterized by significant repression of FN expression and up-regulation of tenascin 

C.  (C) HSPG2, also known as perlecan, was found to be significantly repressed in 

osteoblasts relative to MPC controls.  (D) Adipocytes displayed increased mRNA 

abundance of basement membrane component proteins laminin C1, nidogen 1, and 

nidogen 2, with reduced expression of laminin C2.  In osteoblasts, laminin C1 and C2 

were both down-regulated, while nidogen 1 expression was substantially increased.  

[† p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 compared to BM-MPC controls; data 

expressed as mean ± SEM, normalized to β-actin and expressed as fold change of BM-

MPC controls] 

[HSPG2 = heparin sulfate proteoglycan 2; MPCs = mesenchymal progenitor cells] 
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Figure 3.13.  Expression of ECM remodeling protein genes by MPCs, 

adipocytes, and osteoblasts. 

(A) Adipocytes and osteoblasts displayed unique patterns of expression of 

members of the ADAMs family of peptidases.  Adipocytes were characterized by 

up-regulation of most ADAM subtypes, while osteoblasts demonstrated 

repression of most ADAM genes.  (B) The expression of a number of MMPs were 

selectively regulated by adipocytes and osteoblasts relative to control MPCs.  (C) 

TIMPs were also differentially expressed by the three cell types, with repression 

of TIMP 2 and 3 and substantial up-regulation of TIMP 4 by both adipocytes and 

osteoblasts.  (D) Membrane-bound aminopeptidase A was also found to be up-

regulated in adipocytes and osteoblasts relative to MPCs. 

 [† p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 compared to BM-MPC controls; 

data expressed as mean ± SEM, normalized to β-actin and expressed as fold 

change of BM-MPC controls] 

[ADAM = a disintegrin and metalloproteinase; Aminopeptidase A = glutamyl 

aminopeptidase; MMP = matrix metalloproteinase; MPCs = mesenchymal 

progenitor cells; TIMP = tissue inhibitor of metalloproteinase] 
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while MMPs 3 and 13 were substantially up-regulated.  Tissue inhibitors of 

metalloproteinases (TIMPs) demonstrated similar patterns of expression in 

adipocytes and osteoblasts, with both cell types repressing the expression of 

TIMPs 2 and 3 and significantly up-regulating TIMP 4 in comparison with 

expression by MPCs (Figure 3.13 C).  The membrane-anchored protease 

aminopeptidase A was also observed to be increasingly expressed by both 

adipocytes and osteoblasts (Figure 3.13 D).  

 qRT-PCR was also employed to investigate changes in the expression of 

45 unique niche genes involved in cell-to-cell communication following 

adipogenic and osteogenic differentiation of BM-MPCs.  I observed significant 

differences in the expression of genes involved in the Notch signalling system, 

with up-regulation of Notch receptors 1 and 2, as well as Notch ligand JAG1 in 

osteoblasts and increased expression of DLL4 in adipocytes (Figure 3.14 A and 

B).  Integrin-α4 was the only cell adhesion molecule to be differentially regulated, 

with substantial up-regulation in osteoblasts (Figure 3.15).  The pro-angiogenic 

chemokine SDF-1 was found to be repressed by osteoblasts relative to MPC 

controls (Figure 3.16).  Adipocytes displayed significant increases in the 

expression of vascular growth factors Ang1 and Ang2, while the changes in the 

expression of either of these factors failed to reach significance in osteoblasts 

(Figure 3.17 A).  As Ang1 and Ang2 play antagonistic roles, I elected to compare   
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Figure 3.14.  Expression of Notch signalling genes in MPCs, adipocytes, 

and osteoblasts. 

(A) Notch receptors 1 and 2 were significantly up-regulated in osteoblasts.  (B) 

Notch ligands DLL4 and JAG1 were up-regulated in adipocytes and osteoblasts, 

respectively, in comparison to control MPCs.  

[† p < 0.1, ** p < 0.01, *** p < 0.001 compared to BM-MPC controls; data 

expressed as mean ± SEM, normalized to β-actin and expressed as fold change 

of BM-MPC controls] 

[DLL = delta-like ligand; JAG = Jagged; MPCs = mesenchymal progenitor cells] 
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Figure 3.15.  Cell adhesion molecule gene expression in MPCs, adipocytes, 

and osteoblasts. 

Integrin-α4 was the only gene involved of cell adherence to be differentially 

expressed between the cell types with a significant increase in expression in 

osteoblasts.  

[* p < 0.05 compared to BM-MPC controls; data expressed as mean ± SEM, 

normalized to β-actin and expressed as fold change of BM-MPC controls] 

[MPCs = mesenchymal progenitor cells; N-cadherin = neural cadherin; VCAM = 

vascular cell adhesion molecule] 
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Figure 3.16.  Expression of SDF-1 in MPCs, adipocytes, and osteoblasts. 

Expression of the pro-angiogenic factor SDF-1 was found to be significantly 

decreased in osteoblasts.  

 [* p < 0.05 compared to BM-MPC controls; data expressed as mean ± SEM, 

normalized to β-actin and expressed as fold change of BM-MPC controls] 

[MPCs = mesenchymal progenitor cells; SDF-1 = stromal cell-derived factor-1] 
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Figure 3.17.  Expression of angiopoietin genes in MPCs, adipocytes, and 

osteoblasts. 

(A) Adipocytes were characterized by significantly increased mRNA abundance 

of both Ang1 and its antagonist, Ang2, in comparison to BM-MPC control cells.  

(B) When compared as the ratio between the pro-angiogenic Ang1 and anti-

angiogenic Ang2, there was no difference relative to MPCs in adipocytes, though 

osteoblasts demonstrated a four-fold increase in this ratio.  

[* p < 0.05, ** p < 0.01 compared to BM-MPC controls; data expressed as mean 

± SEM, normalized to β-actin and expressed as fold change of BM-MPC controls] 

[MPCs = mesenchymal progenitor cells; Ang = angiopoietin] 
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the expressions of these two factors as the ratio of Ang1 relative to Ang2 (Figure 

3.17 B).  In adipocytes, this ratio was very similar to that of MPCs,  although the 

ratio approached 4.5 in osteoblasts, suggesting a much greater contribution to 

the surrounding niche by Ang1 in osteoblast-predominant culture. 

3.5 Identifying Potential Role of Ang1 & Ang2 in SC Niche 

 I was particularly intrigued by the finding in outlined in Figure 3.17, with 

increased expression of Ang1 and Ang2 in adipocytes and an increased Ang1-to-

Ang2 ratio in osteoblasts and set out to determine the effects that varying 

concentrations of Ang1 and Ang2 have on CD133-positive SCs.  To do this, 

CD133+ cells were cultured at 5,000 cells/cm2 for seven days in DMEM with 10% 

FBS containing one of six concentrations of Ang1 or Ang2 (Table 3.1).  qRT-PCR 

was then performed to quantify the expression of SC marker CD133 and EC 

marker CD31. 

 Although meaningful significance was not attained, several important 

points could be raised.  CD133 mRNA was reduced in each culture condition 

relative to 0 Ang controls, though this was not statistically significant (Figure 3.18 

A).  Ang1, which is responsible for promoting endothelial differentiation, seemed 

to increase the expression of EC marker CD31 when added to culture at 100 

ng/mL or 75 ng/mL + 25 ng/mL Ang2 (Figure 3.18 B)345.   
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Table 3.1.  Treatment conditions for Ang1-Ang2 overabundance 

experiment. 

CD133+ cells were cultured for seven days in DMEM containing the 

concentrations of Ang1 and Ang2 listed below.   

 
  

Label Ang1 Ang2 

0 Ang 0 ng/mL 0 ng/mL 

A1 100 100 ng/mL 0 ng/mL 

A1 75 / A2 25 75 ng/mL 25 ng/mL 

A1 50 / A2 50 50 ng/mL 50 ng/mL 

A1 25 / A2 75 25 ng/mL 75 ng/mL 

A2 100 0 ng/mL 100 ng/mL 
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Figure 3.18.  Expression of SC and EC markers in CD133+ cells upon Ang 

exposure. 

CD133+ cells were maintained for seven days in DMEM containing varying 

concentrations of Ang1 and Ang2 before quantification of markers of SC and EC 

phenotypes.  (A) SC marker CD133 mRNA levels  (B)  EC marker CD31 mRNA 

levels 

[Data expressed as mean ± SEM, normalized to β-actin and expressed as fold 

change of 0 Ang controls] 

[Ang = angiopoietin] 
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3.6 CD133-Positive Cell Adhesion Molecule & Receptor 

Expression 

 I conducted qRT-PCR analyses of various niche receptor and cell 

adhesion molecule genes in CD133+ cells in order to confirm the expression of 

reciprocal factors that correspond to genes in which we observed differential 

expression patterns between mesenchymal cell types.  I utilized MPCs as 

controls to compare to the relative mRNA levels in CD133+ cells.  I observed 

substantive expression of integrin-α4, along with robust expression of VE-

cadherin, which is a characteristic endothelial marker (Figure 3.19 A).  CD133+ 

cells also displayed a reduced expression of VCAM relative to BM-MPCs.  

NOTCH1 was the predominant Notch receptor protein expressed by CD133+ 

cells (Figure 3.19 B).  CXCR4, which serves as the receptor for SDF-1, was 

expressed in significantly higher levels in CD133+ cells relative to control MPCs 

(Figure 3.19 C).  I also observed robust expression of the Tie-1 and Tie-2, which 

serve as receptors in the angiopoietin signalling system (Figure 3.19 D).  These 

findings suggest the potential for the unique niche gene expression patterns of 

BM-MPCs, adipocytes, and osteoblasts to be parlayed into functional changes 

within the CD133+ cell population. 
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Figure 3.19.  Expression of cell adhesion molecules and niche receptors in 

CD133+ cells.   

qRT-PCR analyses of the expression of niche gene receptors in CD133+ cells 

were performed and compared to expression in cultured BM-MPCs. (A) mRNA 

levels of select integrins and cadherins  (B) mRNA levels of Notch receptors (C) 

mRNA levels of SDF-1 receptor CXCR4 (D) mRNA levels of Tie receptors 

involved in Ang1 and Ang2 signalling 

[† p < 0.1, * p < 0.05, ** p < 0.01 compared to BM-MPC controls; data expressed 

as mean ± SEM, normalized to β-actin and expressed as fold change of BM-

MPC controls]  

[CXCR4 = C-X-C chemokine receptor type 4; MPCs = mesenchymal progenitor 

cells; N-cadherin = neural cadherin; Tie = tyrosine kinase with immunoglobulin-

like and EGF-like domains; VCAM = vascular cell adhesion molecule; VE-

cadherin = vascular endothelial cadherin] 
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3.7 In Vivo Diabetic Model 

 Clinical variables of diabetic and control rats were recorded and reported 

in Table 3.2.  All rats receiving injections of STZ were confirmed to be diabetic 

with blood glucose measurements in excess of 25 mmol/L.  There were 

significant differences between diabetic and control animals in body weight (p < 

0.01), blood glucose levels (p < 0.01), heart weight (p < 0.1), and tibia length (p < 

0.01).   

My data confirmed an increase in marrow adipogenesis in diabetic rats, as 

demonstrated by the increased expression of adipogenic transcription factors 

C/EBP-α and C/EBP-β (Figure 3.20 A).  Although non-significant, expression of 

pro-osteoblastic factors BGLAP, Runx2, and Sp7 seemed lower in diabetic 

animals (Figure 3.20 B).  Potentially increasing the sample size may show 

significantly lower levels.  Expression of MPC marker CD105 was not altered in 

the diabetic animals.  While the putative marker of EPCs in humans, CD133 is 

not exclusive to SCs in rats.  Therefore, I elected to utilize other SC-specific 

markers: Nanog, Oct4, and Sox2.  Expression of Nanog, Oct4, and Sox2 all 

displayed slight decreases in mRNA abundance in diabetic animals, though this 

difference was not significant (Figure 3.20 D).    
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Table 3.2.  Clinical variables of control and diabetic rats used in in vivo 

model of diabetes. 

 

  

 Control Mean Diabetic Mean P-Value 

Body Weight 551.67 g 302.67 g p < 0.01 

Blood Glucose 6.87 mmol 29.2 mmol p < 0.01 

Heart Weight 1.78 g 1.03 g p < 0.1 

Tibia Length 5.57 cm 4.57 cm p < 0.01 
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Figure 3.20.  In vivo expression of adipogenic, osteogenic, MPC, and SC 

markers in marrow of diabetic rats. 

(A) Increased expression of adipogenic transcription factors were found in the 

BM of diabetic rats.  (B) The decrease in the mRNA expression of osteogenic 

markers failed to reach significance.  (C) The expression of MPC marker CD105 

was not significantly altered in the BM of diabetic rats.  (D) A non-significant 

reduction in the expression of SC markers was observed in diabetic marrow. 

[† p < 0.1; data expressed as mean ± SEM, normalized to β-actin and expressed 

as fold change relative to control rat femurs; n = 3] 

[BGLAP = bone gamma-carboxyglutamic acid-containing protein; C/EBP = 

CCAAT-enhancer-binding protein; Oct4 = octamer-binding transcription factor 4; 

Runx2 = runt-related transcription factor 2; Sox2 = sex determining region Y-box 

2] 
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Chapter 4 : Conclusions 

4 Conclusions 

4.1 Discussion 

 I have demonstrated a reduction in the mRNA expression of SC markers 

CD133, Nanog, and Oct4 following co-culture of CD133+ cells with adipocytes 

after 21 days.  I first set out to identify a suitable substrate on which to culture 

and differentiate BM-MPCs which was essential for creating the in vitro SC niche 

model and downstream experimentation.  Adipogenic differentiation has been 

shown to be hindered by FN and unaffected by collagen.  FN is believed to exert 

its anti-adipogenic effect by preventing the necessary changes in morphology 

required for development of a fibroblast-like MPC into a large, rounded 

adipocyte343.  Through the induction of differentiation of BM-MPCs on collagen 1-

coated and FN-coated plates, I was able to confirm a role for FN in delaying 

adipogenesis.  Collagen 1 did not have any significant effect on the expression of 

differentiation factors, confirming its potential as an ECM substrate in 

differentiation culture systems346.   

 I also analyzed the expression of three factors, CD133, Nanog, and Oct4, 

believed to be specific to SCs in BM-MPCs, adipocytes, and osteoblasts.  These 
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three cell types are thought to be negative for the expression of the 

aforementioned SC markers, though some reports have identified their 

expression in more differentiated cell types and MSCs347-351.  I observed no 

detectable expression of CD133 by BM-MPCs, adipocytes or osteoblasts, 

supporting its use as the ideal marker to identify SCs in mixed cultures.  The 

relative expression levels of Nanog and Oct4 were also undetectable in each of 

the three mesenchymal cell types in comparison to fresh CD133+ cells, 

supporting the use of these genes as secondary markers for the SC phenotype in 

our co-culture experiments. 

I next investigated how altering the cellular composition of the 

microenvironment affected the adherence of CD133+ cells within an in vitro co-

culture system.  EPCs have previously been shown to have poor adherence in 

culture, as well as an overall loss of CD133 expression over time, while improved 

EPC adhesion may correlate to enhanced endothelial function352-355.  My findings 

confirmed this characteristic of CD133+ cells, as co-culture with BM-MPCs or 

adipocytes led to significant reductions in the expression of CD133.  Interestingly, 

co-culture with osteoblasts led to an increase in the mRNA of SC markers Nanog 

and Oct4, with a non-significant increase in the expression of CD133 after 21 

days.  Osteoblasts are characterized by a strong production of collagen 1, which 

has been shown to enhance cell adhesion in a number of cell types356-358.  

Additionally, collagen 1 has been shown to specifically facilitate the survival and 
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proliferation of EPCs in vitro, which may contribute to the increased mRNA 

abundance of SC markers in this co-culture system after 21 days359.  

 I also explored the effects of co-culture of CD133+ cells with BM-MPCs, 

adipocytes, or osteoblasts on the survival or maintenance of these cells in an 

SC-like state.  Via a modified survival assay, I profiled how the expression of SC 

markers changed over time in co-cultures of CD133+ cells with MPCs or MPC-

derived adipocytes or osteoblasts.  Interestingly, I noted a significant reduction in 

the mRNA abundance of CD133, Nanog, and Oct4 in co-culture with adipocytes 

relative to co-culture with BM-MPCs after 21 days.  This suggests that adipocytes 

are responsible for the production of signals or cell-cell interactions that are 

detrimental to the survival and maintenance of the CD133+ cell population.  The 

reduced expression of SC markers may be the consequence of depletion of the 

SC population, a loss of an SC-like phenotype, reduced cell proliferation, or a 

combination of the above.  Unfortunately, this model is unable to differentiate 

between a reduction in overall SC marker-positive cell number and a down-

regulation of SC factors with no change in the size of the population.  Thus, my 

results, although important, are limited to describing changes to the “stemness” 

of these cells – the maintenance of these cells in an SC-like state – rather than 

CD133+ cell quantity or cellularity.   

 A potential confounding factor to my quantification of SC gene expression 

is proliferation of background cell populations.  Division of the background cells 
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would increase the expression of housekeeping genes and dilute the expression 

of genes of interest.  I anticipated minimal effect of cell proliferation in 

differentiated cell types as adipocytes and osteoblasts are typically considered to 

be post-mitotic cell types81, 99, 360, 361.  Alternatively, MPCs are a highly 

expandable and proliferative cell type362.  However, this property is believed to 

decrease in high density cultures363.  To minimize the potential for proliferation of 

background cell types to artificially decrease SC marker expression, co-culture 

cell populations were maintained at high density.  I also performed 

immunofluorescence staining of MPCs, adipocytes, and osteoblasts for the 

proliferation marker Ki67 to confirm a low rate of division in these cells.  I 

observed very few Ki67-positive cells in each of the three culture conditions.  

High seeding density and exposure to differentiation media appear to be 

sufficient to inhibit the division of MPCs.  From this stain, I can conclude that the 

changes in SC gene expression under co-culture systems were not the artefact 

of differential proliferation of background cells. 

 Particularly within the HSC niche, adipocytes are considered to play a 

pivotal role in guiding SC development364.  While some research advocates for a 

positive role for adipocytes, general consensus supports an inhibitory function for 

adipocytes on the maintenance of the HSC population365-367.  At birth, HSCs are 

found throughout the skeleton368.  During postnatal development, conversion of 

areas of red BM to adipocytic yellow marrow results in the confinement of 
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hematopoiesis to specific regions within the skeletal system, such as flat bones 

and the epiphyseal ends of long bones364.  Large, round adipocytes may 

compress walls of sinusoids to restrict blood flow, consequently transforming 

regions previously of red marrow into fatty yellow BM, which are characterized by 

a limited blood supply364, 369.  In vivo, an overabundance of adipocytes within 

diabetic BM may similarly occlude capillaries to limit the accessibility of VSCs 

and EPCs to the vasculature.  This may restrict the exposure of these cells to 

pro-vasculogenic chemotactic signals, as well as the ability of these cells to 

mobilize from the BM and enter into circulation.  As reductions in blood supply 

are not a factor in my co-culture systems, I have identified the novel potential for 

adipocyte-specific cell-cell interactions or alterations to the extracellular 

microenvironment to negatively regulate the stemness of CD133+ cells.   

 My second objective sought to quantify differential expression of niche and 

ECM-related genes between adipocytes and osteoblasts relative to control BM-

MPCs that may account for the differences in SC adherence and survival I 

observed in the first aim.  A secondary goal was also to provide the groundwork 

for future studies investigating individual changes and the contribution to SC 

dysfunction.  My results demonstrate that adipocytes are responsible for the 

creation of a distinct microenvironment, with modulated expression of factors 

known to exert influence over SC development and vasculogenesis.  
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 The ECM has recently been shown to play a critical role in governing the 

fate of SCs, through both cell interactions and mechanical forces.  Differential 

ECM production  by the stromal cells comprising the SC niche regulates SCs 

through direct physical interactions with cells, ECM-receptor signalling, and 

modified mechanical properties that allow or disallow for SC migration and 

morphological changes necessary for differentiation370, 371.  I found that 

adipogenic matrix is characterized by increased expression of most collagen 

subtypes, with significant up-regulation of collagens 3A1, 4A4, and 6A1.  This 

finding corroborates previous findings of enhanced synthesis of type 4 collagen 

following adipogenesis, though the reported expression of other collagen 

subtypes varies between studies372-380.  Notably not up-regulated however, was 

collagen 1A1, which has been shown to facilitate the in vitro survival and 

proliferation of EPCs359.  Culture of EPCs on type 1 collagen-coated growth 

surfaces has been shown to improve their proliferative and migratory 

capabilities381.  The observed up-regulation of various collagen subtypes is likely 

to contribute to an increase in the overall concentration of collagen within the 

ECM.  A 2010 study by Critser et al. determined that increasing the concentration 

of collagen in a three-dimensional matrix influenced the vasculogenic capacity of 

EPCs, resulting in a significant decrease in the number of functional EPC-derived 

vessels in a given area382.  Other investigations have confirmed that more 

malleable matrix substrates favour blood vessel formation over high density 

ECM383-385.  Thus, the increased collagen production by adipocytes may result in 



 

 

105 

 

 

reduced profusion of the marrow microenvironment in which VSCs and EPCs 

reside. 

 I also observed a significant decrease in the mRNA expression of most 

collagen subtypes in osteoblasts, with significant repression of collagens 1A1, 

4A4, 5A1, and 6A1.  Osteoblastic matrix has typically been characterized by 

significant expression of type 1 collagen, which comprises 90-95% of organic 

matrix within mature bone386.  This discrepancy in collagen mRNA production 

may be the result of the time point at which gene expression was assessed.  I 

induced osteoblastic differentiation over 14 days, though significant matrix 

deposition could be observed visually within one week of induction387.  After 14 

days of differentiation, the culture growth surface was fully covered with 

osteogenic matrix, which may have resulted in down-regulation of ECM-related 

genes through a negative feedback mechanism.  Pursuing a time-course 

analysis of ECM gene expression throughout the osteoblastic differentiation 

period may reveal the characteristic up-regulation of type 1 collagen typically 

seen in osteoblasts. 

 Various collagen subtypes have been reported to influence the 

differentiation of MPCs.  We and others have reported either positive or no 

effects of collagen on adipogenesis, though this finding is not unanimous388-391.  

Types 1, 2, and 3 collagens have been shown to play important roles in 

promoting the differentiation and function of osteoblasts390, 392-396.  Collagen-
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coated culture dishes also increased the adhesion, proliferation, and function of a 

differentiated osteoblastic cell line397.  The changes I observed in collagen gene 

expression in adipocytes may facilitate negative feedback to limit further 

adipogenic differentiation of MPCs by promoting osteoblastic lineage 

commitment.  

 I also observed a significant decrease in the expression of FN, coupled 

with up-regulation of its inhibitor, tenascin C, in both adipocytes and osteoblasts, 

which corroborates existing literature.  FN has previously been shown to be 

down-regulated throughout adipogenic differentiation, as the existing FN network 

becomes degraded to allow for morphological changes to cell shape377-380, 389, 398, 

399.  FN is one of the earliest matrix proteins up-regulated during bone 

development, though its expression falls significantly throughout the bone 

maturation process400, 401.  Additionally, tenascin C, the glycoprotein inhibitor of 

FN, has been shown to be up-regulated during osteogenic differentiation402, 403.   

 FN has been shown to exert significant influence over SCs and EPCs.  

Culture of EPCs on a FN substrate was found to accelerate the appearance of 

endothelial colonies relative to coating of cell growth surfaces with type 1 

collagen359.  EPCs cultured on FN also demonstrate superior adhesion in 

comparison to culture on collagen or laminin substrata, and improved migration 

over culture on laminin-coated surfaces381.  FN also accelerates the 

differentiation process of EPCs into ECs146, 404.  Thus, my observed down-
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regulation in the expression of FN in adipocytes and osteoblasts may exert a 

negative effect on EPC adhesion and function. Interestingly, advanced glycation 

of FN, as often seen diabetes, has been shown to impair EPC attachment and 

migration, as well as chemotactic targeting to sites in need of vascular repair405.   

 One study by Ballard et al. has identified a potential role for tenascin C in 

EPC homing, with EPCs preferentially incorporating into regions of tenascin C 

expression in the heart406.  This effect is further manifested as a failure for 

tenascin C-knockout mice to induce angiogenesis into cardiac allografts406.  

Tenascin C is also well-known to possess SC-modulatory effects in a number of 

other SC niches407, 408.  Tenascin C is partially responsible for the generation of a 

neural SC niche within the subventricular zone and is involved in facilitating 

neural SC development409.  Tenascin C-knockout studies reveal a role for 

tenascin C in regulating the differentiation of neural SCs and maintaining the cell 

population in an SC-like state409.  Within the BM, tenascin C is also a key factor 

in regulating hematopoiesis410.  Tenascin C-knockout mice also displayed 

reduced hematopoietic activity and HSC long-term survival, though these effects 

could be reversed with the addition of soluble tenascin C to culture410.  Although 

a definitive function for tenascin C within the VSC niche has yet to be elucidated, 

the involvement of this protein in other SC niches highlights its importance and 

pervasiveness in developmental processes.  
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 As described above, FN has previously been shown to drastically reduce 

the adipogenic capability of MPCs341, 343, 411.  FN has also been reported to 

influence osteoblastic development, accelerating the expression of genes 

involved in osteogenic adhesion, proliferation, differentiation and function412-414.  

The effects of FN on osteoblast differentiation have been shown to be mediated 

via interactions with integrins340.  Following differentiation, FN may continue to 

have an anabolic effect on bone by preventing the apoptosis of mature 

osteoblasts415.  Interestingly, although it typically serves as an inhibitor of FN, 

tenascin may also have a stimulatory effect on osteoblastic progenitor cell 

proliferation, differentiation, and osteogenic function416.  

 I observed selective regulation of other genes involved in the formation of 

the basement membrane between BM-MPCs, adipocytes, and osteoblasts.  I 

found HSPG2 to be expressed by adipocytes, which confirms existing literature, 

while I report a novel finding in that HSPG2 is significantly down-regulated in 

osteoblasts378, 417.  HSPG2 has been shown to demonstrate strong anti-adhesive 

properties, which may contribute to our observed differences in CD133+ cell 

adherence in co-culture with adipocytes and osteoblasts418.  Although there is no 

known function for HSPG2 in regulating VSCs or EPCs within the BM, HSPG2 

may bind to VEGFR of ECs to stimulate angiogenesis419, 420.  Within the marrow, 

HSPG2 has dual effects on MPC differentiation, with exogenous HSPG2 

promoting osteoblastic differentiation while inhibiting adipogenesis421.  Taking 
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into account my results, this suggests the possibility of a negative feedback 

mechanism between HSPG2 expression and MPC differentiation.   

 I have also identified laminin as being uniquely regulated between the 

three mesenchymal cell types.  In adipocytes, I observed up-regulation of laminin 

C1, with repression of laminin C2, as has been previously described399, 422.  

Adipocytes have been characterized as having a distinct expression of laminin 

proteins, with predominant expression of the laminin-8 (α4β1γ1) isoform, which is 

in agreement with my finding of increased expression of the laminin C1 gene373, 

422.  Osteoblasts, however, were characterized by significant down-regulation of 

both laminin C1 and laminin C2.  Laminin is abundant in the early osteoid matrix 

produced by developing osteoblasts, though this expression is later supplanted 

by collagen, osteocalcin, bone sialoprotein, and others386.  Laminin is known to 

exert a significant influence over the differentiation of MPCs by accelerating the 

rate of osteoblastogenesis412, 423.  Specifically, laminin-5 (α3Aβ3γ2) increases the 

expression of osteogenic genes via a focal adhesion kinase (FAK) and ERK-

dependent mechanism424-427.  The reduced expression of laminin C2 by 

adipocytes and osteoblasts observed in my study may contribute to an inhibitory 

mechanism to suppress further osteoblastogenesis.  

 In my investigation, up-regulation of nidogen-1, also known as entactin, 

was observed in both osteoblastic and adipocytic cultures, although nidogen-2 

was increasingly expressed only by adipocytes.  Previous studies have also 
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identified nidogen-1 and nidogen-2 as components of the adipocytic secretome, 

which become up-regulated during or following adipogenesis373, 379, 428, 429.  One 

study has shown decreased expression of nidogen-2 in osteoblasts, though they 

also observed repression of the nidogen-1 gene430.  A critical role for nidogen-1 

has been identified in promoting adhesion of a variety of cell types to the 

matrix431-433.  Additionally, nidogen-laminin complexes have been found to 

possess both stimulatory and inhibitory actions on angiogenesis434.  While 

concentrations between 30 and 300 μg of laminin-nidogen complexes per mL 

promoted vessel development and elongation, a concentration of 3,000 μg/mL 

proved inhibitory to vasculogenesis, providing credence to the notion that the 

basement membrane is able to dynamically regulate vessel development434.   

 My profiling studies also revealed significant cell type-dependent 

differences in the expression of matrix remodeling proteins.  I identified 

repression of ADAM-9 and -19 and up-regulation of ADAM-10, -15, and -17 in 

adipocytes.  Early adipogenesis has been characterized by a transient increase 

in the expression of ADAM-12, which promotes matrix reorganization to 

accommodate changing cell morphology, though my study reports a novel 

change in ADAM expression by fully developed in vitro adipocytes435, 436.  In 

osteoblasts, I noted a repression of most ADAMs, with significant down-

regulation of ADAM-9, -10, -12, -15, -19, -21, and -28.  In mice, knockout of the 

ADAM-15 gene resulted in increased activity of osteoblasts, ultimately leading to 
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enhanced bone mass437.  This role for ADAM-15 in skeletal homeostasis 

corresponds with my observed regulation of the gene following adipogenic and 

osteogenic differentiation.  

 Substantial differences in the expression of MMPs were also observed, 

with repression of MMP-1, -2, -10, -11, -14, -15, -16, -17, and -24 and up-

regulation of MMP-3 and -13 in osteoblasts.  Down-regulation of MMPs has 

previously been demonstrated following osteogenesis of BM-MPCs438.  In 

adipocytes, I observed down-regulation of MMP-1, -2, -11, -14, and -16 and 

increased expression of MMP-13, -15, -17, -19, and -24.  Inhibitors of MMPs, or 

TIMPs, were also selectively regulated following differentiation, with repression of 

TIMP-2 and -3 and induction of TIMP-4 in both adipocytes and osteoblasts.  A 

prior study observed significant induction of MMP-2 in the early stage of 

adipogenesis, though its expression returned to a low level after six days of 

differentiation439.  Also observed was a progressive increase in the expression of 

MMP-19 throughout the course of differentiation, aligning with the results attained 

in my study439.  As with ADAMs, the temporal activation of specific MMPs is 

necessary for the differentiation of MPCs into mature adipocytes and thus, the 

observed changes in the expression of MMPs and TIMPs by adipocytes and 

osteoblasts may have feedback effects on MPC differentiation439-441.  

Additionally, though little is known about the process, MMP and ADAM 
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metalloproteinases are believed to be involved in the mobilization of EPCs from 

the BM166, 442.   

 Aminopeptidase A is a transmembrane peptidase involved in the cleavage 

of glutamic and aspartic amino acid residues from the N-terminus of various 

proteins.  I observed up-regulation of aminopeptidase A in both adipocytes and 

osteoblasts in comparison to BM-MPCs.  Another study has previously identified 

expression of aminopeptidase A in mature osteoblasts, but I believe my study is 

the first to characterize the induction of this peptidase following the adipogenic or 

osteogenic differentiation of MPCs443.  Aminopeptidase A has been reported to 

possess a role in ischemia-induced angiogenesis, promoting migration and 

proliferation of ECs444.  Knockout of aminopeptidase A impairs angiogenesis in a 

hind limb ischemia model, through a reduction in the stability of HIF-1α445.   

 I also investigated the changes in expression of a variety of niche genes 

between BM-MPCs and BM-MPC-derived adipocytes and osteoblasts.  I first 

investigated the expression of components that comprise the Notch signalling 

system that plays integral roles in directing SC fate and developmental 

processes.  In osteoblasts, I observed significant up-regulation of Notch 

receptors 1 and 2, along with increased expression of the Notch ligand JAG1.  

Alternatively, adipocytes were characterized by induction of Notch ligand DLL4.  

The Notch signalling pathway is critically involved in governing the development 

of a number of SC types446-448.  Within the BM, Notch has been implicated in 
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preventing osteoblastic differentiation to preserve the MPC population, though 

some studies contradict this notion449-452.  A stimulatory role for the Notch 

pathway has been identified in adipogenesis, though again, this finding is not 

unanimous449, 451, 453, 454.   

In a profile of niche gene expression in CD133-positive SCs, I identified 

NOTCH1 as the predominant receptor within the Notch signalling system in these 

cells.  The expression of Notch signalling components in EPCs suggests that the 

observed changes in Notch gene expression by adipocytes and osteoblasts may 

be parlayed into functional differences in the angiogenic capacity of EPCs.  

Notch signalling in EPCs has previously been shown to promote the proliferation 

of these cells and their mobilization and migration towards sites of vascular 

injury455, 456.  Notch also regulates the in vitro adhesion of EPCs to the ECM by 

modulating integrin expression, and inhibition of this pathway impairs the ability 

of these cells to form tube-like structures457.  In vivo activation of Notch signalling 

increased the angiogenic capacity of EPCs to improve wound healing in a mouse 

model457.  

The effects of changes in the abundance of Notch ligands on EPC survival 

and function have also been investigated.  Conditional knockout of JAG1 in mice 

was associated with a reduction in the expression of EC markers within the BM, 

limited colony-formation by EPCs, as well as impaired EPC proliferation, 

migration, survival, and vasculogenic ability, while knockout of DLL1 had no 
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effect458.  Overexpression of JAG1 by stromal cells in a co-culture system was 

able to counter the deficits in EPC differentiation and function seen in the murine 

model458.  In ECs, JAG1 has been shown to antagonize the interaction between 

DLL4 and Notch, which has anti-angiogenic effects on vessel sprouting459-462.  

My findings of increased JAG1 in osteoblasts and repression of DLL4 in 

adipocytes provide a possible mechanism underlying the EPC impairment 

observed in diabetic BM adipogenesis.  

I observed no significant changes in the expression of genes involved in 

mediating cell-cell and cell-ECM interactions between the three cell types, with 

the exception of integrin-α4, which was significantly up-regulated in osteoblasts.  

In contrast to my results of increased integrin-α4 expression in osteoblasts, one 

study that profiled gene expression throughout osteoblastic differentiation failed 

to observe expression of integrin-α4 at any time points463.  This study made use 

of the murine MC3T3-E1 pre-osteoblast cell line, which may not be applicable to 

my model of human BM-MPC differentiation.  My gene expression profiling of 

CD133+ cells revealed that one of integrin-α4’s binding partners, VCAM, was 

expressed at a low level by these cells.  This may still be sufficient to mediate 

binding between CD133+ cells and nearby stromal cells, but this requires further 

investigation.  The observed increase in the expression of integrin-α4 by 

osteoblasts may have contributed to the enhanced SC adhesion in osteoblastic 

co-culture (data from first objective).   
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In my profiling of CD133+ cells niche gene expression, I noted that 

integrin-α4 was expressed in this cell type.  This corresponds with existing 

literature, as integrin-α4β1 has been identified as a key regulator of EPC 

adhesion and mobilization within the BM.  In vivo inhibition of integrin-α4 resulted 

in an increased propensity of EPCs to mobilize from the BM and enter into 

circulation, demonstrating the importance of this molecule in regulating SC 

adhesion464.  Integrin-α4β1 has also been found to play a role in the homing of 

EPCs from the BM to areas of neovascularization, though it may be redundant in 

its function464, 465.  At sites of acute lung injury, integrin-α4β1 expression by BM-

derived EPCs has been implicated in promoting vessel sprouting and preventing 

vascular injury, demonstrating roles for integrin-α4β1 throughout the angiogenic 

process466. 

In osteoblastic cells, I observed a significant reduction in the expression of 

SDF-1, which binds to its receptor, CXCR4, to facilitate chemotaxis of 

lymphocytes during embryogenesis and EPCs during postnatal life.  SDF-1 binds 

to CXCR4 to induce the concentration-dependent migration of EPCs via 

activation of a pathway involving PI3K, PKB, and eNOS467.  During development, 

SDF-1 is expressed early in osteoblast differentiation and is believed to act as a 

homing agent to localize SCs to the marrow468.  High expression of SDF-1 has 

been identified in immature osteoblasts and osteosarcoma cell lines, though its 

regulation in mature human osteoblasts is not conclusive469.  My results indicated 
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that CXCR4 was expressed very highly by CD133+ cells, relative to its limited 

expression in BM-MPCs.  I believe that the reduced expression of SDF-1 by 

osteoblasts may make this chemotactic gradient more detectable to EPCs in the 

BM, allowing for enhanced mobilization and migration towards sites of vascular 

injury in response to hypoxia-induced SDF-1.    

SDF-1-CXCR4-induced EPC activation has previously been shown to be 

disrupted in diabetes.  Hyperglycemia-treated EPCs display reduced expression 

of CXCR4 and suppression of the PI3K/PKB/eNOS axis known to mediate EPC 

migration470.  This finding has been confirmed in diabetic patients, who have a 

reduced number of CXCR4-positive cells in circulation and whose EPCs exhibit 

lower CXCR4 expression than health controls470, 471.  Diabetic mice display a 

reduced plasma concentration of SDF-1, as well as number of CXCR4-positive 

cells in circulation472.  Overexpression of CXCR4 in EPCs has been shown to 

enhance the colony forming ability of these cells, prevent EPC dysfunction and 

apoptosis in response to hyperglycemia, and attenuate ischemic damage in a 

model of cerebral infarction472.   

I also investigated the potential for differential regulation of vascular 

growth factors Ang1 and Ang2 between BM-MPCs, adipocytes, and osteoblasts.  

I report the novel finding that both Ang1 and Ang2 were up-regulated over 10-fold 

in adipocytes relative to MPCs, though no significant change was observed in 

osteoblasts.  Ang1 and Ang2 both serve as ligands for Tie-1 and 2 receptors, 
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which I have shown are expressed in CD133+ cells.  Tie-2 is particularly 

important in angiogenesis, as well as EC proliferation and maintenance of 

vascular networks473.  Alternatively, Tie-1 heterodimerizes with Tie-2 to facilitate 

Tie-2 signalling, and is also important in establishing vessel integrity473, 474.  

When bound to Tie-2, Ang1 is pro-angiogenic and is involved in vessel 

development, while binding of Ang2 acts as an antagonist to Ang1, disrupting the 

formation of blood vessels and inducing EC apoptosis475-479.   

Because Ang1 and Ang2 serve as antagonists to one another, I believed it 

was prudent to investigate the expression of these factors as the ratio between 

them, rather than their individual expression.  Although both Ang1 and Ang2 

were up-regulated in adipocytes, the ratio of Ang1 relative to Ang2 remained 

similar to that of MPCs.  Alternatively, osteoblasts displayed a four-fold increase 

in the Ang1/Ang2 ratio in comparison to control MPCs, suggesting that 

osteoblasts may preferentially stimulate BM-EPC survival and function.  My 

finding was in agreement with previous work citing a strong preference for Ang1 

production in osteoblasts480, 481.  Additionally, a study investigating the effects of 

Ang1 in the HSC niche found that Ang1 was able to heighten SC adhesion to 

osteoblasts, which may contribute to the increased adherence of CD133+ cells 

with osteoblasts in my co-culture model330.  

Murine models of diabetes have revealed significant involvement of the 

angiopoietin signalling system on perpetuating vascular injury.  Increased 
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expression of Ang2 has been found in the cardiac tissue of diabetic mice relative 

to non-diabetic control animals345.  This study by Tuo et al. also reported 

increased vascular damage and tissue apoptosis following myocardial infarction 

in diabetic mice relative to healthy controls345.  This was reversed through 

overexpression of Ang1, and exacerbated by overexpression of Ang2345.  In 

humans, the plasma concentrations of Ang2 are elevated in diabetic subjects 

relative to healthy controls, though there was no difference in Ang1 levels482.  In 

relation to diabetic complications, Ang2 levels have been found to be significantly 

elevated in some forms of diabetic retinopathy the vascular changes to the retina 

can be reversed in a rat model through local or systemic overabundance of 

Ang1483-485.   

Although angiopoietins are known to be critically involved in mediating 

angiogenesis and dysfunction in ECs, comparatively little is known about the 

specific effects of Ang1 and Ang2 on endothelial progenitors.  Ang1 has been 

shown to promote the migration of early endothelial outgrowth cells (a subclass 

of EPCs) and improve response to ischemia486.  Ang1 overexpression has also 

been associated with enhanced VSC differentiation into EPCs within the BM, 

though reports of its effects on the mobilization of EPCs are divided345, 487-491.   

I investigated how modulating the balance between Ang1 and Ang2 

abundance influences the stemness and endothelial properties of CD133+ cells, 

though the results failed to reach significance.  The lack of significance attained 
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in this experiment may be attributed to the concentrations of angiopoietins I used 

in the studies.  In healthy human controls, Ang1 and Ang2 concentrations are 

usually both below 10 ng/mL (range of mean concentrations for Ang1: 1-8 ng/mL; 

range of mean concentrations for Ang2: (1.5-5 ng/mL), although these values 

may be elevated in some disease states, including diabetes492-496.  In vivo animal 

models using an adenovirus to overexpress Ang1 result in maximal Ang1 plasma 

levels of 74.1 ng/mL, though this concentration may actually reduce EPC 

mobilization487, 491.  In vitro studies on ECs and EPCs however, have generally 

used Ang1 and Ang2 concentrations much greater than those seen in a 

physiological setting.  These studies have variously used exogenous Ang1 and 

Ang2 concentrations ranging from 0.1-1,000 ng/mL497-502.  While the majority of 

these investigations have focused on the upper ends of this spectrum, lower 

concentrations of Ang1 (≤ 50 ng/mL) may be capable of stimulating EC 

migration, vascular sprouting, and survival497-499.  I elected to utilize moderate 

angiopoietin concentrations closer to physiologically relevant levels than most 

published literature.  It is possible that extreme concentrations of angiopoietins 

may be required in order to induce substantive biological changes in EPCs. 

I next aimed to confirm my in vitro findings in an in vivo model of diabetes.  

As expected, there was an up-regulation of the C/EBP family of adipogenic 

transcription factors in diabetic animals indicative of enhanced marrow 

adipogenesis.  Although non-significant, the expression of osteoblastic markers 
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BGLAP, Runx2, and Sp7 appeared to be somewhat lower than that of controls (p 

= 0.124, 0.164, 0.297, respectively; n=3).  The induction of adipogenesis and 

inhibition of osteoblastogenesis are commonly observed in diabetic models335, 338, 

503.  The expression of MPC marker CD105, also known as endoglin, in rat BM 

was not significantly altered by diabetes.  In type 1 diabetes, increased BM 

adipogenesis is accompanied by a reciprocal decrease in osteogenesis, with 

minimal change to the size of the progenitor cell population.  The effect of 

hyperglycemia on BM-MPC populations is unclear, with reports of contrasting 

effects on differentiation, proliferation, and survival183, 257, 504, 505.  Although the 

finding was not statistically significant, the expression of SC markers Nanog, 

Oct4, and Sox2 did appear to be slightly reduced in the diabetic BM, which was 

to be expected given the known deleterious effects of diabetes.  

Although the majority of my in vivo results failed to breach the desired 

level of significance, the finding of increased marrow adipogenesis is in concert 

with existing literature.  A possible explanation for the lack of significance 

attained is the relatively short duration of diabetes used in the model.  Following 

injections of STZ and confirmation of elevated blood glucose concentrations, rats 

were maintained for four weeks before being euthanized.  Four weeks has 

proven to be sufficient time to induce cellular and morphological changes to 

skeletal composition in other rodent models of type 1 diabetes335-338.  A number 

of other studies have observed considerably longer disease durations before 
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analyzing changes to the BM506-508.  My four week time point may not have 

allowed sufficient time for increased BM adipogenesis to fully interfere with the 

proliferation, differentiation, and migration of BM-resident VSCs and EPCs.  

Performing a time course study of the progressive changes in diabetic BM may 

provide more definitive insight into the pathological modifications occurring within 

the marrow.   

4.2 Limitations 

In my exploration of the effects of MPCs, adipocytes, and osteoblasts on 

the survival and adherence of CD133+ SCs, I assessed the mRNA expression of 

three SC markers – CD133, Nanog, and Oct4 – via qPCR.  I utilized the levels of 

these three genes as a surrogate for the “stemness” of the cells remaining in 

culture – a composite attribute incorporating both SC quantity and SC gene 

expression.  In order to differentiate between these two characteristics, flow 

cytometry may be employed in the future to quantify the adherent and surviving 

cells in my in vitro co-culture systems.  

 The published literature regarding the expression of specific niche and 

ECM genes in adipocytes and osteoblasts is widely varied.  Discordance 

between my results and prior findings and within existing studies may be the 

consequence of different starting cell populations.  I made use of BM-derived 

MPCs and BM-MPC-derived adipocytes and osteoblasts to identify unique gene 
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expression patterns between the three cell types.  Other studies have utilized a 

variety of cell types in their investigations that may not share similar gene 

expression profiles to my cell populations.  Murine pre-adipocyte cell lines 3T3-

L1 and 3T3-F442A are most commonly used in the study of adipocytes and 

adipogenesis, though interspecies differences may exist between these cell lines 

and human BM-MPCs91, 509.  Similarly, the MC3T3 cell line is commonly used in 

studies of osteogenesis and osteoblast function, though it represents a mouse-

derived osteoblast precursor cell line rather than multi-potential precursor cells.  

Other studies use the murine mesenchymal precursor cell line C3H10T1/2 that 

better resemble MPCs.  These cells display equivalent osteoblastic development 

as BM-MPCs, though their capacity for adipogenesis is severely limited, with only 

10% of C3H10T1/2 cells undergoing adipogenic differentiation510.  The 

interspecies differences that exist between commonly used murine cell lines and 

human BM-MPCs used in my studies complicate the comparisons that can be 

made between these studies.   

Additionally, the culture of isolated cell types on plastic culture dishes fails 

to recapitulate the complexity of the BM that exists in vivo.  My co-culture 

experiment served as a simplistic example of the effects of excessive 

adipogenesis on CD133+ cells, but the true BM SC niche would be comprised of 

a mixture of MPCs, adipocytes, osteoblasts, HSCs, ECs, pericytes, and 

fibroblasts.  Similarly, the gene expression profiles for adipocytes, osteoblasts, 
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and MPCs is intimately linked to paracrine and cell-cell signalling from the 

various cell types within the BM, which my model fails to take into account.  Also, 

the culture of cells on collagen-coated plastic culture dishes eliminates many of 

the cellular interactions with the ECM, which may influence gene expression and 

SC phenotype.  

 It would be advantageous to confirm the findings of augmented gene 

expression in diabetic human marrow specimens, though this may not provide 

relevant results.  Over 85% of individuals with diagnosed diabetes report 

controlling their disease with insulin or other anti-hyperglycemic medication511.  

While these medications are invaluable in preventing severe diabetic 

complications, many common diabetic therapies also induce significant changes 

to the composition of the BM, particularly when used chronically.  Insulin and 

TZDs are notorious for enhancing BM adipogenesis, while metformin may 

increase bone density, so the use of these medications by diabetic subjects 

would interfere any results we may find.  The difficulty involved in identifying and 

recruiting subjects with un-medicated disease of sufficient duration and severity 

to induce skeletal changes hinders our ability to confirm these findings in human 

subjects.  
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4.3 Future Directions 

4.3.1 Confirming Gene and Protein Expression throughout 

Differentiation 

 The majority of my findings were derived by qPCR, which solely takes into 

account the mRNA abundance of target genes.  PCR limits us to detecting 

differential rates of transcription, without acknowledging changes in expression 

that occur post-transcriptionally or at the protein level.  Thus, an important next 

step would be to confirm whether the findings of augmented gene expression 

bear out in protein expression through quantitative western blot analyses.  It 

would also be beneficial to perform a time course experiment reporting 

alterations in both gene and protein expression throughout the adipogenic and 

osteoblastic differentiation processes and the life cycle of these cells in order to 

definitively establish the contributions of each cell type to the BM SC niche.  

4.3.2 Effects of Identified Target Genes on CD133-Positive Cells 

Many of the genes we identified as being differentially regulated between 

adipocytes, osteoblasts, and MPCs are known to have effects on EPCs.  

Culturing CD133+ cells in conditioned media from MPCs, adipocytes, and 

osteoblasts could help to distinguish between the effects of soluble niche factors 

and cell-cell interactions, such as the Notch signalling pathway.  The next step in 
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this research project should investigate specifically how each of these factors 

concentration-dependently influences proliferation, differentiation, migration, and 

survival in a population of CD133+ cells.  I have started this process through 

investigation of how altering the Ang1-to-Ang2 ratio affects the expression of SC 

and EC markers.  Through a combination of overabundance, overexpression, 

knockout, and inhibition experiments, we could identify how the changes in gene 

expression in adipocytes and osteoblasts directly affect VSCs.  

4.3.3 Hindlimb Ischemia Model with Altered BM Composition 

My results indicate that adipocytes may negatively impact the adhesion 

and survival of CD133+ cells.  It would be interesting to evaluate how enhanced 

marrow adipogenesis affects EPCs in vivo.  In this model, animals would be 

subjected to treatment with a variety of substances known to affect MPC 

differentiation into adipocytes and osteoblasts.  These substances could include 

bisphenol A diglycidyl ether (BADGE; adipogenic inducer), rosiglitazone 

(adipogenic inducer and osteoblastogenic inhibitor), GW9662 (adipogenic 

inhibitor), or oncostatin M (osteoblastogenesis inducer and adipogenic 

inhibitor)512-515.  Hindlimb ischemia could then be induced in these animals and 

successful reperfusion monitored.  Angiogenic ability under distinct marrow 

compositions could be contrasted with that of diabetic animals, as diabetes has 

consistently been shown to impair vascular recovery using this model179, 516, 517.  

This experiment would be of use in conclusively ascertaining the specific 
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contribution of marrow adipogenesis to diabetic VSC and EPC dysfunction, 

rather than other pathological aspects of the diabetic state such as 

hyperglycemia and hyperlipidemia.  
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