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Abstract 

Developmental exposure to BPA is associated with liver dysfunction and 

diseases in adulthood. However, the effects of BPA on liver development are 

unknown. To address this question, pregnant mice were exposed to BPA via diet from 

embryonic day 7.5 (E7.5) to E18.5. At E18.5, fetal livers were collected, and 

analyzed for changes in the expression of key hepatic maturation markers. We found 

the following significant protein alterations in BPA-exposed female but not male fetal 

livers: (a) mature hepatocyte markers, albumin and glycogen synthase, were 

decreased; (b) immature hepatocyte marker, alpha-fetoprotein, was increased; (c) 

master transcription factor of hepatocyte differentiation, C/EBP-α, was down-

regulated; and (d) PCNA (cell proliferation marker) was elevated, while caspase-3 

(marker of apoptosis) was reduced. These findings demonstrate that prenatal exposure 

to BPA disrupts molecular maturation of the mouse fetal liver in a sex-specific 

manner, and suggest that females are more vulnerable to BPA-induced liver 

dysfunction and diseases. 
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Chapter 1 – Introduction 

1.1 Bisphenol A 

Bisphenol A (BPA) is a prominent endocrine-disrupting chemical (EDC) that has 

fueled major public health concerns due to its association with a wide range of metabolic, 

reproductive, cardiovascular, and neurological disorders as well as cancer [1–3]. It is one 

of the highest volume chemicals produced in the world, with over 8 billion pounds being 

produced annually [4]. As a building block of polycarbonate plastics, as well as a major 

component of epoxy resins [4–6], BPA is used extensively in the manufacture of a 

number of consumer goods and products, including reusable food and beverage 

containers, dental sealants, polyvinyl chloride stretch films, tin can linings, cardboards, 

and papers used in register receipts [1,4,6,7]. Consequently, BPA has also been detected 

in water, dust, as well as indoor and outdoor air samples [1,8]. Because BPA is 

ubiquitously present in the environment, it can exert its harmful effects through multiple 

routes of exposure including ingestion, inhalation, and dermal absorption [1,8]. Humans 

are most commonly exposed to BPA via diet [9], as free (active) BPA has a tendency to 

leach out of food and beverage containers, routinely entering our food and drinks 

[4,6,10]. 

1.1.1  Pharmacokinetics 

Following ingestion, BPA is absorbed from the intestines and transported to the 

liver to be metabolized by glucuronidation during first-pass metabolism [11,12]. 
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Unconjugated BPA is rapidly metabolized into inactive BPA glucuronide (BPA-GA) via 

UDP-glucuronyltransferases (UGTs), most notably UGT2B1, as well as into inactive 

BPA sulfate metabolites via sulfotransferase (SULT) enzymes [8,13]. BPA metabolism is 

similar between humans, non-human primates, and rodents in that the major metabolite 

formed is BPA-GA, accompanied by small amounts of BPA sulfate [11]. However, one 

species difference exists in terms of BPA elimination. In humans and non-human 

primates, BPA is cleared from the blood and excreted via the renal system, whereas in 

rodents, BPA conjugates are eliminated primarily in the feces via bile, with only small 

amounts excreted in the urine [12]. This species difference in route of clearance has led 

some to speculate that levels of BPA clearance must also be vastly different between 

humans and rodents. However, Taylor et al. have confirmed that oral administration 

results in similar internal exposures to unconjugated BPA in primates and rodents, with a 

virtually identical rate of clearance [12]. Other studies have also established that the 

pharmacokinetics of BPA are comparable between humans and rodents [12,14], and 

regulatory agencies have subsequently deemed rodent models appropriate for assessing 

the effects of BPA [14]. 

It has been previously assumed that following oral ingestion, first-pass 

metabolism of BPA is complete with virtually all ingested BPA being conjugated in the 

liver [15], attenuating the need for concern in regards to potential health effects 

underlying BPA exposure. However, this assumption surfaced mainly from the findings 

of one single study that failed to detect unconjugated BPA in human plasma and urine 

samples [12]. Importantly, this study was characterized by fundamental design flaws 

including a limited sample size as well as the use of a relatively insensitive assay [15].  
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More recent findings from pharmacokinetic studies using both mice [16] and 

primates [12] have demonstrated that first-pass metabolism is in fact incomplete. Results 

from several biomonitoring studies in humans also indicate internal BPA exposure, given 

that measurable concentrations of unconjugated BPA are detected in urine [17], which 

suggests the following: (a) first-pass metabolism is not complete; (b) a portion of BPA 

entering the body circumvents first-pass metabolism; and/or (c) BPA metabolites are 

being deconjugated in the body [14,17]. Indeed, studies using rodents have found that a 

portion of conjugated BPA undergoes deconjugation via enzymes in the intestine and 

colon [8]. Glucuronidase enzymes are also apparent in the digestive tracts of humans, 

especially those of infants, likely indicating their ability to deconjugate and re-activate 

conjugated BPA [8]. 

The relative bioavailability of BPA is largely dependent upon route of 

administration. While orally administered BPA is subject to first-pass metabolism, BPA 

administered via other routes will bypass this process, leading to higher concentrations of 

active BPA in circulation [14]. For instance, compared to oral administration, systemic 

blood concentrations of BPA are markedly higher following subcutaneous or 

intraperitoneal injection, which indicates higher bioavailability [18]. These findings 

provide a likely explanation for why the relative potency of BPA is also dependent on 

exposure route. For example, subcutaneous BPA administration tends to yield effects at 

much lower doses compared to other routes of exposure [15].  
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1.1.2  Mechanisms of Action 

According to the US Environmental Protection Agency (EPA), an EDC is defined 

as “an exogenous agent that interferes with the production, release, transport, 

metabolism, binding, action, or elimination of natural hormones in the body responsible 

for the maintenance of homeostasis and the regulation of developmental processes” [7]. 

BPA is most commonly referred to an estrogenic EDC because of its ability to disrupt the 

activity of endogenous estrogens [7]. Estrogens are a group of steroid hormones derived 

from cholesterol [1], and are critically involved in regulating the growth, differentiation, 

and function of a number of different target tissues [19]. While estrogens diffuse in and 

out of all cells, they are retained with high affinity and specificity in target cells via 

interaction with the estrogen receptor (ER) [1]. The ER is located mainly in the cell 

nucleus where, once bound by an estrogen, it will undergo a conformational change and 

bind to response elements in the promoter region of certain estrogen target genes [19,20]. 

As a result, coregulatory proteins (coactivators or corepressors) are recruited to the 

promoter region of the target gene, leading to a respective increase or decrease in mRNA 

levels and associated protein production [21]. ER can also act via non-genomic 

mechanisms, as outlined by Deroo et al. [21]. In mammals, the two major ER subtypes 

are ERα and ERβ. These subtypes are encoded by separate genes (ESR1 and ESR2, 

respectively), and exhibit distinct tissue-specific expression patterns [21]. In tissues 

where they are coexpressed, ERα and ERβ can sometimes exert differential effects, and 

can also influence the actions of one another [22]. 
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It is well established that upon binding to nuclear ER, BPA can induce estrogenic 

signals that modify estrogen-responsive gene expression [7]. BPA can bind to both ERα 

and ERβ, with a ten times higher affinity for ERβ [2]. Specifically, BPA has been shown 

to act as an agonist for ERβ, while demonstrating dual effects as an agonist and 

antagonist in some cell types via ERα [23]. Hence, the activity of BPA is largely 

dependent on ER subtype and cell type, which can be partially attributed to the 

differential effect of BPA on the recruitment of coactivator proteins by ERα and ERβ 

[7,24]. 

BPA has been classified as a weak estrogen based on its low binding affinity for 

ER compared to naturally-occurring 17β-estradiol (~10,000-fold lower) [14,25]. 

Previously, this has led to the notion that BPA might be unable to create an impact in the 

midst of the already strong effects of endogenous estrogens. However, Rajapakse et al. 

demonstrate that the combination effect of estradiol and BPA is in fact additive [26]. The 

spare receptor hypothesis describes how typically, a maximal biological response can be 

achieved by low concentrations of a hormone, well before receptor occupancy becomes 

saturated [14]. The presence of these “spare receptors” provides a mechanism for why 

low doses of an EDC such as BPA might exert a response, regardless of its low affinity 

for the receptor [25]. In addition, BPA has been shown to interact with ER in a non-

classical manner that is distinct from other known groups of ER ligands [25,27], leading 

to the induction of a unique subset of ER-responsive genes and associated physiological 

responses [28]. Moreover, while BPA is less potent than estradiol upon binding to 

nuclear ER, its potency is evidenced to be just as high as that of estradiol when its action 

is mediated by ERs outside the nucleus [7]. 
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Importantly, the endocrine disrupting actions of BPA extend beyond its ability to 

modulate the activity of endogenous estrogens. More recently, it has become apparent 

that BPA can bind to the androgen receptor (AR) and thyroid receptor (TR) as an 

antagonist [29]. In addition, BPA can bind to the glucocorticoid receptor (GR) as both an 

agonist and antagonist [30,31], and has also been shown to possess strong binding 

affinity for the estrogen-related receptor γ (ERRγ) [32]. In addition, BPA can act via 

variety of intracellular signal transduction pathways directly via mechanisms independent 

of nuclear hormone transactivation [7,8]. Certain metabolites of BPA have even been 

suggested to be more potent than the parent compound itself  [33]. 

1.1.3 Dose-Response and Low-Dose Effects 

Typically, regulatory testing of a chemical involves the establishment of a lowest 

observed adverse effect level (LOAEL), which is the lowest dose at which an adverse 

effect is observable, and/or a no observed adverse effect level (NOAEL), defined as the 

highest exposure level at which no observable adverse effects are present [14]. After a 

series of calculations, a reference dose is then produced which becomes the allowable 

exposure level that is deemed safe for humans [14]. This standard procedure was based 

on one of the traditional notions in toxicology being that “the dose makes the poison”. 

This idea implies that the larger the dose of a chemical substance, the greater the 

physiological response. However, studies of EDCs have challenged this concept, 

including those of BPA, demonstrating that low-dose effects exist which cannot be 

predicted by the effects observed at high doses [14]. This is due to the fact that BPA and 

other EDCs often exhibit non-monotonic versus monotonic dose-response relationships 
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[34]. Monotonic dose response curves can be linear or non-linear, but the sign of the 

slope remains constant. In contrast, non-monotonic dose response curves (NMDRCs) 

present as U-shaped or inverted U-shaped curves, with the sign of the slope changing 

from positive to negative (or vice-versa) at some point of along the range of examined 

doses [14]. In other words, BPA’s action (or lack thereof) at low doses cannot simply be 

inferred by the presence or absence of an effect of BPA at a higher dose [34,35]. Thus, 

the traditional approach of using high-dose testing regimens to assess chemical safety at 

low doses is particularly problematic for EDCs. 

This issue reinforces the importance of environmentally relevant doses in studies 

examining the effect of an EDC. In animal models, an administered dose of a chemical 

that creates internal concentrations within the range of what has been measured in the 

general human population is considered “environmentally relevant” [14]. 

Environmentally relevant doses are considered “low doses”, and the biological effects 

that arise from environmentally relevant doses are often referred to as “low-dose effects”. 

Importantly, epidemiological studies have repeatedly linked low doses of BPA to adverse 

health and increased disease prevalence in the general population [14]. 

1.2 BPA During Pregnancy 

EDCs can elicit different effects depending on the life stage during which an 

animal is exposed [36]. After puberty, exposure to EDCs results mainly in “activational 

effects”, which are transient and generally reversible. Conversely, during critical periods 

of development, EDCs may exert permanent “organizational effects” that persist even in 

the absence of subsequent exposure [36]. Exposure to BPA during pregnancy is of 
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particular concern, as fetal organs are undergoing critical developmental processes. 

Previous studies indicate that BPA reaches the fetus during pregnancy, and exposure to 

BPA in utero has been shown to alter the development of several fetal organs, including 

the brain [37,38], heart [39], mammary glands [40–42], ovaries [43,44], uterus [45], 

testes [46], and lungs [47]. 

1.2.1  Developmental Origins of Health and Disease 

The Developmental Origins of Health and Disease (DOHaD) concept describes 

how early life environmental perturbations can exert programming effects on the fetus, 

leading to permanent changes in the body’s structure, function, and metabolism, and 

increasing the risk for disease later in life [48]. This hypothesis was first proposed by 

David Barker in the 1980’s, who revealed that the starvation of Dutch pregnant women 

during World War I was correlated with an increased risk for adult-onset of 

cardiovascular and metabolic disease in their underweight offspring [49]. This 

association was subsequently confirmed in a number of worldwide longitudinal studies 

[50], and undernutrition during gestation was considered an important early fetal origin 

of cardiovascular and metabolic disorders [48]. As the DOHaD gradually gained 

acceptance, the focus of research expanded to incorporate a number of other factors 

during gestation that might exert programming effects on the fetus [51]. 

It has now become clear that many diseases have their origins during fetal 

development [51]. The prenatal period is considered especially critical given the 

increased sensitivity of tissues undergoing growth, differentiation, and physiological 

maturation [49]. Accordingly, the fetus is especially vulnerable to the adverse effects of 
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EDCs, such as BPA. Environmental influences do not usually result in significant defects 

or malformations that are apparent at birth, but rather manifest as subtle functional 

changes (increased cell numbers, altered gene expression, etc.) that increase the risk for 

dysfunction and diseases later in life [49]. Sex-specific effects may also apparent as early 

as in the developing fetus [49]. 

1.2.2 Fetal Exposure to BPA 

One of the major functions of the placenta is to act as a barrier for the fetus 

against xenobiotics such as drugs and other compounds [52]. However, the placenta 

seems to serve as a rather ineffective barrier against BPA. Due to its high lipid-solubility, 

free BPA can rapidly cross the placenta in both directions, mainly via passive diffusion 

[53,54]. Although the placenta expresses UGTs and SULTs, studies have shown that only 

negligible amounts of BPA are conjugated by the placenta [54]. Moreover, BPA has been 

detected in maternal blood, umbilical cord blood, fetal blood, placental tissue, and 

amniotic fluid [52,54–56], suggesting that BPA reaches the fetus during pregnancy.  

During fetal development, endogenous estrogens are predominantly bound to 

alpha-fetoprotein (AFP), a high affinity binding protein produced by the fetal liver 

[14,57]. Accordingly, the developing fetus is protected from excessive estrogen exposure, 

as relatively low levels of endogenous estrogens circulate as the free, biologically active 

form [57]. Conversely, BPA possesses a limited binding capacity for AFP [57]. Thus, 

although BPA possesses a lower affinity for ER compared to estradiol, its estrogenic 

effects in utero are suggested to be greater than would be expected, given that a higher 

proportion of BPA circulates as the free, biologically active form [57]. 
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Moreover, the Oatp and Mrp family of transporters have been implicated in the 

maternal-fetal transport of BPA-GA, the concentration of which is reportedly elevated in 

maternal blood of pregnant women for the entire gestational period [3]. Specifically, 

studies have shown that BPA-GA is carried from maternal blood vessels to trophoblast 

cells by the Oatp4a1 (influx) transporter, and then transported to fetal cells from 

trophoblasts via the Mrp1 (efflux) transporter [52]. Since these metabolites are water-

soluble, they are less able to cross the placenta and once excreted in fetal urine, are 

trapped in amniotic fluid with the potential to be swallowed and re-circulated in the fetus 

[53]. Although BPA-GA is an inactive metabolite, fetal tissues possess the ability to 

deconjugate BPA-GA to active BPA via the enzyme β-glucuronidase [52]. The majority 

of deconjugation occurs in the fetal liver [52], which also represents the major site of 

BPA accumulation [58]. Deconjugation is also evident in the heart, but to a much smaller 

degree [52]. This, in combination with the limited drug metabolizing system of the fetus 

[52,55], further exacerbates fetal exposure to BPA. 

1.3 The Liver 

The liver is the largest internal organ, accounting for 2-5% of total body mass 

[59], and is responsible for carrying out a number of exocrine, endocrine, and metabolic 

functions [60,61] that are essential for the maintenance of overall homeostasis [62,63]. 

Structurally, the liver is characterized by a complex tissue architecture that is critical for 

normal hepatic function [59]. The liver also possesses the remarkable capacity to 

completely regenerate when up to 70% of its volume is removed [60]. 
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1.3.1  Physiological Functions 

Hepatocytes are major functional cells of the liver and account for approximately 

80% of total liver volume. One of the key functions of hepatocytes is the production of 

proteins, including albumin (25% of hepatic protein production), lipoproteins, globulins, 

clotting factors, and certain hormones [64]. Hepatocytes also produce bile for the purpose 

of aiding in the absorption of fats as well as the excretion of other water-insoluble 

substances [64]. Subsequent to its production in the liver, bile is transported to the gall 

bladder for storage until being released into the small intestine during a meal. One of the 

most critical functions of the liver is the regulation of blood glucose levels. The liver is 

the major site of gluconeogenesis [64]. Additionally, hepatocytes will store excess 

glucose as glycogen after a meal, where its synthesis and degradation is hormonally 

regulated to maintain whole-body blood glucose requirements [64,65]. The liver is also 

essential for the metabolism of other dietary compounds, as well as detoxification, urea 

metabolism, and cholesterol synthesis and transport [59,60]. 

The remaining 20% of the liver is made up of a diverse group of non-parenchymal 

cells that function in concert with hepatocytes, including biliary epithelial cells (BECs; 

also known as cholangiocytes), endothelial cells, Kupffer cells (macrophages), stellate 

cells, and pit cells (natural killer cells) [59]. Table 1-1 summarizes each cell type and 

their respective functions. 
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Cell Type Population (%) Position Function(s) 

 

 

 

 

Hepatocyte 

 

 

 

 

~80% 

 

 

 

 

Parenchyma 

- Protein production & 
secretion 

- Bile production & secretion 

- Glucose metabolism 

- Glycogen metabolism & 
storage 

- Detoxification 

- Cholesterol metabolism 

- Urea metabolism 

 

Cholangiocyte 

 

~3% 

 

Bile duct 
epithelium 

- Bile transport 

- Water & bicarbonate 
secretion 

 

Endothelial 

cells 

 

~3% 

 

Vasculature 

- Form walls of veins, arteries, 
venules, arterioles 

- Control blood flow 

Kupffer cells ~2% Sinusoids - Specialized Macrophages 

Stellate cells ~1.5% Perisinusoidal - Vitamin A & retinoid storage 

Pit cells  rare Sinusoidal 
lumen 

- Cytotoxic activity 

 

Table 1-1. Adult Liver Cell Types and Respective Functions. Hepatocytes are the 

major functional cells of the liver and account for approximately 80% of total liver 

volume. The rest of the liver is made up of a diverse group of cell types that function in 

concert with hepatocytes. 
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1.3.2 Cellular Architecture 

The intrahepatic bile duct (IHBD), portal vein, and hepatic artery run in parallel 

within the liver, and are collectively referred to as the portal triad [60] (Figure 1-1). Each 

portal triad marks roughly one of six corners of the liver lobule, the basic architectural 

unit of the liver, which consists of single sheets of hepatocytes (hepatic plates) lined by 

sinusoidal capillaries [59] (Figure 1-1). The lobule is supplied with blood by the portal 

vein and hepatic artery which, after flowing through the sinusoidal capillaries, exits the 

lobule via the central vein [59] (Figure 1-1). The portal vein sends blood directly to the 

basal surface of hepatocytes, where the absorption of metabolites and toxins occurs [60]. 

Hepatocytes are adjoined via tight junctions that form a canaliculus, which receives bile 

secreted from the apical surface. Bile is then carried through the IHBDs and extrahepatic 

bile ducts (EHBDs) to the gall bladder for storage [59,60]. 

The smallest functional unit of the liver is the hepatic acinus, which is positioned 

between two portal triads, and extends outwards in both directions towards the central 

veins [66] (Figure 1-1). The acinus is divided into three separate zones that each consist 

of hepatocytes specialized for slightly different functions. Zone 1 is defined according to 

its proximity to the portal triad. These hepatocytes are exposed to blood with the highest 

nutrient and oxygen concentrations, and consequently perform the majority of the liver’s 

metabolic functions (glycogenesis, gluconeogenesis, lipid metabolism, and protein 

synthesis) [66]. Hepatocytes in Zone 3 are positioned closest to the central vein, and are 

responsible for carrying out glycolysis, urea synthesis, and biotransformation reactions 
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[66]. Lastly, the functions of hepatocytes in Zone 2 depend mainly on their relative 

proximity to Zones 1 and 3. 
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Figure 1-1. Simplified Schematic Diagram of Hepatic Cellular Architecture. The 

IHBD, portal vein, and hepatic artery make up the portal triad, which marks roughly one 

of six corners of the liver lobule. Each lobule consists of a central vein from which 

hepatic plates radiate out. Sinusoidal capillaries are located in between plates of 

hepatocytes (not shown). The hepatic acinus is positioned between two portal triads, and 

extends outwards in both directions towards the central veins. 
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1.3.3 Sexual Dimorphism 

The liver is known to exhibit a considerable degree of sexual dimorphism. For 

example, metabolic function of the liver is known to be markedly sexually dimorphic, 

which mainly reflects underlying sex differences in the hepatic expression of enzymes 

such as cytochromes P450, UDP-glucuronosyltransferases, and sulfotransferases [67]. 

Such enzymes are essential for the metabolism of drugs, fatty acids, environmental 

toxins, and steroids [67]. Accordingly, the prevalence of a variety of diseases tends to 

differ between males and females [68]. These patterns are largely mediated by sex-

specific secretions in endogenous hormones such as androgens, estrogens, and growth 

hormone [69]. 
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1.4 Fetal Liver Development 

During early gestation, the fetal liver functions largely as a hematopoietic organ 

[70]. By embryonic day (E) 12.5, the fetal liver is considered the primary site of 

hematopoiesis [70], with a peak in hematopoietic activity apparent at E13.5 [71]. By 

E16.5, the major site of hematopoiesis switches to the bone marrow and spleen, at which 

point the liver begins to acquire its metabolic phenotype [71]. 

1.4.1  Hepatic Specification and Liver Bud Formation 

In the mouse, liver development begins after formation of the definitive gut 

endoderm at around E8.5 [72,73]. This corresponds to approximately 3 weeks of 

gestation in the human [61]. The foregut endoderm receives signals from the cardiac 

mesoderm, septum transversum mesenchyme (STM), and neighbouring endothelial cells 

that are necessary for hepatic specification [72,74] and subsequent formation of the liver 

bud [72,75]. Additionally, commitment of the ventral endoderm to a hepatic fate and 

subsequent liver bud morphogenesis involve the establishment of an essential, complex 

network of transcription factors [59]. 

The developing embryonic liver first appears as the hepatic diverticulum (E8.5 to 

E9), a thickened outward extension of the ventral epithelium which is lined by a 

basement membrane of endothelial cells [60]. Newly specified pre-hepatic cells are called 

hepatoblasts, bipotential and proliferative hepatic progenitor cells that are capable of 

giving rise to either hepatocytes or cholangiocytes [61]. Hepatoblasts in the liver bud 

already begin to express serum protein genes specific to hepatocytes [75]. Following 
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hepatic specification, the surrounding basement membrane is lost (E9.5) and hepatoblasts 

migrate as cords to invade the surrounding STM, forming the liver bud [72]. During this 

time, considerable liver growth is apparent due to rapid proliferation of hepatoblasts as 

well as increased hematopoietic activity. The STM and hepatic mesenchyme secrete a 

variety of growth factors that are important for hepatoblast proliferation and migration 

[60]. In addition, signals that prevent apoptosis and promote cell survival further support 

liver bud expansion and differentiation [76]. 

1.4.2  Differentiation of Hepatic Progenitor Cells 

Differentiation of bipotential hepatoblasts is initiated at around E13 to E14.5 

[60,61,71]. The number of bipotential hepatoblasts gradually reduces as they eventually 

become unipotent and irreversibly committed to either the hepatocyte or cholangiocyte 

cell lineage. The majority of parenchymal hepatoblasts will differentiate into hepatocytes, 

while those residing next to portal veins will become cholangiocytes, which form the 

luminal epithelium of IHBDs [61]. The correct overall balance between these two cell 

types is achieved by integrated signaling and transcriptional pathways [75] which act to 

either induce or repress mechanisms that direct the cell fate of hepatic progenitors [73]. 

The status of differentiating hepatic progenitor cells can be generally determined with the 

use of the following respective cell markers: (1) bipotential hepatoblasts express AFP, 

albumin, and cytokeratin (CK)-19; (2) hepatocytes express AFP and albumin, but not 

CK-19; and (3) BECs express CK-19, but neither albumin nor AFP [77,78] (Figure 1-2). 

Following differentiation into hepatocytes and cholangiocytes, both cell types will 
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undergo proliferation to achieve proper liver size [79]. Apoptosis (programmed cell 

death) is also essential for shaping the liver and controlling overall cell population [80].  

Hepatoblasts initially express genes associated with BECs as well as fetal and 

adult hepatocytes (Figure 1-2). Differentiation into cholangiocytes is initiated by signals 

from the portal mesenchyme (Wnt, TGFβ) to which adjacent hepatoblasts respond, which 

act to promote BEC-specific transcription factors (OC1, OC2, HNF1β) and suppress 

hepatogenic transcription factors (HNF4, C/EBP). This results in an upregulation of CK, 

and a decrease in the expression of genes specific to hepatocytes [60] (Figure 1-2). Other 

factors continue to be secreted by the portal mesenchyme for successful bile duct 

formation to proceed (Jagged/Notch, EGF, HGF) [60]. During transformation into 

cholangiocytes, periportal hepatoblasts form a monolayer, then a bilayer of BEC cuboidal 

precursors, and by E17 and into the perinatal period, the portal mesenchyme begins to 

surround focal points depicted in the bilayer of biliary precursor cells, while the 

remaining bilayer cells regress [60]. 

Conversely, hepatoblasts in the parenchyma do not receive signals from the portal 

mesenchyme, which causes them to downregulate BEC-associated gene expression, 

while allowing them to maintain the expression of genes specific to hepatocytes [60] 

(Figure 1-2). By E17, hepatocytes will acquire their characteristic morphology [60], 

while functional maturation will resume until after birth. 

  



 

 

 

Figure 1-2. Differentiation 

hepatoblasts initially express

hepatocytes. Hepatic progenitor cells 

genes associated with BECs, while downregulating 

contrast, hepatic progenitor cells differentiating into hepatocytes will downregulate BEC

associated gene expression, while upregulating

Differentiation Markers of Hepatic Progenitor Cells. Bipotential

hepatoblasts initially express genes associated with BECs as well as fetal and adult 

Hepatic progenitor cells differentiating into cholangiocytes will upregulate 

genes associated with BECs, while downregulating hepatocyte-specific genes

progenitor cells differentiating into hepatocytes will downregulate BEC

associated gene expression, while upregulating hepatocyte-specific genes.
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Bipotential 

as well as fetal and adult 

into cholangiocytes will upregulate 

specific genes. In 

progenitor cells differentiating into hepatocytes will downregulate BEC-

specific genes.  
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1.4.3 Functional Maturation of Hepatocytes 

Subsequent to lineage segregation and commitment, immature/transitional 

hepatocytes gradually differentiate into mature hepatocytes, exhibiting progressive 

functional changes up until several weeks after birth. One major functional transition that 

takes place is in the production of hepatic plasma proteins. Albumin is the major plasma 

protein produced by mature hepatocytes, constituting more than half of total plasma 

protein concentration in the adult [81]. Albumin synthesis takes place exclusively in the 

liver, and is secreted into circulation as soon as it is manufactured [81] where it becomes 

involved in the binding and transport of various drugs, hormones, lipids, and anions, and 

the maintenance of oncotic pressure [82]. Albumin mRNA is first detected in fetal 

hepatocytes at E10.5 (gestational week 16 in humans), and its expression increases 

progressively thereafter until it reaches maximal levels in the adult (Figure 1-3) 

[71,83,84]. 

On the contrary, AFP is the predominant plasma protein produced by the fetal 

liver, and is largely considered the fetal equivalent of the adult serum albumin [85]. 

During prenatal development, AFP expression increases steadily from E9 up to E15.5 

(~1000-fold), at which time it begins to decline as the liver matures, ultimately becoming 

undetectable in the adult (Figure 1-3) [71,85,86]. This pattern also corresponds to that 

observed in humans, where AFP production reaches a peak at the end of the first 

trimester and declines thereafter [66]. Because of the respective temporal expression 

profiles of albumin and AFP, these two proteins can be effectively used as markers to 

determine the status of hepatocyte differentiation if delayed or disrupted maturation is 
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suspected [71]. In particular, albumin is considered a hallmark of mature hepatocytes 

[60,87,88], while AFP is commonly used as a marker of immature, fetal hepatocytes 

[89,90]. 

Another important functional transition is in glycogen storage capability. During 

most of gestation, hepatic glycogen stores remains low as the fetus obtains an adequate 

supply of glucose from the mother via the placenta [66,91]. During late gestation (E17.5), 

hepatocytes start to accumulate significant amounts of glycogen in order to prepare for 

the extrauterine survival at birth, before the onset of hepatic gluconeogenesis (Figure 1-

3) [92]. In humans, fetal hepatic glycogen stores measure to 3.4 mg/g of liver tissue at 8 

to 9 weeks of gestation, and increase to an average of 50 mg/g immediately prior to term 

[66,79], amounting to 2-3 times those of adults [79]. This surge in glycogen accumulation 

at the end of gestation is accompanied by a corresponding increase in glycogen synthase 

[93], the rate-limiting enzyme of glycogen synthesis [94,95]. Thus, glycogen storage is 

also used as a marker of mature hepatocytes [88,96,97]. 
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Figure 1-3. Expression Profiles of Hepatocyte Maturation Markers. Albumin 

expression begins in the fetal liver at E10.5, and steadily increases until reaching 

maximal levels in the adult. Hepatic glycogen stores remain low until late gestation, at 

which point hepatocytes accumulate significant amounts of glycogen such that by term, 

glycogen storage amounts to 2-3 times that observed in the adult. Albumin and glycogen 

are thus considered hepatocyte maturation markers. In contrast, AFP expression increases 

steadily from E9 up until E15.5, at which time it begins to progressively decline as the 

liver undergoes continued maturation. AFP is thus considered a marker of immature, fetal 

hepatocytes. 
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1.4.4  Transcriptional Regulation 

Hepatocyte differentiation is associated with alterations in the coordinated 

expression of a number of hepatic genes. These genes are primarily controlled through 

interactions between several “liver-enriched” transcription factors [98] that are 

indispensible for the induction and progression of liver development. These include 

hepatocyte nuclear factors (HNFs) HNF-1, HNF-3, HNF-4, HNF-6, and 

CCAAT/enhance binding proteins (C/EBPs) [86,98], each of which exhibit their own 

temporal expression profiles that coincide with distinct stages of hepatic maturation. 

Quantitative gene expression profiling has revealed that HNF-1, HNF-3, HNF-4, and 

HNF-6 exhibit particularly similar timelines of expression, with a peak in gene 

expression apparent at E9.5 and E11.5 [86]. Based on their expression patterns, these 

transcription factors have been suggested to exert primary roles during the earlier phases 

of liver development [86]. By contrast, C/EBPs have been implicated during later stages 

of development, at which time hepatocytes are undergoing functional maturation. 

Correspondingly, expression levels of C/EBP-α and C/EBP-β are most marked in adult 

liver tissue [86].  

1.4.5  C/EBP-α 

As a member of the bZIP class of leucine zipper transcription factors, C/EBP-α 

comprises a C-terminal leucine zipper, a basic DNA binding region, and an N-terminal 

transactivating region [99], and binds DNA in a sequence-specific manner [100]. 

Expression of C/EBP-α is tissue-specific, with most abundant levels apparent in liver, 

lung, and fat tissue [101]. While targeted disruption of the C/EBP-β gene fails to produce 
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substantial consequences on normal liver development [102], a strong mount of evidence 

supports a critical role for C/EBP-α in hepatocyte maturation, and its involvement in 

regulating the balance between hepatocyte growth and differentiation. In fact, inadequate 

maturation of hepatocytes has been attributed specifically to the loss of C/EBP-α [103].  

C/EBP-α has been shown to govern the transcription of several hepatocyte-

specific genes including albumin, AFP, and glycogen synthase [104,105]. Additionally, 

C/EBP-α possesses a dominant anti-proliferative effect, and accordingly, its expression is 

generally restricted to growth-arrested cells [100]. In fetal hepatocytes, C/EBP-α is 

expressed at around E14.5, which corresponds to the time hepatocytes begin to undergo 

maturation. Expression of C/EBP-α gradually increases as development proceeds, 

reaching a maximum in the adult [102]. The developmental increase in C/EBP-α 

expression corresponds to the expression profile of genes associated with mature 

hepatocytes, including albumin and glycogen synthase, and is inversely associated with 

the expression of the immature hepatocyte marker, AFP. Moreover, neonatal livers of 

C/EBP-α knockout mice exhibit properties characteristic of a dedifferentiated state, 

including decreased albumin expression, diminished glycogen stores and glycogen 

synthase expression, significantly elevated AFP levels, as well as increased cell 

proliferation [106,107]. 
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1.5 Rationale, Objectives, and Hypothesis 

1.5.1 Rationale 

BPA is one of the most prevalent EDCs in the environment. Of particular concern 

is exposure to BPA during pregnancy, a critical time during which key organs are 

undergoing growth and differentiation. Previously, exposure to BPA in utero has been 

shown to alter the development of several fetal organs, including the brain [37,38], heart 

[39], mammary glands [40–42], ovaries [43,44], uterus [45], testes [46], and lungs [47]. 

The altered fetal organ development following BPA exposure may provide a fetal origin 

for various BPA-induced diseases in adult life. 

The liver is a key metabolic organ and is essential for the maintenance of overall 

homeostasis. Proper liver maturation is critical not only for neonatal survival by 

supplying adequate glucose from hepatic glycogen storage, but also for proper hepatic 

function later in life [89]. Developmental exposure to BPA is known to be associated 

with liver dysfunction and diseases, such as hepatic steatosis [108,109], liver tumors 

[110], metabolic syndrome [111,112], and altered hepatic gene expression [113,114] and 

DNA methylation profiles [115,116]. However, it is unknown whether these BPA-

induced hepatic dysfunctions and diseases have a fetal origin. Therefore, the present 

study was designed to address this important question by examining the effects of 

prenatal exposure to BPA on fetal liver maturation using the mouse as an experimental 

model. 
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1.5.2 Objectives 

(1) To determine the effects of BPA on overall fetal growth morphology (i.e., fetal 

body weight, litter size and sex ratios)  

(2) To examine the effects of BPA on fetal liver structural maturation.  

(3) To determine the effects of BPA on fetal liver biochemical maturation. 

(4) To determine the effects of BPA on the balance between cell proliferation and 

apoptosis in the fetal liver. 

(5) To ascertain if the effects of BPA on fetal liver maturation are sex-specific. 
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1.5.3 Hypothesis 

We hypothesize that prenatal exposure to BPA disrupts fetal liver maturation in 

the mouse. 

  



29 

 

Chapter 2 – Methodology 

2.1 Animal Experiments 

Breeding pairs of adult C57BL/6 mice were purchased from Charles River 

Laboratories (Wilmington, MA). Mice were housed under standard conditions and 

provided with food and water ad libitum. Polystyrene cages were utilized in order to 

minimize background exposure to BPA beyond treatment regimen. Mice were 

maintained at humidity- and temperature-controlled rooms under a normal 12h/12h light-

dark cycle. For experiments, 6-8 week old female mice were placed overnight with 

males, and pregnancy was determined the next morning by the observation of a vaginal 

plug. Plugged females were separated from males, and gestational days were counted, 

with presence of a vaginal plug indicating embryonic day 0.5 (E0.5). Pregnant mice were 

randomly assigned to receive one of the following two diets: (1) control diet 

(phytoestrogen free food pellets supplemented with 7% corn oil; TD.120176, Harlan 

Teklad, Madison, WI), or (2) control diet supplemented with 25 mg BPA/kg diet 

(TD.120466, Harlan Teklad) (Figure 2-1). Oral administration was chosen to mimic the 

most common route of exposure in humans. Feeding was initiated at E7.5, subsequent to 

successful implantation and just prior to the onset of liver development, and resumed up 

until E18.5 (Figure 2-1). At E18.5, animals were euthanized by CO2 euthanasia (Figure 

2-1). Fetuses were recovered by caesarean section, and their weights recorded. In 

addition, maternal weight, pup number, and the number of reabsorption sites per uterine 

horn were noted. Fetal livers were collected and either snap frozen in liquid nitrogen and 

stored at -80°C, or fixed in 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer. Fetal 
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limbs were also collected, snap frozen in liquid nitrogen, and stored at -80°C. 

2.2 Genotyping PCR 

Fetal sex was determined by standard polymerase chain reaction (PCR) for the 

presence of the male-specific SRY gene. Briefly, DNA was isolated from fetal limb 

samples. The PCR reactions were carried out using the Platinum Taq DNA Polymerase 

Kit (cat. no. 10966-026, Invitrogen), with the primers SRY-F (5’-GCA GGT GGA AAA 

GCC TTA CA-3’) and SRY-R (5’-AAG CTT TGC TGG TTT TTG G-3’). PCR 

amplifications were carried out for 30 cycles (20 seconds at 95°C, 20 seconds at 55°C, 

and 35 seconds at 72°C) on the Eppendorf Mastercycler® Gradient PCR System 

(Eppendorf). PCR products were run on a 1% agarose gel, and fetal sex was determined 

to be male if a DNA product at 271-bp (indicative of the presence of the SRY gene) was 

observed. 

2.3 Histology 

Fetal livers were fixed in 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer 

solution (PBS) buffer, dehydrated, and embedded in paraffin wax. Using a rocking 

microtome, the lungs were sectioned; 5-µm sections were transferred to Superfrost Plus 

microscope slides (Fisher Scientific, Whitby, ON). Sections were stained using a standard 

hematoxylin and eosin (H&E) protocol [117]. 

2.4 Protein Extraction and Western Blot Analysis 

Western blot analysis was conducted in order to assess protein expression levels, as 
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described previously [117]. Since limited tissue was available to us, we made the 

decision to detect protein levels instead of mRNA. Proteins dictate cellular function 

[118], and a change in mRNA does not necessarily indicate an alteration in protein 

expression levels [119]. Given that the purpose of this study was not mechanistic, but 

rather to examine the biochemical maturation of BPA-exposed fetal livers, protein levels 

were more meaningful and physiologically-relevant to the present study. 

First, liver tissues were homogenized in 10 volumes of ice-cold 10 mM sodium 

phosphate buffer, pH 7.0, containing 0.25 M sucrose. Equal volumes of the homogenates 

were mixed with SDS gel loading buffer (50 mM Tris·HCl, pH 6.8, 2% wt/vol SDS, 10% 

vol/vol glycerol, 100 mM DTT, and 0.1% wt/vol bromophenol blue). Equal 

concentrations of this mixture were then subjected to a 10% SDS-PAGE. After 

electrophoresis, proteins were transferred to PVDF membranes (Amersham Hybond-P, 

cat. no. RPN303F, GE Healthcare Lifesciences, Baie D'Urfe, QC) using a Bio-Rad Mini 

Transfer Apparatus. Nonspecific antibody binding was blocked with 5% wt/vol milk in 

TBST (0.1% vol/vol Tween-20 in TBS) for 1 hour at room temperature. Membranes were 

then hybridized with primary antibody (albumin: cat. no. SAB2100098, 1:5,000 dilution, 

Sigma-Aldrich, Saint Louis, MO; glycogen synthase: cat. no. 3886, 1:1,000 dilution, Cell 

Signaling Technology, Beverly, MA; AFP: cat. no. sc-8108, 1:1000 dilution, Santa Cruz 

Biotechnology, Dallas, TX; C/EBP-α: cat no. sc-61, 1:500 dilution, Santa Cruz 

Biotechnology; PCNA: cat. no. 2586, 1:1,000 dilution, Cell Signaling Technology; 

caspase-3: cat. no. 9662, 1:1,000 dilution, Cell Signaling Technology; GAPDH: cat. no. 

IMG-3073, 1:5,000, Imgenex) overnight at 4°C. The membrane underwent 3 × 10 min 

washes with TBST, and was then incubated with an anti-rabbit secondary antibody (cat. 
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no. HAF008, 1:500 dilution, R & D Systems) or anti-mouse secondary antibody (cat. no. 

G-202-C, 1:10,000 dilution, Fisher Scientific) for 1 hour at room temperature. Following 

another 3 x 10 min washes in TBST, proteins were detected using chemiluminescence 

(cat. no. WBLUR0500, Luminata Crescendo, Western HRP Substrate; Millipore, 

Etobicoke, ON). The membrane was viewed using the VersaDoc Imaging System 

(BioRad, UK). Densitometry was performed on the images and the level of various 

proteins expressed as percent of controls. 

2.5 Statistical Analysis 

Results are presented as the mean ± SEM of four different litters. Livers from 

three pups were pooled per litter. Data were analyzed using Student’s t-test. Significance 

was set at P < 0.05. 
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Figure 2-1. Experimental Design. Pregnant mice were randomly assigned to receive one 

of the following two diets: (1) control diet (phytoestrogen-free food pellets supplemented 

with 7% corn oil); or (2) treatment diet (control diet supplemented with 25 mg BPA/kg 

diet). Feeding was initiated at E7.5, subsequent to successful implantation and just prior 

to the onset of liver development, and resumed up until E18.5. At E18.5, animals were 

euthanized by CO2 euthanasia. Fetal livers were collected and either snap frozen in liquid 

nitrogen and stored at -80°C, or fixed in 4% PFA in 0.1 M PBS. 
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Chapter 3 – Results 

3.1 Effects of BPA on Fetal Body Weight, Litter Size, and 

Sex Ratio 

As a first step in determining the effect of prenatal exposure on fetal organ 

maturation, we examined fetal body weight, litter size, and litter sex ratio at E18.5. We 

found that there was no difference in fetal body weight, litter size, or sex ratio (expressed 

as percentage of females per litter) between control and BPA-exposed fetuses (Figure 3-

1 A-C). 

 

 

 

 

 

 

 

 



 

 

 
 

 
 

Figure 3-1. Effects of BPA on 

Pregnant mice were fed a control diet (phytoestrogen fre

supplemented with 25 mg of BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. 

On E18.5, mice were sacrificed and 

recorded. Sex ratio of litters were expressed as

number of pups in the litter (

. Effects of BPA on Fetal Body Weight, Litter Size, and Litter Sex Ratio.

Pregnant mice were fed a control diet (phytoestrogen free food pellets) or the control diet 

supplemented with 25 mg of BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. 

18.5, mice were sacrificed and fetal body weight (A) and litter size (

Sex ratio of litters were expressed as the percentage of females per 

litter (C). Data are presented as the mean ± SEM (n
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Fetal Body Weight, Litter Size, and Litter Sex Ratio. 

e food pellets) or the control diet 

supplemented with 25 mg of BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. 

litter size (B) were 

percentage of females per total 

± SEM (n = 20). 
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3.2 Effects of BPA on Fetal Liver Histology 

Standard histological analysis was performed in order to determine whether 

prenatal exposure to BPA affects structural maturation of fetal livers at E18.5. Upon 

analysis, we found that there were no observable structural differences in BPA exposed 

fetal livers (Figure 3-2 B and D) compared to controls (Figure 3-2 A and C). 

  



 

 

 

 

 

 

Figure 3-2. Effects of BPA on 

diet (phytoestrogen free food pellets) or the control diet supplemented with 25 mg of 

BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. On E18.5, mice were sacrificed 

and fetal livers were collected, 

Representative fetal liver 

control diet supplemented with 

. Effects of BPA on Fetal Liver Histology. Pregnant mice were fed a control 

diet (phytoestrogen free food pellets) or the control diet supplemented with 25 mg of 

BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. On E18.5, mice were sacrificed 

al livers were collected, fixed and subjected to histological analysis.

Representative fetal liver sections from mice fed the control diet (A and C

control diet supplemented with 25 mg BPA/kg diet (B and D) are shown 
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Pregnant mice were fed a control 

diet (phytoestrogen free food pellets) or the control diet supplemented with 25 mg of 

BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. On E18.5, mice were sacrificed 

fixed and subjected to histological analysis. 

C) and the 

 (n = 3). 
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3.3 Effects of BPA on Albumin Protein Expression 

To determine whether prenatal exposure to BPA affected fetal liver maturation, 

we first examined albumin expression, a well-known marker of, and the most abundant 

protein synthesized by, mature hepatocytes [60,87,88]. We found that levels of albumin 

protein were significantly decreased in BPA-exposed female fetal livers when compared 

to controls (35% of control; Figure 3-3 A and C). In marked contrast, the abundance of 

albumin protein was not altered in the fetal livers of BPA-exposed males (Figure 3-3 B 

and D). 

  



 

 
 
 
 
 
 
 

 

Figure 3-3. Effects of BPA on albumin protein expression. 

control diet (phytoestrogen free food pellets) or the control diet supplemented with 25 mg 

of BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. On E18.5, mice were 

sacrificed and fetal livers were collected, flash frozen in liquid nitrogen, and stored at 

80°C. Levels of albumin protein in female (

determined by western blot analysis. Data are p

0.001; n = 4 litters, livers from three pups were pooled per litter).

. Effects of BPA on albumin protein expression. Pregnant mice were fed a 

control diet (phytoestrogen free food pellets) or the control diet supplemented with 25 mg 

of BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. On E18.5, mice were 

d fetal livers were collected, flash frozen in liquid nitrogen, and stored at 

80°C. Levels of albumin protein in female (A and C) and male (B and D) fetal livers were 

determined by western blot analysis. Data are presented as the mean 

n = 4 litters, livers from three pups were pooled per litter). 
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Pregnant mice were fed a 

control diet (phytoestrogen free food pellets) or the control diet supplemented with 25 mg 

of BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. On E18.5, mice were 

d fetal livers were collected, flash frozen in liquid nitrogen, and stored at -

) fetal livers were 

 ± SEM (***P < 
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3.4 Effects of BPA on Glycogen Synthase Protein Expression 

Glycogen storage is an important marker of mature hepatocytes [88,96,97]. Prior 

to birth, a rapid accumulation of glycogen in the fetal liver is accompanied by a 

corresponding increase in glycogen synthase [93,120]. We next determined changes in 

the expression of glycogen synthase. We found that the level of glycogen synthase 

protein was significantly decreased in the fetal livers of female BPA-exposed mice when 

compared to controls (60% of control; Figure 3-4 A and C). However, there was no 

change in the level of glycogen synthase protein in BPA-exposed male fetal livers 

(Figure 3-4 B and D). 

  



 

 

 

 

 

 

Figure 3-4. Effects of BPA on glycogen synthase protein expression. 

were fed a control diet (phytoestrogen free food pellets) or the control diet 

with 25 mg of BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. On E18.5, mice 

were sacrificed and fetal livers were collected, flash frozen in liquid nitrogen, and stored 

at -80°C. Levels of glycogen synthase (GS) protein in female (

D) fetal livers were determined by western blot analysis. Data are presented as 

± SEM (**P < 0.01; n = 4 litters, livers from three pups were pooled per litter).

. Effects of BPA on glycogen synthase protein expression. Pregnant mice 

were fed a control diet (phytoestrogen free food pellets) or the control diet 

with 25 mg of BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. On E18.5, mice 

were sacrificed and fetal livers were collected, flash frozen in liquid nitrogen, and stored 

80°C. Levels of glycogen synthase (GS) protein in female (A and C) and male (

) fetal livers were determined by western blot analysis. Data are presented as 

< 0.01; n = 4 litters, livers from three pups were pooled per litter).
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Pregnant mice 

were fed a control diet (phytoestrogen free food pellets) or the control diet supplemented 

with 25 mg of BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. On E18.5, mice 

were sacrificed and fetal livers were collected, flash frozen in liquid nitrogen, and stored 

) and male (B and 

) fetal livers were determined by western blot analysis. Data are presented as the mean 

< 0.01; n = 4 litters, livers from three pups were pooled per litter).
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3.5 Effects of BPA on AFP Protein Expression  

To gain further insight into the effects of BPA on fetal liver maturation, we 

examined changes in the expression of AFP, a well-known marker of immature 

hepatocytes [89,90]. We found that levels of AFP protein were significantly increased in 

BPA-exposed female fetal livers when compared to controls (143% of control; Figure 3-

5 A and C). In contrast, AFP protein abundance was not changed in BPA-exposed male 

fetal livers (Figure 3-5 B and D). 

  



 

 

 

 

 

 

Figure 3-5. Effects of BPA on AFP protein expression. 

control diet (phytoestrogen free food pellets) or the control diet supplemented with 25 mg 

of BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. On E18.5, mice were 

sacrificed and fetal livers were collected, flash frozen in liquid nit

80°C. Levels of AFP protein in female (

determined by western blot analysis. Data are presented as 

= 4 litters, livers from thr

. Effects of BPA on AFP protein expression. Pregnant mice were fed a 

control diet (phytoestrogen free food pellets) or the control diet supplemented with 25 mg 

of BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. On E18.5, mice were 

sacrificed and fetal livers were collected, flash frozen in liquid nitrogen, and stored at 

80°C. Levels of AFP protein in female (A and C) and male (B and D) fetal livers were 

determined by western blot analysis. Data are presented as the mean ± SEM (*

= 4 litters, livers from three pups were pooled per litter). 
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mice were fed a 

control diet (phytoestrogen free food pellets) or the control diet supplemented with 25 mg 

of BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. On E18.5, mice were 

rogen, and stored at -

) fetal livers were 

± SEM (*P < 0.05; n 
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3.6 Effects of BPA on C/EBP-α Protein Expression 

Given that C/EBP-α is a master transcription factor essential for hepatocyte 

differentiation [86,121], we sought changes in the expression of this transcription factor 

following exposure to BPA. We showed that levels of C/EBP-α protein were decreased 

by 50% in BPA-exposed female fetal livers when compared to controls (Figure 3-6 A 

and C). By contrast, the level of C/EBP-α protein in BPA-exposed male fetal livers was 

not changed (Figure 3-6 B and D).   

  



 

 

 

 

 

 

Figure 3-6. Effects of BPA on C/EBP

control diet (phytoestrogen free food pellets) or the control diet 

of BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. On E18.5, mice were 

sacrificed and fetal livers were collected, flash frozen in liquid nitrogen, and stored at 

80°C. Levels of C/EBP-α

were determined by western blot analysis. Data are presented as 

0.05; n = 4 litters, livers from three pups were pooled per litter).

. Effects of BPA on C/EBP-α protein expression. Pregnant mice were fed a 

control diet (phytoestrogen free food pellets) or the control diet supplemented with 25 mg 

of BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. On E18.5, mice were 

sacrificed and fetal livers were collected, flash frozen in liquid nitrogen, and stored at 

α protein in female (A and C) and male (B and 

were determined by western blot analysis. Data are presented as the mean

0.05; n = 4 litters, livers from three pups were pooled per litter). 
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Pregnant mice were fed a 

supplemented with 25 mg 

of BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. On E18.5, mice were 

sacrificed and fetal livers were collected, flash frozen in liquid nitrogen, and stored at -

and D) fetal livers 

the mean ± SEM (*P < 
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3.7 Effects of BPA on PCNA Protein Expression 

Normal organ growth and maturation depends critically on the right balance 

between cell proliferation and apoptosis [80]. Thus, we sought to determine if this 

balance might be perturbed in BPA-exposed fetal livers. To do so, we first examined the 

proliferative status of the BPA-exposed fetal liver by analyzing the expression of PCNA, 

a universal marker of cell proliferation. We showed that levels of PCNA protein were up-

regulated significantly in BPA-exposed female fetal livers when compared to controls 

(160% of control; Figure 3-7 A and C). In contrast, the level of PCNA protein was 

unchanged in BPA-exposed male fetal livers (Figure 3-7 B and D). 

  



 

 
 

 

 

 

 

Figure 3-7. Effects of BPA on PCNA protein expression. 

control diet (phytoestrogen free food pellets) or the control diet supplemented with 25 mg 

of BPA/kg food pellets from embryonic day (E)

sacrificed and fetal livers were collected, flash frozen in liquid nitrogen, and stored at 

80°C. Levels of PCNA protein in female (

determined by western blot analysis. Data ar

= 4 litters, livers from three pups were pooled per litter).

. Effects of BPA on PCNA protein expression. Pregnant mice were fed a 

control diet (phytoestrogen free food pellets) or the control diet supplemented with 25 mg 

of BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. On E18.5, mice were 

sacrificed and fetal livers were collected, flash frozen in liquid nitrogen, and stored at 

80°C. Levels of PCNA protein in female (A and C) and male (B and D) fetal livers were 

determined by western blot analysis. Data are presented as the mean ± SEM (*

= 4 litters, livers from three pups were pooled per litter). 

47 

 

Pregnant mice were fed a 

control diet (phytoestrogen free food pellets) or the control diet supplemented with 25 mg 

7.5 to 18.5. On E18.5, mice were 

sacrificed and fetal livers were collected, flash frozen in liquid nitrogen, and stored at -

) fetal livers were 

± SEM (*P < 0.05; n 
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3.8 Effects of BPA on Caspase-3 Protein Expression 

We then examined the effect of BPA on the expression of caspase-3, a universal 

marker of apoptosis. We found that protein levels of both procaspase-3 (60% of control; 

Figure 3-8 A and C) and cleaved caspase-3 (45% of control; Figure 3-8 A and 6E) were 

significantly down-regulated in BPA-exposed female fetal livers when compared to 

controls. By contrast, no changes in the protein level of either procaspase-3 (Figure 3-8 

B and D) or cleaved caspase-3 (Figure 3-8 B and F) were observed in livers of BPA-

exposed male fetuses. 

  



 

Figure 3-8. Effects of BPA on caspase

control diet (phytoestrogen free food pellets) or the control diet supplemented with 25 mg 

of BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. On E18.5, mice were 

sacrificed and fetal livers were collected, flash frozen in l

80°C. Levels of procaspase

and male (B and D) fetal livers were determined by western blot analysis. Data are 

presented as the mean ± SEM (*

were pooled per litter). 

. Effects of BPA on caspase-3 protein expression. Pregnant mice were fed a 

control diet (phytoestrogen free food pellets) or the control diet supplemented with 25 mg 

of BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. On E18.5, mice were 

sacrificed and fetal livers were collected, flash frozen in liquid nitrogen, and stored at 

80°C. Levels of procaspase-3 protein and cleaved caspase-3 protein in female (

) fetal livers were determined by western blot analysis. Data are 

± SEM (*P < 0.05, **P < 0.01; n = 4 litters, livers from thr
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Pregnant mice were fed a 

control diet (phytoestrogen free food pellets) or the control diet supplemented with 25 mg 

of BPA/kg food pellets from embryonic day (E) 7.5 to 18.5. On E18.5, mice were 

iquid nitrogen, and stored at -

3 protein in female (A and C) 

) fetal livers were determined by western blot analysis. Data are 

4 litters, livers from three pups 
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Chapter 4 – Discussion 

There is robust evidence that adverse events in early life can permanently alter 

organ growth and function, leading to a wide range of diseases later in life, including 

cardiovascular, metabolic, neurological, reproductive, and behavioral disorders as well as 

cancers [49,51]. Although developmental exposure to BPA has been shown to cause liver 

dysfunction and diseases, the effects of BPA on liver development had never been 

explored. In the present study, we addressed this important question, and demonstrate 

that in utero exposure to environmentally relevant doses of BPA via maternal diet 

disrupts female, but not male, fetal liver maturation in the mouse. Thus, our findings 

suggest a fetal origin for BPA-induced liver dysfunction and metabolic diseases.  

4.1 Dosage 

 The dosage of BPA used, 25 mg BPA/kg diet (equivalent to 5 mg/kg/day), in the 

present study was chosen to mimic BPA exposure at environmentally relevant levels, and 

had been shown by us previously not to alter fetal body weight when examined at E18.5 

[47]. Further, no changes were apparent in litter size or litter sex ratio. This dosage is one 

tenth of the NOAEL of 50 mg/kg/day for rodents, as defined by the US EPA [122]. BPA 

exposure was initiated at E7.5, subsequent to successful implantation and just prior to the 

onset of liver development, and continued until E18.5, one day before term. Although 

maternal blood BPA levels were not measured in the present study, they were estimated 

to be 20 ng/ml at the maximum. This estimation was based on a previous study, in which 

pregnant mice were fed 5 mg BPA/kg diet for a total of 28.5 days (prior to mating and 

throughout pregnancy), and maternal plasma levels of BPA were found to be 4 ng/ml 
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[38]. Thus, the estimated maternal circulating levels of BPA in our study are within the 

range of 0.5–22.3 ng/ml, which has been reported in pregnant women of the US [56].  

4.2 BPA Decreases Albumin Protein Expression in Fetal 

Female Livers 

 In the mouse, liver development begins at E9. At approximately E14, bipotential 

hepatoblasts begin to differentiate into either hepatocytes or bile duct epithelial cells [71]. 

By E16, these two distinct cell types become irreversibly differentiated but continue to 

undergo maturation for several weeks after birth [75], at which time they are considered 

mature hepatocytes and cholangiocytes, respectively. In adults, hepatocytes are the main 

functional units of the liver accounting for nearly 80% of the total liver volume [59,60]. 

The adult liver in mammals produces a myriad of proteins and enzymes that are crucial 

for maintaining homeostasis, the most abundant of which is albumin, constituting more 

than half of total plasma proteins [81]. Albumin is first expressed in fetal hepatocytes at 

E12, and its expression increases progressively thereafter until it reaches maximal levels 

in the adult [71]. Consequently, albumin is considered a hallmark of hepatocyte 

maturation [60,87,88]. As a first step in examining the effects of BPA on fetal liver 

maturation, we analyzed albumin protein expression. We found that levels of albumin 

protein were significantly reduced in BPA-exposed female fetal livers when compared to 

controls. In marked contrast, BPA had no effect on albumin protein expression in male 

fetal livers, demonstrating that BPA disrupts fetal liver maturation in a sex-specific 

manner. 
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4.3 BPA Decreases Glycogen Synthase Protein Expression 

in Fetal Female Livers 

Glycogen accumulation is another key feature of mature hepatocytes, and an 

important marker of hepatic maturation [88,96]. During most of gestation, hepatic 

glycogen store remains low as the fetus obtains an adequate supply of glucose from the 

mother via the placenta [91]. During late gestation, hepatocytes start to accumulate 

significant amounts of glycogen in order to prepare for the extrauterine survival at birth 

[92]. This surge in glycogen accumulation is accompanied by a corresponding increase in 

glycogen synthase [93,120], the rate-limiting enzyme of glycogen synthesis [94,95]. In 

the present study, therefore, we examined glycogen synthase protein expression and used 

it as a surrogate of glycogen accumulation. We showed that similar to its effects on 

albumin, prenatal BPA exposure significantly downregulated fetal liver glycogen 

synthase expression in females but not males. This finding further supports our 

conclusion that BPA disrupts fetal liver maturation in a sex-specific manner. Although 

glycogen content was not measured in the present study, previous studies have found that 

changes in fetal glycogen accumulation are directly correlated with alterations in 

glycogen synthase expression [96,123]. In addition, one previous study has shown that 

the developmental increase in fetal liver glycogen synthase expression is critically 

determined by the status of hepatocyte differentiation rather than substrate availability 

[120]. 
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4.4 BPA Increases AFP Protein Expression in Fetal Female 

Livers 

To provide further insight into the effects of BPA on fetal liver maturation, we then 

examined the expression of AFP, a marker of immature fetal hepatocytes [89,90]. AFP is 

the predominant fetal plasma protein produced by the fetal liver [85], and is considered 

the fetal equivalent of the adult serum albumin. During fetal development, the liver 

produces increasing amounts of AFP from E9 up to E15.5, at which time, AFP 

production begins to decline as the liver matures, ultimately becoming undetectable in the 

adult [86]. Here, we showed that in female livers, prenatal BPA exposure resulted in a 

significant increase in AFP protein expression at E18.5. In contrast, AFP protein levels in 

BPA-exposed male fetal livers were comparable to those of non-exposed controls. Taken 

together, the distinct changes in the expression of all three markers corroborate each 

other, and provide powerful evidence that prenatal exposure to BPA severely impairs 

fetal hepatic maturation only in females and not males. 

4.5 BPA Decreases C/EBP-α Protein Expression in Fetal 

Female Livers 

C/EBP-α is a master transcription factor essential for hepatocyte maturation, and is 

necessary for the activation of several genes associated with differentiated hepatocytes 

[121]. As the liver undergoes maturation, C/EBP-α expression increases progressively 

until reaching a maximum in the adult [86]. Because of its temporal expression profile 

during liver development, C/EBP-α is also considered a marker of mature hepatocytes. 
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Consequently, we determined whether prenatal BPA exposure affected the expression of 

this key transcription factor in fetal livers. We found that C/EBP-α protein levels were 

significantly decreased in BPA-exposed female fetal livers. Similar to the other markers 

of hepatic maturation, the level of C/EBP-α protein remained unaltered in BPA-exposed 

male fetal livers. The reduced hepatic C/EBP-α expression in BPA-exposed female fetal 

livers not only supports our conclusion that BPA disrupts fetal hepatic maturation in a 

sex-specific manner, but also suggests that the altered expression of albumin, glycogen 

synthase and AFP is likely a result of the decreased C/EBP-α expression. 

Indeed, neonatal livers of C/EBP-α knockout mice exhibit properties characteristic 

of a dedifferentiated state. In an in vivo study by Wang et al., C/EBP-α knockout mice 

displayed normal body weight and gross organ morphology, however they failed to 

survive more than one day after birth due to impaired energy homeostasis [107]. In 

particular, C/EBP-α knockout mice displayed significantly decreased glycogen stores at 

both E18 and 1 hour postpartum. In fact, while control mice produced abundant levels of 

hepatic glycogen stores, those void of C/EBP-α exhibited virtually none [107]. These 

diminished glycogen stores were accompanied by a 50-70% decrease in glycogen 

synthase mRNA levels, which suggests that the lack of hepatic glycogen was a direct 

consequence of insufficient glycogen synthase [107]. Thus, although glycogen was not 

directly measured in the present study, it is highly likely that hepatic glycogen stores are 

reduced as a consequence of significantly decreased glycogen synthase. Conversely, 

C/EBP-α knock-in mice demonstrate earlier fetal hepatic glycogen deposition (E15.5) in 

comparison to their wild type littermates, with a corresponding increase in glycogen 

synthase expression [123]. 
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Wang et al. also demonstrated C/EBP-α knockout mice display significantly 

reduced albumin mRNA at 2 hours after birth, which remained low at both 7 and 32 

hours postpartum, suggesting that C/EBP-α regulation is required for the transcriptional 

induction of the albumin gene [107]. Because albumin expression was not completely 

absent, it is likely that the albumin gene might be fully transactivated by the activity of 

C/EBP-α together with some other liver-enriched transcription factor(s) known to bind to 

the albumin promoter [107]. This reduced albumin was also recapitulated in another in 

vivo C/EBP-α knockout model by Flodby et al. [106], and consistent with results from an 

in vitro model of C/EBP-α knock-in hepatocytes where albumin mRNA and protein 

levels were increased [104]. In addition, neonatal C/EBP-α knockout mice exhibit 

significantly elevated levels of AFP, indicative of a less differentiated state [106]. 

4.6 BPA Increases Cell Proliferation Marker PCNA in Fetal 

Female Livers 

A proper balance between cell proliferation and apoptosis is essential for organ 

development, including that of the liver [80]. Thus, we also determined whether prenatal 

BPA exposure disrupted this balance in the fetal liver. First, we examined the 

proliferative status of the fetal liver by analyzing the expression of PCNA, a universal 

marker of cell proliferation. One of the main characteristics of a differentiated cell is a 

marked decrease in proliferation. As hepatocytes mature during fetal development, their 

proliferative activity progressively decreases as they approach term [124]. Hence, 

increased expression of proliferative markers is likely indicative of impaired hepatic 

differentiation and maturation [96]. In the present study, we found that levels of PCNA 
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protein were significantly elevated in BPA-exposed female but not male fetal livers. It is 

interesting to note that prenatal BPA exposure has been shown to increase proliferation in 

the pituitary gland of female but not male mice at birth [125]. 

Given that we revealed a significant decrease in C/EBP-α expression in female 

fetal livers, it is especially noteworthy that this transcription factor is known to exert 

powerful inhibitory effects on cell proliferation. For instance, hepatocyte proliferation is 

induced in C/EBP-α knockout mice [106,126], whereas C/EBP-α overexpression results 

in significantly reduced proliferative activity [127]. C/EBP-α is also highly expressed in 

terminally differentiated tissues and in non-dividing hepatocytes [128]. Furthermore, 

during liver regeneration [128–130] and tumorigenesis [104], instances during which 

proliferative activity is positively driven, C/EBP-α is significantly downregulated, which 

is accompanied by a corresponding re-activation of AFP [123]. Thus, it is tempting to 

speculate that the increased PCNA expression, and by inference hepatic proliferation, as 

observed in the present study may be a consequence of decreased C/EBP-α. 

4.7 BPA Decreases Apoptotic Marker Caspase-3 in Fetal 

Female Livers 

During normal fetal development, an appropriate level of apoptosis is necessary 

for controlling cell population and deleting abnormal or genetically damaged cells 

[80,131]. Moreover, organ homeostasis is critically regulated by the balance between cell 

gain and cell loss [132]. Given that female fetal livers exhibited aberrant cell proliferation 

in response to BPA exposure, we then sought to examine if BPA exerted an effect on 

apoptosis. Previous studies have shown that prenatal exposure to BPA decreases 
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apoptosis in the fetal mammary gland, leading to delayed lumen formation at E18 in the 

mouse [41,42]. With regards to the liver, Xia et al. found that BPA exposure during 

pregnancy and lactation resulted in enhanced apoptosis in male offspring at 15 and 21 

weeks of age [109], but females were not examined. 

Apoptotic cell death is carried out via two major pathways: the extrinsic (death 

receptor) pathway, and the intrinsic (mitochondrial) pathway. The two main initiator 

caspases associated with each of those pathways are caspase-8 and caspase-9, 

respectively [133]. These two pathways converge, and apoptosis is carried out by the 

cleavage of the executioner protein caspase-3 [134]. Thus, in the present study, we 

analyzed the expression of caspase-3 (a universal apoptotic marker) to determine the 

effect of prenatal BPA exposure on apoptosis in fetal livers. Our results showed a 

significant decrease in levels of both pro- and cleaved (active) caspase-3 in BPA-exposed 

female fetal livers, suggesting that BPA reduced both the expression and activity of 

caspase-3. By contrast, neither pro- nor cleaved caspase-3 protein levels were altered in 

BPA-exposed male fetal livers. 

While decreased albumin, decreased glycogen synthase, increased AFP, and 

increased proliferation in BPA-exposed females can be largely attributed to the lack of 

C/EBP-α, there is no evidence that this transcription factor directly affects apoptosis in 

hepatocytes. In one study, C/EBP-α was found to ameliorate liver fibrosis in mice 

through the induction of apoptosis in hepatic stellate cells [134]. However, apoptosis of 

hepatocytes generally remained unaltered [134]. In the present study, suppressed 

apoptosis in BPA-exposed females could potentially be a direct consequence of the 

upregulated cell replication [132], especially given that both of these processes were 
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altered strictly in females, and not males. Indeed, results from previous studies have 

indicated that cell proliferation and apoptosis are coupled processes, and hence, 

suppression of apoptosis may occur as part of a proliferative response [135]. In any case, 

decreased apoptotic activity is particularly unfavourable during organogenesis. Especially 

in combination with the observed increase in cell proliferation, suppression of apoptosis 

could cause hyperplasia, which creates an expanded population of cells from which those 

with oncogenic mutations could arise. 

4.8 Sex-Specific Effects 

The most striking findings of the present study are the sex-specific effects of BPA 

on fetal liver maturation. We are not the first to demonstrate that male and female fetal 

livers display differential vulnerability in response to an adverse in utero environment. 

For example, maternal protein and nutrient restriction [136,137], maternal smoking 

[138,139], prenatal caffeine exposure [140], and prenatal cadmium exposure [141] have 

been shown to alter fetal hepatic gene expression and DNA methylation in a sex-

dependent manner. Although the precise molecular mechanisms underlying the sex-

specific effects in the present study and those reported previously remain largely 

unknown, it is possible that fetal sex steroid hormones may play a role [142]. A likely 

contributing factor may also be sex chromosome complement, because chromosomal 

differences have been shown to dictate the responses of male and female cells to 

environmental stressors even before the production of fetal sex hormones [143,144]. It is 

also possible that these sex-specific effects could be mediated indirectly via differential 
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effects of BPA on male and female placentas [145]. Obviously, future studies will be 

required to determine the precise mechanisms underlying this phenomenon. 

Our present findings also suggest females are more vulnerable to BPA-induced 

hepatic damage. This contention is consistent with some but not all of the previously 

reported sexual dimorphism associated with the BPA-induced adult liver phenotypes, 

which appear to be largely dependent on the dose as well as the exposure time and 

duration. For instance, although maternal exposure to BPA throughout pregnancy and 

lactation has been shown to induce metabolic disorders in both male and female adult 

offspring, the effects on females were more profound [112]. In contrast, Alonso-

Magdalena et al. found that prenatal exposure to BPA (E9 to E16) disrupted glucose 

homeostasis in adult male but not female offspring [111]. In another study, Weinhouse et 

al. found that exposure to BPA throughout gestation and lactation led to a dose-dependent 

incidence of liver tumors in both male and female adult offspring [110]. Although these 

effects were not different between sexes, it is interesting to note that while males are 

normally two to four times more likely to develop hepatocellular carcinoma (HCC), this 

sexual dimorphism disappeared as a result of perinatal BPA exposure [110]. This BPA-

induced increased vulnerability to HCC in adult females is especially interesting in the 

context of the present study’s findings for C/EBP-α, given that C/EBP-α knock-in mice 

have been shown to exhibit reduced susceptibility to HCC compared to wild-types [123], 

and also given its suspected role as a tumor suppressor in other tissues [146]. 

Developmental exposure to BPA has also been shown to promote aberrant DNA 

methylation profiles [115,116] as well as altered gene expression [113] in adult offspring. 

However, sex-specific effects are unknown as differences between sexes were never 
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compared in these studies. For example, Ma et al. revealed glucokinase promoter 

hypermethylation in adult male offspring as a result of early life BPA exposure, but 

female offspring were never examined [116]. In another study, Somm et al. showed that 

perinatal BPA exposure resulted in the overexpression of several hepatic metabolic genes 

in adult female offspring, but gene expression in male livers was not analyzed [113]. 

Early life exposure to BPA also contributes to the development of hepatic steatosis in 

adult male offspring [108,147] but this phenomenon has never been examined in BPA-

exposed females. 

4.9 Conclusions 

In the present study, we demonstrate for the first time that prenatal exposure to 

environmentally relevant doses of BPA via maternal diet impairs female, but not male, 

fetal liver maturation in the mouse. Although the long-term consequences of the present 

findings remain to be determined, it is tempting to speculate that the disrupted hepatic 

maturation observed in the present study may result in permanent alterations in hepatic 

function, ultimately leading to hepatic dysfunction and diseases later in life. In addition, 

these findings suggest that females are more vulnerable to BPA-induced hepatic damage. 

4.10 Limitations & Future Directions 

Although we provide strong evidence that BPA impairs the biochemical 

maturation of female fetal livers, the liver also undergoes structural maturation to acquire 

a specialized tissue architecture important for supporting its associated functions [148]. In 

the present study, no definitive conclusion can be made regarding the effects of prenatal 
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BPA exposure on structural maturation of fetal livers. While there were no observable 

structural abnormalities in the livers of BPA-exposed fetuses upon standard H&E 

staining, this histological analysis was carried out on a small sample size with males and 

females pooled together, prior to the realization of a sex-specific effect. Thus, an 

impairment in the structural maturation of female fetal livers could potentially be masked 

by the strong lack of effect of BPA on the livers of male fetuses. Unfortunately, further 

analysis was not possible in the present study since the limited store of fixed tissues was 

never genotyped. Future studies should explore this by analyzing structural markers of 

maturation [96]. Moreover, one of the most utilized indices for assessing effects of 

xenobiotics is organ weight [149]. In the present study, fetal liver weights failed to be 

recorded at the time of dissection. However, neonatal livers of C/EBP-α knock-out mice 

exhibit a normal liver size [106,150], which leads us to believe that liver weights of BPA-

exposed fetal females likely remain normal in the present study. Nevertheless, this 

question should be addressed in future studies. 

Our study employed the use of an in vivo mouse model to demonstrate the effects 

of prenatal BPA exposure on fetal liver maturation in the mouse at E18.5, just prior to 

term (E19). This time point was chosen since our goal was to determine whether a fetal 

origin might exist for BPA-induced hepatic disease and dysfunction. Nevertheless, 

hepatocytes continue to undergo functional maturation for several weeks after birth, and 

C/EBP-α is also essential for continued postnatal differentiation of hepatocytes. For 

example, the rapid depletion of glycogen stores at birth is paralleled by the immediate 

onset of hepatic gluconeogenesis [151]. The acquired gluconeogenic capacity of the liver 

is supported by the onset of gluconeogenic enzymes, including glucose-6-phosphatase 
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(G6Pase) and the rate-limiting enzyme, phosphoenolpyruvate carboxykinase (PEPCK), at 

postnatal day (PN) 1 [152–154]. C/EBP-α binds to the promoter regions of these genes 

and activates their expression [155,156]. In fact, neonatal C/EBP-α knockout mice 

exhibit delayed and reduced PEPCK and G6Pase expression, which is largely responsible 

for their severe dysregulation in glucose homeostasis and resultant hypoglycemia 

[107,155]. In the present study, given that levels of C/EBP-α are significantly decreased 

in BPA-exposed female livers at E18.5, it is likely that these important gluconeogenic 

enzymes are also downregulated in the neonatal liver, and that the consequences of 

prenatal BPA exposure on hepatocyte maturation extend into the postnatal period. Future 

studies are necessary in order to address these questions. 

Furthermore, it is unknown as to whether the effects observed in the present study 

persist into adulthood. Liver-specific knockout models have revealed that C/EBP-α 

continues to play an important role in the adult. Specifically, these studies have 

demonstrated that C/EBP-α is necessary for transcription of critical gluconeogenic genes 

(glycogen synthase, G6Pase, PEPCK), as well as bilirubin UGT, which is required for the 

detoxification of serum bilirubin [157,158]. In addition, adult C/EBP-α knockout mice 

have been shown to exhibit glucose intolerance, increased hepatic steatosis, and increased 

serum cholesterol levels [158]. Thus, programmed under-expression of hepatic C/EBP-α 

could have negative consequences in the adult. Interestingly, a subset of these profiles 

have already been established in adult mice subjected to early life BPA exposure. It 

would be interesting to understand the extent to which downregulated C/EBP-α in the 

fetus contributes to these phenotypes, if at all.  
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Lastly, we have yet to elucidate the molecular mechanism underlying the effect of 

BPA on female fetal liver maturation. We propose that upon binding to an intracellular 

receptor, BPA acts to downregulate C/EBP-α protein expression, which leads to a 

downregulation of albumin and glycogen synthase, an upregulation of AFP, as well as 

increased PCNA expression (cell proliferation marker) and decreased caspase-3 

expression (marker of apoptosis) (Figure 4-1). However, the precise mechanism remains 

unclear, and future studies will be necessary in order to address this question. 

It is conceivable that prenatal exposure to BPA impairs female fetal liver 

maturation through aberrant estrogen signaling. As previously mentioned, BPA acts 

mainly via interaction with ER. The predominant isoform in hepatocytes is ERα 

[159,160], and studies have shown that hepatic ER concentrations increase in the fetus 

during later stages of gestation in parallel with maternal estrogens [161]. In other cell 

types that coexpress C/EBP-α and ER, estradiol has been shown to induce C/EBP-α 

activation [162]. Additionally, BPA has been shown to act via an ER-mediated pathway 

to increase C/EBP-α expression in human adipose stem cells [163]. 

BPA has also been shown to bind to the GR as both an agonist and an antagonist 

[30,31]. Glucocorticoids are important for regulating the expression of many hepatic 

genes. Specifically, the GR regulates transcription via DNA binding, as well as through 

cross-talk with other transcription factors [164,165]. Studies have shown that during late 

gestation, glucocorticoids promote hepatic maturation. For example, glucocorticoids 

accelerate the decline of AFP while enhancing albumin expression [166]. In addition, 

glucocorticoid have been shown to induce glycogen synthase expression and glycogen 
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accumulation [167]. Glucocorticoids have also been shown to induce G1 cell cycle arrest 

in a rat hepatoma cell line, which required the induction of C/EBP-α as a mediator [165]. 
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Figure 4-1. Proposed Mechanism. Upon binding to an intracellular receptor, BPA acts 

to downregulate C/EBP-α, which leads to decreased expression of albumin and glycogen 

synthase, increased expression of AFP, as well as a perturbed balance between cell 

proliferation and apoptosis.  
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