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ABSTRACT 
 

Complex regional pain syndrome type-I (CRPS-I) is a debilitating pain disorder often 

occurring secondary to distal extremity trauma. Its pathophysiology is not well 

understood; however, microvascular dysfunction is proposed as an important factor 

in its development and maintenance. Using a rodent model, we tested an automated 

gait analysis system (CatWalk™) to examine functional changes. In addition, the use 

of carbon monoxide releasing molecule-3 (CORM-3), a compound known to be a 

potent vasodilator and anti-inflammatory agent, was also tested as a treatment of 

CRPS-I-like symptoms. Using the CatWalk™ system, we observed significant 

changes in gait parameters post-injury, several of which persisted throughout the 14-

day experiment. CORM-3 administration significantly reduced mechanical allodynia 

symptoms, as demonstrated through the restoration of withdrawal thresholds during 

mechanical stimulation testing. Functional deficits were not restored after CORM-3 

application; however, trends for improvement were observed. CORM-3 has 

relevance as a potential therapy to alleviate symptoms associated with CRPS-I. 

 

Keywords: complex regional pain syndrome type-I, CORM-3, microcirculation, gait 
analysis, CatWalk™, carbon monoxide, chronic pain 
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CHAPTER 1:  INTRODUCTION AND HISTORICAL REVIEW 

1.1 COMPLEX REGIONAL PAIN SYNDROME 
 

In the clinic, persistent and chronic pain is the most common reason for 

patient presentation (Von Korff et al., 1988; Von Korff et al., 2008). Our current 

understanding of pain sensation and pain mechanisms in both normal and 

pathological conditions is continuously expanding and helping physicians to better 

cope with the increasing load of chronic pain patients. Headway has been made to 

recognize pain as a disease in its own right, as several studies show that over 1 in 5 

Canadians are affected by chronic pain. According to the Chronic Pain Association 

of Canada, “The cost of chronic pain for Canadians is well over 40 billion dollars in 

direct and indirect costs. This is more than cancer, HIV, and heart disease 

combined.” (Lynch, 2011) One such chronic pain condition, Complex Regional Pain 

Syndrome, has both significant direct and indirect costs on our society, and its 

peoples. 

Complex Regional Pain Syndrome (CRPS) describes a range of painful 

conditions and is characterized by a continuing regional pain – either spontaneous 

or induced – that is disproportionate to the inciting event or the usual course of a 

known trauma, in both time and degree. It typically occurs secondary to an extremity 

trauma and has a distal presence of abnormal sudomotor, vasomotor, sensory, 

motor and/or trophic signs (Bean et al., 2014; Bruehl et al., 2002; Harden, Bruehl, 

Perez, Birklein, Marinus, Maihofner, Lubenow, Buvanendran, Mackey, Graciosa, 

Mogilevski, Ramsden, Schlereth, et al., 2010). Typical symptoms include a constant 

burning pain, mechanical and cold allodynia, swelling, temperature changes and 
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limited active range of motion of the limb; exacerbation of symptoms is often 

observed upon exertion and exercise as well (M. Stanton-Hicks et al., 1998). Other 

considerable symptoms include severe motor dysfunction (dystonia, tremors, 

weakness, incoordination), dystrophy, psychiatric co-morbidities, sweating, bone 

changes, and changes in hair and nails. Anxiety and depression are common to this 

disorder, as patients often do not respond to any available treatment. Current 

therapeutic options include pharmacological, surgical, psychological and physical 

therapy (Harden, 2000; M. D. Stanton-Hicks et al., 2002). As a result of often failing 

treatment attempts, there is a push towards translational research in the study of 

CRPS. Although the triggers of the disorder are known (soft tissue injuries, fractures, 

sprains, crush injuries, surgery, spinal cord disorders and infections), CRPS 

sometimes occurs spontaneously, making it extremely difficult to diagnose (Wasner 

et al., 2001; Wilson et al., 2005). Diagnostic criteria are constantly evolving, as the 

consequences of a misdiagnosis can have multiple implications in patient quality-of-

life, employment status, and healthcare costs. As suggested by Harold Merskey’s 

quote below, pain is devastating to a person’s livelihood: 

“If I have matters right, the consequences of pain will include direct physical 
distress, unemployment, financial difficulties, marital disharmony, and 
difficulties in concentration and attention…” (Merskey, 2000). 

 

In order to help better understand the complex mechanisms underlying the 

pathophysiology of CRPS, and to develop accurate assessments for patients, both 

basic science and clinical research modalities are jointly needed. 
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1.2 HISTORY OF CRPS 
 
 

The history of CRPS traces back to 16th century European battles, where 

severe pain symptomology from trauma, induced by lance (and later, bullet) injuries, 

was reported (Bonica, 1953). Potts, a famous British surgeon, reported in the 18th 

century that trauma of the extremities can result in pain and atrophy (Hooshmand, 

1993). One of the first amputations was actually performed by a surgeon named 

Denmark on sailors whose musket bullet injuries resulted in severe burning pain with 

inflammatory symptoms; this condition was termed “tic douloureux” at the time (Ley, 

1835).  Throughout the next several hundred years, the nomenclature and definition 

of the disorder has seen many changes; however, no concrete description of the 

pathophysiology has been accepted.  

In the 19th century and the American Civil War, a physician named Wier 

Mitchell is accredited with describing the burning pain soldiers suffered from gunshot 

wounds and attributing it to a specific condition. He called the condition ‘causalgia’, a 

name originating from the greek word kausos for fever (from kaiein for “to burn”) 

(Mitchell, 1867). Together, Mitchell and William Keen (another doctor serving the 

Turner Lane Hospital in the Civil War) studied several nerve injuries, and eventually 

published “Gunshot Wounds and Other Injuries of the Nerves and Reflex Paralysis”, 

which described causalgia and secondary paralysis (Mitchell, 1864). In their 

publications, Mitchell, Keen and others described the severe burning pain, abnormal 

skin colour and temperature, sweating, muscle weakness, osteoporosis and 

involuntary movements that many soldiers experienced; effectively, well describing 

the disease (Mitchell, 1864, 1867). It wasn’t until 1916 that a proposal for the 
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mechanisms of causalgia was suggested by Leriche, who proposed that the 

sympathetic nervous system had an important role (Leriche, 1916).  

Suggesting a much different view on the source of pain, Paul Sudeck, a 

German physician, theorized that the bone atrophy and other symptoms observed 

were part of an inflammatory reaction after trauma. The syndrome was then referred 

to as Sudeck’s atrophy (Sudeck, 1902; van der Laan et al., 1998; Veldman et al., 

1993).  

William Livingston, an American surgeon during the Second World War, 

described a “vicious cycle” used to explain CRPS symptoms. The cycle explains 

how afferent input and reflex vasoconstriction could trigger pain, limb disuse and 

atrophy with even the most minor of nerve injuries (Livingston, 1948). From his 

hypothesis, Livingston performed many sympathectomies on suffering soldiers, 

some of which experiencing transient relief of pain symptoms. The findings resulted 

in Livingston suggesting an important role of the sympathetic nervous system in 

causalgia (Livingston, 1948).  

Around the same time Livingston was performing sympathectomies on injured 

soldiers, a surgeon by the name of Philip Foisie was hypothesizing the roles of 

arterial vasospasm and ischemia, from arterial and soft tissue injury, in causalgia 

(Foisie, 1947). Until then, vasospasms and ischemia had been largely ignored as 

potential factors contributing to CRPS. 

Formally called minor causalgia, the term “Reflex Sympathetic Dystrophy” 

(RSD) was introduced by John Evans in 1946, and referred to as causalgia without a 

visible major nerve injury (Evans, 1946, 1947). In 1986, the International Association 
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for the Study of Pain (IASP) defined RSD as “continuous pain in a portion of an 

extremity after trauma, which may include fracture but does not involve a major 

nerve, associated with sympathetic hyperactivity.” An additional definition, proposed 

by an Ad Hoc committee of the American Association of Hand Surgery, called RSD 

“a pain syndrome in which the pain is accompanied by loss of function and evidence 

of autonomic dysfunction.” However, in order to avoid any mechanistic term in its 

appellation, RSD had been renamed, as many cases did not seem to have 

sympathetically maintained pain, nor did result in dystrophy. Together, causalgia and 

RSD have had many different names describing them (Table 1.1). 

A discussion at the IASP Task Force on Taxonomy in 1994 resulted in a new 

umbrella term: Complex Regional Pain Syndrome (CRPS), which is now used 

instead, as there is “neither clinical nor pathological evidence to suggest that the 

mechanisms are any different in these two syndromes, and the responses (or lack 

thereof) to treatments are quite similar” (Wilson et al., 2005). Two types of CRPS are 

defined: CRPS-I, which encompasses what was formally RSD, and CRPS-II, which 

is what was formally known as causalgia. Type-I differs from type-II solely on the 

absence of a distinct nerve injury (Harden et al., 2007).  
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Table 1.1. Synonyms of Complex Regional Pain Syndrome 

 

Synonyms of Complex Regional Pain Syndrome 

Reflex sympathetic dystrophy (RSD) 

Causalgia 

Sudeck’s atrophy 

Post-traumatic dystrophy 

Shoulder-hand syndrome 

Algodystrophy 

Algoneurodystrophy 

Reflex neurovascular disease 

Pourfour du Petit syndrome 

Postinfractional sclerodactylia 

Fracture disease 
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1.3 DIAGNOSIS OF CRPS 
 

Sensitivity and accuracy of CRPS diagnosis is imperative to our health care 

system and patient quality of life. Being diagnosed with CRPS has serious 

implications to a patient’s ability to work and to maintain the livelihood of their 

families. A study by Kemler and Furnee (2002) concluded that the impact of chronic 

pain on both patients and their families could be unbearable physically and 

financially (Kemler & Furnee, 2002). They found that CRPS had a profound effect on 

employment status, time allocation, additional domestic help and out-of-pocket 

expenses (Kemler & Furnee, 2002). Therefore, early and accurate diagnosis and 

prompt management of symptoms are essential in reducing or preventing CRPS 

from worsening, as well as improving quality of life.  

 In Budapest, IASP consensus updated the diagnostic criteria for CRPS. 

Harden et al (2007) summarized the group’s revisions to the former diagnostic 

criteria, which aimed to reduce both over- and under-diagnosis of CRPS while 

maintaining diagnostic sensitivity (Harden et al., 2007). To make a CRPS diagnosis, 

the new criteria states that a patient must have: 

1. Presence of an initiating noxious event, or a cause of immobilization; 

2. Continuous pain, allodynia and/or hyperalgesia in which the pain is 

disproportionate to the inciting event; 

3. Evidence at some time of edema, changes in skin blood flow or abnormal 

sudomotor activity in the region of pain; 

4. This diagnosis is excluded by the existence of other conditions that would 

otherwise account for the degree of pain and dysfunction. 
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The diagnosis is further clarified if the patient is seen with or without major nerve 

damage. Nerve damage would result in a diagnosis of CRPS-II, whereas no nerve 

damage would garner a diagnosis of CRPS-I. The presence of an initiating noxious 

event may be unrequired as 5-10% of CRPS patients develop the syndrome 

spontaneously (Harden et al., 2007).  

 Considering that CRPS symptoms often vary slightly between patients and 

over time, probably as a result of a different contribution to symptoms from different 

pathophysiologic mechanisms, a clinical diagnosis has to meet several criteria. 

Clinicians examine four categories of symptoms: sensory (hyperesthesia and 

allodynia), vasomotor (temperature and skin colour changes), sudomotor/edema 

(edema and sweating changes and asymmetry), and motor/trophic (decreased 

range of motion; motor dysfunction like weakness, tremor and dystonia; trophic 

changes like hair, nail, and skin) (Harden et al., 2007). To make a clinical diagnosis 

of CRPS, the following criteria must be met: 

1. Continuing pain disproportionate to the inciting event; 

2. Patient reporting at least one symptom in at least three of the four categories 

listed above (sensory, vasomotor, sudomotor/edema and motor/trophic); 

3. Patient must display at least one sign in two or more of the above categories 

at the time of evaluation; 

4. No other diagnosis better explains the signs and symptoms. 

 

Clinically, the above criteria were agreed upon because, compared to the previous 

IASP diagnostic criteria, they limit false positives. However, depending on the 
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purpose for which the criteria are intended, the sensitivity and specificity of criteria 

might need adjusting. For example, in the research context, identifying stringent 

research samples by minimizing false positives is valuable, compared to clinically 

identifying as many CRPS cases as possible by minimizing false negatives (Harden 

et al., 2007). For this reason, diagnostic criteria in research are adjusted. In 

research, two of four sign categories and four of four symptoms categories must be 

positive for a CRPS diagnosis (Harden et al., 2007). These result in the greatest 

probability of CRPS vs non-CRPS according statistical analyses performed by 

Harden et al (2007). 

1.4 THERAPEUTIC APPROACHES AND MANAGEMENT 
 
 Over the last few decades, treatment plans for CRPS have adapted to new 

knowledge; however, the lack of consensus in the pathophysiology of the disorder 

have proved to make developing appropriate therapies very difficult, to say the least. 

Early recognition and treatment of CRPS-I are important because CRPS-I patients 

are at high risk of developing severe disability in the affected limb, potentially 

compromising future employment and livelihood (Poplawski et al., 1983).  

 Norman Harden presented a very good summary of why treatment of CRPS 

is inherently so difficult. It stated: 

 

“The syndrome is inherently complex biomedically, involving both peripheral 
and central pathophysiology, but it also often has psychosocial features that 
are critical diagnostic elements (and treatment targets). Successful treatment 
is further complicated by the diversity of patient presentation and by 
antecedent pathology. In addition to these clinical challenges, the 
epidemiology and natural history of CRPS are poorly understood. Even 
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research data are challenging to interpret, and evidence has been slow to 
accumulate as to how best to treat CRPS, due in large part to the vagaries of 
diagnosis (see Chapter 4). How is a specialist to begin treating such a 
multifaceted condition?” (Wilson et al., 2005) 

 

 Indeed, how is a specialist to begin treating such a multifaceted condition? 

This question was address by Harden and others in CRPS: Current Diagnosis and 

Therapy in 2005, after an IASP conference in Budapest. The authors also presented 

a general treatment algorithm, suggesting an interdisciplinary method for handling 

CRPS, with a focus on functional restoration. This algorithm recommends the use of 

conservative care, via physical/occupational therapy and oral medications, when a 

patient continues to have persistent pain or dysfunction. With regular consultation, if 

a patient continues to experience CRPS symptoms with conservative care, 

intermittent regional nerve blocks are then sometimes prescribed. If a failure to 

progress from nerve blocks were observed, a move to infusion techniques (i.e 

epidural infusions) would be recommended. If CRPS symptoms persist, the patient 

may be a candidate for spinal cord stimulator implantation or intrathecal drug 

delivery. These options are more invasive and should only be considered if other 

therapies fail; additionally, the authors suggest intrathecal drug delivery should only 

be considered if spinal cord stimulation fails to relieve symptoms, or if a patient 

exhibits a plateau of response (Wilson et al., 2005). Such treatments will be 

discussed further in the following sections. Of course, CRPS is a very complex 

condition and treatments cannot be expected to be identical between patients. The 

basic principle of the functional restoration guidelines is to identify progress through 

the steps of care, and to intervene with additional treatments if patients do not 
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progress (Wilson et al., 2005). Treatment guidelines emphasize using a multi-

disciplinary approach, to compassionately and methodically help patients regain 

their quality of life. 

 The development of additional treatments, targeting potential mechanisms 

explaining the initiation and maintenance of CRPS, are needed. Patients are often 

frustrated by the lack of relief pain management regimens provide; the development 

of adjunct therapies may help both clinic and patient relieve pain and frustration. 

 

1.4.1 Rehabilitation Therapy 

 
 In keeping with the focus on functional restoration, rehabilitation therapy is an 

important part in CRPS treatment. Until recently, rehabilitation has been stated as 

vital, or at least a supportive complementary approach to CRPS; however, its 

techniques, frequency and intensity are rarely described in the literature. Instead, 

writings tend to focus on explanatory hypotheses, medical interventions and 

adjustments to diagnostic criteria. 

 Rehabilitation is the culmination of both physical and occupational therapy, 

with the aim of focusing treatments on the clinical manifestations of CRPS, including 

edema, restricted range of motion, temperature sensitivity, intolerance of physical 

activity, reduced muscle strength and, of course, pain. Although physical and 

occupational therapists differ in their scope of practice, much of their work overlaps 

in the treatment of a chronic pain syndrome (Wilson et al., 2005).  

 In the treatment of CRPS, the first steps are often to manage edema and 

pain. The next goal is the initiation of gentle, active movements, to restore range of 



	  

	  

13 

motion. Finally, improvement of muscle strength and function of the extremity are 

targeted to fulfill the end goal of improving whole body function, to allow patients to 

be participating members of society (Bengtson, 1997). In a prospective randomized 

control trial that followed patients over the course of 1 year, physical and 

occupational therapy modalities led to recovery from CRPS of the upper extremity 

(Oerlemans et al., 1999). 

Reducing edema is often achieved through lymph draining and by active 

exercises; however, a study by Uher et al (2000) observed no difference between 

active exercises and active exercises plus lymph draining. This would suggest that 

physical therapy may be more effective in reducing edema (Uher et al., 2000).  

 Providing a balanced and varied approach to managing symptoms, physical 

and occupational therapy as part of the rehabilitation method is currently the pivotal 

intervention for CRPS, as determined by several large consensus meetings (Harden, 

Bruehl, Perez, Birklein, Marinus, Maihofner, Lubenow, Buvanendran, Mackey, 

Graciosa, Mogilevski, Ramsden, Chont, et al., 2010; Harden et al., 2007). As 

confirmed in rat models, normalization of function may serve to reverse changes 

observed in CRPS patients (Guo et al., 2004).  
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1.4.2 Medications and Pharmacotherapy 

 As a result of a lack of efficacy of rehabilitation therapy for CRPS patients, 

pharmacotherapy often becomes the major treatment option for those patients 

whose symptoms do not improve. Of course, used in conjunction with other 

therapies as directed by pain specialists, medications are prescribed for both early 

and chronic CRPS, as well as chronic CRPS symptoms other than pain.  

 Since CRPS is often initiated by trauma or injury, most studies examining 

treatments and therapeutic approaches have been performed by surgeons, 

orthopaedists or rehabilitation specialists. As stated previously, acute CRPS is 

characterized by pain and inflammation; however, it’s believed that the final effects 

on the central nervous system may not have occurred yet, leaving an important 

window for treatments to potentially affect the disease course (Wilson et al., 2005).  

The mechanisms and targets of treatment are probably different in acute and chronic 

CRPS, and there are very few studies investigating the effectiveness of early CRPS 

treatments on chronic CRPS patient symptoms. 

 Some evidence-base studies have found that treatments prescribed in early 

CRPS include: corticosteroids, calcium-regulating drugs, alpha-adrenergic 

antagonists, and anti-oxidants. A study by Christensen et al (1982) found that 

systemic corticosteroid (prednisone) treatment reduced entire clinical status by more 

than 75%; however, corticosteroids are typically not administered in chronic CPRS 

patients (>6 months) as it has little efficacy (Christensen et al., 1982). Prednisone 

and methylprednisolone are agents with anti-inflammatory properties, probably 

affecting neurogenic inflammation and subsequently pain symptoms.  
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Calcium-regulating drugs like clodronate and alendronate, as well as the 

hormone calcitonin, have been found to improve swelling, pain, and range of motion 

in several randomised clinical trials (RCTs) (Braga, 1994; Manicourt et al., 2004; 

Perez et al., 2001; Varenna et al., 2000; Zyluk, 1998). The mode of action of these 

treatments is not clear. 

 Considering the hypothesis that CRPS is caused by oxygen-derived free 

radical damage that potentiates inflammation and microvascular dysfunction, several 

studies have investigated antioxidants and free-radical scavengers as possible 

therapeutics. One such study found that topical dimethylsulfoxide (DMSO) provided 

alleviating effects (Zuurmond & Perez, 2006); however, a strong garlic odour in 

exhaled breath was observed as an adverse effect. 

 Alpha-adrenergic antagonists and vasodilators have also been examined in 

CRPS patients; although two studies show potential benefits of the alpha-adrenergic 

antagonist phenoxybenzamine in both early and chronic CRPS (Ghostine et al., 

1984; Muizelaar et al., 1997), adverse effects of hypotension from vasodilatory 

action are very serious. 

 In Table 1.2 below, the major classes of medications, with documented 

efficacy, used in the treatment of chronic pain are summarised. Bearing in mind the 

wide range in CPRS symptom presentation, no single medication is better or worse 

than others, so clinicians must consider patient symptoms, age, circumstances and 

personal history when prescribing medications. 
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Table 1.2. Major Classes of Medications Used in Treating Chronic Neuropathic 

Pain 

 
 
 
 

 
Treatment 

 
Medication Name 

Topical local anesthetics 
• Lidocaine 5% patch 

• Local anesthetic cream, gel, ointment 

Tricyclics 
• Nortiptyline 

• Desipramine 

Antiepileptics 
• Gabapentin 

• Carbamazepine (extended release) 

Opiods 

• Tramadol 

• Oxycodone (extended release) 

• Morphine (extended release) 

• Methadone 

 
Adapted from Wilson et al 2005 (Wilson et al., 2005)  
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 With minimal complications to its use, local anesthetics have active 

ingredients that act locally at the site of application, typically the affected extremity 

(Wilson et al., 2005). These agents differ from other transdermal medications like 

fentanyl, which have a systemic distribution once absorbed across the skin. Gels, 

creams, sprays and patches with active anesthetic ingredients (like lidocaine) are 

supported by level 2 evidence for relief of allodynia symptoms in CRPS. The 5% 

lidocaine patch is especially popular since it both covers the skin from potential 

contact and has active anesthetic to relieve allodynia symptoms (Wilson et al., 

2005). 

 Tricyclics, or tricyclic antidepressents (TCAs), are perhaps the most beneficial 

pharmacological CRPS therapy in use today (Jensen, 2002). Several trials have 

found TCAs to be effective in reducing neuropathic pain (Jensen, 2002; Max et al., 

1987; Max et al., 1992; Raja et al., 1992; C. P. Watson et al., 1992). They also 

happen to be one of the most inexpensive therapeutic options, as generic forms of 

the agent are available. To decrease CRPS symptoms, TCA acts on several 

mechanisms to alter noradrenergic inhibitory pathways for decreased dorsal horn 

hyperactivity as well as the depression and psychological changes that accompany 

the disorder. Use in the elderly is discouraged, however, since some TCAs (such as 

amitriptyline) may contribute to cardiac arrhythmias.  

 Currently FDA-approved for use in epilepsy and post-herpetic neuralgia 

(PHN), some antiepileptic drugs also exhibit antihyperalgesic properties, by 

decreasing central neuronal hyperexcitability (Wilson et al., 2005). Gabapentin, the 

best-studied antiepileptic, has been deemed efficacious and safe for CRPS patients 
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after a study giving patients 600 mg/day (Mellick & Mellick, 1997). Its action is 

thought to be the binding of alpha-2-delta subunit of voltage-gated calcium channels 

for the decrease of synthesis and release of excitatory neurotransmitters (Gee et al., 

1996). Compared with TCAs, gabapentin has no drug-drug interactions and no 

serious adverse effects; however, other anticonvulsants and antiepileptics have 

inconclusive evidence as to their efficacy in pain disorders like CRPS. 

 The last major class of medication used in the treatment of CRPS patients is 

the opioid medications. Reluctance to prescribe opioids is common amongst 

practitioners for several reasons, including a potential for severe substance abuse 

and addiction, evidence for the cause of diffuse pathological hyperalgesia after long-

term opioid use, and physical tolerance at certain doses (applicable to other 

medications as well) (Wilson et al., 2005). Although there are several consequences 

of opioid use to consider before prescribing, there is abundant level 2 support for the 

use of opioids in other painful conditions, including PHN and painful diabetic 

neuropathy (PDN). Similar to TCAs, opioids do not cause any cognitive deficits as 

detected by neuropsychological testing (Wilson et al., 2005). One study by Watson 

and Babul (1998) found that controlled-release oxycodone at 60 mg/day contributed 

to a 35% reduction in pain in PHN (C. P. Watson & Babul, 1998); other studies show 

oxycodone ability to reduce pain by 30% in PDN as well (Gimbel et al., 2003; C. P. 

Watson & Babul, 1998; C. P. Watson et al., 2003). Tramadol is an opioid suggested 

to have similar effects in both PDN and other painful neuropathies (Sindrup et al., 

1999). The data for use in CRPS is inadequate as there are limited RCTs with solid 

conclusions; however, opioid treatment is currently prescribed.  
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Thus, pharmacotherapy can reduce symptoms of CRPS; however, there are 

several drawbacks to the indefinite use of medications: in most patients, only a 

temporary or partial relief from symptoms is provided, unable to “cure” CRPS. Other 

treatments (e.g. electrical stimulation) have been found to have disease-modifying 

effects, such as persistent pain relief even after treatment is complete (Wilson et al., 

2005). Another limitation is the length of therapy; the median age of CRPS is 

approximately 40 years (Wilson et al., 2005), thus these patients may potentially 

need to take prescription medications for decades. Not only are the long-term effects 

of prolonged medication use generally unknown, but the long-term use may have 

significant impacts on social, economic, and medical aspects of patient livelihood.  

 Currently, much of the evidence-based pharmacotherapy comes from data 

extrapolated from RCTs for other diseases. Therefore, further work investigating 

potential disease-modifying or protective agents, as well as performing RCTs 

specific to CRPS patients, is needed.  

1.4.3 Injection Therapy	  
   

Traditional interventional therapies also include symptom relief though 

injection of various compounds. CRPS was formally named reflex sympathetic 

dystrophy for the implied mechanistic involvement of the sympathetic nervous 

system; this belief led to various treatments aimed at sympathetic blockade. 

Although there is indeed sympathetic nervous system involvement (i.e 

sympathetically-maintained pain (SMP)), CRPS is a complex disease where 

sympathetic blockade does not always provide relief. Sympathetic nerve block does, 

however, provide insight into the diagnosis of pain in CRPS patients as either SIP or 
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SMP. Common blocks include: sympathetic nerve blocks, intravenous regional 

anesthesia (IVRA), intravenous infusions and others.  

 Depending on the location of symptoms, sympathetic nerve blocks are 

traditionally delivered at the level of stellate ganglion or lumbar sympathetic chain 

(Wilson et al., 2005). Sometimes, pain relief is evident even after the effects of local 

anesthesia have expired; in some cases, pain relief may be long-lasting (Burton & 

Waddell, 1998; Price et al., 1998). In 2002, a systematic review by Cepeda and 

colleagues of over 79 reports on sympathetic blockade found that most reports had 

to be rejected as CRPS diagnostic criteria has evolved markedly in the last 100 

years (Cepeda et al., 2002). After pooling the data from only 29 remaining studies, 

Cepeda and colleagues found that only 17% of 454 patients had partial or complete 

pain relief; the duration of pain relief varied significantly and Cepeda also concluded 

that it may be inaccurate to pool much of this data together. Overall, there is some 

evidence for the benefit of classic sympathetic nerve blocks; however, they still 

remain in most treatment plans as either a test to differentiate SMP from SIP, or to 

help supplement active rehabilitation/physical therapy regimens.  

 IVRA is a fairly simple technique used to relieve pain symptoms by delivering 

anesthetic directly to the affected limb. This is performed by injecting an anesthetic 

compound, or a mixture of several compounds, into the circulation of the affected 

limb, while isolating the limb from the rest of circulation with a tight-fitted tourniquet 

(Davis et al., 2002). The likely mechanism for the block of sympathetic nerves is 

through vascular beds around peripheral nerves, the vasa nervorum and valveless 

venules around nerve endings (Wilson et al., 2005); diffusion of the local anesthetic 
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into local tissues may also be involved. Several high-quality studies have been 

published comparing local anesthetics delivered by IVRA including guanethidine, 

lidocaine, bretylium, clonidine, droperidol, ketanserin and reserpine (Forouzanfar et 

al., 2002; Kingery, 1997; Perez et al., 2001). 

 Intravenous infusions of phentolamine and lidocaine have also been studied 

for the relief of pain symptoms. Intravenous infusion involves the controlled injection 

of fluid into the circulatory system by an infusion pump. Studies differ on the effect of 

phentolamine; a study by Arner et al (1991) reported an analgesic effect in both 

adults and children with CRSP-I and II, but Verdugo and Ochoa (1994) found that 

neither placebo nor phentolamine provided any changes in pain, blood flow or 

sensory testing after a prospective, single-blinded study (Arner, 1991; Verdugo & 

Ochoa, 1994). Intravenous infusions are not used as much recently and when used, 

they often act as a diagnostic tool to differentiate SIP and SMP. 

 

1.4.4 Psychological Interventions 

Similar to several other chronic pain disorders, CRPS is a complicated 

biopsychosocial disorder that requires multidisciplinary treatment in order to improve 

psychological, social and medical aspects of patient health. Currently, there are very 

limited controlled studies examining the efficacy of different types of psychological 

intervention; however, there are several approaches that have shown benefit. These 

include relaxation training, biofeedback, cognitive intervention and hypnotic imagery 

(Wilson et al., 2005). As part of a multidisciplinary treatment package, many of the 

above approaches have yielded significant alleviation of CRPS symptoms. A RCT by 
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Oerlemans et al (1999 and 2000) of 135 adult CRPS patients concluded that 

relaxation training and cognitive interventions in conjunction with physical therapy 

yields a significantly greater improvement in CRPS symptoms than controls at a 

one-year follow up (Oerlemans et al., 1999; Oerlemans et al., 2000). Several case 

studies have shown almost complete resolution of symptoms after biofeedback 

(muscular and thermal), relaxation training and hypnotic imagery (Barowsky et al., 

1987; Blanchard, 1979; Gainer, 1992). These approaches often target the learned 

limb disuse that patients develop. Clinical experiences suggest that using the above 

techniques in an integrated multidisciplinary context can provide substantial relief of 

symptoms. 

1.4.5 Implanted Therapies 
 
 In addition to traditional interventional therapies, advanced pain medicine 

techniques used in the treatment of CRPS include spinal cord stimulation (SCS), 

peripheral nerve stimulation (PNS), and intrathecal drug delivery (ITDD). These 

implantable modalities are more commonly used for CRPS conditions that do not 

respond appropriately to pharmacotherapy, regional nerve blocks or physical 

therapy. 

 

1.4.5.1 Spinal Cord Stimulation 

 Nerve stimulation (either spinal cord or peripheral nerve) was first suggested 

for use in pain in 1967 (Shealy, Mortimer, et al., 1967; Shealy, Taslitz, et al., 1967). 

SCS was performed by Cook et al (1976) for pain relief of secondary ischemia to 

peripheral vascular disease (Cook et al., 1976). It was also found to improve 
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perfusion after Jacobs et al (1988) showed relief of ischemic leg pain and 

improvement of ulcer healing (Jacobs et al., 1988). SCS is performed by the 

implantation (either temporary or permanent) of small, soft wires near the spinal 

cord. These wires have electrical leads on their tips that pass electrical currents that 

are produced by a small programmable generator often surgically placed under the 

skin of the buttocks or abdomen. Neurostimulation in this manner blocks pain signals 

by applying a mild electrical current to the spinal cord (SC), often resulting in less 

pain and a tingling feeling in the affected area called paresthesia (Wilson et al., 

2005); however, the exact mechanisms by which SCS relieves pain is still not fully 

understood. It was originally though to target the dorsal column of the SC but other 

studies showed that neurostimulation also influenced transmission (affecting sensory 

dorsal nerves and descending inhibitory pathways in the SC) (Linderoth et al., 1992; 

Long et al., 1981). It is also thought that the improved peripheral circulation after SC 

stimulation is the result of autonomic effects as the neurostimulation may modulate 

efferent impulses that could produce vasodilation in the innervated dermatome 

(Wilson et al., 2005). 

 

1.4.5.2 Peripheral Nerve Stimulation (PNS) 

 PNS works in a similar manner to SCS:,small electrodes are placed along 

peripheral nerves in the targeted limb and often cause a reduction in pain, as well as 

the same paresthesia observed in SCS (Wilson et al., 2005). PNS can be used 

alone, but it is often used together with SCS. An indication for this type of treatment 

is pain predominating in a region innervated by only one peripheral nerve. In both 
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SCS and PNS, nerve stimulation is temporarily tested to allow for patient feedback 

before any permanent surgical implant is in place (Wilson et al., 2005). Although 

there are limited randomized studies examining this treatment, pain relief has been 

demonstrated in several retrospective studies (Ebel et al., 2000; Law et al., 1980). 

 

1.4.5.3 Intrathecal Drug Delivery 
	  
 ITDD is a complex technique involving the implantation of infusion pumps that 

deliver pharmacological agents directly to a site on the spinal cord (Wilson et al., 

2005). The intrathecal pump, sometimes called the “pain pump”, has been typically 

used for patients with cancer pain (Onofrio et al., 1981); however, CRPS patients in 

several case studies have found pain relief from this technique. Medication is 

delivered via small catheters that originate in a small pump surgically implanted 

under the skin of the abdomen (Institute, 2013). Typically, morphine is the first-line 

agent used in ITDD. Morphine administered via intrathecal pump has been reported 

effective several times, especially in severe cases of CRPS.  

There are limitations to ITDD. Similar to other opioid treatments, dose 

increases are usually required. Complications with the catheter tip exist, where tip 

masses can form when medication is delivered at high concentration (McMillan et 

al., 2003). Finally, kinking of the catheter often causes a mild red rash on the skin 

and jeopardizes the integrity of the catheter (Wilson et al., 2005).  
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1.4.6 Other Therapeutic Approaches 
 
 Several techniques are either not approved or have limited evidence to 

support their use; a sample of these approaches are briefly addressed in this section 

below. 

In consideration of the tissue hypoxia and acidosis that often accompanies 

CRPS, Kiralp et al, Tuter et al and Peach all proposed the use of hyperbaric oxygen 

(HBO) therapy (Kiralp et al., 2004; Peach, 1995; Tuter et al., 1997). In a randomized, 

placebo-controlled study, Kiralp demonstrated the use of HBO therapy in markedly 

attenuating edema and pain in CRPS patients after 15 treatments; these findings 

lend additional support to warrant further research of HBO therapy and for 

treatments targeting edema and hypoxia for pain relief.  

 Traditional Chinese medicine involves qigong, a concept with growing 

popularity in North America that focuses on balancing one’s “life energy”. Recently, 

its use has been examined for therapeutic benefits in many conditions ranging from 

cancer and pain, to obesity and hypertension (Bao et al., 2014; Elder et al., 2007; 

Xiong et al., 2015). Although there are some clinical studies suggesting qigong as a 

potential treatment for CRPS-I (Lee et al., 2007; W. H. Wu et al., 1999), the small 

number of participants involved precludes any solid conclusion. Further research 

may be warranted for its use in resolving depression, anxiety and other psychiatric 

complications resulting from CRPS diagnosis. 

 One event known to trigger CRPS complications is surgery. Casting and 

tourniquet use have been suggested as possible initiating noxious events for CRPS. 

A preventative, rather than therapeutic, approach to CRPS has been studied for 
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surgical cases by using vitamin C. One-gram daily of vitamin C treatment was found 

to be effective at preventing CRPS after both upper and lower limb surgery (Besse 

et al., 2009; Zollinger et al., 1999). More recently, Vitamin C was found to have an 

antiallodynic effect in rats, when delivered once per day for 3 days before a hindpaw 

ischemia-reperfusion injury was induced (the chronic post-ischemia pain model 

(CPIP) (Park et al., 2013). Co-administration with vitamin E had a greater 

antiallodynic effect in the experiment, and together these vitamins were suggested 

as modulators of spinal cord neuropathic pain processing. 

 A relatively radical approach to CRPS is a ketamine coma, where extended 

use of anesthetic dosages of ketamine is used to place a CRPS patient in a coma. 

Ketamine has been found to reduce pain significantly is many patients when applied 

topically or by IV; however, the ketamine coma has been suggested to reset NMDA 

receptors and block the central sensitization existing in CRPS (Henson & Bruehl, 

2010). Studies examining its use are limited and the treatment is still considered 

controversial and unproven in Canada. 

 A common theme in the discussion of most therapeutic approaches for CRPS 

is that further study is required. Many studies lack quality controls or a large sample 

size to confidently state conclusions. Clinical trials on both CRPS patients and those 

at risk of developing CRPS (e.g., receiving knee replacement surgery) is to assess 

the efficacy of various treatments and to better understand the best multi-disciplinary 

approach to treating CRPS. 
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1.5 PATHOPHYSIOLOGY  
 
 Current knowledge of the pathophysiologic mechanisms driving CRPS 

symptoms suggests they are multifactorial. A recent comprehensive review by 

Bruehl (2010) presents a summary of the most widely accepted and documented 

pathophysiologic mechanisms that may contribute to CRPS; they include peripheral 

and central nervous system sensitization, inflammation (increased pro-inflammatory 

cytokines and decreased anti-inflammatory cytokines), altered sympathetic and 

catecholaminergic function, altered somatosensory representation in the brain, 

genetic factors and psychophysiologic interactions (Bruehl, 2010). It is now clear that 

the above multiple mechanisms are involved, and that CRPS presentation depends 

on the relative contribution of each mechanism. 

 The majority of CRPS patients have a clinical history of some noxious injury 

(trauma, ischemia, nerve injury) that initiates their symptoms. Often, as a result, 

clinicians observe signs of inflammation (e.g. edema, redness and hyperemia). 

Increased local and systemic levels of pro-inflammatory cytokines (e.g. TNF-alpha, 

IL-1beta, IL-2 and IL-6) have been observed and correlated with CRPS symptoms in 

patients (Maihofner et al., 2005; Uceyler et al., 2007). Decreased anti-inflammatory 

cytokines (e.g. IL-10) are observed in CRPS patients as well (Uceyler et al., 2007). 

Pro-inflammatory cytokines are released after trauma by classical inflammatory 

mechanisms, by action of immune cells (lymphocytes, mast cells, etc); the effect of 

is plasma extravasation, and subsequently edema, which probably explains the 

edema and swelling often observed in CRPS patients. In addition to pro-

inflammatory cytokines, neuropeptides Substance P and calcitonin gene-related 
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peptide (CGRP) can trigger neurogenic inflammation (Bruehl, 2010). Neuropeptides 

and pro-inflammatory cytokines have also been found to produce peripheral nerve 

sensitization, leading to increased nociception (Bruehl, 2010). These molecules 

have also been found to stimulate osteoclasts, explaining the osteoporosis 

frequently observed in CRPS patients (Birklein & Schmelz, 2008). 

 Sensitization of peripheral nerves, which leads to persistent pain, is triggered 

by the initial tissue trauma and inflammation as explained above and is present early 

in CRPS symptomatology. After trauma, release of neuropeptides and inflammatory 

cytokines can increase background firing of nociceptors and decrease the firing 

threshold for mechanical and thermal stimuli, resulting in allodynia and hyperalgesia 

observed in CRPS patients (Bruehl, 2010; J. Cheng & Ji, 2008; Couture, 2001). 

Central sensitization is the increased excitability of nociceptive neurons in the spinal 

cord, often resulting from persistent noxious input after tissue damage or nerve 

injury (Bruehl, 2010). Sensitization of the central nociceptors is often controlled 

through neuropeptides and at N-methyl-D-aspartate (NMDA) receptors, leading to 

extremely amplified responses to noxious stimuli (hyperalgesia) as well as to non-

painful stimuli (allodynia) (Bruehl, 2010; Gracely, 1992; Gracely et al., 1992).  

 Reduced cutaneous innervation of the affected limb has also been observed 

in CRPS patients. Although CRPS-I has no clinical signs of nerve injury, Albrecht 

and colleagues observed a reduced density of nerve fibres (both C- and A-delta 

fibres) in the affect limbs of CRPS-I patients (Albrecht et al., 2006). No causative 

role in the development of further CRPS symptoms has been proven; however, 
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needle stick injury in rodents to distal nerves has resulted in the development of 

similar symptoms to CRPS-I patients (Albrecht et al., 2006; Siegel et al., 2007b).  

 Altered sympathetic nervous system (SNS) function has historically been 

linked to CRPS, as classical symptoms include ‘cool’ and ‘blue’ affected limbs, 

caused by vasoconstriction from SNS outflow. It is believed that pain in some CRPS 

cases is sympathetically maintained, meaning that there is excessive SNS outflow 

that results in pain. Sympathetic nerve blocks as a treatment option directly arose 

from this ideology. Studies in rodents have found that increased adrenergic 

receptors are expressed on nociceptive nerve fibres after trauma, perhaps 

explaining why nociceptive signals are triggered (Janig & Baron, 2002). The receptor 

expression may be linked to sympatho-afferent coupling, which results in 

sympathetic nerve activity stimulating these receptors on nociceptive fibres. Afferent 

nociceptive fibres become sensitized to adrenergic excitation, leading to increased 

firing in the presence of sympathetic outflow or circulating catecholamines. (Arnold & 

Delbos, 2003; Baron & Maier, 1996; Harden et al., 1994; H. A. Kurvers, 1998). The 

persistent activation leads to sensitization of the central nervous system as well.  

 Hypofunction of the SNS directly after injury is believed to upregulate the 

expression of peripheral catecholaminergic receptors, resulting in supersensitivity to 

circulating catecholamines, causing vasoconstriction (Birklein et al., 1998; Harden et 

al., 1994; H. Kurvers et al., 1998). Despite a lower level of catecholamines in the 

affected limb of CRPS patients, vasoconstriction is observed; this is probably the 

result of sensitization of peripheral adrenergic receptors during the acute phase of 

CRPS (Bruehl, 2010). Therefore, vasoconstriction may still occur even with 
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decreased local sympathetic outflow. The sensitization of adrenergic receptors also 

explains the exaggerated sweating and vasoconstriction observed after exposure to 

circulating catecholamines. Catecholamines can increase in the event of regular life 

stress or pain sensations. An odd vicious cycle may occur where catecholamine 

release leads to nociceptive input, maintaining an altered central process that 

generates more pain, and subsequently more catecholamine release (Wilson et al., 

2005). 

 There are limited studies examining CRPS using imaging techniques, 

however one review of neuroimaging literature has concluded that there is little 

evidence supporting the concept of a “pain network” in neuropathic pain syndromes 

(Moisset & Bouhassira, 2007). After acute pain experiments, researchers have been 

able to correlate activity in specific areas of the brain with various experimental 

stimuli inducing pain; however, brain activity as a result of clinical pain, more 

specifically chronic pain, is not well understood and does not correlate well with the 

“pain network” or “pain matrix” characterized after inducing experimental pain. Also, 

there is no evidence for a consistent brain activation pattern associated with 

allodynia. All of this considered, there have been several studies of CRPS using 

neuroimaging techniques that observe one consistent brain alteration: a 

reorganization of the somatotopic map. More specifically, the alteration is a 

reduction in the size of the representation of the affected limb in the somatosensory 

cortex (Juottonen et al., 2002; Maihofner et al., 2003). The degree of this brain 

plasticity has been directly correlated to the level of hyperalgesia, as well as CRPS 

pain intensity (Bruehl, 2010; Maihofner et al., 2003). Somatotopic reorganization in 
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CRPS patients has also been linked to impaired sensory perception, like the ability 

to discriminate between two-point tactile stimulation. Although it is not known when 

in CRPS development the reduced limb representation occurs in the brain, these 

findings have clinical importance and reflect the multifaceted nature of CRPS. 

 Genetic factors have been suggested to play a role in CRPS. Small sample 

studies have correlated CRPS development with a familial link. Onset of CRPS in 

siblings of CRPS patients occurs 3-times as often as non-familial cases (de Rooij et 

al., 2009). Genes involved with major histocompatibility complex encoding the 

human leukocyte antigen (HLA) molecule, and genes involved in inflammation (like a 

TNF-alpha promoter gene) have been thought to play a role in CRPS development 

(Vaneker et al., 2005). A polymorphism of the TNF-alpha promoter gene has been 

suggested to increase TNF-alpha levels, perhaps contributing to the exaggerated 

inflammatory response observed in CRPS patients. The hypothesis that genetic 

factors play a role in CRPS development is still being assessed, and no study has 

provided evidence from a large sample size to link the two. 

 A psychological cause for the development of CRPS has been hypothesized 

since the syndrome was formally recognized; today, some still continue to hold this 

idea (Ochoa & Verdugo, 1995). The literature currently holds very few strong 

prospective studies examining this hypothesis, although theoretically it is possible 

that psychophysiological mechanisms may contribute to the development of CRPS 

(Bruehl, 2010). However, psychogenic factors alone are not sufficient to produce the 

signs of CRPS. One study by Harden et al (2003) found that higher anxiety levels 

before total knee arthroplasty surgery were associated with a greater likelihood of 
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being diagnosed with CRPS by 1-month post-procedure (Harden et al., 2003). This 

may be related to the increase in catecholamine activity observed during 

psychological distress (Charney et al., 1990; Harden et al., 2004), potentially 

contributing to the adrenergic mechanisms involved in CRPS (Bruehl, 2010). 

Although there are theoretical links and a few prospective studies that suggest 

psychological factors impact on the development of CRPS, further prospective work 

is required to provide any empirical evidence.  

 No empirical studies have been performed evaluating the interactions 

between many of the pathophysiological mechanisms described above; however, 

Bruehl (2010) described a speculative model of how these mechanisms may come 

together in CRPS development and maintenance (Bruehl, 2010). His model is 

illustrated in Figure 1.1. CRPS is clearly multifaceted in its pathophysiologic 

mechanisms, and further studies are required to comprehensively evaluate the 

contribution of each mechanism to CRPS signs and symptoms. Considering that 

mechanism-based treatment is a goal in CRPS therapy, our lack of understanding 

the pathophysiology is detrimental not only to patients and the healthcare system, 

but arguably also to our economy, since many CRPS patients are unable to work. 

Further research into identifying pathophysiologic mechanisms may eventually 

permit the development of effective clinical treatment options and, perhaps, a “cure”.  
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Figure 1.1. Speculative contributions of pathophysiologic mechanisms in CRPS 
 
  Adapted from Bruehl 2010. 
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1.6 ANIMAL MODELS OF CRPS-I 
  

Limited in number, there have been several attempts to model CRPS-I in 

small animals. Compared with CRPS-II animal models, which have been well 

characterized through the use of nerve injury, the key to developing a CRPS-I 

animal model has been the induction of neuropathic-like pain without initiating a 

major nerve injury. 

 One of the first animal models describing CRPS-I symptomatology was 

developed by van der Laan et al (van der Laan et al., 1997). It involved the 

administration of a free-radical donor called tert-butyl-hyperperoxide into the femoral 

artery of conscious rats for 24 hours. The result was mechanical allodynia, lasting for 

at least 4 weeks. The authors hypothesized that free-radical application triggered a 

sensitization of both peripheral nerves and central processing and subsequently, the 

hyperalgesia and allodynia (van der Laan et al., 1997). Plasma extravasation and 

significant inflammatory signs (redness, increased temperature and edema) were 

also observed. After treatment with a free-radical scavenger before and after injury, 

the authors found significantly altered effects. While this model presented a very 

interesting attempt at modelling CRPS-I, no further studies have been done. 

 Another model, developed in 1998 by Vatine et al, used electrical stimulation 

of the sciatic nerve to initiate hyperalgesia and allodynia (Vatine et al., 1998). The 

authors applied a 0.5 Hz and 8mA electrical stimulation to the sciatic nerve 

supramaximally for 10 minutes and found that animals developed significant thermal 

hyperalgesia, as well as some cold and mechanical allodynia symptoms. They 

hypothesized that sensory changes were due to sensitization of the nerve or its 
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central connections, and not a nerve injury. Symptoms normally observed in CRPS-I 

patients, like swelling, redness and dystrophy, were not observed, thus no follow-up 

studies were conducted. 

 Inducing signs of mechanical allodynia, ischemia and inflammation, Gradl et 

al (2005) developed a CRPS-I animal model initiated by a controlled-impact soft-

tissue injury and intra-arterial infusion of inflammatory mediators (Gradl et al., 2005). 

The authors found that mechanical allodynia and local inflammatory effects were 

triggered after intra-arterial infusion of Substance P for 24 hours. This model 

presents an interesting method for initiating CRPS-I-like symptoms; however, 

behavioural observations were only followed for four days post-injury and there was 

no evidence of hyperalgesia or spontaneous pain behaviours. 

A study by Oaklander et al (2006) showed evidence for minor nerve injury in 

CRPS-I patients, suggesting that minor nerve injury may induce CRPS 

symptomatology (Oaklander et al., 2006). Complementing these findings, Siegel et 

al (2007) developed a novel model of CRPS-I by initiating a minor nerve injury of the 

tibial or sural nerve using needle puncture (Siegel et al., 2007a). After nerve injury, 

30-50% of rats developed mechanical allodynia that lasted 14-days post-injury, with 

mechanical hyperalgesia and cold allodynia also evident in some rats. Interestingly, 

there was no correlation between sensory changes and needle size used to initiate 

injury, and there was no difference in sensory changes between tibial or sural minor 

nerve injuries.  

 Perhaps a more clinically relevant model that those listed above, Guo et al 

(2004) induced a number of CRPS-I signs and symptoms after initiating a rat tibial 
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fracture and casting for four weeks (Guo et al., 2004). Around 31% of CRPS cases 

may indeed by the result of distal tibial fractures (Sarangi et al., 1993). After fracture 

and casting, animals developed mechanical allodynia that lasted 16 weeks, as well 

as edema and hyperthermia. Increased cytokines in the hind paw skin and 

decreased mineral bone density was also observed. After glucocorticoid treatment, 

edema and hyperthermia were attenuated; however, mechanical allodynia wasn’t 

affected. After application of a neurokinin-1 (NK-1) antagonist and soluble TNF-

alpha receptor, mechanical allodynia was reversed, suggesting that Substance P 

and TNF-alpha may play important roles in CRPS-I symptomatology.  

 The above-mentioned rat models each possess some features similar to 

CRPS symptoms. As mentioned by Wilson and colleagues (2005), there is a need 

for validation of existing standards and the generation of new models that can 

recapitulate CRPS’s unique features (Wilson et al., 2005). Each animal model briefly 

explained above lacks in representing most symptoms of CRPS. Thus, a chronic 

post-ischemia pain (CPIP) model developed by Coderre et al (2004) through 

ischemia-reperfusion injury may represent the literature’s best option for the study of 

CRPS-I (Coderre et al., 2004). 

 
1.6.1 CPIP Model 
 

Coderre et al (2004) was able to produce a neuropathic pain-like syndrome in 

rats after initiating a reperfusion injury due to prolonged hindpaw ischemia. In this 

model, anesthetised rats were subjected to complete ischemia of one hindpaw, 

through use of a tight fitting ring, for 3 hours. Hyperalgesia to noxious mechanical 

stimuli and cold, as well as mechanical allodynia were evident and lasted for at least 
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four weeks post injury in most animals. Spontaneous pain behaviours, such as 

licking, shaking and favouring of the hindpaw were also observed. Spread of 

hyperalgesia and allodynia to the contralateral limb were also observed, similar to 

the spread of symptoms in CRPS-I patients. In addition to sensory changes, rats 

exhibited hyperemia and edema for several hours post-injury, all without ischemia-

induced damage to the tibial nerve (Coderre et al., 2004). 

 CPIP presents a good tool for CRPS study as it displays several symptoms 

that are observed in CRPS patients (Janig & Baron, 2002; van der Laan et al., 

1998). Considering CRPS is most common after fracture, sprain, crush injury and 

surgery (i.e physical injury), this model is clinically relevant as it induces symptoms 

through physical injury: ischemia-reperfusion. This model has been used several 

times in the literature in order to assess the effect of different analgesic/anti-allodynic 

treatments (Laferriere et al,. 2014; Nahm et al., 2014; Kwak et al., 2011; de Mos et 

al., 2009). 

 Coderre and colleagues propose that many cases of CRPS-I are the result of 

microcirculatory abnormalities following IR and persistent inflammation from injury. 

Ischemia-reperfusion injury and inflammation can lead to a persistent state of 

reduced perfusion and/or reduced oxygenation of tissue, which is likely involved in 

the sensitization and activation of afferent innervation of the affected tissue (Coderre 

et al., 2004). This activation and sensitization of muscle nociceptors would result in 

deep, persistent pain, and can lead to the central sensitization that contributes to 

mechanical allodynia and hyperalgesia. This means that chronic sensory 
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disturbances present in CRPS-I patients may be strongly linked to the inflammatory 

changes and microvascular deficits occurring after ischemia-reperfusion injury. 

 While CPIP provides evidence for the development of inflammatory and pain 

symptoms after ischemia-reperfusion injury similar to CRPS-I, it would benefit from 

functional analyses before and after injury, considering CRPS-I results in significant 

functional deficits and behavioural changes in patients. Additionally, it may also 

provide a proper means for the testing of other potential therapeutics. 

 

1.7 HEME OXYGENASE 

It may surprise many, but carbon monoxide (CO) – the so-called “silent killer” 

gas – is endogenously produced in the body via the heme oxygenase (HO) system 

during heme metabolism (Bauer et al., 2008). As displayed in Figure 1.2, heme from 

hemoglobin is converted to biliverdin by HO enzyme, resulting in the formation of CO 

and ferrous iron (Fe2+) byproducts (Kikuchi et al., 2005). Biliverdin is then quickly 

converted to bilirubin through the biliverdin reducatase. 

 Heme oxygenase is present is three isoforms: HO-1, HO-2 and HO-3. HO-1, 

which is in high abundance in the liver, spleen, vascular endothelial cells and 

smooth muscle, is inducible in response to oxidative stress, hypoxia, heavy metals 

and cytokines (Ryter & Otterbein, 2004; Ryter et al., 2002). HO-2 is constitutively 

found and expressed under homeostatic conditions; it is found primarily in neuronal 

cells, liver, heart, vascular endothelial cells and smooth muscle tissue (Maines, 

1997). The function of HO-3 is not well understood. 
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The HO system has often been associated with cytoprotective functions. The 

anti-oxidant properties are evident in all byproducts of this system (Motterlini & 

Foresti, 2014; Ryter et al., 2002). Both biliverdin and bilirubin have been found to be 

potent scavengers of peroxyl radicals, as well as inhibiting the effect of other 

mutagens (T. W. Wu et al., 1991). Ferrous iron, a byproduct of heme breakdown, 

has also been found to reduce the formation of iron free radicals, contributing to the 

cytoprotective effect of HO.  Last, but definitely not least, CO is often regarded as 

the most important player in the action of HO (Maines, 1997; Motterlini et al., 1998; 

Otterbein et al., 1999). CO has been shown to be effective in diminishing the 

severity of microvascular dysfunction after ischemia, as well as effective in reducing 

inflammation and cell injury.  
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Figure 1.2. Heme catabolism: conversion of heme to bilirubin through heme 

oxygenase and biliverdin reductase, with carbon monoxide and iron as 

byproducts. 
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1.7.1 Carbon Monoxide 

  At normal conditions, CO exists as a colourless, tasteless and odourless gas 

that is often the product of incomplete combustion (Varon et al., 1999). Currently, the 

leading cause of death by poisoning in the United States is due to CO intoxication 

(Meredith & Vale, 1988; Varon et al., 1999). Upon CO exposure, many detrimental 

side effects may begin to appear, including headache, nausea, vomiting, impaired 

memory, confusion and dizziness. Death is said to occur when carboxyhemoglobin 

levels reach 50-80% (Burg, Ryter and Otterbein 2004).  

Although there seems to be a number of reasons why carbon monoxide 

should never be considered for use as a therapy, investigations into its uses in many 

unique settings are currently underway and are showing promise for its potential as 

a treatment in several conditions. 

In 2001, Fujita and colleagues showed the paradoxical rescue of ischemic 

lung tissue by CO in a HO-1 deficient murine model (Fujita et al., 2001). They found 

that inhaled CO was able to potentiate fibrinolysis by suppressing the induction of 

the gene encoding plasminogen activator inhibitor-1 in phagocytes. They concluded 

that suppression of this hypoxia-induced protein was the result of action through 

soluble guanylate cyclase (Fujita et al., 2001). From this work, and several other 

from the late 1990’s and early 2000’s, the proposition of using CO in a clinical setting 

in the future has been garnering attention. 

  In 2008, a review by Foresti and colleagues outlined the promises and 

challenges associated with the use of CO in therapy. In examining inhaled CO, they 

found that there were indeed several studies showing remarkable results in the 
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treatment of inflammatory processes and cardiovascular disorders, in pre-clinical 

models; however, they could not ignore the inherent toxic effects CO can produce if 

uncontrolled amounts were delivered (Foresti et al., 2008). They concluded that 

administration of gaseous compounds in a clinical setting would come with many 

difficulties and potential complications; they suggested the use of carbon monoxide-

releasing molecules (CO-RMs) would provide a much more clinically applicable 

therapeutic option. 

1.7.1.1 Inhaled CO 
 

Exogenous application of CO through inhalation has been investigated in 

several studies and has been shown to have beneficial effects (Fujita et al., 2001; 

Mishra et al., 2006; Ott et al., 2005); however, CO toxicity is still a very serious and 

potential risk. CO binds haemoglobin at approximately 220 times the strength 

oxygen does (Motterlini, 2007). This significant difference in affinity poses potential 

risks of reducing the oxygen-carrying capacity, resulting in hypoxia, or the formation 

of carboxyhemoglobin (HbCO) molecules, resulting in CO-poisoning. Although the 

level of CO delivered through inhalation could be minimized so as to reduce the 

levels of HbCO, CO poisoning is poorly understood and cannot rely solely on HbCO 

levels as indication of toxicity (Foresti et al., 2008). HbCO levels, however, are still 

good markers to predict the amount of CO present in the body; literature states that 

a proportion of 15-20% HbCO is not detrimental and is the biological threshold for 

CO tolerance (Foresti et al., 2008). Beyond, or around, this biological threshold and 

co-mediated injury is likely to occur in most. 
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In examining the effect of inhaled CO on lung disease or injury, several 

studies have showed positive effect. Otterbein and colleagues (1999) found inhaled 

CO provided protection against hyperoxic lung injury; they were the first to suggest 

anti-inflammatory and anti-apoptotic actions of CO (Otterbein et al., 1999). Beneficial 

effects of inhaled CO were confirmed in models of allergen-induced asthma 

(Chapman et al., 2001), lung transplantation (Song et al., 2003), oxidative lung injury 

(Otterbein et al., 2003), and lung hypertension (Zuckerbraun et al., 2006). 

Interestingly, Clayton and colleagues (2001) challenged this positive view of CO 

effects in their study that showed no benefits after CO treatment (Clayton et al., 

2001).  

Inhaled CO has provided benefit in systemic inflammation and the 

cardiovascular system as well. In several in vitro and in vivo models, CO was able to 

reduce the production of inflammatory cytokines TNF-alpha and interleukins.  In a 

lung transplantation model, inhaled CO was able to prevent ischemia-reperfusion 

injury (Kohmoto et al., 2006). It was also found that administration of CO provided 

full protection even in the absence of HO-1 (Otterbein, 2002). 

Although inhaled CO provides remarkable benefits in several pre-clinical 

models, its administration in a clinical setting may be very limited. 

 

1.7.1.2 Carbon Monoxide-Releasing Molecules (CO-RMs) 

As a result of the potential risks associated with inhaled CO therapy, a novel 

class of transition metal carbonyl compounds have been developed, in order to 

deliver exogenous CO through an oral or injectable route (Foresti et al., 2008; 



	  

	  

44 

Motterlini et al., 2002; Motterlini, Mann, et al., 2005). Carbon monoxide-releasing 

molecules (CO-RMs), have the general chemical formula M(CO)xLy, whereby “M” is 

the transition metal, “x” the number of CO ligands and “y” the number of additional 

ligands (Santos-Silva et al., 2011). 

The first CO-RMs developed, CORM-1 and CORM-2, were lipid soluble, fast-

releasing compounds (Figure 1.3).  CORM-1 and CORM-2 both have half-lives 

equal to or less than one minute (Motterlini, Mann, et al., 2005). As a result of the 

need for solubility in solutions like DMSO or ethanol, these CO-RMs proved difficult 

to administer, as they are relatively inapplicable to biological solutions. Eventually, a 

water-soluble ruthenium-based CO-RM, CORM-3, was developed. 

CORM-3 (molecular formula Ru(CO)3Cl(glycinate), also a short half-life 

compound, is stable at physiological conditions (pH 7.4, 37oC, aqueous solution). 

With a half-life of approximately one minute, CORM-3 rapidly liberates CO through a 

ligand substitution reaction (Motterlini, Mann, et al., 2005). Both CORM-3 and a 

newer CO-RM called CORM-A1, are promising compounds for the use of CO-RMs 

in therapy (Motterlini, Sawle, et al., 2005). 

Newer CO-RMs have been developed as of late, such as CORM-368, 

CORM-401, CORM-371, CORM-409, and CORM-313; however, limited 

investigations have been completed in terms of their therapeutic properties. These 

newly synthesized CO-RMs are manganese-containing compounds (rather than 

ruthenium) and therefore may provide less risk as a potential drug. 
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Figure 1.3. Chemical structures of three carbon monoxide-releasing 

molecules (CO-RMs). Adapted from (Gullotta et al., 2012). 
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1.7.1.3 CORM-3 

 One of the key limitations of the first CO-RM molecules developed was its 

solubility. Lipid soluble molecules tend to be more difficult to administer clinically and 

are therefore less favourable. In order to confer solubility in aqueous solutions, 

biochemists were able to add a glycine amino acid molecule to the metallic carbonyl 

compound (Motterlini, Mann, et al., 2005). With this amino acid addition, the half-life 

of the compound remained similar to CORM-1 and -2 at about 1 minute, assuming in 

physiological solutions. Motterlini and colleagues were able to show positive results 

for CORM-3’s ability to release CO molecules upon administration in a rat model and 

provide beneficial vasodilation. By also showing that CORM-3 administration was 

safe up to a concentration of 500 µM, Motterlini was able to meet all of the criteria 

required for a potential clinical carrier for pharmaceutical carbon monoxide 

(Motterlini, Mann, et al., 2005).  

 CORM-3 has been used in both in vivo and in vitro modelling of several 

disorders: downregulation of inflammation, cardio-protective effects, anti-thrombotic 

effects, effects on hypertension, bactericidal effects, effects on intraocular pressure, 

nephrotoxicity, and pain. Evidence for beneficial effects of CORM-3 has been 

described by many authors (Bani-Hani et al., 2006; Desmard et al., 2009; Failli et al., 

2012; Hervera et al., 2012; Lawendy et al., 2014; Mizuguchi et al., 2009; Sato et al., 

2001; Sawle et al., 2005; Stagni et al., 2009; Tayem et al., 2006; Urquhart et al., 

2007; Varadi et al., 2007). 

 The mechanism(s) by which CORM-3 acts are still relatively unknown. Some 

scholars state that CORM-3 (and CO-RMs in general), may act differently than their 
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inhalational counterpart (Gullotta et al., 2012); however, based on the evidence that 

CO possesses beneficial functions in controlling vessel tone, apoptosis, cell 

proliferation, platelet aggregation, inflammation, neurotransmission and ion channel 

activation, most researchers agree that CO (including CORM-3-generated CO) act 

through several different signalling pathways (Alberto & Motterlini, 2007; Motterlini et 

al., 2003). Specifically, the effect of CO appears to be mediated by cyclic GMP 

(cGMP), which is part of a soluble guanylate cyclase signalling cascade (Failli et al., 

2012; Foresti et al., 2004; Fujita et al., 2001). Another pathway by which CORM-3 

has been stated to act is the mitogen-activated protein kinase (MAPK) (Chlopicki et 

al., 2006; Mishra et al., 2006; Zhang et al., 2003). While both the soluble guanylate 

cyclase and MAPK pathways are suggested to mediate CO action, other possible 

targets may include calcium-activated potassium channels, cytochrome P450 or the 

mitochondrial respiratory chain (Chlopicki et al., 2006). 

 

1.7.2  CO and Pain 

 Studies investigating CO and CO-RMs have been strongly suggesting their 

beneficial effects in multiple disorders; however, a question arises whether CO could 

have an effect on pain and/or sensory disorders. In 2012, Hervera and colleagues 

discovered that CORM-3-derived CO was able to reduce mechanical allodynia, as 

well as thermal hyperalgesia and allodynia in sciatic injury in mice. They suggested 

that CORM-3 might produce these effects through inhibition of nitric oxide (NO) 

pathways and synthesis, as well as through inhibition of microglial activation, 
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implicated in the initiation and maintenance of neuropathic pain (Hervera et al., 

2012; Watkins et al., 2001).  

 Several other studies have investigated the effects of CO in pain (Bijjem et 

al., 2013; Hervera, Gou, et al., 2013; Hervera, Leanez, et al., 2013; Negrete et al., 

2014); however, none have examined the effect of CO on functional behaviour. 

 

1.8 FUNCTIONAL TESTING AND CRPS 

The clinical presentation of CRPS is dominated by a combination of sensory 

and autonomic symptoms. However, mounting evidence indicates that many 

patients with CRPS suffer from some forms of motor dysfunction and movement 

disorders (Birklein et al., 2000; Schwartzman & Kerrigan, 1990; Veldman et al., 

1993). With the growing consensus being that movement disorders should be 

included in the diagnostic criteria of CRPS, functional analysis is an area in need of 

exploration. 

Functional analysis can be performed through several methods. In rodent 

models, however, there are two chief methods used to assess functional changes: 

(1) electrophysiological testing and (2) locomotor analysis. In electrophysiological 

testing, by using electrodes and isolated muscle, contraction amplitude and 

frequencies can be measured and analyzed in comparison with the afferent 

stimulation provided. These, however, do not reveal the true function of the limb. 

Locomotion, as a consequence of neurological stimulation, muscle 

contraction and coordination between limbs, is a better measure of function in all 

models. Several methods of locomotor analysis exist.  
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Open field locomotion, was initially developed to examine behaviour of 

rodents (Hall, 1934). It utilizes an open field apparatus to acquire locomotor 

information through the capture of images, or through the use of infrared photocells. 

Recently, open field locomotion analysis has begun to examine the use of infrared 

illumination for capturing data, rather than visible light, which could interfere with an 

animal’s behaviour (Aragao Rda et al., 2011). Although useful for examining some 

behavioural and locomotor changes in the rat, these open field locomotion methods 

are time-consuming and cannot measure some very important parameters of gait. 

Other methods of locomotor analysis include the paper paw print method, the 

electric grid method, as well as Cheng’s glass plate method (Afelt et al., 1983; Basso 

et al., 1995; H. Cheng et al., 1997; de Medinaceli et al., 1982). Each of these, 

however, has its own set of drawbacks and cannot provide a rapid and objective 

means to examining a large set of gait parameters.  

1.8.1 CatWalk™ Automated Gait Analysis 

 The CatWalk™ automated gait analysis system is a computerized functional 

assessment tool for rats and mice, rapidly and objectively quantifying many 

parameters of gait. The system has been validated in numerous animal models, 

including spinal cord injuries (Koopmans et al., 2005; Miyagi et al., 2013), allodynia 

(Gabriel et al., 2007; Vrinten & Hamers, 2003), sciatic nerve injury (Bozkurt et al., 

2008; Chiang et al., 2014) and arthritis (Angeby-Moller et al., 2008; Ferland et al., 

2011). 
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 This system uses a 1-metre long glass-floored walkway with a green light 

source attached, such that the light is completely internally reflected in the glass. 

Once a paw makes contact with the glass, light escapes and scatters; this can be 

detected by a digital video camera fixed below. After videos are recorded, and each 

paw print has been classified, the CatWalk™ software calculates static and dynamic 

parameters of gait (Appendix A). 

 To ensure precision in acquiring data, rodents must be thoroughly trained 

before the commencement of baseline tests. Ideally, rodents should be able to run 

from one end of the walkway to the other in an un-interrupted fashion. Some factors, 

however, may significantly alter gait parameters. Gabriel et al (2007) demonstrated 

that a 40% body mass increase affects many gait parameters. It is therefore crucial 

to the experiment to ensure rodents stay within a bracket of body mass. 

 In comparison with von Frey mechanical stimulation testing – the gold 

standard test for measuring allodynia – Vrinten and Hamers (2003) demonstrated 

that the CatWalk™ provided similar results, suggesting gait analysis may be a more 

rapid, reproducible and objective tool for measuring allodynia.  

 

1.8.2 Functional Testing in CRPS Patients 

In examining and publicizing CRPS, pain is usually the main focus, and not 

the disabilities that come with it. The pain is often so debilitating that joints become 

locked, bones become osteoporotic and muscles become spastic and atrophy. 

Disuse of the affected limb is a common feature of CRPS and is often the result of 

patients trying to avoid potential painful stimuli. This can lead to skin changes (colour 
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and temperature) as well as hyperalgesia (Butler, 2001). By avoiding the use of the 

limb, patients may operant condition themselves, reinforced by the avoidance of 

actual pain and even the reduced anxiety of anticipated pain. This would result in the 

prevention of de-sensitization as well as the elimination of any tactile or 

proprioceptive input that may help restore central signal processing of the limb (M. 

Stanton-Hicks et al., 1998; H. K. Watson & Carlson, 1987). Disuse may also result in 

a lack of natural blood pumping from limb musculature, perhaps resulting in an 

accumulation of catecholamines or tachykinin that could further exacerbate CRPS 

symptoms (Drummond et al., 2001; Weber et al., 2001).  

  As a result, Wilfrid Janig proposed several research directions towards 

understanding the functional deficits associated with CRPS (Wilson et al., 2005). He 

suggested the generation of new models that recapitulate the syndrome’s unique 

features. The CPIP model mentioned earlier does indeed present several features 

observed in CRPS patients; however, no study has been found to examine the 

deficits accumulated through functional testing modalities like gait analysis. 
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1.9 AIM OF THIS THESIS 

Despite the breadth of work dedicated to understanding CRPS-I, there are 

still several gaps in knowledge, and no cemented conclusion as to specific cause(s). 

With recent studies observing microvascular deficits in CRPS-I patients (Bellingham 

et al., 2014), the development of the CPIP model by Coderre et al has provided a 

suitable avenue for the investigation of both pathophysiology and treatment options. 

However, as suggested by Wilson et al (Wilson et al., 2005), future directions in the 

study of this syndrome must be geared towards validation of existing models of 

CRPS and generation of new models that recapitulate the unique features of this 

syndrome; changes in gait and motor abnormalities are certainly unique features 

that need to be assessed. 

As a modulator of several signalling pathways that affect vascular properties, 

CORM-3 may be a good potential treatment for vascular deficit disorders. With the 

understanding that microvascular dysfunction may play an important role in the 

development and maintenance of CRPS-I, the investigation into the use of CORM-3 

as treatment of CRPS-I is warranted.  

Therefore, the aim of this thesis was twofold: to examine the use of the 

CatWalk™ automated gait analysis system in quantifying functional changes 

following initiation of CRPS-like symptoms in the CPIP rodent model, and to 

examine the potential therapeutic use of CORM-3 in CPIP. 
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CHAPTER 2:  FUNCTIONAL ASSESSMENT OF ALLODYNIA IN A RAT 

MODEL OF COMPLEX REGIONAL PAIN SYNDROME TYPE-

1 USING AUTOMATED GAIT ANALYSIS 

 

2.1 INTRODUCTION 

Complex regional pain syndrome type-1 (CRPS-I) is a debilitating chronic 

pain condition, characterized by hyperalgesia and allodynia. Many studies suggest a 

major factor in the development and maintenance of CRPS-I may be inflammation 

and/or microcirculatory dysfunction (Albrecht et al., 2006; Bellingham et al., 2014; 

Coderre & Bennett, 2010), while others suggest it to be a disease of the central 

nervous system (Janig & Baron, 2002). Most clinicians however, prefer to believe 

the syndrome to be multifactorial and is not driven by a single mechanism of injury 

(Janig & Baron, 2006). Both of types I and II of CRPS develop after trauma and 

present similar symptoms; however, CRPS-I occurs without nerve injury and the 

severity of its symptoms are disproportionate to the severity of the trauma (Janig & 

Baron, 2006). 

A rodent model of CRPS-I, called chronic post-ischemia pain (CPIP), 

developed by Coderre et al, induces microcirculatory dysfunction through ischemia-

reperfusion injury (Coderre et al., 2004). Consequent allodynia (mechanical and 

cold), edema, hyperemia and hyperalgesia were observed to mimic those in patients 

suffering from CRPS (Coderre et al., 2004; Harden et al., 2013; Janig & Baron, 

2002; van der Laan et al., 1998; van der Laan et al., 1999). However, no objective 

assessment of function was included in this model. 
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Automated gait analysis has been proposed to be a quality indicator of 

behaviour and mechanical allodynia in many rodent pain and/or injury models 

(CatWalk™).  This computer-assisted technique allows for rapid quantification of 

both static paw and dynamic inter-limb gait parameters (Angeby-Moller et al., 2008; 

Bozkurt et al., 2008; Ferland et al., 2011; Gabriel et al., 2007; Gabriel et al., 2009; 

Hamers et al., 2001; Huehnchen et al., 2013; Koopmans et al., 2005; Miyagi et al., 

2013; Sakuma et al., 2013; Vogelaar et al., 2004; Vrinten & Hamers, 2003). 

Depending upon the model used, automated gait analysis has varying results as a 

measure of allodynia.  In some chronic pain models (Gabriel et al., 2009), the 

CatWalk™ system detected allodynia at different time points compared to standard 

assessments of mechanical allodynia (the von Frey test, (Chaplan et al., 1994)), and 

may also have understated measures of allodynia (Gabriel et al., 2009). 

Alternatively, a study using carrageenan injections to induce neuropathic pain 

provided significant correlation between CatWalk™ parameters and von Frey data 

(Gabriel et al., 2007). Analysis of gait changes using the CatWalk™ system as a 

measure of mechanical allodynia may be dependent on the model of chronic pain 

being used (Gabriel et al., 2009). At this time, to our knowledge, there have been no 

reports that examine the usefulness of the gait analysis to assess allodynia in the 

CPIP model of CRPS-I. In addition, in keeping with the more stringent diagnostic 

criteria for research purposes, functional tests should be required in many models. 

Therefore, the purpose of this study was to investigate whether an automated 

gait analysis system, the Catwalk™, would provide a more thorough and complete 

assessment of allodynia in the CPIP model of CRPS-I.  
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2.2 METHODS 

2.2.1 Animal Description and Care 

The experimental protocol was approved by the Canadian Council on Animal 

Care at the University of Western Ontario. Animals were cared for in accordance to 

the guidelines of the Committee for Research and Ethical Issues of the International 

Association for the Study of Pain (IASP). All animals were housed in pairs with 

access to food and water ad libitum. 

Male Wistar rats (185 – 260 g) were anesthetized with inhalational isoflurane 

(5% induction, 2% maintenance) in 1:1 oxygen/nitrogen gas mixture. Body 

temperature was measured using a rectal probe thermometer and maintained at 37 

degrees Celsius using a heating lamp. CPIP was generated by ischemia-reperfusion 

(IR) injury of the right hind limb, as per Coderre et al (Coderre et al., 2004). Briefly, 

ischemia was induced by application of tourniquet (#4 silk, Johnson and Johnson) 

around the distal portion of the right hind limb, completely occluding the blood flow 

(i.e. no-flow ischemia), and maintained for 3 hours. Reperfusion was initiated by a 

tourniquet release. Tourniquet placement was at a standardized distance distal to 

the tibial tuberosity of the distal portion of the hind limb, differing slightly from 

tourniquet placement by Coderre and colleagues. 

In a separate group of animals, the tourniquet was applied just proximal to the 

knee joint (proximal IR group), so as to induce ischemia over the entire lower aspect 

of the limb. The position of each tourniquet was standardized to minimize variation in 

injury. 
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2.2.2 Experimental Groups 

Rats were randomized into three groups: CPIP (n=9), proximal IR (n=5) and 

sham (n=8). Compared with the CPIP group, the proximal IR group differed in the 

location of where the ischemia-reperfusion injury was induced. Sham animals 

underwent all procedures as the CPIP and proximal IR groups, but the tourniquet 

was not tightened. 

 

2.2.3 Mechanical Allodynia Testing 

To assess mechanical allodynia, hindpaw withdrawal thresholds to von Frey 

filament stimulation were measured. Animals were placed on a raised, mesh-floored 

platform and covered with a transparent plastic box. Animals were left for a minimum 

of 5-10 minutes to allow for familiarization to the new environment before 

measurements were taken. The plantar surfaces of both right and left hind paws 

were stimulated by von Frey filaments with calibrated bending forces (grams) 

(Stoelting Co., Wood Dale, IL) in order to determine a 50% withdrawal response 

threshold, similar to the method developed by Chaplan et al (Chaplan et al., 1994). 

Filaments were applied 10 times each, in ascending strength (1.0 g to 15.0 g). 

Withdrawal thresholds were determined by a positive response observed a minimum 

of 5 times at a specific filament strength. Positive responses were recorded as a lift 

or lick. Withdrawal thresholds were measured pre-injury, as well as 5, 7, 8, 9, 10 and 

14 days post-injury. 
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2.2.4 Functional Analysis of Gait 

The CatWalkTM (Noldus Information System, Wageningen) is an automated 

gait analysis system that delivers a large collection of gait parameters, including paw 

print area, duty cycle, weight load, swing phase and step regularity index. Static gait 

parameters, including paw prints and weight load, as well as dynamic parameters 

like duty cycle, are automatically measured and calculated by the system software. 

Definitions of each parameter are listed in Table 2.1.  

The system consists of a glass plate platform illuminated with fluorescent 

tube; when contact is made with the glass, light is reflected downwards toward a 

high-definition camera, connected to a computer, where it is then interpreted by the 

accompanying software. 

In order to assess gait, animals were trained to walk the length of the glass 

plate platform end-to-end, prior to the induction of ischemia. A minimum of five days 

of training was conducted for each animal until each animal was competent at 

walking the length of the platform without interruption. General, dynamic and paw-

specific gait parameters were collected pre-injury, as well as 1, 5, 7, 8, 9, 10 and 14 

days post-injury. At least 3 runs, that were uninterrupted and 1-3 seconds in 

duration, were recorded for each trial.  

 

2.2.5 Statistical Analysis 

Using GraphPad Prism® software, repeated measures two-way analysis of 

variance (ANOVA) was performed to assess differences in gait parameters, as well 

as paw withdrawal thresholds, compared to baseline and control values.  
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Table 2.1.  CatWalk™ automated gait analysis tool parameters and 

definitions. Static and dynamic gait parameters were collected and 

assessed using the assisting software package. The parameters 

discussed in the results section were those showing the largest 

changes from baseline measurements. 

 

Static Gait 
Parameter Definition Dynamic Gait 

Parameter Definition 

Paw Print Area 

(mm2) 

Total area of glass plate 

in contact with paw during 

stance phase 

Duty Cycle 

 (%) 

Stance as a percentage 

of step cycle 

(=stance/step cycle) 

Paw Print Width 

(mm) 
Total width of paw print  

Step Cycle  

(s) 

Duration in seconds 

between two 

consecutive initial 

contacts of the same 

paw (stance + swing 

phases) 

Paw Print Length 

(mm) 
Total length of paw print 

Stance Phase 

Duration  

(s) 

Duration in seconds of 

contact of paw with 

glass plate 

Weight Load 

(a.u/pixel) 

Paw pressure is indicated 

by light intensity. Weight 

load is mean intensity 

(arbitrary units, a.u) per 

pixel 

Swing Phase 

Duration  

(s) 

Duration in seconds of 

no contact of paw with 

glass plate 

  

Step Regularity 

Index  

(%) 

Number of normal step 

sequence patterns 

(NSSP) relative to the 

total number of paw 

placements (PP) 

(=(NSSPx4)/PP x 100% 

  
Swing Speed  

(distance units/s) 

Speed of the paw 

during swing phase 
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Bonferroni post-tests were also performed. To determine if CatWalk™ parameters 

correlated with the gold standard paw withdrawal thresholds, Pearson correlation 

coefficients were calculated. A p<0.05 was considered significant. 

 

2.3 RESULTS 

2.3.1 CPIP And Proximal IR 

For almost the entire duration of ischemia, the right hind paw (ipsilateral) was 

observed as cold and cyanotic in all animals. Directly after the removal of the 

tourniquet, evidence of severe edema and hyperemia were observed. Rats 

displayed spontaneous pain behaviours, such as shaking, licking and lifting of the 

injured limb. In the CPIP group, by 14 days post-reperfusion injury, most animals 

displayed a slightly atrophied and less robust right hind limb when compared to the 

contralateral limb. Animals in the proximal IR group showed less substantial 

changes in spontaneous pain behaviours over the duration of the experiment. Sham 

animals displayed no spontaneous pain behaviours or changes in the appearance of 

the right hind limb. 

 

2.3.2 Mechanical Allodynia 

Ischemia-reperfusion injury led to the development of mechanical allodynia in 

both the CPIP and proximal IR groups, as demonstrated by decreased paw 

withdrawal thresholds of the ipsilateral limbs (Figure 2.1). In the CPIP group, by 7 

days post-reperfusion injury, paw withdrawal thresholds of the injured right hind limb 

decreased to 2.444 ± 0.689 g, from 13.889 ± 0.735 g at baseline (p<0.001).  
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Figure 2.1.  Paw withdrawal thresholds (PWT) of the ipsilateral/right hindpaw. 

PWTs were assessed using mechanical stimulation via von Frey 

filaments and analyzed via two-way repeated measures ANOVA. 

PWTs of the ipsilateral/right hindpaw showed significant differences in 

both CPIP and proximal IR groups; however, only the CPIP group 

displayed sustained differences over the entire time course. (* p<0.05 

from proximal IR group, † p<0.05 from baseline) Error bars shown 

represent the standard error of the mean (SEM). 
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The right hind limb displayed reduced paw withdrawal thresholds throughout the 

duration of examination. At 14 days post-reperfusion injury, paw withdrawal 

thresholds were still significantly lower than baseline values (5.556 ± 0.801 g, 

compared to 13.889 ± 0.735 g at baseline (p<0.05)). At 7 days post-reperfusion 

injury the contralateral limb also displayed a mild, though not significant, reduction in 

the paw withdrawal thresholds (12.444 ± 1.334 g in CPIP versus 13.889 ± 0.735 g at 

baseline, n.s.) (Figure 2.2). 

In the proximal IR group, ipsilateral paw withdrawal thresholds decreased 

from 15.00 ± 0.00 g at baseline to 6.00 ± 1.265 g after ischemia-reperfusion injury 

(p<0.05). Paw withdrawal thresholds of the contralateral limb did not significantly 

change from baseline, similar to the CPIP group. Withdrawal thresholds of the 

injured (ipsilateral) hind limb were restored, without intervention, to baseline levels 

by 14 days post-injury (Figure 2.2). 

Sham animals displayed no significant changes in paw withdrawal thresholds 

for the duration of the experiment (data not shown). 
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Figure 2.2.  Paw withdrawal thresholds (PWT) of the contralateral/left 

hindpaw. PWTs were assessed using mechanical stimulation via von 

Frey filaments and analyzed via two-way repeated measures ANOVA. 

No significant differences in paw withdrawal thresholds were observed 

in the contralateral/left hindpaw. Error bars shown represent the 

standard error of the mean (SEM). 
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2.3.3 Functional Analysis of Gait 

Automated gait analysis detected several alterations of gait parameters post-

reperfusion. Both static (paw print area, paw print width, paw print length and weight 

load) and dynamic (duty cycle, stance phase and swing cycle) parameters markedly 

changed by 24 hours post-reperfusion injury (Figures 2.3 to 2.7). Paw print area 

decreased from the baseline of 56.18 ± 8.38 mm2 in CPIP and 76.27 ± 18.65 mm2 in 

proximal IR group to 1.113 ± 0.77 mm2 and 4.834 ± 2.97 mm2, respectively, after 1 

day reperfusion injury (p<0.05) (Figure 2.3).  By 5 days post-injury, print area in the 

proximal IR group was restored back to baseline values. At 14 days post-injury, print 

area of the CPIP group was still significantly decreased, at 25.39 ± 5.305 mm2 

(p<0.05).  

Print length and width demonstrated very similar significant trends (Figures 

2.4 and 2.5). Using the Pearson correlation coefficient, all paw print parameters in 

the CPIP group displayed correlation with paw withdrawal threshold data (p<0.05). 

Correlation data is shown in Table 2.2. 

Duty cycle in the CPIP group decreased after injury from the baseline of 53.2 

± 2.1% to 6.8 ± 4.5% at 1 day post-injury (p<0.05) (Figure 2.6). The change in duty 

cycle was sustained throughout the course of the experiment (32.6 ± 4.2% at 14 

days post-injury, p<0.05). Correlation with paw withdrawal thresholds, using the 

Pearson correlation coefficient, was confirmed in the CPIP group (p<0.05).  
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Figure 2.3.  Paw print area of the right hindpaw (mm2) in CPIP, proximal IR 

and sham groups. Print area was calculated using the CatWalk 

system software and analyzed via two-way repeated measures 

ANOVA. CPIP animals show significant difference from sham group 

after ischemia-reperfusion injury for the duration of the experiment. 

Print area of proximal IR animals restore to baseline quickly after 

injury. († p<0.05 from proximal IR group, * p<0.05 from baseline) Error 

bars shown represent the standard error of the mean (SEM). 
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Figure 2.4.  Paw print length of the right hindpaw (mm). After ischemia-

reperfusion injury, CPIP animals demonstrated substantially lower print 

length than sham and proximal IR groups through the duration of 

testing. († p<0.05 from proximal IR group, * p<0.05 from baseline) Print 

area was calculated using the CatWalk system software and analyzed 

via two-way repeated measures ANOVA. Error bars shown represent 

the standard error of the mean (SEM). 
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Figure 2.5.  Paw print width of the right hindpaw (mm). Print width was 

markedly lower in CPIP animals after ischemia-reperfusion injury 

compared to proximal IR and sham animals. († p<0.05 from proximal 

IR group, * p<0.05 from baseline) Print width was calculated using the 

CatWalk system software and analyzed via two-way repeated 

measures ANOVA. Error bars shown represent the standard error of 

the mean (SEM). 

 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

5

10

15

20

proximal IR
CPIP

Sham

*
†

* * * * * * *
† † † † †

Days post-injury

P
ri

nt
 W

id
th

 (m
m

)



	  

	  

87 

 

 

 

Figure 2.6.  Changes in Duty Cycle (stance phase/swing phase + stance 

phase). Duty cycle was calculated using the CatWalk system software 

and analyzed via two-way repeated measures ANOVA. After injury, 

duty cycle in CPIP animals was significantly different from both 

proximal IR and sham animals, for the duration of the experiment. († 

p<0.05 from proximal IR group, * p<0.05 from baseline) Error bars 

shown represent the standard error of the mean (SEM). 
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Figure 2.7.  Swing speed of the right hindpaw. Swing speed was calculated 

using the CatWalk system software and analyzed via two-way 

repeated measures ANOVA. CPIP animals demonstrated a smaller 

swing speed than proximal IR and sham groups throughout 

experiment; however, swing speed at 14 days post-injury was not 

different from baseline speed in CPIP animals. († p<0.05 from proximal 

IR group, * p<0.05 from baseline) Error bars shown represent the 

standard error of the mean (SEM). 
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Table 2.2. Correlation coefficients comparing gait parameters and 

mechanical stimulation. Using the Pearson Correlation statistical test 

in our GraphPad Prism software, we compared gait parameters with 

the gold standard mechanical stimulation measurements for mechanic 

allodynia. 

 

 

 

Gait Parameters p-value Correlation Coeffecient 

Duty Cycle 0.0019 0.8760 

Paw Print Area 0.0001 0.9609 

Paw Print Length 0.0015 0.8817 

Paw Print Width 0.0011 0.9002 

Step Regularity Index 0.2320 0.2700 

Swing Speed 0.0654 0.5253 
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Step regularity index decreased from 89.8 ± 4.3% at baseline to 11.7 ± 7.8% 

(p<0.05) at 1 day after injury, however it was restored to baseline without 

intervention by 9 days post-injury. At 14 days post-injury, regularity index returned to 

89.3 ± 4.5%. No correlation was observed using the Pearson correlation coefficient. 

Swing speed decreased from the pre-injury value of 1071.0 ± 82.7 mm/s to 

215.1 ± 180.3 mm/s at 1 day after injury, (p<0.05), and increased back to 928.6 

mm/s ± 77.39 by 14 days post-injury in the CPIP group. In the proximal IR group, the 

swing speed decreased from the pre-injury value of 1242.6 ± 101.3 mm/s to 242.5 ± 

159.6 mm/s at 1 day after injury and returned to 1556.2 ± 73.8 mm/s at 14 days 

post-injury. Although significantly different from proximal IR and sham groups at 14 

days post-injury, swing speed in CPIP animals was not markedly different from its 

baseline value. Swing speed showed no correlation with von Frey data, as well. 

(Figure 2.7) 

Sham animals showed no significant changes in gait parameters throughout 

the entire length of the experiment. 

 

2.4 DISCUSSION 

In the present study, we demonstrated the use of automated gait analysis 

(CatWalk™) to rapidly and objectively quantify allodynia in the CPIP model of 

CRPS-I. Four gait parameters proved to display results correlating with the gold 

standard von Frey mechanical stimulation tests, which were paw length, width, and 

area as well as duty cycle. Through successful validation with gait analysis, we have 
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provided a more objective, practical and perhaps more clinically relevant model of 

CRPS-I.  

Sensitivity was substantially heightened and spontaneous pain behaviours 

were observed after injury, resulting in symptoms similar to those presented in 

patients with CRPS-I (Coderre et al., 2004). After comparing the distal tourniquet 

placement to one placed proximal to the knee joint, paw withdrawal thresholds 

confirmed that tourniquet placement in the CPIP animals produced chronic 

mechanical allodynia symptoms, whereas proximal tourniquet placement resulted in 

paw withdrawal thresholds returning to baseline levels by 14 days post-injury. 

Although sensitivity did indeed increase with IR injury in the proximal IR group, these 

symptoms were not long lasting. This suggests the CPIP model is more 

representative of chronic pain symptoms of CRPS-I compared to the proximal IR 

group. The proximal IR group was added in order to both examine chronic pain 

symptoms using a different tourniquet placement, as well as to assess muscular 

tissue injury in the rodent after ischemia-reperfusion injury; however, our results 

indicate the proximal IR group does not display a chronic pain response.  

Mechanical stimulation using von Frey filaments demonstrated a persistent 

increase in sensitivity and symptoms of allodynia in the CPIP group. Correlating with 

results from the development of the CPIP model (Coderre et al., 2004), paw 

withdrawal threshold was significantly lower than that of the pre-injury. Although the 

O-ring band used to initiate ischemia in the original model was not used, our use of a 

ligature (#4 silk, Johnson & Johnson) showed similar results, suggesting that the 

same tension was applied.  
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Confirmation of the CPIP model through mechanical stimulation testing 

(Coderre et al., 2004) allowed for comparison with and examination of gait analysis, 

through the automated CatWalkTM method. After sensitivity and gait analysis, some 

correlation in mechanical allodynia measurements was observed. The decrease and 

sustainment of paw withdrawal thresholds observed after ischemia-reperfusion injury 

confirm the CPIP model produces mechanical allodynia; changes in gait parameters, 

correlating well with changes in paw withdrawal thresholds, also suggest that 

animals experienced allodynia. Meanwhile, the proximal IR animals did not display 

persistent or correlating gait parameter changes, which again suggests that the 

CPIP model best displays CRPS-I symptoms. This is important as it demonstrates 

that the automated gait system is indeed assessing changes as a result of allodynia 

rather than muscle injury, which would likely be greater in those animals undergoing 

IR injury with a proximally placed tourniquet. In the proximal IR group though, 

standard error is greater in both mechanical stimulation and gait analyses, perhaps 

suggesting more variable occlusion of blood flow and less standardization of injury.  

Gait parameters showed significant changes through the 14-day testing 

period. At one day post-injury, all gait parameters were significantly different than 

those at baseline (i.e. pre-injury); however, only duty cycle and paw print parameters 

(area, length and width) maintained the significant changes throughout the duration 

of the experiment. The time of contact of one paw in one single stepcycle, defined as 

the stance phase duration, can be directly related to pain perception in the rat; 

therefore, duty cycle, which is the ratio of stance phase duration to stepcycle, has 

been suggested to be the gait parameter most indicative of mechanical allodynia 
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(Gabriel et al., 2009). Static paw print parameters such as area, width, and length, 

also provide indication of potential pain symptoms, as it would be reasonable to 

expect a reduction in paw use when said paw is experiencing pain symptoms. 

Weight load did not show chronic changes in contrast to other gait parameters. This 

suggests that even with similar loads placed on the limb, the limb use is functionally 

different in the CPIP animals. 

Slight differences in gait parameter values between the control and sham 

group were observed, especially in static paw print parameters. Sham animals were 

slightly lesser in mass (and as such, smaller in size) upon commencement of testing 

which may explain these findings. No significant differences were observed in 

dynamic gait parameters. This was expected, even with the slight differences in 

mass between the groups, as it has been shown that a 40% variation in mass is 

required for significant difference in paw print intensity to be observed (Gabriel et al., 

2009). 

Although gait parameter changes and von Frey tests differed in their 

assessment of mechanical allodynia, these may be explained through the 

mechanisms underlying the responses observed. Reaction to von Frey filament 

stimulation involves minimal central processing (Gabriel et al., 2009), whereas gait is 

a centrally controlled daily activity that can be affected by several factors, including 

pain (Jordan et al., 2008; MacKay-Lyons, 2002; Pearson, 2000). Since human 

chronic pain conditions are also centrally processed, gait is relevant to human 

experiences and therefore its analysis may be more clinically applicable. Pain and 

allodynia are obvious factors that impact gait, but behaviours changes and 
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neurological and/or muscular tissue damage definitely have a role as well. In 

relevant literature, reversible nerve damage is usually not evident until at least 3-4 

hours of ischemia, and in the CPIP model publication by Coderre and colleagues, no 

nerve injury was observed through light microscopy (Coderre et al., 2004) Although 

muscle tissue damage may impact our gait measurements, our correlation data 

suggests that the gait changes were significantly correlated with changes in 

mechanical allodynia, according to our gold standard mechanical stimulation tests. 

These markedly correlated changes are shown in Figure 2.2.   

Validation of the CPIP model provides additional support for the notion of 

microcirculatory dysfunction and inflammation may be part of the pathophysiology 

driving CRPS-I signs and symptoms. A recent clinical study by Bellingham et al 

observed a decrease in deep tissue oxygen saturation in CRPS-I patients using near 

infrared spectroscopy, supporting the theory that deep tissue hypoxia is part of the 

pathogenesis behind CRPS-I, providing more validity to an 

inflammation/microvasculature dysfunction-based CRPS-I model (Bellingham et al., 

2014). 

As stated by Gabriel et al, the use of the CatWalk™ method for assessment 

of mechanical allodynia needs to be carefully restricted to specific injury models 

(Gabriel et al., 2009). This study, through comparison of von Frey test and 

CatWalkTM analysis, suggests that functional examination of gait provides a powerful 

additional tool for the study of mechanical allodynia in the CPIP model of CRPS-I. 

Supplementation with the CatWalk™ system provides an additional significant 

measure of function and can provide a more robust account of the pain experience 
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in the rodent. Ultimately, comparing therapeutic interventions in the management of 

CRPS-I is currently very difficult; the addition of objective, practical and functional 

testing adds substantially to our ability to develop more effective therapies. 
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CHAPTER 3 
 

CARBON MONOXIDE REDUCES THE LEVEL OF ALLODYNIA IN A RODENT 
MODEL OF COMPLEX REGIONAL PAIN SYNDROME TYPE-1 
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CHAPTER 3:  Carbon Monoxide Reduces the Level of Allodynia in a 

Rodent Model of Complex Regional Pain Syndrome Type-1 

 

3.1 INTRODUCTION 
Complex regional pain syndrome type-1 (CRPS-I) is a clinical condition where 

disproportional symptoms of pain and mechanical allodynia are experienced after 

distal extremity trauma (Bellingham et al., 2014; Harden, 2010; Sandroni et al., 

1998; P. Wilson et al., 2005; P. R. Wilson, 2010). Sprains, crush injuries, surgery 

and fractures have all been known to lead to a CRPS-I diagnosis (Bean et al., 2014; 

Harden, 2010; Sandroni et al., 1998). 

Recently, studies by Coderre and colleagues have led to the development of 

a rodent model of CRPS-I, through initiation of the “slow-flow/no-reflow” 

phenomenon by ischemia-reperfusion (IR) injury, triggering chronic post-ischemia 

pain and allodynia, similar to those observed in patients suffering from CRPS-I. 

Studies suggest that the pain perceived by some CRPS-I patients may indeed be 

the result of I-R injury and the subsequent inflammation developed as a result of 

microcirculatory changes from the IR injury (Bellingham et al., 2014; Coderre & 

Bennett, 2010; Coderre et al., 2004).  Another recent study has demonstrated 

impaired tissue oxygen saturation in the hands of patients with CRPS-I, 

demonstrating that deep tissue hypoxia and microvascular dysfunction are involved 

in the pathogenesis (or at least maintenance) of CRPS-I (Bellingham et al., 2014). 

Lately, attention has been directed to the potential use of carbon monoxide 

(CO) in a clinical setting, despite the detrimental and deadly effects commonly 

associated with it. As a byproduct of the heme oxygenase (HO) system, CO is 
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endogenously produced at low doses and, along with HO-1, has been correlated to 

either the degree of injury/disease or increased survival in a variety of syndromes 

(Foresti et al., 2008).  

 Although the mechanisms of CO action are poorly understood, exogenous 

application through inhalation has been shown to elicit protection against multiple 

organ injury (MOI), inflammation, apoptosis, cell proliferation, vasoconstriction and 

hypertension (Chapman et al., 2001; Foresti et al., 2008; Fujita et al., 2001; Mishra 

et al., 2006; Otterbein et al., 1999; Song et al., 2003). However, CO application 

through inhalation is a clinically challenging therapy as carboxyhemoglobin (HbCO) 

levels increase quickly, possibly leading to hypoxia and further co-mediated injury 

(Clayton et al., 2001). Recent developments have led to the production of CO-

releasing molecule-3 (CORM-3), which is a water soluble, quick-releasing transition 

metal carbonyl capable of efficiently releasing CO in the bloodstream (Foresti et al., 

2008; Foresti et al., 2004; Yabluchanskiy et al., 2012). Compared with CO 

inhalation, CORM-3 application does not significantly alter HbCO levels (Foresti et 

al., 2008; Foresti et al., 2004; Yabluchanskiy et al., 2012).  

The anti-inflammatory and vasodilatory actions of CO are perhaps the most 

intriguing and potentially useful. Previous studies have shown that the inflammatory 

reaction after IR injury is reduced after application of CORM-3 (Lawendy et al., 

2014).  Inflammation and oxidative stress resulting from ischemic conditions appear 

to be the underlying factors for several chronic pathologies. Recent work suggests 

that microvascular dysfunction and inflammation may be factors contributing to the 

development of one such pathology, CRPS-I (Bruehl, 2010). 
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Previously, in order to investigate symptoms of CRPS-I, mechanical allodynia 

has been assessed using mechanical stimulation via the von Frey method. This, 

however, does not test the function of the affected limb. The ‘CatWalkTM’ automated 

gait analysis system rapidly and objectively quantifies several parameters of gait and 

has been shown to be a quality supplement to the von Frey method in some injury 

models (Angeby-Moller et al., 2008; Bozkurt et al., 2008; Chiang et al., 2014; 

Ferland et al., 2011; Gabriel et al., 2007; Sakuma et al., 2013; Vrinten & Hamers, 

2003).  

Through the use of a previously validated model of CRPS-I, the purpose of 

this study was to examine the effects of CORM-3 on the symptoms of CRPS-I, 

specifically on symptoms of allodynia. 

 
3.2 METHODS 

3.2.1 Animal Description and Care 

The experimental protocol was approved by the Canadian Council on Animal 

Care at the University of Western Ontario. Animals were cared for in accordance to 

the guidelines of the Committee for Research and Ethical Issues of the International 

Association for the Study of Pain (IASP). All animals were housed in pairs with 

access to food and water ad libitum. 

Male Wistar rats (185-260g) were anesthetized with inhalational isoflurane 

(5% induction, 2% maintenance) in a 1:1 oxygen/nitrogen gas mixture.  

Chronic post-ischemia pain (CPIP) was generated by ischemia-reperfusion 

(IR) injury of the right hindpaw, as per Coderre et al (Coderre et al., 2004). A 

tourniquet (#4 silk, Johnson and Johnson) was applied to the distal portion of the 
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right hind limb in each animal, completely occluding the blood flow. Tourniquet 

application was maintained for 3 hours. The position of each tourniquet was 

standardized so as to minimize variation in injury, as stated above in Chapter 2. 

Reperfusion was then initiated by release of the tourniquet.  

 

3.2.2 CORM-3 

 CORM-3 has been synthesized by us, in accordance with previously 

published methods (Lawendy et al., 2014; Motterlini & Otterbein, 2010). CORM-3, or 

its inactive counterpart, iCORM-3, were administered to animals at a dose of 

10mg/kg, given IP. 

 
3.2.3 Experimental Groups 

Twenty male Wistar rats were randomized into two groups: control group, 

treated with iCORM-3 (n=9), and an experimental group, treated with CORM-3 

(n=11). Both CORM-3 and iCORM-3 groups were administered their respective 

injections at 7 days post-injury via intra-peritoneal injection. 

 
3.2.4 Mechanical Allodynia Testing 

To assess allodynia, hind paw withdrawal thresholds (PWT) to von Frey 

filament stimulation were measured. Animals were placed on a raised, mesh-floored 

platform and covered with a transparent plastic box. To allow for familiarization to 

the new surroundings, animals were left for a minimum of 10 minutes before 

measurements were taken. The plantar surfaces of both right and left hind paws 

were stimulated with von Frey filaments (Stoelting Co., Wood Dale, IL) in order to 
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determine a 50% withdrawal response threshold in accordance with similar 

techniques found in literature (Bennett, 2010). Filaments were applied 10 times each 

in ascending strength (1.0 g to 15.0 g). Withdrawal thresholds were determined by a 

positive response, observed a minimum of 5 times, at a specific filament strength. 

Positive responses were recorded as a lift or lick. Withdrawal thresholds were 

measured pre-injury, as well as 5, 7 (pre- and post-injection), 8, 9, 10, and 14 days 

post-reperfusion. 

 
3.2.5 Functional Analysis of Gait 

The CatWalkTM (Noldus Information System, Wageningen) is an automated 

gait analysis system that delivers a large collection of gait parameters, including paw 

print area, duty cycle, weight load, swing phase and step regularity index. Static gait 

parameters, including paw prints and weight load, as well as dynamic parameters 

like duty cycle, are automatically measured and calculated by the system software.  

The system consists of a glass platform illuminated by a fluorescent tube; 

when contact is made with the glass, light is reflected downwards toward a high-

definition camera, connected to a computer, where it is then interpreted by the 

accompanying software. 

In order to assess gait, animals were trained to walk the length of the glass 

plate platform end-to-end, prior to the induction of ischemia. A minimum of five days 

of training was conducted until each animal was competent at walking the length of 

the platform without interruption. During training, animals were motivated to traverse 

the walkway by the use of sweet treats. General, dynamic and paw-specific gait 

parameters were collected pre-injury, as well as 1, 5, 7 (pre- and post-injection), 8, 
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9, 10 and 14 days post-injury. Each trial had a minimum of 3 runs, and only runs 1-3 

seconds in duration were accepted. 

 
3.2.6  Intravital Video Microscopy (IVVM) 

In some iCORM-3 (n=5) and CORM-3 (n=5) animals, microscopic evaluation 

of skeletal muscle microcirculation was undertaken using intravital video microscopy 

(IVVM). 

The extensor digitorum longus (EDL) muscle was isolated and prepared, as 

described previously (Lawendy et al., 2011; Potter et al., 1993). Briefly, the tibialis 

anterior and lateral gastrocnemius muscles were divided through blunt dissection to 

expose the EDL. A suture ligature was applied around the distal tendon of the EDL 

and the tendon was then cut from its bony attachment in order to reflect the muscle 

onto the microscope stage, with its arterial and venous blood flow intact. Once 

prepared, animals were carefully placed on the stage of an inverted microscope 

(Nikon Diaphot 300) and the EDL reflected onto a slide with saline bath containing 

5µg/ml each of the fluorescent vital dyes bisbenzimide (BB; Ex. 343nm, Em. 483nm) 

and ethidium bromide (EB; Ex. 482nm, Em. 616nm). As BB stains the nuclei of all 

cells while EB stains the nuclei of only those cells with damaged cell membrane, 

EB/BB ratio provided an index of tissue injury. A cover slip was then placed atop the 

EDL. The temperature of the exposed muscle and the animal itself was maintained 

at 37 degrees Celsius by the use of a heat lamp. Care was taken to minimize time 

between EDL exposure and the first microscope recording. 

The inverted microscope was connected to a charge-coupled device camera 

(Dage-MTI VE1000), a time-date generator (WJ-810, Panasonic), as well as a 
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computer. To provide appropriate white light illumination, flexible fibre-optic guides 

were positioned above the EDL.  

Microvascular perfusion and leukocytes within the post-capillary venules were 

recorded by translumination with 20x and 40x objectives, respectively, in five 

randomly chosen fields of view. Fluorescence microscopy was used to visualize the 

BB and EB from the same fields of view that had been selected for the measurement 

of capillary perfusion. At the conclusion of the experiment, rats were euthanized by 

an overdose of isoflurane anesthetic agent. 

 

3.2.7 Offline Video Analysis 

3.2.7.1 Perfusion Analysis  

Capillary perfusion was measured in each 60-second clip at 20x objective 

(final magnification of 700x), as per previously validated methodology (Lawendy et 

al., 2014). Perfusion was quantified by counting the number of continuously-

perfused (CPC), non-perfused (NPC) and intermittently perfused (IPC) capillaries 

crossing 3 equidistant parallel lines drawn on the computer monitor, perpendicular to 

the capillary axis.  Capillaries with continuous flow were deemed CPC, those with 

flow interrupted at any point during the 60-second clip were deemed IPC, and those 

with no flow throughout the 60-second clip were deemed NPC. These values were 

expressed as the percent of total capillaries per field of view. 

 

3.2.7.2 Analysis of Leukocytes 

Leukocyte activation, i.e. rolling and adherence, was measured in post-

capillary venules at 40x objective (final magnification of 1400x). Thirty second clips 
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from each 45 second recording were randomly chosen; the total number of rolling 

and adherent leukocytes were measured during this time and expressed per 1000 

µm2. Venular area was measured using ImageJ (NIH, Bethesda, MD). Adherent 

leukocytes were defined as those cells remaining stationary over the entire duration 

of the 30-second clip. 

 
3.2.7.3 Injury Analysis 

BB and EB are nuclear dyes; BB labels nuclei of all cells, as it is membrane-

permeable, while EB is membrane impermeable and therefore only stains cells with 

injured (permeable) membranes. EB labeling cannot distinguish between cell injury 

and cell death, as a wide range of injury may cause increased membrane 

permeability. Tissue injury in the randomly chosen fields of view was assessed by 

counting the number of EB- and BB-labelled nuclei, and expressed as EB/BB ratio. 

 

3.2.8 Statistical Analysis 
Repeated measures two-way analysis of variance (ANOVA), using GraphPad 

Prism® software, was performed to assess differences in gait parameters, paw 

withdrawal thresholds, tissue perfusion, muscle injury, leukocyte rolling and 

leukocyte adherence between iCORM-3 and CORM-3-treated animals.  Statistical 

difference was defined at p<0.05; Bonferroni post-tests were also performed. 
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3.3 RESULTS 

3.3.1 CRPS-I Model 

For the duration of ischemia, the right hind paw (ipsilateral) was observed as 

cold and cyanotic in all animals. Directly after the removal of the tourniquet, 

evidence of severe edema and hyperemia were observed. Upon recovery, rats 

displayed spontaneous pain behaviours, such as shaking, licking, and lifting of the 

injured limb. By 14 days post-reperfusion injury, most animals displayed an 

atrophied and less robust right hind limb when compared to the contralateral limb. 

Two animals did not develop CRPS-I like symptoms or display pain behaviours, and 

hence were excluded from further analysis. 

 

3.3.2 Mechanical Allodynia 

Ischemia-reperfusion injury led to increased tactile sensitivity, as 

demonstrated by decreased paw withdrawal thresholds of both the ipsilateral and 

contralateral limbs. By 7 days post-reperfusion injury, paw withdrawal thresholds of 

the injured right hind limb decreased from 14.25±0.41g at baseline to 3.00±0.59g 

(p<0.001) (Figure 3.1). At 7 days post-reperfusion injury, the left hind limb displayed 

paw withdrawal thresholds at an average of 11.25±0.85g, compared to 14.25±0.41g 

at baseline (p<0.05). (Figure 3.1) 

In the right hind limb, paw withdrawal thresholds were significantly less than 

baseline levels in the iCORM-3 group throughout the duration of the experiment. 

However, in the experimental group, upon administration of CORM-3 at 7 days post-

reperfusion injury, accelerated restoration of paw withdrawal thresholds was 

observed.  
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Figure 3.1.  The effect of ischemia-Reperfusion on paw withdrawal threshold 

(PWT) of the ipsilateral/right and contralateral/left hindpaws. 

PWTs were assessed using mechanical stimulation via von Frey 

filaments. PWTs of both the ipsilateral/right and contralateral/left 

hindpaw showed significant differences after reperfusion injury. (* 

p<0.05 from iCORM-3, † p<0.05 from baseline). Error bars shown 

represent the standard error of the mean (SEM). 
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Compared to application of iCORM-3, application of CORM-3 significantly 

increased paw withdrawal thresholds (6.636±0.96g versus 2.222g±0.49g, p<0.05) at 

1 hour post-injection. By 7 days post-injection (14 days post-reperfusion injury), right 

hind limb paw withdrawal thresholds of CORM-3-administered animals were 

restored to baseline levels. (Figure 3.2). 

In the left hind limb, restoration of paw withdrawal thresholds back to baseline 

values was observed quickly without intervention. CORM-3 had no effect on the 

contralateral limb. 

 

3.3.3 Functional Analysis of Gait 

Gait analysis using the CatWalkTM method detected several alterations of gait 

parameters post-reperfusion injury. Both static and dynamic parameters of gait 

dramatically changed by 24 hours post-reperfusion injury, including paw print 

parameters, weight load, duty cycle, stance phase and swing cycle, among several 

others. However, by 7 days post-injury, most gait parameters were restored to 

baseline without intervention, with the exception of paw print parameters (area, 

length and width) and duty cycle. Application of CORM-3 did not affect duty cycle, 

resulting in no significant difference from baseline. Similarly, paw print length and 

width showed no differences between CORM-3 and iCORM-3 injections. Paw print 

area demonstrated a trend of an increased rate of restoration of print area after 

application of CORM-3; however, no significance was achieved (Figure 3.3). 
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Figure 3.2. The effect of CORM-3 on paw withdrawal threshold (PWT). CORM-

3 was administered at 7 days post-injury and PWTs were assessed via 

mechanical stimulation testing at 1 hour post-injection, and at 1, 2, 3 

and 7 days post-injection. PWTs of the ipsilateral/right hindpaw 

displayed significant changes after CORM-3 injection. No changes in 

PWTs were observed in the contralateral hindpaw of iCORM-3 and 

CORM-3 animals. (* p<0.05 from iCORM-3, † p<0.05 from baseline). 

Error bars shown represent the standard error of the mean (SEM). 
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Figure 3.3.  Paw print area of the right hindpaw (mm2). Paw print was calculated 

using the automated gait analysis software tool. († p<0.05 from 

baseline) Error bars shown represent the standard error of the mean 

(SEM). 
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3.3.4 Microcirculation 

3.3.4.1 Muscle Perfusion 

 When compared to CORM-3 animals at 14 days, CPC of the EDL in CORM-3 

animals were significantly increased when compared to iCORM-3 animals (87±1% 

versus 77±3%, p<0.05) (Figure 3.4). No significant difference between IPC in the 

CORM-3 and iCORM-3 animals was observed (3±1% versus 6±2%, n.s.). 

 There was no significant difference in NPC in CORM-3 animals compared to 

iCORM-3 animals at 14 days post-reperfusion injury (10±1% versus 17±3%, n.s.), 

although a trend for increased perfusion with CORM-3 was observed.  

 

3.3.4.2 Activated Leukocytes 

Decreased adherence of leukocytes was observed in CORM-3 animals when 

compared to iCORM-3 animals (0.7836±0.116 leukocytes/1000µm2 in CORM-3 

group versus 2.482±0.556 leukocytes/1000µm2 in iCORM-3 group, p<0.05). No 

significant difference in rolling leukocytes within the EDL was observed (8.320 ± 

1.807 leukocytes/30s/1000µm2 in CORM-3 group versus 9.12 ± 2.992 

leukocytes/30s/1000µm2 in iCORM-3 group, n.s.) (Figure 3.5). 

 
3.3.4.3 Injury 

The level of cell injury was not significantly different between iCORM-3 and 

CORM-3 animals after intervention. Animals administered with CORM-3 

demonstrated a 0.3202±0.1229% level of injury, compared with 0.4588±0.1369% 

(n.s.) in iCORM-3-treated animals (Figure 3.6). 
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Figure 3.4.  Skeletal muscle capillary perfusion. Values are expressed as a 

percentage of the total number of capillaries per field of view within 

EDL muscle. Significant difference in CPC was observed between 

CORM-3 and iCORM-3 animals. (* p<0.05 from iCORM-3). No 

statistical differences were observed in IPC or NPC between CORM-3 

and iCORM-3 groups. Error bars shown represent the standard error of 

the mean (SEM). 
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Figure 3.5.  Leukocyte activation (adherence and rolling) in post-capillary 

venules of the extensor digitorum longus after IVVM. Significant 

difference in the number of adherent leukocytes was observed 

between iCORM-3 and CORM-3 animals. (* p<0.05 from iCORM-3). 

Error bars shown represent the standard error of the mean (SEM). 
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Figure 3.6.  The effect of CORM-3 on cellular injury within the skeletal muscle. 

The index of injury was assessed as the ratio of EB-labeled nuclei to 

BB-labeled nuclei (EB/BB). No statistical difference was observed, 

although there was a trend towards a decrease in CORM-3-treated 

animals. Error bars shown represent the standard error of the mean 

(SEM). 
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3.4 DISCUSSION 
The chronic post-ischemia pain model, established by Coderre et al (Coderre 

et al., 2004) and validated with gait analysis, appeared to successfully model 

symptoms of CRPS-I in the rat, allowing for a comprehensive examination of 

possible therapeutic interventions. In the present study, we demonstrated the effect 

of CORM-3 on the reduction of mechanical allodynia symptoms, as well as its anti-

inflammatory and vasodilatory action through direct observation of microcirculation.  

Prolonged ischemia-reperfusion injury led to production of mechanical 

allodynia in the injured, as well as the uninjured, rat hind limbs. Consistent with 

previous results (Coderre et al., 2004), animals displayed reduced paw withdrawal 

thresholds after injury. Although this CRPS-like symptom was observed in both hind 

limbs, allodynia was much more pronounced in the ischemia-injured limb. In animals 

treated with inactive CORM-3, the reduced paw withdrawal threshold was 

maintained throughout the duration of the experiment; CORM-3 injection restored 

paw withdrawal thresholds to baseline levels, demonstrating a reduction in the pain 

sensation and tactile sensitivity. Previously, other CO-RMs, (i.e. CORM-2), have 

shown to have similar anti-nociceptive effects, as demonstrated in nerve constriction 

models and inflammation-based models (Hervera, Gou, et al., 2013; Negrete et al., 

2014). Unlike CORM-2, CORM-3 is water-soluble, making it more clinically relevant 

therapeutic, if found to be effective. 

 While the mechanisms of CORM-3 actions are not fully understood, studies 

suggest that some may involve the suppression of oxidizing compound production 

and up-regulation of free radical scavengers (Mizuguchi et al., 2010; Patterson et al., 

2014). This is consistent with the idea that CRPS-I may be induced or maintained 
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through free radical generation and inflammatory processes, as treatment with other 

free radical scavengers also appeared to reduce mechanical allodynia symptoms 

(Coderre et al., 2004). Thus, our data may also provide support for inflammatory and 

microvascular dysfunction as important factors in the development and maintenance 

of CRPS-I. 

 As suggested previously (Gabriel et al., 2007; Gabriel et al., 2009), the 

functional limb assessment by the use of the CatWalkTM automated gait analysis 

system may be limited to certain injury models. In the case of the CPIP as a model 

of CRPS-I, we have previously identified certain gait parameters as being important 

in the correlation between von Frey filament testing for allodynia and gait analysis. 

These included several paw print parameters (length, width, area) and duty cycle. In 

response to ischemia-reperfusion injury, some gait parameters changed 

significantly. Application of CORM-3 had no effect; however, there was a trend for 

increased paw print measurements (Figure 3.3). Given that changes in gait are a 

more complex measure of allodynia as compared to mechanical stimulation, it is 

reasonable to assume that pain sensation might not have as dramatic an effect. 

Previously, changes in CatWalkTM gait parameters have been observed after certain 

treatments, however, these were delivered multiple times over the course of the 

injury period (Koopmans et al., 2009), as opposed to a single injection of CORM-3 in 

our study. Thus, potential changes in gait parameters in response to CPIP should be 

explored in the future, with multiple dosing regimen. 

 It has been suggested that CRPS-I may be maintained by microcirculatory 

abnormalities (Bellingham et al., 2014; Coderre et al., 2004; Millecamps & Coderre, 
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2008). Consistent with this, our IVVM data in the CPIP model shows that the muscle 

tissue in the allodynic limb appears to have clear microvascular deficiencies. In 

response to CPIP, cell injury, leukocyte activation and capillary perfusion all show 

significant changes from the control parameters of sham animals previously 

published in ischemia studies (Potter et al., 1993). At 7 days post-injury, CORM-3 

altered leukocyte adhesion within the post-capillary venules of the EDL (Figure 3.5). 

Additionally, CORM-3 also appeared to alter the degree of capillary perfusion 

(Figure 3.4). These results confirm the anti-inflammatory and vasodilatory actions of 

CO (McCarter et al., 2004; Mizuguchi et al., 2009), perhaps providing reason for the 

reduced pain sensation and the trend for restored gait. While not significant, there 

was a trend towards a reduced tissue injury in CORM-3-treated animals (Figure 3.6). 

Perfusion, which may be affected by leukocyte activity (Granger & Senchenkova, 

2010), is an important factor in functional use of a tissue. Thus, increased tissue 

perfusion may help to rationalize the observed trend towards restoration of gait 

parameters. Delivery of CORM-3 at seven days post-reperfusion injury may give it 

little opportunity to act to reduce cell injury, since circulating endothelial progenitor 

cells may have repaired damaged endothelium within seven days.  

 Considering the effects of CORM-3-released CO on the observed changes of 

IVVM parameters in CPIP, restoration of microvascular perfusion may underlie the 

mechanism by which CORM-3-derived CO is able to alleviate allodynia symptoms. 

Thus, given the notion of microvascular dysfunction as one of the important factors 

in the development and maintenance of CRPS-I, improving capillary perfusion and 
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reducing leukocyte activation could explain the significant difference in the 

withdrawal thresholds of CORM-3-administered animals. 

Previously, magnetic resonance spectroscopy has demonstrated that CRPS 

patients have hypoxic muscles in the affected limbs, which causes difficulty in 

regulating normal limb functions (Heerschap et al., 1993). Transcription factor NFκB, 

which has been shown to be involved in ischemia, inflammation and sensitization 

pathologies, appears to be potently inhibited by CO preconditioning (Sun et al., 

2008). Some studies have shown a direct link of NFκB to the development of 

allodynia in the CPIP model; thus it has been suggested that NFκB may play a role 

in the pathogenesis of CRPS-I (de Mos et al., 2009). Application of NFκB inhibitor 

was able to relieve both mechanical and cold allodynia symptoms. Therefore, it 

could be hypothesized that application of CORM-3 may interfere with this potential 

pathogenic mechanism of CRPS-I. 

Another molecule recently linked to CRPS-I pathogenesis is the inflammatory 

cytokine TNF-alpha (Maihofner et al., 2005; Munnikes et al., 2005; Sabsovich et al., 

2008; Wesseldijk et al., 2008a, 2008b). Increasing evidence suggests that TNF-

alpha plays a critical role in the pathogenesis of altered pain sensation. Although it 

has been previously shown that TNF-alpha returns to baseline levels quickly after a 

reperfusion injury (Bihari et al., 2014), Kramer et al found elevated TNF-alpha levels 

in the skin of affected limbs of CRPS-I compared to “normal” fracture and 

osteoarthritis patients (Kramer et al., 2011). This local, but not systemic, increase in 

TNF-alpha may be linked to the well-documented peripheral effects of TNF-alpha on 

nociceptor sensitization (Julius & Basbaum, 2001).  Considering the ability of 
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CORM-3 to block the release of TNF-alpha levels during reperfusion (Lawendy et 

al., 2014), perhaps the substance acts to reduce allodynia sensation in CPIP model 

through a reduction in TNF-alpha levels. Further molecular examination of harvested 

tissue from these animals is required to explore this. 

Inflammation of the vasa nervorum around peripheral nerves (neuritis) may 

be involved in CPIP (Coderre & Bennett, 2008); this suggests that relief of the 

inflammation may reduce pain symptoms associated with CRPS-I. Several other 

studies have demonstrated CO-RMs to be effective in reducing allodynia in a chronic 

sciatic nerve constriction model of neuropathic pain (Hervera, Gou, et al., 2013; 

Hervera, Leanez, et al., 2013). Given the range of pain models where CO was able 

to provide relief of symptoms (including both nerve constriction and inflammatory 

pain), CORM-3-derived CO may play an active role in several pathways of pain 

sensation, either directly or indirectly. However, further comprehensive study into 

both CORM-3 mechanisms and pain sensation would be required. 

Treatment options currently available for CRPS-I patients are relatively 

extensive. One of the common treatments is a regional nerve block to the affected 

limb; however, recent studies have shown that regional anesthesia does not 

consistently block pain, especially in ischemic limbs (Kucera & Boezaart, 2014). 

Considering the fact that many patients do not respond to the available treatment, 

the development of additional therapeutic options for CRPS-I is needed. A holistic 

interpretation of the results from mechanical stimulation testing, gait analysis and 

IVVM suggests that CORM-3 reduces allodynia symptoms in the CPIP rodent model 

of CRPS-I. Considering that pain is the most important factor in patients’ quality of 
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life, the reduction in sensitivity, even without significant changes in gait, after 

administration of CORM-3 is still an important finding. Considering the anti-

inflammatory and vasodilatory actions of CO, the reduction in allodynia symptoms 

after CORM-3 administration again suggests that CRPS-I may have some 

microvascular abnormalities associated with the maintenance of its symptoms. Thus, 

our data suggests that CO, along with its current potential application in several 

other pathologies, may have clinical relevance as a therapeutic agent in CRPS-I. 
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CHAPTER 4:  GENERAL DISCUSSION AND CONCLUSIONS 
 
 
4.1 OVERVIEW OF RESULTS 
 
 
4.1.1 CPIP Model 
 
 This thesis focuses on the assessment and potential treatment of CRPS-I, 

using the chronic post-ischemia pain (CPIP) model. The model has proved to be a 

reliable representation of many CRPS-I-like symptoms, acquired through an insult 

known to often result in CRPS. In keeping with the proposed hypotheses for the 

pathophysiology of CRPS-I, the CPIP model appears to present what is perhaps the 

best animal model for examination of CRPS-I mechanisms and assessment of 

potential treatments. Compared with others, CPIP provides the hallmark symptoms 

of CRPS-I, including chronic hyperalgesia, allodynia (both cold and mechanical), 

inflammatory signs and spontaneous pain behaviours. The results of this thesis also 

show that the CPIP model produces behavioural and functional deficits similar to 

those observed in CRPS-I.  

 
4.1.2 Gait Analysis 
 
 Chapter 2 describes the use of an automated gait analysis system (the 

CatWalkTM)  to assess functional changes in the CPIP model.  

The data showed that gait analysis using the CatWalkTM system was able to 

detect an injury after ischemia-reperfusion injury. Four gait parameters (duty cycle 

and the three paw print parameters) statistically correlated with the chronic allodynia 

measurements taken via the gold standard of von Frey filament stimulation. While 
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other gait parameters showed significant changes immediately after injury, most 

normalized quickly to baseline by the end of our 14-day testing cycle.  

In a separate group of animals, we showed that the CPIP model was an 

effective model for the development of long-lasting allodynia symptoms. CPIP 

animals maintained lower threshold of von Frey stimulation compared to the 

proximal IR group, which received a similar IR insult, only proximal to where the 

tourniquet had been placed in the CPIP group. The results validated the CPIP model 

in its ability to develop chronic allodynia. Interestingly, the CPIP group showed that 

the injury paradigm was not the major factor in affecting gait alterations; rather the 

gait alterations were probably secondary to allodynia. However, the physiology of 

tourniquet position just below the knee (both in this model and in general) is not well 

defined, and this may affect a range of kinematic parameters.  

Chapter 2 provides us with an objective method for assessing functional 

changes in the CPIP model of CRPS-I. As stated by the new Budapest diagnostic 

criteria for CRPS (Harden et al., 2007), functional assessment is beneficial in 

examining symptomatology of CRPS. By providing an additional measure for the 

total pain experience in the rat, we may be able to better test the effects of potential 

therapeutics in the treatment of CRPS-I. 

 
 
4.1.3 The Effect of CORM-3 
 

CORM-3 has been found to have some anti-inflammatory, anti-apoptotic and 

vasodilatory properties (Lawendy et al., 2014). Based on this, we aimed to examine 

its use as a potential therapeutic agent in reduction of allodynia symptoms, as well 
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as any gait changes observed in the CPIP model of CRPS-I. In Chapter 3, we 

showed that CORM-3-derived CO carried anti-allodynic effects after an injection at 

seven days post-reperfusion. We demonstrated that CORM-3 was able to increase 

von Frey mechanical stimulation withdrawal threshold values back to baseline within 

seven days post-injection. Consistent with the previous anti-nociceptive vasodilatory 

treatments (Coderre et al., 2004), increased perfusion of EDL capillaries was 

observed after CORM-3 injection. In addition, a decrease in leukocyte adherence 

was found, although no changes in rolling leukocytes or in cell injury were observed 

in CORM-3 treated animals. These results suggest that an inflammatory response, 

albeit a diminished one is still occurring. Considering the length of time, elapsed 

after CORM-3 treatment (i.e. 7 days) that microcirculation was directly visualised, it 

is not unreasonable to see no changes in cell injury between CORM-3 treated and 

CPIP animals, even with the knowledge that CORM-3 has anti-apoptotic properties.  

 Similar to recent work by Hamam et al (Hamam et al., 2014) on compartment 

syndrome (CS), no significant changes in gait parameters were observed after 

CORM-3 application. A trend toward improved function was observed after CORM-3 

injection in both studies; however, dynamic gait parameters were most affected by 

CORM-3 in CS, compared to a trend in static gait parameters in this study. The 

complex nature of gait movements, in terms of central processing, may have 

negated some of the positive effects CORM-3 had on the microvasculature, perhaps 

resulting in a lack of gait improvement. 
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4.2 STUDY LIMITATIONS 

4.2.1  Pain Measurements 

As the CPIP model in rats is a representation of the painful human condition, 

CRPS-I, we are presented with an inherent limitation in regards to pain and its 

measurement. Non-verbal representations of pain and hypersensitivity, using paw 

withdrawal from both noxious and non-noxious stimuli, are measured in the CPIP 

model. One limitation of pain and sensitivity tests is the animal handling required. 

Often, pain tests require that animals be restrained for measurements. In Chapters 2 

and 3, animals were taken from their resting cages and placed in small chambers for 

allodynia testing with von Frey filaments. Studies have found that simple handling of 

rats can cause recruitment of endogenous opioids that can result in delayed 

responses to stimuli, including the stimuli used in our experiments, i.e. von Frey 

filaments (Jorum, 1988; Jorum & Shyu, 1988). In an effort to remove this potential 

limitation, we allowed rats to acclimatize to the new environment for a period of at 

least 10-15 minutes. Even with these additional efforts, some rats tried to escape the 

testing chamber after the 10-15 minute acclimatization period. Escape behaviour 

may suggest that these rats had altered responses to stimuli, perhaps as a result of 

endogenous opiod release. 

 

4.2.2 Animal Model and Age of Rats 
 

In both Chapters 2 and 3, young rats were used to produce CPIP. Animals 

were ordered at a weight of 150-175 g, although a minimum weight of 200 g was 

ensured before inducing the model through I-R injury. What was noticed in both 
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chapters was a resiliency of the rats, as it pertains to their recovery from injury. In 

some rats, no allodynia symptoms developed; these animals were subsequently 

excluded from further testing. Considering that CRPS is more common in adult 

patients, it may be prudent to use older rats in future experiments, in order to 

account for their resilient nature with respect to recovery from any injury and/or the 

development of allodynia symptoms similar to CRPS. 

Other authors have cited a weight gain of 40% as being significant in the 

measurement of several gait parameters (Gabriel et al., 2009). Although no 

significant weight changes were observed in our experiments, the use of older rats 

may help negate any chance of weight gain affecting gait parameters. 

Coderre and colleagues, in the original publication of the CPIP model, used 

pentobarbital injection to anesthetize rats before surgery. In our experiments, we 

used inhalational isoflurane. Although isoflurane has been found to have 

hypotensive and respiratory depression effects, it is an ideal anesthetic to use for 

extended surgical procedures like ours. Also, if temperature is properly maintained 

at normal body temperature, these side effects may be avoided. We ensured rats 

were always approximately 37 degrees Celsius through the use of a heating lamp.  

 

4.2.3 Automated Gait Analysis 
 

To assess functional changes after induction of CPIP to model CRPS-I, we used 

an automated gait analysis system. The CatWalkTM uses the refraction of light from 

an animal’s paw on the glass walkway to capture images. Light is internally reflected 

within the glass and only released once a paw (or any other object) touches the 
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walkway. As a result, error is created if moisture or debris is present on the walkway. 

Rats often urinate small amount at the ends of the walkway and drag that moisture 

towards the centre of the walkway. Efforts were taken to ensure the walkway was 

dry and free from debris at all times, but it was impossible to have all of the recorded 

runs free of any moisture.  

 Several times throughout the experimental time-course rats would drag their 

underside on the glass walkway. The excess contact is normally recorded by the 

system as noise on the CatWalkTM software, creating a difficult situation for the 

software to classify paw prints automatically. As a result, many paw prints had to be 

be manually classified, inherently introducing a source of error.  

Noldus, the CatWalkTM system manufacturer, has just released an improved 

and more advanced analyzing software. Currently, our lab does not have this most 

recent edition, which might prove to be useful in measuring functional changes in our 

model, as well as in several other models of injury. 

 

4.3 FUTURE DIRECTIONS 
 
 Considering the short half-life of CORM-3 in physiological solution, injecting 

CORM-3 multiple times after initiation of the CPIP model may yield different results. 

It may be interesting to see the effects this would have on how quickly paw 

withdrawal thresholds are returned to baseline, or if they would be restored at all. 

 Building on the above direction, and in order to better observe the effects of 

CORM-3, it would be beneficial to perform IVVM on some animals directly after 

injury, as well as at 1, 2, and 3 days post-injection. This approach may provide a 
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better insight into the effect of CORM-3 on the microvasculature, as it may be 

possible to correlate the gradual restoration of paw withdrawal thresholds with the 

changes directly observed within the microvasculature. It may also allow us to 

examine the effects of tourniquet placement and time on microvascular changes of 

the distal portion of the limb. 

 In examining how gait changes are caused by pain-related problems in the 

CPIP model, including a known analgesic pharmacological agent may be useful. 

This approach may help to ascertain the exact link between gait changes and pain 

while monitoring the normalization of gait, similar to the work  of Angeby-Moller and 

colleagues in arthritis studies (Angeby-Moller et al., 2008). 

 Tissues from the skeletal muscle could be harvested from all animals at the 

time of euthanasia; although beyond the scope of this study, these could be used to 

examine the potential mechanisms of action of CORM-3 at a molecular level.  
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4.4 GENERAL CONCLUSIONS 
 
 The work presented in this thesis is the first piece of scientific literature to 

evaluate gait in the CPIP model of CRPS-I. It was hypothesized, based on the 

literature describing other inflammatory conditions, that automated gait analysis may 

be an objective and rapid tool for the assessment of gait changes secondary to 

allodynia. The results presented here suggest that automated gait analysis in the 

CPIP model is indeed a beneficial tool. We found several gait parameters correlating 

with von Frey measurements of allodynia assessment. As CRPS-I patients often 

lose range of motion and general function, as well as develop dystrophy/atrophy of 

the affected limb, using the methodology described in this work we may be able to 

better assess efficacy of potential therapeutics. 

 In the literature, anti-sympathetic and vasodilatory drugs have often appeared 

to reduce mechanical allodynia in CPIP model of CRPS-I. Through the use of the 

known vasodilatory, anti-inflammatory and anti-oxidant properties of CORM-3, this 

work has shown that CO therapy is capable of reducing mechanical allodynia 

symptoms in the CPIP, as indicated by an increase in paw withdrawal thresholds. 

The actual effect of CORM-3 is still unclear; however, with further analysis, 

mechanisms of CORM-3 action may be delineated and assist with improving our 

understanding of the complex pain mechanisms involved in CRPS-I. 
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APPENDIX A – DEFINITIONS OF GAIT ANALYSIS PARAMETERS 
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APPENDIX B - PERMISSIONS 
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APPENDIX C – ANIMAL PROTOCOL APPROVAL 
 
 
 
	  
	  
	  
	  
	  
	  
	  
	  

           11.01.13 
      *This is the original approval for this protocol* 

*A full protocol submission will be required in 2017* 
 
Dear Dr. Lawendy: 
 
Your animal use protocol form entitled: 
 
Direct and Remote Organ Injury Following Hind Limb Compartment Syndrome 
 
Funding agency Orthopaedic Trauma Association – Direct and Remote Organ Injury Following Hind Limb 
Compartment Syndrome – Grant #R4889A04 has been approved by the University Council on Animal Care. 
 
This approval is valid from 11.01.13 to 11.30.17 with yearly renewal required. 
 
The protocol number for this project is 2009-083. 
 
1.  This number must be indicated when ordering animals for this project. 
2.  Animals for other projects may not be ordered under this number. 
3.  If no number appears please contact this office when grant approval is received. 

If the application for funding is not successful and you wish to proceed with the project, request that an 
internal scientific peer review be performed by the Animal Use Subcommittee office. 

4.  Purchases of animals other than through this system must be cleared through the ACVS office. Health 
certificates will be required. 

 
ANIMALS APPROVED FOR 4 YEARS 

Species Strain Other Detail Pain 
Level 

Animal # Total 
for 4 years 

Rat Wistar 150-350 g C 680 
Pig Yorkshire-Landrace 50-60 kg B 30 

 
REQUIREMENTS/COMMENTS 
Please ensure that individual(s) performing procedures on live animals, as described in this protocol, are familiar 
with the contents of this document. 
 
The holder of this Animal Use Protocol is responsible to ensure that all associated safety components (biosafety, 
radiation safety, general laboratory safety) comply with institutional safety standards and have received all 
necessary approvals. Please consult directly with your institutional safety officers. 
 
 
 
 
 
 
 
c.c.  R Bihari, T Carter, K Bothwell, P Coakwell 
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