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Abstract 

Large diameter helical piles are being utilized increasingly to support large compressive and 

tensile loads. Both the magnitude of the required installation torque and the pile capacity can be 

directly attributed to the soil shearing resistance developed over the embedded area of the pile 

including the shaft and helical plates. Hence, the pile capacity can be correlated to the 

installation torque. Such correlations are widely used in the helical pile industry as a means for 

quality control/quality assurance. However, the reliability of capacity-torque correlations for 

predicting the behavior of large diameter helical piles is adversely affected by the inaccurate 

measurement of the installation torque employing hydraulic pressure torque indicators. In the 

current study, a torque pin was fabricated using a strain gauge methodology to facilitate accurate 

measurement of installation torque. A total of 17 piles, including seven fully instrumented, were 

installed while monitoring the installation torque continuously with depth using the fabricated 

device. The results of installation torque monitoring were demonstrated to be accurate and 

repeatable. In addition, six compressive and four tensile axial load tests were conducted on the 

test piles.  The load test results were analyzed to determine the interpreted ultimate capacity of 

the test piles. The results demonstrate that the ultimate capacity of large diameter helical piles 

can be determined from the pile load tests data employing the interpreted failure criteria 

proposed by Elkasabgy and El Naggar (2015) and Fuller & Hoy (1970). The measured 

installation torque and the corresponding ultimate capacity values were used to define the torque-

to-capacity correlation based on embedded pile area, which is suitable for large diameter piles 

with single and double helices. Furthermore, the results from the seven test piles that were 

instrumented with strain gauges provided a description of the load transfer mechanism at various 

levels of axial loading. It was found that significant settlement may be required to mobilize the 

bearing resistance provided by the lead helix for both compressive and tensile loading 

conditions. Finally, the trailing helix provides significant capacity contribution under 

compression loading but little contribution under tensile loading.  

 

Keywords 

Helical pile, axial load test, installation torque, torque-to-capacity, ultimate failure load analysis, 

glacial till. 
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Chapter 1  

1 Introduction 

Helical piles, also known as screw piles or screw anchors, were used historically for supporting 

small tensile forces. More recently, larger, higher capacity helical piles are used increasingly to 

support much larger compressive and tension loads. Their attractive features include a wide 

range of load carrying capacity, fast and low impact installation and ability to be loaded 

immediately after installations make them an appealing alternative to traditional deep foundation 

options such as driven piles, drilled shafts and micropiles.  

As the capacity of the helical piles increases, the risk associated with their design solutions 

grows and so engineers must develop a better understanding of their performance and capacity 

evaluation. In situ verification of helical pile capacity is widely incorporated into the helical pile 

design methodology. Installation torque is often used as the quality assurance and quality control 

parameter governing as-built design specifications. In particular, the torque-to-capacity 

correlation, traditionally used for verification of pile capacity, which began as a mere ‘trade 

secret’, requires better understanding to be applied for the case of large diameter helical piles. 

Present literature reveals little research focused on the identification of the important factors that 

affect the generation of and/or error in measurement of installation torque.   

1.1 Research Objectives and Scope of Work 

Significant efforts have been dedicated over the years to empirically correlate the installation 

torque and the capacity of helical piles. However, a comprehensive relationship has not been 

attainable. There are a number of factors that affect installation torque such as pile configuration, 

soil conditions, and accuracy of torque measurements. Pile configurations such as pile shaft size 

and shape, number and diameter of helices, and pitch size are some parameters that affect 

installation torque. Soil conditions and groundwater levels also have considerable effects on pile 

installation and recorded torque values. In addition, installation procedures such as applying 

down-pressure (crowd) on the pile, use of pre-drilling process and speed of rotary head influence 

installation torque. Furthermore, the torque is determined through either measuring the 

differential hydraulic pressure using mechanical devices or by using an electronic load cell 
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attached to the pile head.  The method employed may impact the torque measurements. The 

objective of this research is to investigate the significant parameters that affect the installation 

torque and understand if and where potential measurement errors may occur. Secondly, this 

research aims to investigate the relationship between installation torque and ultimate failure 

capacity of large diameter helical piles installed in glacial till. 

Accurate measurement of torque effectively facilitates investigating the factors that affect the 

soil resistance to pile installation and hence the required installation torque. Consequently, 

suitable installation torque-to-capacity correlations can be developed and verified. A custom load 

pin was designed, fabricated and incorporated onto a helical pile drive head to accurately 

measure the installation torque. Seventeen piles were installed while continuously monitoring the 

installation torque with pile embedment depth. Axial pile load tests were subsequently conducted 

on ten helical piles, seven of which were instrumented with axial strain gauges. The installation 

torque, applied load, pile head displacement, and load transfer measurements along the piles 

were collected and analyzed in order to evaluate the required installation torque, and load 

transfer mechanisms for helical piles. The author was responsible for the installation of helical 

pile strain gauges, load testing, and test program design. Load cell construction was a joint effort 

including work by Terracene International while data acquisition was facilitated with the help of 

Dycor Technologies.  

1.2 Thesis Organization 

This thesis is organized into six chapters beginning with a brief introduction and literature 

review. The literature review presented in Chapter two focuses on the important aspects of 

helical pile design: axial capacity theory, installation torque measurement, ultimate capacity 

interpretation from load displacement, and torque-to-capacity correlations.  

Chapter three provides a description of the test site, pile configurations and testing equipment. 

The soil investigation program and the resulting soil profile, and the representative soil 

parameters are presented. Furthermore, all details of the instrumentation employed to collect 

relevant information during the load tests are discussed.  
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Chapter four details the method of monitoring installation forces and presents the results from 

the 17 installed piles. All installation torque-depth profiles are investigated and compared to 

reveal the significant contributing factors, potential errors, and measurement sensitivities during 

installation. Furthermore, a basic model for predicting installation torque is presented.  

The axial load testing program is described and the tests results are presented and discussed 

throughout Chapter five. The results are presented in terms of load-displacement curves as well 

as load transfer curves that were captured by the pile instrumentation. Additionally, the axial 

load tests results are combined with installation torque measurements to produce a set of capacity 

to torque correlations. 

All significant findings and future research recommendation can be found in Chapter six. 
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Chapter 2  

2 Literature Review 

To effectively uncover the theoretical and practical issues affecting the accuracy of helical pile 

design, a literature review is provided on the main relevant topics: axial capacity theory, helical 

pile installation torque, load settlement and ultimate capacity interpretation, and the fundamental 

resulting Capacity to Torque Correlations (CTC). This review enables a better perspective for the 

scope of research continued herein.  

Helical piles were first introduced as a deep foundation option in the early 1800’s, (Perko, 2009) 

and the first available literature is credited to an Irish engineer, Alexander Mitchell, in 1848. 

Early uses for helical piles consisted of offshore anchorage in very soft marine soils most 

commonly required in the construction of lighthouse foundations. The early helical pile was 

similar to that of a screw made from cast or wrought iron. These large screw-like structures were 

then installed via manual torque provided by either several men or work horses. The application 

of early helical piles was limited by low-bearing and uplift capacities.  

With the advent of powerful installation equipment and improved practical knowledge and 

engineering design, helical piles applications developed substantially. Their screw-like geometry 

gave promise for great uplift resistance in weak soils. Thus, by the mid-20
th

 century, helical piles 

were utilized as anchorage for structures with appreciable uplift forces and most notably vital 

infrastructure experiencing overturning moments. The early development and refinement of 

helical pile design/fabrication focused on its uplift capacity. This emphasis formed much of the 

present knowledge base and standards of practice. Many engineers and construction industry 

professionals have recently promoted helical piles for their equally beneficial compressive 

resistance and minimal installation footprint. Helical piles have evolved into a niche of 

underpinning of failed or failing structures plagued by poor soil conditions. In these retrofitting 

applications, relatively small diameter and short piles are used. However, as the knowledge base 

and experiences of the industry continue to evolve, so do the helical piles applications. Presently, 

helical piles are utilized for a wide range of uplift, bearing, and/or lateral loading situations, 
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where they are employed to support structures ranging from bridges, short and tall buildings, 

machine foundations to pipeline supports.   

The configuration of helical piles is designed to provide adequate loading capacity via a fast, 

reliable, and low disturbance installation method. A helical pile consists of one or more helical 

plate(s) welded to a central steel shaft. The design of a helical pile involves the choice of its shaft 

length and diameter as well as a specific arrangement of helices including their number, 

diameter, D, spacing to diameter ratio, S/D, and the embedment depth to diameter ratio (H/D) of 

the top helix. All these parameters can contribute considerably to the pile ultimate capacity. The 

design of helical piles also involves the selection of a reliable method and consideration of 

specified performance and loading criteria.   

The central shaft shape is either hollow round pipe or solid square bar. The helical plates can 

range in diameter and pitch in order to provide a desired bearing force for the given soil 

embedment installation. The helix pitch and diameter are designed such that forward driving 

force (torque) is applied to the pile head during installation while minimizing the amount of 

potential soil disturbance.  

Helical pile design has evolved from traditional foundation analysis such as Terzaghi's general 

bearing capacity formula (Terzaghi, 1943). Appropriate modifications were incorporated to 

account for the slender geometry of a pile foundation structure as well as the individual helical 

elements. These modifications have thus formulated two major methods for design and analysis: 

the individual plate bearing method and the cylindrical shear method. Each method has its 

analytical simplifications and approximations.  Additionally, correction factors are proposed by 

many researchers to account for these simplifications. The application of either method and/or 

the associated corrections depends on both the assumed method of analysis as well as the 

intended use of the designed structure.  

An alternative approach for the design and/or confirmation of capacity is also widely used by the 

helical pile industry professionals. The approach is empirical and relies on the CTC method. This 

approach continues to develop, incorporating different levels of sophistication providing 

theoretical basis and practical considerations. It is seen widely as a great advantage for helical 

piles in terms of providing on-site immediate confirmation of the pile capacity. It provides a 



 

6 

 

practical method of field testing the assumptions and simplifications made during the initial 

design process. Most often this confirmation is utilized as a indicator of design flaws, or in 

certain cases, indicating the potential for value engineering.   

These approaches to helical pile design: individual plate bearing method; cylindrical shearing 

method; and confirmatory CTC method are explored in the following text.  

2.1 Theoretical Axial Capacity 

When determining the theoretical load bearing capacity of a helical pile within the bounds of 

traditional soil mechanics, there are two recognized methods: the individual plate bearing 

method and the cylindrical shear method. The suitability of either method is related to the size 

and spacing of helical bearing plates. If the helical plates are relatively far apart along the shaft 

of the pile, then the individual helical plates are considered to provide bearing capacity in 

isolation and their sum, in addition to the shaft resistance, provides the pile’s total ultimate 

capacity. When the helical plates are relatively close, then it can be assumed that the helical 

plates will act as a group creating a cylindrical shearing surface of the soil between these plates. 

The pile capacity is then given by the sum of the shearing resistance along the upper shaft and 

the inter-helical soil cylinder and the bearing resistance along the bottom helix in compression, 

or the top helix in tension. 

The distance between helical plates that creates either condition is not unequivocally established 

but depends upon the size, arrangement, and existing soil condition. There are several studies 

aimed at detailing the conditions required to assume either method; in practice, both methods are 

commonly used to evaluate the capacity, and the pile capacity is given by the lesser of the two 

values. The load carrying capacity achieved in both methods is realized through three primary 

load transfer mechanisms: skin friction occurring between soil and the pile shaft, bearing 

resistance via the surface area beneath the helical plates, and the soil-to-soil shearing surface 

located at the boundary of a mobilized cylindrical soil mass as demonstrated in Figure 2-1. 

 



 

7 

 

 

Figure 2-1: a) Individual Plate Bearing b) Cylindrical Shear (Perko, 2009) 

2.1.1 Compressive Individual Plate Bearing Method 

The individual plate bearing method of calculating compressive bearing capacity assumes that 

the pile configuration is such that each helical plate affixed to the pile shaft contributes 

individually to the bearing capacity of the system. The individual plate bearing capacity is 

calculated based upon a modification of Terzaghi’s (1943) original shallow foundation bearing 

capacity equation, i.e. (Meyerhof, 1951): 

qult =  cNcScdc + q’NqSqdq + 0.5γBNγSγdγ (2-1) 

 

Where c is soil cohesion, q’ is the effective overburden pressure at bearing depth, γ is the soil 

unit weight, B = D is the helix diameter, Nc, Nq, Nγ are bearing capacity factors dependent upon 
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the internal angle of friction, Sc, Sq, Sγ are shape factors dependent upon the geometry of the 

helical element, and dc, dq, dγ, are depth factors dependent upon the location of the helical element 

below grade. The bearing capacity factors proposed by Meyerhof are given by: 

 

    
    

    
          (2-1a) 

                   
 

 
     (2-3b) 

                           (2-3c) 

       
  

  

 

 
            (2-3d) 

       
 

 
           (2-3e) 

          
 

 
      (2-3f) 

                 (2-3g) 

                           (2-3h) 

        (2-3i) 

         
 

 
      

 

 
      (2-3j) 

 

where   is equal to the length of the pile above the helical element,   is the pile embedded 

length,   is depth of helical plate, and    is equal to the angle of internal friction.   

For the helical plate situated substantially deeper than its width, the ratio H/ B becomes very 

large and the ratio of B/L becomes equal to one, and the depth factor approaches    .  Thus, the 

bearing capacity for helical plate elements can be given by: 

qult =  cN’c + q’(Nq – 1) + 0.5γDN’γ  (2-2) 
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          (2-4a) 

  
          (2-4b) 

  
          (2-4c) 

 

where   is the helix diameter,   
  is the combined cohesion factor,   

  is the combined surcharge 

factor, and   
 is the combined self-weight term. 

  

In the case of cohesive (fine grained) soils, further simplifications can be made as it is generally 

assumed that the angle of internal friction is equal to zero for undrained loading conditions. 

Throughout a series of laboratory tests, Skempton (1951) found that the bearing capacity factors 

approach the constant values of   
  equal to nine,   

  equal to one, and    
  equal to zero. In 

addition, the cohesion term is replaced by the undrained strength (Su). Thus, the resulting 

ultimate bearing element capacity is; 

 

         (2-3) 

 

The bearing capacity equation modified for helical plates is then utilized within the individual 

plate bearing method. The total ultimate pile capacity is then given by the summation of bearing 

capacities of each individual plate plus the effective shaft resistance over the pile length, i.e.: 

 

Pu =                    (2-4) 

 

where   is the diameter of the pile shaft,      is  the ultimate bearing capacity of the n
th

 helical 

plate,    is equal to the area of the n
th

 helical plate,   is equal to the unit shaft adhesion factor, 

Su is undrained shear strength of soil along the shaft and   is equal to the effective (embedded) 

length of the pile. 
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2.1.2 Compressive Cylindrical Shear Method 

As the spacing to diameter (S/D) ratio of the helices decreases, it becomes more likely that the 

influence zones of the multiple helical plates will overlap and the encompassed soil mass will 

form into an adjoined cylindrical failure surface with diameter equal to that of the encompassing 

helical plates (Narasimha Rao & Prasad, 1993). Thus, the capacity of the pile under compression 

is equal to the sum of shear resistance along the cylindrical failure surface, adhesion along the 

shaft and the bearing capacity of the lead helix (Mooney, Clemence, & Adamczak , 1985): 

 

Pu = qultA1 + Suc (n − 1) s π Davg + α Su H(πd) (2-5) 

 

where A1 is the area of the lead helix, Suc is the shear strength of the soil within the cylindrical 

failure region, H is the length of shaft above the top helix, Davg is equal to the average diameter 

of the encompassing helical plates, n is the number of helices, α is the adhesion term, and s is the 

distance between the helices. 

 

2.1.3 Uplift Resistance 

For the case of deep installation, the theoretical ultimate capacity of a helical pile is assumed to 

be equal for both compressive and tensile loading as the load transfer of the helical plates and 

pile shaft is equal in either case (Ghaly & Clemence, 1998; Mooney, Clemence, & Adamczak , 

1985). It is, however, noted that there may be a slight increase in capacity due to the 

suction/adhesion induced below the pile toe under conditions of uplift. The increase in uplift 

capacity due to any suction/adhesion is practically neglected as it is considered to be most often 

negligible and transient, and neglecting offers additional conservatism to the design process. In 

addition, the self-weight of the pile is also neglected because it is very small compared to the pile 

ultimate capacity. I should also be noted that the existence of suction/adhesion at the pile toe 

does not have any effect upon the potential failure mode, i.e individual plate bearing or 

cylindrical shear. On the other hand, there is a pronounced difference between uplift and 

compressive in the case of shallow installations, which should be reflected in theoretical 

calculation of the pile capacity as will be discussed later.  
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2.1.4 Shaft Adhesion 

The shear resistance of cohesive soil along the pile shaft is evaluated by multiplying the soil 

adhesion along the shaft (i.e. αSu) by surface area of the pile shaft. The magnitude of pile shaft 

resistance is affected by the pile diameter, the pile shaft shape, existing soil conditions, and soil 

disturbance due to installation. As presented by Ghaly and Clemence (1998), the soil adhesion 

can be estimated by: 

qs = 2/3Su (2-6) 

 

where Su is equal to the soil shear strength. It should also be noted that the factor 2/3 is applied 

for the case of bare steel in contact with soil and depends upon the material of the pile shaft, thus 

should be selected appropriately.  

Small diameter pile shafts tend to have lower adhesion factors. This is due to the potential soil 

disturbance during installation. On the other hand, a large diameter pile may attain a large 

adhesion factor through soil displacement (i.e. increase in soil confinement) and potential soil 

densification. A change in the state of stress within the soil around the pile shaft can result in a 

vast change in potential shaft resistance calculations. In certain cases, as in small diameter piles, 

the shaft resistance may be neglected and/or a small adhesion factor be applied. On the other 

hand, for the case of large diameter pile shafts, the shaft resistance is significant and should not 

be neglected.  

The shape of the shaft cross-section can also have an effect on the shaft resistance. During 

installation, a square shaft cross-section has a tendency to create a circular cavity around the 

shaft. This is caused by the rotation of the larger diagonal dimension causing shaft-to-soil 

separation, effectively minimizing the mobilized soil resistance along the pile shaft. In addition, 

during helical pile installation the pile shaft often has a tendency to experience some wobbling 

along the pile length, which further contributes to shaft soil separation.  

The shaft adhesion varies according to the nature of the adjacent soil.  For example, the adhesion 

factor will be reduced for clay soil with high sensitivity whereby its strength could potentially be 

reduced to its residual strength after pile installation. In general, the applied reduction factor 
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varies between 0.3 for stiff clay to 0.9 for soft clays (Meyerhof, 1976). The adhesion factor can 

be estimated based on the soil strength as presented in the Canadian Foundation Engineering 

Manual (2006), where stiffer soil tends to have lower adhesion factors. 

α = 0.21 + 0.26 (Pa/Su)  ≤  1 (2-7) 

 

where Pa is equal to the atmospheric pressure measured in kPa, and Su is equal to the undisturbed 

shear strength of the soil in kPa. 

Considering the potential for soil disturbance during installation, the shaft resistance should be 

applied to an effective shaft length  Heff, which is equal to the total shaft height above the top 

helix minus approximately 1.4 to 2.3 times the diameter of the uppermost helical bearing plate as 

shown in Figure 2-2 proposed by Rao (1993). In the case of Rao, the effective length of this 

region was limited under uplift as illustrated.  
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Figure 2-2: Effective Shaft Adhesion  a) Shallow Installation b) Transitional Installation c) 

Deep Installation (Narasimha Rao & Prasad, 1993) 

 

2.1.5 Uplift Capacity Factor Ncu 

 

The uplift capacity factor (Ncu) is determined by empirical correlations that relate the ratio of 

depth of embedment to helical plate diameter (H/D). These empirical correlations were 

established via numerous laboratory and full scale field tests. The factor Ncu is similar to the 

traditional bearing capacity factor Nc and approaches a constant limit of 9 for (H/D) > 4. The Ncu 

values can be estimated via the method presented by Meyerhof (1973), i.e: 

 

Ncu = 1.2 ( H / D ) ≤ 9  (2-8) 
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2.1.6 Geometric Considerations 

There are a number of geometric properties that influence the design of a helical pile. These 

parameters have varying effects on the behavior and capacity of helical piles. These properties 

include: the diameter of pile shaft, the number, spacing, diameter, pitch and the depth of 

embedment of the helical plates. 

2.1.6.1 Helical Fixation Angle and Pitch 

It is generally agreed that in order to produce the least soil disturbance a true helical shape must 

be provided. This true helical shape includes the angle of fixation whereby the helical plate 

mates with the pile shaft and the pitch at which the helical plate contours the pile shaft. The pitch 

is defined as the distance between the top and the bottom of the helical blade measured along the 

pile shaft. Most commonly used pitch values are 75 mm (3”) and 150 mm (6’’). Fixation angle 

sought is typically 90 degree to the pile shaft. 

2.1.6.2 Pile Shaft Diameter 

The diameter of the pile shaft will have a significant effect on the load carrying capacity of the 

helical pile. The diameter of the pile shaft has two effects: it increases the surface area for which 

frictional or adhesion resistance can be mobilized; and increased diameter gives rise to larger 

displaced soil volume thereby producing localized densification within the immediate vicinity of 

the installed helical pile as noted in the works conducted by Narasimha Rao (1991). 

2.1.6.3 Number of Helical Plates 

A helical pile will include from one to four helical plates spaced equally along the lower portion 

of the pile shaft. It is generally assumed that the increase in the number of plates utilized will 

result in an increase in capacity, either through bearing or uplift. When the helical pile has a 

single plate, its capacity will be realized as the result of bearing upon the plate area in addition to 

the shaft resistance. As additional closely-spaced plates are added, a cylindrical soil mass forms 

between helices, which creates a larger surface area for the mobilization of either cohesive 

resistance in the case of fine grained soil or frictional resistance in the case of coarse grained 

soils. In addition, the weight of the soil contained within this mass can be added to uplift 

resistance. However, the optimum number of helical plates to maximize capacity is the limit at 
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which the spacing achieves individual plate bearing. Additional helical plates become ambiguous 

beyond this limit and have potential to cause elevated soil disruption. However, the addition of 

helical plates will generally increase the vertical capacity when exposed to either compression or 

tension forces. This was demonstrated through experimental evidence (Narasimha Rao & Prasad, 

1993). When comparing helical pile configurations with two to four plates (all other geometry 

remaining constant), there was an increase in capacity upwards of 30%. 

2.1.6.4 Helices Spacing and Diameter 

The spacing between helices is a critical parameter in the development of the cylindrical inter-

helical soil mass, i.e. it develops for closely spaced helical plates, and otherwise individual plate 

bearing behavior occurs. The limiting spacing for individual plate bearing mechanism was 

explored by Narasimha Rao (1993) for model helical piles installed in cohesive soils with 

varying S/D ratios. Model piles were installed in clay soils under controlled conditions of 

varying levels of consolidation. The axial capacity was found to be maximum as (S/D) 

approached 1.5 the value at which it is assumed a cylindrical shear surface was attained for both 

compression and tension loading. Narasimha Rao (1993) proposed a correction factor, Sf ,  for 

correcting the pile capacity of pile arrangements where (S/D) values are greater than 1.5. i.e;  

Sf = 1.0 for S/D ≤ 1.5  (2-9a) 

Sf = 0.863 + 0.069(3.5 – S/D) for 1.5 ≤ S/D ≤ 3.5  (2-11b) 

Sf = 0.700 + 0.148(4.6 – S/D) for 3.5 ≤ S/D ≤ 4.6  (2-11c) 

 

where S/D is equal to the spacing between helices divided by radius of the helix, and Sf is the 

spacing correction factor. With Sf established for (S/D) ratios larger than 1.5, frictional capacities 

provided by the inter-helical zone can then be calculated and corrected as presented: 

Pu = Sf (πDL)cu  (2-10) 

 

where L is equal to the distance between top and bottom helical plates, cu is equal to the 

measured undrained shear strength of clay. This correction factor is to be applied to the 
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calculated capacity assuming that load transfer mechanism follows a cylindrical shear failure 

surface. The correction factor in essence accounts for a cylindrical shearing surface, which does 

not fully propagate thus creating a condition where there is partial individual bearing and partial 

cylindrical shear. It should also be noted that although inter-helical spacing exhibited 

considerable effects when testing small (model) helical piles in clay, it may not have the same 

effect for large helical piles tested in the field. The application of these correction factors should 

therefore be used with caution.  

2.1.6.5 Embedment Depth  

The ratio of embedment depth to helical plate diameter (H/D) significantly affects the capacity of 

helical piles. As the lead helix is installed at increasing depths and the ratio of embedment depth 

to helical diameter increases, three notable changes occur that influence the load carrying 

capacity of a given pile.  First, the weight of the soil above the helix dramatically increases, 

effectively increasing resistance to uplift forces. Second, the confining pressure upon the shaft 

increases which increases both compression and uplift resistance. Third, the confining pressure 

and bearing capacity of the soil beneath the lead helix increase, which increases load carrying 

capacity of the helical plates.  

2.1.6.6 Minimum Uplift Embedment Depth 

The available methods for determining the theoretical capacity of helical piles primarily assume 

that the pile has achieved a deep embedment condition. This assumption is important if the 

applied force is uplift, and presumes that the mass of the soil above the top most helix is 

sufficient to mobilize the pullout resistance of the pile-to-soil system. Generally, it is found that 

the embedment depth to helical diameter ratio required to achieve a deep embedment condition is 

H/D > 5 (Zhang, 1999). If the helical pile is installed near the surface where H/D << 5, shallow 

failure response will ensue. Under the shallow embedment condition, the lead helix is exposed to 

uplift force that activates a wedge-shaped failure surface, extending from the rear most helical 

plate to the soil surface. This wedge creates a heaving action at the surface at which point there 

are two potentially limiting mechanisms. First, the heaving of the wedge-shaped failure mass 

creates tension cracks around the pile shaft and the shaft is effectively removed from behind the 

wedge-shaped soil mass. Second, the wedge-shaped mass remains affixed to the pile shaft at 
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which point the wedge-shaped failure no longer mobilizes the shear capacity of the soil and is 

only contributing to uplift resistance through its dead weight. The minimum depth to prevent the 

shallow embedment condition is defined as the depth where the weight of a wedge-shaped soil 

mass is capable of overcoming the ultimate uplift capacity of the shallowest individual helix.  

This depth is calculated by assuming a conical soil mass created by adjoining the top most helix 

with a 45 degree line upward to the soil surface and about its shaft. A more rigorous method is 

proposed by (Perko, 2009), in which a cylindrical integration of soil disks is calculated until the 

appropriate weight is attained.  

 

Figure 2-3: Example Influence Cone (Perko, 2009) 

 

  
 

 
                 

 

 
  (2-11) 
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where W is the weight of the wedge shaped soil mass,   is equal to the depth to the shallowest 

helix,   is equal to the distance above the shallowest helix, and    is equal to the effective soil 

unit weight. A alternative version of Equation 2-11 widely used incorporates the ratio H/D also 

known as NT (embedment depth to shallowest helix diameter) i.e: 

 

  
 

 
                  

 

 
              (2-12) 

Thus, the required minimum depth is found by equating the calculated weight of the mobilized 

soil mass to the ultimate uplift capacity of the top most helix. This condition varies depending on 

the soil type located between the top helix and ground surface. The relative minimum 

embedment ratio varies from 4 in loose soil to 7 in dense soils (Perko, 2009).  

The minimum embedment ratio was also investigated by Rao et al (1993) in an experimental 

program involving small scale model piles installed in cohesive soil. Based on the experimental 

results, three embedment classifications were established as follows: (H/D) < 2 is considered to 

be shallow; 2 < (H/D) < 4 is transitional; and (H/D) > 4 is considered to be a deep condition. 

However, Mitsch and Clemence (1985) argued that piles with an embedment ratio of (H/D) < 5 

follow shallow condition behavior. Regardless of the apparent disagreements on the particular 

limits of embedment ratio, it is generally agreed upon that the shallow condition of critical 

importance and that increased embedment under conditions of dense soil is required.    

 

2.2 Empirical Axial Capacity 

The ultimate capacity of a helical pile can be approximated using empirical correlations with the 

results of some field tests such as the standard penetration test (SPT) or the static cone 

penetration test (CPT). The CPT is suitable for a large range of soils provided adequate pushing 

force is available for sufficient depth of penetration. Given that the soil investigation program of 

the current study involved CPT measurements, this method will be considered.  

The capacity of the pile can be estimated by (Bustamante & Gianeselli, 1982):  
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  (2-13) 

and estimating the unit base resistance, qt, and unit shaft resistance, qs, from  

cact qkq    (2-13a) 

cs qq


1
    (2-13b) 

where 

qc = cone penetration resistance (units of stress) from CPT  

qca = equivalent cone penetration resistance below helix/pile toe (average 

over an a depth equal to 1.5 the helix diameter/pile toe) 

kc = bearing capacity factor based on soil type and pile type (Table 2-1) 

 = friction coefficient (Table 2-2) 

This approach is based on extensive full scale pile load test data from France (Bustamante & 

Gianeselli, 1982) and supported by pile load test data in North America (Robertson et al., 1988; 

Briaud & Tucker, 1988). The scaling effect to account for the difference in size between the cone 

penetrometer and the pile and the method of installation is accounted for in the selection of kc 

and  using Tables 18.3 and 18.4. The method accounts for effects of soil dilation at the pile-soil 

interface and pile depth and compressibility.  It should be used whenever CPT tests are 

conducted. 
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Table 2-1: Bearing Capacity Factors, kc (Canadian Geotechnical Society, 2006) 

Soil Type  qc (MPa) Factors kc 

Group I* Group II* 

Soft clay and mud < 1 0.4 0.5 

Moderately compact clay  1 to 5 0.35 0.45 

Silt and loose sand  5 0.4 0.5 

Compact to stiff clay and compact silt > 5 0.45 0.55 

Soft chalk  5 0.2 0.3 

Moderately compact sand and gravel 5 to 12 0.4 0.5 

Weathered to fragmented chalk > 5 0.2 0.4 

Compact to very compact sand and gravel > 12 0.3 0.4 

* Note: 

 Group I: Plain bored piles, mud bored piles, micro piles (grouted under low pressure), 

cased bored piles, hollow auger bored piles, piers and barrettes. 

 Group II: Cast-in-place screwed piles, driven precast piles, prestressed tubular piles, 

driven cast piles, jacked metal piles, micropiles (grouted under high pressure with 

diameters < 250 mm). 
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Table 2-2: Friction Coefficient,   (Canadian Geotechnical Society, 2006) 

Soil Type 

qc 

(MPa) 

Coefficient  Maximum Limit of qc (MPa) 

Category* 

I II I II III 

A B A B A B A B A B 

Soft clay 

and mud 
< 1 30 90 90 30 0.015 0.015 0.015 0.015 0.035 - 

Moderately 

compact 

clay 

1-5 40 80 40 80 
0.035 

(0.08) 

0.035 

(0.08) 

0.035 

(0.08) 
0.035 0.08 

 

0.12 

Silt and 

loose sand 
 5 60 150 60 120 0.035 0.035 0.035 0.035 0.08 - 

Compact to 

stiff clay 

and 

compact silt 

> 5 60 120 60 120 
0.035 

(0.08) 

0.035 

(0.08) 

0.035 

(0.08) 
0.035 0.08 

 

0.20 

Soft chalk  5 100 120 100 120 0.035 0.035 0.035 0.035 0.08 - 

Moderately 

compact 

sand/gravel 

5-12 100 200 100 200 
0.08 

(0.12) 

0.035 

(0.08) 

0.08 

(0.12) 
0.08 0.12 

 

0.2 

Weathered 

fragmented 

chalk 

> 5 60 80 60 80 
0.12 

(0.15 

0.08 

(0.12) 

0.12 

(0.15) 
0.12 0.15 

 

0.2 

Compact to 

very 

compact 

sand/gravel 

> 12 150 300 150 200 
0.12 

(0.15) 

0.08 

(0.12) 

0.12 

(0.15) 
0.12 0.15 

 

0.2 
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Note: Bracketed values of maximum limit unit skin friction, qs, apply to careful execution and minimum 

disturbance of soil during construction. 

* Category: 

IA Plain bored piles, mud bored piles, hollow auger bored piles, micropiles (grouted under 

low pressure), cast-in-place screwed piles, piers and barrettes. 

IB Cased bored piles, driven piles. 

IIA Driven precast piles, prestressed tubular piles, jacked concrete piles. 

IIB Driven metal piles and jacked metal piles. 

IIIA Driven grouted piles and driven rammed piles. 

IIIB High pressure grouted piles with diameters > 250 mm and micropiles grouted under high 

pressure. 

 

2.3 Helical Pile Installation Torque 

Helical piles are installed by applying torque to the pile head in conjunction with an applied 

crowd (vertical downward pressure), which enables the helices to “grab” and advance the pile 

into the soil. The applied torque, in most instances, is provided via a driving head (hydraulically 

powered rotary motor), which is mounted on either a Boom Truck, Skid Steer or Modified 

Excavator and is affixed to the pile head during installation. The “crowd” is the vertical pressure 

applied to the pile head to advance the lead helical section into the soil. Torque motors range in 

torque output, for example, those produced by Eskridge: the D1000 is rated as approximately 

83,000 ft-lbs (112,530 N-m), the D1400, shown in Figure 2-4, is capable of producing 

approximately 115,000 ft-lbs (155,900 N-m), and custom coupler models can produce torsion as 

high as 250,000 ft-lbs (338,900 N-m). (Ramsey Industries, 2014) 
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Figure 2-4: Digger 1400 & Boom Truck 

The measurement of torque during installation is utilized as a means of quality control/quality 

assurance and is considered essential to the acceptability of the installed pile. Most commonly, 

equipment setups enable the measurement of installation torque by monitoring of hydraulic 

pressures and motor efficiency. Hydraulic pressure gauges and/or electronic pressure transducers 

are situated in line with the hydraulic system and measure the forward acting pressures, reverse 

acting pressures and/or differential pressure (forward minus reverse). These pressure 

measurements are then converted into a torque via calibrated conversion factor based upon the 

combined hydraulic efficiency of the machine and torque motor, i.e. (Perko, 2009): 

            (2-14) 



 

24 

 

where   is equal to the installation torque most commonly in units of kN.m (or ft-lbs),   is equal 

to the differential hydraulic pressure commonly reported in units of pounds per square inch (psi), 

and    is equal to the calibration factor for the combined hydraulic machine and torque motor.   

2.4 Static Pile Load Testing 

Static pile load tests are used to evaluate the pile performance under applied loads and determine 

the pile ultimate capacity, as means for final pile design and for verification of capacity of 

installed piles. It involves the controlled application of a static load to the head of the installed 

pile; compression, tension, or lateral loading. The applied force, duration of application, and the 

resulting displacements are recorded to produce a static load displacement response curve. From 

this data, the pile performance can be observed, including working load capacity, ultimate load 

capacity and global stiffness response. (Kyfor, Schnore, Carlo, & Baily, 1992) 

2.5 Ultimate Capacity & Load Settlement Interpretation 

There are numerous methods for interpreting the ultimate capacity of a helical pile from static 

load testing results. Most fundamentally, the ultimate capacity of a helical pile is defined as the 

highest load (either compression or tension) that can be applied before increasing displacement 

occurs with no noticeable increase in applied load. This is often referred to as a plunging/pullout 

failure. It should be noted that this definition is concerned with strength only, fundamentally 

identifying a force at which point there is no remaining resistance. However, plunging failure is 

often not achieved. While this failure mechanism is often realized in cohesive materials, 

plunging is more often replaced by progressive strengthening through densification in 

cohesionless soils. As depicted in Figure 2-5, curves A and B, plunging failure loads can be 

identified, whereas curve C does not display plunging failure. 
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Figure 2-5: Typical Load Displacement Curves (Kulhawy, 2004) 

In addition, plunging failure often correlates to a level of settlement, which far exceeds the 

allowable displacement for the structures. Thus, the identification of a plunging failure may not 

be entirely useful for appropriate limit state design. Therefore, interpreted failure load criteria are 

often specified in terms of settlement limits. In this case, the load displacement response curve is 

used to evaluate the pile performance characteristics and/or interpreted failure load. Three 

regions can be identified within the load displacement curve for axially loaded piles as shown in 

Figure 2-6: an initial linear elastic region with high stiffness (large slope), a non-linear region 

with gradually decreasing stiffness (decreasing slope), and a final linear region with a small 

residual stiffness (small slope). The initial linear region represents the load being transferred 

from the pile head down through a combination of shaft friction and helical bearing to the 

underlying soil. Within this linear region, the global stiffness of the pile-soil system is almost 

constant.  As the load is increased within the transition zone, the shaft resistance approaches its 

maximum and thereby the load begins to transfer to the soil primarily through helix bearing 

resulting in nonlinear global stiffness. Eventually, the maximum shaft resistance is reached and 

the contribution of the bearing resistance increases, approaching its maximum. At this point the 

ultimate pile capacity is achieved; however, the contribution of the creep displacements to the 
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pile response may become significant beyond the transition region often producing fluctuating 

loads. For this reason, most interpreted failure load criteria aim to identify the ultimate load 

within the non-linear transition region. A suitable interpreted failure load criteria should be 

capable of identifying lower and upper bounds of the transition zone corresponding to points L1 

and  L2 , respectfully, as suggested by Kulhawy (2004) and shown in Figure 2-6. Some  of the 

widely interpreted failure load criteria include; the Fuller and Hoy method (Fuller & Hoy, 1970), 

the slope and tangent method (Butler & Hoy, 1977), the Davisson’s offset method  (Davisson, 

1973), the O’Neil and Reese method (O'Neill & Reese, 1999), and several slightly modified 

versions. 

 

Figure 2-6: Load Displacement Curve Regions (Kulhawy, 2004) 

One of the criteria used to define the interpreted ultimate (failure) load was formulated by Fuller 

and Hoy (1970). In this criterion, the ultimate load corresponds to the point where the slope of 

the load-displacement curve reaches 0.14 mm/kN (0.05 inches/ton) (Fuller & Hoy, 1970). This 

point is assumed to be the onset of plunging and its corresponding load is termed as the 

interpreted ultimate capacity. Another criterion that is widely used to define the ultimate capacity 

of a pile is the slope and tangent method (Butler & Hoy, 1977). In this case the ultimate capacity 
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is defined by the intersection of a straight line drawn through the initial linear region and the 

tangent to the load-displacement curve within the final linear region with slope of 0.14 mm/kN 

(0.05 inches/ton). This intersection point results in an interpreted failure load and settlement 

value within the non-linear portion of the load displacement graph (Butler & Hoy, 1977). These 

two methods are recommended for application along with the Quick Load test procedure 

(ASTM, 1981).  

 

The offset limit load (Davisson, 1973) is widely used because of its simplicity. In this method, 

the pile settlement under the ultimate load is given by the summation of the expected elastic 

deformation of the pile material, a factor related to the pile bearing diameter, and a small offset 

(Kyfor, Schnore, Carlo, & Baily, 1992), i.e.  

 

    
   

     
  

 

   
  (2-15) 

 

where Sp is the total pile head settlement at ultimate loading, Q is the ultimate load, L is the pile 

length, Ep is Young’s Modulus of the pile material, A is the pile effective cross-sectional area, D 

is the diameter of the pile toe given in mm (equal to the lead helix diameter for helical piles). 

 

This criteria was initially developed to apply specifically to one-foot diameter steel- driven piles. 

Based on results of conducted load tests, it was determined that failure of these particular piles 

would occur once the pile is displaced 3.81 mm (0.15 inches). This settlement represented the the 

pile toe movement required to induce yielding of soil below the pile toe, plus a percentage of the 

pile diameter (Davisson, 1973). Modifications have since added the elastic shortening of the pile 

material. However, the Davisson method leads to conservative values of the ultimate loads  

(Kulhawy & Hirany, 2009). The Davisson criterion is suggested to be used along with the results 

of the Quick Load test procedure. 

O’Neil and Reese (1999) define the ultimate failure limit as the load that produces a settlement 

equal to 5 % of the diameter of the pile toe, i.e.   

            (2-16) 
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This criterion may however result in excessive settlement for large diameter piles, which would 

be beyond the non-linear transition region. This method may require recalibration when applied 

to different pile sizes and configurations.  

 

Livneh and El Naggar (2008) propose and interpreted failure criterion specifically for small 

diameter helical piles based on the results of an axial load testing program conducted on slender 

helical piles with a solid square shaft of 44.5 mm and a lead helix diameter ranging from 200 to 

300 mm. To ensure the ultimate load falls within the non-linear transition region, the settlement 

under the ultimate load is given by: 

    
   

     
          (2-20) 

For large diameter helical piles, Elkasabgy and El Naggar (2014) revised the Livneh and El 

Naggar criterion to ensure the ultimate load falls within the nonlinear region i.e. 

    
   

     
           (2-21) 

There are a few graphical methods for the interpreted failure load that do not impose a certain 

settlement limit, such as the Brinch-Hansen Failure Criteria and the Chin Failure Criteria (Perko, 

2009). However, the Brinch-Hansen method does not work if a recognizable change in slope is 

not observed, and the Chin method usually overestimates the ultimate capacity of the pile. 

2.6 Capacity to Torque Correlations 

The empirical relationship between measured torque during installation and pile capacity has 

gained a wide acceptance in the helical pile industry in the past few decades as a quality control 

and assurance method for estimating the general pile capacity. Beginning as a general trade 

secret formulated through experience, some theoretical models were developed to estimate the 

torsional resistance of soils to helical pile installation, hence more rational CTC’s were proposed. 

As large capacity helical piles are widely used in today’s industrial construction projects, the 

CTC method has gained more appeal and is associated with more risk.  
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The work required to install a pile is directly related to the strength of the soil, thus the capacity 

of the installed pile. Livneh and El Naggar  (2008) state that this work is required to overcome 

the shear strength of the soil and thus is directly related to the pile capacity.  Many correlations 

have been developed with varying accuracy and varying scope for application. One of the 

earliest attempts to produce an overarching torque factor was carried out by Hoyt and Clemence 

(1989).  It provides results consistent with the limit state theoretical methodologies such as 

cyclindrical shear model and the individual plate bearing model. 

2.6.1 Hoyt and Clemence, 1989 

The initial work provided by Hoyt and Clemence (1989) produces a simple and elegant 

relationship that relates the ultimate capacity of the pile Pu to the final installation torque T.  The 

final installation torque is defined as the torque measured over the last one meter of installation 

depth. 

            (2-17) 

 

The initial formulation of the correlation factor Kt focused on tensile loading (uplift) only. This 

factor was considered an all-inclusive parameter independent of the number/size/spacing of 

helical plates and the soil conditions within which the piles were installed. Hoyt and Clemense 

(1989) analyze 91 tensile load tests at 24 different sites, involving helical pile shaft sizes of 38 

mm (1.5 inches) to 89 mm (3.5 inches). Each helical pile had a minimum of two helical plates up 

to a maximum of 14 whereas the diameter of these plates varied from 152 mm (6 inches) to 508 

mm (20 inches).  

For each pile configuration, the observed ultimate capacity (obtained via load settlement 

interpretation), the recorded final torque measurement, and theoretically calculated expected 

ultimate capacity were considered in the analysis. The expected ultimate capacity was evaluated 

using three methods: the cylindrical shear method, the individual plate bearing method, and the 

CTC method. The third method, was based upon a Kt  factor of  33 m
-1

 (10 ft
-1

) for all piles with 

shaft diameters less than 89 mm (3.5 inches),  23 m
-1

 (7 ft
-1

)  for helical piles with 89 mm (3.5 

inch) shaft diameter, and 9.8 m
-1

 (3 ft
-1

) for those with 219 mm (8.63 inch) shaft diameter. All 



 

30 

 

torque values corresponded to the torque measurements averaged over the final three times the 

diameter of the largest helix (Hoyt & Clemence, 1989).  

The load test was conducted with a strain controlled methodology whereby a final load step was 

imposed applying approximately 102 mm/min and recoding the resulting load reaction as the 

failure load. The upper limit of axial capacity for a helical pile was found to be near 775 kN 

(175, 000 lb) with a typical capacity being near 444 kN (100,000 lb). 

With this information, the estimated capacity of each method was compared to that of the actual 

observed capacity. As indicated by the representative histograms in Figure 2-7, the CTC 

predictions provided the least variance. All three methods showed equal potential for over 

predicting ultimate capacity. 

Hoyt and Clemence emphasize that the major advantage for the CTC confirmation method is that 

there is no dependence on engineering judgment or variable site/soil properties classification 

thereby removing a fairly large source of variance and potential error. However, a limitation of 

the CTC method is that it can only be used after installation and not prior to as a “desk” design. 

It should be noted that regardless of the methodology, large factors of safety appear to be 

warranted in all cases considering the potential for over prediction of the pile capacity. 

 

 

a) 
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Figure 2-7: Histograms comparing the actual to calculated capacity ratios                    a) 

Cylindrical shear b) Individual plate bearing c) Torque-to-Capacity  

 

2.6.2 Ghaly and Hanna, 1991 

Ghaly and Hanna (1991) compare the experimental and theoretical values of helical pile 

capacity, and attempt to delineate the main factors affecting the magnitude of installation torque. 

The study addresses model helical piles of five different configurations installed in a prepared 

sandy soil in a laboratory testing program. 

The number of helices ranged from one to three, while maintaining a constant 10 mm shaft 

diameter pile. The piles were approximately 1.0 m long and were fully embedded and the 

installation torque was measured along the entire depth while simultaneously measuring the 

b) 

c) 
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internal lateral stresses within the soil itself. They concluded that several factors affect the 

installation torque. These factors include: general pie configuration (i.e. single helix, multi helix, 

tapered); shaft diameter; diameter of the upper blade; helix pitch; helix angle; thickness of the 

helical plates; the shape of leading helical edge (i.e. blunt, tapered, knifed); shape of the pile toe 

(i.e. flat, tapered, conical); helical manufacturing process (i.e. bolted, welded, cast); and helical 

pile material surface roughness. These parameters were found to have varying degrees of 

influence upon the generation of installation torque, and a basic mathematical model was 

developed as shown in Figure 2-8. 

The laboratory test results were used to formulate a non-dimensional CTC. The determined 

torque factor (Ft) was correlated to the uplift capacity factor (Nqu). The torque factors were 

formulated to account for all parameters that affect the installation torque magnitude, i.e. 

    
 

    
         

  

   
 (2-18) 

where T is the installation torque,   is the unit weight of sand, A is the surface area of the helical 

plate, H is the installation depth, and p is the anchor pitch. 
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Figure 2-8: Installation Torque Generation Model (Ghaly & Hanna, 1991) 
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All experimental data was graphically presented on a semi logarithmic plot revealing a relation 

between the installation torque and the pile capacity as shown in Figure 2-9a. The resulting 

relation was determined as: 

 
  

   
     

 

    
     (2-19) 

The findings of Ghaly and Hanna are similar to those presented by Mitsch and Clemence (1985) 

and Radhakrishna (1976) as shown in Figure 2-9b. 

 

a)  

b)  

Figure 2-9: Non-dimensional Torque Factor Formulation a) Theoretical formulation b) 

Experimental data fit (Ghaly & Hanna, 1991) 
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2.6.3 Zhang, 1999 

Zhang (1999) reported an investigation on the load carrying capacity of helical piles installed in 

both sand and clay soils to establish the shallow and deep conditions.  The tested piles consisted 

of a shaft 219 mm in diameter and helix diameter of 356 mm with a minimum spacing of three 

times the helix diameter. The test results provided Kt values of 6.8 – 10.7 m
-1 

for piles installed 

in clay and Kt values of 4.4 – 10.5 m
-1   

for piles installed in sand. These results were compared 

with the CTC relationship provided by Hoyt and Clemence (1989). The results showed that for 

all piles tested in sand and having achieved a deep condition, the relation was well supported, 

while those tested in uplift with a shallow condition over predicted the capacity. This finding was 

expected given the precedence of only utilizing deep condition piles in the original relationship 

provided by Hoyt and Clemence (1989). Zhang (1999) also details an empirical correlation for 

estimating the required torque based upon helical plate diameter and soil material. The method 

relied on the relation between cone tip resistance attained via a CPT test and the installation 

torque required.  

2.6.4 Tappenden, 2007 

Tappenden (2007) analyzed 29 axial compressive and tensile load tests on helical piles, including 

the recorded installation torque values for each pile. The experimental data was used to develop a 

CTC, which was compared with those by Ghaly and Hanna (1991) and Hoyt and Clemence 

(1989).  

The correlations where based on two separate linear regression plots as shown in Figure 2.10. 

For piles with shaft diameters of 114 mm, Kt was found to be 16.9 m
-1

 and for the pile with shaft 

diameters of 140 mm to 406 mm, Kt was 9.19 m
-1

. These results were compared to that of Ghaly 

and Hanna’s non-dimensional CTC formulation, which consistently overestimated the pile 

ultimate capacity between in order of 132 to 858% (Figure 2-11) and thus deemed to be 

inappropriate for full scale helical piles capacity predictions (Tappenden, 2007).  

The full scale CTC’s provided within Tappenden’s work are an example of industry leading 

research that can be successfully incorporated in design and quality control. The predictions 

provided by the applied correlations are reasonably accurate and avoid drastic over/under 

prediction. However it should also be noted that CTC’s should not be applied to test piles that are 
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installed in an over-consolidated desiccated sand material under the shallow conditions as 

indicated in the data provided by Tappenden. 

a)  

b)  

Figure 2-10: a): Axial measured pile capacity and required installation torque; b): 

Capacity to Torque Correlations based on shaft diameter (Tappenden, 2007) 
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Figure 2-11: Ratios of Predicted Ultimate Capacity, Qt, to Measured Ultimate Capacity, 

Qu, Using Torque Correlations Based on Diameter of Screw pile Shaft 

 

2.6.5 Perko, 2009 

Perko (2001) proposed a CTC based on an energy model similar to that used for driven piles. 

However, the main limitation to the energy model is that it requires numerous parameters, some 

of which are not easily measurable during pile installation, such as the crowd force (i.e. 

downward force exerted during pile installation). 

 

Perko (2009) proposed another empirical relation between Kt and the effective shaft diameter 

(deff) based on an exponential regression analysis of over 300 load tests in both compression and 

tension. Among these tests, 239 tests were accompanied by a final installation torque 

measurement enabling an estimation of the Kt factor, which was established considering the 

effective diameter of the helical pile (deff). The data set was graphically analyzed and plotted to 

produce a line of best fit as shown in Figure 2-12. The empirical equation is expressed as:  

    
  

    
     (2-20) 
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where;    is curve fitting factor equal to 1433 mm
0.92

/m (22 in
0.92

/ft). 

 

Figure 2-12: Empirical Torque Correlation Line of Best Fit (Perko, 2009) 

Torque factors proposed by Perko (i.e. Eq. 2-23) were in good agreement with previous research 

presented by Hoyt and Clemence (1989), with smaller standard deviation and higher coefficient 

of determination (R
2
) indicating better representation of the tests data. It is interesting to note that 

the better fit was achieved despite the inclusion of both compression and tension load cases. This 

may be attributed to considering the effective diameter of the pile shaft in the equation rather 

than the grouping conducted by Hoyt and Clemence. Another important difference between 

Perko (2009) and Hoyt and Clemence (1989) analyses is the ultimate capacity criteria that was 

adopted. Hoyt and Clemence defined the plunging failure load as the load corresponding to a 

minimum strain rate of 102 mm/min. Perko, on the other hand, utilized the Davisson offset 

criteria. 

Considering compression and tension test data separately, the coefficient of determination 

increased for tension loading and decreased for compression loading. This was attributed to the 

fact that compressive capacity is affected by soil strata beneath the embedment depth, which is 
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not accounted for by the measured installation torque. However, the torque factor for 

compression was approximately 10% higher than for tension. 
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Chapter 3  

3 Site Investigation & Test Pile Configuration 

3.1 Site Location 

The test site is located in the small community of Lamont, Alberta, approximately 40 km north 

east of Edmonton (Figure 3-1), on the far south east corner of the Helical Pier Systems Inc. 

(HPS) pile manufacturing facility. The soil in the region is generally glacial till, which is 

predominantly comprised of an unsorted mixture of clay, silt and sand with interlayering of 

gravels. The thickness of this glacial till is commonly less than 25 m but can be up to 100 m at 

certain locations (Shetsen, 1990). The test site lies in the area of a stagnation moraine where 

deposits are described as being of uneven thickness. The local water sorted materials are up to 

30m thick with the potential for surface layers to be affected by lake and/or stream erosion 

(Shetsen, 1990). 

A site investigation involving cone penetration test (CPT) soundings was conducted to 

characterize the interlayering soil layers and establish their shear strength profile. The CPT 

soundings were advanced in the vicinity of the test piles as will be discussed later. Additional 

information was gained from two borehole logs corresponding to a location approximately one 

kilometer from the test site near the intersection of Highway 15 and 29, west of the town of 

Lamont. These boreholes indicate a very thin top layer of organic soil approximately 0.33 m 

thick, a second layer of hard clay till continuing to approximately 3.4 m depth, and a third layer 

of very hard highly weathered, medium plasticity clay shale to a depth of approximately 9 m 

with no trace of a water table (Tappenden, 2007). 
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Figure 3-1: Test Site Location 

3.2 CPT Testing 

Three CPT soundings were conducted on the site measuring the cone tip resistance (qc), sleeve 

friction (fs), and pore water pressure (u) at regular intervals of 0.02 m. The testing was 

conducted to a depth of approximately 9 m for one CPT provided by Cone Tech, however, due to 

hard/stiff soil conditions, the other two CPT tests provided by Sun-Alta Drilling were terminated 

at approximately 5.7 m because the push rod apparatus was nearing its capacity. All data analysis 

and interpretation was conducted by the author. 

3.2.1 CPT Results 

The results from CPT soundings including the cone tip resistance, qc and sleeve friction, fs, are 

presented in Figure 3-2. All three CPT soundings provide consistent results for depths below 2 m 

from ground surface. In addition, CPT soundings 1 and 3 provide consistent results for the top 2 

m, while CPT 2 is somewhat different. It appears that it went through a local pocket of very stiff 

material or a boulder.  

Test Site 
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The cone tip resistance values, qc, ranged from 2 to 10 MPa, whereas sleeve friction values 

ranged from 30 to 600 kPa. The friction ratio (fs/qc) was calculated and is presented in Figure 3-

2c. The pore pressure measurements during on shore CPT testing can be inaccurate. The pore 

pressure sensors mounted on a CPT unit require a stable saturation during measurement, and 

probing through unsaturated soils can create a suction, which has the potential to remove the 

saturation within the porous element resulting in unreliable pressure measurements (Robertson, 

2009). It seems saturation loss occurred during CPT soundings 1 and 2, thus the results of pore 

pressure are not presented. CPT sounding 3 on the other hand achieved and maintained 

saturation and the obtained pore pressure profile is shown in Figure 3-2d. 

Considering the test site consists of predominantly stiff over-consolidated clays, the loss of 

saturation is not unexpected. Additionally, considering the relatively large measured cone tip 

resistance (ranging from 2 – 10 MPa), the inaccuracy of pore pressure measurements would have 

little effect when determining the corrected cone resistance values. It is often suggested that 

uncorrected values for cone tip resistance can be used in scenarios of stiff over-consolidated 

materials (Robertson , 1990).  

a) b)  
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c) d)  

Figure 3-2: CPT – Raw Data: a) Cone tip resistance (qc); b) Sleeve friction (fs); c) friction 

ratio; d) Pore pressure (u2 & uo) 

3.2.2 Soil Properties 

 The cone tip resistance (qc) and the friction ratio (fs/qc) values can be used to determine the soil 

type using the soil behavior type (SBT) chart proposed by Robertson (1990).  However, the 

correlated soil type can be affected by the presence of large in-situ stresses, meaning that the soil 

type can change depending on the depth of soil. Therefore, it is recommended that the 

normalized cone tip resistance and friction ratio should be used for classification. The 

normalized cone tip resistance and friction ratio are given by  

    
  

  
      (3-1) 

    
  

      
      (3-2) 
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        (3-3) 

The corresponding profiles of normalized cone tip resistance and friction ratio are presented in 

Figure 3-3.  

The normalized friction ratio values ranged from 3 to 9% with the exception of the first one 

meter. The relatively high friction ratio, combined with the high cone tip resistance, indicates 

that the soil is highly over-consolidated and consists primarily of clay and silt and some sand. 

The normalized tip resistance and normalized friction ratio are plotted on the SBT chart as 

shown in Figures 3-4 and 3-5, which indicates that the top 3 m of soil fall within zones 4, 5, 6 

(clay, sand, silt mixtures) and the underlying soils fall within zones 11, 12 (very stiff over 

consolidated fine grained material). 

Lunne et al, (1997) provided estimates for the soil unit weight based on the SBT zones as shown 

in Table 3-1. For the top 3 m of soil (zones 4, 5, 6), the unit weight is 18 kN/m
3
, and for the 

underlying soils (zones 11, 12) the unit weight of 21 kN/m
3
. 

Table 3-1: Unit Weight Estimate based on SBT  

Zone 
Approximate Unit 

Weight (kN/m
3
) 

1 17.5 

2 12.5 

3 17.5 

4 18 

5 18 

6 18 

7 18.5 

8 19 

9 19.5 

10 20 

11 20.5 

12 19 
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a)  b)  

Figure 3-3: a) Normalized tip resistance b) Normalized friction ratio  

                

Figure 3-4: SBT chart  
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b)  

c)        d) 

    

Figure 3-5: SBT; Soil type with for depth a) CPT #1;b) CPT #2; and c)C PT #3 

The undrained shear strength (Su) of the soil can be estimated using the cone tip resistance 

following different approaches  (Lunne, Robertson, & Powell, 1997). It can be estimated using 

the total cone resistance, i.e.  

    
      

  
            (3-4) 
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where qc is the total cone resistance,      is the total in-situ vertical stress, and Nk represents the 

cone factor.  

It can also be estimated using the effective cone tip resistance,  

   
  

  
 

     

  
 (3-5) 

or using the excess pore pressure measurements,  

    
  

   
 (3-6) 

Considering the potential inaccuracy of pore pressure measurements taken during the CPT 

soundings, the total cone resistance method is used as presented in Equation  

    
      

  
           (3-4) 

Meigh (1987) reported that the typical cone factor for glacial clays ranges from 14 to 22 with an 

average of 18. These values were empirically correlated to the shear strength values obtained via 

large scale plate bearing tests. The effects of overconsolidation (OCR) and plasticity index (Ip) 

were also considered in the analysis. He reported proportional relationships for both parameters 

with the cone factor. Lunne et al. (1997) analyzed large amounts of testing data and suggested 

that, generally, cone factors range from 15 to 20. Considering the elevated friction ratios and the 

associated near-site borehole logs, it is assumed that an appropriate estimation of Nk is 18.  

OCR can also be used to provide an estimate of the undrained shear strength. OCR can be 

estimated by: 

           
      

  
   (3-7) 

The variation of OCR with depth is shown in Figure 3-6. As can be noted from Figure 3-6, OCR 

for the top 1.0 m exceeds 40 and ranges between 10 and 20 for soil below 1.0 m, suggesting a 

highly over-consolidated soil profile; i.e., overconsolidated clay till underlain by heavily 

overconsolidated weathered clay shale. 
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Figure 3-6: Estimated OCR profiles 

The undrained shear strength can be correlated to OCR according to the simplified critical state 

soil mechanics model (Transportation Research Board, 2007), i.e.: 

                    
   (3-8) 

The estimated undrained shear strength profiles calculated using Equations 3-4 and 3-8 are 

provided in Figure 3-7.  

The undrained shear strength evaluated based on the total cone tip resistance varies from 100 kPa 

at 1.0 m depth gradually increasing to approximately 900 kPa at 9.0 m depth. On the other hand, 

the undrained shear strength estimated based on OCR values varies from approximately 20 kPa 

at 1.0 m to approximately 250 kPa at 9.0 m depth. The average undrained shear strength was 

determined considering all CPT data. In addition, it is assumed that the remolded shear strength 

is equal to the lesser of the already estimated shear strength and the measured sleeve friction. 

Both peak and remolded shear strength profiles are shown in Figure 3-7. The peak and remolded 
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shear strength values used for further analysis are presented in Table 3-2 as averaged within one 

meter intervals; i.e 0 to 1 meters, 1 to 2 meters etc.. 

 

a) b)  

Figure 3-7: Undrained shear strength Su estimated from: a) Nk ;b) OCR  
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Figure 3-8: Design Shear Strength Peak (Sup) and Remolded (Sur) 

Table 3-2: Peak shear strength (Sup) and remolded shear strength (Sur) values averaged 

over 1 m intervals. 
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1 83.4 112.6

2 70.3 73.7

3 96.5 104.1

4 175.4 199.8

5 238.8 246.6

6 249.3 421.8

7 267.8 332.2

8 264.1 552.2

9 307.2 597.8
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3.3 Test Pile Configurations & Instrumentation 

Five different pile configurations were chosen to enable evaluating the influence of pile diameter 

and helical plates’ configuration on the installation torque and the ultimate load carrying 

capacity. Each pile configuration was tested in both compression and tension (uplift), with the 

exception of the 10-3/4” diameter pile configurations. 

Prior to installation, all test and reaction piles were marked along their length in order to indicate 

embedment depth every 300 mm (one foot). These markings were utilized to provide manual 

recording of depth with time coinciding with installation torque measurements. In addition, 

selected pile configurations were instrumented with strain gauges installed at different locations 

along their length. The readings of the strain gauges were used to evaluate the load transfer 

mechanism present during static load testing. 

3.3.1 Pile Configurations 

Pile configurations utilized in the testing program are detailed in  

Table 3-3. Pile IDs include a letter, a number then a letter. The first letter denotes the loading 

mode, whereby “C” refers to compressive loading, “T” refers to tension (uplift) loading, and 

“RP” refers to a pile utilized as a reaction pile within the loading test setup. The number, 6, 8 or 

10, refers to the pile diameter, namely 6-5/8” (168.3 mm), 8-5/8” (219.1 mm)and 10-3/4” (273 

mm), respectively. These diameters are some of the most commonly used sizes of large capacity 

helical piles. The last letter is either an “S” or a “D”, which refers to a single helix or double 

helices, respectively.  

The helix diameter was approximately three times the pile diameter, i.e., the 168.3, 219.1, and 

273 mm pile were fitted with 457.2, 609.6 and 762 mm helical plates, respectively. For piles 

with double helices, the inter-helix spacing was equal to three times the helix diameter. A 

schematic drawing of the test pile configurations is provided in Figure 3-9. 
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Figure 3-9: Test Pile Drawing 
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Table 3-3: Pile Configuration and Testing Summary 

  Pile Shaft Helix     

Pile ID 
Length 
(m) 

Embedment 
(m) 

Diameter 
(m) 

No. of 
Helices 

Diameter  
(m) 

Spacing 
Ratio 
(S/D) 

Axial Load 
Testing 

Strain 
Gauge 

C6S 7.62 6.858 0.1683 1 0.4572 - Compression YES 

T6S 7.62 6.858 0.1683 1 0.4572 - Tension NO 

C6D 7.62 6.858 0.1683 2 0.4572 3 Compression NO 

T6D 7.62 6.858 0.1683 2 0.4572 3 Tension NO 

C8S 7.62 6.858 0.2191 1 0.6096 - Compression YES 

T8S 7.62 6.858 0.2191 1 0.6096 - Tension YES 

C8D 7.62 6.858 0.2191 2 0.6096 3 Compression YES 

T8D 7.62 6.858 0.2191 2 0.6096 3 Tension YES 

C10S 7.62 6.248 0.273 1 0.762 - Compression YES 

C10D 7.62 6.248 0.273 2 0.762 3 Compression YES 

RP1-8 7.62 6.248 0.273 1 0.762 - NA NO 

 

3.3.2 Strain Gauge Installation 

Some of the test piles were instrumented with axial strain gauges attached to their exterior walls.  

For single helix piles, strain gauges were attached at three locations along the pile shaft. For 

double helix piles, strain gauges were attached at five locations along the pile shaft. Two quarter-

bridge strain gauges were attached at each location. Strain gauge readings during the load tests 

were used to determine the load transferred to the soil through the pile shaft and the helices.  To 

measure the load transferred through the shaft, strain gauges were installed at the mid-point 

between the pile head at the top helical plate and the mid-point between the two helices. To 

measure the helical plates’ loads, strain gauges were installed approximately 75 mm above and 

75 mm below each helix.  

The strain gauges were CEA-06-250UN-350 general purpose strain gauges applied in quarter-

bridge arrangements, which were installed diametrically opposite and arranged longitudinally in 

line along the pile shaft. All lead wires were fished from the gauge location through small holes 

in the shaft near the installed locations and up through the center of the pile terminating at the 

pile head where they were connection to a data acquisition module. As shown in Figure 3-10, 

each gauge location was prepared by sanding the exterior wall of the pile to enable complete and 
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even adhesion of the gauge to the pile surface. Once gauges were installed and lead wires were 

connected, the strain gauge and its connection were treated with a surface sealant to protect it 

from moisture. After all adhesives and sealants were cured, the entire quarter bridge circuit was 

tested for voltage leaks and baseline resistance. Once proper working order was established, the 

entire gauge location was then covered with a layer 15 mm thick of ceramic epoxy (Nordbak 

Pneu-Wear produced by Loctite intended for high abrasive environments), which was then 

covered with tapered edges.  

 

 

a)  

 

b) 

Figure 3-10: a) Double Helix Instrumented Pile with Installed Strain Gauges b) Double 

Helix Instrumented Pile Strain Gauges Coated in Protective Epoxy 
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3.3.3 Installation Procedure & Layout 

All test and reaction piles were spaced centre-to-centre at 2.743 m (9 feet) in a semi grid 

formation as shown in Figure 3-11. All 168.3 and 219.1 mm diameter test piles were arranged to 

have two-reaction pile loading system. The 273 mm diameter piles were arranged to have four-

reaction pile loading system. The reaction piles (RP) were arranged to be utilized in testing 

mutiple piles as shown in Figure 3-11.  

The spacing between a reaction pile and a test pile of 168.3 mm diametr was 2.134 m (7 ft), 

coressponding to 4.7 times the diameter of the largest helix between the edge of the helices. The 

spacing between a reaction pile and a test pile of 219.1 mm diameter was 2.134 m (7 ft), 

coressponding to 3.5 times the diameter of the largest helix betweaen the edge of the helices. The 

spacing between a reaction pile and a test pile for the 273 mm diameter pile was 3.1 m (10.17 

feet), coressponding to a ratio of 4.1 times the diameter of the largest helix between the edge of 

the helical plates.  

 

Figure 3-11: Lamont Test Site Layout – Pile Locations & CPT Soundings 
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Chapter 4  

4 Installation Torque  

Installation torque applied to a helical pile is required to overcome the soil resistance as the pile 

advances into the soil. As the embedded surface area of the installed pile increases so does the 

soil resistance and the required installation torque. The rate of change in required installation 

torque depends on the change in soil strength/stiffness.  

The-current-state-of-practice is to install helical piles with a hydraulic powered rotational drive 

head. First, the helical pile is affixed to the drive head; a vertical pressure (crowd) is applied to 

advance the lead helical plate into the soil; and finally, torque is applied sufficient enough to 

engage the pitch of the helical plates within the soil thereby producing an advancing force 

effectively pulling the pile into the soil.  

Installation torque is most commonly measured by recording the hydraulic pressure in line with 

the rotary hydraulic drive head. This measured pressure is either a direct forward acting pressure 

or, in some cases, a differential pressure (forward minus reverse). Pressure readings are 

commonly recorded as pounds per square inch (psi), and are then converted to an effective 

applied torque via an efficiency factor, K, provided by the manufacturer of the drive head. 

Torque measurement can be conducted at intervals throughout the installation process to produce 

the profile of torque with depth. The final torque and/or the average torque measured over a 

distance equal to 3 times the diameter of the largest helix (i.e. last 3D) is usually recorded and 

used as quality control via CTC.  

4.1 Measurement of installation parameters 

Field installations of all test and reaction piles within this study were conducted with the use of a 

boom truck and a 156 kN-m (115,000 ft-lb) capacity hydraulic torque drive head (two speed 

Digger 1400 produced by Eskridge Inc.) as shown in Figure 2-4.  
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Figure 4-1: Boom Truck & Digger 1400 

During installation, measurements were made to accurately monitor the rate and magnitude of 

applied forces. The differential hydraulic pressure was measured by means of pressure 

transducers mounted in line with the forward and reverse hydraulic lines powering the drive 

head. Mechanical torque and vertical crowd were monitored via a load cell referred to as the 

“Torque Pin” mounted at the juncture between the drive head and the boom truck dog-bone. The 

installation rate was captured via a proximity sensor mounted near the tool of the drive head. 

Lastly, the embedment depth was recorded manually through the visual inspection of depth 

markings on the exterior pile wall. All data was recorded with a data acquisition system 

connected to a computer; and all manual observations were recorded referencing their specific 

real time.  
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4.1.1 Torque Pin  

The Torque Pin is a load cell that can take accurate strain measurements, which are then 

calibrated to provide force readings. It was located within the joint connecting the boom truck 

dog-bone to the drive head, along two precise shear planes. The measurement of forces at these 

precise intersections enables the determination of the torque through the coupling of the 

horizontally oriented shear forces, and the determination of crowd, through the coupling of the 

vertically oriented shear forces.  

The load cell is constructed such that it takes four separate temperature-independent strain 

measurements. To provide redundancy, two identical pairs of strain gauges are used to provide 

clear indication of potential errors during measurement. It is designed to provide clear signal 

transmission despite the electrically ‘noisy environment’. Force measurements were taken once 

every second throughout the duration of installation. 

To calibrate the torque pin readings, a calibration test bench was constructed as shown in Figure 

4-2. This calibration table consisted of two hydraulic pistons and a fixed central section. The 

hydraulic pistons were controlled via data acquisition system connected to a computer. In order 

to effectively calibrate the torque pin, it was fixed similar to its alignment within the boom truck 

and drive head unit. During calibration, a maximum torque of 190 kN-m and force of 550 kN 

were applied, which corresponded to approximately 120% of the expected capacity of the drive 

head and boom truck torque and crowd loading limits, respectively. The applied forces were 

controlled by increasing the hydraulic pressure within the piston chamber at intervals of 

approximately 345 kPa (50 psi).  The calibration testing was thus conducted by increasing the 

hydraulic pressures while measuring the signal in pulse position modulation (ppm) provided by 

the torque pin and zeroing the reading offset. The results of this calibration test are presented in 

Figure 4-3 and Figure 4-4. A linear regression was applied to the recorded data to provide an 

accurate linear fit with coefficient of determination (R
2
) values of 0.9967 for the torque sensor 

measurements and 0.9951 for the crowd sensor measurements. This indicated the accuracy of the 

instrument. It should be noted that it was more difficult to control the hydraulic pressure below 

670-1340 kPa (100-200 psi), and consequently, the lower end of the calibration near zero load 

was difficult to establish accurately. 
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Figure 4-2: Torque Pin Calibration Table 

 

Figure 4-3: Torque Sensors Calibration 
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Figure 4-4: Load Sensors Calibration 

4.1.2 Hydraulic Pressure  

The hydraulic system was monitored in conjunction with force measurements taken through the 

torque pin. Forward and reverse pressure lines were equipped with a set of pressure transducers 

located at the farthest end of the boom nearest the drive head. This minimized potential effects of 

frictional losses over the length of the hydraulic hosing as shown in Figure 4-5.  
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Figure 4-5: Hydraulic Pressure Transducer 

Every drive head and hydraulic machine combination must be accompanied by a calibration 

specification sheet that details the efficiency of the equipment to produce a working torque. 

Conversion from the differential pressure to an applied working torque is conducted via a 

predetermined efficiency factor, K, which for the Eskridge motor shown is equal to 8.46 at low 

speed and 23.00 at high speeds. Therefore, the measured torque according to pressure 

measurements is: 

                      (4-1) 

where P is the pressure hydraulic differential.  

It should be noted that the efficiency of the drive head/hydraulic machine, and hence the 

efficiency factor can change significantly during the service life of the drive head. For the results 

shown herein, all installation torque measurements calculated via the conversion of hydraulic 
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pressure to torque were conducted with a K factor equal to 23. This value was confirmed through 

data analysis after installation as will be discussed. 

4.1.3 Installation Rate  

The rate of installation was effectively recorded through the combined use of two sets of data. A 

proximity sensor, as shown in Figure 4-6, was attached near the kelley of the drive head where 

the helical pile is fixed for installation. The proximity sensor provided a continuous count in real 

time of each quarter turn as the drive head rotated and advanced the pile into the ground.  

 

Figure 4-6: Installation Rate Measurement 

The installation rate was also evaluated through marking the shafts of all installed piles at 0.3 m 

(1.0 ft) intervals and monitoring their advance into the ground. As each mark passed the original 

ground surface, the real time was recorded to provide the time required to install each 0.3 m of 

the pile. The installation rate was then established assuming constant rate within each 0.3 m. 

The real time manual depth recordings and rotational counts, the torque, crowd, and pressure 

data were fit to a depth profile. The pile installation torque profile consists of all data measured 

at a rate of one recording per second. 
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4.2 Torque Measurement Sensitivity 

4.2.1 Effects of Crowd on Installation Torque Generation 

The vertical force applied during the rotation of a helical pile increases the soil resistance to the 

advancing pile and hence increases the required installation torque. To account for this effect, 

Perko (2001) included crowd in his theoretical energy-based model to predict the installation 

torque.  Similarly, Rogers (2012) introduced a factor Kht, defined as the ratio of the horizontal 

force divided by the vertical force utilized, when determining the torque required to rotate a pile 

against the soil-pile skin friction or adhesion forces.  However, Sakr (2013) neglected the down 

pressure forces (crowd) during installation in his model as he deemed it to be negligible.  

The measured crowd and installation torque profiles collected in the current study are presented 

in Figures 4-7 to 4-9. Inspecting the results in these figures confirms that there is a positive 

relation between the installation torque and the measured crowd. As the vertical crowd increased, 

so did the required installation torque. However, it should be noted that it is a regular practice for 

helical pile installation crews to apply increased downward pressure in situations of hard 

installation conditions to avoid auguring and causing soil disruption. Thus, the relation between 

the crowd and installation torque is operator-dependent rather than depending only on a soil 

resistance response. 

To investigate the relation between the installation torque and crowd, all the corresponding 

values acquired during installation are plotted as dots in Figure 4-10. Inspecting the results in 

Figure 4-10 reveals that both the crowd and installation torque increased with depth. It is noted 

that the torque increased approximately proportional to the crowd with a lower bound rate equal 

to       
     

  
. This indicates that one of two scenarios exists; the application of increased 

crowd results in an increase in torque through a normal force and friction force relation, or as the 

soil resistance increases the operator responds by increasing crowd. The data acquired within his 

study is insufficient to determine with surety the existing scenario; however it is clear that a 

relation exists.  
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Figure 4-7: Install force profiles for 179 mm pile: a) C6S; b) T6S; c) C6D; and d) T6D 

0 50 100 150 

0 

1 

2 

3 

4 

5 

6 

7 

0 20 40 60 

Crowd (kN) 

D
ep

th
 (

m
) 

Torque (kNm) 

0 50 100 150 

0 

1 

2 

3 

4 

5 

6 

7 

0 20 40 60 

Crowd (kN) 
D

ep
th

 (
m

) 

Torque (kNm) 

0 50 100 150 200 

0 

1 

2 

3 

4 

5 

6 

7 

0 20 40 60 80 

Crowd (kN) 

D
ep

th
 (

m
) 

Torque (kNm) 

0 50 100 150 200 

0 

1 

2 

3 

4 

5 

6 

7 

0 20 40 60 80 

Crowd (kN) 

D
ep

th
 (

m
) 

Torque (kNm) 



 

65 

 

Figure 4-8: Install force profile for 219 mm pile a) C8S; b) T8S; c) C8D; and d)T8D 
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Figure 4-9: Install Force Profile for 273 mm pile a) C10S; and b) C10D 
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4.2.2 Hydraulic Versus Mechanical Torque Measurements 

Accurate final torque measurements, usually recorded as the average torque for the last one 

meter of installation, or 3D, and necessary for empirical evaluation of the pile capacity. The 

conventional method for measuring installation torque used in the helical piling industry involves 

taking measurements from a calibrated hydraulic pressure dial gage mounted in line with the 

forward pressure (or forward and reverse)  of the drive head. When taking a torque measurement, 

it is necessary to slow the rotational speed of the drive head (i.e. maintain a low idle) to induce a 

consistent torque when recording the pressure reading. At elevated speeds, the high-flow 

hydraulic conditions have a tendency to create a bouncing dial reading and potentially elevated 

pressure readings not consistent with the true applied torque (Bradka & Kasprick, 2013; Perko, 

2009). On the other hand, mechanical torque measurement (e.g. torque pin) is not affected by the 

rotational speed. The instrumented torque pin measures strains in the pin material and provides a 

signal calibrated to torque forces. The efficiencies of the motor and hydraulic system are 

bypassed and only the resulting applied force is measured and recorded.  

To evaluate the effect of the rotational speed of the hydraulically calculated torque, the 

hydraulically calculated and mechanically measured installation torque profiles are compared in 

Figure 4-11 for three different rotational speed conditions. It should be noted that the pressure 

measurements were converted to torque with k = 23. Figure 4-11a shows that the hydraulic and 

mechanical toque measurements for C10D were almost identical for the case of low rotational 

speed (3-5). On the other hand, Figure 4-11b shows that for pile C6S, which was installed at high 

rotational speed of 15-20 rpm, the hydraulically measured torque was drastically different both in 

magnitude and profile from the mechanically measured torque. To further elucidate this point, 

Pile T8D was installed using different rotational speeds as shown in Figure 4-11c. The torque 

profiles presented in Figure 4-11c confirm the variation of the hydraulically measured torque 

with the installation rotational speed. Initially, the rotational speed was approximately 20 rpm 

and the hydraulically measured torque was vastly different from the mechanically measured 

torque. In two intervals during T8D installation, at depths of approximately 3.6 m and 6 m, the 

installation rate was decreased from 15-20 RPM to approximately 5-6 RPM. At these intervals, 

the hydraulically measured torque was in good agreement with the mechanically measured 

torque.   
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This clearly demonstrates the sensitivity of the hydraulically measured torque to the installation 

speed and the stability of the mechanically measured torque (torque pin).  For this reason, the 

installation torque depth profiles used in the analysis in the following consist of torque measured 

via the torque pin only. 
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Figure 4-11: Hydraulic and mechanical torque: a) measured at low RPM for C10D; b) 

measured at high RPM for C6S; and c) measured at variable RPM for T8D 
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4.2.3 Effects of Installation Rate on Torque 

During installation of helical piles, it is recommended to advance the pile into the soil at a 

minimum rate of 80% of the blade pitch during each revolution (Perko, 2009). If the pile cannot 

be advanced into the soil, auguring occurs, which significantly disturbs the surrounding soil. The 

installation torque reduces as the helical plates pass through remolded soil with reduced strength. 

Thus, the ‘capacity to torque’ correlation factor established from the reduced installation torque 

may not correlate well with the pile capacity. Extensive auguring may also cause disturbance 

around the helical plate, and hence, significant displacement would be required to mobilize any 

bearing/shaft friction resistance within the affected area (Perko, 2009). 

The commonly used rotational speed of installation (25-30 rpm) enables continuous smooth 

installation, while allowing the operator to react to changing installation conditions. However, 

this high rotational speed compromises the accuracy of hydraulically measured torque. In most 

cases, the rotational speed is reduced to stabilize the hydraulic system and facilitate an accurate 

hydraulic torque reading (Bradka & Kasprick, 2013). On the other hand, changes in the 

rotational speed do not alter the torque pin readings. Given that the readings from the torque pin 

and the hydraulic system matched well when the rotational speed was ≤ 5 rpm, it is 

recommended to maintain the rotational speed at 5 rpm while taking the torque reading to ensure 

its accuracy. 

It is necessary to investigate the potential effects of installation rotational speed on the accuracy 

of the hydraulic torque measurement when installing helical piles in other soil conditions. This 

investigation can also provide valuable insights as to soil disturbance due to the installation rate. 

For example, the installation rate may reduce the strength of cohesive soil to its residual value, 

which will consequently affect the required torque.   

4.3 Installation Torque Results 

Livneh and El Naggar (2008) stated that the installation torque is a measure of the energy 

required to overcome the shear strength of the soil and hence is directly related to the soil shear 

strength and the pile capacity. The installation torque depends on the embedded surface area of 

the pile (Sakr, 2013; Perko, 2001; Rogers, 2012). Thus, it is expected that installation torque 

increases as the depth increases, especially for piles installed in soil whose strength increases 
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with depth. The rate of increase in installation torque would correspond to the pile surface area 

embedded in the soil and the change in soil strength. 

The torque depth profiles constructed for all test and reaction piles installed at the Lamont site 

were consistent with reliable readings and repeatable results. All piles displayed similar trends of 

generally increasing torque with depth. This is evident from Figure 4-13, which compares the 

installation torque profiles for all reaction piles, consisting of 273.0 diameter pipe and single 762 

mm helix. Similarly, Figure 4-14, Figure 4-15 and Figure 4-15 compare the torque profiles for all 

168.6, 219.1 and 273.0 mm diameter tests piles (both single and double helices). These figures 

confirm that all piles with the same geometry displayed similar torque profiles. It is also noted 

that the double helix piles generated larger final torque compared to single helix piles. This 

confirms that the second helix increases the installation torque.  

 

 

Figure 4-12: Torque Profile for Reaction Piles (RP1-8) 
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Figure 4-13: Torque Profile for Test Piles; C6D, T6D, C6S, T6S 

 

Figure 4-14: Torque Profiles for Test Piles; C8D, T8D, C8S, T8S 
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Figure 4-15: Torque Depth Profile Test Piles; C10S, C10D 

In order to investigate the effect of the pile diameter on the installation torque, the torque profiles 

for piles with different diameters are presented in Figure 4-16 and Figure 4-17 for single and 

double helix piles, respectively. It is clearly evident that the increase in pile pipe diameter has a 

more significant effect on the required installation torque than that of the second helix. For 

example, inspecting Figures 4-16 and 4-17, the addition of second helix resulted in an increase of 

the final torque by 5 - 10 kNm, whereas the increase in the pile diameter from 168.6 to 219.1 mm 

(and from 219.1 to 273.0 mm) increased the installation torque by 20 - 30 kNm. This confirms 

that the installation torque is proportional to the total pile embedded surface area and the soil 

shear strength. 
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Figure 4-16: Torque Depth Profile for Single Helix Piles 

 

Figure 4-17: Torque Depth Profile for Double Helix Piles 
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4.4 Average and Final Installation Torque 

Three recordings of installation torque were evaluated as follows: an overall average torque 

weighted over the entire embedment depth; an average torque weighted over the last installed 

depth equal to 3D; and the final maximum installation torque measured at final embedment. The 

final torque and the torque averaged over the last 3D exhibited similar trends; i.e. they increased 

as the embedded area of the pile increased. The difference between the two values increased as 

the diameter of the pile/helix increased. On the other hand, the overall average torque values 

were less consistent and thus deemed inappropriate for correlation with pile capacity. Final 

install torque measurement has a tendency to include short spikes not indicative of the major soil 

strata relied upon for bearing at the lead helix. Therefore, the average torque weighted over the 

last installed depth equal to 3D, presented in Figure 4-18, are utilized to establish the CTC 

factors within this study. 

 

 

Figure 4-18: Average and Final Installation Torque 
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considered. Some models assume it contributes to torque generation, while others do not. The 

models also differ with regard to the assumption related to the shear plane between the 

advancing helical plate and the surrounding soil.  

 

A simplified theoretical model is employed in this study to predict the variation of the 

installation torque with depth. It assumes that as the helical pile advances into the soil, the 

shearing plane is located along the surface areas of the pile shaft and helical plates. Thus, there is 

no cylindrical shear surface surrounding the helical plates. In addition, it assumes the crowd 

force is applied consistently (i.e. no excessive crowd applied), hence they have insignificant 

effect on installation torque. 

 

In this theoretical model, the installation torque is based on the summation of the contribution of 

soil shear resistance over the pile embedded area, i.e.:  

 

                                                     (4-2) 

 

where,           is the torque due to soil resistance along the embedded pile shaft,                

is the torque due to soil resistance along the lead helix and                is torque due to soil 

resistance along the rear helix. These torque contributions may be given by: 

             
  

 

 
      

 
     (4-3) 

 

                                     
 
   (4-4) 

 

                                         
 
   (4-5) 

 

where 

     
 

 
    

    
           

 

 
    

    
            

  
 

 
 (4-6) 

 

in which,      is the area of the lead helix,     is the area of the rear helix,    is the outer 

diameter of the pile shaft,    is the distance from the toe to the lead helix,   is the pitch of the 
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helix,   is the spacing between lead and rear helix,      is the radius of gyration of the helical 

plate,     is the undrained shear strength at a depth z in meters,     is the average undrained shear 

strength calculated over a depth equal to the pitch of the helical plate, and    is equal to the 

depth increment. Substituting Equations 4-3, 4-4 and 4-5 into Equation 4-2, the final installation 

torque for each embedment depth is given by: 

 

                                                 
  

 

 
      

 
       (4-7) 

 

Employing Equation 4-7, the installation torque is calculated over depth steps of 0.02 m (the 

smallest increment enabled by the CPT data acquisition). The lead and rear helix torque 

contributions were calculated using the peak undrained shear strength of the soil, while the pile 

shaft torque contribution was calculated employing the remolded undrained shear strength of the 

soil. These assumptions reflect the advancing path of a helical pile during installation. The soil 

along the pile shaft is assumed to experience maximum shearing/disturbance due to the passage 

of the helical plates as well as the advancing shaft, thereby most likely will exhibit residual shear 

strength. On the other hand, the lead helix will penetrate/shear an undisturbed path throughout 

installation until final embedment is reached. The rear-most helix can be assumed to take one of 

two possible paths: follow the lead helix through an existing failure plane, and hence experience 

remolded soil resistance; or introduce a new path through undisturbed soil. It is assumed here to 

follow a unique path not previously taken by the lead helix; i.e. it experiences peak soil shear 

strength.  

 

 Figure 4-19 to Figure 4-24 present the predicted installation torque profiles for the six helical 

pile configurations tested in this study, along with the measured torque data. It is noted that the 

predicted torque profiles agree well with the measured installation torque. This excellent 

agreement indicates that this simple torque prediction model, if calibrated with additional site 

experimentation and site exploration, can provide an additional quality assurance and quality 

control element for helical piles. Further research efforts toward gathering data sets for different 

soil types and pile configurations would be valuable.  
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Figure 4-19: 168.6 mm Diameter Pile with Single Helix Torque Prediction 

 

Figure 4-20: 168.3 mm Diameter Pile with Double Helix Torque Prediction 
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Figure 4-21: 219 mm Diameter Pile with Single Helix Torque Prediction 

 
Figure 4-22: 219 mm Diameter Pile with Double Helix Torque Prediction 
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Figure 4-23: 273 mm Diameter Pile with single Helix Torque Prediction 

 

 

Figure 4-24: 273 mm Diameter Pile with Double helix Torque Prediction 
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Chapter 5  

5 Axial Pile Load Tests 

The experimental investigation comprised six compression and four tension load tests. The load 

tests were conducted as per applicable ASTM standard procedures. The compression or tension 

loads were applied to the pile head while simultaneously monitoring the pile movement. In 

addition, seven of the test piles were instrumented with strain gauges to enable observations of 

load transfer mechanisms. 

5.1 Setup & Layout 

The test site layout was configured to minimize the required number of reaction piles. For all 

168.6 and 219.1 mm diameter piles, a system of two reaction piles and a single reaction beam 

was used. In the case of the 273.0 mm test piles, a four-reaction pile arrangement was employed. 

The layout of the installed test and reaction piles are as per Figure 3-11, where all pile spacing is 

a minimum of 2.7 m center-to-center. 

The compressive and tension loads were applied by using a hydraulic jack with maximum 

capacity of 2,530 kN.  A pneumatic pump was utilized to control the load increment. The load 

was measured employing two methods: using a calibrated load cell with a maximum capacity of 

4,000 kN situated between the reaction beam and the hydraulic jack; and using a pressure 

transducer with a maximum capacity of 2,530 kN, which was mounted in line with the hydraulic 

jack. Figure 5-1 shows the arrangements for the hydraulic jack and load cell arrangements for 

both the compression and uplift loading, while Figure 5-2 demonstrates the 2-pile and 4-pile 

reaction frame arrangements.   

Both vertical and horizontal pile head movements were monitored during loading. Two linear 

variable displacement transducers (LVDT’s) were utilized to measure the vertical settlement of 

the piles. The LVDTs were mounted on the pile head, diametrically opposite each other, and 

were bearing against stationary independent reference steel beams. Three manual gauges were 

similarly mounted to the pile head to provide redundancy. In addition, two manual gauges were 

arranged orthogonally to one another in the horizontal plane to measure the lateral movement of 
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the pile head. The LVDTs and manual gauges provided accurate measurement to the nearest 

0.0254 mm. The LVDTs arrangement and the reference beams are shown in Figure 5-1. All load 

test data, with the exception of pile strain gauge readings, were recorded at one second intervals 

via the data acquisition module Graphtec midi logger GL200A shown in Figure 5-3. 

 

a) b)   

Figure 5-1: Loading Setup a) Compression b) Tension 
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a)   

 

b)   

Figure 5-2: Reaction Setup a) Two Reaction Pile Setup b) Four Reaction Pile Setup 
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Figure 5-3: Data Acquisition System 

 

5.2 Procedure 

A quick maintained load procedure was implemented in the pile load tests. The load was applied 

in increments of 50 kN (5 % of the anticipated failure load). For each load increment, the load 

was maintained at an almost constant level for 5 minutes, as set out in ASTM D1143 (2007). 

Once the rate of pile head movement increased and failure was approached, or the testing 

apparatus was at its limit, the final load increment was maintained for a period of 10 minutes. 

Following the maximum applied load, the load was removed in approximately 200 kN 

increments while maintaining each increment for 5 minutes. The final unloading of the pile head 

was monitored for an additional 10 minutes. 
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5.3 Pile Load Test Results 

The results from the axial pile load testing program are presented herein in terms of load-

settlement curves and load transfer diagrams. The load-settlement curves are interpreted to 

determine the ultimate pile capacity values.  The determined pile capacity values are then used, 

along with average installation torque measured over a depth of the last three times the largest 

helical diameter, to establish a Capacity to Torque Correlation (CTC) factor that can be used for 

the prediction of the ultimate pile capacity.  

5.4 Interpreted Ultimate Capacity 

All static axial load tests were conducted according to the quick maintained load test procedure 

and, as such, appropriate interpretation methodologies were employed. Four methods were 

utilized for interpreting the tests results to determine the interpreted ultimate pile capacity, 

including: the Davisson’s offset method (Davisson, 1973); the method proposed by Elkasabgy 

and El Naggar (2015), which defines the ultimate load as the load corresponding to net 

settlement equal to 8% of the largest helix diameter; the method proposed by Fuller and Hoy 

(1970); and the plunging failure (if occurred) taken as the maximum load occurring.  

5.5 Load Test Results 

The load test results will be discussed first in terms of the load-settlement curves and the 

interpretation of the ultimate load carrying capacity of the test piles. 

5.5.1 Compressive Load Tests 

Figure 5-4 presents the load-settlement curve for Pile C6S. It exhibits a typical plunging failure 

with a failure load of 644 kN, which occurred at a settlements of 25 mm. The other interpreted 

failure criteria produced interpreted ultimate load varying from 430 to 630 kN, with Davisson’ 

criterion providing the lowest value while Elkasabgy and El Naggar was the closest to the failure 

load. These loads corresponded to settlements varying from 7.2 mm to 19.3 mm. Similarly, 

Figure 5-5 presents the load-settlement curves for Pile C6D. It clearly demonstrates that the pile 

experienced plunging failure, which occurred at 1144 kN with a settlement of 27.4 mm. The 

other failure criteria predicted ultimate load capacity varying from 896 kN to 1090 kN, with 

Davisson’ criterion providing the lowest value while Elkasabgy and El Naggar was the closest to 
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the failure load. The corresponding settlement values varied between 12.6 and 27.0 mm. It 

should also be noted that the capacity of the double helix pile C6D is much higher than the 

capacity of the single helix pile C6S.   

Piles C8S and C8D exhibited the same trends as can be noted from the results presented in 

Figures 5-6 and 5-7. They experienced plunging failure at 1064 and 1516 kN, respectively, 

which occurred at settlements of 39.4 and 34 mm. Similarly, the interpreted failure criteria 

provided lower loads corresponding to lower settlement; the interpreted ultimate load using the 

Elkasabgy and El Naggar criterion was the closest to the actual failure load and the Davisson’s 

criterion provided the lowest capacity. Figures 5-8 and 5-9 present the results for piles C10S and 

C10D, respectively. Both piles exhibited plunging failure, with failure loads 1445 kN and 1822 

kN.  It is also noted that both piles experienced significant creep settlement. As can be noted 

from the figures, the onset of failure occurred at 58.0 mm and 85.1 mm, respectively, but the 

creep settlement reached 77.3 and more than 100mm. The load test was finally stopped due to 

the excessive displacement that exceeded the capacity of the loading system.  

 

 

Figure 5-4: Load Settlement Curve for Test Pile C6S 
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Figure 5-5: Load Settlement Curve for Test Pile C6D  

 

Figure 5-6: Load Settlement Curve for Test Pile C8S 
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Figure 5-7: Load Settlement Curve for Test Pile C8D 

 

Figure 5-8: Load Settlement Curve for Test Pile C10S 
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Figure 5-9: Load Settlement Curve for Test Pile C10D 
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5.5.2 Uplift Load Tests 

Figure 5-10 shows the load-displacement of Pile T6S, which exhibited clear failure with a 

quickly terminating non-linear transition region. Failure occurred at 870 kN, while the 

interpreted ultimate capacities ranged between 720 and 837 kN, which occurred at displacements 

of 10.7 - 31.7 mm. Similarly, Pile T6D displayed recognizable failure as shown in Figure 5-11 

with failure load of 982 kN. The interpreted ultimate capacities ranged between 870 – 982 kN, 

and the corresponding displacements ranged between 15.4 and 22.5 mm. Figures 5-12 and 5-13 

present the results for piles T8S and T8D. Again, they show the same trends with failure loads of 

1100 and 1380 kN, while the interpreted ultimate capacity varied from 970 to 1020 for T8S and 

from 1053 to 1276 kN. It is noted from the tension load tests that failure occurred at relatively 

smaller displacements. Consequently, the interpreted failure loads were much closer to the actual 

failure loads.  

 

 

Figure 5-10: Load Settlement Graph Test Pile T6S 
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Figure 5-11: Load Settlement Curve for Test Pile T6D 

 

Figure 5-12:Load Settlement Curve for Test Pile T8S 
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Figure 5-13: Load Settlement Curve for Test Pile T8D 

5.5.3 Comparison of interpreted failure load criteria  
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and El Naggar and Fuller and Hoy appear to be more appropriate for the determination of the 

capacity of large diameter helical piles. It is noted that the Fuller and Hoy criterion produces a 

more conservative estimate of the ultimate pile capacity, but it is based on the actual pile 

performance during the pile load test and not just the pile geometrical properties. 

 

Figure 5-14: Comparison of Ultimate Failure Load from Different Criteria 

Table 5-1: Ultimate capacity of tested piles 

Pile 
ID 

Average 
Install 
Torque 
- 3D 
(kNm) 

Davisson 
Elkasabgy & 
El Naggar 

Plunging Fuller & Hoy 

Load 
(kN) 

Set 
(mm) 

Load 
(kN) 

Set 
(mm) 

Load 
(kN) 

Set 
(mm) 

Load 
(kN) 

Set 
(mm) 

C6S 46.7 430 7.2 605 19.3 644 25 475 11.4 

C6D 54.5 896 12.6 1090 23.5 1144 27.4 1060 23 

C8S 77.14 800 11.3 1000 29.1 1064 39.4 890 19.8 

C8D 97.8 1067 11.5 1516 34 1516 34 1390 26.9 

C10S 105.4 930 11.6 1233 34.1 1445 58 1220 34.9 

C10D 121.8 822 11.3 1332 31.2 1822 85.1 1425 46.9 

T6S 49.7 728 10.7 837 24.2 870 31.7 720 11.8 

T6D 61.7 874 12.43 982 22.5 982 22.5 870 15.4 

T8S 71.7 971 11.7 - - 1020 15.2 970 14.1 

T8D 92.6 1053 13.1 1276 31.32 1380 35.8 1175 21.4 
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5.6 Capacity-Torque-Correlations 

Undoubtedly, plunging failure is universally accepted method to determine the pile ultimate 

capacity. However, as discussed above, plunging failure may not be attained because of test 

setup limitations and/or significant creep displacement of the test pile. In this case, it is necessary 

to select a suitable interpreted failure criterion for determining the pile ultimate capacity values 

to be used to establish CTC factors. An interpreted failure criterion that utilizes a suitable 

settlement tolerance (e.g. Elkasabgy and El Naggar) may be employed. However, settlement 

criteria may not always be valid for varying pile geometry. Alternatively, criteria based on the 

actual pile performance during the load test are applicable to different pile geometry (e.g. Fuller 

and Hoy), and may be more appropriate for varying soil conditions.  

5.6.1 CTC factors  

The ultimate capacity of the tested piles determined from the plunging failure and the interpreted 

failure criteria were used to evaluate the CTC factors. The calculated values are presented in 

Table 5-2. It can be noted from Table 5-2 that the CTC factors varied from 6.7 to 16.4 for 

Davisson, 13.0 to 21.0 for Elkasabgy and El Naggar, 13.8 to 21.0 for Plunging, and 10.2 to 19.4 

for Fuller and Hoy criteria. It is also noted that the CTC factors for double helix piles were 

slightly higher than those for the single helix piles for the same pile diameter. Finally, there is no 

significant difference between the CTC factors for piles in tension versus compression, perhaps 

because all tension piles were installed under deep embedment condition. 

Given the closeness of the pile ultimate capacity and CTC factors determined using the Fuller 

and Hoy with those obtained from the plunging failure, it is suggested to use the Fuller and Hoy 

criterion to establish the pile capacity values from the load test data. These ultimate capacity 

values are then used to establish the CTC factors.   
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Table 5-2: Summary of correlation of torque to capacity factors 

Pile 
ID 

Average 
Install 
Torque 
- 3D 
(kN*m) 

Davisson 
Elkasabgy & 
El Naggar 

Plunging Fuller & Hoy 

Load 
(kN) 

Kt                   

(m-1) 
Load 
(kN) 

Kt                    

(m-1) 
Load 
(kN) 

Kt               

(m-1) 
Load 
(kN) 

Kt                

(m-1) 

C6S 46.7 430 9.2 605 13.0 644 13.8 475 10.2 

C6D 54.5 896 16.4 1090 20.0 1144 21.0 1060 19.4 

C8S 77.14 800 10.4 1000 13.0 1064 13.8 890 11.5 

C8D 97.8 1067 10.9 1516 15.5 1516 15.5 1390 14.2 

C10S 105.4 930 8.8 1233 11.7 1445 13.7 1220 11.6 

C10D 121.8 822 6.7 1332 10.9 1822 15.0 1425 11.7 

T6S 49.7 728 14.6 837 16.8 870 17.5 720 14.5 

T6D 61.7 874 14.2 982 15.9 982 15.9 870 14.1 

T8S 71.7 971 13.5 - - 1020 14.2 970 13.5 

T8D 92.6 1053 11.4 1276 13.8 1380 14.9 1175 12.7 

 

5.6.2 Capacity-Torque-Correlation Curve Fitting  

 

The existing CTC formulations were developed based on investigations of large data sets that 

include the ultimate capacity of helical piles and their installation torque over the last 3D. These 

formulations either established a constant CTC factor (e.g. Hoyt and Clemence), or developed a 

CTC factor as a function of the pile diameter (e.g. Perko, 2009).  

 

5.6.3 Evaluation of Capacity to Torque Correlation Factors 

The CTC data obtained in this study is based on all tension and compressive interpreted failure 

loads determined using the Fuller & Hoy criterion and the torque measured over the last 3D. In 

addition, these results are augmented by the pile ultimate capacity and installation torque values 

reported by Tappenen (2007) for large diameter helical piles installed in similar soil profile (i.e. 

sand/glacial till). This helped increase the data set used to establish a suitable CTC relation for 

helical piles installed in glacial tills.  
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Figure 5-15 presents the CTC factors established by directly correlating the pile capacity to its 

installation torque. The obtained CTC factor, Kt = 10.3 has a coefficient of determination of 

0.8379. This CTC factor appears to give slightly conservative predictions of helical piles 

installed in glacial till but perhaps appropriate for sandy soils. 

Figure 5-16 presents the direct capacity to torque factors plotted vs the pile diameter, and the 

curve fitting of the data used the pile diameter as a fitting parameter. The lines of best fit for 

glacial till, sand, and all data compiled are used to establish a CTC relationship incorporating the 

pile diameter as a fitting parameter.  For the purpose of comparison, the CTC relationship 

provided by Perko (2009) is plotted in Figure 5-16. It is observed from the figure that there is 

close agreement between the best fit for all data and Perko (2009), especially for larger diameter 

piles. This agreement suggests that the Perko relationship can be used to predict the capacity of 

helical piles in different types of soils. 

 

 

Figure 5-15: Direct Torque –to –Capacity Correlation  
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Figure 5-16: Torque to Capacity vs Shaft Diameter  

 

5.6.4 Proposed Capacity to Torque Correlation Using Pile Embedded Area 

The main limiting factor of the above formulations is that they do not account fully for the 

helical pile configuration (i.e. pile diameter, helix diameter, number of helices). Utilizing the 

total embedded pile area as a fitting parameter would enable incorporating the pile diameter, 

number and diameter of helices, and depth of installation in curve fitting. Therefore, the use of 

pile embedded area as a curve fitting parameter in establishing CTC relationship is explored 

herein. This offers the option to subtract the surface area of the pile embedded within expected 

zones of very soft layers, which can even enhance the accuracy of CTC relationship.  

Figure 5-17 shows the CTC factors plotted against the pile embedded area. The data is curve 

fitted considering the pile embedded area as a fitting parameter. Two best fit lines are attempted, 

one to fit all data and one to fit only glacial till data. As can be observed from Figure 5-17, the 

equation obtained curve fitting all data underestimates Kt for all the glacial till data points. On 

the other hand, as expected, the equation obtained by curve fitting only the glacial data 
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represents the glacial till data points reasonably well.  Accordingly, it is suggested to use the 

equation that represents the CTC factor for helical piles installed in glacial till, i.e. 

          
    

   (5-1) 

where    (m
-1

) is the torque to capacity factor, and    (m
2
) is the total embedded area. It should 

be noted that Equation 5-1 is developed using a limited data set. It is recommended that 

additional work be done to expand the data set through testing additional pile configurations as 

well as soil type.  

 

 

 

Figure 5-17: Torque to Capacity vs Embedded Area  
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Seven test piles were instrumented with strain gauges to monitor the load transfer mechanism 

when subjected to vertical loads. The strain gauges were attached to the exterior pile wall at 

stations along the shaft and just above and just below the helices in order to monitor the shaft and 

helical loads. Each station had a pair of strain gauges.  The locations of the strain gauges stations 

are indicated in Figure 5-18.  
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Figure 5-18: Locations of strain guage stations 

The strain gauge measurements taken at each location are used to calculate the force at the pile 

cross-section of the strain gauge location, i.e.: 

            (5-2) 

where;    is the pile calculated force,   is the measured strain, Ap is the pile cross-sectional area, 

and Ep is the elastic modulus of the pile material. The results of strain gauge monitoring are 

analyzed to establish the load transfer mechanism for the test piles. 

5.7.1 Load Transfer Curves for Piles Under Compression Loading 

The pile force obtained from the strain gauge measurements by employing Equation 5-2, are 

used to establish the load transfer distribution along the pile shaft and through the helices.  
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Figure 5-19 shows the load transfer distribution for Pile C6S. As can be noted from Figure 5-19, 

the load at LV4 near the pile head is almost identical to the applied load, confirming the accuracy 

of the results. It is also noted from the figure that initially, the shaft transfers most of the load 

(the difference between loads LV4 and LV2). However, as the applied load increases, most of 

the load is transferred through the helix (the difference between loads LV1 and LV2) and the 

remaining load is transferred through the pile toe.  Near failure, shaft resistance contributed 

approximately 15% of the load capacity, the helix provided 50% and the toe provided 35%.  The 

large contribution of the toe resistance indicates it was well seated within the underlying hard 

soil between 7.0 and 8.0m depth (with Su > 500kPa) as indicated in Figure 3-9.  

Figure 5-20 shows the load transfer distribution for Pile C8S. Similar to Pile C6S, the load was 

initially taken by the shaft resistance (difference between LV2 and LV3). At the ultimate load, 

approximately 50% of the load resistance was provided by toe bearing while the helical plate 

provided only 20 %. Because the pile diameter is larger in this case, the shaft resistance provided 

a higher percentage contribution to the load carrying capacity, which amounted to 30% of the 

pile capacity. Again, the high percentage of load taken by the toe indicates it was situated in the 

hard material.   

Figure 5-21 presents the load transfer for Pile C8D. The load was initially taken by the shaft, and 

at higher loads the shaft percentage contribution diminished. Near failure, the end/toe bearing 

provided only 15% of the total resistance while the lead helix provided approximately 21%. The 

resistance provided by the inter-helix zone (between the lead and top helices) accounted for 64% 

of the total resistance (difference between LV2 and LV4) as shown in Figure 5-21. It appears 

that very little capacity was provided by the shaft adhesion above the top helix.  

As shown in Figure 5-22, Pile C10S derived its compressive resistance predominantly through 

end/toe bearing and helical bearing. The toe/end bearing provided approximately 26% of the 

total resistance while the lead helix provided near 40%. It can be noted from Figure 5-22 that the 

toe bearing was mobilized at the onset of loading while the lead helix was quickly mobilized 

once the load approached 300 kN. As the applied load approached failure, the toe resistance 

began to plateau and further capacity may have been attained via shaft friction. 
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Figure 5-23 shows that Pile C10D attained compressive capacity through lead helix bearing and 

shaft adhesion. Near failure, the lead helix provided approximately 62% of the total capacity, 

while the rear helix bearing and upper shaft friction accounted for a combined 35% of the total 

resistance. It can be noted from Figure 5-23 that toe/end bearing was mobilized at the onset of 

loading. As settlement and loading continued, the lead helix attracted significant portions of the 

applied load while the contribution of the toe capacity decreased. This decrease in toe resistance 

may be attributed to the breakthrough of a hard layer.   

The general compressive load transfer mechanism revealed from these results indicate that the 

capacity of helical piles installed in over-consolidated glacial till is primarily provided via 

toe/end and lead helical bearing. This is attributed to the high stiffness and strength of soil within 

the helix/toe depth.  

 

Figure 5-19: C6S Load Transfer Observations 
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Figure 5-20: C8S Load Transfer Observations 

 

Figure 5-21: C8D Load Transfer Observations 
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Figure 5-22: C10S Load Transfer Observations 

 

 

Figure 5-23: C10D Load Transfer Observations 
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5.7.2 Load Transfer Distribution for Piles Under Uplift Loading 

Figure 5-24 presents the load transfer distribution for Pile T8S. Initially, the shaft provided most 

of the resistance. However, as the applied load increased, the shaft resistance and the anchoring 

(bearing) of the lead helix provided almost equal contributions to the total resistance. As 

indicated by Figure 5-24, the resistance provided by the helix increased dramatically as failure 

ensued. Figure 5-24 also shows the mobilization of the helix bearing did not initiate until the 

applied load reached approximately 400 kN. This is attributed to considerable soil disturbance 

just above the helix, which required some movement to re-establish firm contact between the 

helix and the soil. Near failure, the lead helix was fully engaged and provided 40% of the 

resistance while 60% was attributable to shaft resistance. 

Figure 5-25 presents the load transfer curves for Pile T8D. The results demonstrate that the load 

was initially taken by the shaft resistance (up to an applied load of 600 kN). However, as the 

applied load increased the contributions from the top helix and the inter-helix zone increased. 

Near failure, the lead helix and inter-helix zone provided approximately 40 % and 15%, the rear 

helix about 20%, and the top shaft friction provided 25 %.  

The tension load transfer mechanism indicated that the shaft contributed most of the load 

resistance initially. As the pile movement increased, the helix established firm contact with the 

soil above it, and its contribution to resistance eventually approached that attained from the shaft.  
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Figure 5-24: T8S Load Transfer Observations 

 

Figure 5-25: T8D Load Transfer Observations 
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5.7.3 Load Transfer Behavior 

The changes in load distribution and load transfer mechanism were investigated by comparing 

the load transfer present corresponding to approximately 50 % and 100 % of the final interpreted 

failure load as summarized in Table 5-3-3. 

For piles tested under compressive loading equal to 50% of its capacity, the shaft carried 33-60% 

of the applied load, and the lead helical plate and toe carried the balance roughly equally. At the 

ultimate load for single helix pile, the helical plate contribution increased by 8-33% while the 

shaft percentage of load decreased to only 15-30%.  For the double helix pile, when the load 

approached the pile capacity, cylindrical shear was mobilized and contributed 33-64% of the 

resistance. It was observed that the rear helix in the double helical configuration piles did not 

contribute to load transfer.  

For piles subjected to tension loading equal to 50% of its capacity, the shaft carried most of the 

load (59-99%). As the applied load approached the pile capacity, the lead helix and the inter-

helical zone (cylindrical shear) proportion increased to 50-60%.   

Given the presented data, it can be generally stated that at relatively small loads, the shaft carries 

most of the load, whereas at elevated loads a large percentage of the load is resisted by helical 

bearing. In addition, the percentage of load resisted by shaft friction in tension loading is higher 

than that for compressive loading, and represented significant contribution even at failure load.  

It is also noted that helical bearing is mobilized as the applied load increased (i.e. 

displacement/settlement increased). It is suggested that this settlement enabled the helical plate 

to compress any possibly disturbed soil within its zone of influence and hence transfer higher 

percentage of the applied load. Finally, when the lead helix and pile toe are embedded in very 

stiff/hard stratum, they provide most of the capacity which reduces load transfer through the rear 

helical plate.  
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Table 5-3: Load Transfer Summary 

Pile 
ID 

% of 
Max 
load 

Shaft Friction 

% 
Change 

Helical Plate 
Bearing 

% 
Change 

Toe 
Bearing 

% 
Change 

Above 
Rear 
Helix 

Inter 
Helix 

Lead Rear 

C6S 
50 33 - 

-18 - 
33 - 

17 - 
33 

2 100 15 - 50 - 35 

C8S 
50 60 - 

-30 - 
10 - 

10 - 
30 

20 100 30 - 20 - 50 

C8D 
50 9 52 

-9 12 
13 0 

8 0 
26 

-11 100 0 64 21 0 15 

C10S 
50 35 - 

-7 - 
30 - 

15 - 
26 

-12 100 28 - 45 - 14 

C10D 
50 6 29 

-1 4 
44 0 

18 0 
21 

-21 100 5 33 62 0 0 

T8S 
50 99 - 

-38 - 
11 - 

28 - 
- 

- 100 61 - 39 - - 

T8D 
50 59 29 

-24 -16 
12 0 

24 16 
- 

- 100 35 13 36 16 - 

 

5.8 Accuracy of Capacity Prediction Approaches  

It was found that the capacity of piles tested in this study could be predicted using three different 

approaches: theoretical calculation, empirical correlation to CPT measurements, and capacity to 

torque correlation. The accuracy of each method is discussed and compared.  

The theoretical capacity was determined employing the individual plate bearing method (as inter-

helical spacing was 3D), utilizing the average peak and remolded undrained shear strength 

presnted in Table 3-2. The LCPC method (Bustamante and Gianeselli, 1982), which correlates 

the pile capacity to cone tip resistance as described in Section 2.2, was also used to predict the 

capacity of tested piles.  Finally, pile capacity was predicted using the CTC relationships 

proposed by Perko (2009), Hoyt and Clemence (1989) and Tappenen (2007), as well as with the 

CTC factors developed in this thesis. All predicted capacities are summarized in Table 5-4. 
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Table 5-4: Predicted Capacity Summary 

 

Ultimate Calculated Capacity (kN) 

Pile Shaft Diameter 

(in) 
6    5/8 8   5/8 10   3/4 

Helix 

Configuration      

(#, in) 

Single 

18" 

Double 

18" 

Single 

24" 

Double 

24" 

Single 

30" 

Double 

30" 

IPB 865 1,057 1,330 1,661 1,776 2,223 

LCPC 804 1,149 1,348 1,972 2,192 2,855 

LCPC (mod) 570 790 941 1,256 1,576 1,959 

Kt (9.22  m
-1

) 

Tappenden 
431 502 711 902 972 1,123 

Kt (9.8 m
-1

) Hoyt & 

Clamence 
458 534 756 958 1,033 1,194 

Kt (10.3) 481 561 795 1,007 1,086 1,255 

Kt (27.64*Ae
-0.5

) 668 767 954 1,177 1,202 1,333 

Kt (1433*D
-0.92

) 

Perko 2009 
599 699 776 984 867 1,001 

Kt  (221.05*D
-0.536

) 662 772 948 1,202 1,152 1,332 

 

5.8.1 Individual Plate Bearing Predictions 

In order to compare the accuracy of predictions, the ratio of predicted capacity (Qp) to measured 

capacity (Qu) is calculated.  

Figure 5-26 shows the capacity calculated using the individual plate bearing method (IPB) as a 

ratio of the experimental pile capacity. It is noted from Figure 5-26 that using IPB method, Qp/Qu 

ranged from 1.00 to 1.82. The average over-prediction for all piles was 37% with coefficient of 

variation of 5%. This over-prediction is attributed to the use of unconservative soil shear strength 

(i.e. remolded strength even for the soil below helices) and/or reduced contributions of the two 
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helices due some overlapping. Perko (2009) and Hoyt and Clemence (1989) reported that the 

IPB is likely to over-predict pile capacity.  

 

 

Figure 5-26: Individual Plate Bearing Prediction Ratio Qp/Qu 

 

5.8.2 LCPC Method Predictions 

The LCPC method correlates the pile capacity to the CPT tip resistance. All predictions were 

computed using the average CPT profile of CPT soundings 1, 2 and 3. As shown in Figure 5-27, 

the method over predicted the capacity by 8 to 200% of the measured capacity, with average 

prediction of 150% of the measured capacity and coefficient of variation of 9%. This over-

prediction may be attributed to remolding the stiff clays/glacial tills, which was not accounted 

for in the LCPC method. Tappenen (2007) made similar observation and suggested that the 

LCPC method was not suitable for glacial tills. 

 

 

C6S C6D C8S C8D C10S C10D T6S T6D T8S T8D Mean COV 
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Figure 5-27: LCPC Method Prediction Ratio Qp/Qu 

 

5.8.3 Modified LCPC Predictions 

Tappenen (2007) recommended that the LCPC should be calibrated for glacial till soils. Thus, 

Tappenen (2007) suggested modifying the bearing coefficient term, kc. Accordingly, kc = 0.30 

was used herein instead of the original value (kc = 0.45). The predicted capacities using kc = 

0.30, shown in Figure 5-28, range from 75% to 137% of the measured capacities. The average 

prediction was 103% of the measured capacity with a coefficient of variation of 4%. This 

suggests that the LCPC method could be useful in predicting the helical pile capacity with 

“calibrated” kc factors for different soil types, including glacial till. 

C6S C6D C8S C8D C10S C10D T6S T6D T8S T8D Mean COV 

LCPC  1.69 1.08 1.51 1.42 1.80 2.00 1.12 1.32 1.39 1.68 1.50 0.09 
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Figure 5-28: Modified LCPC Method Prediction Ratio Qp/Qu 

5.8.4 Capacity to Torque Correlation Predictions 

The CTC method was used employing six different correlations that use CTC factors (kt) 

proposed by: Tapennen (2007), i.e. Kt = 9.22 m
-1

; Hoyt and Clemence (1989), i.e. Kt = 9.8 m
-1

; 

Perko (2009), i.e. Kt =             m
-1

; and present study, i.e. Kt = 10.3 m
-1

,          
    

 

m
-1

, and                m
-1

. As shown in Fig. 5-29, most CTC predictions were below the 

measured capacity (i.e. conservative). The average Qp is 0.71-0.98 Qu, and the coefficient of 

variation ranged from 0.01 to 0.03. The results demonstrate the suitability of CTC method for 

design confirmation of large diameter helical piles as it gives consistently conservative and 

reasonably accurate prediction in comparison with theoretical calculations and CPT correlations. 

A closer look at the results reveals that the average Qp using CTC factors that do not account for 

pile geometry is 0.71-0.79 Qu, while the CTC factors that account for the pile embedded area or 

pile shaft diameter resulted in more accurate average Qp = 0.82-0.98 Qu. For example, Perko 

(2009) predicted Qp = 0.70-1.26 Qu, as shown in Figure 5-29, with average Qp = 0.82 Qu and a 

coefficient of variation of 0.03. Furthermore, as expected, the site specific CTC factors provided 

enhanced accuracy, e.g. the relation based on the pile embedded area proposed in the current 

study.  

C6S C6D C8S C8D C10S C10D T6S T6D T8S T8D Mean COV 

LCPC (mod) 1.20 0.75 1.06 0.90 1.29 1.37 0.79 0.91 0.97 1.07 1.03 0.04 
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1.00 
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/Q
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Figure 5-29: Torque-to-Capacity Prediction Ratio Qp/Qu 

Desk design methods, whether theoretical or empirical, are based on often limited soil 

investigation data, which may not accurately reflect effects of pile installation on soil strength, or 

empirical correlations (e.g. correlations to SPT or CPT testing). As demonstrated in Figure 5-30, 

the individual plate bearing theory may dangerously over predict the pile capacity if proper 

remolded shear strength is not accounted for. It is suggested to utilize properly evaluated 

remolded shear strength in the IPB method. Similarly, the LCPC method seriously over-

Kt (9.22  
m-1) 

Tappenden 

Kt (9.8 m-
1) Hoyt & 
Clamence 

Kt (10.3)  
Kt 

(27.64*Ae-
0.5)  

Kt 
(1433*D-

0.92) Perko 
2009 

Kt  
(221.05*D-

0.536)  

C6S 0.91 0.96 1.01 1.41 1.26 1.39 

C6D 0.47 0.50 0.53 0.72 0.66 0.73 

C8S 0.80 0.85 0.89 1.07 0.87 1.07 

C8D 0.65 0.69 0.72 0.85 0.71 0.87 

C10S 0.80 0.85 0.89 0.99 0.71 0.94 

C10D 0.79 0.84 0.88 0.94 0.70 0.93 

T6S 0.64 0.68 0.71 0.99 0.89 0.98 

T6D 0.65 0.70 0.73 1.00 0.91 1.00 

T8S 0.68 0.72 0.76 0.91 0.74 0.91 

T8D 0.73 0.77 0.81 0.95 0.79 0.97 
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predicted the pile capacity, again, because it does not account for soil strength reduction 

associated with pile installation. This can be practically accounted for by “calibrating” the 

bearing factor, kc, to reflect site specific conditions. For example, it is suggested to use kc value 

of 0.3 (LCPC mod) for helical piles installed in glacial tills.  

 

 

Figure 5-30: Comparison of Desk Design Prediction Ratio Qp/Qu 

IPB LCPC  LCPC (mod) 
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Mean 1.37 1.50 1.03 
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Chapter 6  

6 Summary  

In this study, a total of 17 helical piles with varying configurations were installed at a site 

consisting primarily of over-consolidated glacial till. All pile installations were monitored and 

the variations of installation torque, vertical crowd, and installation rate with depth were 

recorded. Six static compression load tests and four static tension load tests were conducted to 

establish the piles ultimate capacity. Seven test piles were fully instrumented to evaluate the load 

transfer behavior. The following conclusions may be drawn. 

6.1 Conclusions 

Installation Force Observations: 

1. The installation torque measurements obtained by using the fabricated torque pin were 

demonstrated to be accurate and repeatable.  

2. The installation rate (rotational speed) can have significant effect on the value of torque 

measured when employing hydraulic pressure gauge readings. It is recommended that a 

maximum speed of 5 RPM be maintained when taking the hydraulic pressure readings for 

torque measurement. However, this may differ depending on the machinery/pressure 

gauge combination. 

3. The installation torque required to advance a helical pile is directly related to the pile 

embedded area and the soil shear strength. The torque can be estimated by integrating the 

soil resistance over the pile shaft and the helices (i.e. Eq. 4-7). The lead and rear helix 

torque contributions should be calculated using the peak undrained shear strength of the 

soil, while the pile shaft torque contribution should be calculated employing the remolded 

undrained shear strength of the soil.  

Torque to Capacity Correlations: 

4. Based on the measured pile capacities and installation torque obtained in the current 

study, three different CTC factors can be suggested for large diameter helical piles 

installed in sand and/or glacial till. They are as follows: 
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Sand & glacial till: 

                                                                                                              

                                                                         

Glacial till 

          
                                                                               

Static Axial Pile Testing: 

1. The ultimate capacity of large diameter helical piles can be determined from the pile load 

test data employing the interpreted ultimate failure loads using the Elkasabgy and El 

Naggar (2015) and Fuller & Hoy (1970). Both criteria provided reasonable predictions 

for both compressive and tensile static pile capacity. 

2. Significant settlement may be required to mobilize the bearing resistance provided by the 

lead helix for both compressive and tensile loading conditions. Furthermore, the rear 

helix provides significant additional capacity under compression loading and little 

additional capacity under tensile loading.  

6.2 Recommendations for Future Work 

1. The effects of vertical pressure (Crowd) on the generation of installation torque and 

thereby the validation of CTCs, are not entirely clear. Installation force monitoring 

investigated within this study indicates a clear trend in whereby crowd and torque 

increased almost proportionally to each other. It would be interesting to conduct 

installations while intentionally changing the crowd at the same depth and record the 

corresponding torque to better evaluate the effect of the crowd on the generated torque. 

Additionally, further experimental installation should be attempted whereby the applied 

crowd is held constant and/or minimized.  

2. The residual axial loads locked in a helical pile post installation are assumed to be 

insignificant. However, the magnitude of applied crowd and some disparity observed 
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within the load transfer results indicate that there could be some axial residual load which 

should be accounted for when evaluating load transfer. This should be further 

investigated. 

3. Experimental investigations similar to the current study should be attempted in different 

soil types and varying soil strength profiles. The results from such studies can be used to 

confirm the findings from this study (e.g. the method to calculate installation torque), and 

to calibrate the proposed CTC factor as a function of embedded pile area.   

4. The results demonstrated that the individual plate bearing theory and the LCPC method 

can significantly over predict helical pile capacity in structured soils such as glacial till. 

The values of the shaft adhesion factor and the bearing capacity factors used in both 

methods should be evaluated for different types of soils, especially soils that are 

susceptible to significant remolding associated with helical pile installation. 
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