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Abstract

Epilepsy stands aside from other neurological diseases because clinical patterns of progression

are unknown: The etiology of each epilepsy case is unique and so it is the individual prognosis.

Temporal lobe epilepsy (TLE) is the most frequent type of focal epilepsy and the surgical

excision of the hippocampus and the surrounding tissue is an accepted treatment in refractory

cases, especially when seizures become frequent increasingly affecting the performance of

daily tasks and significantly decreasing the quality of life of the patient. The sensitivity of

clinical imaging is poor for patients with no hippocampal involvement and invasive procedures

such as the Wada test and intracranial EEG are required to detect and lateralize epileptogenic

tissue.

This thesis develops image processing techniques using quantitative relaxometry and dif-

fusion tensor imaging aiming to complement current MRI-based diagnosis by providing addi-

tional diagnostic clues. Chapter 2 develops the concept of individual feature maps on regions

of interest. A laterality score on these maps correctly distinguished left TLE from right TLE

in 12 out of 15 patients. Chapter 3 explores machine learning models to detect TLE, obtaining

perfect classification for patients with left TLE, and 88.9% accuracy for patients with right

TLE. Chapter 4 focuses on temporal lobe asymmetry developing a voxel-based method for

assessing asymmetry and verifying its applicability to individual predictions (92% accuracy)

and group-wise statistical analyses. Informative ROI and voxel-based informative features are

described for each experiment, demonstrating the relative importance of mean diffusivity over

other MR imaging alternatives in identification and lateralization of TLE patients. Finally, the

conclusion chapter discusses contributions, main limitations and outlining options for future

research.

Keywords: TLE, Q-MRI, DTI, FA, MD, T1, T2, DESPOT1, DESPOT2, asymmetry,

Kolmogorov-Smirnov test, single-subject t-test, epilepsy, SVM, machine learning, feature se-

lection, support vector machines, diffusion tensor imaging, quantitative relaxometry, quantita-

tive imaging
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Chapter 1

An introduction to the analysis of

temporal lobe epilepsy with magnetic

resonance imaging

Overview This chapter provides an introduction to TLE with a clinical overview where elec-

troencephalography and neuroimaging are introduced as the main diagnostic tools. This offers

the context for the discussion of current MRI research in TLE, motivating the use of the two

techniques in this work: quantitative relaxometry and diffusion tensor imaging. Subsequently,

a brief description of image analysis, and machine learning techniques relevant to this thesis

are included. The chapter concludes with a description of the goals and scope of this work and

a summary of each chapter.

1
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1.1 Temporal Lobe Epilepsy: clinical overview

Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy, accounting for up to

60% of all adult epilepsy cases [1]. TLE is characterized by seizures originated in the temporal

lobe (Figure 1.1).

parahippocampal gyrus
entorhinal cortex

collateral sulcus
subthalamic nucleus

lateral ventricle

optic tract

thalamic nuclei:
anteroprincipal
ventrolateral
medial dorsal

hippcampus
dentate gyrus

inferior
temporal:

sulcus
gyrus

middle
temporal gyrus

superior
temporal:
gyrus
sulcus

lateral
sulcus

putamen

globus pallidus:
external
internal

Figure 1.1: Anatomy of the temporal lobe. This schematic shows temporal lobe structures in bold, in
relationship with limbic and extra-temporal structures. 1

According to the International League Against Epilepsy (ILAE) having a seizure is not a

sufficient condition for an epilepsy diagnosis. The seizures must be “frequent, and unprovoked

by any immediate identified cause” [1]. According to the ILAE classification of seizures from

1981, focal seizures can be: partial simple (no loss of consciousness), or partial complex (loss

of consciousness) [2]. However, this classification has been debated by experts around the

world, due to the lack of agreement in the embodiment of the word consciousness. After all,

what does it mean to be conscious? With this philosophical dilemma at hand, the ILAE task

force shifted the emphasis of the classification from consciousness to cognition, encompassing

five categories [3]:

1Adapted with permission from http://www.brains.rad.msu.edu, and http://brainmuseum.org, supported
by the US National Science Foundation.

http://www.brains.rad.msu.edu
http://brainmuseum.org
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• perception: the symbolic conception of sensory information

• attention: the appropriate selection of a principal perception or task

• emotion: the appropriate affective significance of a perception

• memory: the ability to store and retrieve percepts or concepts, and

• executive function: the process of anticipation, selection, monitoring of consequences,

and initiation of motor activity including praxis, and speech.

With this definition, the ambiguity of the term loss of consciousness could be replaced with

the more practical loss of cognitive ability or, in other words, partial complex seizures could

be replaced by partial dyscognitive seizures, as long as two or more cognitive categories were

deemed impaired during the seizure [4]. Nonetheless, this classification of partial seizures

has been heavily criticized [5], as there is no consensus that cognition is more inclusive or

even more useful than consciousness. Under these circumstances, the ILAE’s stance is that

of continuity with the original 1981 classification, suggesting an additional characterization of

focal seizures on a case-by-case basis [5, 6].

The multiplicity of taxonomies and the lack of a consistent ontology are not caused only

by scientific stances or clinical disagreements. There is an undeniable reality: temporal lobe

epilepsy is indeed a heterogeneous disease, with multiple etiologies and abnormal physiologi-

cal processes that we do not fully understand. Electroencephalography (EEG) and neuroimag-

ing are the main tools that have allowed us to better understand TLE, and among imaging

modalities, structural MRI is the most commonly used. Both EEG and MRI have sensitivity

and specificity issues and patient evaluation is performed using both: agreement between EEG

and MRI translates into optimal clinical outcomes; disagreement, into long-term or invasive

EEG monitoring, and palliative care. Thus, the goal of any TLE diagnostic technique is to

detect and pinpoint the origin of seizures. But, what are seizures?
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1.1.1 Seizures

A seizure (from the Latin sacire -to take possession of) is the clinical manifestation of an ab-

normal, excessive, hyper-synchronous discharge of a population of cortical neurons [7]. Such

discharges are caused by either excessive excitation or loss of inhibition in neuronal synapses

(Figure 1.2).

Figure 1.2: Neurotransmission. Neurotransmission occurs by the interaction of neurotransmitter chem-
icals with ion channels in the neuronal synapses 2.

When the action potential (electrical impulse) reaches the axon terminal, voltage-gated ion

channels open, allowing the influx of Na+ ions. These ions cause the release of chemicals

known as neurotransmitters into the synapses. Neurotransmitters bind to receptors present in

the post-synaptic neuron, causing a change of permeability and opening (excitatory action) or

closing (inhibitory action) the post-synaptic neuron ion channels (Na+, K+, Cl−, Ca2). A new

action potential can be induced or inhibited in the post-synaptic neuron depending on the type

and the relative concentration of ions between the pre-synaptic and the post-synaptic neuron.

After accomplishing their task, neurotransmitters are broken down by enzymes in the synaptic

cleft. The induced action potential is “all-or-none”: the post-synaptic neuron must reach a

2Diagram courtesy of Emily Coyte, twitter:@emilycoyte
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threshold in order to fire and propagate the message.

In this context, seizures are associated with malfunction of the ion channels modulated by

the excess (or the lack of) neurotransmitters, in particular: glutamate (excitatory neurotransmit-

ter) and GABA (inhibitory neurotransmitter). It has been shown in animal models that gluta-

mate agonists (substance capable of activating glutamate receptors) can induce seizures [8, 9],

whereas GABA agonists such as benzodiazepines and barbiturates are the base for antiepileptic

drugs (AEDs) [10].

Localization of temporal lobe seizures

Thalamus

Hippocampus Amygdala

Entorhinal cortex

(a) (b)

Thalamus

Hippocampus Amygdala

Entorhinal cortex

(c)

Thalamus

Hippocampus Amygdala

Entorhinal cortex

Figure 1.3: Hypothesis of multiple independent generators in TLE. a) a situation where all three
structures contribute equally to the seizure. b) Theoretical amygdala-dominant seizure. c) A seizure in
which the amygdala would play a little role in relation to the other structures. 3

There are several pathologies in the temporal lobe that can be responsible for seizures.

These include tumours, vascular and developmental malformations, cortical dysplasia, tubers,

3Adapted from Epilepsy & Behavior 14 (2009), Bertram, Edward H., Temporal lobe epilepsy: Where do the
seizures really begin?, 32-37, c© 2015, with permission from Elsevier.
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trauma, infections, genetic syndromes, and metabolic disorders. It is presumed that the seizure

onset will vary according to the location of the pathology [11]. On the other hand, in the

absence of an established aetiology, it has been theorized that seizures originate as the result

of the interaction of multiple regions and that in reality there is no single seizure onset focus

(Figure 1.3).

There has also been some speculation about the function of subcortical structures in ictal

discharges (during seizures). For example, experiments in animal models have been conducted

showing that the thalamus can play a role in the regulation of temporal lobe seizures [11]. The

origin of seizures has also been studied using post-surgical resections and in post-mortem cases

pointing to hippocampal sclerosis (cellular loss, atrophy and proliferation of glial cells in the

hippocampus) as the most common TLE pathology. Other regions where abnormal changes

have been found are the amygdala and entorhinal cortex.

The detection of seizures in vivo is a clinical challenge that is currently being addressed by

two important technologies: electroencephalography and neuroimaging.

1.1.2 Role of Electroencephalography

Encephalography is a technique that measures the electrical activity in the cortex using elec-

trodes placed on the scalp. EEG cannot record electrical activity from individual neurons for

two reasons: neurons are very small, and their signal is very faint. However, electrical record-

ings are still possible due to the fact that pyramidal neurons (one of the largest type ∼20µm)

are physically aligned, have the same polarity and many fire in synchrony (Figure 1.4).

Electrodes are organized in an array covering the scalp, with the most common array being

the international 10-20 system (Figure 1.5). This array can be configured to measure voltage

differentials between electrode pairs (bipolar) or between each electrode and a common ground

(common reference). The interpretation of the results vary according to this configuration.

EEG plays an important role in the diagnosis of epilepsy. First, the presence of seizures

can be confirmed. It is estimated that between 4% and 10% of patients have psychogenic 4

4i.e. a psychological rather than a physiological cause
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-

+ + + + + + +

- - - - - - - -

pial surface

EEG

electrode

Figure 1.4: EEG principle. The electrical field generated by similarly oriented pyramidal neurons can
be detected by a scalp electrode. Pyramidal neurons possess a pyramidal-shaped soma and two distinct
dendritic trees: apical and basal.

disorders instead of epilepsy [12], thus EEG can discriminate a psychogenic seizure from an

epileptic seizure by establishing a correspondence between the clinical semiology 5 and the

recorded EEG signals. Second, EEG can determine if seizures are generalized or focal, and it

can also help investigate whether the patient has a specific epilepsy related syndrome. These

findings can help determine a clinical course of action including specifying the type of AEDs

and determining whether the patient is a candidate for surgery.

Nevertheless, EEG has several limitations. During ictal periods, EEG readings are marred,

and signals from the scalp muscle, motion and electrode artifacts can limit interpretation [4].

Moreover, EEG has a low sensitivity for the detection of inter-ictal 6 epileptogenic discharges

(IED) in temporal lobe areas (between 29% and 58%) [12–14]. To increase the yield, more

5sign and symptoms of seizures
6inter-ictal:interval between seizures
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Cz T4C4C3T3

Pz

Fz

T6

O2

T5

F7 F8

O1

Fp1 Fp2

F4F3

P3 P4

A1 A2

INION

NASION

Figure 1.5: 10-20 electrode array. T: temporal, F:frontal, Fp: frontal polar, C:central reference,
O:occipital, P:parietal, z:midline; even numbers: right hemisphere, odd numbers: left hemisphere; na-
sion: between the eyes above the bridge of the nose, inion: lowest point of the skull on the back of the
head. Nasion and inion are landmarks for positioning of the array.

electrodes over the temporal region, also known as Silverman electrodes [15], can be added

to the standard 10-20 system. Another approach is long term monitoring, where waking and

sleeping inter-ictal readings are combined, increasing sensitivity to 80% [12].

Intracranial EEG

The implantation of subdural or deep electrodes is indicated when a patient is being considered

for surgery, and the readings of scalp EEG have been inconclusive. While scalp electrodes

capture small signals in the microvolt range, subdural electrodes record signals with a larger

amplitude between 10 mV to 20 mV, thus being more sensitive. Additionally, subdural elec-

trodes are less sensitive to muscle and motion artifacts, have a good temporal resolution and can

be placed in zones near the mesial temporal region to obtain more precise measurements (Fig-

ure 1.6). Despite being invasive, the recordings obtained with subdural electrodes are more

detailed and better localize seizures. Also, subdural readings can provide insight into cases

where scalp electrodes report bilateral ictal or inter-ictal abnormalities, or where the seizure

onset cannot be determined [14].
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(a)

(b)

Fp1

F3
C3

P3

O1
T5T3F7

A1

Nasion

Inion

Figure 1.6: Temporal lobe seizure captured with EEG. a) seizure recorded using the traditional 10-20
system b) seizure recorded using subdural electrodes (24 channels per lobe). Subdural channels have
better localization power but surgical implantation is required.7

1.1.3 Role of Imaging

Structural MRI

MRI measures how protons contained in tissue interact with external electromagnetic fields.

Such interaction is determined by the proton density (ρ), and the T1 and T2 magnetic properties

of tissue. Defined according to the orientation of the main magnetic field B0 in the MR scanner,

T1 measures magnetic recovery along B0 (regrowth of longitudinal magnetization), while T2

measures magnetic relaxation orthogonal to B0 (loss of transverse magnetization).

The type of imaging sequence and the particular set of acquisition parameters determine

the relative contribution of T1 and T2 to the image, generating T1-weighted, T2-weighted, or

proton density weighted images.

In the study of TLE, structural MR images allow for the identification of [16]:

7Adapted under the Creative Commons Attribution License from Epilepsy Research and Treatment 2012,
“Electroencephalography in Mesial Temporal Lobe Epilepsy: A Review”, Javidan M., c© 2012.



Chapter 1. Introduction 10

• Tumours: meningiomas, gangliomas (more common in children), low-grade astrocy-

tomas, dysembrioplastic neuroepithelial tumours (DNET), and cavernomas.

• Hippocampal sclerosis: also known as mesial temporal sclerosis (mesial temporal scle-

rosis (MTS)). The most common finding in patients undergoing surgery and also the

most common cause of partial complex seizures. MTS is characterized by apoptosis of

pyramidal neurons in the hippocampus (cornu ammonis and dentate gyrus), hippocampal

reorganization and changes in energy metabolism [17].

• Malformations of cortical development: focal cortical dysplasia (FCD) is one of the most

common cortical developmental malformations. These correspond to groups of neurons

that failed to migrate to the proper formation in utero. Another cortical development

malformation is tuberous sclerosis, a genetic condition causing benign tumoural growth.

(a)

(b)

hippocampus

ITG

STG

MTG FG

PHG

Figure 1.7: Structural imaging in TLE This figure shows a preoperative MR study for a patient with
left mesial temporal sclerosis (indicated by yellow arrow). STG: superior temporal gyrus, MTG: middle
temporal gyrus, ITG: inferior temporal gyrus, FG: fusiform gyrus, PHG: parahippocampal gyrus. a)
Coronal T2-weighted image; b) FLAIR image.8

Fluid attenuation inversion recovery (FLAIR) is a sequence used to diagnose TLE. In

FLAIR images, cerebrospinal fluid (CSF) is nulled by selecting an inversion time, TI, such

8Adapted under the Creative Commons Attribution License from Epilepsy Research and Treatment 2012,
“Surgical Techniques for the Treatment of Temporal Lobe Epilepsy:, Al-Otabi et al., c© 2012.
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that T I = ln(T1CS F). This improves the detection of lesions in the boundary between gray

matter and CSF(Figure 1.7).

The identification of lesions with structural MRI can determine the clinical course of ac-

tion: FCD and MTS patients frequently become drug-resistant, and these lesions are usually

removable with surgery. In contrast, neoplasms (tumours) usually respond well to AEDs [17]

and surgery is not always required. Likewise, the localization, extension, and type of lesion

determine whether or not it can be surgically removed.

In cases where MRI lesions are absent (also known as MR negative, or non-lesional) neurol-

ogists turn to subdural EEG, to confirm epileptogenicity. Placing subdural and deep electrodes

is invasive, has potential risks, and needs to be done with precision. Hence, MRI is used to

guide positioning, and to validate the anatomical distribution of electrodes.

MRI can also be a valuable post-surgical resource, to determine the reasons for operative

failure or complications, and to monitor the recurrence of lesions such as tumours.

Functional MRI

Functional MRI tracks local changes in blood flow in response to external stimuli (i.e. visual,

auditory, verbal), and is used pre-surgically to identify eloquent regions in the cortex. 9 This

is particularly important as language and memory areas commonly overlap with TLE lesions,

and during surgery these regions must be avoided to minimize cognitive deficits.

Traditionally, the localization of eloquent areas has been performed with the Wada test,

which consists of injecting sodium amobarbital into the carotid arteries, one hemisphere at

a time. This sedative has the effect of diminishing language and memory functions in the

hemisphere were is injected. During the test, the patient is engaged in a series of tasks to assess

memory and language functions, thus assessing these functions in the hemisphere that is not

anesthetized. This test is invasive with possible complications including stroke and death [18].

Though there has been a good agreement between Wada and fMRI studies, the applicabil-

ity of fMRI to language and memory mapping is an area of active research. For instance, it
9The eloquent cortex refers to regions in the cortex that, if removed, will result in loss of sensory perception,

speech and motor functions
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has been speculated that neurological disorders, such as TLE, can modify networks that are

commonly activated in the healthy population therefore making current stimuli paradigms less

effective in the presence of such disorders [18, 19].

PET, SPECT and MRS

In addition to structural and functional findings, neuroimaging provides valuable diagnostic

information regarding abnormal brain metabolism and chemical composition. In this section

three imaging techniques are presented. Similar to structural and functional MRI, these tech-

niques have been used in the characterization and lateralization of lesions, being used indepen-

dently or jointly by clinicians to validate EEG and MRI findings. A good level of agreement

among techniques is usually correlated to better surgical outcomes. These techniques are: PET,

SPECT and MRS.

Positron emision tomography (PET) is a technique that generates images of metabolic pro-

cesses in the body, by employing positron-emitting radioisotopes attached to biologically active

molecules, also known as radiotracers.

A common radiotracer used in studying TLE is fluorodeoxyglucose (FDG) 10 which allows

the visualization of glucose metabolism. Reduced FDG uptake (glucose hypometabolism) has

been observed during inter-ictal periods in patients with TLE (Figure 1.8) [20, 21]. PET-FDG

is generally used in MR negative patients, or to analyze the spread of seizure patterns pro-

viding additional information for the placement of subdural electrodes. Moreover, PET has

a high specificity for MTS, as MTS is associated with hypometabolism in the hippocampus,

amygdala, entorhinal cortex and temporal pole [22]. Though not routinely employed, ictal PET

provides evidence of hypermetabolism in the epileptogenic zone with suppression of metabol-

ically activity in the surrounding areas [22, 23].

Single-photon emission computed tomography (SPECT) is similar to PET in that radio-

tracers are used to localize metabolic activity. Unlike PET, gamma photons are emitted di-

rectly by the radiotracer; therefore SPECT detects “single”-photons. SPECT radiotracers are

10Formally known as 18F-FDG, a glucose analog with the positron-emitting radioactive isotope fluorine-18
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(a) (b)

Figure 1.8: PET-FDG. Visual assessment of the mean images of normalized FDG-PET across (a)
healthy volunteers and (b) TLE patients, in Nelissen et al. study showing a striking hypometabolism in
the fronto-parietal lobes in patients compared to control subjects.11

longer-lived and easier to manufacture which makes SPECT a more economical alternative

than PET. However, SPECT images have a much coarser resolution than PET. Technetium-

99m-hexamethylpropylene-amine-oxime (99mTc-HMPAO) [20, 24] is a SPECT radiotracer

used for measuring cerebral blood flow (perfusion). This radiotracer visualizes ictal hyperper-

fusion that remains some time post-ictally [23]. Thus, its injection right after a seizure can

help identify epileptogenic zones. The sensitivity of this method is increased by comparing

ictal against inter-ictal perfusion images [22].

Magnetic resonance spectroscopy (MRS) enables chemical composition analyses through

the study of MR spectra. In TLE, MRS is used to measure levels of N-acetylaspartate (NAA)

which is a marker of metabolic active neurons. Reduced NAA indicates neuronal loss and/or

metabolic dysfunction [17]. In contrast, creatinine (Cr) and choline (Cho) are present at higher

levels within glial cells in TLE patients. Nevertheless, MRS is not commonly used due to its

technical challenges and lack of widespread availability [22].

11Adapted from NeuroImage, 32 (2006), N. Nelissen et al., Correlation of inter-ictal FDG-PET metabolism
and ictal SPECT perfusion changes in human temporal lobe epilepsy with hippocampal sclerosis, 648-695, c©
2015, with permission from Elsevier.
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1.1.4 Surgery: clinical challenges and current techniques

(a) (b)
Figure 1.9: Temporal lobe surgery a) anterior temporal lobectomy (ATL); b) selective amygdalohip-
pocampectomy (SAH). The first row shows the craniotomy, the second and third rows show the target
tissue.12

EEG and imaging information are necessary for planning the surgical approach in those

patients that require it: between 15% and 30% of patients with focal epilepsy become drug re-

sistant [17] suffering uncontrolled seizures that diminish their quality of life. For them, surgery

is an option only if the epileptogenic focus has been clearly identified. Otherwise, invasive sub-

dural and/or deep electrodes are necessary to localize seizures. Nevertheless, when intracranial

EEG reveals multiple epileptic foci or provides insufficient information, temporal lobe surgery

cannot be performed, and in some cases sectioning the corpus callosum (corpus callosotomy)

is the only palliative measure available [17].

When surgery is viable, anterior temporal lobectomy (ATL) or selective amygdalohip-

pocampectomy (SAH) are performed, with the former being the most common. In ATL, the

12Reproduced under the Creative Commons Attribution License from Epilepsy Research and Treatment 2012,
“Selective Amygdalohippocampectomy”, Spencer D. and Burchiel K., c© 2012.
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anterior portion of the temporal lobe (including mesial structures) is resected en-bloc, whereas

in SAH, only the mesial structures (amygdala, hippocampus) are removed (Figure 1.9). SAH

can only be used when the seizure onset zone has been identified in the mesial temporal re-

gion only. Some risks associated with temporal lobe surgeries are motor, visual, language and

memory deficits, and an increased risk of depression and suicide [22]. However, success rate

is good, with low morbidity (about 11%) [22].

1.2 MRI research in Temporal Lobe Epilepsy

1.2.1 Quantitative Relaxometry

Quantitative relaxometry (Q-MRI) refers to the measurement of biophysical properties through

decoupling of the different contrast mechanisms that contribute to the overall MR signal [25].

T1- and T2-weighted images

Prior to delving into the acquisition of quantitative T1 and T2 maps, we will take a look at how

voxel intensities are determined in MRI. In spin echo sequences, the voxel intensity, S , can be

characterized as:

S ∝ ρ(1 − exp [−TR/T1]) exp [−T E/T2] (1.1)

with the acquisition parameters, TR and TE, being the repetition and echo times respectively.

Short TR and short TE generate images where the intensity contribution from T1 is larger

(T1-weighted), whereas long TR and long TE produce images governed by the T2 parameter

(T2-weighted). On the other hand, the estimation of proton density weighted images (ρ) is

obtained by setting a long TR and a short TE. In Equation 1.1 a long TR makes the term

1 − exp [−TR/T1] close to 1, and with a short TE, the term exp [−T E/T2] close to 1 as well,

therefore making the signal proportional to proton density.

Acquisition parameter values are selected on the basis of improving radiological assess-

ment, producing tissue contrasts that enable the physician to compare tissues and locate abnor-
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malities. Thus, voxel intensities have meaning only with reference to other voxels and to the

amount of contrast they provide for visual inspection.

Obtaining quantitative T1 and T2 maps

T1 and T2 can be estimated by approximating the MR signal with exponential equations for

very long TRs (repetition times). For T1, after applying a 180◦ inversion pulse and a long TR,

the longitudinal magnetization recovery Mz can be modeled as:

Mz(t) = M0

(
1 − 2 exp

[
−

t
T1

])
(1.2)

which can be linearized as:

ln
[
1
2

(
1 −

Mz(t)
M0

)]
= −

t
T1

(1.3)

hence, T1 can be estimated as the the inverse of the logarithmic slope in Equation 1.3. As for

T2, after a 90◦ RF pulse, and a long TR, the transverse magnetic decay Mxycan be approximated

as:

Mxy(t) = M0 exp
[
−

t
T2

]
(1.4)

and after algebraic manipulation presented as a liner form:

ln
[

Mxy(t)
M0

]
= −

t
T2

(1.5)

To obtain a line, a minimum of two measurements are needed. In terms of the MR sequence,

this means scanning for at least two echo times (TE). Though simple, these methods are not

widely used in clinical settings due to the lengthy scanning times: T1 mapping requires an

inversion recovery pulse, whereas T2 mapping needs multiple echos, both in the context of
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spin echo sequences 13. Nevertheless, the opportunity of studying pathologies in terms of T1

and T2 properties has spurred interest to the development of time-efficient sequences.

Accelerated methods for T1 and T2 measurement

Possibly one of the most common methods to accelerate the acquisition of T1 maps is the

Lock and Locker method [26]. This method also requires an inversion pulse (180◦). After this

pulse, the recovery of longitudinal magnetization is measured with a train of very small-angle

RF pulses that disturb minimally the magnetization recovery along B0, making possible the

estimation of the magnetization recovery curve with only one inversion pulse [25, 27]. Another

method is the Driven Equilibrium Single Pulse Observation of T1 (DESPOT1) [28]. This

method uses a spoiled gradient recalled echo (SPGR) sequence to acquire images at several

small flip angles (α). The SPGR signal (S S PGR) can be written as:

S S PGR

sinα
=

S S PGR

tanα
exp

[
−

TR
T1

]
+ ρ(1 − exp

[
−

TR
T1

]
) (1.6)

from which T1 can be calculated as a function of α. Thus, this method requires at least two

distinct flip angles (two SPGR images). An immediate consequence of this approach is that

the estimation will be only as good as the certainty of the assumed flip angle, meaning that

the uniformity of the RF field (B1) is a relevant factor. In this work we use the High-speed

Incorporation of RF Field Inhomogeneities DESPOT1 or DESPOT1-HIFI, which adds an extra

sequence, a inversion recovery SPGR (IR-SPGR) used to improve the estimation of T1 and to

compensate for B1 inhomogeneities (Figure 1.10a). DESPOT1-HIFI allows a whole brain to

be scanned with a voxel size of 1 mm3 in around 10 minutes [29].

Similar to the idea of a variable flip angle for the estimation of T1, a variable flip angle

fully balanced Steady State Free Precession (bSSFP) [30] can be used for the fast acquisition

of T2 maps. Like SPGR, SSFP is also a gradient echo sequence with small flip angles. Unlike

13In spin echo sequences measurable signals or, echos, are generated by refocusing the transversal magnetiza-
tion with an electromagnetic pulse



Chapter 1. Introduction 18

(b)

(a)

IR-SPGR

Figure 1.10: Quantitative Relaxometry. a) Estimation of a T1 map using DESPOT1-HIFI; b) Estima-
tion of a T2 map using DESPOT2-FM.

SPGR however, the repetition times in SSFP are very short, and there is no spoiling 14 because

we are actually interested in the transversal magnetization. With a very short TR (<10ms), the

RF pulses are close together and the MR signal will never completely decay, thus maintaining

phase coherence in the transverse plane. Collecting SSFP images over a range of flip angles

produces a signal curve that is function of both T1 and T2 [31]. Having obtained the T1 map

with any of the aforementioned methods, the estimation of the T2 map follows. This is the basis

for the DESPOT2 technique which is used in this work to estimate T2 maps (Figure 1.10b). Ad-

ditional methods to generate T2 maps using fast spin echo (FSE) and magnetization-prepared

sequences have also been reported in the literature [25].

Q-MRI has proven to be a sensitive imaging technique for the detection of TLE related

pathologies. T1 and T2 values appear increased in the temporal lobe, particularly in the hemi-

sphere containing the seizure focus. Additionally, a correlation between T2 hippocampal hy-

14spoiling: destruction of the transverse magnetization using gradients
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perintensities and the presence of mesial temporal sclerosis (MTS) has been established [32–

35].

1.2.2 Diffusion tensor imaging

Diffusion tensor imaging (DTI) enables the examination of morphological integrity in the brain

by analyzing how water molecules diffuse in tissue. This is particularly relevant for imaging

white matter where diffusion is restricted due to the myelin sheath around neuronal axons.

Imaging principle: diffusion weighted imaging

Water diffusion in tissue is measured using a modified spin echo sequence that is sensitive to

the Brownian motion of water, followed by a fast readout (echo-planar imaging). This kind of

imaging sequences are known as diffusion weighted imaging (DWI).

In a spin echo sequence, spins are tipped onto the transverse plane using a RF pulse. After

the RF pulse is removed, spins start de-phasing and a refocusing RF pulse and gradient are

applied to reverse this process and to obtain a signal during the readout time (echo time, TE).

A pair of identical gradients, known as diffusion gradients, can be added to the sequence: one

immediately before the refocusing pulse and the other right after it (Figure 1.11a). The pre-

refocusing gradient changes the phase of spins in each voxel, and if there is no diffusion, the

post-refocusing gradient reverses this phase, canceling the effect of the first gradient. Thus,

during the readout, no net effect is recorded (Figure 1.11b). However, if there are free water

molecules in a voxel, these can leave the voxel at any time generating a measurable net effect in

phase when the post-refocusing gradient is applied. This effect is proportional to the free mo-

tion of these water molecules, or in other words to their diffusion (Figure 1.11c). The b-factor

controls the amount of contrast in DWI. The higher the b-value, the higher the contrast due to

diffusion. The b-factor depends of the shape and timing of the diffusion gradients employed as

shown in Figure 1.11a.
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(a)

(b)

diffusion 
gradients

refocusing
pulse

(c)

cell
water 

Figure 1.11: Measuring diffusion. a) diffusion gradients. The b-factor characterizes a diffusion se-
quence and relates to the shape and spacing of the diffusion gradients; b) low diffusion: Brownian
motion of water molecules is restricted and the net effect of the diffusion weighing is minimal; c) high
diffusion: there is a drop in signal due to the free motion of water molecules outside of the voxel, which
changes the net effect of the diffusion gradients.

The diffusion tensor

A robust three dimensional characterization of the diffusion process in every voxel can be

achieved by combining the information provided by the individual diffusion weighted images.

Each DWI describes the magnitude of the diffusion process in a particular spatial orientation

given by the gradients employed. This information can be encoded in the diffusion tensor:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (1.7)
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Due to the symmetry of the diffusion tensor (Di j = D ji) a minimum of 6 orientations

(6 DWI) must be acquired. As more orientations are recorded, the estimation accuracy will

increase accordingly.

Technical considerations

Obtaining optimal diffusion weighted images greatly depends on the ability to generate strong,

rapid gradient pulses. However, when diffusion gradients are switched on and off, the resulting

time-varying magnetic field induces eddy currents in the scanner hardware [36] resulting in

shift and shear distortions in the images. Thus, eddy-current correction must be addressed in

these images prior to the estimation of the respective diffusion tensors. Eddy-current correc-

tion may be implemented with a first-order affine transform to an undistorted, non-diffusion

weighted, reference volume of the same subject. Similarly, EPI-related artifacts can be mini-

mized with parallel acquisition techniques, and non-linear registration alternatives [36–38].

Mean Diffusivity and Fractional Anisotropy

An eigenanalysis of the diffusion tensor provides information on the three-dimensional diffu-

sion process occurring on each voxel level. The rate at which diffusion occurs is represented

by the mean diffusivity (MD), and it is defined as:

MD = (λ1 + λ2 + λ3)/3 (1.8)

where λ1, λ2, λ3 correspond to the three eigenvalues of the diffusion tensor. High MD values

reflect regions where diffusion is unrestricted such as the ventricles. In contrast, the MD in

white matter is lower (Figure 1.12).

Another measurement of interest is the fractional anisotropy (FA) which indicates spatial

restriction in the diffusion process, ranging from 0 (isotropic diffusion) to 1 (ideal linear diffu-

sion), and it is given by:
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a
b

a
b

MD FA
Figure 1.12: Mean diffusivity (MD) and fractional anisotropy (FA). a) water diffusion in the ven-
tricles is unrestricted, thus MD is high and FA is low. b) water diffusion in the corticospinal tract is
restricted by the myelin sheath covering the axon bundles, so the diffusion is highly anisotropic (high
FA), while the MD image indicates that the overall diffusion is low.

FA =

√
3
2

√
(λ1 − MD)2 + (λ2 − MD)2 + (λ3 − MD)2

λ2
1 + λ2

2 + λ2
3

(1.9)

White matter is characterized by its high FA, whereas diffusion is more isotropic in regions

containing CSF (Figure 1.12).

In the study of TLE, it has been shown that there is a pattern of ipsilateral FA loss in the

temporal white matter (uncinate fasciculus, arcuate fasciculus, inferior longitudinal fasciculus)

accompanied by MD increase in the hippocampus and temporal gray matter [39, 40] though

minor contralateral FA decline has also been reported [41].

MD and FA in the study of TLE

Similarly to Q-MRI studies, comparisons of DTI abnormalities between MTS and non-MTS

patients, have shown differences in morphological change patterns with MTS patients having

an increased ipsilateral MD signal in the hippocampus, parahippocampal gyrus and frontopari-

etal regions, while no MD alterations were found in non-lesional subjects [39, 42]. Similar

results have been obtained in FA analyses, where white matter abnormalities are more predom-

inant in the MTS group compared to the non-lesional group [43, 44].
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1.3 Imaging Analysis Techniques

1.3.1 Region-of-interest techniques (ROI)

The analysis of regions of interest (ROI) in MRI images is one of the first computational ap-

proaches available for the study of TLE. These techniques rely on the expertise of a user to

perform manual or interactive segmentation [45–47], or in algorithms that employ anatomical

atlases to guide the segmentation [48–52].

Given that patients with MTS generally present loss of hippocampal gray matter, and often

loss of internal architecture ipsilateral to the lesional side, ROI techniques have focused on

assessing hippocampal volume [53], shape and pose [46, 54]. ROI methods have identified

volume reductions that are not detectable by visual inspection, thus increasing the detection

of hippocampal sclerosis in about 28% of patients [52]. Similarly, salient ipsilateral volume

reductions in the putamen, thalamus, amygdala, entorhinal and perirhinal cortices have also

been reported in TLE patients [45, 50, 55].

ROI techniques also examine regional mean intensities. T2 signal loss has been described

in the hippocampus, amygdala and thalamus and other temporal structures, mainly ipsilateral to

the seizure onset [34]. Likewise, ROI analyses of DTI-derived images, show bilateral reduction

of the FA signal in the hippocampus, parahippocampal, temporal white matter, frontal lobe

white matter, internal capsule, corpus callosum and brain stem ROIs, with predominance of

changes in mesial temporal lobe patients, particularly in the left MTS group [47, 50].

1.3.2 Voxel-based statistical techniques

The premise of voxel-based techniques is to establish a voxel-to-voxel correspondence among

subjects through non-linear image registration to a standard brain template. Once all images

are co-registered, differences can be obtained by performing voxel-wise statistical tests. The

majority of these techniques employ group-wise designs, with statistics revealing differences

among two subject groups. In the case of TLE, these groups are usually patients and controls;

patients with left or right temporal lobe seizure onset (L-TLE, R-TLE); and patients with MTS
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Figure 1.13: Voxel-based statistical techniques. These techniques rely on a good spatial normalization
to compare groups of images at the voxel scale. A statistical map is obtained by performing voxel-wise
statistics. A correction for multiple comparisons is usually implemented.

vs. patients with no MTS. Individual analyses are attainable by comparing one subject against

a group of healthy controls but these designs are limited as we will discussed in this section.

Voxel-based morphometry (VBM)

Voxel-based morphometry (VBM) [56] is a technique that detects local tissue differences in a

population by performing voxel-wise comparisons using T1-weighted images. In particular,

VBM detects changes in gray matter (GM), white matter (WM) and CSF. The standard VBM

method involves four steps: (i) spatial normalization to an anatomical template; (ii) segmen-

tation of GM, WM, and CSF tissues; (iii) spatial smoothing that compensates variability in
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individual gyral anatomy; and (iv) statistical analysis [57].

An optimized VBM method has been proposed by Good et al. [58]. In this variation of

the technique, optimized spatial normalization parameters are acquired as follows: (i) the orig-

inal image is affine-registered to the anatomical template, and GM and WM segmentations

are obtained; (ii) The GM and WM segmentations are registered to the template generating

optimal normalization parameters which are then applied to the original image. The ratio-

nale behind this optimization is that in the original technique, scalp fat, dural venous sinuses

and other structures can be misidentified as gray matter voxels, hence, a registration driven by

pre-segmented GM and WM regions can be more accurate.

An additional step known as modulation is often included in optimized VBM. This step

multiplies GM voxels by the Jacobian determinants which are estimated during spatial normal-

ization. This is to adjust GM volumes according to the spatial deformation undergone to match

the anatomical template. To illustrate, if one subject’s hippocampus has half of the volume of

that of the template, then its volume will be doubled during spatial normalization, consequently

doubling the number of voxels labelled as gray matter. Similarly, if another cortical structure is

twice the size of the respective structure in the anatomical template, then the number of voxels

will be halved after registration. Multiplying the registered volume by the Jacobian determi-

nant has the effect of preserving the total amount of gray matter, thus enabling the statistical

comparison of gray matter volumes.

Optimized VBM has been compared with standard VBM in the study of temporal lobe

epilepsy. It has been shown that optimized VBM delivers complimentary volume reductions

(modulated results) that match tissue concentration reductions (unmodulated results) identified

with the standard technique [59] and that it may reveal subtle changes in gray matter volume

that are not otherwise captured [60].

The most common TLE-related finding in VBM studies is the loss of gray matter in the

hippocampus ipsilateral to seizure onset, and in some cases contralaterally [53, 57] in MTS

patients. Other structures such as the thalamus, amygdala, parahippocampal gyrus (entorhi-

nal and perirhinal cortices), fusiform gyrus, inferior temporal, middle temporal, and superior
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temporal gyrus, temporal pole and fornix have shown asymmetric changes with a predominant

GM loss ipsilaterally [57]. Gray matter loss has been more commonly found in MTS patients

than non-MTS patients [59]. Analogously, evidence of WM loss adjacent to mesial temporal

lobe (MTL) structures ipsilateral to seizure onset (and in some cases contralaterally) has been

reported in the literature [53].

VBM has also been used to detect focal cortical dysplasia on individual patients, in FLAIR

images [61], and in T1- and T2-weighted images [62]. In these studies, patient images are

compared individually against a group of healthy individuals, and the resulting statistical maps

are able to pinpoint the location of the FCD in most cases. Nevertheless, there is evidence

for not using VBM for individual patient assesments. VBM is not sufficiently sensitive to

detect focal pathology in individuals with relatively subtle brain changes [57], such as cortical

neuronal loss and hippocampal sclerosis [63] and, beyond the realm of TLE, it has been shown

that VBM is not an adequate stand-alone technique for detecting focal lesions [64].

Voxel-based relaxometry (VBR)

The idea of performing voxel-wise comparisons in a population has been extended to quantita-

tive relaxometry. This technique, known also as voxel-based relaxometry (VBR) [33], follows

a similar processing pipeline to the standard VBM technique, with the exception that there is

no segmentation. Instead, images are: (i) spatially normalized to a template; (ii) smoothed us-

ing a Gaussian kernel; and (iii) statistically analyzed. In VBR, spatial normalization occurs by

proxy of a T1-weighted or T2-weighted image: The transformation parameters obtained from

registering such an image to the anatomical template are applied to the quantitative maps. VBR

results are reported in terms of relaxation times (T1, T2), but it is also common to find stud-

ies referring to relaxation rates (R1 = 1/T1, R2 = 1/T2). This distinction is relevant because

depending on the convention employed, similar studies could appear contradictory.

VBR studies of TLE have shown significant T2 increases in the hippocampus, amyg-

dala, parahippocampal gyrus, anterior temporal white matter typically ipsilateral to seizure

onset [33–35]. Moreover, T2 hyperintensities reported by VBR are more widespread in MTS
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(a)

(b)

Figure 1.14: VBM vs. VBR comparison. a) univariate analyses including: VBM on gray matter (VBM-
GM), white matter (VBM-WM), and VBR; b) Joint multivariate analysis with Hotelling’s T 2 statistic.
It can be seen in (a) that VBR shows widespread changes, particularly in the temporal white matter,
whereas changes in gray matter are observed in the hippocampus and thalamus among other regions
with VBM. Notice also, the correspondence among the regions highlighted as univariate overlaps in (a)
and the results of the joint multivariate analysis in (b).15

patients compared to non-MTS patients [34]. Unlike VBM, VBR results are not tissue-

specific: In VBR images are not segmented into tissue classes, and in this respect it might have

an advantage over VBM, where misclassification of voxels into tissue classes (scalp to neocor-

tex, or partial volumes in tissue boundaries) can affect subsequent statistical analysis. However,

VBM and VBR results can be complimentary. Particularly, in the study of patients with mesial

temporal sclerosis, VBM + VBR has produced regions where volumetric reductions are no-

ticeable (VBM), regions with characteristic hyperintensities (VBR), and regions where both

15Adapted from NeuroImage, 39 (2008), G. Pell et al., Composite voxel-based analysis of volume and T2
relaxometry in temporal lobe epilepsy, 1151-1161, c© 2015, with permission from Elsevier.
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occur simultaneously, particularly in the hippocampus, amygdala and temporal white matter

(Figure 1.14) [35].

Voxel-based statistics of DTI-derived maps (VBS)

Approaches similar to VBR have been followed to compare DTI-derived images, such as FA

and MD maps. These studies are referred in the literature as voxel-based statistics (VBS),

VBS-type analysis, or voxel-based DTI, to make the distinction that the images being analyzed

do not describe magnetic relaxation processes. In my opinion, a more descriptive term such

as VBDA (voxel-based diffusion analysis) could be employed. However, in this section I refer

to these studies as VBS, for simplicity and to maintain the tradition of employing three-letter

acronyms.

Similar to VBR, spatial normalization in VBS occurs by proxy. In this case, the non-

diffusion weighted image (b-value=0) is used for registration to the anatomical template (or

the non-diffusion weighted average image in case of having acquired more than one). Then,

the calculated registration parameters are applied to the FA and MD images. After that, the

smoothing step is similar to VBM and VBR, with isotropic Gaussian kernel filters between

4mm [65] and 8mm [39, 42] full-width-at-half-maximum (FWHM).

VBS studies of TLE generally show a pattern of changes characterized by FA loss and

MD increase. More specifically, VBS has shown ipsilateral increase of MD in temporal and

extratemporal areas including the hippocampus, parahippocampal and frontoparietal regions;

and extensive temporal white matter changes in MTS patients (primarily in left TLE (L-TLE)

patients) [39, 42]. By comparison, no involvement of the mesial temporal structures was iden-

tified in non-MTS patients, but rather, an increase in thalamic MD has been reported [65]. In

addition, substantially decreased FA in temporal white matter has been reported, mainly ipsilat-

erally to the seizure onset but with some contralateral findings, and FA loss has been evidenced

in the thalamus for both MTS and non-MTS groups [39, 65].

Regarding comparison of voxel-based to ROI-based techniques, it has been shown that each

technique produces significant results independently but do not necessarily match. Hence, they
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can be used in tandem to have a more comprehensive view of the pathological process under

examination [66, 67].

1.3.3 Structural analysis of white matter

Tract-based spatial statistics (TBSS)

Tract-based spatial statistics (TBSS) [12] is a method that aims to improve the two main limita-

tions of VBS analyses of FA: proper spatial normalization, and sensitivity to amount of spatial

smoothing. On the one hand, the spatial normalization employed by VBS does not guarantee

a perfect alignment of white matter fibers. For example, it has been shown that VBS studies

may report residual registration misalignments as FA reductions, particularly when there are

variations in ventricular sizes [68]. On the other hand, it has been shown that VBS-FA results

depend strongly on the amount of smoothing [69].

Briefly, TBSS has four steps: (i) registration of all subjects’ FA images to a common tem-

plate using non-linear registration. At this stage perfect alignment is not expected; (ii) creation

of a FA average image and extraction of a skeleton by removing non-maximal values, per-

pendicularly to the local structure. Areas of low FA and/or high inter-subject variability are

removed also; (iii) projection of each subject’s aligned FA image onto the skeleton; and (iv)

voxel-wise statistics across subjects on the skeletonized versions of the respective FA maps.

Using the same method, it is also possible to project white matter MD maps onto the skeleton

for statistical analysis.

TBSS studies of temporal lobe epilepsy have shown general FA reduction in the corpus

callosum, thalamus, internal/external capsule, temporooccipital and fronto temporal connec-

tions [70]. Changes in the uncinate fasciculi are more prevalent in MTS patients compared to

non-MTS patients [44]. MD increases have been also been detected with TBSS in clusters of

temporal white matter predominantly ipsilateral to seizure onset [39, 70].

TBSS results have been compared to those obtained from VBS analyses showing that TBSS

may be more sensitive to white matter changes than VBS studies [39]. However it is important
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deterministic tractography probabilistic tractography

Figure 1.15: Tractography. Tractography constructs global map of white matter connectivity, either
deterministically or probabilistically. In probabilistic tractography maps of confidence in connection to
the seeds are obtained, here shown as isosurfaces.16

to consider the fact that the hippocampal formation does not form a part of the FA skeleton, and

thus VBS could provide complimentary information for mesial structures. In the same manner,

TBSS results have been combined with VBM analysis of gray matter, showing a correlation

between hippocampal gray matter volume and FA white matter [44].

White matter tractography and tractometry

While MD and FA are scalar values characterizing the diffusion process (Figure 1.12), the

eigenvectors of the diffusion tensor can be used to identify coherent anatomical patterns of dif-

fusion, more specifically, to identify white matter fibers where diffusion is highly anisotropic.

This technique is known as white matter tractography and allows the identification of white

matter pathologies such as trauma, tumours and inflammation.

Tractography studies can use either deterministic or probabilistic methods. Determinis-

tic tractography relies solely on information from the source DTI study, such as the main

eigenvector and the FA values on every voxel to guide streamlining algorithms. In contrast,

probabilistic methods use white matter atlases [71] providing a map of relative probability that

a voxel belongs to a particular fiber given its location, DTI properties, and the similarity be-

15Adapted from Brain and Language 131 (2014), J. Campbell and B. Pike, Potential and limitations of diffusion
MRI tractography for the study of language, 65-73, c© 2015, with permission from Elsevier.
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tween its orientation and that of the voxel’s atlas [72]. Both generally require seed voxels to

initialize the estimation of tracts. Seed selection can be manual, or semi-automatic by means

of a registered pre-seeded template [43]. Small FA values in white matter can misguide the

estimation of tracts. Therefore, it is common to restrict these algorithms to FA regions above a

predetermined threshold (between 0.15 and 0.3) [43, 72, 73].

Tractography holds promise for identifying white matter connections in-vivo. Neverthe-

less, current techniques are limited by many factors including: (i) sensitivity to initialization

parameters, including seed location; (ii) limited spatial resolution that undermines the iden-

tification of sub-voxel structures and the resolution of fiber crossing paths; (iii) the lack of a

gold standard to validate results. Additionally, results often need to be manually adjusted by

an expert to control for bad or misidentified tracts.

Tractometry is the process of assigning quantitative measures to the reconstructed stream-

lines from tractography [74]. In studies of temporal lobe epilepsy, both the average FA and MD

are be quantified per tract [43, 73]. Though most TLE tractometry studies agree on reporting

FA loss in tracts ipsilateral to the seizure onset, a more detailed interpretation of results is chal-

lenging, since the extent and number of regions vary from study to study and these are highly

dependent on the specific tracing algorithm employed. For example, two independent research

groups reported that patients with L-TLE present more widespread white matter abnormalities

than right TLE (R-TLE) patients [72, 75], while a third group reported the opposite [43].

Imaging analyses show pieces of a much larger puzzle in which findings are heterogeneous

and highly dependent of individual patient pathologies. This poses the question: how can these

clues be combined to obtain a diagnosis? Machine learning algorithms contribute to this goal

by discovering distinctive patterns in clinical data that can be diagnostically useful.
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1.4 Machine Learning

Machine learning (ML) is a discipline where algorithms are used to identify patterns in data.

To accomplish this, datasets are divided into training and testing sets: the training set is used to

learn the pattern and the testing set to validate the correctness of the identified pattern. When a

pattern has been correctly identified, the algorithm can be used to make individual predictions.

In neuroimaging, ML methods have been applied to the identification of Alzheimer’s dis-

ease [76, 77]; autism [78, 79]; schizophrenia and bipolar disorder [80, 81]; attention deficit

hyperactivity disorder (ADHD) [82]; classification of fMRI brain states [83]; and epilepsy [51,

84–87]. Machine learning can assist in the identification and lateralization of TLE patients,

serving a diagnostic purpose.

ML methods can be classified in four categories:

• supervised learning: the algorithm is shown both the inputs and desired outputs of the

training set. The goal is to learn how to estimate the outputs given the inputs. The algo-

rithm learns from a knowledgeable external supervisor, e.g., artificial neural networks,

naive Bayes, support vector machines.

• unsupervised learning: the algorithm is presented with inputs and no outputs. Its goal

is to identify hidden patterns in data. Cluster analysis, principal component analysis

(PCA), hidden Markov models, and self-organizing maps belong to this category.

• reinforcement learning: the algorithm is presented with inputs, actions and rewards. Its

goal is to learn how to map inputs to actions to maximize the reward, i.e., robots, chess

programs, automata. [88].

• deep learning: the algorithm is presented with a large-scale complexly structured input.

Its goal is to model high-level patterns in the data by learning multiple levels of data

representation using semi-supervised or unsupervised methods at every level [89].

From these, supervised learning is the most commonly used in neuroimaging: the input

is represented by image features (e.g., voxels, volumes, tracts, ROIs), and the output is the
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subject’s class. Classes (also called labels) are often binary: patient or control; left TLE or

right TLE; MTS or non-MTS. Hence, the goal of ML methods in neuroimaging, is to use

image features to predict the subject’s class. By making a prediction for each subject in a

sample, automatic classification can be achieved and hence, these ML algorithms are also

called classifiers.

1.4.1 Feature selection

Not all features contribute in the same measure to obtaining a prediction. For example, a back-

ground voxel would not have any classification ability; whereas a voxel in the hippocampus

may help to discriminate MTS patients from controls. Thus, feature selection consists of the

automatic identification of relevant features for a given classification problem.

Curse of dimensionality

In neuroimaging, the number of features usually exceeds the number of subjects. For example,

an image can have millions of voxels (which we could use as features); the number of subjects

(observations of those features) is smaller by several orders of magnitude. This is a common

problem in machine learning known as the curse of dimensionality [90], or small-n-large-

p [91]. Consequently, without selecting informative features and discarding irrelevant, noisy

features, a classifier is at risk of overfitting, resulting in a poor predictive performance. In this

context, the concept of overfitting is similar to that of regression modeling: the more complex

a regression model is, the more likely is to overfit. Similarly, a ML algorithm trying to learn a

pattern made from hundreds of thousand of features, given a reduced number of observations,

can very well be modeling a spurious noise pattern in the training set, rather than a pattern of

interest.

Hence, feature selection in neuroimaging mitigates the effect of the curse of dimensionality,

selecting good features and increasing the likelihood of obtaining a highly predictive classi-

fier [92]. Moreover, feature selection facilitates data visualization and understanding [93], and

may provide insight into the scientific question of interest [94]. Feature selection methods can
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be divided in two categories: supervised and unsupervised.

Supervised feature selection

Supervised feature selection methods know the “ground truth” provided by an expert. In TLE,

the ground truth corresponds to the diagnostic labels: patient or control, L-TLE or R-TLE, etc.

Supervised feature selection methods can be divided in three categories (Figure 1.16):

• filter methods: these methods do not have access to the classifier, but they have access

to the labels. Hence, feature relevance can be established by comparing the feature with

the label using statistical (t-test, ANOVA, Pearson correlation) or information-theoretic

approaches (information gain, mutual information, entropy). Filter methods are fast and

produce feature sets that can be used with any ML algorithm.

• wrapper methods: these methods have access to the classifier, and use its performance

to measure the relevance of individual, or subsets of features. Thus, feature subsets are

generated using a search strategy (e.g., statistical sampling, cross-validation) and the

best feature subset leading to a correct classification is kept. A classifier using a wrapper

method may perform better than a classifier using a filter method since, the features have

been “tuned” for it. However, this dependency implies that features lack generality: the

optimal feature set is specific to the classifier under consideration. Methods belonging

to this category are recursive feature elimination (RFE) and Searchlight [95]. Due to the

intensive use of the classifier as the ranking agent, wrapper methods are computationally

expensive.

• embedded methods: in these methods, the linkage between feature selection and the

classifier is stronger than in wrapper methods. In other words, feature selection makes

part of the classifier. Regularized least square regression techniques such as the least

absolute shrinkage and selection (LASSO), and Elastic Nets belong to this category [96,

97].
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Figure 1.16: Supervised feature selection. a) filter methods are fast and independent from the classifier;
b) wrapper methods select features according to the classification performance obtained with them; c)
embedded methods are part of the classification algorithm.

Unsupervised feature selection

Unsupervised feature selection methods are oblivious to existence of a ground truth. Instead,

these techniques focus on creating relevant features through linear or non-linear combina-

tions of the original predictor variables (features) [94]. PCA, independent component anal-

ysis (ICA), clustering, spectral transformations (Fourier, Hadamard), and wavelet transforms

are unsupervised feature selection methods. Hence, the main goal of unsupervised methods is

to obtain an appropriate data representation in far fewer dimensions than the original feature

space, thus addressing the curse of dimensionality [93].
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1.4.2 Support Vector Machines

A support vector machine (SVM) is a binary classifier that computes a decision boundary using

training data and predicts labels for new observations [98, 99].

The training dataset can be formally defined as: {(xi, yi)}1≤i≤N , xi ∈ R
d where xi is a mul-

tidimensional observation, yi their respective binary label (ground truth) and N the number of

elements in the training set. In neuroimaging, xi is a vector containing features extracted from

every image, yi is the diagnostic label assigned to that image, and N the number of subjects

used for training the SVM.

Compared to other classifiers, SVMs are relatively robust to the curse of dimensional-

ity [100, 101]. SVMs use regularization avoiding ,to some extent, data overfitting. Nonethe-

less, SVMs can still benefit from dimensionality reduction [102].

Principle

The idea behind SVMs is to find a hyperplane that maximizes the separation between two

classes(Figure 1.17c). This separation is known as the margin and it corresponds to the distance

from the decision boundary to the closest data point in the training set.

Let the hyperplane that we are looking to be defined by the standardized normal vector ŵ

and intercept b:

ŵT x + b = 0 (1.10)

For any x on the plane. Let xn be the closest point to the hyperplane, then the margin m can

be defined as:

m =
∣∣∣ŵT (xn − x)

∣∣∣ (1.11)

This is no other than a point-plane distance, calculated by projecting (xn − x) onto the

normal direction ŵ (Figure 1.17d). The absolute value here is required since a hyperplane has

two normals (one pointing up, the other down). To maximize the margin, the absolute value

needs to be removed. Hence, the labels Y = {yi} associated to the data points X = {xi} in
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Figure 1.17: Support vector machines. A support vector machine (SVM) uses training data to identify
the hyperplane that separates two classes maximizing the margin, which is defined as the distance from
the hyperplane to the closest data point (d). Maximizing the margin is a quadratic optimization problem,
in this figure shown in different stages from (a) to (c) where the maximum margin is obtained.

training set are replaced by +1,−1 according to the following rule:

yi =


1 : ŵT (xi − x) > 0

−1 : ŵT (xi − x) < 0
(1.12)

then the absolute value can be removed:

m = yiŵT (xn − x) (1.13)
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replacing ŵ by w/ ‖w‖ for any normal vector w:

m =
1
‖w‖

[
yi

(
wT xn − wT x

)]
(1.14)

but since x lies on the plane (Eq. 1.10), wT x = 0 and:

m =
1
‖w‖

yn

(
wT xn

)
(1.15)

without loss of generality, a restriction can be imposed so yn

(
wT xn

)
= 1. This restriction

controls the scaling of the plane normal w. Hence, maximizing the margin can be formulated

as the optimization problem:

maximize
1
‖w‖

subject to yi

(
wT xi

)
≥ 1, i ∈ [1..N]

however, 1/ ‖w‖ is not easy to optimize since the vector norm includes a square root. Instead,

this problem can be formulated as the equivalent minimization problem:

minimize wT w

subject to yi

(
wT xi + b

)
≥ 1, i ∈ [1..N]

this formulation is known as the primal form and it is solvable by using Lagrange multipliers

and quadratic programming. The details of the solution are beyond the scope of this thesis but

it is worth mentioning that any non-zero Lagrange multipliers correspond to support vectors,

which are data points that lie directly on the optimal margin.

Kernels and the kernel trick

In machine learning, kernels are functions that express similarity between data points (Ta-

ble 1.1). The kernel trick consist in replacing the inner product that appears in the Lagrangian

expression of the SVM optimization problem, with a kernel function κ:
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L(β) =

N∑
i=1

βi −
1
2

N∑
i=1

N∑
j=1

yiy jβiβ j(xi · xj) (1.16)

with:

L(β) =

N∑
i=1

βi −
1
2

N∑
i=1

N∑
j=1

yiy jβiβ jκ(xi, xj) (1.17)

Thus, similarity is not evaluated in the original data space, but rather in a space determined

by the kernel function. Kernels enable the use of support vector machines with data that is

otherwise not linearly separable. It is important to notice that references to non-linear support

vector machines in the literature refer to non-linear transformations of the data using kernels.

The SVM machinery is linear, always obtaining a hyperplane. Whether it is in the original

space or in the transformed space, that depends on the use of kernels.

Table 1.1: Examples of kernel functions. Kernel functions measure similarity between two data points
(here xi and x j). In support vector machines, kernels enable the classification of data that is not linearly
separable. Here γ and r are constants, and d is the degree of the polynomial.

Type Function κ(xi, x j)

linear xT
i x j

polynomial γ
(
xT

i x j + r
)d

Gaussian exp
[
−γ

∥∥∥xT
i x j

∥∥∥]
sigmoid tanh

[
γ
(
xT

i x j

)
+ r

]

Soft margins

In most real scenarios, data are not completely linearly separable, but sufficiently close for ap-

proximation purposes. In these cases, using kernels does not guarantee an optimal outcome and

may even lead to overfitting. Instead, the idea of a regularized or soft margin [103–105] allows

obtaining a hyperplane by relaxing the constraints in the optimization problem (Equation 1.4.2)

using slack factors ξi, and adding a penalty term governed by the regularization parameter C:
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minimize wT w + C

N∑
i=1

ξi

subject to yi

(
wT xi + b

)
≥ 1 − ξi, i ∈ training examples, ξi ≥ 0

Unless specified otherwise, current support vector machines in neuroimaging (including

this thesis) use soft margins.

Training and testing strategies

One of the most important issues to consider when using machine learning methods is the

complete separation of training and testing sets in order to avoid the problem known as double-

dipping [92], also known as circular analysis in neuroimaging [95]. For example, an SVM

will accurately predict each data point used in the estimation of the decision boundary, after

all, the boundary is obtained by solving an optimization problem on the training data. Hence,

when elements of the training set are used for testing, the accuracy of the classifier will be

overestimated leading to the false conclusion that we have an optimal classifier. Kriegeskorte

et al.(2009) befittingly explained the effect that circular analysis has in the interpretation of

results [95]:

“Using the same data to train and test a linear classifier can lead us to believe that

there is information about the stimulus in regions where actually there is none”

For the same reason, feature selection must not be applied to the whole dataset: by using

data from the test set we are effectively biasing the selection process. This effect is also known

as overfitting by feature selection. Hence, in an ideal scenario a dataset must be partitioned

in : feature selection, training and testing sets. However, this is generally not feasible due to

reduced sample sizes, exceptionally common in neuroscience and neuroimaging [106].

Popular methods in ML neuroimaging studies to avoid double-dipping are leave-one-out

and k-fold cross-validation. Leave-one-out cross-validation involves selecting all but one of

the subjects for training, and evaluating the classifier on the left-out subject; then, the left-out

subject is reintroduced to the training set and another subject removed; this process is repeated
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until all the subjects have been left-out once [83–85, 92]. Similarly, k-fold cross-validation

divides the dataset in k folds of equal size; trains the SVM on k-1 folds; and then the k-th

fold is used for testing; this process is repeated k times, changing each time the fold that

is evaluated [51]. Similarly, bootstrapping approaches in which training and testing sets are

iteratively generated by random sampling without replacement, have also been employed [76]

Finally, feature selection must be performed in the training set only, for the aforementioned

reasons. Thus, when using cross-validation, feature selection must be performed in each re-

sulting training set [92].

Measurements of classification performance

Since an SVM is a binary classifier, performance measures can be derived from the number of

hits (correct predictions) and misses (failed predictions). For classes A and B, let A be patients

(“positive” to the clinical condition), and B controls (“negative” to the clinical condition).

Then, four basic measurements can be defined:

• True positives (tp): the number of hits for class A. i.e., patients correctly identified

• True negatives (tn): the number of hits for class B. i.e., controls correctly identified

• False negatives (fn): the number of misses for class A. i.e., patients identified as controls

(Type II error).

• False positives (fp): the number of misses for class B. i.e., controls identified as patients

(Type I error).
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From this, classification performance metrics can be defined as follows:

sensitivity =
tp

tp + f n
(1.18a)

specificity =
tn

tn + f p
(1.18b)

accuracy =
tp + tn

tp + tn + f p + f n
(1.18c)

precision =
tp

tp + f p
(1.18d)

F1-score =
2tp

2tp + f p + f n
(1.18e)

Sensitivity and specificity are common measures in medicine. Sensitivity measures the per-

centage of patients that are correctly identified; specificity, the percentage of controls that are

correctly identified. Accuracy, precision and F1-score are common in pattern recognition and

information retrieval. Accuracy estimates the percentage of correct classifications; precision

on the other hand, the percentage of reported positives that are indeed positives; the F1-score

is the harmonic mean of precision and sensitivity.

There are some scenarios where the classification occurs between patient subcategories.

e.g., A = left TLE, and B = right TLE. In these cases, sensitivity and specificity lose their

meaning and rather, the same formulas can be used to indicate the number of correct identifi-

cations per class for A and B respectively. The name for these measurements is replaced with

“correct A” and “correct B” [84, 87]; or “sensitivity A” and “sensitivity B” [51].

1.4.3 Support vector machines in neuroimaging studies of TLE

Support vector machines have been successfully used to identify and lateralize TLE patients.

For example, Keihaninejad et al.(2012) [51] used ROI features (volumes) from T1-weighted

data to detect and lateralize TLE patients with MTS (accuracy 96%), and more interestingly

non-MTS patients (86% − 91%). Also, perfect lateralization was obtained in MTS patients,

while good lateralization was obtained in the non-MTS group (86% − 94%). Correspond-

ingly, Focke et al.(2012) [84] identified and lateralized patients using voxel-features from T1-
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weighted and DTI images, stratifying the classification per type of image (GM, WM, T2, FA,

MD), and comparing L-TLE vs. controls, R-TLE vs. controls, L-TLE vs. R-TLE, and L-TLE

vs. R-TLE vs. controls. The best accuracies were obtained in the gray matter (90% − 100%)

and mean diffusivity (95% − 97%) images. Similarly, Zhang et al.(2012) [86] defined fea-

tures from rest-fMRI to identify epilepsy patients achieving an accuracy of 83.9%, and Fang

et al.(2015) [85] combined a cortical parcellation from T1-weighted images with white mat-

ter tractography to obtain a structural connectivity network. Features from this network were

used to classify patients, obtaining an accuracy of 93% for lateralization, and 90%− 93.4% for

patient identification.

Multivariate pattern analysis

Multi-voxel pattern analysis (MVPA) [107] describes a set of analysis techniques that applies

machine learning to the detection of local patterns in neuroimaging. MVPA has four stages: (i)

feature selection; (ii) pattern assembly; (iii) classifier training and, (iv) generalization testing.

During feature selection, uninformative voxels are removed using voxel-wise statistics, or by

limiting subsequent analysis to specific anatomical ROIs [108]. Another common method is

to define spherical voxel-neighborhoods or “searchlights” [78, 95, 109]. Next, in the pattern

assembly stage, data are sorted into discrete “brain patterns” corresponding to the difference of

interest in structural MRI, or the activation pattern in fMRI. Subsequently, a classifier is trained

using subset of the data, and lastly, local classifiers are tested with the rest of the pattern, hidden

from training. MVPA reports classification performance for the selected ROIs.

MVPA techniques originated in the analysis of fMRI, and have been applied in several

domains including: perception, learning and memory, language, intention, decision-making,

emotion, anxiety, depression and dyslexia [110]. Research on MVPA is relatively contem-

poraneous with the writing of this document, and so far, there are not many applications on

structural/DTI imaging yet, particularly in TLE. Nevertheless, a recent MVPA-fMRI study on

MTS patients [108], has tested the functional capacity of the contralateral hippocampus (non-

lesional side) for preserving memories, while the ipsilateral hippocampus shows no memory
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preservation. Hence, MVPA has the potential to predict the effects of hippocampal resection in

TLE patients that require surgery.

1.5 Thesis objectives and scope

Diagnostic clues provided by most imaging analyses are fragmented and individually insuffi-

cient to fully characterize TLE. Most techniques are highly dependent on the accuracy of the

registration and the selected brain template, and even when these factors are controlled, statisti-

cal issues arise hindering inferences on individual cases. Comparative studies, in which two or

more techniques are applied to the same dataset, have shown limited intersections coinciding

mostly on hippocampal abnormalities and, aside from the hippocampus results are sparse. In

this context, the objectives of this thesis are to:

1. Explore mechanisms for integrating MR imaging techniques into TLE diagnostic appli-

cation,

2. Determine the contributions of each imaging method to TLE diagnosis,

3. Identify characteristic imaging patterns in patient subpopulations, and

4. Evaluate machine learning techniques for the identification and lateralization of TLE

patients using information derived from multiple MR imaging methods.

The scope of this work corresponds to the analysis of quantitative relaxometry maps (T1,

T2), DTI-derived images (FA, MD) and gray matter maps (GM) derived from VBM analy-

ses. In regards to machine learning, classification using linear SVM and non-linear SVMs are

performed.

1.5.1 Thesis overview

The rest of this document is organized in four chapters. Chapter 2 focuses on the integration of

Q-MRI and DTI maps for individual patient assessment using a regions-of-interest approach.
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Chapter 3 explores the quality of several SVM classification models for identifying TLE pa-

tients. Chapter 4 evaluates SVM-based classification in the temporal lobe only. Finally, chapter

5 presents conclusions and future work.

Chapter 2: Characterization of TLE through individual patient studies

In this chapter, a novel method for supplementing radiological inspection of TLE images, by

providing a quantitative assessment, is presented. The method is described as follows: (i)

Q-MRI and DTI-derived images are corregistered in subject space; (ii) an anatomical atlas

containing cortical, white matter, and subcortical regions is registered to subject space; (iii)

the ROIs defined in the atlas are used to extract features from Q-MRI and DTI-derived images

for every subject; (iv) a statistical analysis is performed on these features by comparing each

subject against a control group of healthy volunteers; and (v) results are reported in the form

of individual feature maps which illustrate patient-specific findings.

Chapter 3: TLE detection using support vector machines in multi-parametric quantita-

tive MR imaging

The regions of interest identified in Chapter 2 are used in this chapter to examine the quality

of automatic patient identification and lateralization with SVMs. This chapters studies clas-

sification models considering these factors: (i) the type of images employed; (ii) the feature

selection method; (iii) whether or not dimensionality reduction is used (PCA); and (iv) the

type of SVM. Classification models are trained on TLE identification and lateralization tasks

for multiple combinations of input images and performance metrics are obtained. Using these

metrics, recommendations are made regarding to the optimal model for TLE analysis. Further-

more, informative features for each classification task are identified, with a salient prevalence

of asymmetry features. Additionally, elements of machine learning are evaluated, such as the

appropriateness of feature selection methods, and the stability of automatic classification in

small samples.
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Chapter 4: Classification of temporal lobe epilepsy patients using voxel-based asymmetry

Based on the relevance of asymmetry in the identification of patients evidenced by previous

chapters, this chapter explores the classification of TLE patients using voxel-based asymmetry

features. The method can be described as follows: (i) Q-MRI and DTI-derived images are reg-

istered to a common symmetric template for all subjects; (ii) T1, FA, MD, and GM asymmetry

maps are generated by estimating the local asymmetry using spherical voxel-neighbourhoods;

(iii) automatic classification experiments are performed in the anterior temporal lobe (ATL),

mesial temporal region (MSL), and neocortical temporal region (NEO); and (iv) results are

compared to a baseline experiment in which local asymmetry is not estimated. This chapter

also presents a group-wise statistical analysis on regional asymmetry, defined in this case as

the average of local asymmetries over the regions of analysis (ATL, MSL, NEO).

Chapter 5: Conclusions

Finally, a summary of the limitations, contributions and an outline for future research is pre-

sented.
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Chapter 2

Characterization of TLE through

individual patient studies

2.1 Introduction

Identifying MRI abnormalities that can be correlated with seizure activity is fundamental for

the lateralization (left or right hemisphere seizure onset), seizure localization, surgical plan-

ning, and prognosis of patients with temporal lobe epilepsy (TLE). In some cases, the lack

of tissue contrast and/or the abnormalities reduced size can make diagnosis difficult. In these

scenarios further tests are required, generating delays and additional costs in patient care.

Computer-assisted imaging tools have improved detection and quantification of MR image

abnormalities in TLE patients. Current techniques analyze changes in gray and white matter

volumes using T1- and T2-weighted sequences [1, 2]; cortical thickness and cortical folding [3,

4]; hippocampal intensity, shape and volume [5–8]; as well as changes in the structure of white

matter using diffusion tensor imaging (DTI), reporting fractional anisotropy (FA) and mean

diffusivity (MD) [6, 9].

Many of these computer-assisted analysis methods rely on group comparisons: a TLE

group is compared against a healthy control group and statistically significant differences are

extrapolated to the patient population. For example, ipsilateral reduction of FA, in most cases
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accompanied by increased ipsilateral MD, has been found in TLE patients through this ap-

proach [10–12]. However, group effects are not relevant for the individual presurgical assess-

ment of TLE patients, in which the role of MRI is to detect focal abnormalities unique to each

patient [2]. The heterogeneous etiology of TLE, as well as, the diverse presentation of epileptic

foci, require that patient-specific techniques enable the identification of focal changes even if

these are not shared by the particular patient population under study.

In this context, a novel, multi-parametric approach to patient-specific analysis integrating

modern MR techniques is presented. More specifically quantitative relaxometry (T1 and T2

maps) and diffusion tensor imaging (fractional anisotropy and mean diffusivity) are analyzed,

providing a comprehensive view of changes that otherwise would not be available by simple

visual inspection. This approach uses focal intensity and volumetric differences between left

and right hemispheres, providing a unique characterization, as well as a laterality score for

every patient in the study. Although there are some limitations, the proposed technique holds

promise for providing new insights into the nature, extent and anatomical relationships of struc-

tures involved in patient-specific pathologies, and might lead to new approaches in the clinical

evaluation and surgical planning for TLE patients.

2.2 Method

2.2.1 Participants and Imaging Protocol

A total of 32 individuals participated in this study, 17 of whom were control volunteers (age

32±10,12 male, 7 female) and 15 TLE patients (age 35±10, 7 male, 8 female) who were

scheduled for temporal lobe surgery (8 left, 7 right). Only patients with lateralizable seizures

(confirmed by prolonged video-EEG) were selected for this study. A clinical summary of

our patient cohort is presented in Table 2.1. Preoperative anatomical MRI identified mesial

temporal sclerosis in 8 patients (MTS+) [#1-8] (confirmed in 7 of them by post-op pathology).

The remaining 7 patients [#9-15] were classified as negative for MTS (MTS-) with 3 of them

having normal MR scans [#13-15].
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Table 2.1: Clinical summary. Hipp: hippocampus; DNET: dysembrioplastic neuroepithelial tumour;
CD: cortical dysplasia; FCD: Focal cortical dysplasia; LATL: left anterior temporal lobectomy, RATL:
right anterior temporal lobectomy. (+) indicates EEG findings outside the temporal lobe
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For this study, subjects were scanned using a 3T MR scanner (GE Discovery MR750) with

whole brain, DESPOT1-HIFI and DESPOT2-FM sequences (1mm isotropic voxel) [13–15].

Two SPGR images were acquired (flip angles of 4◦ and 18◦) along with an inversion-prepared

spoiled gradient recalled acquisition in the steady state (SPGR) to calculate a quantitative T1

map. Five balance steady state free-precession (bSSFP) images were acquired with phase

cycling (flip angles of 15◦, 35◦, 60◦) to estimate a quantitative T2 map using the DESPOT2-

FM procedure [16]. A DTI sequence was also acquired with the following parameters: 2.4 mm

isotropic voxels, 41 directions, b-value =1000, 4 non-weighted (b=0) volumes. This protocol

was approved by the Office of Research Ethics at Western University (Canada) 1.

2.2.2 Image Preprocessing

The images acquired with the DESPOT1-HIFI and DESPOT2-FM techniques were co-registered

to the 18◦ flip angle SPGR image using the FLIRT registration tool from FSL2 [17] to account

for motion between scans prior to the computation of the T1 and T2 maps.

DTI images were processed as follows: (1) non-linear geometric distortions were corrected

by deformable registration of the average of the b=0 volumes to the undistorted T1 map, using

a diffeomorphic registration method [18, 19]; (2) Eddy current correction and diffusion tensor

estimation was performed using FSL’s diffusion toolbox FDT; (3) maps of fractional anisotropy

(FA) and mean diffusivity (MD) were transformed and re-sampled to the coordinate system

defined by the 1mm isotropic T1 map. This preprocessing stage yielded four co-registered

quantitative maps (T1, T2, FA, MD) for each subject.

2.2.3 Segmentation of regions of interest (ROI)

For each subject, a synthetic T1-weighted image, with inherent bias-field correction, was gen-

erated from the T1 map [20]. This synthetic image was used to perform an atlas-based volu-

1The ethics approval document is available in Appendix B
2FSL software: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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metric ROI segmentation using Freesurfer.3 This procedure included: (1) removal of non-brain

tissue using a hybrid watershed/surface deformation procedure; (2) automated Talairach trans-

formation 4; (3) segmentation of the white matter, gray matter and specific structures, including

hippocampus, amygdala, caudate, putamen, thalamus and ventricles; (4) The gray matter and

white matter were further subdivided into regions based on gyral and sulcal architecture using

a surface-based registration approach. This segmentation procedure created a set of paired

regions between the left and right hemispheres (i.e. left and right hippocampus). A total of

35 cortical, 34 white matter and 9 subcortical ROI per hemisphere were extracted for every

subject.

Both temporal and extratemporal lobe regions are included in this analysis under the con-

sideration that TLE seizures can propagate outside of the temporal lobe, therefore affecting

other brain areas (Please refer to extratemporal EEG activity in Table 2.1).

2.2.4 Feature quantification

Features in the quantitative maps (T1, T2, FA, MD) were extracted using the regions of interest

obtained in the previous step.

Three types of features were extracted from each map: mean intensity, intensity asymmetry,

and volume asymmetry.

• The mean intensity was calculated by averaging the voxel intensities in every ROI.

• The intensity asymmetry was measured by comparing the intensity distributions in the

left-right ROI pairs with a two-sample Kolmogorov-Smirnov test (KS).

• The volume asymmetry was quantified as the absolute difference between corresponding

left-right ROIs, normalized by the total intracranial volume.

3Freesurfer software: http://surfer.nmr.mgh.harvard.edu/
4According to the FreeSurfer documentation, this step is an affine transform to the MNI305 atlas. See http:

//freesurfer.net/fswiki/talairach

http://surfer.nmr.mgh.harvard.edu/
http://freesurfer.net/fswiki/talairach
http://freesurfer.net/fswiki/talairach
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Measuring asymmetry in ROI intensities

The KS test calculates the empirical cumulative distribution function (ECDF) of two distri-

butions and then determines the maximum distance between them (Figure 2.1). Because the

vertical axis corresponds to cumulative probability, the result of the test is always a positive

number in the [0,1] range, which is an ideal continuous scale to express asymmetry (i.e. 0 =

completely symmetric regions, 1 = completely asymmetric regions).

Figure 2.1: Kolmogorov-Smirnov (KS) test. This example shows, from left to right, increasing dif-
ferences in (a) mean and (b) standard deviation of two simulated ROIs. The KS test result is shown
by the vertical bar indicating the maximum distance between the left and right empirical cumulative
distribution functions (ECDFs). The x-axis is an arbitrarily selected intensity range for this simulation.

There is more overlap among similar left-right ECDFs and the resulting asymmetry measure

is small. In contrast, in the presence of a focal pathology the intensity distribution in one of the

two ROIs can be significantly different than in the other, therefore the distance between ECDFs

is large and high asymmetry is obtained. This is shown in Figure 2.2 where hippocampal MD

asymmetry is measured in (a) a control subject, and (b) a TLE patient. For the control subject,

the left and right hippocampal intensity distributions have a larger overlap. This is reflected in

a low asymmetry value (KS = 0.17). In contrast, the same distributions have a lower overlap
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Figure 2.2: Intensity distribution asymmetry. A two-sample Kolmogorov-Smirnov test is employed
here to compare the left and right hippocampus on MD; intensity distribution asymmetry is measured
for a: a control subject and b: a TLE patient; The ECDFs are shown on the first row and the respective
distributions, in the second row.

for the TLE patient(KS = 0.39).

KS is a non-parametric test, which makes it ideal for dealing with TLE images where tissue

intensities may depart from normality due to the presence of pathologies. Moreover, the KS

test was chosen amongst the many possible measures of the difference between two probability

distributions because of its robustness to small sample size considering the limited number of

voxels being compared in DTI-based volumes. This robustness is a product of the tests use of

the cumulative probability function which can be estimated more readily that the probability

density function required by the Bhattacharyya or Kullback-Liebler divergence. These density
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functions, and therefore the difference metrics between them, are heavily dependent on the bin

size or selection of kernel in smoothing approaches which could lead to lower robustness in the

estimation of asymmetry.

Similarly to the mean intensity and volume asymmetry features, intensity asymmetry in the

control group was measured to obtain a baseline for statistical comparisons. An example is

presented in Figure 2.3.

Figure 2.3: Measuring intensity asymmetry. Hippocampal MD asymmetry measured for patients
and controls. Using the control group asymmetry as a baseline it is possible to estimate abnormal
asymmetries in TLE patients.
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2.2.5 Single-subject statistical tests

To determine the rarity of a feature in a given patient, single-subject t-tests [21–24] were

performed. These tests compared patient features to the respective statistical distribution for

the respective features obtained from the control group (Figure 2.4).

Figure 2.4: Statistical tests. A single-subject t-test is performed to detect individual, local hypo/hy-
perintensities, and abnormal asymmetry in intensity and volume. (a) mean intensity tests. L: left mean
intensity, R: right mean intensity. (b) asymmetry tests. KS: intensity asymmetry, V: volume asymmetry.

Mathematically, the mean and variance of the feature in the control group are treated as

population parameters and the patient’s feature is treated as a sample of size one (N=1) not

contributing to variance estimation. For a given subject s, control group c, ROI (or region pair)

r, and feature Xr, this test is defined as:

t(s,Xr) =
Xr(s) − Xr(c)

σc

√
Nc+1

Nc

(2.1)

where Xr(s) is the feature Xr evaluated for subject s; Xr(c) is the feature mean in the control

group; σc is the feature standard deviation; and Nc is the control group size. A significance
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level α = 0.05 was employed, adjusting for multiple comparisons using Bonferroni correction.

2.2.6 Individual Feature Maps

The results of single-subject t-tests were organized in four individual feature maps (IFMs) to

facilitate their interpretation.

• IFM{L}: this map shows the regions in the left hemisphere that are abnormally hypo/hy-

perintense when compared to a control population; i.e., where the ROI mean intensity

survived statistical testing. An associated report indicates the type of finding (hypo/hy-

perintensity).

• IFM{R}: similar to the left map, it shows the regions in the right hemisphere that are

abnormally hypo/hyperintense when compared to a control population. Information re-

garding the type of finding is also included in the associated report.

• IFM{KS}: shows the regions that survived the statistical testing of their intensity asym-

metry feature. For T1, T2 and MD only the ROI on the hyperintense side is shown. For

FA, only the ROI on the hypointense side is shown. This convention aids in the inter-

pretation of the results as it has been shown by previous studies that intensity changes

associated to TLE manifest as increased T1, T2 [25, 26] and MD [12] and focal loss in

FA [10].

• IFM{V}: region pairs with abnormal volume asymmetry are reported here, however, only

the smaller ROI of the pair is shown. This convention is useful for identifying relative

volume reduction which is of clinical interest and it has been documented in similar TLE

studies [6, 27]

A quantitative report accompanying these maps organizes the results according to type of

IFM (L, R, KS, V), image (T1, T2, FA, MD) and type of finding: hypo or hyperintensity for
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mean intensity features; (Left>Right or Right>Left) for intensity asymmetry, and (VL) smaller

left volume, (VR) smaller right volume for volume asymmetry 5.

2.2.7 Patient lateralization based on temporal lobe asymmetry

A laterality score to discriminate between left and right TLE patients was defined as follows:

Let p be a temporal lobe ROI pair present in the {KS} map; pl, the mean intensity in the

left ROI; pr, the mean intensity in the right ROI; and i(p) be the image where the intensity

asymmetry is found. The laterality of p, L(p) is defined as:

L(p) =



−1 if i(p) ∈ [T1,T2,MD] and pl > pr

+1 if i(p) ∈ [T1,T2,MD] and pr > pl

−1 if i(p) ∈ [FA] and pr > pl

+1 if i(p) ∈ [FA] and pl > pr

(2.2)

Then, the laterality score S for a given patient is defined as:

S =

∑
p

L(p)

N
(2.3)

where the sum extends over all the temporal lobe region pairs identified in the {KS}map, and N

is the total number of pairs. The division by N normalizes the laterality score from -1 (perfect

left) to +1 (perfect right).

2.2.8 Group analysis

With the IFMs computed for all the subjects in the study (including controls), an a posteri-

ori statistical analysis was performed on the number of abnormalities reported by the IFMs,

with the goal of identifying frequent abnormalities across the individual cases as well as to

characterize different patients subgroups (L-TLE vs R-TLE, controls vs. MTS- vs. MTS+).
5Examples of these reports are available in Appendix A
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2.3 Results

Table 2.2 shows individual results grouped by IFM, lobe, type of tissue (cortex, white matter)

or other structures (hippocampus, amygdala, thalamus, caudate, ventricles, putamen, pallidum,

insula and cerebellum). Statistically significant mean intensities are reported in square brackets

([R] = right, [L] = left) with the sign indicating a hyperintensity ([R+],[L+]) or a hypointensity

([R-],[L-]); intensity asymmetries are reported using parenthesis as (L>R) or (R>L); and for

volume asymmetries the lesser volume is shown as (VL) for left, and (VR) for right.

In regards of laterality, 12 out of 15 patients (80%) were correctly categorized as L-TLE

or R-TLE. Table 2.2 show the correspondence between the predicted laterality score and the

surgery performed. The remaining three patients had a normal MRI and the study did not reveal

any significant temporal intensity asymmetry (#13-15 in Table 2.2).

Hippocampal intensity abnormalities were found in all patients diagnosed with MTS (con-

firmed histologically), with most of these differences being detected on the MD image. Ipsi-

lateral hippocampal volume reduction was also found also in all of them. Though patient #6

was diagnosed as a possible MTS case by the MRI, only gliosis was present in the surgical

specimen. Our method did not detect hippocampal involvement in either intensity or volume

for that patient.
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Table 2.2: IFM results. Good correspondence between predicted laterality score and surgery per-
formed; 0#: not enough asymmetry to determine side. (L>R) intensity asymmetry with left ROI ¿ right
ROI, (R>L) opposite case; [L/R+]: left/right hyperintensity , [L/R-]: left/right hypointensity; Volume
asymmetry is reported indicating the lesser volume as (VL) for left, and (VR) for right; ctx: cortex; wm:
white matter; temp: temporal; occ: occipital; p: parietal; f: frontal;
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2.3.1 Individual feature maps for a MTS patient

This patient was a 32 year-old, right-handed woman with a 13 year history of partial seizures

(Patient #4 in Table 2.2). The radiological evaluation was performed using a 3D FLAIR with

sagittal reformats, coronal MPGR, STIR coronal 3-D T1 axial. The principal abnormalities

were slight asymmetry in the hippocampal body with the left appearing smaller than the right

and increased T2. No other abnormalities were identified. The radiologist concluded that

the evidence was suggestive of left mesial temporal sclerosis. Additionally, multiple EEG

monitoring sessions detected seizures originating from the left temporal lobe.

The individual feature maps for this patient are shown in Figure 2.5. IFMs corroborate the

bilateral MRI and EEG clinical evaluations: The left-hemisphere map {L} indicates abnormal

MD intensity in the left hippocampus. The corresponding report confirms that this abnormality

is a hyperintensity (Appendix A.1). There are no hyper/hypointensity abnormalities in the

right map {R}. The asymmetry map {KS} shows intensity asymmetry in the hippocampus

(left>right) in both T2 and MD maps (multiple). There is also evidence of intensity asymmetry

in the parahippocampal white matter on the T1 image (left>right). The volume asymmetry

map {V} revealed left volume reduction in the hippocampus and right volume reduction in the

superior-frontal cortex. This patient received a laterality score of -1 (perfect left).

2.3.2 Individual feature maps for a non-MTS patient

This patient was a 39 year-old, left-handed man (Patient #12 in Table 2.2) with a history of

simple partial seizures during childhood. In his early 30s, he began experiencing stereotypical

seizures with behavioural arrest, loss of awareness and buccal and bimanual automatisms. The

MRI study was performed using diffusion and T2 gradient echo axial, FLAIR coronal, 3-D T1

axial pre and post gadolinium and T1 coronal pre and post gadolinium. Also abnormal T2 was

evident in the right fusiform gyrus with some associated cortical thickening. A MRI diagnosis

of dysembryoplastic neuroepithelial tumour (DNET) was favored, but the possibility of cortical

dysplasia was also raised. Mild cerebellar atrophy as well as right frontal cortical atrophy were
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Figure 2.5: IFM for a L-TLE patient with MTS. The color code indicates the origin of the abnormal-
ity. There were no findings on the {R} map, therefore it is omitted here. This patient was categorized as
a perfect left (laterality score=-1) because of the left asymmetry (left>right) in the parahippocampal re-
gion on T1, and the hippocampi in T2 and MD (multiple matches) shown on the {KS}map. (radiological
convention is used, left is right)

also described. Scalp EEG recordings revealed independent bitemporal spikes and 2 seizures

localized on the right mesial temporal region.

Figure 2.6 shows the IFMs for this patient, while the respective report is provided in Ap-

pendix A.2. Both the left {L} and right {R} individual feature maps showed focal abnormali-

ties. The abnormalities in the left hemisphere were localized in the caudate (T2 hyperintensity)

and the insular cortex (MD hyperintensity). Hyperintense T2 was found in the right frontal

cortex, specifically in the pars triangularis (BA45 semantic tasks) and rostral middle frontal
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Figure 2.6: IFMs for a R-TLE patient without MTS. This patient received a laterality score of +1(per-
fect right) due to the right asymmetry (right>left) in the parahippocampal region on the {KS} map.
Radiological convention is used.

cortex (BA46 attention, short term memory). The banks of the superior temporal sulcus in

the right temporal lobe appeared hyperintense on the MD and T2 images (multiple hits in the

overlay). Notably, the fusiform cortex was hyperintense in MD, matching the presurgical ra-

diological report which described an abnormal T2-weighted hyperintensity in the same region.

The asymmetry map {KS} revealed intensity asymmetry (right>left) in the parahippocampal

region as well as in the cerebellar white matter in T1. The volume map {V} showed changes

in the superior-frontal cortex (left>right) and the hippocampi (right>left). The lateralization

score based on temporal asymmetry for this patient was +1 (perfect right).
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2.3.3 Group analysis

The group analysis was divided into two aspects: (i) differences between patients and controls

in the frequency of intensity abnormalities (L, R, KS jointly); and (ii) differences regarding

volume asymmetry. These analyses were performed using an independent samples t-test with

a significance level α of 0.05. Differences between patients diagnosed with left TLE (L-TLE)

and right TLE (R-TLE) were also studied using the same test. A second analysis was per-

formed by grouping patients among those with no MTS (group of patients without mesial

temporal sclerosi (MTS-)) and those with MTS (group of patients with mesial temporal scle-

rosis (MTS+)). Pairwise comparisons between controls, MTS- and MTS+ were carried out

adjusting for multiple comparisons using the Bonferroni correction.

Ia - Intensity abnormalities across regions of interest

The frequency of intensity abnormalities was compared between patients and controls. For this

test, all the extratemporal regions were grouped into extratemporal cortical and white matter

regions. The amygdala, hippocampus, basal ganglia, temporal cortex, and temporal white

matter regions were statistically different between the two groups (Figure 2.7a).

A similar comparison was performed, this time subdividing the patient group among MTS-

and MTS+ patients (Figure 2.7b). Relevant differences appeared again in the amygdala, hip-

pocampus, basal ganglia and temporal regions. However, this analysis revealed that intensity

changes in the amygdala, hippocampus and basal ganglia are significantly more frequent in the

MTS+ group (p-value<0.01). Abnormalities in the thalamus and ventricles were also identi-

fied (p-value<0.05). Interestingly, the frequency of intensity abnormalities was significantly

higher in the MTS- group (p-value<0.01) with respect to controls, while it was less frequent in

the MTS+ group. In contrast, the MTS+ group was also characterized by significantly higher

occurrence of temporal white matter and extratemporal cortical abnormalities (p-value<0.05).

No statistical differences regarding the frequency of intensity abnormalities findings were

found between L-TLE and R-TLE (Figure 2.7c).
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Figure 2.7: Intensity abnormalities by group. a) controls vs. patients; b) controls vs. MTS- vs.
MTS+; c) L-TLE vs R-TLE. *(p<0.05), **(p<0.01)

Ib - Intensity abnormalities by image type

Intensity abnormalities were analyzed for each image source (T1, T2, FA, MD) and subject

group (controls, MTS- and MTS+). A progression in asymmetry from controls with the lowest

towards MTS+ with the highest was observed (Figure 2.8b). Notably, most of the asymmetry
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Figure 2.8: Intensity abnormalities by image type. a) intensity asymmetry (KS); b) mean intensity fea-
tures organized as ipsilateral (ipsi) or contralateral (contra) instead of L/R. Hyperintensities are shown
as [+] on the positive vertical axis and hypointensities as [-] on the negative vertical axis. *(p<0.05).

abnormalities in the MTS- group originated from MD. Significant differences (p-value<0.05)

were found between controls and MTS+ on T1, T2 and FA; and between MTS- and MTS+ on

T2 and FA. No significant differences were found between controls and MTS- patients.

An analogous analysis was performed comparing controls, MTS- and MTS+ with respect

to the number of mean intensity features (L,R) which were reorganized as ipsilateral or con-

tralateral to the hemisphere of the surgery. As shown in Figure 2.8b, the MTS+ group is

characterized by ipsilateral hyperintensities on T1 and MD (p-value<0.05) and ipsilateral FA

hypointensities (p-value<0.05). No statistical differences were found between MTS- patients

and controls.

IIa - Volume asymmetry by region of interest

Patients were compared against controls in terms of volume asymmetry. Similar to previous

tests, extratemporal regions were grouped. However, no comparison of volume asymmetry in

white matter was performed. As shown in Figure 2.9a, only hippocampal volume asymmetry

was statistically different between patients and controls (p<0.05).

Subsequently, patients were divided between MTS- and MTS+ and compared against con-
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Figure 2.9: Comparison of volume asymmetry abnormalities between groups a) controls vs. pa-
tients; b): controls vs. MTS- vs. MTS+; c) L-TLE vs. R-TLE. *(p<0.05)

trols. Hippocampal volume asymmetry in MTS+ was significantly higher with respect to MTS-

and control groups. A similar result was obtained in the thalamus (Figure 2.9b).

No statistically significant differences on volume asymmetry were found between L-TLE

and R-TLE patients.
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IIb - Ipsilateral/contralateral volume reduction

Volume asymmetry results were reorganized as ipsilateral or contralateral volume reductions

to the lesional side (L-TLE, R-TLE). Both L-TLE and R-TLE groups were characterized by a

higher frequency of ipsilateral volume reductions. As shown in Figure 2.10a, ipsilateral volume

reduction was statistically significant (p<0.05) only in the L-TLE group.

A similar evaluation was performed comparing controls, MTS- and MTS+ groups. In this

case, the MTS+ group was significantly different (p<0.01) from the MTS- and control groups

in frequency of ipsilateral volume reductions(Figure 2.10b).

Figure 2.10: Volume asymmetry (contralateral vs. ipsilateral). Frequency of volume asymmetry
features organized into ipsilateral (ipsi) or contralateral (contra) to the lesional side; a: L-TLE vs R-
TLE; b: controls vs. MTS- vs. MTS+. *(p<0.05), **(p<0.01)

Group-wise comparison of hippocampal volumes

Given that most of volume asymmetry differences were detected in the hippocampus, a direct

group-wise comparison of volumes was performed, differentiating between ipsilateral and con-

tralateral hippocampal volumes. Prior to the comparison, volumes were normalized using the

total intracranial volume of each subject. A one-way ANOVA was performed comparing con-

trols, MTS- and MTS+ showing a statistically significant difference in mean value of ipsilateral

hippocampal volumes among the groups (F=16.96, p<0.01). Post-hoc pairwise comparisons

showed a significant ipsilateral reduction of hippocampal volume for MTS+ with respect to the

MTS- and control groups (p<0.01). No significant differences were found between controls
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and MTS- groups on ipsilateral volume reduction. No significant differences were obtained

contralaterally.

2.4 Discussion

2.4.1 Study design considerations and limitations of this work

Individual Feature Maps (IFMs) allow comparisons between a patient and a set of healthy sub-

jects to determine regions of interest that are significantly different in the patient with respect to

the control group. The nature of the underlying statistical test is to identify patient-specific ab-

normalities rather than results that could be extrapolated to the entire patient population using

statistics, as achieved by techniques such as voxel-based morphometry [28].

Another important consideration is that IFMs are sensitive to any departure from the con-

trol group distribution and not only to those that can be correlated to TLE. For example, dif-

ferences in ventricular intensity were found for the MTS+ group (Figure 2.7b), however, one

of the patients accounting for such differences was diagnosed with ventricular enlargement

and periventricular leukomalacia (#8 on Table 2.2). Therefore, interpretation of IFMs should

consider the clinical history and other findings accounting for possible secondary pathologies

that may appear in addition to TLE. Also, it has been shown that MRI abnormalities associ-

ated with TLE can be common in healthy individuals [29]. Therefore, any finding should be

examined in clinical context. In particular, no assumptions regarding the level of asymmetry in

the control cohort are made. Instead, a baseline for normal asymmetry is established from the

control group and it is then applied to evaluate the rarity of individual patient measurements.

I consider that the selection of the control group is an important factor for the applicability

of IFMs in similar studies. The control group should match the type of patient (for example,

pediatric patients must be compared against similar-aged control group). A large variance of

the control group must be avoided to minimize false negatives.

Although a larger patient cohort is not required for individual patient analysis, it could im-

prove the applicability of a posteriori group-wise analysis of the kind presented in this chapter.
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Though the number of extratemporal (cortical and white matter) intensity abnormalities was

higher for R-TLE with respect to L-TLE (Figure 2.7c), no statistical significance was attained.

Similarly, a more detailed analysis looking for differences and diagnostic clues for the elusive

MTS- group would be possible with a larger MTS- patient sample.

2.4.2 On the role of single-subject statistics

Single-subject t-tests are fundamental to the acquisition of IFMs. There are two considerations

(or limitations) regarding the use of these tests in small samples: a) departures from normality

and b) statistical power.

Crawford et al.[22] analyzed the effects of lack of normality on normative samples (control

group) on single-subject t-tests and conclude that this test behaves better than a regular z-

score test (more commonly used by clinicians) for small datasets (N<20) and that departures

from normality have low to moderate effects in the test score. If there is concern over the

skewness and/or kurtosis of the normative sample, then a smaller significance level than the

commonly used 0.05 (i.e. 0.02) could give a higher degree of confidence that the result is not a

non-normality artifact, effectively reducing Type I error inflation. A practical consideration is

that while patient images are difficult to obtain (patient availability and eligibility), it is much

easier to image control volunteers. Therefore, an increased volunteer cohort should ameliorate

the quality of the probability distribution.

The second consideration is the statistical power on small datasets. In theory, to increase

power the significance level of the test could be less severe 6. This would effectively reduce

the number of false negative (Type II errors), increasing statistical power with the trade-off

of increasing the number of false positives (Type I errors). In practice, this does not improve

reliability. In our study of TLE, as in most statistical neuroimaging studies, the true effect size is

commonly unknown [30]. In other words, it is unknown how large a difference between patients

and controls needs to be, in order to be declared a pathology. Nonetheless, it is important to

note that unlike two-sample t-tests where inferences on a patient group are sought, the goal

6by changing the significance threshold (larger p-value)
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of a single-subject t-test is to obtain an estimate of the rarity of a feature for a given subject

with respect to a normative distribution (control group). In other words, the null hypothesis

of single-subject t-tests is that the subject being tested belongs to the normative population

(control group). Thus, statistically significant results in this scenario, represent regions where

the subject departs from the control distribution beyond a given statistical threshold set for the

test, and no inferences are made over the patient population.

2.4.3 Comparison with similar studies

The analysis of T1 in the context of TLE has only recently been explored [31]. Our results

showed T1 hyperintensities were significantly more common in MTS+ patients (p<0.05),

which could be an indication of gliosis and subsequent remyelination (higher signal due to

myelin), or iron accumulation associated with microgliosis [32]. More studies are required to

investigate the effectiveness of T1 measurements in the study of TLE as well as its correlation

with histological findings.

Similarly to ROI analyses performed by Pell et al. [25] and VBR analyses by Mueller

et al. [26], ipsilateral hippocampal T2 hyperintensities in MTS+ patients were found (Fig-

ure 2.8b). However, since our study included several image types, it was assessed that MD

asymmetry was comparatively more frequent. In addition, MD hyperintensities were found in

the ipsilateral temporal lobe of MTS+ patients. This type of finding has also been reported by

Shon et al. [11].

Similar to our results, a pattern of ipsilateral FA hypointensity and MD hyperintensity

in MTS+ patients (Figure 2.8b) was evidenced by Focke et al. [10] on 33 MTS+ patients.

Significant FA reductions in patients with respect to controls were also found, similarly to

Ahmadi et al. [9]. In parallel to Liu et al. [33], temporal white matter changes were significantly

more frequent in MTS+ than in MTS-. In agreement with Gross et al. [34], no correlation

between FA changes and surgical outcome were found.

It has been suggested that DTI abnormalities are not as extensive or as severe in MTS- pa-

tients as they are in MTS+ patients [35]. This tendency was observed in our results, with more
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frequent intensity abnormalities in the MTS+ with respect to the MTS-. However, statistical

significance was not achieved in our cohort(Figure 2.8a and b, FA and MD plots). In gen-

eral, our results show that volume and intensity abnormalities are present to a lesser degree in

MTS- patients. Nonetheless, intensity changes in the temporal cortex were significantly more

frequent (p<0.01) in this group (Figure 2.7b). The subsequent analysis, revealed that most of

these abnormalities originate from MD images (Figure 2.8a and b). This suggests that the anal-

ysis of the temporal cortex using MD images could be key for the study of non-lesional cases.

In fact Keller et al.[12] have studied this scenario in 10 non-lesional TLE patients, obtaining

patterns of FA reduction and MD increase. However, they conclude that larger cohorts are

required to obtain more reliable results.

Though extratemporal changes were slightly more common in our R-TLE group, no statis-

tical significance was obtained.

The group-wise analysis of volume differences was in agreement with the results shown

by Seidenberg et al. [27] and Cohan et al. [8]: hippocampal volume changes were statistically

significant between patients and controls. In addition, satisfactory results were obtained using

hippocampal volume to distinguish between controls, MTS- and MTS+. Also, extratemporal

volume asymmetry on the cortex was found in TLE patients, though it was not significantly

higher than that found in our control cohort (Figure 2.9a). Also, in agreement with Pell et

al.[1], volume differences between patients and controls were seen in the hippocampus and

thalamus (Figure 2.9b). Moreover, our study seems to indicate that both intensity and volumet-

ric thalamic changes are significantly more frequent in MTS+ patients, which suggests that the

thalamus is an interesting region to analyze as a hub in the pathologic network of TLE [36, 37]

2.4.4 Clinical Relevance

Our multi-feature evaluation approach identified hippocampal involvement in all the patients

with MTS (Table 2.2). Patient #6 who had been identified as a possible MTS in the presur-

gical MRI was later on confirmed negative for MTS by histopathology, which only revealed

gliosis. Consistently with the pathological validation, the IFMs did not report any intensity
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or or volumetric abnormalities for this patient. No hippocampal involvement was reported in

the MTS- with the exception of patient #12, where the volume IFM {V} reported volume re-

duction in the left hippocampus. Also, in the MTS- group, significant intensity changes were

detected in the temporal cortex with respect to the control group (p-value < 0.01) as shown in

Figure 2.7b. Focusing on the detection of quantitative intensity changes on the temporal cortex

could contribute to a better understanding of non-lesional cases.

Using the laterality score, which measures intensity asymmetry in the temporal lobes, 13

out of 15 patients were lateralized correctly, with the remaining three receiving a lateralization

score of zero. These subjects had normal presurgical MRIs (Table 2.2, #13-15) and our method

did not find sufficient intensity asymmetry in their respective T1, T2, MD, and FA images.

No clinical correlation was found between the features evaluated in this study and the Engel

classification for surgical outcome.

2.5 Conclusion

This chapter introduced a novel method that demonstrates the integration of high-resolution

relaxometry (1mm) and DTI to perform TLE patient-specific analyses. The IFMs integrate

heterogeneous data signaling regions that may be of clinical interest based on their rarity, and

present these results in a simple and efficient manner to clinicians.

Our method detected hippocampal involvement in all of the MTS cases. More importantly,

abnormal-looking regions were clearly identified in non-lesional and MTS- cases, pointing to

changes in the temporal cortex as a key to improve the understanding of these cases. Also, the

IFMs provided the correct lateralization of all patients (L-TLE or R-TLE) with the exception

of three patients for whom a laterality score of zero coincided with normal presurgical MRIs

(Table 2.2).

The subsequent group-level analysis revealed expected patterns such as ipsilateral hyper-

intensities in T1, T2 and MD accompanied by ipsilateral hypointensities in FA in the MTS+

group. The description of such patterns would have not been possible without the integrative
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approach of this work encompassing quantitative relaxometry and diffusion tensor imaging.

Individual epilepsy diagnosis based on MR images can be improved by the inclusion of these

type of sequences in current imaging protocols. Also, IFMs along with the lateralization score

have the potential to supplement invasive sub-dural or deep electrode monitoring for improved

localization. The reliability of the presented results can be improved by increasing the size of

the control group (representing the healthy population), as well as by a larger patient cohort for

further individual validation and group-wise analyses.
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Chapter 3

TLE detection using support vector

machines in multi-parametric quantitative

MR imaging

3.1 Introduction

The detection of MRI abnormalities that can be associated with seizures in the study of tempo-

ral lobe epilepsy (TLE) is a challenging task. In many cases, patients with a record of epileptic

activity do not present any discernible MRI findings. Recent studies have examined the pos-

sibility of improving TLE detection using SVMs on MRI data. For example Focke et al. [1]

show correct patient lateralization (left vs. right seizure onset) using SVMs on T1-weighted

and DTI data. In addition, Keihaninejad et al. [2], demonstrate the identification of TLE cases

with hippocampal atrophy from cases without it using SVM on regional volumes obtained from

T1-weighted MRI.

This chapter explores the integration of quantitative relaxometry and diffusion tensor imag-

ing with support vector machines (SVM) aiming to improve TLE detection. Quantitative re-

laxometry produces images that are independent from acquisition parameters, thus having the

potential for better describing tissue abnormalities. Similarly, as mentioned in chapter 1, dif-

93
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fusion tensor imaging has identified patterns of disruption in the white matter in TLE patients.

In this chapter machine learning models on these promising type of images are developed and

compared to determine an optimal model for classification.

3.2 Methods

3.2.1 Overview

All subjects in this study underwent an imaging protocol approved by the Office of Research

Ethics at Western University (Canada) 1. The imaging protocol comprised DESPOT1-HIFI,

DESPOT2-FM [3, 4] and DTI sequences, resulting image data being processed to obtain four

different quantitative maps: T1, T2, fractional anisotropy (FA) and mean diffusivity (MD).

Anatomical atlas-based labeling was used to define ROIs on each one of the quantitative maps

and subsequently to measure and extract regional features.

Given that the number of features exceeded the number of subjects (936 features, 36 sub-

jects), two different feature selection methods were explored to discard irrelevant or uninforma-

tive features. Then, the feature space was further reduced using principal component analysis

(PCA).

An SVM was trained/tested on the filtered feature space using a leave-one-out cross-validation

strategy (LOOCV), where the SVM was tasked with predicting the label (patient or control)

for the omitted subject (Figure 3.1).

Once all subjects were evaluated, sensitivity, specificity and classification accuracy were

measured and reported. This procedure was repeated for each classification model obtained by

the combination of the following elements:

• the image that originates the features (T1, T2, FA, MD, or all combined)

• the method to select features

• the cardinality of the requested feature set [K]

1The ethics approval document is available in Appendix B
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Figure 3.1: Method overview. The preprocessing and feature extraction steps are the same for all the
experiments and therefore they are executed only once. Each of the experiments described in this chapter
corresponds to different instances of the leave-one-out cross-validation (LOOCV) loop. The model
selection stage determines the feature space, its dimension (PCA-reduced or not), and the parameters
that constitute the classification model. 8 models in total are evaluated for each classification experiment.
These models are evaluated using performance metrics that are collected at the end of each LOOCV
loop.
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• the use of PCA to reduce the feature space

• the type of SVM

A detailed comparison among classification models is reported in the results section along

the best classification scenarios. Specific recommendations regarding the optimal model are

given in the discussion section. In addition, an analysis of the elements constituting a classi-

fication model and their influence in the classifiers performance is also discussed. Finally, the

features relevant for classification are analyzed and their clinical significance is considered.

3.2.2 Participants

Thirty-six individuals participated in this study, 19 of whom were control volunteers (age

32±10,12 male, 7 female) and 17 TLE patients (age 35±10, 8 male, 9 female). All the pa-

tients had lateralizable seizures (confirmed by EEG) and all of them were eligible for temporal

lobectomy (9 left, 8 right). Preoperative MRI and post-surgical pathology confirmed the pres-

ence of Mesial Temporal Sclerosis (MTS) in 8 of them.

3.2.3 Imaging Protocol and Preprocessing

Subjects were scanned (presurgically in the case of patients) using a 3T MR scanner (GE Dis-

covery MR750) with whole brain, 1mm isotropic DESPOT1-HIFI and DESPOT2-FM, T1 and

T2 mapping sequences [3, 4] respectively, optimized for imaging at 3T [5]. Two SPGR images

were acquired (flip angles of 4◦ and 18◦) along with an inversion-prepared spoiled gradient re-

called acquisition in the steady state (SPGR) to calculate a quantitative T1 map. Five balanced

steady state free-precession (bSSFP) images were acquired with phase cycling (flip angles of

15◦,35◦,60◦) to estimate a quantitative T2 map using the DESPOT2-FM procedure [6]. All im-

ages were co-registered to the 18◦ flip angle SPGR image using the FLIRT registration tool [7]

from the FSL software (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) to account for motion between scans

prior to the computation of the T1 and T2 maps.

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/)
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A DTI sequence was also acquired with the following parameters: 2.4mm isotropic, 41 di-

rections, b-value =1000, 4 non-weighted (b=0) volumes. Non-linear distortions were corrected

by deformable registration of the average of the b=0 volumes to the undistorted T1 map, using

a diffeomorphic registration method [8, 9]. Eddy current correction and diffusion tensor esti-

mation was performed using FSL’s diffusion toolbox FDT. Maps of fractional anisotropy (FA)

and mean diffusivity (MD) were transformed and re-sampled to the coordinate system defined

by the 1mm isotropic T1 map. Synthetic T1-weighted images, with inherent bias-field correc-

tion, were generated from the T1 maps [10] and used in place of directly acquired T1-weighted

images for subsequent segmentation.

This preprocessing stage yielded four co-registered quantitative maps (T1, T2, FA and MD)

for each subject.

3.2.4 Feature Extraction

Volumetric segmentation of the synthetic T1-weighted images was performed with Freesurfer (http:

//surfer.nmr.mgh.harvard.edu/). This processing included removal of non-brain tissue using a hy-

brid watershed/surface deformation procedure, automated Talairach transformation, segmenta-

tion of the subcortical white matter and deep gray matter volumetric structures (including hip-

pocampus, amygdala, caudate, putamen, ventricles). Once the cortical models were completed,

the cerebral cortex was parcellated into regions based on gyral and sulcal structures [11]. This

segmentation produced bilateral regions of interest for every subject in subject image space.

Total of 35 cortical, 34 white matter and 9 subcortical regions (78 in all) were identified per

hemisphere. The segmented ROIs were used to extract features from the quantitative maps (T1,

T2, FA, and MD) for each subject (Figure 3.2).

Two types of features were extracted: The ROI mean intensity, and the asymmetry between

correspondent left and right ROIs (i.e., left and right hippocampus). The asymmetry was ex-

pressed as the non-parametric two-sample Kolmogorov-Smirnov statistical score between left-

right region pairs. For each subject, a vector of 936 features was created, accounting for 624

mean intensity features (156 ROIs, 4 image sources) and 312 intensity difference features (78

(http://surfer.nmr.mgh.harvard.edu/)
(http://surfer.nmr.mgh.harvard.edu/)
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Figure 3.2: Image preprocessing and feature extraction steps. A subject-specific ROI atlas is em-
ployed to extract features from the four different quantitative maps as shown. The resulting feature
vector represents each subject in a highly-dimensional feature space. Upon this space is that feature
selection algorithms are used to discriminate features that are relevant for classification.

left-right region pairs, 4 image sources). Each feature vector was labelled according to the

respective subject ground truth (i.e. patient or control). Prior to using these feature vectors as

input for the SVM, irrelevant features were discarded.

3.2.5 Support Vector Machines

Linear SVMs are used in scenarios where the features that discriminate between subject groups

are linearly separable. Linear SVMs estimate the hyperplane or decision boundary that pro-

vides the largest margin (separation) between the two groups [12]. In contrast, non-linear

SVMs such as radial basis function SVMs provide a non-linear boundary using the kernel

trick as described in [13] which effectively transforms the non-linear space into a space that

has a higher number of dimensions but where the features are linearly separable. The scikit-

learn library [14] was used to implement the SVM classifiers in this work. Both linear and

non-linear support vector machines were used for patient detection (Figure 3.3).
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Figure 3.3: Linear vs. non-linear SVMs. This example shows the decision boundaries of a Linear
SVM and a radial basis function(RBF) SVM for the same feature space. The scenario shown is the
automatic classification between patients and controls (Experiment I). Here, one of the patients has
been selected as the testing set. The classifier is trained using all the other subjects (training set). The
patient used as the test set appears to be correctly classified by both the Linear and the RBF SVMs.

3.2.6 Experiments

Each subject was assigned one of two possible labels: patient or control. The SVM was trained

using feature vectors to distinguish between these two groups. A leave-one-out cross-validation

approach (LOOCV) was used for training/testing. One subject was left out from the training

stage while the remainder were used for training (i.e. to compute the decision boundary). Then,

the classifier was asked to predict the correct label for the excluded subject. This procedure it-

erated until all subjects had been classified. Afterwards, the sensitivity, specificity and accuracy

were calculated as follows:

sensitivity =
tp

tp + f c
(3.1)

speci f icity =
tc

f p + tc
(3.2)

accuracy =
tp + tc
p + c

(3.3)

where tp = correctly identified patients, tc = correctly identified controls, fp = controls mis-
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classified as patients, fc = patients misclassified as controls, p = total number of patients, c =

total number of controls.

Patients were subsequently split into those with left temporal lobe seizures and those with

right temporal lobe seizures (L-TLE and R-TLE respectively). The same training/testing pro-

cedure was repeated to assess the detectability of each patient subgroup.

3.2.7 Classification Models

The outcome of an SVM is influenced by the feature space over which it operates (extrinsic

element) as well as by the type of SVM (intrinsic element). In this work, we define a classifi-

cation model as the combination of extrinsic and intrinsic elements selected for the operation

of the SVM.

Each model is built in three steps as shown in Figure 3.1: One of two possible feature

selection methods (correlation-based or ANOVA-based); the option or not of performing di-

mensionality reduction with PCA; and the type of SVM (linear or non-linear). Eight different

classification models were evaluated:

• correlation-svm-linear: Features are selected with a correlation-based method and a lin-

ear SVM runs on this space.

• correlation-pca-svm-linear: After the correlation-based feature selection, the dimension

of the resulting feature space is reduced using PCA. A linear SVM is used for classifica-

tion.

• correlation-svm-rbf : Features are selected with a correlation-based method and the SVM

used is non-linear (radial basis functions).

• correlation-pca-svm-rbf : The dimension of the feature space obtained with correlation-

based selection is simplified using PCA. The employed SVM is non-linear.

• anova-svm-linear: Features are selected using an ANOVA-based approach. The SVM

used is linear.
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• anova-pca-svm-linear: Features are selected using an ANOVA-based approach. The

resulting feature space is transformed using PCA. The SVM used is linear.

• anova-svm-rbf : Features are selected using an ANOVA-based approach. The SVM is

non-linear.

• anova-pca-svm-rbf : Similar to the previous case, but the resulting feature space is re-

duced with PCA.

The following sections describe the steps taken to build a classification model, while the

results section compares models based on their performance. Finally, the best and worst models

considering feature selection, PCA, cardinality and computational performance elements are

discussed and an analysis of relevant, stable features and their clinical significance is presented.

3.2.8 Feature Selection

Feature selection algorithms identify features that are pivotal for classification [15], and opti-

mize the accuracy of machine learning algorithms (such as SVMs), while avoiding overfitting

of the data [16].

In theory, feature selection should be performed on data that are independent of both the

training and testing sets [17, p. 222]. In practice, this is not always feasible, particularly when

the number of features is much larger than the number of subjects, as is the case in our work.

To address this issue, our feature selection step subsamples the training set, creating leave-one-

subject-out folds and then scores features on each resulting fold. After this, a voting algorithm

examines the agreement among the folds, and decides which features belong to the final fea-

ture set. This approach reuses the data efficiently and reduces the outlier effect (performance

reduction attributable to a subject).

Training Set Subsampling

The training set was subsampled by leaving one subject out every time, creating M folds for a

training set of size M (Figure 3.4). On each fold, one of two possible feature selection methods
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(correlation or ANOVA-based) was evaluated. Each method began by assigning a score to each

of the 936 features for each subject in the current fold. Then, using the cardinality parameter

K, set by the user, the respective method selected the top 2K features based on their scores.

Finally, after all folds were evaluated, the voting algorithm decided on the final K features by

reviewing the agreement among the folds.

Figure 3.4: Feature selection. A training set of size M is subsampled M times by leaving one subject
out every time. A feature selection algorithm (FS) is applied on each fold. After feature candidates are
obtained, the voting algorithm reviews the agreement among the folds and produces the final feature set
that it is used by the SVM.

Correlation-Based Feature Selection

Correlation-based feature selection analyzes the linear dependency between features and clas-

sification groups. Features that have a high correlation with the group labels (relevance) are

good candidates for the prediction of the subject’s group [15]. Similarly to previous work, our

approach accounts for inter-feature correlation. Features with high inter-feature correlation

(redundancy) are penalized producing a set where features tend to be linearly independent of

each other [18–20].

Correlation-based feature selection was applied to each subsampled training fold in three

steps: relevance evaluation, redundancy evaluation, and final scoring.

First, feature relevance is evaluated using a Pearson correlation coefficient. Let N (= M−1)

be the total number of subjects in the current fold; fi,s the value of the feature i evaluated in the
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subject s; and ts the binary group label (-1,+1) for subject s (for binary classification). Then,

the relevance for feature i is obtained by:

ρ(i) =

∣∣∣∣∣∣ N∑
s=1

( fi,s − f̄i)(ts − t̄)

∣∣∣∣∣∣√
N∑

s=1
( fi,s − f̄i)2

N∑
s=1

(ts − t̄)2

(3.4)

where f̄i and t̄ are the feature and the label averages respectively, evaluated using all the subjects

in the current fold. After this, the top 2K features are selected.

In the second step, feature redundancy is calculated as the average of the correlation be-

tween each feature and the remaining 2K − 1 features selected on the first step (inter-feature

correlation). Features that have a high redundancy do no provide additional information due

to high collinearity, and can be discarded. Let i and j be two different features (i , j), the

inter-feature correlation, in the current fold, is calculated as it follows:

δ(i, j) =

N∑
s=1

( fi,s − f̄i)( f j,s − f̄ j)√
N∑

s=1
( fi,s − f̄i)2

N∑
s=1

( f j,s − f̄ j)2

(3.5)

Then, the redundancy for feature i in the current fold, is calculated as:

δ(i) =

2K∑
j=1; j,i

δ(i, j)

2K − 1
(3.6)

The third step computes the score, where for each feature in the 2K set, the feature-label cor-

relation (relevance) is divided by the respective average inter-feature correlation (redundancy).

The scoring function S for feature i in the current fold, was then defined as:

S (i) =
ρ(i)
δ(i)

(3.7)

Finally, the 2K scored features are selected as the feature set for the current fold.
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ANOVA-Based Feature Selection

To the best of our knowledge, there is very little literature on the use of ANOVA as a fea-

ture selection method for classification of structural brain images. The use of ANOVA for

feature selection in neuroimaging, has mainly focused on classification of fMRI datasets [21–

23]. Nonetheless, ANOVA has be used in others areas of science to attenuate the curse-of-

dimensionality [16] by discarding variables with poor statistical significance thereby reducing

the size of the feature space. We explored this approach as an alternative to the more commonly

used correlation-based method. Similar to the latter, the ANOVA approach is a supervised fea-

ture selection method where the a priori knowledge of the subject groups (ground truth) is used

in the evaluation of the features. Unlike the correlation-based method introduced earlier, the

ANOVA-based method does not penalize redundant features.

This method proceeds as follows: The subjects in the current training set fold (as defined

above) are first divided into groups according to the classification labels of the given experiment

(i.e. patients vs. controls). Then, a one-way ANOVA test is performed for each feature between

the groups. The null hypothesis for the ANOVA test is that the mean value for each feature is

the same between the groups. If there is evidence that a feature mean is significantly different

between groups, then that feature becomes a good candidate for the prediction of the group.

Finally, a scoring function is assigned to quantify the relevance of each feature according to

the result of its ANOVA test.

For any feature i, with 0 < i ≤ T where T is 936, the total number of features, (K < T ), the

ANOVA-based score S for feature i in the current fold is defined as:

S (i) = 1 − αi (3.8)

where αi is the p-value resulting of the correspondent F-test for feature i. In other words,

significant features have low p-value and a correspondingly high score. Features with the top

2K scores are selected to produce the feature set for the current fold.
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Voting Strategy

For both the correlation and ANOVA-based methods, the final feature set is built on a feature-

by-feature basis examining the scores obtained by each feature among the participating folds.

For any given feature i, the vote collected from the fold q is given by:

V(i, q) =


S (i) when i ∈ q

0 when i < q
(3.9)

Thus the vote is 0 if the feature i was not scored in fold q, and is S (i), the scoring function,

otherwise. The agreement is reached by:

A(i) =

M∑
q=1

V(i, q)

M
(3.10)

The agreement function A(i) becomes a score average when feature i has been scored across

all folds. Otherwise, infrequent features are penalized even if they have scored highly in a

given particular fold. The purpose of this penalization is to enforce feature stability, producing

feature sets that are robust.

Given that each voting fold scores 2K features, after the agreement function has been ap-

plied, only features in the top K agreement values are retained. These features become the final

feature set that is used for classification.

3.2.9 Dimensionality reduction

Dimensionality reduction of high-dimensional feature spaces has been used in neuroimaging

to reduce computational complexity, by projecting the high dimensional data onto a space of

smaller dimensionality without loss of information [24]. Techniques such as principal compo-

nent analysis (PCA) [25] have been applied directly to unfiltered highly-dimensional feature

spaces in classification problems. However it has been shown that the resulting condensed

space may carry over noise from original features, negatively affecting classification perfor-
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mance [26].

As an alternative, we present a two-step approach, where the feature space is filtered using

the proposed feature selection stage, followed by the application of PCA to the resulting space.

Applying PCA to the feature space creates a new space where each dimension is uncorrelated.

This could reduce noise and improve classification performance on this space [27].

There is, however, a trade-off when using PCA. On one hand, PCA is an unsupervised

method. This means that class labels are not required. On the other hand, the number of

dimensions or principal components to which the feature space is reduced to, is a parameter

that must be set by the user. To take advantage of the PCA technique and tackle the selection

of the number of principal components, this parameter was included in the optimization step

described below.

3.2.10 SVM selection and parameter optimization

A linear SVM has only one parameter C which determines the level of allowed regularization

computing the decision boundary. A low C creates a decision boundary with a large margin

between the two classes, while a high C attempts to classify all the data points correctly produc-

ing a narrow margin. In contrast, a non-linear, radial basis function SVM has two parameters:

C, the regularization parameter and γ which determines the weight of individual observations

in the resulting decision boundary. A low γ produces higher weighting while a high γ produces

lower weighting (Figure 3.5).

Clearly, the choice of SVM brings along parameters that need to be optimized. Parameter

selection can either boost or hinder the generalization ability of the SVM. To determine the

optimal parameters, a cross-validated grid search was employed on the parameter space as

follows: The training set was divided into evaluation and validation partitions using cross-

validation (CV) and an SVM was trained using parameters taken from the parameter grid onto

the evaluation partition. The validation partition was then used to measure the accuracy of the

classifier. This process was repeated for all possible training and validation partitions given by

CV to obtain an average measurement of classification accuracy. This CV process was repeated
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Figure 3.5: Grid search for RBF SVM parameter selection. Here, the SVM parameters: C (regu-
larization) and γ (RBF Gaussian kernel width) are explored over the parameter space. The test subject
is correctly identified in all cases, however each scenario presents a different decision boundary that
may or not be adequate (this is the reason for parameter optimization). Overfitting is evidenced in the
first column. From left to right, the decision boundary becomes more convex, generalizing better to the
expense of accepting some misclassification.

for all possible parameter sets in the parameter grid. Finally the parameter set that produced the

best average accuracy was selected as the optimal choice to configure the SVM (Figure 3.6).

If the model being evaluated included the PCA reduction step, a range for the number of

principal components was included into the parameter grid. In that case, parameter optimiza-

tion occurred on the PCA-reduced space.

3.3 Results

Each of the eight classification models was evaluated on the full range of possible K values

(from 2 to 936 features for the universal feature space (T1+T2+FA+MD), and from 2 to 234
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Figure 3.6: Parameter Selection. A classifier is trained using a training set and one parameter set from
the parameter grid. The training set is the same for all classifier instances while the parameter set varies
with the goal of evaluating the best parameter configuration for a given type of classifier and training
set. A leave-one-out cross-validation procedure is performed on the training set to evaluate the accuracy
of the classifier for a given parameter configuration. The best average accuracy determines the set of
parameters that will be used. C (regularization) , γ (RBF Gaussian kernel width)

for individual image subspaces). Given that K is the only parameter that needs to be set by the

user, an adequate range for the choice of K is addressed in the discussion section.

3.3.1 Detection of TLE patients

A maximum accuracy of 88.9% for automatic classification between patients and controls was

obtained by an anova-pca-svm-linear model using 10 features from the T1 image only as

shown in Table 3.1. This model misclassified 3 patients, all of whom were diagnosed with

R-TLE, and one control volunteer. In general the classification models that employed features

from the T1 image, obtained 81% average accuracy, followed by the MD models with an aver-

age accuracy of 75%, T2 models with an average accuracy of 74% and in last place FA models

with an accuracy of 67%.
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Table 3.1: Classification results for Experiment I - TLE detection. The best performance for each
model is shown. Each column indicates the image from where features were selected. T1: quantitative
T1 image, T2: quantitative T2 image, FA: fractional anisotropy image, MD: mean diffusivity image.

Configuration T1 T2 FA MD ALL
correlation-svm-linear
Accuracy 77.8% 77.8% 69.4% 72.2% 80.6%
Sensitivity 58.8% 76.5% 64.7% 58.8% 64.7%
Specificity 94.7% 78.9% 73.7% 84.2% 94.7%
Cardinality 4 5 22 5 170

correlation-pca-svm-linear
Accuracy 86.1% 72.2% 72.2% 80.6% 77.8%
Sensitivity 88.2% 76.5% 64.7% 64.7% 64.7%
Specificity 84.2% 68.4% 78.9% 94.7% 89.5%
Cardinality 14 5 47 106 14

correlation-svm-rbf
Accuracy 77.8% 77.8% 52.8% 77.8% 66.7%
Sensitivity 82.4% 64.7% 0% 82.4% 70.6%
Specificity 73.7% 89.5% 100% 73.7% 63.2%
Cardinality 9 2 14 10 8

correlation-pca-svm-rbf
Accuracy 80.6% 77.8% 75.0% 80.6% 77.8%
Sensitivity 82.4% 64.7% 76.5% 82.4% 70.6%
Specificity 78.9% 89.5% 73.7% 78.9% 84.2%
Cardinality 6 2 47 59 17

anova-svm-linear
Accuracy 77.8% 72.2% 72.2% 69.4% 80.6%
Sensitivity 76.5% 64.7% 76.5% 58.8% 64.7%
Specificity 78.9% 78.9% 68.4% 78.9% 94.7%
Cardinality 51 21 37 8 530

anova-pca-svm-linear
Accuracy 88.9% 66.7% 69.4% 75.0% 75.0%
Sensitivity 82.4% 58.8% 58.8% 58.8% 64.7%
Specificity 94.7% 73.7% 78.9% 89.5% 84.2%
Cardinality 10 12 27 8 13

anova-svm-rbf
Accuracy 75.0% 77.8% 55.6% 72.2% 63.9%
Sensitivity 88.2% 88.2% 52.9% 58.8% 76.5%
Specificity 63.2% 68.4% 57.9% 84.2% 52.6%
Cardinality 7 7 3 7 12

anova-pca-svm-rbf
Accuracy 80.6% 72.2% 66.7% 75.0% 77.8%
Sensitivity 82.4% 70.6% 58.8% 58.8% 70.6%
Specificity 78.9% 73.7% 73.7% 89.5% 84.2%
Cardinality 11 7 18 8 16

Figures 3.7 and 3.8 (I) show regions selected by the best classification model that were

common to all subjects. Figure 3.7 shows left/right mean intensity features while Figure 3.8

shows regions selected based on asymmetry. Thus, the middle-temporal cortex, the right

parahippocampal white matter and the left entorhinal white matter are selected based on their

mean intensity. In contrast, the inferior-temporal, middle-temporal and parahippocampal white

matter regions are selected based on their asymmetry. These findings are consistent with

previous studies where changes in temporal white matter regions have been associated with

TLE [28, 29]. Although feature selection is not restricted to the temporal lobe, it is relevant to
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notice that all the regions shown in the overlay are temporal lobe regions.

Figure 3.7: Stable ROI selected based on left/right mean intensity. The best classification cases
across subjects are shown. The method used only features in the left temporal cortex to identify L-TLE
patients. Similarly, cortical regions in the right temporal lobe were identified as key for classifying R-
TLE patients. I) TLE detection: [anova-pca-svm-linear, T1, K = 10]. II) L-TLE detection: [correlation-
pca-svm-rbf, MD, K = 7]. III) R-TLE detection: [correlation-pca-svm-linear,T1, K = 29].

We hypothesized that the heterogeneity of the patient group (L-TLE, R-TLE) was a relevant

factor that influenced the accuracy of the patient identification process. Its effect can be seen

by performing a dimensionality reduction transformation on the feature space (Figure 3.9).

While the control group forms a cluster, the patient groups are sparse. This configuration was

consistently reproducible for feature spaces of different sizes and for different data projection

techniques including PCA, Isomaps and Multidimensional Scaling. These projections demon-

strated that the L-TLE group tends to be linearly separable from the control group, while the

R-TLE group intersected with the control group. This configuration could explain why perfect

classification is achievable between controls and L-TLE, while classification between controls

and R-TLE appeared to be more challenging. To address the heterogeneity matter, classifica-

tion accuracy was examined using more homogeneous patient subgroups: L-TLE vs. controls

(experiment II) and R-TLE vs. controls (experiment III).
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Figure 3.8: Stable ROI selected based on asymmetry. The best classification cases across subjects
are shown. L-TLE patients are successfully classified by looking at the asymmetry in the temporal
white matter regions whereas R-TLE patients are harder to classify driving the method to look out-
side the temporal lobe. I) TLE detection: [anova-pca-svm-linear, T1, K = 10]. II) L-TLE detection:
[correlation-pca-svm-rbf, MD, K = 7]. III) R-TLE detection: [correlation-pca-svm-linear,T1, K = 29].

Figure 3.9: Feature space projection. These tridimensional projections are obtained by performing
a PCA transformation from an original feature space with 14 dimensions (K=14) for experiment I. a)
using correlation-based feature selection b) using ANOVA-based feature selection. In both projections
the control group tends to form a cluster while the patient subgroups are sparse. L-TLE: left TLE,
R-TLE: right TLE
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3.3.2 Detection of L-TLE patients

Perfect classification (100% accuracy) was attainable for L-TLE patients (Table 3.2). This re-

sult was reported by the correlation-pca-svm-rbf model with MD features only (K=7). How-

ever, the correlation-pca-svm-linear and anova-pca-svm-linear models also obtained good

classification accuracy (96.4%) using MD features with low feature set cardinalities. In gen-

eral, linear models were not outperformed by non-linear models. Overall, PCA improved

classification accuracy.

Table 3.2: Classification results for Experiment II - Detection of L-TLE patients. The best perfor-
mance for each model is shown. The best classification spaces were MD and T1. In general, linear
models are not outperformed by their non-linear versions. Overall, PCA improves classification accu-
racy.

Configuration T1 T2 FA MD ALL
correlation-svm-linear
Accuracy 92.9% 78.6% 85.7% 96.4% 89.3%
Sensitivity 100% 55.6% 66.7% 88.9% 66.7%
Specificity 89.5% 89.5% 94.7% 100% 100%
Cardinality 7 18 5 7 6

correlation-pca-svm-linear
Accuracy 92.9% 71.4% 85.7% 96.4% 92.9%
Sensitivity 100% 44.4% 66.7% 88.9% 77.8%
Specificity 89.5% 84.2% 94.7% 100% 100%
Cardinality 4 58 47 40 138

correlation-svm-rbf
Accuracy 85.7% 67.9% 89.3% 92.9% 92.9%
Sensitivity 77.8% 0% 66.7% 77.8% 77.8%
Specificity 89.5% 100% 100% 100% 100%
Cardinality 4 8 5 5 6

correlation-pca-svm-rbf
Accuracy 96.4% 75.0% 85.7% 100% 92.9%
Sensitivity 100% 22.2% 55.6% 100% 77.8%
Specificity 94.7% 100% 100% 100% 100%
Cardinality 4 96 3 7 23

anova-svm-linear
Accuracy 85.7% 78.6% 85.7% 92.9% 89.3%
Sensitivity 88.9% 55.6% 66.7% 88.9% 77.8%
Specificity 84.2% 89.5% 94.7% 94.7% 94.7%
Cardinality 5 41 33 10 9

anova-pca-svm-linear
Accuracy 92.9% 71.4% 85.7% 96.4% 92.9%
Sensitivity 88.9% 44.4% 66.7% 88.9% 77.8%
Specificity 94.7% 84.2% 94.7% 100% 100%
Cardinality 5 66 16 12 10

anova-svm-rbf
Accuracy 85.7% 67.9% 75.0% 78.6% 78.6%
Sensitivity 66.7% 0% 22.2% 55.6% 55.6%
Specificity 94.7% 100% 100% 89.5% 89.5%
Cardinality 5 8 6 4 4

anova-pca-svm-rbf
Accuracy 92.9% 71.4% 82.1% 96.4% 92.9%
Sensitivity 77.8% 22.2% 44.4% 88.9% 77.8%
Specificity 100% 94.7% 100% 100% 100%
Cardinality 4 18 7 17 22
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When looking at individual feature subspaces (columns on Table 3.2), the best accuracies

across models were obtained by the MD and T1 subspaces where the average accuracy was

90% for T1, and 94% for MD. The average classification accuracy across models dropped in

the FA and T2 subspaces to 84% and 73% respectively. In general, classifiers had an excellent

performance on the universal feature space where the average accuracy was 90%.

Figures 3.7 and 3.8 (II) show the regions selected by the best classification method that

were common to all subjects. In general, the asymmetry between left and right temporal lobe

white matter regions, and the mean intensity of left temporal cortical regions are determined

to be relevant. Specifically, the left hippocampus, the left middle-temporal cortex and the left

entorhinal white matter regions are selected based on the mean intensity, whereas the enthorhi-

nal cortex, the superiotemporal white matter and the temporal pole are selected based on their

asymmetry. All of these regions clinically correlate to pathologies in L-TLE patients such as

mesial temporal sclerosis (MTS) and focal cortical dysplasia (FCD).

3.3.3 Detection of R-TLE patients

As presumed by the PCA projection, the classification between R-TLE patients and controls

was a difficult problem. This was reflected in classification accuracy average of 74% across the

different models as well as the high cardinality reported by each model (Table 3.3).

A possible explanation for these results is that the feature space does not have discrimi-

native features to distinguish the R-TLE patients from controls (evidenced by the PCA pro-

jection). Hence, reliable decision boundaries cannot be obtained. There is some evidence

supporting the proximity of R-TLE patients and controls in this type of images. For example,

Zhong Xue et al. [28] have found fewer regions to distinguish R-TLE patients from controls

than L-TLE from controls. Similarly, Ahmadi et al. [30] have reported fewer and less extensive

gray matter change in R-TLE than in L-TLE patients with respect to controls using voxel-based

morphometry.

The average accuracy for T1 and T2 subspaces across models was 74% and 73% respec-

tively. For FA and MD, it was 76% and 74%. Similarly to the classification of L-TLE patients,
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Table 3.3: Classification results for Experiment III - Detection of R-TLE patients. The best per-
formance for each model is shown. The classification of R-TLE patients is a difficult problem in the
proposed feature space. This is reflected by the high cardinality of the optimal solutions as well as the
average accuracy of 73% across models.

Configuration T1 T2 FA MD ALL
correlation-svm-linear
Accuracy 77.8% 77.8% 81.5% 74.1% 88.9%
Sensitivity 37.5% 37.5% 62.5% 37.5% 62.5%
Specificity 94.7% 94.7% 89.5% 89.5% 100%
Cardinality 12 143 52 34 141

correlation-pca-svm-linear
Accuracy 81.5% 77.8% 81.5% 77.8% 70.4%
Sensitivity 62.5% 37.5% 50% 37.5% 37.5%
Specificity 89.5% 94.7% 94.7% 94.7% 84.2%
Cardinality 29 21 13 56 52

correlation-svm-rbf
Accuracy 66.7% 63% 66.7% 59.3% 59.3%
Sensitivity 25% 25% 25% 12.5% 25%
Specificity 84.2% 78.9% 84.2% 78.9% 73.3%
Cardinality 8 8 7 7 6

correlation-pca-svm-rbf
Accuracy 74.1% 74.1% 77.8% 77.8% 74.1%
Sensitivity 25.0% 12.5% 50% 25.0% 12.5%
Specificity 94.7% 100% 89.5% 100% 100%
Cardinality 11 53 13 83 179

anova-svm-linear
Accuracy 77.8% 74.1% 81.5% 74.1% 77.8%
Sensitivity 37.5% 50% 50% 37.5% 25.0%
Specificity 94.7% 84.2% 94.7% 89.5% 100%
Cardinality 56 9 37 110 156

anova-pca-svm-linear
Accuracy 77.8% 77.8% 81.5% 81.5% 70.4%
Sensitivity 50% 37.5% 50% 50% 25.0%
Specificity 89.5% 94.7% 94.7% 94.7% 89.5%
Cardinality 29 43 122 66 30

anova-svm-rbf
Accuracy 63% 66.7% 63% 66.7% 55.6%
Sensitivity 25% 12.5% 12.5% 12.5% 25%
Specificity 78.9% 89.5% 84.2% 89.5% 68.4%
Cardinality 7 9 7 6 8

anova-pca-svm-rbf
Accuracy 74.1% 70.4% 77.8% 77.8% 77.8%
Sensitivity 37.5% 37.5% 25.0% 25.0% 37.5%
Specificity 89.5% 84.2% 100% 100% 94.7%
Cardinality 7 25 78 12 15
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the best accuracy on individual image spaces was obtained on the MD space. The highest

accuracy on the universal feature space was 88.9% and it was obtained using a correlation-

svm-linear model with 141 features. Intuitively, models with such a high number of features

are less useful to the researcher than simpler models. One of such alternatives is presented by

the correlation-pca-svm-linear model on T1 with K=29 and an accuracy of 81.5%.

Figures 3.7 and 3.8 (III) show the regions that were common to all subjects, reported by

the aforementioned simpler T1 model. Regions selected by virtue of their mean intensity are

show in in Figure 3.7. These regions are the right inferiotemporal cortex, the right entorhinal

and parahippocampal white matter regions as well as the right white matter in temporal pole.

Neither extra-temporal nor left-temporal regions were chosen.

When looking at regions selected based on asymmetry, Figure 3.8 reveals numerous fea-

tures most of them corresponding to the temporal lobes, including the inferiotemporal cortex,

the parahippocampal white matter and in general the temporal lobe white matter. The diffi-

culty of the classification between R-TLE and controls explains why the optimal results are

obtained by the inclusion of extra-temporal features. To validate this assumption we restricted

the method to select only temporal lobe features and we found that the classification accuracy

reduced from 81.5% to 70.4%.

3.3.4 Evaluation of feature selection methods

After obtaining the classification results, we performed an analysis of the two feature selection

strategies. The two methods were compared measuring their stability and similarity. To mea-

sure the stability of each method we calculated the average Tanimoto distance among feature

sets [31, 32] in the outer leave-one-out cross-validation loop (training/testing loop). Figure 3.10

shows the results. As expected, stability increases asymptotically towards 100% as the number

of requested features approaches the number of available features. The [2<K<100] range of

cardinalities is most interesting as stability varies between 40% and 70% (right column in the

figure). This range gives a better estimation of stability as the methods are asked to retrieve at

most 100 features out of 936 for each iteration of the cross-validation loop. In comparison, in
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the absence of any procedure, the likelihood of selecting 100 features out of 936 for the same

36 subjects is approximately 10−36. As shown in the figure, the most stable features (> 80%)

were obtained in experiment II (L-TLE) and the least stable features (< 70%) in experiment III

(R-TLE). In all three experiments it was observed that classification accuracy was proportional

to feature stability.

Figure 3.10: Feature stability. Each training set obtained by leave-one-out cross-validation produces
one feature set. The average Tanimoto distance among these sets gives an indication of stability. a) TLE
detection b) L-TLE identification c)R-TLE identification. The right column shows a zoomed-in version
of the dotted rectangle on the left.

To assess similarity between methods, in a given training fold, the Tanimoto distance be-

tween the ANOVA-generated feature set and the correlation-generated feature set was mea-

sured. This was repeated for all the training folds generated by the LOOCV procedure. Then,

the average Tanimoto distance was reported. Figure 3.11 shows how similarity varies accord-

ing to cardinality. For very small cardinalities (K<20) the two methods (correlation, ANOVA)

generate very similar features. In the [20<K<100] range (right column in the figure) the simi-

larity drops to 50%. This is desirable as it shows that the two methods are sufficiently distinct
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in the cardinality range that contains both the best classification results and the inherent dimen-

sionality of the problem (This is further addressed in the Discussion, below). Conceptually, the

dissimilarity between the two methods can be explained by the redundancy evaluation step in

the correlation method. However, as the cardinality approaches the number of available fea-

tures, the correlation method runs out of features to discard and the similarity between methods

increases.

Figure 3.11: Similarity between the correlation-based and the ANOVA-based feature selection
methods. The right column shows the region outlined by the dashed rectangle on the left.

3.3.5 Informative features for TLE detection

Informative features were evaluated by analyzing how frequently a feature was selected when

the classifier was successful. The level of success was defined by setting a minimum accuracy

threshold, and the analysis was restricted to those cardinalities where the classifier performance

was higher than the threshold. For each cardinality the feature frequency was measured on the

external LOOCV (training/testing) analyzing the features obtained from each training fold.

Then, a ranking was obtained by averaging frequencies across the selected cardinalities. The

regions of interest corresponding to the top ranked features are analyzed in the Discussion.

Alternatively, we considered using the coefficient assigned to features by the linear clas-
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sifiers as a measurement of their relevance. However this approach would not reflect the im-

portance of the features in non-linear classifiers or in classifiers that use PCA. We think that

our approach is more comprehensive as it identifies features that are relevant and stable across

cardinalities regardless of the type of classification model.

3.3.6 Effect of the sample size on the reliability of the results

We quantified the effect of the small sample size in the performance of the classifier by evalu-

ating the SVM reliability index (SRI) [33]. Let w be the vector defining the decision boundary

(vector normal to the decision plane), this vector is obtained as the solution of the respective

convex optimization problem. Let w∗ be the alternative convex optimization solution after ran-

domly removing some data points. If we have enough data for training then we can randomly

remove some and what is left will result in w∗ ≈ w. If we do not have enough data, the random

removal of training data will result in a very different decision boundary and w∗ , w. This is

quantified by the SRI as follows:

S RI(w∗,w) = |r(w∗,w)| (3.11)

which is the absolute value of the Pearson product-moment correlation coefficient between w∗

and w. The SRI was evaluated for each experiment by selecting a training set to estimate w,

then the training set was randomly subsampled 10 times to obtain w∗ estimates. Each SRI

result was averaged. This process was repeated for all training sets.

It is expected that the decision boundary remains stable when data points that do not weight

in its calculation are removed. However, when support vectors are eliminated, this causes

the boundary to be redefined and consequently the SRI decreases. Our results show that the

decision boundary is fairly sensitive to the training set size (Figure 3.12). However, in all three

experiments we obtained SRI measures above 80% (arbitrarily set).

Notice that the stability of the boundary is independent from performance: if two classes

are sufficiently distinct (large margin), then they can be linearly separable by many possible
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boundaries. From the PCA projections and the experimental results, we believe this is the case

for the L-TLE group vs. controls.
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Figure 3.12: SVM reliability index (SRI). In all three experiments the reliability of the boundary was
higher than 80%. A larger dataset would improve the robustness of the boundary with respect to the
training set size.

3.4 Discussion

3.4.1 Analysis of informative features

Table 3.4 summarizes the ROIs associated with informative features, and Figure 3.13 this in-

formation is grouped by lobe, type of feature, and image type. In all three experiments most

of these region belong to the temporal lobe (a total of 71 features in the table). Among all, the

middle-temporal, superior-temporal, the temporal pole, and hippocampal ROIs are common to

all three classification experiments revealing the importance of these regions for the identifica-

tion of patients. The selection of the hippocampus is to be expected, since it is the presumed

focus in mesial temporal sclerosis (MTS), the most common pathology in this group of pa-

tients [34]. Informative features in the neocortex and adjacent white matter could relate either

to changes due to seizure propagation, such as gliosis or neuronal loss, or could be related to

the presence of epileptogenic lesions in the neocortex, considering that the patient group also

included subjects with focal cortical dysplasia (FCD). The inclusion of some extra-temporal
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regions (in the frontal lobe and parietal lobes, as well as the occipital lobe) is also notable,

however, here the features likely relate to white matter abnormalities associated with seizure

propagation, and not extra-temporal epileptogenic lesions, since extra-temporal onset was not

observed clinically in these patients.

Figure 3.13: Relevant features for classification by kind. (a) by lobe, (b) by image type. In all three
experiments most of the features originated in the temporal lobe. Across all experiments, asymmetry
(ks) plays an important role in classification. Mean intensity features in the left hemisphere (L) were
preferred over mean intensity features in the right hemisphere (R) to classify L-TLE patients (II). The
opposite case was evidenced for the classification of R-TLE patients (III).

We also analyzed relevant features based on the type of feature. We found that asymme-

try features (ks) were chosen more often than mean intensity features from each hemisphere,

highlighting the benefit of sensitive examination of intensity distributions between bilateral

regions. In patients with unilateral TLE was expected that asymmetry features were highly

relevant since seizure onset is restricted to one hemisphere. However, asymmetry features may

also be sensitive to compensatory mechanisms occurring in the contralateral hemisphere and

thus may not be specific to seizure-related abnormalities. When examining individual image

spaces, the classifiers performed optimally in the T1 and MD subspaces, and generally good

in FA and T2. Also, classifiers on the universal space obtained accuracies that were better or

close to the best individual image subspace. We also see that in experiments I and II, MD



Chapter 3. TLE detection using SVMs in multi-parametricMR imaging 121

Table 3.4: Summary of ROI identified by informative features. The values reported are the number
of informative features referring to the respective region. Most of the features indicate the relevance of
temporal lobe regions in the classification experiments (71 in total). The enclosed regions are shared by
all three classification experiments.

EXPERIMENT EXPERIMENT
Lobe / ROI I-TLE II-L-TLE III-RTLE Total Lobe / ROI I-TLE II-L-TLE III-RTLE Total

temporal 44 5 22 71 frontal 18 9 27
bankssts 5 2 7 caudal anterior cingulate 1 1
entorhinal 5 1 6 caudal middle-frontal 2 2 4
fusiform 5 3 8 frontal pole 2 1 3
Hippocampus 2 1 2 5 lateral orbito-frontal 1 2 3
inferior-temporal 8 1 9 medial orbito-frontal 6 2 8
middle-temporal 5 1 5 11 pars opercularis 3 3
para-hippocampal 3 3 pars triangularis 1 1
superior-temporal 7 1 2 10 pre-central 1 1
temporal pole 6 1 3 10 superior-frontal 2 1 3
transverse-temporal 1 1 2 other 10 7 17
occipital 4 7 11 Accumbens area 1 3 4
cuneus 1 1 Caudate 1 1
lateral-occipital 3 3 6 Cerebellum 4 2 6
lingual 1 1 insula 2 2
pericalcarine 3 3 Putamen 1 1
parietal 11 9 20 Thalamus-Proper 2 1 3
inferior-parietal 1 1
isthmuscingulate 1 2 3
post-central 1 1 2
precuneus 1 1 2
superior-parietal 5 2 7
supramarginal 2 3 5

features were chosen most, followed by FA. The lateralization ability of diffusion metrics has

been shown before [28–30], including in our previous work, [35], where DTI and relaxometry

quantitative imaging parameters were compared in the temporal lobe. This work extends this

previous findings showing how these quantitative imaging parameters across the entire brain

can be used to classify patient groups.

3.4.2 Criteria for the selection of the feature set cardinality

The proposed method requires that the feature set cardinality K is set a priori. To determine

an adequate range for K we plotted K against classification accuracy. For this analysis the

best model for each experiment was selected. Due to the procedure for feature selection, as

described in this chapter, relevant features are selected first, then, as expected, the accuracy

degrades as noisy/non-relevant features are added. Figure 3.14 shows that above 200 features

the average classification approaches the line of random chance. The classifiers present an
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acceptable behavior with several peaks above the 80% classification rate for K < 50,. Given

that these plots are taken on the best models we used K = 50 as an upper bound for the selection

of K.

Figure 3.14: Classification accuracy versus number of features (K parameter). As the requested
cardinality increases, the classification accuracy drops. This is expected given that important features
are picked first and adding irrelevant features will not improve accuracy but rather will add noise and
increase the dimensionality of the feature space beyond the intrinsic dimension of the classification
problem.

Independently, a cross-validated L1-penalized logistic regression model was used to esti-

mate K for experiments I, II and III. The number of non-zero coefficients in the regularized

regression (regularization factor = 0.1) corresponds to the estimated size of the feature set K.

The results are presented in Table 3.5. In all cases the estimated K is lower than the upper

bound previously obtained by simple inspection (K < 50). Also, it is important to notice that

the estimated K (as shown in Table 3.5) is close to the number of observations (36 subjects).

Table 3.5: Estimation of K using a L1-penalized logistic regression model (regularization =0.1)
Experiment estimated K
I - TLE detection 25
II - L-TLE detection 28
III - R-TLE detection 34
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3.4.3 Criteria for the selection of a classification model

Considering classification accuracy, correlation-based models performed slightly better than

those based upon ANOVA. This could be explained by the fact that the ANOVA-based method

does not eliminate superfluous (collinear) features. Though in theory feature redundancy

should not affect classification accuracy, the presence of redundant features in the feature set

could hinder the algorithm from finding an optimal set before the desired cardinality is reached.

In terms of the type of SVM, we found that linear classifiers exhibited slightly better per-

formance than non-linear ones. However this could be attributable to the size of our sample,

which may not be large enough to adequately estimate non-linear SVM parameters.

In terms of computation time the ANOVA-based classifiers outperformed the correlation-

based classifiers for large cardinalities (Figure 3.15). This estimation was performed on a

machine with 4 CPU cores (Intel Core I7-2600 CPU @ 3.4GHZ) running Ubuntu Linux 12.04

with 16GB of RAM. The ANOVA-based method can evaluate several features simultaneously

and it does not incur in the computational cost of the feature redundancy evaluation. Addition-

ally, the PCA transformation and the parameter optimization for non-linear classifier increased

significantly the time required to fully classify a dataset.

With these considerations in mind, a good compromise between classification accuracy

and computation time can be achieved by using an anova-pca-linear model. A linear SVM re-

quires less parameter tuning than a non-linear SVM and classification accuracy did not degrade

as rapidly as it did for non-linear classifiers as the cardinality increased. The ANOVA approach

is more scalable than the correlation-based method in terms of computational cost when eval-

uating large feature spaces. In addition, the PCA transformation has the effect of decorrelating

the resulting feature space which explains why the classification accuracy is similar to those

classifiers using the correlation-based method where redundant features are discarded.
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Figure 3.15: Computational performance. Performance comparison in terms of computation time for
the eight classification models discussed in this chapter. The evaluation was made on experiment I, the
largest dataset on a machine with 4 CPU cores (Intel Core I7-2600 CPU @ 3.4GHZ) running Ubuntu
Linux 12.04 with 16GB of RAM.

3.4.4 Comparison with similar studies

Our results were comparable and in some cases better than to those obtained by Focke et

al [1]. For example, the classification accuracy for L-TLE described by their method varied

between 93% and 95%, while our method obtained perfect identification. In contrast, their

accuracy for R-TLE detection was 97% while ours was 88.9%. We believe that the size of the

patient group is a key factor to obtain higher accuracies in the R-TLE group. Their patient

group was more than twice the size of ours (38 vs. 17). In addition, we did not perform any

morphometry-based features (such as gray matter and white matter probability maps); these

features provided the best performance for their R-TLE group. The purpose of this chapter

was to explore classification using quantitative imaging (T1 maps, T2 maps, DTI). We plan

to investigate the added benefit of adding Morphometry to these features as we believe that

this could improve our results. Otherwise, in agreement with these findings, we observed that

MD is more useful for discrimination of TLE patients than FA, and we also observed poor

classification results when looking at T2 data only as they did. Similarly, Keihaninejad et

al. [2] stated an accuracy of 86% for the identification of TLE patients where ours is 88.9%,
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with the caveat that this number refers to MR-negative patients (MRI without clinical findings),

therefore more difficult to classify.

3.4.5 Limitations of this work

It is well known that SVM performance is highly dependent on the quality of the training set.

This is a common concern when dealing with biological data characterized by a large number

of features and a small number of observations like ours. We have followed several steps to

address this limitation and mitigate its effect.

On the one hand, it is clear that the number of features has a direct impact on classification

error [36]. Feature sets with cardinalities above the intrinsic dimension of the problem can

lead to overfitting effects because the classifier can produce decision boundaries that follow the

sample points too closely [37]. This effect is evident in our dataset. Figure 3.14 shows that the

generalization ability of the classifier suffers as the cardinality of the feature set increases. A

simple method to estimate the ideal cardinality is provided (3.4.2) and the experiments corrob-

orated optimal results in regions around this estimation.

On the other hand, a small sample size makes necessary the systematic use of cross-

validation to avoid overfitting. It is well known that cross-validation reduces the error bias

at the expense of increasing the error variance. We believe that we can obtain a better bias-

variance trade-off by acquiring more data and reducing the amount of cross-validation. Also, a

larger dataset can contribute to SVM parameter optimization, boosting the comparison between

linear and non-linear models.

Another limitation in our work is the sensitivity for the detection of R-TLE patients. A

larger dataset could potentially improve feature selection leading to better classification rates.

Nonetheless, there is evidence suggesting that the R-TLE group is very heterogeneous in terms

of MRI abnormalities [38, 39] and the low sensitivity of our results could be associated with

that heterogeneity. To validate this, a larger dataset would allow the R-TLE group to be subdi-

vided into specific pathologies (i.e. MTS, non-MTS, FCD) for classification analyses.
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3.5 Conclusion

This chapter describes a novel approach for the detection of TLE patients using feature se-

lection and support vector machine methods. The novelty of this work consists of the use of

multi-parametric quantitative imaging, the definition of a measurement of regional asymmetry

using a non-parametric statistical test and the evaluation and validation of the optimal cardi-

nality of the problem. The main contribution of this chapter comprises the evaluation of key

factors influencing classification performance, namely the feature selection method, the possi-

bility of a further dimensionality reduction step with the use of PCA, and the type of support

vector machine for this type of data. Then, relevant features are identified and their clinical

significance is addressed.

Our results demonstrate that the identification of TLE subjects based on quantitative MR

images is possible. In particular, DTI derived features seemed to be more effective than T2

features, which in general performed sub-optimally. In all experiments, good accuracies were

attainable. However, the identification of R-TLE patients proved to be a difficult problem and

in this case, the multi-parametric approach proved to be slightly better (88.9% accuracy) than

the classification on individual feature spaces. The subsequent feature analysis confirmed that

the key ROIs for patient identification do indeed belong to the temporal lobe. Their relevance

in TLE has been indicated by clinical findings and similar research studies. These results

reflect the sensitivity of quantitative imaging and the utility of the presented method towards

the detection of TLE.

Classification models including PCA transformation after feature selection in general pro-

vided better results than the non-PCA models. Among the 8 classification models evaluated,

the anova-pca-linear model demonstrated the best balance between classification performance

and computation time, both key elements in the analysis large datasets. Although SVM be-

haves coherently in small sample scenarios, a larger patient sample would allow the amount

of internal cross-validation and sub-sampling to be reduced. In machine learning terms, this

could lead to a better balance between bias and variance.
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Chapter 4

Classification of temporal lobe epilepsy

patients using voxel-based asymmetry

4.1 Introduction

Several research studies have shown how the concept of brain asymmetry can be leveraged

in the analysis of neurological conditions. For example, Pepe et al. [1] presents a framework

for the validation of VBM measures of asymmetry by evaluating difference images obtained

by comparing gray matter maps with their left-right flipped versions. Furthermore, Fang et

al. [2] combines regions of interest (ROIs) extracted from a cortical atlas with white matter

tractography (structural + DTI) to create an adjacency matrix of brain connectivity from which

features are extracted to automatically classify between patients and patients with left and right

TLE. In addition, Zhang et al. [3] defines the global connectivity asymmetry and the pairwise

brain-region synchronization as two measurements of asymmetry between left-right pairs of

homologous regions (as defined per an anatomical atlas) to show altered functional connectivity

in epileptic patients using resting-state functional magnetic resonance imaging (fMRI).

Similarly, the experiments performed in previous chapters evidenced that asymmetry fea-

tures lead classification efforts. Briefly:

• asymmetry features enabled the correct lateralization of patients with a laterality score

132
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(Chapter 2, Equation 2.3)

• MTS+ are more asymmetric than MTS- patients (Chapter 2, Figure 2.8)

• L-TLE and R-TLE groups present distinct asymmetry patterns (Chapter 3, Figure 3.7).

with these observations in mind, this chapter focuses solely on asymmetry in the temporal

lobe, exploring the concept of voxel-based asymmetry (VBA) instead of focusing on a list of

anatomical structures as in previous chapters. VBA is independent of the original MR imaging

intensities, enabling the integration of one or more MR image types under a single analysis

technique. This chapter shows the construction of VBA maps, and discuss how these maps can

be used to perform group-level statistical analyses as well as individual-level predictions.

4.2 Methods and Materials

The method is divided in four steps: (i) MRI acquisition and data preprocessing, (ii) registration

to a symmetric template, (iii) generation of asymmetry maps; and (iv) group-level statistical

analysis, and individual-level automatic classification. Figure 4.1 shows how these steps are

connected.

4.2.1 Participants

21 patients with refractory temporal lobe epilepsy undergoing pre-surgical evaluation and were

enrolled into this study. All patients had unilateral TLE which was confirmed by video EEG

monitoring and/or clinical MRI examination which included 3D FLAIR coronal, T2w axial,

3D T1w axial, T2w gradient echo coronal, FSE-IR coronal and diffusion axial (6 directions,

b=1000). Clinical details are available in Table 4.1. A group of 33 healthy control subjects was

recruited as well. The mean age was 38.4±12.6 (range 18-59, 11 female) for the patient group,

and 28.4±9 (range 20-54, 13 female) for the control group.

All the subjects underwent the same imaging protocol for this study as described in the

following section. This project was approved by the Office of Research Ethics of Western



Chapter 4. Classification of TLE patients using voxel-based asymmetry 134

MRI Acquisition

begin

Image preprocessing

Registration

DESPOT1-HIFI, DTI

Assymetry Maps

SVM Classification: TLE identification

Test Set

Feature Selection

Training Set

Validation Stage

Record Hit or Miss

All subjects 
tested?

Compute performance

end

use
selected features

PCA projection 
Project test set in 

PCA space

Training 

Baseline Maps

Symmetric Template

Feature set 

cardinality (K)

Leave-One-Out CV Loop

no

yes

Statistical Analysis

Figure 4.1: Method overview. Asymmetry maps are a personal signature that can be used for group-
level (statistical analysis) and for individual-level prediction (automatic classification).

University (Canada) and all procedures were in accordance with the Helsinki Declaration of

1975, as revised in 2008.

4.2.2 Data acquisition and preprocessing

All subjects underwent imaging (relaxation mapping and diffusion-tensor imaging) on a 3T

Discovery MR750 scanner (General Electric, Milwaukee, WI, USA) with a 32 channel head

coil. We used the DESPOT1-HIFI method as described by Deoni et al. [4] to estimate T1 maps:

Two SPGR images (flip angles: 4◦ and 18◦) along with an additional inversion-prepared SPGR,

all 1mm isotropic, were acquired. These images were registered to compensate for motion be-

tween the scans prior to the estimation of the T1 maps, with the FLIRT affine registration
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Table 4.1: Clinical summary and demographics of the patients enrolled into this study.

ID Age Sex Hand O
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et
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Anatomical MRI (1.5T) surgery E
ng

el
ou

tc
om

e

1 40 F R 16 24 L N L-ATL I
2 25 F R 17 8 L DNET L-ATL III
3 20 M R 3 17 L Left MTS L-ATL II
4 18 M R 14 4 R Right MTS R-ATL I
5 48 F R 36 12 L Left MTS L-ATL II
6 41 F R 8 33 R N R-ATL II
7 30 M R 2 28 L Left MTS L-ATL I
8 31 M R 28 3 R N R-ATL I
9 49 F R 22 27 R Right MTS, PVH, CD R-ATL I

10 32 F R 19 13 L Left MTS L-ATL I
11 56 F R 15 41 R N R-ATL II
12 43 F R 3 40 R Right MTS R-ATL I
13 23 M R 18 5 L N L-ATL I
14 34 M L 15 19 L Left MTS L-ATL III
15 33 F R 20 13 R Right MTS, PVLM R-ATL I
16 39 M L 13 26 R Right DNET or CD R-ATL I
17 59 M R 11 48 L Left MTS - -
18 58 F R 8 50 L possible right MTS R-ATL -
19 58 M R 7 51 R N - -
20 35 F R 11 24 L N - -
21 34 M R 10 24 L FCD or low-grade glioma - -
MTS: mesial temporal sclerosis; L-:left;R-:right; ATL: anterior temporal lobectomy; CD: cortical dysplasia;
DNET: dysembryoplastic neuroepithelial tumour; PVH: periventricular heterotopia; PVLM: periventricular leukomalacia;
N: normal MRI or non-specific findings.

tool [5] from the FSL library 1, using the 18◦ image as reference. Diffusion tensor imaging

(DTI) was performed using 41 gradient directions (b-value=1000) and 6 non-weighted (b=0)

volumes (2.5 mm isotropic resolution). B0 susceptibility induced distortions were corrected

using deformable registration of the average of non-weighted scans to the T1 map [6]. Eddy

current correction and diffusion tensor estimation were performed with the FDT tool (part of

the FSL library). The resulting maps of fractional anisotropy (FA) and mean diffusivity maps

(MD). A synthetic bias-corrected T1-weighted image was created from the T1 map following

the method described by Deoni et al. [7]. This T1-weighted image was required to perform the

FA and MD registration to the T1 map. Skull stripping was performed using BET (also part of

FSL). Brain masking and tissue segmentation were performed with FSL2 [5], and registration

to a symmetric template was performed with non-rigid B-spline registration, with affine initial-

ization. Co-registered FA and MD maps were transformed to this symmetric template space,

along with Jacobian-modulated gray matter density maps (GM*).

1http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
2FSL software: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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4.2.3 Measuring Voxel-based asymmetry

Under the hypothesis that focal morphological abnormalities can be identified by a comparison

of corresponding regions between left and right hemispheres, four images per subject (T1,

FA, MD, GM*) were analyzed. Each one of the images was flipped (left-right), followed by

registration to the symmetric template. This step enabled a voxel-scale comparison between

left and right hemispheres: the coordinates for any voxel A in the unflipped image are the same

as the coordinates of its hemispherical opposite B in the flipped image (Figure 4.2).

Unflipped Image

Flipped Image

A

B A

Figure 4.2: Establishing hemispheric correspondence. B is the corresponding region for A in the
opposite hemisphere.

Defining homologous voxel neighbourhoods

It is unrealistic to obtain a perfect voxel-by-voxel correspondence between left and right hemi-

spheres: anatomical variability due to differences in cortical folding and normal occurring

structural changes need to be considered. Similarly, the registration to the common space pro-

vided by the symmetric template has its own limitations: registration may not be perfect due

to anatomical variability, partial volume effects and signal to noise ratio. Also, the voxel size

before registration is not the same between relaxation mapping (1mm) and diffusion tensor

images (2.5mm). To account for these constraints, the comparison of homologous left-right

regions was formulated between spherical voxel neighbourhoods with a parametric radius r in
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voxels (in addition to the central voxel). Neighbourhoods of different sizes were studied: small

neighbourhoods (r = 1, r = 2 voxels) provided very little data to produce a good comparison,

whereas large neighbourhoods permitted a better estimation of left-right differences, and com-

pensated better for the aforementioned constraints. Nonetheless, large neighbourhoods (r ≥ 4

voxels) were also computationally expensive and reduced the localization ability of small dif-

ferences. Under these considerations, a radius of r = 3 voxels was selected, encompassing a

volume of 123mm3. This equated to 123 voxels for the T1 and GM* images, and 7.8 voxels

for the FA and MD images, before registration.

Measuring voxel-based asymmetry

Focal left-right differences can be quantified by introducing a voxel-based asymmetry estima-

tion [L]. For a given neighbourhood defined by voxel v (and radius r = 3) two corresponding

regions are extracted from the unflipped (U) and flipped (F) images, namely regions U(v) and

F(v).

These regions are compared using a two-sample Kolmogorov-Smirnov (KS) test. Thus,

voxel-based asymmetry is defined as the result of this test:

Ls,i(v) = KS (Us,i(v), Fs,i(v)) (4.1)

where s is a subject and i is one of four possible image sources: T1, FA, MD, GM*.

The KS test measures the empirical cumulative distribution functions (ECDFs) of both

regions (U,F) and returns the maximum difference between them (Figure 4.3). Since ECDFs

are bounded in the [0,1] interval the minimum difference returned is zero when there is a

complete overlap (100% symmetry) and the maximum is one when there is no overlap (100%

asymmetry).

Subsequently, voxel-based asymmetry maps [A] are generated by computing voxel-based

asymmetry for across all possible voxel neighbourhoods (background voxels are not evaluated).

Formally:
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(a)

(b)

(c)

Unflipped

Flipped

KS = 0.89

Mean Diffusivity

Figure 4.3: Evaluation of voxel-based asymmetry. (a) Original image; (b) flipped and co-registered
image; (c) A two-sample Kolmogorov-Smirnov (KS) test is performed between homologous (left-right)
neighbourhoods. In this example, the KS test is performed on a mean diffusivity (MD) image in a
neighbourhood closer to the hippocampus for a patient diagnosed with mesial temporal sclerosis. The
red line indicates the outcome of the test which corresponds to the maximum distance between the
left and right empirical cumulative distributions, indicating that the signal in these regions are highly
asymmetric.

As,i =
{
Ls,i(v) : ∀v ∈ i

}
(4.2)

Four asymmetry maps were obtained per participant as depicted by Figure 4.4.

A visual inspection (Figure 4.5) of the maps using a threshold of 70% (L = 0.7) revealed

two things: (i) each subject has a particular asymmetry signature, and (ii) TLE patients seemed

to have more asymmetry in the temporal lobe.

A statistical analysis was carried out to test this hypothesis, dividing the temporal lobe in

three regions (Figure 4.6):

• MSL: The mesial temporal region including the hippocampus, amygdala and adjacent

mesial structures.

• NEO: A region that encompasses the temporal neocortex, cortex and white matter.

• ATL: The region constructed by the combination of MSL and NEO, corresponding to

the temporal lobe.

These regions are selected because TLE can be either mesial or lateral. The statistical
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Figure 4.4: Construction of voxel-based asymmetry maps (VBA maps). A pair of images (flipped,
unflipped) are obtained by registration using the symmetric template. Voxel neighbourhoods with the
same coordinates in these images represent opposite regions between cerebral hemispheres. For each
pair of regions the intensity distribution is collected and a measure of voxel-based asymmetry is ob-
tained by performing a two-sample Kolmogorov-Smirnov test. The result of the KS test is stored in the
neighbourhood central voxel. Repeating this procedure for all brain voxels generates VBA maps.

analysis in these regions can establish the type of asymmetry that is most significant to identify

patients from controls. Additionally, since our patient cohort includes patients with MTS, it is

interesting to see if there could significant differences in asymmetry outside the mesial region.
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(a)

(b)

Figure 4.5: Visual inspection of asymmetry maps. (a) TLE patient with mesial temporal sclerosis;
(b) healthy volunteer; both maps have been thresholded to show voxel-based asymmetries in the range
of 70% (blue) to 100% (yellow) only. The red box shows the region that has been zoomed in on the
right. It was determined that each subject (patients and controls) had a particular asymmetry signature
by examining these asymmetry maps. This signature by itself was not an indication of a pathological
process. It was only through comparisons at the group or individual-to-group levels that abnormal
asymmetry were established. For instance, using a MANOVA design, we corroborated the observation
that TLE patients in our sample have abnormally high (multivariate) asymmetry in the temporal lobe.

4.2.4 Statistical analysis of temporal lobe asymmetry

With the purpose of performing group statistical analyses, temporal lobe asymmetry (δ) was

defined as the average of voxel-based asymmetry in the temporal lobe. Formally:

δs,i(R) =

∑
v∈R

Ls,i(v)

|R|
(4.3)
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MSL NEO ATL

Figure 4.6: Temporal lobe regions. The information contained in the asymmetry maps is mirrored be-
tween the left and right hemispheres. Therefore, only one hemisphere is required for feature extraction.
That is not the case for the baseline experiment (discussed in 4.2.6). MSL: mesial; NEO: lateral; ATL:
anterior temporal lobe.

where R is one of three possible temporal regions: MSL, NEO, or ATL; and |R| is the number

of voxels in region R. A multivariate statistical analysis was performed using SPSS 3 to test the

hypothesis that there would be one or more differences in temporal asymmetry means between

patients and controls.

4.2.5 TLE patient identification using Support Vector Machines

To determine the applicability of the voxel-based asymmetry metric on the detection of TLE,

a linear support vector machine (SVM) was employed. A linear SVM is a supervised binary

classifier that computes the hyperplane or decision boundary that maximizes the separation

(margin) between two groups [8]. The SVM was trained/tested using leave-one-out cross-

validation (LOOCV) due to the small sample size. The SVM analysis was done using the

scikit-learn library [9].

One classification experiment was performed for each region of interest (Figure 4.6). In

each experiment, the classifier was restricted to that region for extraction and selection of fea-

tures. This allowed us to establish and compare the sensitivity and specificity of the proposed

3IBM Corp. Released 2013. IBM SPSS Statistics, Version 22. Armonk, NY: IBM Corp.
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method for TLE patient identification using features belonging to the mesial temporal region

(MSL), the lateral temporal region (NEO), and the anterior temporal lobe (ATL).

Feature selection

Feature vectors were constructed for each subject by concatenating the asymmetry maps in the

temporal lobe regions as follows:

Vs,ϕR = [ϕR(As,T I), ϕR(As,FA), ϕR(As,MD), ϕR(As,GM∗)] (4.4)

where ϕR(x) is a function that returns the voxels in R, with R ∈ {MS L,NEO, AT L} in a VBA

map x. Since all the VBA maps are registered to the symmetric template, the respective regions

R have the same number of voxels, and thus, the feature vectors have the same length.

Binary class label were assigned to each feature vector V (0 = patient, 1 = control). Then,

the classifier was trained and tested using leave-one-out cross-validation (LOOCV) after which

performance metrics such as accuracy, sensitivity and specificity were collected.

Each training set, as generated per LOOCV, was randomly sampled 5 times using strati-

fied shuffling and splitting to generate feature selection folds. Each fold retained 90% of the

subjects in the training set. In addition, the stratified shuffling and splitting enforces the ra-

tio between patients and controls to be similar to that of the training set being sampled. This

creates balanced folds and strengthens the search for discriminative features.

An ANOVA-based feature selection algorithm was executed on each fold and the top K

most discriminative features were retained. Feature ranking was based on the resulting F-value

and ties were broken randomly. This procedure created a feature set candidate for each fold.

Then, the final feature set was assembled by features that were consistently selected across all

feature folds (Figure 4.7).

Once features were selected, the training dataset was transformed using principal compo-

nent analysis (PCA) and the 5 top components were kept, obtaining a compact data represen-

tation. The same features were selected in the testing set, which was posteriorly projected onto

PCA space (Figure 4.1).
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Figure 4.7: Feature selection.The algorithm randomly samples the training set, creating feature selec-
tion folds (M=5). Then, features on each fold are ranked using an ANOVA test and only the K top
features are kept. Finally, only those features identified in all selection folds are chosen to constitute the
definitive feature set that will be used in training and testing

Robust features and informative features

A feature set is obtained on each iteration of the LOOCV loop. This feature set can be different

from iteration to iteration due to the fact that the training set is different every time and also

due to the random sampling mechanism. Therefore it is important to determine which features

are recurrent over all classification iterations. These robust features are obtained by examining

the feature sets obtained on all the iterations of the LOOCV loop and retaining only those

that consistently appear in all of them. This mechanism is similar to that described for the

construction of the final feature set on every iteration, however in this case, the selection of

features occurs across all LOOCV feature sets instead of feature folds in a particular training

set.

Given that the feature selection algorithm requires setting the K parameter (cardinality) a

priori, the performance of the classifier may vary depending on how large the set of features

used for classification is. Therefore, the identification of robust features is limited by the selec-

tion of K. To account for this free parameter, robust features were evaluated for a range of K

values, starting at 1000 features, incrementing by 1000 features every time, until reaching the

maximum number of available features T . Then, informative features were identified as those

features that were consistently selected at least 80% of the times across all cases where the

classifier performed well (above the measured average accuracy). An analysis of informative
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features is presented in the results section.

4.2.6 Baseline experiment

A baseline experiment was proposed to compare the effectiveness of TLE identification based

on the idea of focal asymmetry features versus classification based on the information con-

tained in the T1, FA, MD and GM* images directly (no asymmetry calculation). The feature

extraction and feature selection steps for this experiment were similarly performed on the MSL,

NEO and ATL regions. However in this case, both the left and right hemisphere are explored

for features. A linear SVM, identical to the one used in the VBA classification, was trained

and tested following the same methodology as described before.

4.3 Results

4.3.1 Differences in temporal lobe asymmetry between patients and con trols

The descriptive statistics associated with temporal lobe asymmetry between patients and con-

trols are reported in Table 4.2. It can be seen that the temporal lobe asymmetry mean in the

TLE group is higher than in the control group, except by the gray matter density (GM*) in the

NEO and ATL regions.

Table 4.2: Descriptive statistics. Average asymmetry and standard deviation per per group and region
of interest

ROI Group T1 FA MD GM*
µ σ µ σ µ σ µ σ

MSL Control 0.22 0.02 0.31 0.03 0.33 0.04 0.31 0.03
TLE 0.23 0.02 0.33 0.03 0.39 0.07 0.33 0.04

NEO Control 0.26 0.02 0.36 0.02 0.37 0.03 0.33 0.03
TLE 0.29 0.03 0.38 0.03 0.43 0.06 0.33 0.03

ATL Control 0.25 0.02 0.33 0.02 0.36 0.03 0.33 0.02
TLE 0.27 0.02 0.37 0.03 0.42 0.06 0.33 0.03

A one-way multivariate analysis of variance (MANOVA) was conducted, to test the hypoth-

esis that there would be mean differences between patients and controls in terms of temporal
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lobe asymmetry. For this test, the subject group (patient,control) was considered as the in-

dependent variable, and the 4 regional asymmetries, δT1, δFA, δMD, δGM∗ (Equation 4.3) were

then identified as dependent variables. Statistical significant differences were identified in the

mesial, lateral and anterior temporal regions (Table 4.3). This suggested that at least one type

of temporal lobe asymmetry was different between patients and controls on these regions.

Table 4.3: Multivariate tests results. ROI asymmetry between TLE patients and control is significant
in the regions of interest: MSL(p < 0.05), NEO(p < 0.001), and ATL(p < 0.001); BT: Box’s test of
equality of covariance matrices; Λ is Wilks’ Lambda.

ROI BT Λ F d f1 d f2 Sig. η2

MSL 0.054 0.793 3.189 4 49 0.021 0.207
NEO 0.001 0.594 8.359 4 49 0.000 0.406
ATL 0.013 0.606 7.967 4 49 0.000 0.394

To identify regional asymmetries contributing to the MANOVA results, a follow-up ANOVA

test was performed on each dependent variable. For these tests, the significance level α of 0.5

selected and posteriorly adjusted by the number of ANOVA tests (Bonferroni correction). Thus

the significance level for each individual ANOVA was set at α/n = 0.0125. The results of these

follow-up tests indicated that in the mesial region only the MD asymmetry was significantly

different between patients and controls (p = 0.001); whereas in the lateral and ATL regions,

T1, FA and MD asymmetries were significantly different (p < 0.001); GM* asymmetry was

not significant in any of the three regions (Figure 4.8).

4.3.2 TLE patient identification using SVM on voxel-based asymmetry

features

Identification of TLE patients with the VBA classifier was robust, obtaining accuracies be-

tween 87% and 92% (Table 4.4). The overall best performance was obtained by the VBA

classifier in the lateral region (accuracy=91%, sensitivity=86%, specificity=94%). Figure 4.9

shows a three-dimensional representation of the feature space with the respective SVM de-

cision boundary showing four distinct scenarios. Each one of these cases correspond to an

different iterations in the LOOCV loop, where the feature space is slightly different each time
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Figure 4.8: ROI asymmetry differences between TLE patients and controls. These results indicate
that temporal lobe asymmetry in TLE patients is higher than in healthy volunteers for T1, FA and MD
in the lateral and ATL regions, and only on MD for the mesial region. These results were obtained using
a set of follow-up ANOVAS (after performing a MANOVA test per region that considered differences
between TLE patients and controls in all four temporal lobe asymmetries jointly). For these ANOVA
tests the statistical significance was set at p < 0.0125, which accounted for multiple comparisons.

and so it is the decision boundary. This low-dimensional projection shows that the control

group tends to form a tight cluster whereas the patient group is much more scattered in terms

of multivariate voxel-based asymmetry.

The VBA classifier outperformed the baseline classifier. Each experiment was repeated, in-

creasing the value of the requested feature set cardinality K, up to the total number of available

features T (size of the respective ROI in voxels). Table 4.4 summarizes the results for the best

and average performances of both experiments (Baseline, VBA).

Figure 4.10 shows the accuracy of the classifier in function of the feature set cardinality

K. In all three ROIs, the VBA classifier obtained an optimal performance with considerably

less number of features. This indicates that voxel-based asymmetry is more informative than

raw voxel intensities for the task of patient identification. Average performances are indicated

dotted lines showing that the VBA classifier generally outperformed the baseline classifier.

4.3.3 Analysis of informative features

Most informative features across all feature set cardinalities were identified as follows. For

a feature f and the robust feature set FK determined by K, the indicator function 1( f ,K) is
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(a) (b)

(c) (d)

Figure 4.9: SVM classification. This figure shows a PCA projection of the high-dimensional feature
space (asymmetry features), with the respective decision boundary determined by the SVM, in sev-
eral scenarios: (a) a patient being correctly classified; (b) a patient being misclassified; (c) a control
being correctly classified; and (d) a control being misclassified. Each case represents an iteration of
the LOOCV loop, where the subject being classified (green triangle) is excluded from training. In all
cases, the control group presents a cluster tendency whereas patients are sparse in terms of multivariate
asymmetry.

defined as:

1( f ,K) =


1 : f ∈ FK

0 : f < FK

(4.5)

Then a frequency function Q( f ) can be defined as:

Q( f ) =

∑T
K=1000 1( f ,K)

N
(4.6)

where N is the number of times the SVM performed with the measured average accuracy or

higher. Then, f was determined to be informative if its frequency Q( f ) was higher than a set
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Table 4.4: Identification of TLE patients using SVMs. Automatic classification using voxel-based
asymmetry maps (VBA) outperformed the baseline experiment, which employed voxel-intensity fea-
tures from the original images (Base).

MSL NEO ATL
Base VBA Base VBA Base VBA

Best Performance
Accuracy 83% 87% 77% 92% 81% 87%

Sensitivity 67% 81% 71% 86% 71% 71%
Specificity 94% 91% 81% 94% 88% 97%

Average Performance
Accuracy 73% 79% 60% 78% 67% 80%

Sensitivity 63% 73% 49% 79% 54% 72%
Specificity 79% 83% 66% 77% 76% 86%

threshold of 0.8. In other words, when it was selected at least 80% of the times across all good

classification cases.

Table 4.5 shows the results of this analysis. The coverage metric C gives the proportion

of informative features to the total number of available features T , which corresponds to the

size of the respective ROI. Since this metric takes into account only those cases where the

classifier performed at or above average, it shows that in general very little information is

required to do so. However, the coverage metric must be analyzed in the context of how

good the classifier performed (average accuracy included in the table): notably 24% of mesial

features are informative while only 2% and 9% in the lateral and ATL regions are informative

for for classification performances around 80% for the VBA classifier. This could indicate that

voxel-based asymmetry in the mesial temporal lobe is more widespread than in the peripheral

white matter, gray matter and neocortex for TLE patients. In other words, more informative

asymmetry features are found in the mesial region than outside of it in average for all cases

where the classifier performed with an accuracy of 80% or above.

A composition of informative features is also provided in Table 4.5 in terms of their origin.

Interestingly, MD features are the most common among informative features for the VBA

classifier. In the mesial region they account for 35% of the total of informative features, while

their percentages are 48% and 43% in the lateral and ATL regions respectively. A similar
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Figure 4.10: Classification accuracy as a function of feature set cardinality. In all three ROI, the
VBA classifier outperformed the baseline classifier. These plots also show that classification accuracy
for the VBA classifier is relatively more stable than for the baseline classifier.

result was observed when analyzing the composition of the robust feature set associated to the

best classification cases of the VBA (not shown in the table): 75% of the features in the MSL

region were MD features, 47% in NEO and 33% in the ATL region. These results point to the

relevance that mean diffusivity images and their potential in the identification of patients with

TLE.

Informative features in the mesial temporal region (MSL)

Informative features for the identification of patients with TLE were found in the hippocam-

pal formation(Figure 4.11a). MD asymmetry in the hippocampus was the predominant feature
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Table 4.5: Analysis of informative features. Informative features are consistently selected at least 80%
of the times (see 4.2.5)

MSL NEO ATL
Base VBA Base VBA Base VBA

informative features [M] 4,725 16,026 13,124 4,800 13,107 25,784
available features [T] 133,224 66,612 424,024 212,012 557,284 278,624

coverage [C] = [M]/[T] 4% 24% 3% 2% 2% 9%
average SVM accuracy 73% 79% 60% 78% 67% 80%

Feature origin
T1 12% 22% 11% 26% 11% 24%
FA 23% 17% 18% 21% 20% 20%

MD 7% 35% 6% 48% 7% 43%
GM* 6% 27% 22% 5% 18% 13%

among all four kinds of asymmetry (T1, FA, MD, GM*). This finding is consistent with the

ROI asymmetry analysis where MD asymmetry showed to be different with statistical signifi-

cance between patients with TLE and healthy control volunteers. MD and FA features extend

anteriorly including parts of the amygdala, the hippocampus, the entorhinal cortex, the fusiform

gyrus, and temporal pole.

Correspondingly, T1 and GM* informative features follow the CA1 hippocampal region to-

wards the subiculum, while anteriorly, the T1 and GM* changes extend towards the entorhinal

cortex and the temporal pole. These findings could be indicative of common areas of cortical

integrity disruption in TLE patients.

Informative features in the lateral temporal region (NEO)

In contrast to mesial findings, common voxel-based asymmetry patterns in the lateral temporal

region appear primarily in the white matter. Figure 4.11b shows changes along the temporooc-

cipital inferior longitudinal fasciculus and frontotemporal uncinate and arcuate fasciculi con-

nections with a predominance of MD findings followed by T1 changes.

On the other hand, FA and GM* changes are minor, appearing scattered in the superior, medial

and inferior gyri.
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Figure 4.11: Analysis of informative temporal lobe features. (a)MSL; (b)NEO; (c)ATL. GM* is gray
matter density (not volume). The features are overlaid on the symmetric template.

Informative features in the anterior temporal lobe (ATL)

When the method is not restricted to either the mesial or the lateral regions, but instead is

allowed to select features from the entire anterior temporal lobe (ATL), the distribution of fea-

tures resembles the patterns observed on the individual MSL and NEO regions (Figure 4.11c):
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MD asymmetry is salient in the hippocampus, parahippocampal gyrus and temporal white

matter, with some minor clusters forming in the inferior and medial temporal cortices. FA

changes are scattered, while gray matter density changes occur primarily in the parahippocam-

pal, fusiform and inferior gyri and project anteriorly onto the temporal pole. T1 asymmetry is

present in the hippocampus and the temporal white matter with some isolated small clusters in

the temporal cortex.

4.4 Discussion

This study presented a new approach for the detection of TLE. We proposed a metric of voxel-

based asymmetry varying between zero (total symmetry) and one (total asymmetry) thus, be-

ing independent of the original unit of measurement, reporting complete symmetry as zero and

complete asymmetry as unity in a continuous range. This metric enabled the integrative analy-

sis of dissimilar magnetic resonance techniques, specifically, of quantitative relaxometry (T1),

diffusion tensor imaging (MD, FA) and voxel-based morphometry (GM*).

Two different kinds of analysis were performed using the resulting asymmetry maps. Firstly,

a multivariate analysis of variance identified relevant types of temporal lobe asymmetry that

were significantly different between TLE patients and healthy volunteers, pointing to MD

asymmetry as the most significant difference in the mesial region; T1, FA and MD changes

were also evidenced in the lateral and ATL regions; and no significant difference was found in

terms of GM* asymmetry. Secondly, automatic classification using a support vector machine

(SVM) was performed using voxel-based asymmetry maps. The SVM performance was then

compared to the performance obtained by using the original images (T1, FA, MD, GM*) with

no computation of voxel-based asymmetry (baseline experiment). The results conveyed a su-

perior performance in terms of classification accuracy, sensitivity and specificity for the SVM

trained on voxel-based asymmetry maps.
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4.4.1 Comparison to multi-voxel pattern analysis methods

Multivariate voxel pattern analysis (MVPA) describes a set of analysis techniques that explore

voxel-based voxel-neighbourhood patterns in four stages: (i)feature selection; (ii) pattern as-

sembly; (iii) classifier training and, (iv) generalization testing [10]. The unit of analysis in

these studies is the searchlight [11], which is a spherical voxel-neighbourhood, similar to the

one used in our method for the calculation of asymmetry maps. In contrast to MVPA, the

training and generalization test steps in our method occur at the brain-level or in selected ROI:

the spherical neighbourhoods are used to generate a global asymmetry map that is then used

for classification. In MVPA, (iii) and (iv) occur at the voxel-neighbourhood level. The per-

formance of the classifier performance is used then as an indication of the discrimination be-

tween two experimental conditions in that region [12]. Another important distinction is that of

purpose: voxel-based asymmetry creates individual signatures of left-right hemispherical dif-

ferences to study abnormal asymmetric conditions such as the pathologies associated to TLE;

whereas MVPA is general purpose, and has been commonly used in the study of fMRI [13].

4.4.2 Comparison to similar multi-parametric classification studies

Our results were comparable to those obtained by Zhang et al. [3] which performed automatic

TLE patient detection using rest-state fMRI features (global connectivity asymmetry, pairwise

brain-region synchronization). Their reported average accuracy range was 75.5%-75.8%, while

the average accuracy of our method was 78%-80%. Similarly, their best accuracy was 83.9%,

whereas our results were in the 87%-92% range.

Analogously, Focke et al. [14] performed multi-parametric automatic classification of TLE

patients obtaining accuracies in the 90%-97% range, with three main differences: (i) classi-

fication was performed individually on gray matter, white matter, T2, FA and MD maps; (ii)

their patient sample was larger and more homogeneous (38 patients with hippocampal scle-

rosis and no other lesions); (iii) classification was optimized by weighing individual images

in the training set with group-level differences (SPM F-contrasts). Non-optimized results are
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also reported, with accuracies going down to 69%, which interestingly resembles the behaviour

evidenced in our baseline experiment. Additionally, their best classification scenarios were ob-

tained by training the SVM on MD features. This finding echoes the MD relevance observed

by discriminating the origin of the features in our integrative design.

4.4.3 Feature selection trade-offs

There are two alternatives when it comes to small datasets subjected to a LOOCV classification

scheme: to not perform feature selection, or perform feature selection once for every training

set. An argument for the first approach is that applying feature selection in a small dataset could

pick up spurious relationships in the data rather than “good” features. This is possible if real

correlations in the sample are weaker than the spurious ones. The no feature selection approach

is followed by Focke et al. [14]. Though they applied a mechanism that effectively weighs

down irrelevant features, all the features are used in training and testing of their classifier.

In contrast, if there is no feature selection at all, there is no certainty that the classifier is

identifying a real effect instead of a sample effect. The lack of feature selection could impact

the classifier’s generalization ability if the sample under consideration is small and does not

reflect the unobserved population, particularly when there are more features than observations

(see 4.4.5). Additionally, feature selection may also facilitate a deeper understanding of the

scientific question of interest [15]. Feature selection must be performed on the training set to

avoid double dipping: the left-out subject features must not be used to determine which features

are discriminative. We have followed this approach, as it is clearly described by Ecker et

al. [16], and Johnston et al. [17], with two improvements: (i) we used stochastic bootstrapping,

running the feature selection heuristic on training set sub-samples and then deciding which

features belong to the final “stable” set [18, 19]; (ii) after selecting the the most relevant data,

we have employed PCA, obtaining a compact and computationally efficient representation of

features in far fewer dimensions [20, 21].
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4.4.4 Criteria for the selection of K

We studied how the performance of the classifiers is affected by the selection of the feature

set cardinality (K). Figure 4.10 shows that the VBA classifier accuracy is relatively stable

across feature set cardinalities. Thus, the optimal K parameter responds to one of two possible

research questions: do we want to know the minimal set that enables an optimal classification

or, do we want to know all the features that are relevant to our problem. This topic is treated

in depth by Nilson et al. [22], showing that the ALL-RELEVANT problem is much harder than

the MINIMAL-OPTIMAL problem. This dichotomy can also be seen in the context of scientific

vs. clinical goals: in machine learning, a minimal feature set that enables optimal classification

is ideal; but, when these features describe anatomical landmarks, as in our study, the minimal

set may not provide sufficient information of clinical relevance. We proposed a compromise

between these two situations by looking at features for a range of different cardinalities. Thus,

informative features (Figure 4.11) are defined then as those with high frequency (>80%) among

all the “good” reported accuracies (dotted lines in Figure 4.10).

Nonetheless, a systematic exploration of K is not always feasible. L1-penalized logistic

regression models can be applied to estimate the inherent dimensionality of a binary classifi-

cation problem. These models set small estimated coefficients to zero accomplishing variable

selection [23]. However, the level of regularization determines the sparsity of the solution and

the dimensional estimation (number of non-zero coefficients). As an alternative, linear sup-

port vector machines can be used to determine K by examining the weights assigned to each

dimension by the decision boundary [24, 25]. We adapted the variable selection algorithm de-

scribed in [18] to estimate an optimal number of features K using a L1-penalized linear SVM.

This method adds “dummy” random features to the dataset and then sets an automatic ranking

threshold for the “true” features based on the weights assigned to the “dummy” features during

training. Methods like this, where features are ranked with an automatic threshold on the rank-

ing criterion are attractive for use in large dimensional spaces [24] and seemed to be adequate

for use with our data. This method estimated K = 264 for the MSL region, K = 130 for the

NEO region, and K = 87 for the ATL region. Notice that this method falls into the MINIMAL
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OPTIMAL category.

4.4.5 Limitations

There are three main considerations regarding our results. First, the patient sample is heteroge-

neous, including lesional (MTS) and non-lesional patients, and due to the reduced sample size

we did not perform stratified analyses (controls vs. MTS, controls vs. non-lesional). Nonethe-

less, as a result of using voxel-based asymmetry, we were able to uniformly analyze patients

with left and right seizure onset. Thus, we believe that our approach can be advantageous to

other research groups having small patient cohorts.

Second, a reduced sample size is an important consideration in any statistical or automatic

classification study. The effect that our sample size has on our MANOVA analysis is appro-

priately reported in Table 4.3 using partial η2 and showing a moderate effect. Similarly for

support vector machines, a small sample limits the amount of available training data. This

scenario is quite common as biological datasets are difficult to acquire, and thus leave-one-out

cross-validation is indicated to maximize training and avoid double dipping [2, 15, 17, 21, 26].

It is well known that the prediction error of a classifier can be decomposed in terms of bias

(expected error due to model mismatch) and variance (variation due to training sampling and

randomization), and that the penalty for using LOOCV is an increased error variance (while

error bias is diminished) [27, 28]. For this reason, we advise using linear classifiers under the

following circumstances: (i) the sample size is small and (ii) there is a reason to believe that

the data can indeed be linearly separable (as per low-dimensional projections, statistical tests,

etc). Linear SVMs are advantageous in these cases, since they have a low error variance [29],

which can be reduced even further through bagging [30]. In short, the complexity of the model

dictates the variability of the decision surface. Therefore, linear classifiers are advisable over

non-linear classifiers when training data are limited.

Finally, in many biological data classification scenarios, like ours, it is common to find

the so-called curse of dimensionality, when there are many more features than observations

(subjects). Though it has been shown that support vector machines behave robustly in high
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dimensional feature spaces of small datasets compared to other classifiers [31–33], there is a

general consensus from previous neuroimaging studies that feature reduction is a fundamental

step before applying a predictive model as discussed in the review performed by [15]. Addi-

tionally, feature selection is advisable when one of the research objectives is the identification

of informative features (as it is our case). To this end, we have implemented the feature selec-

tion process as it has been described here, consequently reducing the size of the feature space

and mitigating the curse of dimensionality [20].

In summary, a larger patient sample would enable stratified statistical and classification

analyses to characterize the asymmetry of individual patient subgroups. Additionally, it would

also reduce the amount of cross-validation in the training and feature selection stages.

4.5 Conclusion

This chapter describes a novel approach for the study of neurological conditions characterized

by focal asymmetric changes, as it is the case for temporal lobe epilepsy. Our contribution can

be summarized by three elements: (i) The proposal of a unified analysis based on the idea of

voxel-based asymmetry, independent of the original unit of measurement, therefore leveraging

the integration and analysis of multivariate MR data (QR + DTI + GM*); (ii) The identifi-

cation of individual asymmetry signatures that enable both group-level inferences (statistical

methods) and individual inferences (individual disease prediction); (iii) The deduction of infor-

mative features useful for individual predictions and their verification with respect to previous

neuroimaging studies.

Though our sample was relatively small, our results showed a clear distinction between

healthy volunteers and patients with TLE in terms of ROI asymmetry in the considered ROIs.

Similarly, it was possible to predict the presence of TLE on individual cases with high accuracy

(up to 92%). In both the group-level and the individual level analyses, mean diffusivity asym-

metry was noteworthy across the temporal lobe, particularly in the hippocampal area. This

observation was in agreement with previous DTI studies of TLE showing common patterns of
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ipsilateral MD increase in TLE. The relevance of the MD signal was obtained as a result of our

integrative approach that allowed the comparison of individual signals in terms of their contri-

bution to the informative feature set. We believe that the multivariate asymmetry analysis has

the potential to improve the understanding and diagnosis of temporal lobe epilepsy and similar

neurological conditions.
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Chapter 5

Conclusions

5.1 Contributions

This thesis provided a conceptual framework for integrating quantitative relaxometry and DTI

into TLE diagnostic application. In Chapter 2, feature maps were obtained for every subject

showing distinct abnormality patterns for MTS+ and MTS- patients (Sections 2.3.1 and 2.3.2);

a laterality score evaluated on these maps obtained a good correspondence between the pre-

dicted side of seizure onset and the surgery performed (ground truth). Similarly, Chapters 3

and 4 demonstrated how Q-MRI and DTI can be combined to predict a TLE diagnosis, using

ROI- and voxel-level features respectively. Support vector machines showed optimal diagnos-

tic accuracy accounting for our small and heterogeneous patient group.

Consequently, the analysis of informative features presented herein provided clues for

structural abnormalities in TLE patient group as well as in the examined patient subgroups.

By virtue of the multi-parametric evaluation, it was possible to determine the relevance of

mean diffusivity relative to other signals. Hence, future studies could focus on this type of im-

age. Similarly, feature analysis revealed that most of the abnormalities in the MTS- group are

located in the temporal cortex and are significant compared to controls (Figure 2.7). This is an

interesting finding since non-MTS patients have a worse surgical outcome than MTS patients

(50% vs 80%) [1]. Hence, a more detailed examination of cortical features in this group has
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the potential of identify lesions, improving the patient’s odds of becoming seizure-free after

surgery.

Another contribution that this work makes is the examination of machine learning classifi-

cation models of TLE. This analysis demonstrated that the image type is more significant than

the type of SVM, with MD images being the most relevant in classification using most models.

Additionally, we showed that linear SVMs are sufficient to identify TLE patients and should be

preferred over non-linear models that require more extensive parameter optimization, which is

limiting given a small sample. Also, patients with right TLE were more difficult to detect, and

in these cases the multi-image classification proved to be optimal.

This work demonstrated the fitness of using a two-sample Kolmogorov-Smirnov test to

assess asymmetry in regions of interest and in voxel-level features. This test is non-parametric

and thus befits left-right comparisons of regions that depart from normality due to the presence

of pathologies. Additionally, the KS test standardizes left-right differences to the [0,1] range

and this allows the comparison of asymmetry across different imaging techniques such as those

in the scope of this thesis. The progression from ROI to voxel-based analyses demonstrated

that classification is optimal even when restricted to the temporal lobe. Moreover, interesting

asymmetries in the hippocampus, amygdala, parahippocampal gyrus (entorhinal and perirhinal

cortices), and distinctive white matter were identified without previous segmentation of these

structures, with no involvement of the medial and superior temporal cortices (Figure 4.11).

In practice, adding Q-MRI and DTI to clinical protocols for the evaluation of TLE may

be warranted when current methods fail to identify epileptogenic foci. In these scenarios, the

methods described in this thesis have the potential to provide valuable diagnostic information

prior or as an alternative to intracranial EEG. A first and simple approach for integrating this

thesis in clinical workflow could be the evaluation of MD images with an ANOVA-based linear-

SVM model, and the evaluation of IFMs in the images that are currently used for diagnosis.
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5.2 Limitations

The main constraint during the development of the experiments described in this thesis was the

small patient group. This limitation is well known in neuroscience and neuroimaging studies

(Section 1.4.1). In this respect, support vector machines are a relatively robust technique in

comparison to other classifiers like random forests, linear discriminant analysis and neural

networks [2, 3]. However, how can we determine if there are enough data for obtaining a

reliable boundary? A possible approach to solve this question was discussed in Section 3.3.6

in which the SVM reliability index (SRI) measures the variability of the decision boundary

when data points are removed. Notice that this idea is linked to cross-validation, where data

points are also removed before estimating the decision boundary. Hence, SRI could serve as an

upper boundary for determining the optimal partition sizes in for leave-n-out cross-validation.

Another limitation is the effect that cross-validation has in the identification of informative

features. Feature selection must be stratified, evaluating features on every possible training set

created with cross-validation. Then heuristics like those presented in Sections 3.2.8 and 4.2.5

are needed to assess valuable features. The problem with this approach is that new parameters

are being added to the problem: how do we decide what a good frequency threshold is so we

can call a feature informative? Different thresholds will vary the number of features identified

and in this thesis these thresholds have been arbitrarily set to be in the 80% (Chapter 3) and

100% (Chapter 4).

Similarly, feature selection methods add an extra cardinality parameter, K, and though it

is interesting to test the robustness of SVMs by restricting the number of features, a complete

evaluation of all possible K is not always feasible or practical (Section 4.4.4). As discussed in

this thesis, L1-penalized regression models can be used to estimate K but, these models depend

on the level of regularization chosen. Though this regularization can be estimated by cross-

validation, in my view, this is not an optimal approach. Hence, the exploration of embedded

methods for feature selection is an interesting venue for future research. As a matter of fact, a

solution to the cardinality dilemma can be obtained by applying “Dimensionality reduction via
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sparse support vector machines” as described by Bi et al. [4] to estimate an optimal number of

features K using a L1-penalized linear SVM (Section 4.4.4).

5.3 Future Research

A possible future area of research is the comparison of IFM results with inter-ictal EEG stud-

ies. Region correspondences could benefit EEG-based diagnosis and also provide a heuristic

for better electrode positioning. Correspondingly, the voxel-based asymmetry maps obtained

in Chapter 4 could accomplish a similar purpose with respect to intracranial EEG due to their

higher spatial resolution (compared to the ROI approach). Additionally, white matter tractog-

raphy could serve as a priori knowledge source for linking abnormal ROIs identified with IFM

to EEG studies. However, as shown in Figure 1.14 and discussed in previous works (VBR vs.

ROI [5]; TBSS vs. VBM [6]; and TBSS vs. VBS [7]) multiple techniques may have a com-

plementary character rather than an additive effect. Thus, established techniques must not be

taken as a gold standard, since each technique has an inherent bias, sensitivity and specificity.

Another venue for research is to focus on detection and lateralization of non-MTS patients

since this group has a higher morbidity (including patients with FCD). To this end, our re-

sults indicate that the exploration of temporal cortical abnormalities may be useful. This topic

has previously explored through cortical thickness estimation in MRI [8], and stereology of

surgical specimens [9].

In regards to SVMs in a clinical perspective, larger patient samples would allow to inves-

tigate the correlation between subject-to-boundary signed distances and clinical variables as

shown by Ecker et al.(2010) [10] for Autism (Figure 5.1). This was evaluated in our study but

no statistical significance was obtained. From a scientific perspective, it would be interesting

to explore deep learning algorithms for obtaining high-level representations of features. These

methods are unsupervised, can boost SVM-based classification, and have gathered interest

largely due to recent developments [11, 12].

Finally, though a significant pattern of increasing asymmetry was observed among controls,
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Figure 5.1: Subject-to-boundary correlation. The idea is to correlate the signed distance from each
subject to the decision boundary shown in (a) with clinical variables. In other words, can we associate
distance to the severity of the clinical condition being examined? (b) shows a case where there is no
correlation; and (c) a case where a correlation has been found.

MTS- and MTS+ groups (Figure 2.8a), a stratified analysis of the asymmetry was not possible

using voxel-based asymmetry (e.g., left-non-MTS vs. right-MTS). Figure 5.2 shows some

preliminary results. A larger patient cohort would warrant analysis at this level.
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Figure 5.2: voxel-based asymmetry patterns. Each row shows an average asymmetry map. The
asymmetry threshold is set at 50%
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1 Individual Feature Maps (IFM) - Report
2 Patient: 4
3 ==================================================
4

5 LATERALITY SCORE: -1.00 [-1: left, +1: right]
6

7 Left Mean Intensity Map {L}
8 --
9 T1
10 --
11 * NO FINDINGS
12 --
13 T2
14 --
15 * NO FINDINGS
16 --
17 FA
18 --
19 * NO FINDINGS
20 --
21 MD
22 --
23 Left-Hippocampus (temporal)

Higher 0.00113 [0.00096]
24

25 Right Mean Intensity Map {R}
26 --
27 T1
28 --
29 * NO FINDINGS
30 --
31 T2
32 --
33 * NO FINDINGS
34 --
35 FA
36 --
37 * NO FINDINGS
38 --
39 MD
40 --
41 * NO FINDINGS
42

43 Signal Asymmetry {KS}
44 --
45 T1
46 --
47 wm-lh-parahippocampal vs wm-rh-parahippocampal (temporal)

Abnormal 0.20 [0.06]
48 Left Higher 1400.64(L) > 1313.74(R)
49

50 --
51 T2
52 --
53 Left-Hippocampus vs Right-Hippocampus (temporal)

Abnormal 0.35 [0.09]
54 Left Higher 72.02(L) > 55.23(R)
55

56 --
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57 FA
58 --
59 * NO FINDINGS
60 --
61 MD
62 --
63 Left-Hippocampus vs Right-Hippocampus (temporal)

Abnormal 0.53136 [0.09038]
64 Left Higher 0.00113(L) > 0.00093(R)
65

66

67 Volume Asymmetry {V}
68

69 ctx-lh-superiorfrontal vs ctx-rh-superiorfrontal (frontal)
Abnormal 0.003663 [0.000807]

70 Right Smaller 0.026560(L) > 0.022897(R)
71

72 Left-Hippocampus vs Right-Hippocampus (temporal)
Abnormal 0.001014 [0.000154]

73 Left Smaller 0.003475(L) < 0.004490(R)
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A.2 IFM for a non-MTS patient
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1 Individual Feature Maps (IFM) - Report
2 Patient: 12
3 ==================================================
4

5 LATERALITY SCORE: 1.00 [-1: left, +1: right]
6

7

8 Left Mean Intensity Map {L}
9 --
10 T1
11 --
12 * NO FINDINGS
13 --
14 T2
15 --
16 Left-Caudate (other)

Higher 83.25 [44.04]
17 --
18 FA
19 --
20 * NO FINDINGS
21 --
22 MD
23 --
24 ctx-lh-insula (other)

Higher 0.00108 [0.00091]
25

26 Right Mean Intensity Map {R}
27 --
28 T1
29 --
30 * NO FINDINGS
31 --
32 T2
33 --
34 ctx-rh-parstriangularis (frontal)

Higher 86.90 [57.90]
35 ctx-rh-bankssts (temporal)

Higher 65.09 [46.05]
36 ctx-rh-rostralmiddlefrontal (frontal)

Higher 85.14 [57.50]
37 --
38 FA
39 --
40 * NO FINDINGS
41 --
42 MD
43 --
44 ctx-rh-bankssts (temporal)

Higher 0.00100 [0.00084]
45 ctx-rh-fusiform (temporal)

Higher 0.00091 [0.00082]
46

47 Signal Asymmetry {KS}
48 --
49 T1
50 --
51 ctx-lh-parahippocampal vs ctx-rh-parahippocampal (temporal)

Abnormal 0.16 [0.05]
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52 Right Higher 1965.75(L) < 2053.67(R)
53

54 wm-lh-parahippocampal vs wm-rh-parahippocampal (temporal)
Abnormal 0.18 [0.06]

55 Right Higher 1334.48(L) < 1403.61(R)
56

57 Left-Cerebellum -White-Matter vs Right-Cerebellum -W (other)
Abnormal 0.19 [0.05]

58 Right Higher 1213.76(L) < 1255.19(R)
59

60 --
61 T2
62 --
63 * NO FINDINGS
64 --
65 FA
66 --
67 * NO FINDINGS
68 --
69 MD
70 --
71 * NO FINDINGS
72

73 Volume Asymmetry {V}
74

75 ctx-lh-superiorfrontal vs ctx-rh-superiorfrontal (frontal)
Abnormal 0.003634 [0.000807]

76 Right Smaller 0.023142(L) > 0.019508(R)
77

78 Left-Hippocampus vs Right-Hippocampus (temporal)
Abnormal 0.000788 [0.000154]

79 Left Smaller 0.003307(L) < 0.004095(R)
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