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ABSTRACT 

Anthrax is a lethal infectious disease caused by the bacterium Bacillus anthracis.  B. 

anthracis secretes the virulence factor anthrax lethal toxin (LeTx), which causes rapid cell 

death known as pyroptosis and immune suppression in macrophages.  Strikingly, RAW 264.7 

macrophages pre-exposed to sub-lethal doses of LeTx become refractory to subsequent high 

cytolytic doses.  The phenomenon is termed toxin-induced resistance (TIR).  TIR is in part 

linked to the down-regulation of three mitochondrial death genes, BCL2/adenovirus E1B 19 

kDa-interacting protein 3 (BNIP3), BNIP3-like (BNIP3L), and metastatic lymph node 64 

(MLN64) protein, as well as the up-regulation of a gene-silencing epigenetic regulator, 

histone deacetylase (HDAC) 8.  Interestingly, I found that inhibiting HDAC8 with the 

HDAC8-specific inhibitor PCI-34051 in RAW 264.7 TIR cells sensitized them to LeTx-

induced pyroptosis.  Furthermore, resistance to LeTx-induced pyroptosis is likely mediated 

by HDAC8-dependent H3K27Ac deacetylation in the regulatory regions of the mitochondrial 

death genes, BNIP3 and MLN64.  Although, sub-lethal doses of LeTx induced resistance to 

pyroptosis in RAW 264.7 macrophages, LeTx still caused immune suppression.  Here, I 

found that RAW 264.7 LeTx-treated macrophages and RAW 264.7 macrophages over-

expressing HDAC8 failed to produce pro-interleukin (IL)-1β, a pro-inflammatory cytokine, 

in response to the Gram-negative bacterial cell wall component lipopolysaccharide (LPS), 

whereas inhibiting HDAC8 with PCI-34051 restored IL-1β and tumor necrosis factor (TNF)-

α production in response to LPS.  Furthermore, chromatin immunoprecipitation (ChIP)- 

quantitative real-time polymerase chain reaction (qPCR) analysis revealed that inhibiting 

HDAC8 in the presence of LeTx increased H3K27Ac association with the genomic regions 

of IL-1β in response to LPS.  Collectively, these results suggest that HDAC8 plays a key role 

in resistance to LeTx-induced pyroptosis and LeTx-induced immunosuppression, through 

targeting the H3K27Ac-associated regions of BNIP3, MLN64 and IL-1β.   

KEYWORDS 

Bacillus anthracis, anthrax, lethal toxin, lethal toxin-induced resistance, epigenetics, histone 

deacetylation, histone deacetylase 8, immunosuppression.  
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ABBREVIATIONS 

ASC Apoptosis speck-like protein containing a CARD 

AVA Anthrax Vaccine Adsorbed 

BH Bcl-2 homology 

BMDM Bone marroe derived macrophage 

BNIP3 BCL2/adenovirus E1B 19 kDa-interacting protein 3  

BNIP3L BNIP3-like 

 CARD	   Caspase activation and recruitment domain 

ChIP Chromatin immunoprecipitation 

CMG2 Capillary morphogenesis gene 2  

DMNT DNA methyltransferase 

EF Edema factor 

ERK Extracellular signal-regulated kinase 

FBS Fetal bovine serum 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

GSH Glutathione 

 H3K27Ac Histone H3 lysine 27 acetylation 

H3K27Me3 Histone H3 lysine 27 trimethylation 

HAT Histone acetyltransferase 

HDAC Histone deacetylase 

IL Interleukin 

 IL-1β Interleukin-1 beta 

JNK c-Jun Amino Terminal Kinase 

LF Lethal factor  

LPS Lipopolysaccharide  

MAPK Mitogen activated protein kinase 

MEK MAPK kinase 

MEKK MAPK kinase kinase 

MLN64 Metastatic lymph node 64  

NF-κB Nuclear factor kappa B  

NLR Nod-like receptor  



 

iv 

 

NOD Nuclear oligomerization domain 

PA Protective antigen  

PBS Phosphate buffered saline  

qPCR  Quantitative polymerase chain reaction 

ROS Reactive oxygen species  

RTKs Receptor tyrosine kinases 

S. typhimurium Salmonella enterica serovar Typhimurium 

SAPK Stress activated protein kinase 

SILAC Stable isotope labeling of amino acids in cell culture 

SOS Son of sevenless 

SRM Selected reaction monitoring  

TEM8 Tumor endothelial marker 8 

TIL1R Toll-interleukin 1 receptor  

TIR Toxin-induced resistance  

TLR Toll-like receptor 

TM Transmembrane  

TNF-α Tumor necrosis factor-alpha 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Anthrax  

Anthrax is often a fatal bacterial infection caused by the Gram-positive bacterium 

Bacillus anthracis.  B. anthracis is primarily a soil bacterium capable of producing 

endospores, which are resistant to harsh environmental conditions (e.g. high heat, UV 

light, disinfectants etc.), and can remain dormant for decades [1,2].  When anthrax 

endospores are present in the host they are primarily phagocytosed by macrophages and 

these macrophages then migrate to the draining lymph nodes and begin to germinate to 

become vegetative bacteria [1,3,4].  These vegetative bacteria are then released from 

macrophages, allowing for dissemination throughout the host leading to bacteremia and 

septic shock.  Furthermore, vegetative B. anthracis expresses virulence factors including 

toxins, which lead to systemic immune paralysis, shock, and eventual death of the host 

[3].   

Throughout the world in regions including South and Central America, sub-Saharan 

Africa, Central and Southwestern Asia, and Southern and Eastern Europe, anthrax is 

found among wild and domestic animals leading to increased risk and incidence of 

anthrax in humans who interact with these animals [5].  Furthermore, due to the stability 

of the endospores and the deadly consequences of infection, anthrax has been exploited 

as a biological weapon on multiple occasions.  Anthrax spores were used during the 

invasion of Manchuria in the 1940s by the Japanese army [6], in the 2001 United States 

postal attack [7] and to contaminate heroin supplies in the UK in 2009/2010 [8].      

1.1.1 Types of Anthrax 

To date, the Centers for Disease Control and Prevention (CDC) recognizes four types of 

anthrax infections: cutaneous, gastrointestinal, injectional, and inhalational [9].  

Generally, the severity of anthrax infections varies with the type of anthrax. However, all 

have the potential to become systemic if left untreated.  Cutaneous anthrax, which occurs 

when spores get into the skin via lacerations, is the most common form of infection but 
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the least life threatening.  It generally affects the skin and tissue surrounding the primary 

infection site and may be recognized by groups of itchy blisters or bumps, followed by 

the formation of a painless ulcer with black eschar [9,10].  If left untreated, death occurs 

in up to 20% of infected individuals [9].  Gastrointestinal anthrax is extremely rare, but 

nonetheless is caused by the ingestion of raw or undercooked meat from an infected 

animal [11].  This type of anthrax can affect the upper gastrointestinal tract, stomach, and 

intestines.  With proper treatment about 60% of infected individuals survive.  In the 

absence of treatment, death rates are greater than 50% [9].  In 2009, injectional anthrax 

was identified in Northern Europe by confirming B. anthracis soft tissue infections in a 

total of 47 patients who injected heroin contaminated with anthrax spores [8].  Although 

symptoms are similar to those of cutaneous anthrax, the infection generally occurs deeper 

under the skin or in the muscle at the drug injection site [9].  Furthermore, injectional 

anthrax becomes systemic more rapidly, and is extremely difficult to diagnose and treat.  

Lastly, inhalational anthrax occurs when an individual breathes in B. anthracis spores, 

where infection primarily begins within the lower respiratory tract and eventually 

progresses throughout the rest of the body [2,10].  Inhalational anthrax is the most 

threatening form of anthrax, such that if left untreated only about 1 in 10 individuals 

survive.  Even with treatment, only about 50% of patients survive [9].  

1.1.2 Treatment and Prevention  

Immediate treatment is crucial for individuals with anthrax disease, as it greatly increases 

the chance of survival. According to the US Advisory Committee on Immunization 

Practices, 2 months of antimicrobial therapy with FDA-approved drugs such as 

ciprofloxacin, levofloxacin, and doxycycline, in addition to a 3-dose series of Anthrax 

Vaccine Adsorbed (AVA) at time zero, two and four weeks post-diagnosis is 

recommended for post-exposure prophylaxis (PEP) [12,13].   

To date, the FDA has not approved AVA, but the vaccine could be made available under 

a declared emergency.  For patients with systemic anthrax, treatment should consist of 

intravenous multi-antimicrobial therapy until the individual is stable, where at least one 

of the drugs is a protein synthesis inhibitor and another is bactericidal [13].  Furthermore, 

there are two antitoxins available, Raxibacumab and Anthrax Immune Globulin 
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Intravenous (AIGIV) [13], yet to date only Raxibacumab is FDA-approved [14,15].  

Raxibacumab is a monoclonal antibody that inhibits the binding of an exotoxin protein 

known as protective antigen (PA) to host cell receptors, thus preventing the translocation 

of the effector exotoxin proteins lethal factor (LF) and edema factor (EF) into cells. 

AIGIV is polyclonal antiserum that may have direct effects against EF and LF [13].   

1.2 B. anthracis Virulence Factors  

B. anthracis possess two extrachromosomal plamsids, pXO1 and pXO2, which are vital 

for full virulence [10].  The 184.5 kilobase pair (kbp) pXO1 plasmid encodes for three 

genes that comprise anthrax toxin: pag (protective antigen, PA), lef (lethal factor, LF), 

and cya (edema factor, EF) [10,16].  PA combines with either EF or LF to form two 

exotoxins, edema toxin (EdTx) and lethal toxin (LeTx), respectively [10,16].  

Furthermore, the 95 kbp pXO2 plasmid encodes three genes including, capB, capC, and 

capA, all of which are involved in the synthesis of the polyglutamic acid capsule [17].  

The exotoxins, LeTx and EdTx are primarily responsible for inhibiting the host immune 

response against infection, whereas the polyglutamic acid capsule acts as an anti-

phagocytic agent to prevent phagocytosis of vegetative bacteria [10].  Loss of either of 

these extrachromosmal plasmids results in attenuated virulence during infection [10]. 

1.2.1 LeTx  

LeTx is the dominant virulence factor produced during anthrax infection and acts as the 

primary mediator of shock and death of the infected host [18-20].  LeTx is a potent 

inhibitor of a variety of cellular functions within host immune cells, such as 

differentiation, antigen presentation, phagocytosis, and cytokine production [21].  

Collectively, these effects contribute significantly to systemic immune paralysis [21,22].  

Furthermore, LeTx causes toxemia [23-25], manifested by vascular collapse [26], and 

toxic shock [27].  Interestingly, the toxic shock induced by LeTx is distinct from other 

bacterial-induced shock, such that it is not mediated by a cytokine storm [21].   

The cellular binding component of LeTx, PA, recognizes and binds two host receptors: 

tumor endothelial marker 8 (TEM8), also known as anthrax toxin receptor 1 (ANTXR1)  

[28] and capillary morphogenesis gene 2 (CMG2), also known as anthrax toxin receptor 2 



4 

 

(ANTXR2) [29].  Although CMG2 is widely expressed in various tissues, TEM8 is 

mainly expressed in macrophages and endothelial cells [30]. Full-length PA (PA83; 83 

kDa) binds to the cellular receptors through its carboxy-terminal domain and is cleaved 

by a furin-like protease, leaving the 63 kDa (PA63) cleaved form bound to the receptors 

[31].  The short PA fragment (PA20; 20 kDa) detaches from PA63, allowing for 

oligomerization into a heptameric or octameric ring.  This processing and assembly 

enable the binding of LF to the PA complex [31].  Finally, the PA63-LF complexes 

triggers receptor-mediated endocytosis [32] and LF is translocated into the cytosol upon 

endosome acidification [33].  

The effector component of LeTx, LF, is a zinc metalloproteinase and its enzymatic 

activity is crucial for its cytotoxicity [34].  LF targets and deactivates mitogen-activated 

protein kinase kinases (MEKs) 1 to 4, as well as 6 and 7, through N-terminal cleavage 

[35-37].  Consequently, the inactivation of MEKs interferes with the mitogen activated 

protein kinase (MAPK) signaling cascade, which controls various cell functions 

including proliferation, differentiation, development, immune modulation and survival 

[38].  The three functional domains of LF include the N-terminal domain, which binds to 

PA, the substrate-binding domain, which binds MEKs, and the proteolytic C-terminal 

domain, which cleaves target substrates [39].  In summary, LF-mediated MEK cleavage 

appears to play a key role in lethality through inhibiting a broad range host cell functions.    

1.3 MAPK Signaling Cascade  

The MAPK signaling cascade is a vital pathway in eukaryotes required for the activation 

of various transcription factors that are necessary for modulating cellular activities, such 

as proliferation, differentiation, and death [40].  This signaling cascade is a three-tier 

phosphorelay system, which is activated through various stimuli including mitogens, 

stress (e.g. toxins, DNA damage, ionizing radiation, and heat), pro-inflammatory 

cytokines, as well as G-protein coupled receptor agonists [40].  The first tier of the 

signaling cascade includes the MAPK kinase kinases (MEKKs).  To date, there are 20 

MEKKs that are differentially activated by interacting with Ras superfamily GTPases 

and/or protein kinase-dependent phosphorylation downstream of cell surface receptors 

[41].  Following activation, MEKKs phosphorylate and activate the second tier MAPK 
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kinases (MEKs), subsequently leading to the activation of third-tier MAPKs via dual 

phosphorylation of a conserved tripeptide (TxY) within the activation region by activated 

MEKs [40].  The literature recognizes five MAPK families, however three families 

including the extracellular-signal-regulated kinases (ERKs) 1 and 2, the Jun amino-

terminal or the stress-activated protein kinases (JNKs/SAPKs), and the p38 group of 

protein kinases (p38) are of primary focus in the literature [42].    

1.3.1 ERK1/2 

ERK1 and ERK2 (ERK1/2) are related protein kinases that modulate a broad range of 

cellular functions including survival, differentiation, growth, and development through 

the Ras-Raf-MEK-ERK signaling cascade [40].  Various stimuli such as mitogens and 

growth factors are responsible for the activation of the ERK signal transduction pathway 

via the autophosphorylation of receptor tyrosine kinases (RTKs) [43].  This 

autophosphorylation event results in the recruitment of a guanine nucleotide exchange 

factor (GEF), Son of Sevenless (SOS), to convert the small GTPase Ras from the inactive 

state (Ras-GDP) to the active state (Ras-GTP).  Ras-GTP triggers the activation of the 

MEKK Raf, which is a serine/threonine kinase that phosphorylates downsteam MEKs 

including, MEK1 and MEK2 [43].  Upon activation, MEK1/2 dually phosphorylates and 

activates ERK1/2, thus allowing ERK to release from the multi-subunit signaling 

complex in the cytoplasm and enter the nucleus to initiate gene transcription [40]. 

1.3.2 JNKs 

The JNK family, including the JNK1, JNK2, and JNK3 (JNK1/2/3) kinases, plays a vital 

role in apoptotic cell death [44], cytokine production, metabolism, and inflammation 

[45,46].  Initiation of the JNK signaling transduction pathway is largely mediated through 

environmental stressors such as heat, DNA damage, and oxidative stress, as well as 

inflammatory cytokines and growth factors [40].  The upstream mediators responsible for 

the activation of JNK signaling largely include the Rho family of GTPases, primarily Rac 

and CDC42 [47].  Upon activation, MEKKs phosphorylate and activate MEK4 and 

MEK7, which in turn triggers dual phosphorylation of JNK1/2/3 and promote JNK 

nuclear translocation [40].   
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1.3.3 p38 

The family of p38 MAPKs consists of four splice variants p38-α (MAPK14), p38-β 

(MAPK11), p38-γ (MAPK 12), and p38-δ (MAPK13) [40].  Activation of the p38-

signaling cascade is triggered by extracellular stimuli including UV light, heat, osmotic 

shock, pro-inflammatory cytokines [e.g. IL-1 and TNF-α], and growth factors [e.g. 

macrophage-colony stimulating factor (M-CSF)] [48].  Among the p38 family, p38-α and 

p38-β are universally expressed, whereas the expression of p38-γ and p38-δ are tissue 

type-dependent [48].  The entire p38 family contains a threonine-glycine-tyrosine motif 

within their activation segment that is phosphorylated and activated by dual specificity 

kinases, MEK3 and MEK6.  Like the other MEKs, MEK3/6 activation relies on 

phosphorylation by upstream MEKKs, such as MEKK1-4 [40].  p38 activation 

contributes widely to biological functions, including apoptosis, cellular differentiation, 

cell cycle progression, and inflammation [49,50].  In fact, its activation is essential for the 

production of the pro-inflammatory cytokines IL-1β, TNF-α, and IL-6 [51], all of which 

are produced by activated macrophages, which are at the forefront of the immune 

response.  

1.4 TLR signaling  

Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) and are key 

components of innate immunity.  These receptors are responsible for detecting pathogen 

associated molecular patterns (PAMPs) from microbes, as well as danger associated 

molecular patterns (DAMPs) from injured tissue [52].  The first prototypic PRR 

identified was TLR4, which recognizes the Gram-negative bacterial component 

lipopolysaccharide (LPS) [53].  To date, a total of 10 TLRs have been identified in 

humans and 12 in mice [52].  TLR signaling plays a crucial role during immune 

responses by activating various transcription factors, through MAPK-dependent or -

independent pathways, which behave in combination to regulate inflammatory gene 

expression [54,55].  The intracellular Toll-interleukin 1 receptor (TIL1R) domain is 

crucial for TLR signaling transduction by acting as a docking site for TIL1R-containing 

cytoplasmic adaptor proteins, such as the myeloid differentiation primary response gene 

88 (MyD88) [56].  With the exception of TLR3, MyD88 is the primary adaptor for all 
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TLRs.  When TLRs are stimulated by their respective ligands, triggering TIL1R domain 

activation, this activates MyD88, which subsequently leads to IL-1 receptor-associated 

kinase (IRAK) 1/2/4 and TNFR-associated factor  (TRAF) 6 activation.  In turn, 

activation of IRAK and TRAF6 activates the transforming growth factor (TAK1) 

complex, which initiates MAPK and nuclear factor kappa B (NF-κB) signaling via 

phosphorylation [56].   

1.5 LeTx and Immune Suppression  

Immune evasion and/or immunosuppression tactics are crucial for the survival and 

dissemination of various pathogens.  LeTx produced by B. anthracis is highly versatile in 

targeting all MEKs, with the exception of MEK5 [35-37], which leads to subversion of 

key immune signaling pathways necessary for innate and adaptive immune function (Fig 

1.1).  This immune paralysis tactic by LeTx plays a vital role in anthrax pathogenesis 

[57-59], as it promotes host invasion by B. anthracis resulting in acute bacteremia and 

toxemia.     

Since macrophages are the initial antigen-presenting cells (APCs) responsible for the 

phagocytosis and transport of B. anthracis to local lymph nodes where systemic infection 

arises [57], much attention has been placed on LeTx-mediated immune suppression in 

these cells.  Activation of macrophages relies primarily on MAPK signaling and MAPKs 

including p38 and JNKs/SAPKs are coupled to TLRs [57,60].  Activation of these TLR-

coupled MAPKs is crucial for the production of various pro-inflammatory cytokines, 

chemokines, and enzymes [e.g. inducible nitric oxide synthase (iNOS)] [50,61,62].  Not 

surprisingly, the cleavage and subsequent inactivation of MEKs by LeTx deters 

macrophage-mediated inflammation by preventing the production of inflammatory 

proteins such as IL-1β, IL-6, and TNF-α [63-65].  The loss of IL-1β production is of 

particular interest, as IL-1β-/- mice are more susceptible to lethality by anthrax [66].  

Furthermore, LeTx also impairs antigen presentation, the production of reactive oxygen 

species (ROS) such as nitric oxide, and phagocytic ability in macrophages [21,22,57].           

Aside from macrophages, LeTx has also been shown to suppress other innate and 

adaptive immune functions by targeting the MAPK signal transduction pathway in 
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dendritic cells (DCs), neutrophils, B-lymphocytes, and T-lymphocytes. LeTx deters 

immune responses in DCs by impairing cytokine production (TNF-α and IL-6), surface 

activation marker expression (CD40, CD80 and CD86), antigen presentation, 

phagocytosis, and bactericidal activity [21,22,67].  In neutrophils, LeTx primarily 

prevents chemotaxis to the site of infection, likely by impairing their actin-based motility 

[21,68].  Although adaptive immune cells play a much smaller role relative to 

macrophages and DCs in the progression of acute anthrax infection, LeTx also impairs T-

cell activation, chemotaxis, and cytokine responses, as well as B-cell activation, 

proliferation and antibody production, particularly IgM [21,22,57,69].  Collectively, 

LeTx is a potent suppressor of both innate and adaptive immune functions, thus creating 

the ideal environment for B. anthracis survival and dissemination within the infected 

host. 

 

 

 

 

 

 

 

 

 

 

 

 



9 

 

Figure 1.1  LeTx inhibits various cellular functions through MEK inactivation. 

TLRs are activated in response to infection (lightning arrow), thus activating MEKKs. 

However once in the cytoplasm, anthrax lethal factor (LF) cleaves and inhibits all MEKs, 

except for MEK5, preventing down-stream activation of MAPKs, which are essential for 

various cellular functions. 
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1.6 Pyroptosis 

Pyroptosis is a type programmed cell death mediated by caspase-1 and is induced in 

response to microbial infections, such as Salmonella, Legionella, and Shigella, and 

various host factors [70].  Caspase-1 was originally recognized for its proteolytic 

activation of pro-inflammatory cytokines, IL-1β and IL-18, however more recently it is 

characterized as a defining feature of pyroptosis [70].  Pyroptic cell death involves 

rupturing of the cell membrane, which leads to the liberation of pro-inflammatory 

intracellular matter [70,71].  Interestingly, nuclear integrity is maintained during 

pyroptosis relative to apoptotic cell death where nuclear fragmentation occurs[70].  

Pyroptosis can be beneficial or detrimental to the host, either by removing intracellular 

niches of intracellular pathogens [72-75], or by promoting immune evasion/dissemination 

[76-79], respectively.  The pyroptic cell death pathway is initiated by the activation of 

innate immune receptors known as nuclear oligomorization domain and leucine-rich 

repeat receptors (NLRs) [80], which are highly expressed within the cytoplasm of innate 

immune cells such as macrophages. 

1.6.1 NLRs and Pyroptosis 

NLRs are a group of innate intracellular PRRs that respond to pathogenic attack, as well 

as tissue injury [80-83].  NLRs are composed of three core structural domains: the C-

terminus, which contains a leucine-rich repeat (LRR) capable of identifying conserved 

ligands, the central NACHT domain that is key for NLR oligomerization and activation, 

and the N-terminus effector domain [82].  The N-terminus effector domain may consist 

of a pyrin domain (P), a caspase recruitment domain (C), or a baculovirus inhibitor of 

apoptosis protein repeat domain (BIRD) [82].  Although cellular events such as K+ efflux, 

the generation of ROS, and cathepsin B release from lysosomes are implicated in the 

activation of various NLRs[84], none of these events are sufficient to activate the 

receptors, and until recently NLR activation was unclear [85,86].  Current advances 

demonstrated that these receptors are activated by direct interaction with their ligands.  

For example, NLRX1 binds RNA, NOD1 and NOD2 are activated by peptidoglycan (a 

component of bacterial cell walls) fragments, and NLRC4 is activated by flagella [87].  

Following NLR activation, they oligomerize to form the inflammasome, which consists 
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of NLRs, pro-caspase-1, and the adaptor protein apoptosis-associated speck-like 

containing a caspase activation and recruitment domain (ASC) [81-83].  Caspase-1 is 

expressed as an inactive 45-kDa zymogen and activated by an autocatalytic process in the 

inflammasome complex [70,88,89].  Furthermore, activated caspase-1 is required for the 

processing and release of pro-inflammatory cytokines IL-1β and IL-18, as well as 

pyroptic cell death [70].  

To date, there are 22 family members of NLRs in humans, which can be activated by 

numerous microbial and/or viral components [90].  For example, Salmonella enterica 

serovar Typhimurium (S. typhimurium) causes typhoid in humans and NLRC4 plays a 

vital role in resistance during S. typhimurim infection [91,92].  NLRC4 is activated by 

Salmonella flagellins or a type III secretion system component [93,94] in a Salmonella 

Pathogenicity Island (SPI)-I-dependent manner [95].  Furthermore, S. typhimurim 

activates NLRP3 through a SPI-II-dependent mechanism [96].  Though the activation of 

these NLRs by Salmonella is protective to the host during infection [75,92,97-99], it can 

also trigger septic shock [100-102].  In addition to a number of bacterial and viral 

infections that trigger NLR activation, LeTx production by B. anthracis is responsible for 

the activation of NLRP1 [89].   

1.6.2 LeTx and Pyroptosis  

Murine macrophages are divided into two groups based on their sensitivity to LeTx: 

LeTx-sensitive, and LeTx-resistant.  LeTx-sensitive macrophages from Balb/cJ, 

C3H/HeJ, CBA/J, FVB/NJ, and SWR/J, inbred mice succumb to pyroptosis in as little as 

90 minutes [21].  In contrast, LeTx-resistant macrophages from DBA/2J, AKR/J, SJL/J, 

A/J, and C57BL/6J inbred mice undergo slow apoptotic death, likely due to MEK 

inactivation [21].  Studies in these rodents led to the discovery of the LeTx sensitivity 

allele, defined as the NLR pyrin domain–containing protein (NLRP1b; also known as 

NALP1b), located on mouse chromosome 11 [103].  There have been five polymorphic 

NLRP1b alleles discovered in mice to date, including NLRP1b1, NLRP1b2, NLRP1b3, 

NLRP1b4, and NLRP1b5, which precisely associate with LeTx sensitivity [103].  Strains 

with LeTx-susceptible macrophages possess the NLRP1b1 or NLRP1b5 alelle, where 

LeTx-resistant macrophages possess alleles 2, 3 or 4 [103].  While strains harbouring a 
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LeTx-sensitive NLRP1b allele showed increased host protection from B. anthracis 

infection through early detection of LeTx [104], another study showed that activation of 

NLRP1b enhances susceptibility to LeTx [105].  Strikingly, NLRP1b1-deficient mice 

containing NLRP1b1-expressing macrophages are also susceptible to LeTx toxemia [20], 

suggesting that the host is protected by B. anthracis through early detection of LeTx, but 

toxic shock remains inevitable due to NLRP1b1 activation.   

The activation of NLRP1b is caused by LF-dependent cleavage of the N-terminus 

effector domain [106,107].  This proteolysis of NLRP1b is pertinent for inflammasome 

formation, particularly pro-caspase-1 recruitment [107].  The processing of pro-caspase-1 

into highly active caspase-1 is accomplished through the inflammasome platform [88].  

While the inductive mechanism of pyroptosis through caspase-1 is not completely 

understood, it is central for LeTx-induced pyroptosis [21].  Casapse-1 is also responsible 

for the proteolytic activation of pro-inflammatory cytokines, IL-1β and IL-18.  During 

pyroptosis, caspase-1 induces plasma membrane pore formation that disrupts cellular ion 

gradients.  This leads to increased osmotic pressure, promoting water influx, swelling of 

the cell and inevitable cell lysis, causing the spill of intracellular contents into the 

extracellular environment [71].  Unlike apoptosis, the nuclear integrity of the cell remains 

intact during pyroptic cell death [70].  Aside from NLRP1b and caspase-1 activation, 

other cellular events including calcium influx [108], early mitochondrial dysfunction 

[109,110], and ROS generation [111] are essential for LeTx-induced pyroptosis.  

Although the precise molecular mechanisms of LeTx-induced pyroptosis remain unclear, 

we linked the three mitochondrial death genes BCL2/adenovirus E1B 19 kDa-interacting 

protein 3 (BNIP3), BNIP3-like (BNIP3L), and metastatic lymph node 64 protein 

(MLN64) to NLRP1b/caspase-1-dependent mitochondrial dysfunction [110,112].   

1.6.3 Mitochondrial Death Genes 

We and others have recognized the central role of mitochondrial impairment in LeTx-

induced cell death [109,110,112].  LeTx was shown to induce mitochondrial dysfunction 

in murine J774.1 macrophages, manifested as a decline in mitochondrial membrane 

potential and succinate dehydrogenase (SDH) activity, as well as mitochondrial swelling 

[109].  Since proteasome activity is vital for caspase-1-mediated pyroptic cell death [113-
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116], inhibiting proteasome activity prevented LeTx-induced mitochondrial dysfunction 

in these macrophages [109].  Furthermore, our lab previously associated the 

mitochondrial death genes, BNIP3, BNIP3L, and MLN64, with caspase-1-mediated LeTx-

induced mitochondrial dysfunction [110,112].  In LeTx-susceptible macrophages, 

mitochondrial dysfunction included cholesterol enrichment, a rapid increase in 

mitochondrial membrane potential followed by overall hypo-polarization, ROS 

generation, and depletion of free glutathione (GSH) [112].  The precise mechanism of 

BNIP3/BNIP3L in disrupting mitochondrial function is not known; however they are 

involved in ROS generation [110,117], whereas MLN64 is implicated in cholesterol 

accumulation and subsequent GSH depletion [112].           

The BH (Bcl-2 homology) 3-only members of the Bcl-2 protein family contain the 

BNIP3 subfamily that includes BNIP3 and BNIP3L proteins [117].  BNIP3, formerly 

named NIP3, was the first member of the BNIP3 subfamily of proteins, and was 

discovered via a yeast two-hybrid screen [118].  In response to cellular stress, these 

proteins homodimerize within the outer mitochondrial membrane, thus initiating 

programmed cell death (e.g. apoptosis) or autophagy [117].  The BH3 or the C-terminal 

transmembrane (TM) domains are both responsible for regulating BNIP3/BNIP3L-

dependent cell death [117].  These BH3-only proteins possess a BH3 interacting domain 

(BID), which binds through its BH3 domain and activates the pro-apoptotic factors BAX 

and BAK [119].  As a result, BNIP3/BNIP3L form oligomer complexes that localize to 

the mitochondrial membrane and consequently lead to the release of cytochrome C into 

the cytoplasm [119].  The C-terminal TM domain mainly plays a role in stabilizing dimer 

formation and targeting BNIP3/BNIPL to the mitochondria to promote cell death activity 

[120].  Mutational analysis of the TM domain revealed that stable dimerization is not 

essential for inducing BNIP3 cell death activity [121].  However, loss of targeting BNIP3 

to the mitochondria prevented mitochondrial permeability transition and ROS generation, 

which are key events necessary for inducing cell death [122].  The BNIP3 N-terminal 

domain has been shown to integrate into the mitochondrial membrane through its N-

terminal TM regions [118].  The N-terminus of BNIP3 comprises a conserved cysteine 

residue that is oriented towards the cytosol making it susceptible to oxidation [123].  As 

such, under increased oxidative stress, the cysteine residue is oxidized, thus promoting 
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homodimerization and pro-death activity [124].  Not surprisingly, mutating the cysteine 

residue to alanine resulted in decreased homodimerization and cell death activity [125]. 

During cellular stress BNIP3 appears to function as a redox sensor and promotes cell 

death through cooperation of the N-terminal and C-terminal TM domain [125].   

MLN64, also known as StAR-related lipid transfer domain  (StARD) protein 3, belongs 

to a family of lipid trafficking proteins.  To date, there are 15 known StARD-containing 

proteins in mammals, and among them MLN64 is expressed in all tissues [126,127].  The 

MLN64 protein is responsible for cholesterol transfer from the endolysosomal membrane 

to the mitochondrial membrane [128-130].  It primarily locates to the membranes of late 

endosomes via the N-terminal transmembrane domain termed MENTAL (MLN64 N-

terminal) [128,131], whereas the C-terminal StARD signals for mitochondrial 

translocation [130].  During transport, the MENTAL domain seizes endolysomal 

cholesterol followed by transfer of the cholesterol to the mitochondria through interaction 

with the StARD/translocation protein (TSPO; 18 kDa) on the outer mitochondrial 

membrane [132,133].  Not surprisingly, increased loads and subsequent accumulation of 

mitochondrial cholesterol mediated by MLN64 has been strongly linked to cell death 

[134-136].   

1.7 Cellular Adaptation  

Macrophages are at the forefront of innate immunity and they encounter a variety of 

pathogens.  Consequently, they frequently adapt to various stressors in order to preserve 

vigilance or moderate overwhelming inflammatory responses.  For example, 

macrophages pre-exposed to a sub-lethal dose of endotoxins, such as lipopolysaccharides, 

become tolerant to subsequent challenges of the endotoxins [137,138].  Likewise, we and 

others showed that RAW264.7 macrophages pre-exposed to a sub-lethal dose of LeTx 

become refractory to subsequent high cytolytic doses of LeTx for 4-5 days 

[110,112,139].  This phenomenon is termed toxin-induced resistance (TIR).  We further 

demonstrated that a small number of these TIR cells (~2 %) remain resistant for up to 5-6 

weeks (long-term TIR).  It was originally thought that these long-term TIR cells 

prevented the translocation of LF into the cytosol.  However, MEK cleavage by LF was 

still noted, suggesting translocation into the cytosol remained unaffected [110].  
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Furthermore, like RAW 264.7 wild-type macrophages, long-term TIR macrophages 

showed typical NLRP1b and caspase-1 activation [110].  Overall, these findings suggest 

that there were no defects in inflammasome activation, leaving the mechanism of LeTx 

resistance unclear.  

While inflammasome activation was normal in long-term TIR, we established key events 

involved in the mediation of long-term TIR (Fig. 1.2).  Genome-wide transcript analysis 

of a single long-term TIR clone implicated two closely related pro-apoptotic genes, 

BNIP3 and BNIP3L, in TIR [110].  Relative to wild-type, these long-term TIR 

macrophages down-regulate BNIP3 and BNIP3L at both mRNA and protein levels [110].  

Aside from the requirement for a fully functional inflammasome, and the up-regulation of 

BNIP3 and BNIP3L, mitochondrial dysfunction is also an essential component to the 

LeTx-induced pyroptotic pathway.  We demonstrated that up-regulation of MLN64 is 

required for mitochondrial dysfunction including, cholesterol enrichment, membrane 

hyperpolarization, generation of reactive oxygen species (ROS), and depletion of GSH 

[112].  However, long-term TIR macrophages showed decreased expression of MLN64 

and therefore remained resistant to NLRP1b/caspase-1-induced mitochondrial 

dysfunction [112].  
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Figure 1.2  Key events involved in sensitivity and long-term resistance to LeTx-

induced pyroptosis in macrophages. 

High doses of anthrax lethal factor (LF) cleave and activate (lightning arrow) NLRP1b, 

triggering casapse-1-mediated mitochondrial dysfunction and pyroptosis via BNIP3, 

BNIP3L, and MLN64 expression.  In contrast, sub-lethal doses of LF trigger down-

regulation of BNIP3, BNIP3L, and MLN64 expression, inducing long-term TIR.  
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1.8 Epigenetics  

Epigenetics was a term formulated by the scientist Conrad Waddington [140] and is a 

cellular mechanism that inheritably regulates gene expression or cellular phenotype 

without changing DNA nucleotide sequences in response to developmental and 

environmental signals [141].  Two of the most studied epigenetic mechanisms include 

DNA methylation and histone modifications.  Although various types of histone 

modifications such as, phosphorylation, ubiquitination, SUMOylation and ADP-

ribosylation have been examined, histone phosphorylation, methylation and acetylation 

often play a key role in transcriptional regulation [142].  

1.8.1 Histone Modifications and Gene Expression  

Histones are nuclear proteins that are responsible for the packaging and structural 

organization of eukaryotic DNA into fundamental chromatin units known as nucleosomes 

[143].  The nucleosome consists of a 147 base-pair DNA segment wrapped 1.65 times 

around an eight-histone protein core [144].  The histone core consists of two H2A-H2B 

dimers and a single H3, H4 tetramer [143].  Higher-level organization of nucleosomes is 

essential for the compaction of DNA in the nucleus.  Epigenetic modifications of the 

four-histone proteins, regulates the availability of DNA for replication, repair, and 

transcription [145,146].  These modifications include, methylation, acetylation, 

SUMOylation, ADP-ribosylation, ubiquitination, and phosphorylation [143].  Most 

histone modifications occur at the N-terminal tails, which are rich in positively charged 

lysine residues [146].  The negatively charged DNA associates tightly with the positively 

charged lysine residues, but modifications such as acetylation neutralize these charges 

allowing the chromatin to "open" and promote gene transcription [147].  Various 

combinations of histone modifications lead to transcriptional activation or repression 

[148].  For example histone acetylation and deacetylation promote transcriptional 

activation and silencing, respectively, whereas histone methylation can induce either 

activation or repression.  Transcriptional activation results from mono-methylation of 

histone H4 lysines 20 or 5, methylation of histone H3 lysines 4, 36, or 79, as well as 

acetylation at histone H3 lysines 9 or 14; whereas inactivation results from di- or tri-

methylation of histone H3 lysines 9 or 27 [146,149].    
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1.8.1.1 Histone Acetylation and Gene Expression 

Two families with antagonistic functions, histone acetyltransferases (HATs) and histone 

deacetylases (HDACs) are responsible for modifying levels of histone acetylation, which 

regulates gene expression (Fig. 1.3).  Histone acetylation typically plays a role in the 

activation of gene expression [150-152].  Acetylation at N-terminal lysine residues 

decreases the association with DNA, which allows transcription factors to access the 

promoter region of genes [147].  Acetylation of specific lysine residues also forms 

docking sites on modified nucleosomes for specific transcriptional regulators that contain 

recognition motifs such as bromodomains [153,154].  HATs are the enzymes responsible 

for catalyzing acetylation by transferring acetyl groups from acetyl CoA to the histone 

tails, thus inducing an open chromatin confirmation and facilitating gene transcription 

[155].  The HAT family can be categorized into two classes: type A HATs, which are 

primarily located in the nucleus and responsible for transcriptional activation via 

acetylation of nucleosomal histones, and type B HATs, which are localized within the 

cytoplasm where they acetylate recently synthesized histones prior to chromatin assembly 

[156].  The majority of transcriptional regulators with acetylation activity belongs to the 

type A HATs and includes, CREB (cAMP response element-binding protein)-binding 

protein (CBP), E1a-binding protein p300 (p300), P300/CBP-associated factor (PCAF), 

Gcn5, and TAFII250 subunit of transcription factor IID (TFIID), to name a few [156].  To 

date, Hat1p is one of few type B HATs to be identified [156].  A 55-kDa polypeptide 

(p55) was the first discovered type A HAT from Tetrahymena thermophile and is 

analogous to Gcn5, a transcriptional co-activator from budding yeast [157].  These type 

A HATs preferentially target histone H3 in vitro, however they are also capable of 

acetylating histone H2B and H4 [156].     

In contrast to HATs, HDACs are a family of enzymes that deacetylate histones.  The 

removal of acetyl groups from the histone tails, leads to tight re-association between the 

positively charged lysine residues and negatively charged DNA; this reduces access of 

transcription factors to gene promoter regions, which results in transcriptional repression 

[150].  In addition, loss of acetylation can reduce the association of transcription factors, 

which specifically bind to acetylated lysine residues to promote transcription [153,154].  
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To date, there are a total of 18 HDACs belonging to two families: the zinc-dependent 

family, which includes class I, II and IV, and the nicotinamide adenine dinucleotide 

(NAD)-dependent family, which includes class III [150].  Class I HDACs include 

HDAC1, 2, 3, and 8, which are ubiquitously expressed within the nucleus, whereas class 

II HDACs include HDAC4, 5, 6, 7, 9, and 10, which are primarily located in the 

cytoplasm, however they can move back and forth between the nucleus [150].  Unlike 

class I HDACs, class II HDACs are not widely distributed among cell types and are 

likely implicated in cell differentiation [158,159].  HDACs alone do not silence gene 

expression, but they associate with other transcriptional repressors to form repressor 

complexes [160].  For example, it was reported that DNA methyltransferase (DNMT) 1 

and HDACs co-operate in transcriptional repression [161,162].   

1.8.1.1.1 HDAC8 

Unlike other class I HDACs, HDAC8, which is ~42 kDa in size, localizes in both the 

cytoplasm and the nucleus, thus in part making it the most atypical protein in this class 

[158,163-165].  In vitro, HDAC8 has shown deacetylase activity towards all core 

histones [166-168].  One specific example includes its activity towards histone H4 lysine 

16 (H4K16) [164].  Despite such findings, HDAC8’s activity towards specific histones in 

vivo remain unclear [164].  In contrast, HDAC8 has various non-histone substrates.  For 

example, HDAC8 has been shown to interact with PP1 phosphatase, CBP, heat shock 

proteins, heat shock protein 70 binding protein, cofilin and α-actin, and the human 

ortholog of the yeast ever-shorter telomeres 1B [163,169-171].  Nevertheless, the role of 

these HDAC8 interactions in cellular functions and TIR are not known.  In addition to 

these substrates, HDAC8 has also been shown to deacetylate the C-terminal end of the 

transcription factor, p53 [164].  In line with these findings, a recent study demonstrated 

that HDAC8 suppressed p53 expression in hepatocellular carcinoma cell lines, likely 

through deacetylation of p53 at lysine382 [172].  Another study also demonstrated that 

the inv(16) fusion protein, which promotes pre-leukemic populations, inhibits acetylation 

of p53 by forming a complex with p53 and HDAC8 [173].  While, these data suggest a 

key role for HDAC8 in cancer, the role and mechanisms of HDAC8 in infection and 

immunity have not yet been examined.   
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1.8.1.2 LeTx and Histone Modifications  

Epigenetic mechanisms controlling gene expression are exploited by a variety of bacterial 

products, which often act by interfering with signaling transduction pathways, as well as 

directly interacting in the nucleus [174].  To date, most of the histone modifications 

stimulated by bacterial infection include histone acetylation/deacetylation, and histone 

phosphorylation/dephosphorylation [174].  Strikingly, the production of LeTx by B. 

anthracis induces dynamic histone modifications in host cells suggesting a possible 

mechanism for toxin resistance and immunosuppression. 

The ability of B. anthracis to circumvent the host immune response at least in part by 

LeTx-mediated MEK inhibition is remarkable.  However, prior to a study conducted by 

Raymond et al [175], the mechanism that linked the MAPK signaling cascade inhibition 

to immune gene silencing was unclear.  They showed that LeTx suppressed the 

expression of a neutrophil chemoattractant, IL-8 (CXCL8), in epithelial cells through 

blocking p38/ERK-dependent phosphorylation of histone H3 serine 10 (H3S10), which 

prevented recruitment of NF-κβ to the IL-8 and KC (keratinocyte chemoattractant) 

promoters [175].  Furthermore, decreased levels of acetylation at H3K14 (H3K14Ac) 

were also noted within the promoters of KC and IL-8, which is associated with a 

transcription-permissive state [175].     

In addition to immune suppression, LeTx also induces cell death within macrophages, 

which are essential players in the first-line of defense against pathogens.  Interestingly, a 

Jumonji C family histone H3 lysine 27 (H3K27) demethylase, Jmjd3, was up-regulated in 

LeTx resistant RAW 264.7 macrophages in response to LPS [176].  Since, Jmjd3 is 

known to play a vital role in the inflammatory response by contributing to macrophage 

differentiation, its expression may be crucial to the recovery of toxin exposed 

macrophages [176].  Nevertheless, this study failed to show the up-regulation of Jmjd3 in 

response to LeTx alone, suggesting the outcome was solely LPS-induced.  As such, 

further study is required to examine the role of JMJD3-dependent histone demethylation 

in LeTx-resistance.   
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As previously mentioned macrophages exposed to sub-lethal doses of LeTx become 

refractory to subsequent cytotoxic doses, termed TIR [110,112,139].  These TIR 

macrophages maintain this phenotype throughout multiple cycles of cell division. This 

suggested the possibility of epigenetic reprogramming, which we have examined with a 

specific focus on histone modifications.  Indeed, we showed that HDAC8 expression was 

positively correlated with long-term TIR [177].  Furthermore, when the H3K27 HATs, 

CBP and p300, were knocked-down in RAW 264.7 macrophages and mouse primary 

bone marrow derived macrophages (BMDMs), they mimicked the TIR phenotype [177].  

Overall, this study revealed a strong correlation with histone deacetylation in maintaining 

long-term TIR.   
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Figure 1.3  Histone acetylation levels can mediate gene expression.  

Histone acetyltransferases (HATs) acetylate histones, reducing association with DNA and 

inducing an open chromatin confirmation to allow for access of transcriptional 

machinery, and the binding of bromodomains (BRD) to acetylated histone residues, thus 

promoting gene transcription.  In contrast, Histone deacetylases (HDACs) deacetylate 

histones, triggering tight association with DNA along with repressor complex formation, 

thus preventing access of transcriptional machinery and gene transcription.      
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1.9 Rationale, Hypothesis, and Objectives  
RAW 264.7 macrophages are susceptible to LeTx-induced pyroptosis.  However, RAW 

264.7 long-term TIR macrophages down-regulated expression of the three mitochondrial 

death genes, BNIP3, BNIP3L, and MLN64 [110,112], which conferred resistance to 

pyroptosis.  In addition to inducing pyroptosis, LeTx also causes immune suppression in 

macrophages, mainly by preventing the expression of pro-inflammatory cytokine genes.  

Interestingly, a gene-silencing epigenetic regulator, HDAC8, was up-regulated in long-

term TIR [177].  Since histone modifications are correlated to LeTx toxicity, I 

hypothesize that HDAC8 plays a fundamental role in the silencing of cytokine and 

mitochondrial death genes, leading to immune suppression and resistance to pyroptosis, 

respectively.  Four aims were proposed to address this hypothesis: 

1. Determine whether HDAC8 mediates resistance to LeTx-induced pyroptosis. 

2. Identify the mechanism by which HDAC8 silences mitochondrial death gene 

expression.  

3. Determine whether HDAC8 plays a role in LeTx immune suppression. 

4. Examine the role of HDAC8 in LeTx-mediated cytokine gene silencing. 
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CHAPTER 2 

2 MATERIALS AND METHODS 

2.1 Cell culture and reagents  

RAW 264.7 murine macrophages were cultured in DMEM containing 8% heat-

inactivated fetal bovine serum [FBS (Sigma-Aldrich)], 10 mM MEM non-essential amino 

acid solution, 100 U/mL penicillin G sodium, 100 µg/mL streptomycin sulfate, and 1 mM 

sodium pyruvate.  The generation of primary bone marrow-derived macrophages 

(BMDMs) was performed by Dr. Soon-Duck Ha.  Briefly, bone marrow-derived cells 

(BMCs) were flushed out of the leg bones (femurs and tibia) of 129/S1/Svlmj mice using 

a 25.5-gauge needle and 1× phosphate buffered saline (PBS).  The isolated BMCs were 

then cultured in c-RPMI (Sigma-Aldrich), containing 10% heat-inactivated FBS (Sigma-

Aldrich), 5 mM MEM non-essential amino acids solution, 1000 U/mL penicillin G 

sodium, 10 mg/mL streptomycin sulfate, 5 mM sodium pyruvate, and 20 ng/mL 

macrophage-colony stimulatory factor (M-CSF).  The culture medium was replaced 

every 2 days and after 7 days of culture ~30 million BMDMs were generated from a 

single mouse.  All cells were grown at 37°C in a humidified atomosphere with 5% CO2. 

Long-term TIR cells were generated as previously described [110].  Briefly, RAW 264.7 

macrophages were treated with a cytolytic dose of LeTx (250 ng/mL LF and 500 ng/mL 

PA) for 5 h and surviving cells were plated in fresh culture medium.  After two weeks, 

surviving clones were individually picked and plated on a 96-well plate.  Each clone was 

tested for LeTx sensitivity and resistant clones were pooled and propagated. Short-term 

TIR cells were generated as previously described [110].  Briefly, RAW 264.7 

macrophages were treated with a sub-lethal dose of LeTx (100 ng/mL LF and 100 ng/mL 

PA) for 5 h and then supplemented with fresh media overnight.  The next day surviving 

cells were pooled and plated onto new culture plates with fresh media.  BMDM-TIR cells 

were generated by Dr. Soon-Duck Ha as previously described [177].  Briefly, BMDMs 

were treated with a sub-lethal dose of LeTx (100 ng/mL LF and 100 ng/mL PA) for 24 h 

and surviving cells were plated onto new culture dishes with fresh media. 
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Protective antigen (PA), lethal factor (LF) and Escherichia coli derived LPS were 

purchased from List Biological Laboratories Inc. (California USA).  The following is a 

list of antibodies (Abs) used in this study.  Ab against H3K27Ac was purchased from 

Active Motif (California, USA).  Abs for pan H3 and actin were purchased from Bio 

Vision (California, USA) and Abcam Inc. (Ontario, Canada), respectively. Anti-HDAC8 

and anti-HDAC3 were purchased from Epigentek.  Abs against pro-IL-1β was received 

from Dr. Aurigemma (NCI-FCRDC, Frederick, MD) and anti-EGFP was purchased from 

Clontech Laboratories Inc. (California, USA).  Abs against RNA polymerase II-phospho 

S5 and RNA polymerase were purchased from Abcam Inc. (Ontario, Canada) and Active 

Motif (California, USA), respectively.  Rabbit IgG was purchased from Abcam (Ontario, 

Canada).  Please refer to table 2.1 for more detailed information on Abs used in this 

study.  The following is the list of chemical inhibitors used in this study: epigenetic; 

panobinostat (LBH-589; Selleck), mocetinostat (Selleck), PCI-34051 (Cayman 

Chemical), azacitidine (Sigma-Aldrich) and CAY10603 (Cayman Chemical), and non-

epigenetic, AC-YVAD-CHO (Calbiochem). Predesigned small interfering RNA (siRNA) 

oligonucleotides directed against HDAC8 (number SI1063902) were purchased from 

Qiagen and siRNAs targeting mouse caspase-1 were purchased from Life Technologies 

(Ambion).  

2.1.1 Stable isotope labeling by amino acids in cell culture 

RAW 264.7 macrophages were cultured for 7 days in SILAC DMEM (Sigma-Aldrich; 

product #D9443) containing 8% dialyzed heat-inactivated FBS (Sigma Aldrich), 10 mM 

MEM non-essential amino acid solution, 100 U/mL penicillin G sodium, 100 µg/mL 

streptomycin sulfate, 1 mM sodium pyruvate, 0.802 mM L-leucine (Sigma-Aldrich; 

product #L8912), 0.398 mM L-arginine (Sigma-Aldrich; product #A6969), and 0.798 

mM L-lysine (Sigma-Aldrich; prodyct #L8662). The Lys4 (4,4,5,5-D4) isotope 

(Cambridge Isotopes, DLM-2640) was used for TIR cells (0.798 mM).  Per 500 mL of 

SILAC DMEM, 40 mL of heat-inactivated FBS was dialyzed using cellulose membrane 

dialysis tubing with a molecular weight cut-off of 12 kDa (Sigma-Aldrich; product 

#D9277) in 4L of buffer (0.15M NaCl).  The dialysis buffer was changed every 30 

minutes for the first 3 hours and then left for an additional 9 hours.  The dialyzed heat-
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inactivated FBS was then sterile-filtered using vacuum filtration (VWR; catalog # 29552-

016) and added to SILAC DMEM.  RAW 264.7 Short-term TIR cells were generated as 

described in section 2.1, however cells were labeled in respective SILAC DMEM for 5 

days prior to the administration of LeTx.      

2.1.2 Inhibitor treatment  

For treatments with chemical inhibitors, stock solutions of panobinostat as a histone 

deacetylase inhibitor (HDACi), mocetinostat as an HDACi for HDACs 1, 2, 3 and 11, 

PCI-34051 as a selective HDAC8 inhibitor, CAY10603 as a selective HDAC6 inhibitor, 

azacitidine as a DNA methyltransferase inhibitor (DNMTi), and AC-YVAD-CHO as a 

caspase-1-inhibitor were dissolved in DMSO.  The macrophages were incubated with 

respective inhibitors at the indicated concentration and time as described in Figure 

legends.  Please see table 2.2 for more information on inhibitors used in this study. 

Table 2.1  List of antibodies (Abs)   

Ab Company Product 
Number 

Host 
(Isotype) 

Clonality Working 
Dilution 

Amount/
ChIP 

Actin Abcam ab3280 Mouse 
(IgG1) 

monoclonal 1:500  

eGFP Clontech 632380 Mouse 
(IgG2a) 

monoclonal 1:1000  

H3 Bio Vision 3623 Rabbit polyclonal 1:1000  
H3K27Ac Active 

Motif 
39135 Rabbit 

(serum) 
polyclonal 1:5000 3 µL 

HDAC3 Epigentek A-4003 Mouse 
(IgG) 

monoclonal  6 µg 

HDAC8 Epigentek A-4008 Mouse 
(IgG) 

monoclonal 1:500 6 µg 

IgG Abcam ab46540 Rabbit 
(IgG) 

polyclonal  1/4/6 µg 

Pro-IL-1β Gift from 
Dr. 

Aurigemma 

   1:1000  
 

Pol II Active 
Motif 

39097 Mouse 
(IgG) 

monoclonal  1 µg 

Pol II 
phospho 

S5 

Abcam ab5131 Rabbit 
(IgG) 

polyclonal  4 µg 
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Table 2.2  List of inhibitors  

Inhibitor  Company Product 
Number 

Stock 
Concentration 

Storage 
Conditions 

AC-YVAD-CHO Calbiochem 400010 50 mM (DMSO) -20°C 
Azacytidine Sigma-Aldrich A2385 20 mM (DMSO) -20°C 
CAY10603 Cayman Chemical 13146 2 mM (DMSO) -20°C 
Mocetinostat Selleck S1122 50 mM (DMSO) -20°C 
Panobinostat Selleck S1030 50 mM (DMSO) -20°C 
PCI-34051 Cayman Chemical 10444 5 mM (DMSO) -20°C 
 

2.2 Cell transfection  

Transfection of RAW 264.7 macrophages and primary mouse BMDMs with siRNAs and 

the pEGFP-HDAC8 plasmid was performed using the Lipofectamine RNAi Max kit and 

Lipofectamine 2000 reagent (Invitrogen™), respectively, according to the manufacturer’s 

instructions.  5.0×105 RAW 264.7 macrophages or 2.5×105 BMDMs were seeded on 6-

well plates 24 hours prior to transfection.  100 pmol for RAW264.7 cells or 150 pmol for 

BMDMs of siRNAs in RNAi Max reagent were used for transfection for a total of 40 

hours, unless otherwise indicated in the figure legends.  Total RNAs were collected from 

2×106 cells and mRNA expression levels were analyzed by quantitative polymerase chain 

reaction (qPCR).  Primers used for qPCR are listed in Table 2.3.  Control pEFP or 

pEGFP-HDAC8 plasmids were previously generated by Dr. Soon-Duck Ha.  Briefly, 

Full-length mouse HDAC8 cDNA (NM 027382) was amplified from a cDNA library by 

PCR using primers (forward; 5′-TTGCGAATCTGATGGAGATGCCAGAGGAACCC-

3′, reverse; 5′-TTGCGGATCCCGGACCACATGCTTCAGATTCCC-3′) and cloned into 

the pEGFP-N1 vector using EcoR I and BamH I restriction enzymes.  Dr. Soon-Duck Ha 

then stably transfected RAW264.7 cells with 4 µg of pEGFP or 4 µg of pEGFP-HDAC8 

using Lipofectamine 2000 (Invitrogen) as described by the manufacturer’s protocol.  

Stably transfected cells were selected in the presence of G418 (500 µg/ml) antibiotics for 

1 week and surviving cells were pooled and further propagated under G418 selection for 

an additional week.   

2.3 Measurement of cell viability  

1.5×105 RAW 264.7 macrophages or 0.75×105 primary BMDMs were cultured in the 
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presence or absence of LeTx in a 96-well plate for 5 hours, and 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) was added at a final concentration of 1 

mg/mL.  After incubating at 37 °C for an additional 3 hours, culture medium was 

carefully aspirated, and 100 µL of dimethyl sulfoxide (DMSO) was added to dissolve the 

crystals.  Optical densities of the wells were analyzed using an automatic ELISA plate 

reader (Bio-Rad) at a wavelength of 570 nm.  The percentage of cell survival was 

estimated based on a standard curve generated from a known number of cells and their 

respective optical density (cell number versus optical density at 570 nm).     

2.4 Lysate preparation and Western blot analysis 

After cells were cultured for the indicated times in the presence or absence of LeTx, 

inhibitors or siRNAs, 3×106 cells were collected and lysed in 150 µL of ice-cold cell lysis 

buffer (20 mM MOPS, 2 mM EGTA, 5 mM EDTA, 1 mM Na3VO4, 40 mM β-

glycerophosphate, 30 mM sodium fluoride, and 20 mM sodium pyrophosphate, pH 7.2) 

containing 1% Triton X-100, and 1/8 of a cOmplete EDTA-free protease inhibitor 

cocktail tablet (Roche Applied Science; product #11873580001).  Cell lysates were 

incubated on ice for 10 minutes and then centrifuged at 16,100 ×g for 10 min at 4°C.  

These extracts were run on 12.5% SDS gels, followed by transfer onto 0.2 µM 

nitrocellulose membranes (Bio-Rad).  Membranes were subsequently blocked at room 

temperature (RT) for 1 hour with 5% (w/v) skim milk.  Various H3, HDAC8, IL-1β, 

EGFP and actin Abs were used at dilutions ranging from 1:500-1:5000 (see Table 2.1 for 

working dilutions) and incubated overnight at room temperature.  After washing 3 times 

for 10 minutes at RT with TTBS buffer [Tris-buffered saline (50 mM Tris, 150 mM 

NaCl, pH 7.6) containing 0.05% Tween 20], the secondary antibody was applied at a 

1:5000 dilution and incubated for 60 min at RT.  The membranes were then washed 3 

times for 10 minutes with TTBS and developed using the Enhanced Chemiluminescent 

Detection reagent (Thermo scientific).  The NIH image J program was used to analyze 

band intensity as indicated in the Figure legends. 
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2.5 Histone purification 

SILAC treated samples were combined in a 1:1 ratio (1.5×107 cells per sample) and 

histones were acid extracted with 150 µL of 0.25 M HCl overnight with rotation at 4°C.  

Samples were then centrifuged at 20, 800 ×g for 30 min and supernatants containing the 

histones were collected.  Supernatants were neutralized with 15 µL of 2.5 M NaOH.  The 

extracted histones (35 µL) were separated on 12.5 % SDS gels at a voltage of 110V for 

1.5 hours.  The gel was then stained with Brilliant Blue-R concentrate electrophoresis 

reagent (Sigma-Aldrich).  Briefly, Brilliant Blue-R solution was added to a volume just 

enough to cover the gel and incubated with shaking for 2 hours.  The gel was then 

destained in destaining solution (45:10:45; methanol: acetic acid: ddH2O) overnight, and 

for the first 3 hours the destaining solution was changed every 30 minutes.  Gels were 

then stored at 4°C in 5% acetic acid.   

2.6 Digestion of histone H3 

In-gel digestion of histone H3 (~17 kDa) was conducted using the Endoproteinase Arg-C 

(Roche, Cat No. 11370529001).  Digestion was carried out over four phases and all 

incubations are at RT, unless stated otherwise.  For the wash phase, two histone H3 gel 

bands cut into cubes were incubated in 200 µL of ddH2O for 15 minutes, followed by 

incubation with 100 µL of 50/50 acetonitrile (ACN)/ddH2O for 20 minutes (repeat 3×), 

incubation with 100 µL ACN for 5 minutes, and incubation with 100 µL of 100 mM 

NH4HCO3 for 5 minutes plus the addition of 100 µL ACN to make a 1:1 ratio for 15 

minutes.  The gel pieces were then dried in a speed vacuum for ~ 2 hours.  For the 

reduction and alkylation phase, gel pieces were incubated in a water bath at 56°C for 1 

hour with 100 µL of 10 mM Dithiothreitol (DTT)/100 mM NH4HCO3 and the solution 

was discarded.  Next, the gel pieces were incubated in the dark for 45 minutes in 100 µL 

of 5 mM iodoacetamide/100 mM NH4HCO3.  The samples were then washed with 100 

µL of 100 mM NH4HCO3 for 5 minutes, followed by incubation with 100 µL 50/50 

ACN/ddH2O for 15 minutes, incubation with 100 µL of ACN for 5 minutes, and 

incubation with 100 µL of 100 mM NH4HCO3 for 5 minutes plus the addition of 100 µL 

of ACN to make a 1:1 ratio for 15 minutes.  Again, gel pieces were dried in a speed 

vacuum.  For the digestion phase, the gel pieces were dissolved in 100 µL digestion 
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buffer (100 mM Tris/HCl, 10 mM CaCl2, pH 7.6), 10 µL of activation solution (50 mM 

DTT, 5 mM EDTA), and 5 µL of endoproteinase Arg-C (50 mM Tris/HCl buffer, 10 mM 

CaCl2, 5 mM EDTA, pH 8.0), creating the digestion mixture (90 mM Tris/HCl buffer, 8.5 

mM CaCl2, 5mM DTT, 0.5 mM EDTA, pH 7.6).  Digestion was carried out at 37 °C for 

18 hrs.  Following digestion, the supernatant was set aside (tube B) and the extraction of 

the histone H3 peptides phase was performed as follows. 30 µL of 25 mM NH4HCO3 was 

added to the gel pieces (tube A) and incubated for 15 minutes, with sonication 2× for 3 

minutes in an ice-filled sonication water bath.  Next, 30 µL of ACN was added to tube A 

to make a 1:1 solution of ACN: NH4HCO3 and incubated for 15 minutes.  The 

Supernatant from tube A was collected and combined with the supernatant in tube B.  

The gel pieces in tube A were then incubated with 30 µL of 5% formic acid for 15 

minutes, plus the same amount of ACN for an additional 15 minutes to make a 1:1 ratio 

of formic acid:ACN, and then supernatants were collected and combined with tube B.  

This step was then repeated one more time.  The extracted peptide solution in tube B was 

then dried in a speed vacuum for 4 hours.  At this stage samples were given to either Drs. 

Huadong Liu or Kyle Biggar in the Dr. S. Li Lab (Biochemistry, UWO) for selected 

reaction monitoring mass spectrometry analysis.   

2.7 Selected reaction monitoring mass spectrometry 

The extracted histone H3 peptide was resuspended in 30 uL of buffer containing 95% 

ddH2O, 5% ACN and 0.1% formic acid. 3ul was injected into the LC-Mass Spectrometer.  

The peptides were analyzed by positive ESI-LC-MS/MS on a triple quadrupole (Q3 

linear ion trap) mass spectrometer (QTRAP 4000, Applied Biosystems).  A nanoAcquity 

UPLC system (Waters) equipped with a C18 analytical column (1.7 µm, BEH130, 75 µm 

× 200 mm and/or 75 µm × 250 mm) was used to separate the peptides at the flow rate of 

300 nL/min and operating pressure of 7000 psi (at 95/5 ddH2O:ACN).  Eluted peptides 

were directly electrosprayed (Nanosource, ESI voltage +2000 V) into the QTRAP 

instrument.  Peptides were eluted using a 62 min gradient with solvents A (ddH2O, 0.1% 

formic acid) and B (ACN, 0.1% formic acid) for 41 min from 5% B to 50% B, 6 min 

90% B, and 10 min 5% B.  The in silico protease digest patterns and the corresponding 

SRM transitions were compiled with the Skyline software.  Transitions that are larger 



34 

 

than the precursor ion were selected on the basis of Skyline predictions and the specific 

b/y ions that allow unambiguous identification of the methylated lysine sites were 

included.   

2.8 Chromatin immunoprecipitation 

ChIP analysis was conducted as previously described [178], using H3K27Ac (Active 

Motif, California), HDAC3 (Epigentek, NY), HDAC8 (Epigentek, NY), RNA 

polymerase II-phospho S5 (Abcam, Ontario, Canada), and RNA polymerase II (Active 

Motif, California) antibodies.  1.5×107 RAW 264.7 macrophages in 8% DMEM medium 

were cross-linked by adding formaldehyde (37% stock) to a 1% final concentration for 10 

minutes at RT.  Adding glycine to a final concentration of 125mM stopped cross-linking.  

Cells were then lysed in 160µL lysis buffer (50 mM Tris [pH 8.1], 5 mM EDTA and 1% 

sodium dodecyl sulfate [SDS]) containing HaltTM protease inhibitor mixture (Thermo 

Scientific).  Chromatin solutions were sheared by sonication at high speed (Bioruptor 

UCD-200 ultrasound sonicator, Diagenode) for 20 min resulting in DNA fragments 

between 200-750 bp.  Chromatin solutions were then centrifuged at 16,100 ×g for 15 

minutes and supernatants were collected.  The sonicated chromatin was diluted 10× in 

dilution buffer (50 mM Tris [pH 8.1], 0.5% Triton X-100, 0.1 M NaCl, and 2 mM 

EDTA) and 50 µL was set-aside for INPUT.  After preclearing 50 µL of Protein G-

conjugated Dynabeads (Invitrogen) for 1 h at 4°C, the protein G-conjugated Dynabeads 

were incubated with respective antibodies (see Table 2.1 for amounts used) diluted in 200 

µL of PBST [PBS-tween 20 buffer (Tween 20: 0.1%)] for 30 minutes at RT.  The 

remaining sonicated chromatin was then immunoprecipitated overnight at 4 oC with the 

antibody-conjugated Dynabeads.  The immunoprecipitates were washed 5 times for 10 

minutes each at 4°C as follows: once with 1mL of Wash Buffer I (0.1% SDS, 1% 

TritonX-100, 2mM EDTA, 20 mM Tris [pH 8.1], 150 mM NaCl), once with 1 mL of 

Wash Buffer II (0.1% SDS, 1% TritonX-100, 2mM EDTA, 20 mM Tris [pH 8.1], 500 

mM NaCl), once with 1mL of Wash Buffer III (0.25M LiCl, 1% NP-40, 1% 

Deoxycholate, 1mM EDTA, 20mM Tris [pH 8.0]), and twice with 1mL of TE Buffer 

(10mM Tris [pH 8.0], 1mM EDTA).  Bound and INPUT chromatin were eluted with 300 

µL of Elution Buffer (10 mM Tris [pH 8.1], 5 mM EDTA, 300mM NaCl, and 0.5% SDS) 
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and then heated overnight at 65 oC to reverse cross-linking.  DNA fragments were then 

purified using QIAquick Spin columns (Qiagen) in 50 µL of DPEC water according to 

the manufacturer’s instructions.  1 µL of purified DNA was then used in each ChIP-

qPCR analysis.  For HDAC3 and HDAC8 ChIP assays, primers were designed to target 

genomic sites known to be associated with H3K27Ac based on the ENCODE data base 

(http://encodeproject.org/ENCODE/): BNIP3 (amplifying ~1 kb upstream of exon 1) and 

MLN64 (amplifying ~1 kb upstream of exon 1).  For Pol II-phospho S5 ChIP assays, 

primers were designed to target the promoter regions of BNIP3, BNIP3L, MLN64, 

HDAC8, and GAPDH encompassing the transcription start sites [TSS (amplifying ~150 

bps upstream of the TSS)], based on the Transcriptional Regulatory Element Database 

(http://rulai.cshl.edu/cgi-bin/TRED/tred.cgi?process=home).  For IL-1β H3K27Ac and 

RNA Pol II ChIP, primers were randomly designed to amplify regions across the entire 

gene and cover both Pol II- and H3K27Ac-associated sites based on ENCODE.  Data are 

presented as percentage of the precipitated target sequence as compared to input DNA (% 

Input Method).  Rabbit IgG (Abcam) was used as a background control.  Sequences of 

ChIP-specific primers are listed in Table 2.3.  

2.9 Quantitative PCR 

Briefly, total cellular RNA was isolated from 2×106 million cells using 500 µL of TRIzol 

(Invitrogen) according to the manufacturer's instructions.  cDNA was synthesized from 1 

µg of total RNA using oligo (dT) primers and Moloney murine leukemia virus (M-

MuLV) reverse transcriptase (New England Biotechnology).  The amplification mixture 

(20 µL) contained 100 ng of cDNA, 500 nM of each specific primer set, and 10 µL of 

Power SYBR Green PCR Master Mix (Applied Biosystems).  mRNA expression levels 

were determined by subjecting the amplification mixtures to qPCR analyses.  The data 

were normalized by expression of the GAPDH housekeeping gene using the delta-delta-

CT method.  1 µL of purified DNAs from Pol II-phospho S5 ChIP were subjected to 

qPCR using Power SYBR Green PCR Master Mix for MLN64, GAPDH, and HDAC8 or 

TaqMan qPCR analysis for BNIP3 and BNIP3L, using the ZEN quencher system 

(Integrated DNA Technologies) containing the qPCR mixture (50 U/ml Taq DNA 

polymerase, 1 X ThermoPol reaction buffer, 200 mM 2’-deoxynucleoside 5’-
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triphosphates, 900 nM forward and reverse primers, and 250 nM double-quenched 

probe).  ChIP data are presented as percentage of the precipitated target sequence as 

compared to input DNA (% Input Method).  All qPCR analyses were performed with a 

Rotor-Gene RG3000 quantitative multiplex PCR instrument (Montreal Biotech).  The 

PCR conditions for SYBR green qPCR were as follows: 95°C for 10 min, then 40 cycles 

at 95°C for 15 sec, 58°C for 30 sec, 72°C for 25 sec, and 83°C for 15sec.  The PCR 

conditions for TaqMan qPCR were as follows: 95°C for 10 min, then 50 cycles at 95°C 

for 15 sec, and 53°C for 45 sec.  Following qPCR analyses the samples were run on a 2% 

Agarose gel to confirm amplicon sizes for each specific primer set.       

2.10 Enzyme-linked immunosorbent assay 

RAW 264.7 macrophages (1×106 cells/1 mL of media) were cultured in the presence or 

absence of various epigenetic inhibitors, LeTx, and LPS (100 ng/mL) for various times as 

indicated in the Figure legends.  The media was then collected and spun 16,100 ×g for 5 

minutes at 4°C and supernatants were saved for ELISA.  The concentrations (pg/mL) of 

mouse IL-1β and TNF-α were measured using Ready-SET-Go! ELISA kits (eBioscience) 

from cell culture supernatants as described by the manufacturer’s protocol.   

2.11 Statistical analysis  

Data is expressed as the mean ± standard error (SE).  The GraphPad Prism 4.0 software 

was used to determine statistical significance using the statistical test as indicated in the 

figure legend. Statistical significance was defined as * P < 0.05, ** P < 0.01, and *** P < 

0.001.   
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Table 2.3  List of primer sequences   

Analysis Gene Primer Sequence (5’à3’) Amplicon size 
(bp) 

 
qPCR 
 

BNIP3 F: GCTCCCAGACACCACAAGAT 
R: TGAGAGTAGCTGTGCGCTTC  

222 

BNIP3L F: CCTCGTCTTCCATCCACAAT 
R: GTCCCTGCTGGTATGCATCT  

161 

MLN64 F: CAGGCAGTCACCGTCTTGTT  
R: TGCGGTGGTGGATCAGATCT  

213 

TNF-α F: CATTTGGGAACTTCTCATCC 
R: CTGGAAATAGCTCCCAGAA  

298 

IL-1β  F: GTGGACCTTCCAGGATGAGG 
R: GCTTGGGATCCACACTCTCC  

374 

HDAC8 F: ACGGGAAGTGTAAAGTAGCCA 
R: TCCACGTAGAGAATACGGTCAAA  

145 

GAPDH F: GCATTGTGGAAGGGCTCATG 
R: TTGCTGTTGAAGTCGCAGGAG  

361 

 
HDAC3 
and 
HDAC8 
ChIP 

BNIP3 F: AATCTGTCCCTCAACGGCTG 
R: GTTGGTAGATGCACCAGGCT  

100 

MLN64 F: CCTTCCGCTCTGAGGAGTTG 
R: GACCGAACCAAAGACGGACA  

184 

GAPDH F: GTTCAGACCCATCCCGTAATC 
R: CAAAGGTATGCACCTCACAAC  

145 

 
Pol II-
phospho 
S5 ChIP 

BNIP3 F: CCCTTGTCCCTCAGTCCA  
R: GAACCCAACTGCGACAGG  
Probe: 56-
FAM/TGTCGCCTG/ZEN/GCCTCAGAA
CT/3IABkFQ/ 

104 

BNIP3L F: AGCTGCCTGTGTTGTCATC 
R: ACACAACAAGTCGAGTTCCC  
Probe: 56-
FAM/TGACGTCAC/ZEN/GAAGGGAGG
GACT/3IABkFQ/ 

104 

MLN64 F: AATTGTCCTGAGACTCCTCTTTC 
R: CAAGATCCTGACCCTAAGATAACC  

101 

HDAC8 F: TTGACCGTGCTACTTGTGCC 
R: TGGTCCCTCGTCCAACTACA  

153 

GAPDH F: GTTCAGACCCATCCCGTAATC 
R: CAAAGGTATGCACCTCACAAC  

145 

 
H3K27Ac 
and Pol II 
ChIP 

IL-1β (1) F: ATGGTTCAGGGTCTCAGTTGC 
R: CCCTGTGAAGGCAGAACAGA  

151 

IL-1β (2) F: TGCGGAACAAAGGTAGGCAC 
R: AGAAGCCCCTGCTAACACAG  

151 

IL-1β (3) F: GAAGCTTGGCTGGAGAGGAT 
R: TTCACAGCTCTTCACTTCTGC  

125 
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Analysis Gene Primer Sequence (5’à3’) Product size 
(bps) 

 
H3K27Ac 
and Pol II 
ChIP 

IL-1β (4) F: AGTGACAGCACCTAAGTCCCT 
R: AGTGGGTACTGGAGAGTGGTC  

184 

IL-1β (5) F: GTCAGTGTGTGGGTTGCCTTA 
R: TGGCTCCTAACCTGTGGAGG  

146 

IL-1β (6) F: CAGGCAGTGAGCACATCAAG 
R: GTGTCTGGTTGCCATGTACC  

158 

IL-1β (7) F: CAGGGTGGGCTCAAGCATTA 
R: GGATCGGCCTACTGACCTTG  

148 

IL-1β (8) F: TTGGCCGAGGACTAAGGAGT 
R: ACCTCACAAGCAGAGCACAA  

200 
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CHAPTER 3 

3 RESULTS  

3.1 Generating TIR macrophages.  

3.1.1 TIR macrophages are resistant to LeTx-induced pyroptosis. 

As shown previously in our lab, RAW 264.7 macrophages exposed to a sub-lethal dose of 

LeTx become resistant to subsequent lethal challenges for up to 4 days, a process termed 

toxin-induced resistance (TIR) [110,112].  Furthermore, a small fraction (~2%) of these 

TIR macrophages retained resistance for up to 6 weeks, which was termed long-term TIR 

[110,112].  Similar to our previous reports, RAW 264.7 macrophages exposed to LeTx 

for 5 hours caused ~65 % cell death in wild-type cells, but only ~20% cell death in short-

term TIR cells (Fig. 3.1A).  Additionally, BMDMs pre-exposed to a sub-lethal dose of 

LeTx became resistant after 24 hours.  Wild-type BMDMs showed ~80% cell death, 

whereas short-term TIR-BMDMs showed less than 25% cell death after a 5 hour LeTx 

exposure (Fig. 3.1B).  To determine whether these RAW 264.7 macrophages were 

undergoing pyroptosis, as previously shown in the literature [110,112,177], cells were 

pre-treated with the caspase-1 inhibitor AC-YVAD-CHO (20 µM) followed by LeTx 

challenge.  MTT assays revealed that LeTx-induced cell death was significantly reduced 

(~40%) in wild-type cells treated with the caspase-1 inhibitor (Fig. 3.1C), suggesting that 

they were in fact undergoing pyroptosis.  The protection against LeTx was not 100% in 

these macrophages, likely because caspase-1 may only be partially inhibited at 20 µM, 

which has been reported as the optimal concentration without causing macrophage 

toxicity [179].         
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Figure 3.1  Short-term TIR macrophages are resistant to LeTx-induced pyroptosis. 

(A) RAW 264.7 wild-type macrophages (WT) and RAW 264.7 TIR macrophages and (B) 

wild-type (WT) BMDMs and TIR-BMDMs were treated with or without a lethal dose of 

LeTx (PA: 500 ng/mL, LF: 250 ng/mL) for 5 hours and cell death was quantified by 

MTT assays. (C) RAW 264.7 wild-type cells (WT) were treated in the presence or 

absence of the caspase-1 inhibitor (20 µM) for 12 hours and then treated with or without 

a lethal dose of LeTx (PA: 500 ng/mL, LF: 250 ng/mL) for 5 hours.  Cell death was 

measured by an MTT assay.  Data are expressed as means ± SE (n ≥ 3), ** P ≤ 0.01, 

***P ≤ 0.001 (Student’s T-test).  Part B solely performed by Dr. Soon-Duck Ha.      
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3.2 TIR is mediated in an HDAC8-dependent manner. 

3.2.1 Increased HDAC8 expression is correlated with TIR. 

Due to the non-permanent, but inheritable characteristics of TIR, our lab investigated 

epigenetic players, including HDACs and DNMTs to examine their potential role in 

maintaining the TIR phenotype. In fact, long-term TIR was found to be positively 

correlated with HDAC8 mRNA expression, but not with other HDACs, including HDAC 

1, 2, and 5 [177].  Although long-term TIR occurs in in vitro settings, it is more likely 

that macrophages experience short-lived resistance to LeTx in vivo, as anthrax is an acute 

infection, thus LeTx exposure is likely not sufficient to promote long-term resistance.  As 

such, HDAC8 mRNA levels were measured by qPCR in short-term TIR macrophages 

and TIR-BMDMs.  Like long-term TIR, short-term TIR RAW 264.7 macrophages (Fig. 

3.2A) and short-term TIR-BMDMs (Fig 3.2B) showed ~2-fold and ~2.5-fold increase, 

respectively, in HDAC8 mRNA levels relative to wild-type macrophages.  Although 

short-term TIR macrophages showed increased expression of HDAC8 at the 

transcriptional level, this does not always correlate with increased protein production.  

Therefore, HDAC8 protein expression was measured in short-term RAW 264.7 TIR cells 

by Western blot. As shown in Figure 3.3, short-term TIR macrophages showed a greater 

than 3-fold increase in HDAC8 protein expression relative to wild-type macrophages. 

Overall, these results suggest that HDAC8 may play a role in maintaining the TIR 

phenotype in both RAW 264.7 macrophages and BMDMs. 
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Figure 3.2  Short-term TIR macrophages have increased HDAC8 mRNA levels. 

(A) mRNAs from RAW 264.7 wild-type (WT) and TIR macrophages and (B) mRNAs 

from wild-type (WT) BMDMs and TIR-BMDMs were prepared and analyzed for 

HDAC8 expression using qPCR.  GAPDH was used as a reference gene for calculating 

all mRNA expression.  Data are expressed as means ± SE (n ≥ 3), ** P ≤ 0.01 (Student’s 

T-test).  Part B solely performed by Dr. Soon-Duck Ha.             
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Figure 3.3  HDAC8 protein levels are increased in RAW 264.7 short-term TIR 

macrophages.   

Total cell lysates were prepared from RAW 264.7 wild-type and short-term TIR 

macrophages and HDAC8 protein expression was measured by Western blot (left panel).  

Band intensities of HDAC8 were analyzed using the NIH image J program (right panel).  

Intensities of HDAC8 bands in short-term TIR cells were expressed as fold of change 

relative to those of wild-type cells.  Histone H3 and actin were used for loading controls.  

Data are representative images of three independent experiments. Data are expressed as 

means ± SE (n=3). 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W
ild

-ty
pe

  

TI
R

 

HDAC8 

Actin 

H3 

Wild-type TIR
0

1

2

3

4

5

A
rb

itr
ar

y 
in

te
ns

ity
 u

ni
t 



47 

 

3.2.2 Inhibiting HDAC8 expression sensitizes TIR macrophages to 
LeTx. 

Our previous work demonstrated that treating long-term TIR macrophages with the 

broad-spectrum HDAC inhibitor panobinostat or specifically knocking down HDAC8 by 

siRNAs sensitized these cells to LeTx-induced pyroptosis [177]. To further determine if 

HDAC8 was implicated in resistance to LeTx, short-term TIR macrophages were treated 

overnight in the presence or absence of varying doses of the HDAC8-specific inhibitor 

PCI-34051, and then exposed to a lethal dose of LeTx for 5 hours. As expected, short-

term TIR cells treated with PCI-34051 were sensitized to LeTx in a dose-dependent 

manner (Fig. 3.4A).  Additionally, short-term TIR cells were not sensitized to LeTx when 

treated overnight with other HDAC inhibitors, including the HDAC6 inhibitor 

CAY10603 (20 pM), or the HDAC1, 2, 3 and 11 inhibitor Mocetinostat (50 nM) (Fig. 

3.4B).  Furthermore, when PCI-34051 (100 nM) and the caspase-1 inhibitor AC-YVAD-

CHO (20 µM) were used in combination, short-term TIR macrophages were no longer 

sensitized by LeTx (Fig. 3.4B) and exhibited cell death levels similar to those of the 

control cells (< 20%).  Inhibitor concentrations for mocetinostat, CAY10603 and PCI-

34051 were chosen based on dose studies previously conducted in our lab [177].  

Furthermore, the concentration for the caspase-1 inhibitor (AC-YVAD-CHO) was chosen 

based on that reported in the literature [179].   

 

 

 

 

 

 

 



48 

 

Figure 3.4  RAW 264.7 short-term TIR cells are sensitized to LeTx-induced 

pyroptosis when treated with the HDAC8 inhibitor PCI-34051.   

(A) Short-term TIR cells were treated with various concentrations of the HDAC8-specific 

inhibitor PCI-34051 for 24 h.  Wild-type and PCI-34051-treated cells were exposed or 

not exposed to a lethal dose of LeTx (PA: 500 ng/mL, LF: 250 ng/mL) for 5 h, and cell 

death was then measured by MTT assays.  (B) TIR cells were treated with 3 different 

HDAC inhibitors, the HDAC8 inhibitor PCI-34051 (100 nM) ± the caspase-1 inhibitor I 

(20 µM), the HDAC6 inhibitor CAY10603 (20 pM), or the HDAC 1,2, 3 and 11 inhibitor 

mocetinostat (50 nM) for 24 hours.  Wild-type, TIR (Ctrl) and inhibitor-treated TIR cells 

were exposed or not exposed to a lethal dose of LeTx (PA: 500 ng/mL, LF: 250 ng/mL) 

for 5 h, and cell death was measured by MTT assays.  Data are expressed as means ± SE 

(n=3), * P < 0.05 and ** P < 0.01 relative to LeTx-treated TIR control (One-way Anova, 

Tukey’s post-test).    
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3.2.3 Knocking-down HDAC8 increases expression of the mitochondrial 
death genes in TIR-BMDMs. 

To date, our lab has shown three mitochondrial death genes to be correlated with LeTx-

induced pyroptosis: BNIP3, BNIP3L, and MLN64, and of these genes all three are 

significantly down-regulated in TIR cells [110,112,177].  Since HDAC8 was shown to be 

up-regulated in long-term TIR [177], and HDACs are known to contribute to gene 

silencing, we investigated whether its expression influenced suppression of the three 

mitochondrial death genes in TIR.  As such, when HDAC8 was knocked-down in long-

term TIR cells via siRNAs, BNIP3, BNIP3L, and MLN64 mRNA levels were 

significantly increased relative to the control [177].  To test this hypothesis in a more 

physiologically relevant setting, HDAC8 was knocked-down in short-term TIR-BMDMs 

and mRNA levels of BNIP3, BNIP3L, and MLN64 were measured by qPCR.  As 

expected, short-term TIR-BMDM controls (si-scramble) showed a greater than 2-fold 

reduction in mRNA levels of all three mitochondrial death genes relative to wild-type 

BMDMs and when treated with HDAC8 siRNAs, the mRNA levels of the mitochondrial 

death genes increased to levels even greater than wild-type BMDMs (Fig. 3.5).  

Collectively, the data presented in figures 3.4 and 3.5 suggest that increased HDAC8 

levels suppress the expression of the three mitochondrial death genes leading to 

resistance to LeTx-induced pyroptic cell death. 
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Figure 3.5  Short-term TIR-BMDMs knocked down in HDAC8 show increased 

expression levels of the three mitochondrial death genes BNIP3, BNIP3L and 

MLN64.  

Short-term TIR-BMDMs were transfected with scrambled siRNA (si-scramble) or siRNA 

targeting HDAC8 (si-HDAC8) for 24 hours.  The expression of BNIP3, BNIP3L, and 

MLN64 was analyzed by qPCR, and levels of mRNAs were expressed as fold of change 

relative to those of wild-type BMDMs transfected with scrambled siRNA for 24 hours 

(dotted line).  GAPDH was used as a reference gene for calculating all mRNA 

expression. Data are expressed as means ± SE (n = 3).  Experiment solely performed by 

Dr. Soon-Duck Ha.      
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3.3 HDAC8-dependent deacetylation at histone H3 lysine 27 
(H3K27) mediates TIR. 

3.3.1 H3K27Ac is reduced in TIR macrophages. 

Histones may undergo various modifications that influence the expression of genes, such 

as histone acetylation, which is generally a marker of gene activation [151,152,180].  

Since HDAC8 expression was increased in long-term TIR macrophages, we examined 

whether histone acetylation was decreased in these cells using Western blots.  Our lab 

previously showed that overall levels of histone H4 acetylation remained unchanged 

between wild-type and long-term TIR cells, whereas overall levels of histone H3 

acetylation were significantly lower in long-term TIR cells compared to wild-type cells 

[177].  Further examination at specific H3 lysine residues revealed decreased acetylation 

levels in long-term TIR cells at H3K9, H3K14, and H3K27, but of these three sites, 

H3K27Ac was most significantly down-regulated in long-term TIR [177].  

To further confirm and quantify the down-regulation of H3K27Ac in long-term TIR, 

selected reaction monitor mass spectrometry (SRM-MS) was performed in collaboration 

with Dr. Huadong Liu, Dr. Kyle Biggar, and Dr. Shawn Li in the Department of 

Biochemistry, UWO, who previously used this technique to systematically map protein 

lysine methylation events [181].  SRM-MS allows for the direct quantification of histone 

modifications between two samples using stable isotope labeling of amino acids in cell 

culture (SILAC).  To quantify H3K27Ac levels, wild-type and long-term TIR 

macrophages were cultured with light lysine (4,4,5,5-H4) or heavy lysine (4,4,5,5-D4), 

respectively, for one week to ensure maximal lysine labeling.  The same number of cells 

cultured with light or heavy lysine-containing media were pooled and then processed to 

extract histone H3 (Fig. 3.6).  Following in-gel digestion of histone H3 by the Arg-C 

endopeptidase, the quantity of H3K27Ac was analyzed by interrogating the H3K27 

peptide sequence as described in Method and Materials.  In silico digestion of histone H3 

and the synthesis of standard peptides (Table 3.1) for the generation of the standard 

unmodified peptide chromatograph (Fig. 3.7B) and the standard H3K27Ac peptide 

chromatograph (Fig. 3.8B) were used to confirm the detection of the unmodified (Fig 

3.7C) and acetylated H3K27 peptide (Fig 3.8C) from RAW 264.7 wild-type 
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macrophages.  Figure 3.7A and 3.8A are the transitions used for the detection of H3K27 

and H3K27Ac, respectively.  For SILAC treated samples, the transitions indicated in 

figure 3.9A were used for H3K27Ac peptide confirmation.  Although the same transitions 

were used for both light and heavy labeled samples, the peak intensity (peak height) of 

the long-term TIR sample was differentiated from the wild-type peak intensity based on a 

+12 Da mass shift (m/z) in the SRM mass spectrometry spectrum.  This +12 Da m/z is 

due to the fact that the long-term TIR sample contains four deuterium atoms (4,4,5,5-D4) 

at the three H3K27 peptide lysine residues, whereas the wild-type sample contains four 

hydrogen atoms (4,4,5,5-H4) at these lysine residues.  As such, based on H3K27Ac peak 

intensities of the wild-type (light lysine) and long-term TIR (heavy lysine) samples, 

H3K27Ac was significantly lower (~ 70%) in long-term TIR relative to wild-type 

macrophages (Fig 3.9B and Fig. 3.9C).   

To further examine the correlation of H3K27Ac levels in resistance, wild-type and short-

term TIR macrophages were labeled with light and heavy lysine respectively and 

subjected to SRM mass spectrometry analysis.  H3K27 can undergo two mutually 

exclusive covalent modifications, such that at a single time it can only be methylated, 

acetylated, or unmodified [182].  Therefore, given that H3K27Ac levels were 

significantly lower in long-term TIR (Fig. 3.9) and unmodified H3K27 levels were ~2.5 

fold greater in TIR macrophages compared to wild-type macrophages (Fig. 3.10A), I 

suspected that unmodified H3K27 levels increased due to a decrease in H3K27Ac levels.  

While H3K27 can also be tri-methylated, since mitochondrial death gene silencing is 

involved in TIR and H3K27 tri-methylation (H3K27Me3) is a general marker for gene 

suppression [183], it seems most likely for H3K27Me3 levels to increase and H3K27Ac 

levels to decrease in short-term TIR.  To confirm equal loading of wild-type (light) 

versus short-term TIR (heavy), a peptide from histone H3 [E(73)IAQDFKTDLR(83)] 

was used as a control.  Quantifying unmodified H3K79 from the control peptide 

confirmed that wild-type and short-term TIR samples were in fact loaded in a 1:1 ratio 

(Fig. 3.10B).  Based on the mutual exclusiveness of modifications at H3K27, figure 3.11 

demonstrates a working model of H3K27Ac levels in short-term TIR.  Further 

optimization is required to specifically quantify H3K27Ac in short-term TIR by SRM 

mass spectrometry. 
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Figure 3.6  Stable isotope labeling of amino acids in cell culture and SRM mass 

spectrometry analysis. 

RAW 264.7 wild-type macrophages and long-term TIR macrophages were labeled with 

light lysine (4,4,5,5-H4 L-Lysine; Lys-0) or heavy lysine (4,4,5,5-D4 L-Lysine; Lys-4), 

respectively, for 7 days and pooled in a 1:1 ratio.  The histones were acid extracted 

overnight and run on a SDS gel for Brilliant Blue-R staining.  Histone H3 (17 kDa) was 

in-gel digested using the Arg-C endopeptidase and subjected to SRM mass spectrometry 

for the unmodified and acetylated H3K27 peptide.  The H3K27 peptide for the heavy-

labeled long-term TIR shows a mass shift by +12 Da relative to the light-labeled sample 

and peak intensities (peak height) from the mass spectrum are used to quantify the 

relative amount of H3K27/H3K27Ac peptides relative to the control (wild-type 

macrophages).  
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Table 3.1  In silico digestion of histone H3 and the synthesis of standard peptides for 

SRM mass spectrometry. 

 

Peptides  Modification Sequences  

1 None NH2-KSAPATGGVKKPHR-COOH 

2 H3K27Ac NH2-K(Ac)SAPATGGVKKPHR-COOH 

3 H3K36Ac NH2-KSAPATGGVK(Ac)KPHR-COOH 

4 H3K37Ac NH2-KSAPATGGVKK(Ac)PHR-COOH 
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Figure 3.7  Identification of unmodified histone H3K27 by SRM mass spectrometry. 

(A) Transitions used in the experiment. (B) In-silico Arg-C digestion of histone H3 and 

standard peptides were synthesized and extracted ion chromatographs (XICs) show that 

the SRM transitions detected the unmodified H3K27 peptides from standard samples and 

from (C) Arg-C digested histone H3 prepared from RAW264.7 wild-type macrophages.   
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Figure 3.8  Identification of acetylated histone H3K27 by SRM mass spectrometry. 

(A) Transitions used in the experiment. (B) In-silico Arg-C digestion of histone H3 and 

standard peptides were synthesized and extracted ion chromatographs (XICs) show that 

the SRM transitions detected the acetylated H3K27 peptides from standard samples and 

from (C) Arg-C digested histone H3 prepared from RAW264.7 wild-type macrophages.   
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Figure 3.9  Long-term TIR macrophages show decreased levels of H3K27Ac relative 

to wild-type macrophages by SRM mass spectrometry. 

RAW 264.7 wild-type and long-term TIR macrophages were cultured in light (4,4,5,5-H4 

L-Lysine) or heavy (4,4,5,5-D4 L-Lysine) lysine-containing media, respectively, for 7 

days and then pooled in a 1:1 ratio. Histone H3 was then in-gel digested using the Arg-C 

endoproteinase. The liquid chromatography-coupled triple quadrupole mass spectrometer 

with Q3 as a linear ion trap was used to quantify H3K27Ac by interrogating the 

SAPATGGVKKPHR40 peptide from digested histone H3. The Skyline software was used 

for the following data acquisition, (A) transitions used in the experiment, B) a bar graph 

of the relative intensity of H3K27Ac between light (wild-type) and heavy (long-term 

TIR) medium and C) the relative expression of H3K27Ac (samples were first normalized 

to the peak height of the respective H3K27 peptide, then presented relative to the wild-

type peptide).  For panel B data are expressed as means ± SE (n=3), * P< 0.05; (Student’s 

T-test) and panel C is a representative figure.   
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Figure 3.10  RAW 264.7 short-term TIR macrophages show increased levels of 

unmodified H3K27 by SRM mass spectrometry.    

RAW 264.7 wild-type and short-term TIR macrophages were cultured in light (4,4,5,5-

H4 L-Lysine) or heavy (4,4,5,5-D4 L-Lysine) lysine-containing media, respectively, for 7 

days and then pooled in a 1:1 ratio. Histone H3 was then in-gel digested using the Arg-C 

endoproteinase.  The liquid chromatography-coupled triple quadrupole mass 

spectrometer with Q3 as a linear ion trap was used to quantify (A) H3K27 and (B) 

H3K79 by interrogating the K27 SAPATGGVKKPHR40 peptide and the 

E73IAQDFKTDLR83 peptide, respectively, from digested histone H3. The Skyline 

software was used for the following data acquisition.  (A) Transitions used for H3K27 

(upper panel) and the intensity of H3K27 (lower panel) in wild-type and TIR 

macrophages (H3K27 peak heights were normalized to wild-type).  (B) Transition used 

for H3K79 (upper panel) and the intensity of H3K79 (lower panel) in wild-type and TIR 

macrophages (H3K79 peak heights were normalized to wild-type). Data are expressed as 

means ± SE (n=2), * P< 0.05; (Student’s t-test). 

 

 

 

 

 

 

 



65 

 

A) 

 

 

B)   

 

 

Y13 Y12 Y8 Y7 Y3 Y4 B6 B11 B13 

Wild-type TIR 
0 

1 

2 

3 ** 

U
nm

od
ifi

ed
 H

3K
27

 In
te

ns
ity

 (f
ol

d)
 

Y8 Y7 B9 Y9 Y6 

Wild-type TIR 
0.0 

0.5 

1.0 

1.5 

U
nm

od
ifi

ed
 H

3K
79

 In
te

ns
ity

 (f
ol

d)
 



66 

 

Figure 3.11  Working model of H3K27Ac levels in RAW 264.7 short-term TIR 

macrophages.  

H3K27 is a mutually exclusive site that can be acetylated, methylated, or unmodified.  

Based on mutual the exclusiveness of H3K27 modifications and the involvement of 

mitochondrial death gene silencing in short-term TIR, when unmodified H3K27 levels 

increase, H3K27Ac levels should decrease, and H3K27Me3 levels should increase.   
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3.3.2 HDAC8-dependent H3K27 deacetylation is involved in RAW 
264.7 TIR macrophages. 

Since HDACs mediate the deacetylation of histones, I next sought to examine whether 

HDAC8 targets H3K27 for deacetylation in long-term TIR macrophages.  Figure 3.12A 

shows that treatment of long-term TIR RAW 264.7 macrophages with the broad-

spectrum HDAC inhibitor panobinostat (100 nM) restored H3K27Ac levels to those of 

wild-type macrophages, suggesting the involvement of HDACs in H3K27 deacetylation.  

To confirm if HDAC8 was one of the HDACs involved in H3K27 deacetylation, long-

term TIR macrophages were transfected with scrambled siRNA or siRNA targeting 

HDAC8 and Western blots were conducted to examine H3K27Ac levels.  Indeed, long-

term TIR cells transfected with siRNAs against HDAC8 showed significantly increased 

levels of H3K27Ac (~3-fold) compared to the control (Fig. 3.12B).  This data suggests 

that HDAC8 is involved in H3K27 deacetylation in long-term TIR macrophages.   

To further examine H3K27Ac as a possible target for HDAC8, I utilized SILAC labeling 

in combination with SRM mass spectrometry analysis.  Short-term TIR macrophages 

were labeled with heavy lysine, whereas short-term TIR macrophages treated with PCI-

34051 (100 nM) were labeled with light lysine.  Since long-term TIR macrophages 

showed a negative correlation between HDAC8 expression and H3K27Ac levels (Fig. 

3.12), I expected that short-term TIR cells treated with PCI-34051 would show increased 

H3K27Ac levels relative to those of non-treated short-term TIR macrophages.  Although 

further optimization is required to specifically quantify H3K27Ac, unmodified H3K27 

showed about a 4-fold decrease in PCI-34051-treated macrophages relative to untreated 

short-term TIR macrophages (Fig. 3.13A).  Given the mutual exclusiveness of H3K27 

modifications, this data suggests that inhibiting HDAC8 with PCI-34051 increased 

H3K27Ac levels, leading to a decrease in unmodified H3K27, and vice versa for non-

treated short-term TIR.  Again, to ensure equal loadings of the samples, the 

E(73)IAQDFKTDLR(83) control peptide from histone H3 was used to quantify H3K79. 

As expected, both the light (TIR + PCI-34051) and heavy (TIR) samples were found in a 

1:1 ratio (Fig. 3.13B).  Collectively, this data suggests that TIR was mediated at least in 

part by HDAC8-mediated H3K27 deacetylation.  
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Figure 3.12  HDAC8 targets H3K27Ac for deacetylation in long-term TIR 

macrophages.   

(A) RAW 264.7 wild-type macrophages, and long-term TIR macrophages treated in the 

presence or absence of panobinostat (100nM; PN) for 12 hours and (B) RAW 264.7 long-

term TIR macrophages treated with either scrambled (si-scramble) or HDAC8 (si-

HDAC8) siRNAs for 40 hours were harvested for total cell lysates and the levels of 

H3K27Ac were measured by Western blot. The NIH Image J program analyzed 

intensities of bands.  (A) Intensities of bands in long-term TIR cells ± PN were expressed 

as fold of change relative to those of wild-type cells and (B) intensities of bands in long-

term TIR cells treated with si-HDAC8 were expressed as fold of change relative to long-

term TIR cells treated with si-scramble.  Histone H3 was used as a loading control and 

data are representative images of three independent experiments. Data are expressed as 

means ± SE (n=3).     
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Figure 3.13  Short-term TIR macrophages treated with the HDAC8-specific 

inhibitor PCI-34051 show decreased levels of unmodified H3K27 by SRM mass 

spectrometry.  

RAW 264.7 short-term TIR macrophages and short-term TIR macrophages treated with 

the HDAC8 inhibitor PCI-34051 (100 nM; 24 hours) were cultured in heavy 4,4,5,5-D4 

and light L-Lysine-containing media respectively for 7 days and then pooled in a 1:1 

ratio. Histone H3 was then in-gel digested using the Arg-C endoproteinase. The liquid 

chromatography-coupled triple quadrupole mass spectrometer with Q3 as a linear ion trap 

was used to quantify (A) H3K27 and (B) H3K79 by interrogating the K27 

SAPATGGVKKPHR40 peptide and the E73IAQDFKTDLR83 peptide, respectively, from 

digested histone H3. The Skyline software was used for the following data acquisition.  

(A) Transitions used for H3K27 (upper panel) and the intensity of H3K27 in TIR 

macrophages treated in the presence or absence of PCI-34051 (H3K27 peak heights were 

normalized to TIR).  (B) Transitions used for H3K79 (upper panel) and the intensity of 

H3K79 in TIR macrophages treated in the presence or absence of PCI-34051 (H3K79 

peak heights were normalized to the PCI-treated sample).  Data are expressed as means ± 

SE (n=2), * P< 0.05; (Student’s t-test). 
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3.3.3 HDAC8-dependent H3K27 deacetylation is involved in the down-
regulation of the mitochondrial death genes in RAW 264.7 TIR 
macrophages. 

Previous work in our lab showed that H3K27Ac had decreased association with the 

regulatory regions of the mitochondrial death genes BNIP3 (~1 kb upstream of exon 1) 

and MLN64 (~1kb upstream of exon 1), but not BNIP3L in long-term TIR macrophages 

[177].  Since HDAC8 appears to target H3K27 for deacetylation, I examined whether 

HDAC8 was recruited to these regions of BNIP3 and MLN64 (Fig. 3.14A).  Interestingly, 

HDAC8 was recruited to the H3K27Ac-associated regions (primer set 1) of BNIP3 and 

MLN64, but not to the promoter regions (primer set 2) of either mitochondrial death 

genes (Fig. 3.14B).  The control, HDAC3, was highly recruited to both the promoter and 

the H3K27Ac-associated regions of BNIP3 and MLN64, but no significant differences 

were detected between wild-type and long-term TIR macrophages (Fig. 3.14B).  

Collectively, this data suggests that HDAC8 mediates deacetylation at the H3K27Ac 

regulatory regions of BNIP3 and MLN64, thus inducing a “closed” chromatin 

conformation, which leads to the suppression of BNIP3 and MLN64 expression in long-

term TIR macrophages.      
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Figure 3.14  Long-term TIR macrophages show increased HDAC8 recruitment at 

the H3K27Ac-associated regulatory regions of BNIP3 and MLN64. 

(A) Map of the primer sets targeting the H3K27Ac-associated regulatory regions 

(indicated by green line) amplifying ~1000 bps upstream and amplifying core promoter 

regions (indicated by red line) ~150 bps upstream of transcription start sites of BNIP3 

and MLN64 in primary mouse BMDMs as indicated on ENCODE.  Black boxes represent 

exons.  (B) Levels of HDAC8 and HDAC3 recruitments to the promoter and H3K27Ac-

associated regulatory regions of BNIP3 and MLN64 were analyzed by ChIP-qPCR.  DNA 

from RAW 264.7 wild-type and long-term TIR macrophages were sonicated, and 

immunoprecipitated using antibodies against HDAC8 and HDAC3. Immunoprecipitated 

DNA was analyzed by qPCR using primers targeting the promoter and H3K27Ac-

associated regulatory regions of BNIP3 and MLN64.  Recruitment of HDAC8 and 

HDAC3 to the promoter region of GAPDH was used as a control.  For ChIP efficiency, 

the percentage of input DNA recovered by immunoprecipitation was determined by 

qPCR. Rabbit anti-IgG was used as a background control. Data are expressed as means ± 

SE (n = 3); **p < 0.01 (Student’s T-test). 
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3.3.4 HDAC8 limits RNA polymerase II accessibility to the 
mitochondrial death gene promoters. 

Due to HDAC8’s role in down-regulating the expression of the three mitochondrial death 

genes, BNIP3, BNIP3L, and MLN64 in long-term TIR, I sought to examine whether 

HDAC8 suppresses expression of these genes by limiting access of transcriptional 

machinery to their genomic regions.  I first examined the accessibility of RNA 

polymerase II (Pol II) at the promoter regions of BNIP3, BNIP3L, and MLN64 in long-

term TIR macrophages using ChIP-qPCR analysis.  Interestingly, the binding of RNA 

polymerase II to the promoter regions of these genes was significantly lower (at least 2-

fold) in long-term TIR macrophages than wild-type macrophages (Fig 3.15).  To further 

examine whether this decreased Pol II association in long-term TIR was HDAC8-

dependent, RAW 264.7 macrophages were stably transfected with a plasmid over-

expressing HDAC8 (pEFGP-HDAC8) and then harvested for Pol II ChIP-qPCR analysis.  

Interestingly, the over-expression of HDAC8 significantly reduced the access of Pol II to 

the promoter regions of BNIP3, BNIP3L, and MLN64 (Fig 3.16).  Surprisingly, Pol II 

accessibility at the promoter of the housekeeping gene GAPDH was also reduced in long-

term TIR (Fig. 3.15) and in pEGFP-HDAC8 expressing wild-type macrophages (Fig. 

3.16), suggesting that GAPDH expression is also down-regulated in long-term TIR.  

Since HDAC8 expression was increased in long-term TIR [177], HDAC8 was used for 

Pol II ChIP-qPCR analysis as a positive control.  As expected, Pol II recruitment to the 

promoter of HDAC8 in long-term TIR (Fig 3.15) showed a significant increase (~2-fold) 

relative to the controls.  Overall, this data suggests that HDAC8 limits the accessibility of 

Pol II to the promoter of the three mitochondrial death genes in long-term TIR.     
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Figure 3.15  RNA polymerase II has limited accessibility to the promoter regions of 

BNIP3, BNIP3L, and MLN64 in long-term TIR. 

Accessibility of Pol-II to the promoter regions of BNIP3, BNIP3L, MLN64, GAPDH and 

HDAC8 was analyzed by ChIP-qPCR assays.  DNA prepared from RAW 264.7 wild-type 

and long-term TIR macrophages was sonicated and immunoprecipitated using phospho-

S5 Pol-II Abs.  Power SYBR Green qPCR (for MLN64, GAPDH and HDAC8) and 

TaqMan qPCR analysis using the ZEN quencher system (for BNIP3 and BNIP3L) was 

used to quantify the amounts of immunoprecipitated DNA using primers and an internal 

probe.  ChIP efficiency is represented as the percentage of input DNA recovered by 

immunoprecipitation.  Rabbit anti-IgG was used as a background control.  Data are 

expressed as means ± SE (n = 3); *p < 0.05, **p < 0.01 (Student’s T-test). 
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Figure 3.16  RNA polymerase II has limited accessibility to the promoter regions of 

BNIP3, BNIP3L, and MLN64 in RAW 264.7 macrophages over-expressing HDAC8. 

Accessibility of Pol-II to the promoter regions of BNIP3, BNIP3L, MLN64 and GAPDH 

was analyzed by ChIP-qPCR assays (upper panel).  Pol II immunoprecipitated DNA was 

analyzed by qPCR.  ChIP efficiency is represented as the percentage of input DNA 

recovered by immunoprecipitation. Rabbit anti-IgG was used a background control. Data 

are expressed as means ± SE (n = 3), *p ≤ 0.05, **p ≤ 0.01 (Student’s T-test).  Total cell 

lysates from RAW 264.7 macrophages stably transfected with pEGFP or pEGFP-HDAC8 

were used for EGFP western blots to confirm transfection efficacy (lower panel).  Actin 

was used as a loading control.    
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3.4 LeTx suppresses cytokine production in an HDAC8-
dependent manner. 

In addition to inducing pyroptosis in certain subsets of murine macrophages [21], LeTx 

also causes immune suppression through inactivation of the MAPK signaling pathway. 

As epigenetic reprogramming is involved in macrophage activation [184], differentiation 

[185-187] and tolerance [188-190], and LeTx has been shown to alter histone 

modifications in a MAPK-dependent manner leading to IL-8 suppression [175], I 

suspected that histone modifications involved in the maintenance of TIR might also affect 

cytokine production.   

3.4.1 LeTx-treated RAW 264.7 macrophages are defective in producing 
IL-1β in an HDAC8-dependent manner in response to LPS. 

Various studies have shown that LeTx inhibits the production of pro-inflammatory 

cytokines including IL-1β, TNFα, and IL-6 in macrophages [63,191,192].  Consistent 

with these studies, I found that RAW 264.7 macrophages treated with a sub-lethal dose of 

LeTx are defective in the production and release of IL-1β in response to LPS when 

measured by Western blot (Fig. 3.17A) or ELISA (Fig. 3.17B), respectively.  Since LeTx 

appears to up-regulate HDAC8 (Fig. 3.2), the next step examined whether LeTx-treated 

RAW 264.7 macrophages were defective in IL-1β production in an HDAC8-dependent 

manner.  As such, RAW 264.7 macrophages were stably transfected with either a control 

plasmid (pEGFP) or a plasmid expressing HDAC8 (pEGFP-HDAC8) and then cells were 

harvested to measure pro-IL-1β production by western blot.  Interestingly, RAW cells 

over-expressing HDAC8 were defective in pro-IL-1β production in response to LPS (Fig. 

3.17C), thus suggesting the role of HDAC8 in the regulation of cytokine production.   
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Figure 3.17  LeTx-treated and over-expressing HDAC8 RAW 264.7 macrophages 

are defective in IL-1β  production in response to LPS.     

RAW 264.7 wild-type macrophages were treated with or without a sub-lethal dose of 

LeTx (PA: 100 ng/mL, LF: 100 ng/mL) for 5 hours and then fresh media was added for 

overnight incubation.  The following day, samples were treated with LPS for 4 hours, and 

(A) production of pro-IL-1β and (B) release of IL-1β were analyzed by Western blots or 

ELISA, respectively.  (C) RAW264.7 macrophages stably transfected with pEGFP or 

pEGFP-HDAC8 were analyzed for expression levels of pro-IL-1β by Western blots.  

Data are representative images of three independent experiments.  Data are expressed as 

means ±SE (n=3), ** p< 0.01 (Student’s T-test).  Dr. Soon-Duck Ha solely performed 

parts A-C.   
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3.4.2 Inhibiting HDAC8 restores the expression and production of IL-1β 
and TNF-α in LeTx-treated macrophages. 

To further examine HDAC8’s role in regulating cytokine production in response to LeTx, 

LeTx-treated RAW 264.7 macrophages were treated with various epigenetic inhibitors, 

including panobinostat (broad-spectrum HDAC inhibitor), azacitidine (DNMT inhibitor), 

and mocetinostat (HDAC 1, 2, 3, and 11 inhibitor) overnight, followed by LPS 

stimulation. Supernatants were then collected to measure the release of IL-1β and TNF-α 

by ELISA.  Interestingly, LeTx-induced immune suppression was only reversed by 

panobinostat treatment, such that the levels of IL-1β (Fig. 3.18A) and TNF-α (Fig. 3.18B) 

were restored to that of wild-type levels in response to LPS.  To specifically confirm the 

involvement of HDAC8 in regulating cytokine production, LeTx-treated RAW 264.7 

macrophages were exposed to PCI-34051 overnight and then stimulated by LPS.  As 

expected, PCI-34051 treatment increased the mRNA expression of IL-1β (Fig. 3.19A) 

and TNF-α (Fig. 3.19B) to nearly wild-type levels in response to LPS even in the 

presence of LeTx.  PCI-34051 did not further induce TNFα release compared to wild-

type in response to LPS (Fig. 3.20), however it slightly induced IL-1β mRNA in the 

presence of LPS (Fig 3.19A).  Despite a slight induction of IL-1β by PCI-34051 alone, 

the data collectively suggests that inhibiting HDAC8 reversed the immunosuppressed 

state triggered by LeTx. 

 

 

 

 

 



85 

 

Figure 3.18  The broad-spectrum HDAC inhibitor panobinostat (PN) restores 

production of IL-1β and TNFα in response to LPS in the presence of LeTx.   

RAW 264.7 wild-type macrophages were treated with or without a sub-lethal dose of 

LeTx (PA: 100 ng/mL, LF: 100 ng/mL) for 5 hours then left overnight.  These LeTx-

treated cells were then re-plated and exposed to various epigenetic inhibitors including, 

panobinostat (PN; broad-spectrum HDAC inhibitor; 1 nM), azacitidine (Az; DNMT 

inhibitor; 200 nM), and mocetinostat (MO; HDAC1-3/11 inhibitor; 150 nM) for 24 hours. 

Following 4 hours of LPS (100ng/mL) treatment, supernatants were collected and levels 

of (A) IL-1β and (B) TNF-α were measured by ELISA. Data are expressed as means ± 

SE (n=3).  Bars with same letter indicate no significant difference, p > 0.05 (One-way 

Anova; Tukey’s post-test).  Dr. Soon-Duck Ha prepared samples for part A and B.     
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Figure 3.19  The HDAC8 specific inhibitor PCI-34051 restores mRNA levels of IL-

1β and TNFα in response to LPS in the presence of LeTx.   

RAW 264.7 wild-type macrophages were treated with or without a sub-lethal dose of 

LeTx (PA: 100 ng/mL, LF: 100 ng/mL) for 5 hours then left overnight.  These LeTx-

treated cells were then re-plated and exposed to the HDAC8-specific inhibitor PCI-34051 

(20 nM) for 24.  Following 3 hours of LPS (100ng/mL) stimulation, cells were harvested 

and mRNA levels of (A) IL-1β and (B) TNFα were measured relative to GAPDH using 

qPCR.  All samples are normalized to the mRNA expression levels of the unstimulated 

wild-type macrophages.  Data are expressed as means ± SE (n=3).  Bars with same letter 

indicate no significant difference, p > 0.05  (One-way Anova; Tukey’s post-test). 
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Figure 3.20  The HDAC8 inhibitor PCI-34051 does not induce TNF-α production in 

RAW 264.7 macrophages in response to LPS. 

RAW 264.7 macrophages were treated in the presence or absence of the HDAC8-specific 

inhibitor PCI-34051 (20 nM) for 24 hours and then treated in the presence or absence of 

LPS (100 ng/mL) for 4 hours.  Following LPS stimulation, supernatants were collected 

and TNF-α release was measure by ELISA.  Data are expressed as means ± SE (n=3), 

*** p < 0.001 and N.S. (no significant difference); Two-way Anova (Bonferroni post-

test).    
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3.4.3 Inhibiting HDAC8 in LeTx-treated macrophages increases 
H3K27Ac and Pol II association in the genomic regions of IL-1β in 
response to LPS.  

In long-term TIR macrophages, I showed an increased recruitment of HDAC8 to 

H3K27Ac-associated regions of BNIP3 and MLN64 (Fig. 3.14), suggesting that it targets 

H3K27 and silences mitochondrial death gene expression.  In addition, H3K27Ac is 

largely associated with active enhancers [193].  Thus, a reduction in H3K27Ac may 

hinder the process of gene transcription.  I suspected that HDAC8 similarly targets the 

H3K27Ac-associated regions of IL-1β.  Since HDAC8 was up-regulated in RAW 264.7 

macrophages treated with LeTx (Fig. 3.2A), I hypothesized that LeTx decreases 

H3K27Ac-association of IL-1β in response to LPS and that inhibiting HDAC8 in this 

sample would restore H3K27Ac association to that of wild-type levels.  To evaluate this 

hypothesis, a set of 8 primers (Set 1: ~1.4 kbp upstream of exon 1, Set 2: ~350 upstream 

of exon 1, Set 3: ~85 bp down stream of exon 1, Set 4: ~100 bp downstream of exon 2, 

Set 5: ~50 bp upstream of exon 3, Set 6: ~100 bp upstream of exon 4, Set 7: ~170 bp 

upstream of exon 6, and Set 8: ~10 bp downstream of exon 7) for H3K27Ac ChIP-qPCR 

analysis was randomly designed to encompass H3K27Ac-associaion regions of IL-1β, 

based on the ENCODE database (Fig. 3.21A).  Interestingly, LPS-stimulated LeTx-

treated macrophages showed a significant decrease (~2-fold) in H3K27Ac association in 

the genomic regions of primer set 4 (~100 bp downstream of exon 2) and primer set 5 

(~50 bp upstream of exon 3) compared to LPS-stimulated wild-type macrophages (Fig. 

3.21B).  Inhibition of HDAC8 by PCI-34051 in LPS-stimulated LeTx-treated 

macrophages restored H3K27Ac-association in the genomic regions to that of LPS-

stimulated wild-type levels (Fig. 3.21B).  Collectively, this data suggests that HDAC8 

targets H3K27 for deacetylation in the intragenic region of IL-1β in LeTx-treated 

macrophages, rather than the promoter region (set 1 and set 2).  In contrast, inhibiting 

HDAC8 restores H3K27Ac association and likely IL-1β expression.    

Since PCI-34051 increased H3K27Ac association in IL-1β in LeTx-treated macrophages 

(Fig. 3.21B), I also examined whether Pol II recruitment was increased to wild-type 

levels at the promoter or genomic regions of IL-1β in these macrophages using Pol-II 

ChIP-qPCR analysis.  The same primer sets used to analyze H3K27Ac association were 
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used for Pol-II ChIP-qPCR (Fig. 3.21A).  Interestingly, PCI-34051 significantly 

increased Pol II recruitment to the same genomic region that showed increased H3K27Ac 

association (primer set 4), but not to the promoter region (set 1 and set 2) in the LPS-

stimulated LeTx-treated macrophages (Fig. 3.21C).  Furthermore, recruitment of Pol II 

across to the entire genomic/promoter regions of IL-1β was increased by PCI-34051 in 

LeTx-treated macrophages, suggesting that HDAC8 inhibition restored IL-1β 

transcription.  
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Figure 3.21  Inhibiting HDAC8 by PCI-34051 in LeTx-treated macrophages 

increases H3K27Ac and Pol II association in the genomic regions of IL-1β in 

response to LPS.   

(A) Map of the primer sets expanding the H3K27Ac- and Pol II-associated regions of IL-

1β in primary mouse BMDMs as indicated on ENCODE.  The red line marks the primary 

promoter region and the black boxes represent exons (E).  RAW 264.7 wild-type 

macrophages (WT) were treated in the presence or absence of LeTx (PA: 100 ng/mL, LF: 

100 ng/mL) for 5 hours and then fresh media was added and cultures were left overnight.  

The following day, cultures were treated with or without the HDAC8 inhibitor PCI-

34501 (20 nM) overnight and the next day were stimulated in the presence or absence of 

LPS (100 ng/mL) for 3 hours.  These samples were then harvested to examine the levels 

of (B) H3K27Ac and (C) RNA polymerase II association to the (A) promoter and 

genomic regions of IL-1β by ChIP-qPCR analysis.  DNA was sonicated and 

immunoprecipitated using antibodies against H3K27Ac and Pol II and analyzed by qPCR 

using primers targeting the promoter and genomic regions of IL-1β.  For ChIP efficiency, 

the percentage of input DNA recovered by immunoprecipitation was determined by 

qPCR.  Rabbit anti-IgG was used as a background control. Data are expressed as means ± 

SE (n = 3).  Bars with same letter indicate no significant difference, p > 0.05 (One-way 

Anova: Tukey’s post-test). 
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CHAPTER 4 

4 DISCUSSION 

4.1 Resistance to LeTx-induced pyroptosis is HDAC8-mediated 

Previous studies conducted by us [110,112] and others [139] found that RAW 264.7 

macrophages exposed to sub-lethal doses of LeTx become temporarily (~ 4 days) 

refractory to subsequent cytotoxic doses, which we termed TIR.  Interestingly, small 

subsets of these TIR macrophages are resistant to LeTx challenges for up to 6 weeks, 

known as long-term TIR [110].  Consistent with our previous studies in long-term TIR 

[110,112,177], RAW 264.7 short-term TIR macrophages are resistant to pyroptic cell 

death, as RAW 264.7 wild-type macrophages become resistant in a caspase-1-dependent 

manner (Fig. 3.1C).  Several mechanisms were suggested to be involved in TIR, such as 

the activation of ERK via a MEK-independent pathway, as well as an alteration in 

proteasome activity [139].  In LeTx-susceptible macrophages, Salles et al. detected a 

decrease in ubiquitin-conjugated proteins, which correlated with cell death.  This may be 

due to increased proteasome activity, as inhibiting proteasome activity with lactacystin 

restored ubiquitination levels.  Furthermore, TIR macrophages showed similar levels of 

protein ubiquitination compared to that of lactacystin treatment, suggesting that TIR may 

be a result of reduced proteasome activity [139].  Another study showed that TIR was 

linked to the up-regulation of a H3K27 demethylase, Jmjd3, in response to LPS [176].  

Jmjd3 is known to play a vital role in the inflammatory response by contributing to 

macrophage differentiation, and therefore its expression may be crucial to the recovery of 

toxin exposed macrophages [176].  Nevertheless, this study failed to show the up-

regulation of Jmjd3 in response to LeTx alone, suggesting the outcome was solely LPS-

induced.  In addition to these suggested mechanisms, we found that three mitochondrial 

death genes, BNIP3, BNIP3L, and MLN64, were down-regulated in long-term TIR 

macrophages, thus preventing caspase-1-dependent mitochondrial dysfunction and 

pyroptosis [110,112]. However, the mechanism leading to silencing of these three 

mitochondrial death genes remained unknown.  This study showed that epigenetic 

reprogramming played a significant role in maintaining the TIR phenotype.  Epigenetic 
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modifications known to play a role in gene silencing include DNA methylation and 

histone modifications (e.g. deacetylation).  Although the role of DNA methylation in TIR 

still remains elusive, increased HDAC8 expression is highly correlated with long-term 

TIR [177].  Here, I showed that RAW 264.7 short-term TIR macrophages also had 

increased HDAC8 expression at both mRNA and protein levels (Fig. 3.2 and 3.3).  Since 

HDAC8 expression was highly correlated with the TIR phenotype, I examined whether 

inhibiting HDAC8 with PCI-34051, which has greater than 200-fold selectivity over 

other HDACs [194], rendered RAW 264.7 short-term TIR macrophages sensitive to 

LeTx-induced pyroptosis.  Indeed, Figure 3.4 confirmed that inhibiting HDAC8 in RAW 

264.7 short-term TIR macrophages sensitized them to LeTx-induced cell death.  

Furthermore, the LeTx-induced cell death observed in these TIR macrophages was likely 

pyroptosis as sensitization occurred in a caspase-1-dependent manner (Fig. 3.4).  The 

involvement of HDACs 1-3, 6, and 11 in mediating resistance to LeTx was dismissed, as 

treatment with mocetinostat, an HDAC 1, 2, 3, and 11-specific inhibitor, and CAY10603, 

an HDAC6-specific inhibitor, did not sensitize TIR macrophages to LeTx (Fig. 3.4B).  

Strikingly, HDAC8 was crucial for the suppression of BNIP3, BNIP3L, and MLN64 

expression in long-term TIR cells [177], as well as TIR-BMDMs (Fig. 3.5).  Collectively, 

these studies suggest that sub-lethal doses of LeTx induced HDAC8, which plays a key 

role in resistance to subsequent LeTx challenges by contributing to the down-regulation 

of the three mitochondrial death genes.  It would be interesting to examine how HDAC8 

is up-regulated in response to LeTx, as this is currently unknown.  While more extensive 

studies should be conducted to entirely reject the involvement of other HDACs in TIR, 

HDAC8 appears to be a key regulator in determining susceptibility to LeTx-induced 

pyroptosis.     

4.2 TIR is mediated by an HDAC8-H3K27-dependent epigenetic 
mechanism 

HDAC8 is a ubiquitously expressed class I HDAC, and is the most divergent member of 

this class as it can localize within both the cytoplasm and the nucleus [158,163-165].  

HDAC8 has been implicated in the suppression of histocompatibility complex I genes by 

the adenoviral E1A-12 protein [195], as well as p53 in hepatocellular carcinoma cell lines 
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[172] and inv(16) fusion protein-positive leukemic stem cells [173].  To date, HDAC8 

has been primarily studied with regards to cancer, whereas little is known about its role in 

infection and immunity.  As such, the involvement of HDAC8 in regulating 

mitochondrial death gene expression is a novel finding [177].  In vitro, HDAC8 shows 

deacetylase activity towards all core histones [166-168].  Furthermore, HDAC activities 

are generally regulated by a variety of post-translational modifications, including 

acetylation, ubiquitination and SUMOylation.  However, the only known modification 

regulating the activity of HDAC8 is phosphorylation by protein kinase A (PKA) at serine 

39 (Ser39), which prevents its deacetylase function [167,196].  Although histone 

substrates for HDAC8-mediated deacetylation remain unclear in vivo, it likely targets 

histones H3 and H4, as activation of PKA increased their acetylation levels [167,196].  

Consistent with these findings, our Western blots revealed an overall decrease in histone 

H3 acetylation in long-term RAW 264.7 TIR macrophages, which show increased 

HDAC8 expression [177].  Furthermore, among a wide range of acetylated histone H3 

lysine residues, acetylation at H3K27 was most significantly reduced in long-term TIR 

[177].  Together, these observations suggested that HDAC8 might target H3K27.  While 

Western blotting is a common technique used to examine the presence of a given protein 

in a sample, it is non-quantitative.  More specifically, it is not possible to determine how 

much protein is present and the molecular weight of this protein can only be estimated 

based on a protein ladder.  Furthermore, the H3K27Ac antibodies used in this Western 

blot experiment were polyclonal, meaning the blots may represent non-specific 

interactions.  Due to these constraints in Western blotting, we employed a technique 

known as SRM mass spectrometry as a means to directly quantify H3K27Ac levels in 

TIR.       

Currently, SRM mass spectrometry is the most definitive method for identifying and 

quantifying histone post-translational modifications, and is based on the detection of 

multiple product ions from one or more precursor ions [181,197,198].  Furthermore, in 

conjunction with stable isotope labeling of amino acids in cell culture (SILAC), SRM 

mass spectrometry can quantify differentially expressed histone modifications between 

two samples [197,198].  More specifically, measurements of differential H3K27Ac levels 

between wild-type and long-term TIR samples can be accomplished by isotopic labeling 
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of lysine residues (Fig. 3.6).  In line with our previous findings [177], SILAC in 

combination with SRM mass spectrometry confirmed a significant reduction of 

acetylated H3K27 in long-term TIR macrophages (Fig. 3.9).  Since short-term adaptation 

to stressors in vivo is more likely to occur, this methodology was also applied for 

comparing H3K27Ac levels between RAW 264.7 short-term TIR and wild-type 

macrophages.  Despite the increased sensitivity of triple quadrupole (MS/MS) systems, 

our samples did not reach the lower detection limits for H3K27Ac, such that the 

background noise was high relative to the signal.  This prevented absolute identification 

of the H3K27Ac peptide.  Generally non-modified peptides are present at the highest 

abundance, making them easily identifiable by MS/MS analysis.  However, when 

multiple combinations of modifications are possible at a single residue as for H3K9 

[199], or H3K27 (Fig. 4.1), then analyses are much more complex.  This is especially 

relevant when trying to distinguish acetylation (+42.01 Da) from tri-methylation (+42.04 

Da) at a single site or two different sites, as well as acetylation at two or more different 

sites [197,199].  Unlike mass measurements, MS/MS can differentiate these post-

translational modifications under ideal circumstances via the production of unique 

fragmentation ions at the N-terminal (b-ions) or C-terminal (y-ions).  For example, 

acetylation at the N-terminus of the H3K9 peptide can be differentiated from tri-

methylation at this site by the production of a b2 ion and a b2-59 ion, respectively [199].  

Nonetheless, because our samples were not able to reach the lower detection limit, the 

MS/MS spectrum obtained was not conclusively able to differentiate acetylated H3K27 

from tri-methylated H3K27.  Collectively, with our previous findings [177] and SRM 

data from long-term TIR, the increase in the unmodified H3K27 peptide in short-term 

TIR (Fig. 3.10) suggests that H3K27Ac decreased, based on the exclusiveness of 

modifications at H3K27 (Fig 3.11).  While H3K27 can also be tri-methylated, since 

mitochondrial death gene silencing is involved in TIR and H3K27 tri-methylation is a 

general marker for gene suppression [183], it seems most likely for H3K27Me3 levels to 

increase and H3K27Ac levels to decrease in short-term TIR. 

Acetylated histones are thought to be key substrates for HDACs [164] and this study 

suggested acetylated H3K27 as one of HDAC8’s downstream targets.  Interestingly, there 

was a strong inverse correlation between HDAC8 and H3K27Ac expression.  
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Specifically, treatment with the broad-spectrum HDAC inhibitor panobinostat or siRNAs 

targeting HDAC8 restored H3K27Ac levels in long-term TIR to that of wild-type 

macrophages (Fig. 3.12).  Furthermore, reduced levels of the unmodified H3K27 peptide 

in TIR macrophages treated with the HDAC8 inhibitor PCI-34051 (Fig. 3.13) suggested 

an enhancement of H3K27Ac on the basis of exclusiveness at this site.  H3K27Ac plays a 

prominent role in promoting gene expression [200,201], and a previous study conducted 

in our lab revealed that H3K27Ac was highly associated with the regulatory regions of 

BNIP3 and MLN64, showing ~100- and ~40-fold increase above basal IgG levels, 

respectively, in RAW 264.7 macrophages [177].  Conversely, H3K27Ac association at 

these two mitochondrial death genes was significantly reduced in long-term TIR.  Since 

H3K27Ac is a possible HDAC8 substrate, further ChIP-qPCR analysis was conducted to 

examine whether HDAC8 recruitment was increased at these sites.  As expected, HDAC8 

recruitment was increased at H3K27Ac-associated regions of BNIP3 and MLN64, but not 

at the promoter in long-term TIR, compared to that of wild-type (Fig. 3.14).  This is the 

second study to show HDAC8 interaction with a DNA target; a recent study 

demonstrated that HDAC8 suppresses the activity of pro-apoptotic gene Bcl-2-modifying 

factor (BMF) in colon cancer cells through interacting with the promoter regions [202].  

Furthermore this study revealed activation markers H3K9Ac and H3K14Ac as potential 

HDAC8 targets.  Consistent with these findings, we also noted a reduction in H3K9Ac 

and H3K14Ac in long-term TIR [177], suggesting that HDAC8 can deacetylate multiple 

lysine residues on histone H3.  However, more extensive study is required to examine 

whether HDAC8 targets these sites in TIR and whether H3K9Ac and H3K14Ac play a 

role in mitochondrial death gene expression.  In summary, increased HDAC8 recruitment 

plays a key role in silencing BNIP3 and MLN64 by deacetylating H3K27 in long-term 

TIR.   

Histone acetylation plays a key role in gene expression through inducing an open 

chromatin confirmation, thus allowing for the binding of transcription machinery such as 

RNA polymerase II (Pol II).  During transcription, Pol II becomes highly phosphorylated, 

such that it has different phosphorylation states based on its gene location.  Specifically, 

within the promoter Pol II is primarily phosphorylated at serine 5 (Pol II-phospho S5), 

whereas within coding regions Pol II is generally phosphorylated at serine 2 [203].  Since 
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HDAC8 appears to play a key role in BNIP3, BNIP3L and MLN64 suppression in long-

term TIR, I indirectly measured the transcriptional activity of these mitochondrial death 

genes by examining Pol II-phospho S5 recruitment to the promoters.  As expected, long-

term TIR macrophages and RAW 264.7 macrophages over-expressing HDAC8 show a 

significant decrease in Pol II association at the mitochondrial death gene promoters 

compared to wild-type and vector controls, respectively (Fig. 3.15 and 3.16).  Overall, 

this data suggests that HDAC8-mediated H3K27 deacetylation promoted a closed 

chromatin conformation, preventing the binding of Pol II transcriptional machinery, and 

silencing BNIP3 and MLN64 expression in long-term TIR.  In support of this gene 

silencing mechanism, in colon cancer cells BMF expression was inhibited by promoter-

HDAC8 interactions, which subsequently prevented Pol II binding [202].  Also, 

decreased levels of the gene activation markers H3K9Ac and H3K14Ac were correlated 

with decreased BMF expression in an HDAC8-dependent manner [202].  Collectively, 

this suggests that HDAC8-dependent deacetylation of H3K9Ac and H3K14Ac may play 

a role in silencing BMF expression through preventing access of Pol II to the promoter 

region.  As such, it would be interesting to examine if HDAC8 plays a role in mediating 

BNIP3L silencing via targeting H3K9Ac or H3K14Ac.   
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Figure 4.1  The H3K27 peptide histone modifications. 

The histone H3 lysine 27 (H3K27) peptide generated from Arg-C digestion can have a 

variety of post-translational modifications, including acetylation (Ac) or mono- di- or tri-

methylation (Me) at lysine (K) 27, phosphorylation (P) at serine (S) 28, acetylation or 

mono- di- or tri-methylation at lysine 36, and mono-methylation at lysine 37.   
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4.3 LeTx-induced cytokine suppression is mediated by an 
HDAC8-H3K27-dependent epigenetic mechanism 

In addition to inducing pyroptic cell death in susceptible macrophages, LeTx, even at 

sub-lethal doses, disrupts inflammatory immune responses.  This occurs by inhibiting the 

MAPK signaling cascade, which plays a vital role in several aspects of the immune 

defenses [67,204].  The inactivation of MAPK signaling impairs numerous innate 

immunes responses, including the production of pro-inflamamtory cytokines such as IL-

1β, TNF-α, IL-6, and IL-8 [63,65,175,191].  LeTx-induced inhibition of IL-1β is 

particularly important, as it prevents early detection of germinating B. anthracis [104].  

This immune suppressed state is the primary cause for uncontrolled proliferation of B. 

anthracis within the host [57,58,204,205].  In addition, IL-1β plays a key role in 

mounting immune responses against a number of other pathogenic bacteria, including 

Francisella tularensis, S. typhimurium, Listeria monocytogenes, Shigella flexneri, and 

Legionella pneumophila [72,97,98,104,206-208].  In line with previous studies, treatment 

with a sub-lethal dose of LeTx (100 ng/mL PA and 100 ng/mL LF) in RAW 264.7 

macrophages inhibited the production of IL-1β in response to LPS (Fig. 3.17A and 

3.17B).  TLR signaling during infection, such as stimulation of TLR4 by LPS, is crucial 

for the activation of various transcription factors that behave in combination to regulate 

inflammatory gene expression [54,55].  Furthermore, TLRs are coupled to MAPK 

signaling cascades [60].  Therefore due to LeTx-induced MEK inactivation, it is not 

surprising that LPS stimulation failed to trigger IL-1β production in LeTx-exposed 

macrophages. 

Since previous sections of this study revealed that HDAC8 could regulate mitochondrial 

death gene expression through altering H3K27Ac levels, I further examined whether 

HDAC8 played a role in LeTx-mediated cytokine gene silencing.  Interestingly, RAW 

264.7 macrophages over-expressing HDAC8 failed to express pro-IL-1β in response to 

LPS (Fig 3.17C).  In contrast, when HDAC8 was inhibited in LeTx-exposed 

macrophages by the broad-spectrum HDAC inhibitor panobinostat or the HDAC8-

specific inhibitor PCI-34051, IL-1β/TNF-α production and mRNA expression levels were 

restored to nearly the same levels as untreated macrophages in response to LPS (Fig. 3.18 
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and 3.19).  Unlike HDAC8 inhibition, inhibiting HDACs 1, 2, 3, and 11 with 

mocetinostat or inhibition of DNMTs with azacitidine in LeTx-treated macrophages 

failed to restore IL-1β and TNF-α production in response to LPS (Fig. 3.18).  

Collectively, these results suggest that involvement of HDACs 1-3, and 11, and DNA 

methylation in LeTx-induced IL-1β and TNF-α suppression is minimal, whereas HDAC8 

likely plays a key role in the silencing of these cytokine genes.  In contrast to these 

findings, a recent study showed that selective inhibition of HDAC8 by ITF3056 actually 

suppressed the expression of these pro-inflammatory cytokines in vitro and in vivo [209].  

Nevertheless, ITF3056’s inhibitory effects were only seen at doses greater than 200 nM, 

whereas at lower doses this inhibitor showed little effect or even increased cytokine 

production.  As presented in figure 3.20, PCI-34051 did not show any effects on TNF-α 

production in response to LPS at a 20 nM dose.  Additionally, further studies in our lab 

showed no differences in LPS-induced TNF-α production up to doses of 1 µM 

(unpublished) and over-expressing HDAC8 in RAW 264.7 macrophages showed 

significantly reduced pro-IL-1β expression in response to LPS (Fig. 3.17C), suggesting 

that HDAC8 functions as a negative regulator of cytokine expression, rather than a 

positive regulator as implied by Li et al. [209].  Regardless, it would be advantageous to 

examine whether ITF3056 has similar effects to PCI-34051 in LeTx-induced immune 

suppression.   

As mentioned previously, H3K27Ac is an activation marker for gene expression 

[200,201] and HDAC8 was shown to regulate mitochondrial death gene expression in an 

H3K27Ac-dependent manner.  Therefore, I also examined whether HDAC8-mediated 

H3K27Ac deacetylation was involved in LeTx-induced IL-1β suppression in response to 

LPS.  Although no significant differences were noted within the promoter region, LeTx 

significantly decreased H3K27Ac association in response to LPS between exon 2 and 

exon 3 in a PCI-34051-sensitive manner (Fig. 3.21B).  These results support the idea that 

HDAC8 suppresses IL-1β expression through deacetylating H3K27.  Since deacetylation 

promotes a closed chromatin confirmation, I examined whether LeTx prevented Pol II 

recruitment to IL-1β.  Interestingly, relative to LeTx, inhibiting HDAC8 in LeTx-treated 

macrophages enhanced Pol II interactions in response to LPS across the entire IL-1β 
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region, particularly between exon 2 and exon 3 (Fig. 3.21C) where increased H3K27Ac 

association occurred.  Collectively, these findings suggest the role of enhancers in 

regulating IL-1β expression.     

Enhancers are key regulatory elements that are capable of controlling gene expression at 

variable distances from their target genes [210], and studies have shown that stimulation 

of TLR4 by LPS triggers activation of numerous enhancers [211].  Although H3K4Me1 

and HATs including CBP and P300 are general markers for enhancers [193,212-216], in 

a given cell type H3K27Ac positive regions within H3K4Me1 positive regions define 

active enhancers [193,215,217].  These enhancer elements possess binding sites for 

multiple transcription factors and are capable of recruiting Pol II, leading to the 

production of non-coding enhancer RNAs (eRNAs) [210].  Not surprisingly, the 

production of eRNAs is dynamically induced prior to the production of protein coding 

mRNAs [218], so that they can regulate mRNA production.  eRNAs can promote gene 

transcription via chromatin looping, allowing access of the transcriptional complex to 

promoter regions of target genes [212].  Given these features of enhancer elements, as 

PCI-34051 increased H3K27Ac and Pol II association within the intragenic regions of IL-

1β (between exon 2 and exon 3) in LeTx-treated macrophages in response to LPS (Fig. 

3.21), this suggests that eRNAs may be involved in regulating its expression.  However, 

further studies are required to determine whether this region does in fact encode for 

functioning eRNAs.      

4.4 Future Studies   

4.4.1 Examining the mechanism of LeTx-mediated HDAC8 up-
regulation 

This study revealed that HDAC8 expression was up-regulated in response to LeTx in 

RAW 264.7 macrophages and BMDMs in as little as 24 hours after treatment (Fig. 3.2).  

However, this study failed to address whether increased HDAC8 expression also lead to 

an increase in HDAC8 activity, as it is well known that protein expression does not 

always correlate to catalytic activity.  As such, HDAC8 activity should be measured 

using a fluorometric HDAC8 activity assay kit (Abcam; product #ab156069), by 
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comparing deacetylation rates of the target substrate between wild-type and LeTx-treated 

(short-term TIR) samples.  Since long-term TIR macrophages showed increased H3K27 

deacetylation in an HDAC8-dependent manner (Fig. 3.12), this suggests that HDAC8 

activity is in fact increased and specifically targets H3K27Ac.  Regardless, the HDAC8 

activity assay kit would validate an increase in HDAC8 activity in response to LeTx. 

Next, this study also did not address how HDAC8 expression/activity was increased in 

response to LeTx.  Despite preliminary data showing that MAPK inhibition correlates 

with the induction of HDAC8 (unpublished), LeTx also causes immune suppression via 

MEK inhibition-independent pathways [219].  This suggests that LeTx may regulate 

HDAC8 expression/activity independently of MAPKs.  Interestingly, HDAC8 activity 

was found to be regulated by intracellular potassium concentration ([K+]i), as in vitro 

concentrations around 130 mM or 10 mM inhibited or induced HDAC8 activity, 

respectively [220].  Since the [K+]i in most cells is greater than 100 mM [221], HDAC8 

activity was thought to be minimal under normal conditions.  However LeTx, as well as 

other bacterial toxins, have been shown to significantly reduce [K+]i through opening K+ 

channels [222-228], likely enhancing HDAC8 activity.  As such, RAW 264.7 

macrophages cultured in various [K+] in the presence or absence of LeTx followed by 

measuring HDAC8 levels would determine whether HDAC8 acts as a [K+]i sensor.  

Furthermore, this study showed that HDAC8-mediated H3K27 deacetylation is at least in 

part responsible for IL-1β and mitochondrial death gene silencing in macrophages.  

Therefore, measuring H3K27Ac levels in the same samples used for measuring HDAC8 

levels would determine whether HDAC8 acts as a [K+]i sensor that controls immune 

responses by H3K27 deacetylation.   

4.4.2 Examining LeTx-mediated H3K27 methylation  

In addition to deacetylation at H3K27, tri-methylation at H3K27 (H3K27Me3) is also 

known to cause gene silencing through a polycomb complex [183,229].  Although this 

study clearly showed a role for HDAC8-mediated H3K27 deacetylation in gene silencing, 

it remains unknown whether H3K27Me3 levels are affected in an HDAC8-dependent 

manner.  The Enhancer of Zeste Homolog 2 (EZH2), which is a vital component of the 

polycomb repressive complex 2 (PRC2), is responsible for mediating methylation of 
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H3K27 and promoting gene silencing [230,231].  Remarkably, a previous study showed 

that the PRC2 complex was depleted by broad-spectrum HDAC inhibition [231].  Since 

HDAC8 showed an inverse correlation with H3K27Ac (Fig. 3.14), it will be of interest to 

examine whether components of the PRC2 complex, as well as H3K27Me3 levels were 

reduced following inhibition of HDAC8 in macrophages.  Furthermore, as LeTx appears 

to induce HDAC8 (Fig. 3.2), we should also examine expression levels of H3K27Me3 

and PRC2 components in LeTx-treated macrophages to determine if they increase.  

Collectively, these experiments will provide insight as to whether LeTx/HDAC8 plays a 

role in silencing IL-1β and mitochondrial death genes through inducing H3K27Me3 as a 

result of H3K27 deacetylation.    

Since western blot is a non-conclusive method for quantifying histone modifications, it 

would be advantageous to quantify levels of H3K27Me3 by SRM mass spectrometry.  

Quantifying differential H3K27Me3 levels in various macrophage samples can be 

accomplished by labeling with methionine isotopes as a methyl donor for histone 

methylation, followed by SRM mass spectrometry; a technique our collaborators 

successfully used to map protein lysine methylation events [181].  Isotopically labeling of 

the histone methyl groups within the H3K27 peptide, rather than the lysine, which was 

done in this study, eliminates the challenge of differentiating H3K27Me3 and H3K27Ac, 

since they will no longer be of similar mass.  Furthermore, as this study failed to quantify 

H3K27Ac levels by lysine labeling and SRM mass spectrometry, levels of H3K27Me3 

together with levels of unmodified H3K27 (Fig. 3.10 and 3.13) would definitively 

establish H3K27Ac levels in wild-type macrophages versus LeTx-treated macrophages 

and LeTx-treated macrophages versus HDAC8 inhibited LeTx-treated macrophages, 

based on exclusiveness at this site.   

4.4.3 Examining H3K9Ac and H3K14Ac in IL-1β and mitochondrial 
death gene expression 

This study revealed that HDAC8-mediated H3K27 deacetylation played a key role in the 

suppression of the mitochondrial death genes, BNIP3 and MLN64, likely through 

preventing access of Pol II to the promoter regions.  While BNIP3L also demonstrated 

decreased Pol II recruitment to its promoter region in an HDAC8-dependent manner (Fig. 
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3.15 and 3.16), we previously showed that it was likely not due to decreased H3K27Ac-

association [177].  In addition to decreased levels of H3K27Ac in long-term TIR, there 

was also a significant reduction in H3K9Ac and H3K14Ac levels [177].  Furthermore, 

another study showed that BMF gene suppression partly occurred as a result of HDAC8-

mediated H3K9Ac and H3K14Ac deacetylation [202].  Collectively, these findings 

suggest that BNIP3L suppression may be regulated by an H3K9Ac and/or H3K14Ac 

HDAC8-dependent deacetylation mechanism.  Unlike, H3K27Ac, H3K9Ac and 

H3K14Ac associations are not available through the ENCODE database.  Therefore 

ChIP-seq would be the most useful technique to examine whether BNIP3L suppression is 

correlated with decreased H3K9Ac and/or H3K14Ac associations in TIR.  ChIP-seq data 

would further determine whether a decrease in these activation markers is also associated 

with BNIP3 and MLN64 suppression in TIR.  Remarkably, H3K9Ac and H3K14Ac are 

vital for the recruitment of the Pol II-associated TFIID to the interferon (IFN)-γ locus, 

thus playing a key role in promoting immune responses [232].  As such, it would be 

interesting to examine whether H3K9Ac and/or H3K14Ac show decreased association 

with IL-1β in response to LeTx.  If positive results are obtained, recruitment of TFIID 

could be examined by ChIP-qPCR analysis at these IL-1β sites in LeTx-treated 

macrophages.  Collectively, these studies would provide an alternate mechanism for IL-

1β and mitochondrial death gene silencing.  

4.4.4 Examining eRNAs in regulating IL-1β and mitochondrial death 
gene expression  

This study found that LeTx-induced silencing of BNIP3 and MLN64, as well as IL-1β, 

occurred through the loss of H3K27Ac association in an HDAC8-dependent manner.  

While H3K27Ac is a marker for active enhancers [193,215,217], it would be interesting 

to examine whether these sites encode for active eRNAs.  Additionally, active enhancers 

are capable of recruiting Pol II and other MAPK-dependent transcription factors, such as 

AP-1, NF-κB and ATF2 [212,233-236].  It appeared as though the intragenic region of 

IL-1β may possess an active enhancer negatively regulated by HDAC8, since Pol II was 

largely recruited to H3K27Ac-associated sites in a PCI-34051-sensitive manner (Fig. 

3.21).  To this end, ChIP-qPCR should be conducted to examine whether other 
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transcription factors including AP-1, NF-κB, and ATF2, are recruited to BNIP3, MLN64, 

and IL-1β H3K27Ac-associated regions in an HDAC8-inhibition dependent manner.  

Furthermore, a previous study revealed that extragenic enhancer regions are also capable 

of regulating gene expression [236].  Interestingly, the ENCODE database identified a 

highly enriched H3K27Ac area ~ 2.5 kbps upstream of the IL-1β transcription start site.  

Therefore, similar experiments should be performed to examine whether this site encodes 

an enhancer element.  To determine the functionality of such eRNAs in BNIP3, MLN64, 

and IL-1β, eRNAs could be knocked down by siRNAs and expression levels of these 

genes could be measured.  Collectively, these experiments will determine whether 

HDAC8-H3K27Ac histone modifications regulate BNIP3, MLN64, and IL-1β expression 

via enhancers.   

4.5 Summary  

In summary, this study addressed the role of HDAC8 mediated histone modifications in 

regulating the expression of pro-inflammatory cytokines, primarily IL-1β, and the 

mitochondrial death genes during pyroptosis in macrophages.  LeTx appears to induce 

HDAC8, which then deacetylates H3K27Ac “enhancer” gene regions of BNIP3, MLN64, 

and IL-1β.  While this promotes a gene-silenced state, HDAC8-inhibition restores 

expression of these genes (Fig. 4.2).  As such, increased H3K27Ac levels mediated by 

HDAC8 inhibition may enable the recruitment of eRNA transcriptional components to 

these “enhancer” regions and compensate for LeTx-induced inactivation of MAPK 

signaling in macrophages.   
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Figure 4.2  Working models for HDAC8-mediated silencing of BNIP3, MLN64, and 

IL-1β in response to LeTx. 

In response to LeTx, HDAC8 is up-regulated.  HDAC8 associates with and subsequently 

deacetylates H3K27Ac-associated regions of BNIP3, MLN64, and IL-1β, promoting a 

closed chromatin conformation and preventing the binding of Pol II and other 

transcription factors (TF) to mediate gene transcription.  In contrast inhibiting HDAC8 

restores H3K27Ac levels allowing the recruitment of transcriptional machinery and 

enhancer-promoter interactions, thus permitting the transcription of BNIP3, MLN64, and 

IL-1β.   
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4.6 Significance   

Overall, this study suggests that HDAC8 acts as key dual-function regulator of innate 

immune responses, such that it mediates susceptibility of macrophages to pyroptosis, as 

well as controlling macrophage-mediated immune signaling.  NLR activation during 

infection appears to have double-edged effects, such that initially activation is protective. 

However, it can also lead to exacerbation of immune responses, resulting in septic shock.  

With regards to anthrax, mice that harbor NLRP1b, which upon activation initiates 

pyroptosis, are in fact much more susceptible to LeTx toxemia [20,103].  In addition, 

inactivation of MAPK signaling is another tactic used by LeTx as a means to evade 

detection by the host immune system and cause systemic infection [59].  Since LeTx-

induced MEK inactivation is likely the primary virulence mechanism during anthrax 

infection in humans, antagonizing HDAC8 may act as a novel therapy for restoring host 

immune responses.  While countless other bacteria produce virulence factors capable of 

inhibiting MAPK signaling and host immune responses [237-239], HDAC8 may also be 

involved in these infections, thus extending the potential of this therapeutic treatment 

beyond anthrax.  In contrast, when pyroptosis is responsible for promoting overt 

inflammation, such as in autoinflammatory and autoimmune diseases [240-243], 

activating HDAC8 may be beneficial.  Collectively, aside from anthrax, manipulating 

HDAC8 has therapeutic potential for treating a wide range of infectious and 

inflammatory diseases.   
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